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NONLINEAR WAVES ON 3D HYPERBOLIC SPACE

JASON METCALFE AND MICHAEL TAYLOR

Abstract. In this article, global-in-time dispersive estimates and Strichartz
estimates are explored for the wave equation on three dimensional hyperbolic
space. Due to the negative curvature, extra dispersion is noted, as compared

to the Euclidean case, and a wider range of Strichartz estimates are proved.
Using these, small data global existence to semilinear wave equations is shown
for a range of powers that is broader than that known for Euclidean space.

1. Introduction

The goal of this article is to study dispersive estimates for the linear wave equa-
tion on hyperbolic space and their application to nonlinear wave equations. We
will primarily study Strichartz-type estimates. Due to the negative curvature of
hyperbolic space, one expects to see more dispersion than in the Euclidean case.
This is indeed observed, and a wider range of Strichartz estimates are proved. As
such, small data global existence for nonlinear wave equations with power-type
nonlinearities can be shown for a larger range of powers.

We shall study the linear wave equation

(∂2
t − ∆)u = G(t, x)

u(0, · ) = f, ∂tu(0, · ) = g.
(1.1)

A now common measure of dispersion is the class of Strichartz estimates

(1.2) ‖(−∆)−γ/2∇t,xu‖Lp
t Lq

x
. ‖∇t,xu(0, · )‖2 + ‖(−∆)γ̃/2(∂2

t − ∆)u‖
Lp̃′

t Lq̃′
x

.

For (t, x) ∈ R+ × R
n, these estimates originated in the work of Strichartz [25]. It

is now known for (t, x) ∈ R+ × R
n that (1.2) holds for

(1.3) γ =
n

2
− n

q
− 1

p
,

2

p
≤ n − 1

2

(
1 − 2

q

)

and similarly for (p̃, q̃, γ̃). The n = 3 endpoint (p, q) = (2,∞) is excepted. This is
the culmination of progress made by a number of authors. See Keel and Tao [19],
where the endpoint estimates were obtained, and the references therein. When
n = 3, this range of indices (p, q, γ) is labelled E in the sequel. See, e.g., Figure 1.

When we study (1.1) on R+×H3, where H3 is 3D hyperbolic space with constant
sectional curvature −1, and ∆ represents its Laplace-Beltrami operator, we are able
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to obtain a richer family of Strichartz estimates than in the Euclidean setting. In
fact, to the set of (p, q, γ) satisfying (1.3) can be added the set satisfying

(1.4) γ = 1 − 2

q
,

1

q
≤ 1

2
− 1

3p

with the (p, q) = (2, 3) endpoint case excepted. See Propositions 4.2–4.3. This range
is labelled R in Figure 1. The key to proving this extended range of estimates is the
dispersive estimate (3.51), given as (1.8) below. Notice that the decay at infinity in
this estimate in, say, the γ = 1/2, q = 4 case is much better than the t−1/2 decay
which is known in R

1+3. In fact, the decay here is comparable to what is obtained
in R

1+7. The fact that 0 is not in the Lp-spectrum of −∆ for M = H3 also has
implications for the Strichartz estimates (1.2) in this context.

Closely related estimates of this sort first appeared in Tataru [27]. There Strich-
artz estimates were shown for ∂2

t −
(
∆ + (n − 1)2/4

)
. Relations between these

estimates and ours are discussed in further detail in §3.
As an application of such estimates, we consider solutions to semilinear wave

equations

(1.5) (∂2
t − ∆)u = F (u).

We seek conditions under which (1.5) can be shown to have a global solution, given
small initial data, when F (u) has the form

(1.6) F (u) = a|u|b,
with b > 0, a ∈ R. For (t, x) ∈ R

1+3, it is known that small data global solutions

exist for b > 1+
√

2. This was first shown by John [17] and is the n = 3 case of the
so-called Strauss conjecture, which is now solved. The Strauss conjecture asserted
that, on R

1+n, global small data solutions exist for b > pc where pc is the positive
root of

(1.7) (n − 1)p2 − (n + 1)p − 2 = 0.

See [13] and [27], and the references therein.
On H3, we find that such global existence results hold for a larger range of

b than in 3D Euclidean space. Indeed, small data global existence is obtained
for b ≥ 5/3. This is obtained merely from Strichartz estimates, and we make
no claim of sharpness. In R

3, Strichartz estimates only permit one to reach b ≥
3 = (n + 3)/(n − 1). The range 1 +

√
2 < b < 3 follows from other arguments.

Notice here the relationship, which is not coincidental, between the conformal power
(n + 3)/(n − 1) in n = 7 and the range for which we show global existence.

For some recent related results on dispersive estimates for the Schrödinger equa-
tion on hyperbolic space and applications to certain nonlinear equations, the au-
thors refer the interested reader to, e.g., [1], [2], [3], [4], [5], [16]. While the tech-
niques involved for the wave equation are related to those employed in the cited
works and while the results herein may be heuristically expected based on these
previous studies, significant technical obstacles must be overcome to prove the
dispersive estimates for the wave equation. In particular, Strichartz estimates typ-
ically follow by interpolating an L2 − L2 energy-type estimate with an L1 − L∞

dispersive estimate. For the Schrödinger equation, the latter follows from the form
of the representation of the solution. For the wave equation, in Euclidean space,
the L1 − L∞ estimate requires a more complicated replacement, which typically
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involves Littlewood-Paley theory and Besov spaces. In the absense of an appropri-
ate Littlewood-Paley theory for hyperbolic space, such an estimate is much more
elusive in the present setting. To get around this, we make use of Sobolev spaces
based on bmo-spaces, and interpolation results from [32], which are reviewed in an
appendix to this paper. It is with these tools that the relevant Strichartz estimates
are approached.

This paper is organized as follows. In the next section, some explicit formulas
are given for the solution operator to (1.1) on H3. Section 3 is dedicated to the
main dispersive estimate (3.51), i.e.,

(1.8) ‖(−∆)−s/2eit
√
−∆f‖Lq ≤ C

ψγ(t)
‖f‖Lq′ ,

provided

(1.9) γ ∈ [0, 1), s = 2γ, q =
2

1 − γ
, q′ =

2

1 + γ
,

where

(1.10) ψγ(t) =

{
|t|γ + |t|3/2, 1

2 ≤ γ < 1,

|t|γ + |t|3γ , 0 ≤ γ ≤ 1
2 .

Such an estimate follows from the representation of the solution given in Section 2,
together with interpolation arguments, involving bmo-Sobolev spaces. In Section
4, the Strichartz estimates for the homogeneous wave equation, which follow from
(1.8), are given. As noted previously, a wider range of exponents is permitted as
compared to the wave equation on Euclidean space. Section 5 contains the proofs
of Strichartz estimates for nonhomogeneous wave equations. These follow, in what
is becoming an increasingly standard argument, from the estimates of Section 4 in
concert with the Christ-Kiselev lemma.

Sections 6-8 contain the applications to nonlinear wave equations. The first
long time existence results for nonlinear wave equations are presented in Section
6. These are analogs of known global existence results in Euclidean space for
p ≥ (n+3)/(n−1), which follow from Strichartz estimates. Due to the richer range
of Strichartz estimates, the power in the lower bound for 3-dimensional hyperbolic
space resembles that instead of 7-dimensional Euclidean space. In Section 7, the
regularity on the initial data which is needed for b ∈ [5/3, 3] is improved as opposed
to that given in Proposition 6.1. Section 8 is dedicated to proving the existence of
global smooth solutions for (∂2

t − ∆)u = au2.
The material in Sections 2-8 is supported by three appendices. Appendex A

discusses the telegraph equation and how formulas for its solution yield formulas
in Section 2. Appendix B discusses bmo-Sobolev spaces and interpolation results
used to prove the dispersive estimates in Section 3. Appendix C gives some general
results on non-breakdown of smooth solutions to semilinear wave equations, useful
in the analysis in Section 8.

2. The solution operator to the wave equation on R ×H3

Our goal in this section is to derive an explicit formula for the solution operator

(2.1)
sin t

√
−∆√

−∆
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when ∆ is the Laplace-Beltrami operator on H3. We start with the fact that if we
set

(2.2)
L = ∆ +

(n − 1)2

4
= ∆ + 1 (for n = 3),

which has the property Spec (−L) = [0,∞), then there are exact formulas for
various functions of L. In particular, for t > 0,

(2.3)
sin t

√
−L√

−L
δy(x) =

δ(t − r)

4π sinh t
,

where r = r(x, y) is the geodesic distance from x to y in H3. A related identity
(cf. [30], Chapter 8, (5.15)) is

(2.4) g(
√
−L)δy(x) = − 1

(2π)3/2

1

sinh r

∂

∂r
ĝ(r),

where again r = r(x, y), and ĝ is the Fourier transform of g. Note that

(2.5)
sin t

√
−∆√

−∆
= St(

√
−L), St(λ) =

sin t
√

λ2 + 1√
λ2 + 1

.

One can deduce from the Paley-Wiener theorem that

(2.6) Supp Ŝt ⊂ {r : |r| ≤ |t|}.
By comparison, note that

(2.7) ϕt(r) = χ[−t,t](r) =⇒ ϕ̃t(λ) = 2
sin tλ

λ
,

which leads back to (2.3).

Note that Ŝt(r) is the fundamental solution of an equation of Klein-Gordan type
on R × R. This is not surprising in view of the relation between L and ∆. Here is
a general result relating such fundamental solutions.

Proposition 2.1. Let L0 be a negative self-adjoint operator and, for a ∈ R, set

(2.8) L1 = L0 + a2, L2 = L0 − a2.

Then, for t ∈ R,

(2.9) cos t
√
−L1 = cos t

√
−L0 + at

∫ t

0

I1(a
√

t2 − s2)√
t2 − s2

cos s
√
−L0 ds,

and

(2.10) cos t
√
−L2 = cos t

√
−L0 − at

∫ t

0

J1(a
√

t2 − s2)√
t2 − s2

cos s
√

−L0 ds.

Here J1 is the Bessel function

(2.11) J1(λ) =
∞∑

k=0

(−1)k

k!(k + 1)!

(λ

2

)2k+1

,

and

(2.12) I1(λ) = −iJ1(iλ).
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The formulas (2.9) and (2.10) are established in Appendix A, where they are related
to formulas for the telegraph equation. By (2.2), we can apply (2.10) with L0 =
L, L2 = ∆ on H3, and a = 1. Hence, on H3,

(2.13) cos t
√
−∆ = cos t

√
−L − t

∫ t

0

J1(
√

t2 − s2)√
t2 − s2

cos s
√
−L ds.

Note that, for t > 0,

(2.14) cos t
√
−L δy(x) =

δ′(t − r)

4π sinh r
,

as can be seen by differentiating (2.3) (noting that sinh t can be replaced by sinh r
in (2.3)). Plugging this into (2.13) yields

(2.15) cos t
√
−∆ δy(x) =

δ′(t − r)

4π sinh r
− t

∫ t

0

J1(
√

t2 − s2)√
t2 − s2

∂sδ(s − r)

4π sinh r
ds.

Integrating by parts yields

(2.16)
δ′(t − r)

4π sinh r
− J ′

1(0)t

4π sinh r
δ(t − r) +

t

4π sinh r

∂

∂r
G(

√
t2 − r2)χ{r≤t},

where

(2.17) G(λ) =
J1(λ)

λ
.

Equivalently,

(2.18)

cos t
√
−∆ δy(x) =

δ′(t − r)

4π sinh r
− J ′

1(0)t

4π sinh r
δ(t − r)

− tr

4π sinh r

G′(
√

t2 − r2)√
t2 − r2

χ{r≤t}.

Now

(2.19)
sin t

√
−∆√

−∆
=

∫ t

0

cos s
√
−∆ ds.

Applying this to (2.18) gives (for t > 0)

(2.20)
sin t

√
−∆√

−∆
δy(x) =

δ(t − r)

4π sinh r
− r

4π sinh r

J1(
√

t2 − r2)√
t2 − r2

χ{r≤t}.

3. Dispersive estimates

Our goal in this section is to use the formula (2.20) to derive dispersive estimates,
including the following:

(3.1)
∥∥∥

sin t
√
−∆√

−∆
f
∥∥∥

L4(H3)
≤ C

ψ(t)
‖f‖L4/3(H3), ψ(t) = |t|1/2 + |t|3/2,

and others, which will be given further on. The main result will be that (3.51)
holds, under the conditions given in (3.45).

To begin, noting that

(3.2)
δ(t − r)

4π sinh r
=

δ(t − r)

4π sinh t
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and that J1(ζ)/ζ is an entire function of ζ2, satisfying

(3.3)
J1(ζ)

ζ
∼ Cζ−3/2 cos

(
ζ − 3π

4

)
+ · · · , as ζ → +∞,

we have the following dispersive estimate. To state it, we take λ > 0 sufficiently
large and set

(3.4) hs,∞(H3) = (λI − ∆)−s/2 bmo(H3).

See Appendix B for a discussion of these spaces.

Proposition 3.1. Given f ∈ L1(H3),

(3.5)
∥∥∥

sin t
√
−∆√

−∆
f
∥∥∥

h−1,∞
≤ C

ϕ(t)
‖f‖L1 ,

where

(3.6) ϕ(t) = |t| + |t|3/2.

Proof. This follows from the estimate

(3.7)
∥∥∥

sin t
√
−∆√

−∆
δy

∥∥∥
h−1,∞

≤ C

ϕ(t)
,

which in turn follows from (2.20). In fact, the second term on the right side of
(2.20) has L∞ norm ≤ C/ϕ(t), thanks to the estimate

(3.8) |J1(ζ)| ≤ C(1 + |ζ|)−1/2, ζ ∈ [0,∞).

As for the first term on the right, it is equal to δ(t − r)/(4πsinh t), and we have

(3.9) ‖δ(t − r)‖h−1,∞ ≤ C, t ∈ (0,∞),

whose proof is essentially the same as that of its well known Euclidean analogue. ¤

Remark. Note that the estimate (3.5) is stronger as t → +∞ than the correspond-
ing estimate with H3 replaced by R

3.

We produce further results by interpolating (3.5) with the elementary estimate

(3.10)
∥∥∥

sin t
√
−∆√

−∆
f
∥∥∥

H1,2
≤ C‖f‖L2 .

These estimates involve Lp-Sobolev spaces

(3.11) Hs,p(H3) = (1 − ∆)−s/2Lp(H3).

The relevant interpolation estimates are the following. Assume one has a bounded
linear operator

(3.12) R : L2(H3) → H1,2(H3), R : L1(H3) → h−1,∞(H3),

satisfying

(3.13) ‖Rf‖H1,2 ≤ M1‖f‖L2 , ‖Rf‖h−1,∞ ≤ M0‖f‖L1 .

Then, for θ ∈ (0, 1),

(3.14) R : L2/(2−θ)(H3) −→ H2θ−1,2/θ(H3),



NONLINEAR WAVES ON 3D HYPERBOLIC SPACE 7

and (with Cθ independent of R and f)

(3.15) ‖Rf‖H2θ−1,2/θ ≤ CθM
θ
1 M1−θ

0 ‖f‖L2/(2−θ) .

This result is an analogue of Corollary 2 in §5 of [12]; we give further details in
Appendix B.

Given (3.15), we deduce that for θ ∈ (0, 1),

(3.16)
∥∥∥

sin t
√
−∆√

−∆
f
∥∥∥

H2θ−1,2/θ
≤ C

ϕ(t)1−θ
‖f‖L2/(2−θ) .

In particular, taking θ = 1/2 gives

(3.17)
∥∥∥

sin t
√
−∆√

−∆
f
∥∥∥

L4
≤ C√

ϕ(t)
‖f‖L4/3 .

This is as good as (3.1) for t ∈ (0, 1] but weaker than (3.1) for t >> 1. We need
further arguments.

To proceed, we write

(3.18)
sin t

√
−∆√

−∆
= R0(t) + R1(t),

with

(3.19) R0(t) =
sin t

√
−L√

−L
, R1(t)δy(x) = − r

4π sinh r

J1(
√

t2 − r2)√
t2 − r2

χ{r≤t}.

Then (3.5) is refined to

(3.20) ‖R0(t)f‖h−1,∞ ≤ C

sinh |t| ‖f‖L1 ,

(3.21) ‖R1(t)f‖L∞ ≤ C

1 + |t|3/2
‖f‖L1 .

The estimate (3.10) has the following counterpart:

(3.22)

∥∥∥
sin t

√
−L√

−L
f
∥∥∥

H1,2
≤ C‖ sin t

√
−L f‖L2 + C

∥∥∥
sin t

√
−L√

−L
f
∥∥∥

L2

≤ C(1 + |t|)‖f‖L2 ,

which in conjunction with (3.10) itself and (3.18)–(3.19), gives

(3.23) ‖Rj(t)f‖H1,2 ≤ C(1 + |t|)‖f‖L2 , j = 0, 1.

Now an interpolation of (3.20) and (3.23) gives, granted (3.15),

(3.24) ‖R0(t)f‖H2θ−1,2/θ ≤ C
(1 + |t|)θ

(sinh |t|)1−θ
‖f‖L2/(2−θ) ,

and in particular,

(3.25) ‖R0(t)f‖L4 ≤ C

√
1 + |t|
sinh |t| ‖f‖L4/3 .

Remark. The estimate (3.24) is equivalent to the estimate (23) of [27]. However,
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there appears to be a gap in the proof of the result given there. The problem arises
with the estimate (27), which would imply

(3.26) ‖(λI − ∆)−1/2R0(t)f‖L∞ ≤ C

sinh |t| ‖f‖L1 ,

in place of (3.20). However, such an estimate is not true. (In fact, the last line of
p. 802 in [27] has a small error, whose correction manifests a logarithmic singularity.)
The argument given here closes that gap.

To obtain further operator estimates on R1(t), we fix y ∈ H3 and take a closer
look at

(3.27) Φ(t, x) =
r

sinh r

J1(
√

t2 − r2)√
t2 − r2

χ{r≤t}.

Let us write this as

(3.28)
Φ(t, x) = Φ1(t, x) + Φ2(t, x), Φ1(t, x) = Φ(t, x)χ{r≤t/2},

Φ2(t, x) = Φ(t, x)χ{r≥t/2}.

We have, for t > 0,

(3.29)

∫

H3

|Φ1(t, x)|p dV (x) = 4π

∫ t/2

0

∣∣∣
r

sinh r

J1(
√

t2 − r2)√
t2 − r2

∣∣∣
p

sinh2 r dr

≤ C sup
λ≥t/2

∣∣∣
J1(λ)

λ

∣∣∣
p

∫ t/2

0

rp

(sinh r)p−2
dr

≤ Cp(1 + |t|)−3p/2,

provided p > 2, and

(3.30)

∫

H3

|Φ2(t, x)|p dV (x) = 4π

∫ t

t/2

∣∣∣
r

sinh r

J1(
√

t2 − r2)√
t2 − r2

∣∣∣
p

sinh2 r dr

≤ C sup
0<λ≤t

∣∣∣
J1(λ)

λ

∣∣∣
p

∫ t

t/2

rp

(sinh r)p−2
dr

≤ Cp(t
p ∨ t2)e−(p−2)t,

provided p > 2. Consequently,

(3.31) p > 2 =⇒ ‖Φ(t, ·)‖Lp ≤ Cp(1 + |t|)−3/2.

In light of (3.19), we deduce

(3.32) ‖R1(t)f‖Lp ≤ Cp(1 + |t|)−3/2‖f‖L1 , ∀ p > 2.

Since R1(t)δy(x) is symmetric in x and y, we deduce by duality that

(3.33) ‖R1(t)f‖L∞ ≤ Cq(1 + |t|)−3/2‖f‖Lq , ∀ q ∈ [1, 2).

Interpolation of (3.32) and (3.33) yields

(3.34) ‖R1(t)f‖Lp ≤ Cpq(1 + |t|)−3/2‖f‖Lq , ∀ p > 2, q ∈ [1, 2).

If we apply this with p = 4, q = 4/3, and combine this with (3.25), we get

(3.35)
∥∥∥

sin t
√
−∆√

−∆
f
∥∥∥

L4
≤ C

(√
1 + |t|
sinh |t| +

1

(1 + |t|)3/2

)
‖f‖L4/3 ,
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which is equivalent to (3.1).
We want to push on with further dispersive estimates. First, let us recast es-

timates leading up to (3.35). For the Laplace-Beltrami operator ∆ on M = H3,
these results yield, for

(3.36) γ ∈
[1

2
, 1

)
, s = 2γ, q =

2

1 − γ
, q′ =

2

1 + γ
,

the estimates

(3.37)
∥∥∥

sin t
√
−∆√

−∆
f
∥∥∥

H1−s,q
≤ C

|t|γ + |t|3/2
‖f‖Lq′ .

In more detail, we have from (3.18)–(3.19),

(3.38)
sin t

√
−∆√

−∆
f = R0(t)f + R1(t)f, R0(t)f =

sin t
√
−L√

−L
f,

from (3.24) (with γ = 1 − θ),

(3.39) ‖R0(t)f‖H1−s,q ≤ C
(1 + |t|)1−γ

(sinh |t|)γ
‖f‖Lq′ ,

(actually valid for 0 < γ < 1), and from (3.34)

(3.40) ‖R1(t)f‖Lq ≤ Cpq(1 + |t|)−3/2‖f‖Lp , ∀ q > 2, p ∈ [1, 2).

Combining (3.39) and (3.40) gives (3.37).
To proceed, we interpolate the endpoint (γ = 1/2) case

(3.41)
∥∥∥

sin t
√
−∆√

−∆
f
∥∥∥

L4
≤ C

|t|1/2 + |t|3/2
‖f‖L4/3

of (3.37) with the estimate (3.10):

(3.42)
∥∥∥

sin t
√
−∆√

−∆
f
∥∥∥

H1,2
≤ C‖f‖L2 ,

obtaining for

(3.43) γ ∈
[
0,

1

2

]
, s = 2γ, q =

2

1 − γ
, q′ =

2

1 + γ
,

the estimate

(3.44)

∥∥∥
sin t

√
−∆√

−∆
f
∥∥∥

H1−s,q
≤ C

(|t|1/2 + |t|3/2)2γ
‖f‖Lq′

≈ C

|t|γ + |t|3γ
‖f‖Lq′ .

Combining this with (3.37), we get for

(3.45) γ ∈ [0, 1), s = 2γ, q =
2

1 − γ
, q′ =

2

1 + γ
,

the estimate

(3.46)
∥∥∥

sin t
√
−∆√

−∆
f
∥∥∥

H1−s,q
≤ C

ψγ(t)
‖f‖Lq′ ,

where

(3.47) ψγ(t) =

{
|t|γ + |t|3/2, 1

2 ≤ γ < 1,

|t|γ + |t|3γ , 0 ≤ γ ≤ 1
2 .
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Note that ψ−1
γ ∈ L1(R) for γ ∈ (1/3, 1).

As opposed to Euclidean space, one has the result (cf. Appendix B) that for each
m, s ∈ R, p ∈ (1,∞),

(3.48) (−∆)m/2 : Hs,p(M) −→ Hs−m,p(M),

whenever M is a symmetric space of noncompact type. In particular, this holds for
M = H3, and we can apply this to (3.46) to get

(3.49) ‖ sin t
√
−∆f‖H−s,q ≤ C

ψγ(t)
‖f‖Lq′ ,

with s, q, q′ as in (3.45). Working with the formula (2.18) for cos t
√
−∆ δy(x), we

also obtain

(3.50) ‖ cos t
√
−∆ f‖H−s,q ≤ C

ψγ(t)
‖f‖Lq′ ,

and putting together (3.49) and (3.50) gives

(3.51) ‖eit
√
−∆f‖H−s,q ≤ C

ψγ(t)
‖f‖Lq′ ,

again in the context of (3.45).

4. Strichartz estimates: homogeneous case

We establish mapping properties of the form

(4.1) T : Hγ,2(M) −→ Lp(R, Lq(M)), M = H3,

where

(4.2) Tf(t, x) = eit
√
−∆f(x),

or equivalently

(4.3) T ∗ : Lp′

(R, Lq′

(M)) −→ H−γ,2(M),

where

(4.4) T ∗g(x) =

∫ ∞

−∞
e−it

√
−∆g(t, x) dt.

The estimates associated with (4.1),

(4.5) ‖Tf‖Lp
t Lq

x
≤ C‖f‖Hγ,2 ,

are called Strichartz estimates.
To see when (4.3) holds, we start by writing

(4.6)

(T ∗g, T ∗g)H−γ,2 = ((−∆)−γT ∗g, T ∗g)L2

=

∫∫
((−∆)−γei(s−t)

√
−∆g(t, ·), g(s, ·))L2 ds dt

≤ C

∫∫
‖ei(s−t)

√
−∆g(t, ·)‖H−2γ,q‖g(s, ·)‖Lq′ ds dt,

the last inequality by (3.48). Now we apply (3.51), to obtain

(4.7) (T ∗g, T ∗g)H−γ,2 ≤ C

∫∫
1

ψγ(s − t)
‖g(t, ·)‖Lq′ ‖g(s, ·)‖Lq′ ds dt,
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valid for

(4.8) γ ∈ [0, 1), q′ =
2

1 + γ
, q =

2

1 − γ

(
hence γ = 1 − 2

q

)
,

with ψγ given by (3.47), i.e.,

(4.9) ψγ(t) =

{
|t|γ + |t|3/2, 1

2 ≤ γ < 1,

|t|γ + |t|3γ , 0 ≤ γ ≤ 1
2 .

To proceed, let us set

(4.10) ΦγG(t) =

∫ ∞

−∞

1

ψγ(s − t)
G(s) ds.

We have:

Proposition 4.1. Let γ, q, q′ be as in (4.8). Then (4.1) and (4.3) hold as long as

(4.11) Φγ : Lp′

(R) −→ Lp(R).

For a convolution operator such as (4.10) to have the property (4.11), one cer-
tainly needs p′ ≤ 2 ≤ p. To continue, pick ϕ ∈ C∞

0 (R) such that ϕ(t) = 1 for
|t| ≤ 1, 0 for |t| ≥ 2, and write

(4.12) ϕ1
γ(t) =

ϕ(t)

ψγ(t)
, ϕ2

γ(t) =
1 − ϕ(t)

ψγ(t)
,

and then, with obvious notation,

(4.13) Φγ = Φ1
γ + Φ2

γ .

We have ϕ1
γ compactly supported and

(4.14) ϕ1
γ(t) ∼ C|t|−γ , |t| → 0,

while ϕ2
γ is smooth and, as |t| → ∞,

(4.15) ϕ2
γ(t) ∼

{
C|t|−3/2, 1

2 ≤ γ < 1,

C|t|−3γ , 0 ≤ γ ≤ 1
2 .

We have

(4.16) Φ1
γ : Lp′

(R) −→ Lp(R) provided 0 ≤ γ ≤ 2

p
, p > 2,

the endpoint case γ = 2/p following from the Hardy-Littlewood-Sobolev estimate,
and the cases γ ∈ [0, 2/p) being more elementary. Also Φ1

γ : L2(R) → L2(R) as
long as γ ∈ [0, 1). We also have

(4.17)

1

3
< γ < 1 =⇒ ϕ2

γ ∈ L1(R) ∩ L∞(R)

=⇒ Φ2
γ : Lp′

(R) → Lp̃(R), ∀ p̃ ∈ [p′,∞]

=⇒ Φ2
γ : Lp′

(R) → Lp(R), ∀ p′ ∈ [1, 2].

In addition, given γ ∈ (0, 1/2],

(4.18) Φ2
γ : Lp′

(R) −→ Lp(R) provided 3γ ≥ 2

p
, p > 2,
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the endpoint case 3γ = 2/p again following from the Hardy-Littlewood-Sobolev
estimate, and the case 3γ > 2/p is more elementary. For γ = 0, p = ∞, p′ = 1 we
also have (4.18).

In summary, we have the following result.

Proposition 4.2. Take γ ∈ [0, 1), or equivalently q ∈ (2,∞], related by

(4.19) γ = 1 − 2

q
.

Then (4.1) and (4.3) hold for M = H3 provided either

(4.20)
2

3p
≤ γ ≤ 2

p
and p > 2,

or

(4.21) p = 2 and
1

3
< γ < 1.

Remark. The Hardy-Littlewood-Sobolev estimate cited above is the following.
Consider

(4.22) Hαf(t) =

∫ ∞

−∞

f(s)

|t − s|α ds.

Then

(4.23) α ∈ (0, 1), 1 < q < p < ∞, 1 +
1

p
= α +

1

q
=⇒ Hα : Lq(R) → Lp(R).

Consequently

(4.24) 2 < p < ∞, α =
2

p
=⇒ Hα : Lp′

(R) → Lp(R).

Remark. Another way to describe the triples (p, q, γ) satisfying (4.19)–(4.21) is to
say that (4.19) holds and either

(4.25)
1

2
− 1

p
≤ 1

q
≤ 1

2
− 1

3p
and p > 2,

or

(4.26) p = 2 and 0 <
1

q
<

1

3
.

When these conditions hold, we say

(4.27) (p, q, γ) ∈ R.

We next obtain Strichartz estimates for (1/p, 1/q) in a different region of the
plane, meeting the previous region on the line segment 1/p + 1/q = 1/2, p, q >
2. The following estimates are closely similar to Euclidean space analogues in
dimension 3. As usual, we take M = H3.

Proposition 4.3. The mapping properties (4.1) and (4.3) hold for

(4.28) γ =
3

2
− 3

q
− 1

p
,
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provided

(4.29)
1

p
+

1

q
≤ 1

2
, p, q > 2.

If (4.28) and (4.29) hold, we say

(4.30) (p, q, γ) ∈ E .

E

R

1

3

1

2

1�q

1

2

1�p

Figure 1. The Strichartz admissible ranges.

Proof. We know from Proposition 4.2 that (4.26) holds for

(4.31) γ = 1 − 2

q
,

provided (4.20) or (4.21) hold (i.e., (p, q, γ) ∈ R), in particular provided

(4.32)
1

p
+

1

q
=

1

2
, p, q > 2.

Note that if (4.32) holds, then the formulas (4.28) and (4.31) for γ coincide. Hence
Proposition 4.3 holds when (4.32) holds.

We now deduce Proposition 4.3 more generally. First, whenever (4.28) and (4.32)
hold, we can extend (4.26) as follows. We have, for each σ ∈ R,

(4.33) u = Tf =⇒ ‖u‖Lp(R,Hσ,q(M)) ≤ C‖f‖Hσ+γ .
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We bring in the Sobolev embedding result:

(4.34) Hσ,q(M) ⊂ Lq(σ)(M), q(σ) =
3q

3 − σq
,

valid for σq < 3, when M = H3. Thus we obtain the following estimates:

(4.35) ‖u‖Lp(R,Lq(σ)(M)) ≤ C‖f‖Hσ+γ .

We claim that, for all such σ as occur in (4.34), (p, q(σ), σ + γ) ∈ E , i.e., we have
the implication

(4.36)

q̃ = q(σ) =
3q

3 − σq
, γ̃ = σ + γ

=⇒ γ̃ =
3

2
− 3

q̃
− 1

p
.

In fact,

(4.37)

3

2
− 3

q̃
− 1

p
=

3

2
− 3 − σq

q
− 1

p

=
3

2
− 3

q
− 1

p
+ σ

= γ + σ,

which gives (4.36). We also have the converse result: each (p̃, q̃, γ̃) ∈ E can be
written as (p, q(σ), σ + γ), with (p, q, γ) satisfying (4.31)–(4.32) and σ ∈ [0, 3/q), so
q(σ) ∈ [q,∞). Thus we have Proposition 4.3. ¤

Let us recall that T is given by

(4.38) Tf(t, x) = eit
√
−∆f(x).

It is clear that T commutes with (λI − ∆)−γ/2, so we have the following useful
variant of Propositions 4.2–4.3.

Proposition 4.4. Given (p, q, γ) ∈ R ∪ E , M = H3, we have

(4.39) T : L2(M) −→ Lp(R,H−γ,q(M)),

and

(4.40) T ∗ : Lp′

(R,Hγ,q′

(M)) −→ L2(M).

5. Strichartz estimates: inhomogeneous case

Our goal in this section is to establish the following.

Proposition 5.1. Define V f = u by

(5.1) (∂2
t − ∆)u = f on R × M, u(0) = ∂tu(0) = 0.

As usual, M = H3. Then, whenever

(5.2) (p, q, γ) and (p̃, q̃, γ̃) ∈ R ∪ E , and (p, p̃) 6= (2, 2),

we have

(5.3) V : Lp̃′

(R,H γ̃,q̃′

(M)) −→ Lp(R,H1−γ,q(M)).
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To begin, we note that the solution to (5.1) is given by

(5.4) u(t) =

∫ t

0

sin(t − s)
√
−∆√

−∆
f(s, ·) ds.

Bringing in (3.48), we see that to prove Proposition 5.1 it suffices to show that
when (5.2) holds,

(5.5) V0 : Lp̃′

(R,H γ̃,q̃′

(M)) −→ Lp(R,H−γ,q(M)),

where

(5.6) V0f(t, x) =

∫ t

0

ei(t−s)
√
−∆f(s, x) ds.

In turn, we can write (5.6), restricted to t ∈ R
+, as

(5.7) V1g(t, x) =

∫ t

0

K(t, s)g(s, x) ds,

where

(5.8) K(t, s) = ei(t−s)
√
−∆

is an operator valued function of s and t and

(5.9) g(s, x) = χR+(s)f(s, x).

There is an analogous formula for (5.6) restricted to R
−.

A general result of [8] obtains bounds on (5.7) given bounds on W , defined by

(5.10) Wg(t, x) =

∫ ∞

−∞
K(t, s)g(s, x) ds.

If 1 ≤ p̃′ < p ≤ ∞, X and Y are Banach spaces of functions, and g(s, ·) takes
values in X, one has

(5.11) W : Lp̃′

(R,X) → Lp(R, Y ) =⇒ V1 : Lp̃′

(R,X) → Lp(R, Y ).

Given this, Proposition 5.1 is a consequence of the following.

Lemma 5.2. In the setting of Proposition 5.1, for

(5.12) Wg(t, x) =

∫ ∞

−∞
ei(t−s)

√
−∆g(s, x) ds,

we have

(5.13) W : Lp̃′

(R,H γ̃,q̃′

(M)) −→ Lp(R,H−γ,q(M)).

Proof. Recalling T , given by

(5.14) Tf(t, x) = eit
√
−∆f(x),

we see that

(5.15) W = TT ∗.

Then (5.13) follows from (4.39) and the variant of (4.40):

(5.16) T ∗ : Lp̃′

(R,H γ̃,q̃′

(M)) −→ L2(M).

¤
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Remark. Regarding the hypothesis (5.2), we can let (p, p̃) = (2, 2) in Lemma 5.2,
but to apply [8] and deduce (5.5) we need p̃′ < p, hence (p, p̃) 6= (2, 2).

Here are some variants of the conclusion of Proposition 5.1.

Proposition 5.3. In the setting of Proposition 5.1, in addition to (5.3), i.e.,

(5.17) ‖u‖Lp(R,H1−γ,q(M)) ≤ C‖f‖Lp̃′ (R,Hγ̃,q̃′ (M)),

we also have

(5.18) ‖∇t,xu‖Lp(R,H−γ,q(M)) ≤ C‖f‖Lp̃′ (R,Hγ̃,q̃′ (M)).

More generally, for each σ ∈ R,

(5.19) ‖u‖Lp(R,Hσ+1−γ,q(M)) ≤ C‖f‖Lp̃′ (R,Hσ+γ̃,q̃′ (M)),

and

(5.20) ‖∇t,xu‖Lp(R,Hσ−γ,q(M)) ≤ C‖f‖Lp̃′ (R,Hσ+γ̃,q̃′ (M)).

Proof. These are easy consequences of (5.3) and (5.5), the commutativity of V and
(−∆)−σ/2, and the representation

∂tu(t) =

∫ t

0

cos(t − s)
√
−∆ f(s, ·) ds.

¤

We are also interested in the behavior of solutions u(t) to (5.1) for fixed t, which
we denote

(5.21) Vtf(x) = V f(t, x).

The behavior is the same as that of

(5.22)

v(t) =

∫ t

0

ei(t−s)
√
−∆

√
−∆

f(s, ·) ds

=
eit

√
−∆

√
−∆

T ∗(χ[0,t]f
)
,

with T ∗ as in (4.4), the last identity holding at least for t ≥ 0, with an analogous
formula holding for t ≤ 0. We have

(5.23) (p, q, γ) ∈ R ∪ E =⇒ T ∗ : Lp′

(R, Lq′

(M)) → H−γ,2(M),

and of course eit
√
−∆/

√
−∆ : H−γ,2(M) → H1−γ,2(M). We hence have:

Proposition 5.4. In the setting of Proposition 5.1, for each t ∈ R,

(5.24) Vt : Lp′

(R, Lq′

(M)) −→ H1−γ,2(M),

with operator norm bound independent of t.

Let us record some special cases of Proposition 5.1. For one, we have

(5.25)

(p, q, γ) ∈ R ∪ E , p > 2

=⇒ V : Lp′

(R,Hσ+γ,q′

(M)) → Lp(R,Hσ+1−γ,q(M)), ∀σ

=⇒ V : Lp′

(R, Lq′

(M)) → Lp(R,H1−2γ,q(M)).
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Now if (p, q, γ) ∈ R, so γ = 1 − 2/q, then q ∈ [2, 4] ⇒ γ ∈ [0, 1/2] ⇒ 1 − 2γ ≥ 0, so
we have

(5.26)
(p, q, γ) ∈ R, 2 ≤ q ≤ 4

=⇒ V : Lp′

(R, Lq′

(M)) → Lp(R, Lq(M)).

Note in particular that

(5.27) p = q ∈
[8

3
, 4

]
, γ = 1 − 2

q
=⇒ (p, q, γ) ∈ R,

from which we deduce:

Proposition 5.5. Take p ∈ [8/3, 4]. Then, with M = H3,

(5.28) V : Lp′

(R × M) −→ Lp(R × M),

and, for each t ∈ R,

(5.29) Vt : Lp′

(R × M) −→ H2/p,2(M),

with operator norm bound independent of t.

6. Global solutions with small data for ¤u = a|u|b

Here we obtain global solvability results for

(6.1)
∂2u

∂t2
− ∆u = F (u), u(0) = εf, ∂tu(0) = εg,

on R ×H3, for ε sufficiently small, provided f and g belong to certain L2-Sobolev
spaces, in case

(6.2) F (u) = a|u|b.
Our first result treats small positive b. Then we will obtain results valid for larger
b. The same analysis applies to variants, such as F (u) = a|u|b−1u.

Proposition 6.1. Assume F (u) is given by (6.2), with

(6.3)
5

3
≤ b ≤ 3.

There exists ε0 > 0 with the following property. Take f ∈ Hγ,2(M), g ∈ Hγ−1,2(M),
M = H3, with

(6.4) ‖f‖Hγ,2 , ‖g‖Hγ−1,2 ≤ 1, γ =
b − 1

b + 1
.

Then (6.1) is globally solvable for all ε ∈ (0, ε0].

Remark. In the next section, we prove Proposition 6.1 with smaller values of γ in
(6.4). We start here with the less optimal result to minimize the initial technical
details.

To prove Proposition 6.1, we bring in the integral formulation of (6.1):

(6.5)

u(t) = εu0(t) +

∫ t

0

sin(t − s)
√
−∆√

−∆
F (u(s)) ds

= εΞ0(f, g)(t) + Ξ1u(t)

= Ξεu(t),



18 JASON METCALFE AND MICHAEL TAYLOR

where

(6.6) u0(t) = cos t
√
−∆ f +

sin
√
−∆√

−∆
g.

We take p ∈ [8/3, 4] such that

(6.7) b =
p

p′
= p

(
1 − 1

p

)
= p − 1,

and set (with M = H3)

(6.8) X
p
δ = {v ∈ Lp(R × M) : ‖v‖Lp(R×M) ≤ δ}.

We will show that there exists δ > 0 such that, for all sufficiently small ε,

(6.9) Ξε : X
p
δ −→ X

p
δ is a contraction map.

To prove this, first note that, by Proposition 4.2, with p = q ∈ [8/3, 4], γ =
1 − 2/q = 1 − 2/p,

(6.10) Ξ0 : H1−2/p,2(M) ⊕ H−2/p,2(M) −→ Lp(R × M).

Note that γ = (b − 1)/(b + 1).
We next need to estimate Ξ1v for v ∈ X

p
δ . Thus we need to estimate ‖F (v)‖Lp′ (R×M).

In fact, from (6.2) and (6.7) we have

(6.11)
‖F (v)‖Lp′ (R×M) = |a|

(∫
|v|bp′

dV
)1/p′

= |a| ‖v‖b
Lp(R×M).

We deduce that

(6.12)
v ∈ X

p
δ =⇒ ‖F (v)‖Lp′ (R×M) ≤ C|a| δb

=⇒ ‖Ξ1v‖Lp(R×M) ≤ C|a| δb,

the latter implication via Proposition 5.5. Since b > 1 when (6.2) holds, we have
the mapping property of (6.9); given δ > 0 small enough, Ξε : X

p
δ → X

p
δ for all

sufficiently small ε.
It remains to establish the contraction property. To get this, write

(6.13) Ξεv(t) − Ξεw(t) =

∫ t

0

sin(t − s)
√
−∆√

−∆
G(v(s), w(s)) ds,

where

(6.14)
G(v(s), w(s)) = F (v(s)) − F (w(s))

= H(v(s), w(s))
(
v(s) − w(s)

)
,

with

(6.15) H(v, w) =

∫ 1

0

F ′(τv + (1 − τ)w) dτ.

Here, F ′(v) = ab|v|b−1(sgn v), so

(6.16) |H(v, w)| ≤ C(|v|b−1 + |w|b−1).

We have

(6.17) ‖G(v, w)‖Lp′ (R×M) ≤ ‖v − w‖Lp(R×M)‖H(v, w)‖Lr(R×M),
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where p = b + 1, as in (6.7), and

(6.18)

1

p
+

1

r
=

1

p′
, hence r =

p

p − 2
,

hence r(b − 1) = p.

Hence

(6.19)
‖H(v, w)‖Lr(R×M) ≤ C

(
‖ |v|b−1‖Lr(R×M) + ‖ |w|b−1‖Lr(R×M)

)

≤ C
(
‖v‖b−1

Lp(R×M) + ‖w‖b−1
Lp(R×M)

)
.

Consequently,

(6.20)
v, w ∈ X

p
δ ⇒ ‖G(v, w)‖Lp′ (R×M) ≤ Cδb−1‖v − w‖Lp(R×M)

⇒ ‖Ξεv − Ξεw‖Lp(R×M) ≤ Cδb−1‖v − w‖Lp(R×M),

the latter implication by (6.13) and Proposition 5.5. Since b > 1, we have the con-
traction property, if δ is sufficiently small. This completes the proof of Proposition
6.1.

We next establish the following complement to Proposition 6.1.

Proposition 6.2. The conclusions of Proposition 6.1 also hold for

(6.21) 3 < b ≤ 5, γ =
3

2
− 2

b − 1
.

In this case we again take Ξε as in (6.5), and we will find p, q ∈ [2,∞) and δ > 0
such that, with

(6.22) X
p,q
δ = {v ∈ Lp(R, Lq(M)) : ‖v‖Lp(R,Lq(M)) ≤ δ},

we can show that, for all sufficiently small ε,

(6.23) Ξε : X
p,q
δ −→ X

p,q
δ is a contraction map.

Recall that Ξεu(t) = εΞ0(f, g)(t) + Ξ1u(t) and

(6.24) Ξ1u = V F (u).

We have

(6.25) Ξ0 : Hγ,2(M) ⊕ Hγ−1,2(M) −→ Lp(R, Lq(M))

and

(6.26) V : Lp̃′

(R,H γ̃+γ−1,q̃′

(M)) −→ Lp(R, Lq(M)),

for

(6.27) (p, q, γ), (p̃, q̃, γ̃) ∈ E .

We will impose the condition

(6.28) γ̃ + γ = 1,

and relate (p̃, q̃) with (p, q) via the requirement that

(6.29) F : Lp(R, Lq(M)) −→ Lp̃′

(R, Lq̃′

(M))

when F is given by (6.2). That is to say, we require

(6.30) p = bp̃′, q = bq̃′,
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or equivalently

(6.31)
1

p̃
= 1 − b

p
,

1

q̃
= 1 − b

q
.

Recalling that if (6.27) holds then

(6.32) γ =
3

2
− 3

q
− 1

p
, γ̃ =

3

2
− 3

q̃
− 1

p̃
,

we see that (6.28) is equivalent to

(6.33)
3

q
+

1

p
+

3

q̃
+

1

p̃
= 2.

By (6.31), the left side of (6.33) is

(6.34)
3

q
+

1

p
+ 3

(
1 − b

q

)
+ 1 − b

p
= 4 − (b − 1)

(3

q
+

1

p

)
,

so (6.33) becomes

(6.35)
1

p
+

3

q
=

2

b − 1
.

Note that this gives γ = 3/2 − 2/(b − 1).
For (6.27) to hold we also need 1/p + 1/q ≤ 1/2 and 1/p̃ + 1/q̃ ≤ 1/2. Note that

1/p̃ + 1/q̃ = 2 − b(1/p + 1/q), so

(6.36)
1

p̃
+

1

q̃
≤ 1

2
⇐⇒ 1

p
+

1

q
≥ 3

2b
,

which in turn requires 3/2b ≤ 1/2, i.e., b ≥ 3. In the setting of Proposition 6.2 this
restriction on b is fine. To satisfy these conditions, we set

(6.37)
1

p
+

1

q
=

3

2b
.

Now, given b ≥ 3, we solve (6.35) and (6.37) for p and q, obtaining

(6.38)
1

p
=

5b − 9

4b(b − 1)
,

1

q
=

b + 3

4b(b − 1)
.

Note that

(6.39) b = 3 =⇒ p = q = 4, p̃ = q̃ =
4

3
,

agreeing with the treatment for b = 3 in Proposition 6.1. Some further examples
are

(6.40)
b = 4 =⇒ p =

48

11
, q =

48

7
, p̃′ =

12

11
, q̃′ =

12

7
,

b = 5 =⇒ p = 5, q = 10, p̃′ = 1, q̃′ = 2.

By (6.30), for p̃′ and q̃′ to be ≥ 1, we need p ≥ b and q ≥ b. This breaks down for
b > 5, but works for b ∈ [3, 5].

Now that we have found p and q, verifying the existence of δ > 0 such that (6.23)
holds (for ε sufficiently small) proceeds as before.

We now complete the circle of global existence results of this section.
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Proposition 6.3. The conclusions of Proposition 6.1 also hold for

(6.41) b ≥ 5, γ =
3

2
− 2

b − 1
.

To prove this, we continue to take Ξε as in (6.5), and we will find δ > 0 such
that, for all sufficiently small ε,

(6.42) Ξε : Xb
δ −→ Xb

δ,

is a contraction map. Here we set

(6.43)
Xb

δ = {u ∈ L4(R,Hγ−1/2,4(M)) ∩ Lq(R × M) :

‖u‖L4(R,Hγ−1/2,4(M)) ≤ δ, ‖u‖Lq(R×M) ≤ δ},
with γ as in (6.41) and

(6.44) q = 2(b − 1).

Note that b ≥ 5 ⇒ q ≥ 8. (In fact, b ≥ 3 ⇒ q ≥ 4.) Also,

(6.45) γ =
3

2
− 4

q
, γ − 1

2
= 1 − 4

q
.

The distance function we put on Xb
δ does not involve the norms used in (6.43).

Rather it is given as

(6.46) d(u, v) = ‖u − v‖L4(R×M).

The following is a simple but important observation.

Lemma 6.4. Xb
δ, with the metric (6.46), is a complete metric space.

Proof. If (uk) ⊂ Xn
δ is Cauchy in this metric, then there exists u ∈ L4(R×M) such

that uk → u in norm in L4(R × M). The bounds given in (6.43) also imply that
a subsequence of (uk) converges weakly in L4(R,Hγ−1/2,4(M)) and in Lq(R × M)
(since these spaces are reflexive) to limits also having these norm bounds. All
these limits hold a fortiori in D′(R × M), so these limits all coincide. This implies
u ∈ Xb

δ. ¤

Recall that Ξε(u) = εΞ0(f, g)+V F (u), F (u) = a|u|b. To show that (6.42) holds,
we first note that

(6.47) Ξ0 : Hγ,2(M) ⊕ Hγ−1,2(M) −→ L4(R,Hγ−1/2,4(M)),

since (4, 4, 1/2) ∈ E and Ξ0 commutes with (1 − ∆)γ/2. Similarly,

(6.48) Ξ0 : Hγ,2(M) ⊕ Hγ−1,2(M) −→ Lq(R × M),

for γ and q as in (6.41) and (6.44), since also q ≥ 4 and in such a case (q, q, γ) ∈ E .
Next, we have, by Proposition 5.3,

(6.49) ‖V F (u)‖L4(R,Hγ−1/2,4(M)) ≤ C‖F (u)‖L4/3(R,Hγ−1/2,4/3(M)),

again because (4, 4, 1/2) ∈ E . We estimate the right side of (6.49) using the follow-
ing result.

Lemma 6.5. For F (u) = a|u|b, b > 1, σ = γ − 1/2 ∈ (0, 1), and M = H3, or
more generally M a Riemannian manifold with C∞ bounded geometry,

(6.50) ‖F (u)‖Hσ,4/3(M) ≤ C‖F ′(u)‖L2(M)‖u‖Hσ,4(M).
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We will give a proof of this result at the end of this section. First we show how it
applies to prove Proposition 6.3. First we have, by (6.50) and Hölder’s inequality,

(6.51)

‖F (u)‖L4/3(R,Hσ,4/3(M))

=
(∫ ∞

−∞
‖F (u(s))‖4/3

Hσ,4/3(M)
ds

)3/4

≤ C
(∫ ∞

−∞
‖F ′(u(s))‖2

L2(M) ds
)1/2(∫ ∞

−∞
‖u(s)‖4

Hσ,4(M) ds
)1/4

= C‖F ′(u)‖L2(R×M)‖u‖L4(R,Hσ,4(M)).

Next

(6.52)
|F ′(u)| = ab|u|b−1 ⇒ ‖F ′(u)‖2

L2(R×M) = C

∫

R

∫

M

|u|2b−2 dV dt

= C‖u‖q
Lq(R×M).

Now (6.49)–(6.52) yield

(6.53) ‖V F (u)‖L4(R,Hγ−1/2,4(M)) ≤ C‖u‖q/2
Lq(R×M)‖u‖L4(R,Hγ−1/2,4(M)).

It remains to estimate the Lq(R × M)-norm of V F (u). We claim

(6.54) ‖V F (u)‖Lq(R×M) ≤ C‖F (u)‖L4/3(R,Hγ−1/2,4/3(M)),

when γ = 3/2 − 4/q and q ≥ 4. This is equivalent to

(6.55) ‖V g‖Lq(R,H1−γ,q(M)) ≤ C‖g‖L4/3(R,H1/2,4/3(M)),

which follows from Proposition 5.1, since under our hypotheses

(6.56)
(
4, 4,

1

2

)
, (q, q, γ) ∈ E .

Another application of (6.51)–(6.52) then gives

(6.57) ‖V F (u)‖Lq(R×M) ≤ C‖u‖q/2
Lq(R×M)‖u‖L4(R,Hγ−1/2,4(M)).

From the estimates (6.47), (6.48), (6.53), and (6.57), it is apparent that one can
choose δ > 0 such that Ξε : Xb

δ → Xb
δ for all sufficiently small ε. It remains to

guarantee (perhaps after shrinking δ and ε further), that this map is a contraction,
with respect to the distance function (6.46).

Indeed, for u, v ∈ Xb
δ,

(6.58)
‖Ξε(u) − Ξε(v)‖L4(R×M) = ‖V (F (u) − F (v))‖L4(R×M)

≤ C‖F (u) − F (v)‖L4/3(R×M),

again since (4, 4, 1/2) ∈ E . Now

(6.59)
∣∣∣ |u|b − |v|b

∣∣∣ ≤ C|u − v|
(
|u|b−1 + |v|b−1

)
,

and hence, since 3/4 = 1/2 + 1/4,

(6.60)
‖F (u) − F (v)‖L4/3(R×M) ≤ C

(∥∥ |u|b−1
∥∥

L2 +
∥∥ |v|b−1

∥∥
L2

)
‖u − v‖L4

= C
(
‖u‖b−1

Lq + ‖v‖b−1
Lq

)
‖u − v‖L4 .

Consequently, for u, v ∈ Xb
δ,

(6.61) ‖Ξε(u) − Ξε(v)‖L4(R×M) ≤ Cδb−1‖u − v‖L4(R×M).
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This proves the contractivity property for Ξε in (6.42). Thus we have Proposition
6.3, modulo the proof of Lemma 6.5, to which we now turn. We formulate a more
general result.

Lemma 6.6. Let M be a Riemannian manifold with C∞ bounded geometry. Let
F : R → R be a C1 map such that, F (0) = 0, and, for some A < ∞,

(6.62) |F (u)| ≤ C|u| · |F ′(u)|,
and

(6.63) |F ′(τu + (1 − τ)v)| ≤ A(|F ′(u)| + F ′(v)|),
for all u, v ∈ R, τ ∈ [0, 1]. Then, for σ ∈ (0, 1), p ∈ (1,∞),

(6.64) ‖F ◦ u‖Hσ,p(M) ≤ C‖F ′ ◦ u‖Lq1 (M)‖u‖Hσ,q2 (M),

provided

(6.65)
1

p
=

1

q1
+

1

q2
, q1 ∈ (1,∞], q2 ∈ (1,∞).

Note that (6.62) and (6.63) hold for F (u) = Fab(u) = a|u|b as long as b > 1, the
latter since then |F ′

ab(u)| is monotone in u on R
+ and on R

−. In case M = R
n, a

result like Lemma 6.6 (but without (6.63)) was stated in [9], but its proof had a
gap, which was filled in [24]. In [24] there is a condition more general than (6.63).
A still more general result is treated in [31], pp. 112-113. These works establish
Lemma 6.6 in case M = R

n. We use this to prove Lemma 6.6 for general M with
C∞ bounded geometry, in concert with the following result. To state the result,
let {ϕj : j ∈ N} be a tame partition of unity, as defined in Appendix B, just before
Proposition B.2.

Lemma 6.7. In the setting of Lemma 6.6,

(6.66) ‖u‖p
Hs,p(M) ≈

∑

j

‖ϕju‖p
Hs,p(M) + ‖u‖p

Lp(M),

for s > 0, p ∈ (1,∞).

Meanwhile it is elementary that

(6.67) ‖ϕju‖Hs,p(M) ≈ ‖ϕju ◦ Exp‖Hs,p(Rn),

given C∞ bounded geometry. To see how these results give Lemma 6.6, we have

(6.68)

‖F ◦ u‖Hσ,p(M) ≤ C
(∑

j

‖ϕjF ◦ u‖p
Hσ,p

)1/p

+ ‖F ◦ u‖Lp(M)

≤ C
{∑

j

(
‖ϕjF

′ ◦ u‖Lq1 ‖ϕju‖Hσ,q2

)p
}1/p

+ ‖F ◦ u‖Lp(M),

the second inequality by the case for R
n mentioned above. In turn, this is

(6.69)
≤ C

{∑

j

‖ϕjF
′ ◦ u‖q1

Lq1

}1/q1
{∑

j

‖ϕju‖q2

Hσ,q2

}1/q2

+ ‖F ◦ u‖Lp

≤ C‖F ′ ◦ u‖Lq1 (M)‖u‖Hσ,q2 (M) + ‖F ◦ u‖Lp(M).
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As for the last term, note that (6.62) implies

(6.70)
‖F ◦ u‖Lp(M) ≤ C

∥∥ |u| · F ′(u)
∥∥

Lp(M)

≤ C‖F ′ ◦ u‖Lq1 (M)‖u‖Lq2 (M).

We conclude this section with a proof of Lemma 6.7. Generalizing (3.11), we
have

(6.71) Hs,p(M) = (λI − ∆)−s/2Lp(M),

for λ ∈ R
+ sufficiently large; see [32] for more on this. With such a choice of λ, set

(6.72) Asu =
∑

ψj(λI − ∆)s/2ϕju,

where {ψj : j ∈ N} is a tame family of elements of C∞
0 (M) such that ψj ≡ 1 on

supp ϕj . We have

(6.73)
(λI − ∆)s/2 = As + Bs, As ∈ OPΨs

#(M),

Bs ∈ OPΨ−∞
W (M), ∀ W < λ2,

where OPΨs
#(M) and OPΨ−∞

W (M) are defined in (B.34)–(B.38). Now we can
partition N into a finite number of sets Sα, 1 ≤ α ≤ K, such that for distinct
j, j′ ∈ Sα, ψj and ψj′ have disjoint supports. Write

(6.74) As =

K∑

α=1

Asα, Asα =
∑

j∈Sα

ψj(λI − ∆)s/2ϕj .

We have

(6.75)
Asα ∈ OPΨs

#(M), 1 ≤ α ≤ K, hence

Asα : Hs,p(M) −→ Lp(M);

cf. [32], Proposition 10.5. Now the support condition gives

(6.76) ‖Asαu‖p
Lp =

∑

j∈Sα

‖ψj(λI − ∆)s/2ϕju‖p
Lp ,

for each α ∈ {1, . . . ,K}, hence

(6.77)

‖Asu‖p
Lp ≤ C

K∑

α=1

‖Asαu‖p
Lp

= C
∑

j

‖ψj(λI − ∆)s/2ϕju‖p
Lp

≤ C
∑

j

‖ϕju‖p
Hs,p ,

so (since OPΨ−∞
W (M) is bounded on Lp(M) for W sufficiently large)

(6.78)

‖u‖p
Hs,p ≤ C‖Asu‖p

Lp + C‖Bsu‖p
Lp

≤ C
∑

j

‖ϕju‖p
Hs,p + C‖u‖p

Lp ,

which gives half of (6.66).



NONLINEAR WAVES ON 3D HYPERBOLIC SPACE 25

For the converse, we have

(6.79)

∑

j

‖ϕju‖p
Hs,p ≤ C

∑

j

‖ψj(λI − ∆)s/2ϕju‖p
Lp + C

∑

j

‖ϕju‖p
Lp

= C
K∑

α=1

∑

j∈Sα

{
‖ψj(λI − ∆)s/2ϕju‖p

Lp + ‖ϕju‖p
Lp

}

= C

K∑

α=1

{∥∥∥
∑

j∈Sα

ψj(λI − ∆)s/2ϕju
∥∥∥

p

Lp
+

∥∥∥
∑

j∈Sα

ϕju
∥∥∥

p

Lp

}

≤ C

K∑

α=1

(
‖Asαu‖p

Lp + ‖u‖p
Lp

)
,

the third line by the disjoint support condition. By (6.75), this is

(6.80) ≤ C‖u‖Hs,p(M).

This completes the proof of Lemma 6.7.

7. Improvement of Proposition 6.1

Here we improve Proposition 6.1. We do not extend the range of b in (6.3), but
we lower the needed value of γ in (6.4). The argument given here is more closely
parallel to that used to prove Proposition 6.2, though with E replaced by R.

Thus, we take Ξε as in (6.5) and we will find p, q ∈ [2,∞) and δ > 0 such that,
with

(7.1) X
p,q
δ = {v ∈ Lp(R, Lq(M)) : ‖v‖Lp(R,Lq(M)) ≤ δ},

we can show that, for all sufficiently small ε,

(7.2) Ξε : X
p,q
δ −→ X

p,q
δ is a contraction map,

given

(7.3) ‖f‖Hγ,2 , ‖g‖Hγ−1,2 ≤ 1,

with γ somewhat smaller than in (6.4). Recall that Ξεu(t) = εΞ0(f, g)(t) + Ξ1u(t)
and

(7.4) Ξ1u = V F (u).

We have

(7.5) Ξ0 : Hγ,2(M) ⊕ Hγ−1,2(M) −→ Lp(R, Lq(M))

and

(7.6) V : Lp̃′

(R,H γ̃+γ−1,q̃′

(M)) −→ Lp(R, Lq(M))

for

(7.7) (p, q, γ), (p̃, q̃, γ̃) ∈ R.

In contrast to (6.28), we impose the condition

(7.8) γ̃ + γ ≤ 1.

As in (6.29), we relate (p̃, q̃) with (p, q) via the requirement that

(7.9) F : Lp(R, Lq(M)) −→ Lp̃′

(R, Lq̃′

(M))
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when F (u) = a|u|b. Thus we require that p = bp̃′ and q = bq̃′, or equivalently

(7.10)
1

p̃
= 1 − b

p
,

1

q̃
= 1 − b

q
.

Recalling that if (7.7) holds then

(7.11) γ = 1 − 2

q
, γ̃ = 1 − 2

q̃
,

we see that (7.8) is equivalent to

(7.12)
1

q
+

1

q̃
≥ 1

2
.

Given (7.10), this is equivalent to

(7.13)
1

q
≤ 1

2(b − 1)
,

as long as b > 1.
To restate what we have, set

(7.14)
x =

1

p
, y =

1

q
, x̃ =

1

p̃
, ỹ =

1

q̃
,

γ = 1 − 2y, γ̃ = 1 − 2ỹ.

Set
(7.15)

R̃ =
{

(x, y) ∈ R
2 : 0 ≤ x ≤ 1

2
,

1

2
− x ≤ y ≤ 1

2
− x

3

}
\

{(
0,

1

2

)
,
(1

2
, 0

)
,
(1

2
,
1

3

)}
.

Then, as long as

(7.16) (x, y) ∈ R̃, (x̃, ỹ) = (1 − bx, 1 − by) ∈ R̃, y ≤ 1

2(b − 1)
,

we have

(7.17)

Ξ0 : Hγ,2(M) ⊕ Hγ−1,2(M) −→ Lp(R, Lq(M)),

F : Lp(R, Lq(M)) −→ Lp̃′

(R, Lq̃′

(M)), and

V : Lp̃′

(R, Lq̃′

(M)) −→ Lp(R, Lq(M)).

From (7.17) we deduce, as in the proofs of Propositions 6.1–6.2, the existence of
ε0, δ > 0 such that (7.2) holds for all ε ∈ (0, ε0], given that f and g satisfy (7.3).

A condition equivalent to (7.16) is the following:

(7.18) (x′, y′) ∈ T̃ , (x, y) =
1

b
(x′, y′) ∈ R̃, y ≤ 1

2(b − 1)
,

where

(7.19) T̃ = {(1 − x̃, 1 − ỹ) : (x̃, ỹ) ∈ R̃}
is the triangle with vertices (1/2, 1), (1/2, 2/3), and (1, 1/2), minus these vertices.
Here (x′, y′) denotes a new set of indices and should not be interpretted as, e.g.,
Hölder conjugates. Now we observe the following.
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For b = 5/3, under the map (x, y) = b−1(x′, y′), the vertex (1/2, 2/3) of T̃ is

taken to (3/10, 2/5) ∈ R̃. Now (1/2, 2/3) /∈ T̃ , but we can deduce that global
solvability in Proposition 6.1 holds for

(7.20) b =
5

3
, γ >

1

5
.

For 5/3 < b < 7/3, the point (1/2, b/2 − 1/6) belongs to the line segment

between the vertices (1/2, 2/3) and (1/2, 1) of T̃ , and this point is taken by the

map (x, y) = b−1(x′, y′) to (1/2b, 1/2 − 1/6b) ∈ R̃. Note that, for b > 1,

(7.21)

1

2
− 1

6b
≤ 1

2(b − 1)
⇐⇒ 3b2 − 7b + 1 ≤ 0

⇐⇒ b ≤ 7 +
√

37

6
.

Note also that

(7.22)

y =
1

2
− 1

6b
=⇒ 1 − 2y =

1

3b
,

y =
1

2(b − 1)
=⇒ 1 − 2y =

b − 2

b − 1
.

We deduce that global solvability in Proposition 6.1 holds for

(7.23)
5

3
< b <

7

3
, γ = max

( 1

3b
,
b − 2

b − 1

)
=

{
1
3b ,

5
3 < b ≤ 7+

√
37

6
b−2
b−1 , 7+

√
37

6 ≤ b < 7
3 .

For 7/3 ≤ b ≤ 3, the line segment from the vertex (1/2, 1) of T̃ to the vertex

(1, 1/2) is taken by the map (x, y) = b−1(x′, y′) to a line segment in R̃, with
endpoints (1/2b, 1/b) and (1/b, 1/2b). For such b, we have

(7.24)
1

2b
<

1

2(b − 1)
<

1

b
.

We deduce that global solvability in Proposition 6.1 holds for

(7.25)
7

3
≤ b ≤ 3, γ =

b − 2

b − 1
.

The result that global solvability in Proposition 6.1 holds for parameters b and γ
given in (7.20), (7.23), and (7.25) records our improvement of Proposition 6.1.

8. Global smooth solutions with small data for ¤u = au2

Here we obtain some global solvability results for

(8.1) (∂2
t − ∆)u = F (u), u(0) = εf, ∂tu(0) = εg,

on R ×H3, in case

(8.2) F (u) = au2,

provided f, g ∈ C∞
0 (H3), for ε sufficiently small.

To start, we take the integral formulation of (7.1):

(8.3)

u(t) = εu0(t) +

∫ t

0

sin(t − s)
√
−∆√

−∆
F (u(s)) ds

= εΞ0(f, g)(t) + Ξ1u(t)

= Ξεu(t),
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where

(8.4) u0(t) = cos t
√
−∆ f +

sin t
√
−∆√

−∆
g.

Arguments as in §6 show that there exists δ > 0 such that if Xδ is the complete
metric space

(8.5) Xδ = {v ∈ L3(R ×H3) : ‖v‖L3 ≤ δ},
we have

(8.6) Ξε : Xδ −→ Xδ, a contraction map,

for sufficiently small ε. This gives global solvability in Xδ of (8.1)–(8.2), for ε
sufficiently small.

For such a solution, let us record that

(8.7) ‖εu0(t)‖H1/3,2(M) ≤ Cε
[
‖f‖H1/3,2(M) + ‖g‖H−2/3,2(M)

]
.

Also, the second half of Proposition 5.5 gives

(8.8)
‖Ξ1u(t)‖H2/3,2(M) ≤ C‖F (u)‖L3/2(R×M)

≤ C|a|δ2.

Consequently,

(8.9) ‖u(t)‖H1/3,2(M) ≤ Cε
[
‖f‖H1/3,2(M) + ‖g‖H−2/3,2(M)

]
+ C|a|δ2.

We will use this to show that we get global C∞ solutions to (8.1)–(8.2), provided
ε is sufficiently small.

We will make use of some general results on global existence of smooth solutions,
presented in Appendix C. To begin, we record the content of Corollary C.2 in this
setting.

Proposition 8.1. Let u solve (8.1)–(8.2) with f, g ∈ C∞
0 (H3). Assume u is a

smooth solution for t ∈ [0, T ). Then this solution continues as a smooth solution
for t ∈ [0, T + δ), for some δ > 0, as long as there exist Kj < ∞ such that

(8.10) ‖u(t)‖L4 ≤ K1, ‖∇u(t)‖L4 ≤ K3.

To proceed, apply Duhamel’s formula to write the solution to (8.1)–(8.2) as

(8.11) u(t) = εu0(t) + w(t),

where u0(t) is as in (8.4) and

(8.12)

w(t) =

∫ t

0

sin(t − s)
√
−∆√

−∆
F (u(s)) ds

= a

∫ t

0

sin(t − s)
√
−∆√

−∆
u(s)2 ds.

By the dispersive estimate (3.1), we have

(8.13)

‖w(t)‖L4 ≤ C

∫ t

0

1

ψ(t − s)
‖u(s)2‖L4/3 ds

= C

∫ t

0

1

ψ(t − s)
‖u(s)‖2

L8/3 ds,
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with ψ(t) = |t|1/2 + |t|3/2. Hence we have

(8.14) ‖u(t)‖L4 ≤ ε‖u0(t)‖L4 + C

∫ t

0

1

ψ(t − s)
‖u(s)‖2

L8/3 ds.

Note also that

(8.15) ‖u‖2
L8/3 ≤ C‖u‖L4‖u‖L2 .

Hence

(8.16) ‖u(t)‖L4 ≤ ε‖u0(t)‖L4 + C1

∫ t

0

‖u(s)‖L2‖u(s)‖L4

ψ(t − s)
ds.

To estimate the second quantity in (8.10), we use the following result.

Lemma 8.2. For p ∈ (1,∞) there exists Cp ∈ (0,∞) such that

(8.17) C−1
p ‖∇u‖Lp(H3) ≤ ‖(−∆)1/2u‖Lp(H3) ≤ Cp‖∇u‖Lp(H3).

This is proven in [26], Theorem 6.1. Note that the first inequality in (8.17)
follows from (3.48), and in light of (3.48), the second inequality in (8.17) holds if
and only if

(8.18) ‖u‖Lp(H3) ≤ C ′
p‖∇u‖Lp(H3).

Applying (−∆)1/2 to (8.12) and using (8.17), we obtain

(8.19)

‖∇w(t)‖L4 ≤ C

∫ t

0

1

ψ(t − s)
‖∇u(s)2‖L4/3 ds

= 2C

∫ t

0

1

ψ(t − s)
‖u(s)∇u(s)‖L4/3 ds.

Note that

(8.20) ‖fg‖L4/3 ≤ ‖f‖L4‖g‖L2 ,

so we obtain

(8.21) ‖∇u(t)‖L4 ≤ ε‖∇u0(t)‖L4 + C2

∫ t

0

‖u(s)‖L4‖∇u(s)‖L2

ψ(t − s)
ds.

It is shown in (C.8) that

(8.22) ‖∇u(s)‖L2 ≤ K1s + E1(0)1/2,

provided F (u(t)) satisfies the conditions given in (C.5), i.e., in this setting,

(8.23) ‖u(t)‖L4 ≤ K̃1.

In such a case, we get from (8.21) that

(8.24) ‖∇u(t)‖L4 ≤ ε‖∇u0(t)‖L4 + C2

∫ t

0

K̃1(K1s + E1(0)1/2)

ψ(t − s)
ds.

Thus we have the following improvement over Proposition 8.1.

Proposition 8.3. Let u solve (8.1)–(8.2) with f, g ∈ C∞
0 (H3). Assume u is a

smooth solution for t ∈ [0, T ). Then this solution does not break down as t → T as
long as there exists K1 < ∞ such that

(8.25) ‖u(t)‖L4 ≤ K1.
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This in turn holds (by (8.14)) as long as there exists K4 < ∞ such that

(8.26) ‖u(s)‖L8/3 ≤ K4, ∀ s ∈ [0, T ).

We also have the following.

Proposition 8.4. Let C1 be as in (8.16), and take ε0 > 0 such that

(8.27) ε0C1

∫ ∞

0

dt

ψ(t)
≤ 1

2
.

If u is a smooth solution to (8.1)–(8.2) for t ∈ [0, T ), with f, g ∈ C∞
0 (H3), and if

(8.28) ‖u(s)‖L2 ≤ ε0, ∀ s ∈ [0, T ),

then u continues to a smooth solution of (8.1) on a neighborhood of [0, T ].

Proof. From (8.16) we get

(8.29) ‖u(t)‖L4 ≤ ε‖u0(t)‖L4 +
1

2
sup

0≤s≤t
‖u(s)‖L4 ,

which yields

(8.30) sup
0≤s≤t

‖u(s)‖L4 ≤ 2ε sup
0≤s≤t

‖u0(s)‖L4 .

¤

Recalling (8.9), and noting that δ could be taken arbitrarily small (generally
forcing ε to be even smaller), we have the following.

Proposition 8.5. Given f, g ∈ C∞
0 (H3), and F (u) as in (8.2), there exists ε1 > 0

such that (8.1) has a unique solution

(8.31) u ∈ C∞(R ×H3),

as long as |ε| ≤ ε1.

Appendix A. The telegraph equation and Proposition 2.1

As mentioned in §2, the derivation of the formulas (2.9) and (2.10) in Proposition
2.1 is closely related to the analysis of the telegraph equation. We expand on this
here, and prove those formulas.

To begin, the telegraph equation is the case n = 1 of

(A.1) ∂2
t u + 2a∂tu − ∆u = 0, u(0) = f, ∂tu(0) = 0,

where ∆ is the Laplace operator on R
n. It is well known that if a > 0,

(A.2) n = 1, f ≥ 0 =⇒ u(t) ≥ 0 for t ≥ 0.

In fact there is a probabilistic formula for u(t, x) in terms of the Poisson process on
R; see [6], pp. 280–282. The result (A.2) can be observed from explicit formulas,
which we will derive.

We make some parenthetical comments on solutions to (A.1). First, granted
sufficient decay of f , if It(f) =

∫
Rn u(t, x) dx, we readily see that

(A.3) ∂2
t It(f) + 2a∂tIt(f) = 0, ∂tIt(f)

∣∣
t=0

= 0,

and hence It(f) ≡ I0(f) =
∫

f dx.
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We now relate (A.1) to something closer to the subject matter of Proposition
2.1. Namely, if u solves (A.1), then v(t, x) = eatu(t, x) solves

(A.4) ∂2
t v − (∆ + a2)v = 0, v(0) = f, ∂tv(0) = af.

Hence

(A.5) eatu(t) =
(
cos t

√
−L

)
f + a

sin t
√
−L√

−L
f,

where

(A.6) L = ∆ + a2.

Note that

(A.7)

∫ t

0

cos s
√
−L ds =

sin t
√
−L√

−L
,

so (A.2) follows from the assertion that as long as a2 ≥ 0 in (A.6),

(A.8) n = 1, f ≥ 0 =⇒
(
cos t

√
−L

)
f ≥ 0.

We derive a formula for (cos t
√
−L)f = w(t, x), solving

(A.9) ∂2
t w − (∆ + a2)w = 0, w(0) = f, ∂tw(0) = 0,

by comparing w(t) with w0(t), solving

(A.10) ∂2
t w0 − ∆w0 = 0, w0(0) = f, ∂tw0(0) = 0.

Our approach will borrow a trick from Appendix B (pp. 667–668) of [20]. It starts
with the identity

(A.11) etLf =
1

2π

∫ ∞

−∞
ĥt(s) cos s

√
−L f ds,

with

(A.12) ĥt(s) =
2π√
4πt

e−s2/4t.

If we set 4t = 1/λ, we see that w(t) = (cos t
√
−L)f satisfies

(A.13)

∫ ∞

0

w(s, x) e−λs2

ds =
1

2

√
π

λ
ea2/4λe(1/4λ)∆f(x).

By comparison, w0(t) = (cos t
√
−∆)f satisfies

(A.14)

∫ ∞

0

w0(s, x)e−λs2

ds =
1

2

√
π

λ
e(1/4λ)∆f(x).

In other words,

(A.15)

∫ ∞

0

w(s, x)e−λs2

ds = ea2/4λ

∫ ∞

0

w0(s, x)e−λs2

ds.

Note that the change of variable σ = s2 makes (A.15) a relation between Laplace
transforms of

(A.16) ψ(σ, x) =
w(

√
σ, x)√
σ

and ψ0(σ, x) =
w0(

√
σ, x)√
σ

.
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Hence a representation of ea2/4λ as a Laplace transform:

(A.17) ea2/4λ =

∫ ∞

0

ϕ(σ)e−λσ dσ

will give rise to a convolution formula:

(A.18) ψ(σ, x) =

∫ σ

0

ϕ(τ)ψ0(σ − τ, x) dτ.

To identify the function ϕ(σ) in (A.17), we start with the following:

(A.19)

∫ ∞

0

Jν(as)sν+1e−λs2

ds =
aν

(2λ)ν+1
e−a2/4λ.

This is one of the most fundamental Hankel transforms and is used to prove the
Hankel inversion formula (cf. Proposition 8.1 in Chapter 8 of [30], especially (8.21);
see also (8.32)). We recall that the method of proof was to replace Jν(as) in (A.19)
by its power series expansion:

(A.20) Jν(as) =

∞∑

k=0

(−1)k

k!Γ(k + ν + 1)

(as

2

)ν+2k

,

and integrate term by term. This works for ν > −1. We want to pass to the

limit ν ց −1. Of course the integrand converges pointwise to J−1(as)e−λs2

=

−J1(as)e−λs2

. The integral involving each term in (A.20) converges to the integral

of the corresponding term in the power series expansion of J−1(as) (times e−λs2

)
except for the term k = 0. In this case, the integrand converges to 0 pointwise,
but the integral does not converge to 0. Rather, due to the fact that, with ν =
−1 + ε, B > 0,

(A.21)
1

Γ(ε)

∫ B

0

sε−1 ds =
1

εΓ(ε)
Bε → 1 as ε ց 0,

the result we arrive at is

(A.22)

∫ ∞

0

J1(as)e−λs2

ds =
1 − e−a2/4λ

a
.

Next we can analytically continue in a. We have (cf. (6.55) of [30], Chapter 3)

(A.23) Iν(r) = e−πiν/2Jν(ir), r > 0,

and in particular

(A.24) I1(r) = −iJ1(ir).

Hence, for a, λ > 0,

(A.25)

∫ ∞

0

I1(as)e−λs2

ds =
ea2/4λ − 1

a
.

We note that the power series for Jν(z) yields

(A.26) I1(r) =
∞∑

k=0

1

k!(k + 1)!

(r

2

)2k+1

.

In particular,

(A.27) r > 0 =⇒ I1(r) > 0.



NONLINEAR WAVES ON 3D HYPERBOLIC SPACE 33

We have achieved (A.17), and hence (A.18), with

(A.28) ϕ(σ) =
a

2
√

σ
I1(a

√
σ) + δ0.

That is to say, with L as in (A.6),

(A.29) (cos t
√
−L)f = (cos t

√
−∆)f + at

∫ t

0

I1(a
√

t2 − s2)√
t2 − s2

(
cos s

√
−∆

)
f ds.

In light of this we see that the positivity assertion (A.8) is a consequence of

(A.30) n = 1, f ≥ 0 =⇒ cos t
√
−∆ f ≥ 0,

which holds because

(A.31) n = 1 =⇒ cos t
√
−∆ f(x) =

f(x + t) + f(x − t)

2
.

At this point, (A.2) is proven.

Remark. For another approach to formulas like (A.29), see [11], Vol. 2, pp. 692–
695.

We now relate the formula (A.29) to the results of Proposition 2.1. We start with
the observation that in deriving the identities (A.11)–(A.29), we made no use of the
specific fact that ∆ is the Laplace operator; it could be any self adjoint operator on
a Hilbert space with spectrum bounded from above. In other words, we could take
L0 to be any self adjoint operator with spectrum bounded from above and make
the replacement

(A.32) ∆ 7→ L0, L 7→ L1 = L0 + a2.

In this setting, (A.29) becomes (2.9). As for (2.10), it follows from (2.9) by analytic
continuation. Alternatively (in fact, equivalently) we can replace +a2 by −a2 in
formulas (A.6), (A.9), (A.13), (A.15), and (A.17), then replace (A.25) by (A.22) to
get the relevant formula for ϕ(σ), in this altered version of (A.17):

(A.33) ϕ(σ) = − a

2
√

σ
J1(a

√
σ) + δ0.

This also gives (2.10).

Appendix B. Local Hardy space, bmo, and bmo-Sobolev spaces

For use in §3, we define bmo and bmo-Sobolev spaces here (and relate them to
the local Hardy space h1), and present results that yield the interpolation estimates
given in (3.12)–(3.15). We present the results in the setting of bmo(M) and h1(M)
when M is a Riemannian manifold with bounded geometry, which is a more general
setting than required for §3, but is of potential use in other settings. Proofs of results
stated here can be found in the paper [32].

The spaces h1(Rn) and bmo(Rn) were introduced in [14], as variants of the spaces
H1(Rn) and BMO(Rn) treated in [12]. One advantage of the spaces h1 and bmo is
that they are invariant under multiplication by bounded Lipschitz functions.

We mention that [15] introduced a variant of H1 and BMO for functions on rank-
one symmetric spaces of noncompact type, though the definition there differs from
the Euclidean case in ways that make it problematic to give a unified treatment.
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(This is perhaps another advantage of using the local spaces.) On the other hand,
the work of [15] is directly applicable to the setting of §3.

To define h1(M), we set up the following maximal function. Given f ∈ L1
loc(M),

let

(B.1) Gbf(x) = sup
0<r≤1

Grf(x),

where

(B.2) Grf(x) = sup
{∣∣∣

∫
ϕ(y)f(y) dV (y)

∣∣∣ : ϕ ∈ F(Br(x))
}

,

with

(B.3) F(Br(x)) =
{

ϕ ∈ C1
0 (Br(x)) : ‖ϕ‖Lip ≤ 1

rn+1

}
.

We then set

(B.4) h1(M) = {f ∈ L1
loc(M) : Gbf ∈ L1(M)},

with norm

(B.5) ‖f‖h1 = ‖Gbf‖L1 .

One could replace C1
0 (Br(x)) by {ϕ ∈ Lip(M) : suppϕ ⊂ Br(x)} and get the same

result. When M = R
n, the space h1(M) defined above coincides with the space

h1(Rn) defined in [14].
To define bmo(M), we set up the following maximal functions. Given f ∈

L1
loc(M), let

(B.6) f#(x) = sup
B∈B(x)

1

V (B)

∫

B

|f − fB| dV, fB =
1

V (B)

∫

B

f dV,

where

(B.7) B(x) = {Br(x) : 0 < r ≤ 1}.
Then define

(B.8) N f(x) = f#(x) + N0f(x), N0f(x) =
1

V (B1(x))

∫

B1(x)

|f | dV.

We set

(B.9) bmo(M) = {f ∈ L1
loc(M) : N f ∈ L∞(M)},

with norm

(B.10) ‖f‖bmo = ‖N f‖L∞ .

In case M = R
n, the definition of bmo(M) given here is equivalent to that of

bmo(Rn) given in [14].
It is useful to make note of some equivalent norms. For example, in place of f#,

consider

(B.11) fs(x) = sup
B∈B(x)

inf
cB∈C

1

V (B)

∫

B

|f − cB | dV.
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Given B ∈ B(x) and taking cB to realize this infimum, we have

(B.12) |fB − cB | =
∣∣∣

1

V (B)

∫

B

(f − cB) dV
∣∣∣ ≤ fs(x),

which gives

(B.13) fs(x) ≤ f#(x) ≤ 2fs(x).

It is also useful to note that one can fix a, b, c ∈ (0,∞), with a < b, and replace
B(x) by

(B.14) B̃(x) = {Qα
r (x) : 0 < r ≤ 1, α ∈ A},

where Qα
r (x) is a family of measurable sets with the property that for each r ∈ (0, 1],

(B.15)
V (Qα

r (x)) ≥ cV (Br(x)), Qα
r (x) ⊂ Bbr(x), for all α, and

Bar(x) ⊂ Qα
r (x), for some α.

One gets functions comparable in size in (B.11) and hence also in (B.6). In con-
nection with this, we recall that the original treatments in [18] and [12] used cubes
containing x in place of balls centered at x. One consequence of this observation is
that the John-Nirenberg estimate, proven in [18] for functions defined on a cube in
R

n, is applicable in our current situation. We have, for each ball B ⊂ M of radius
≤ 1,

(B.16)
1

V (B)

∫

B

eα|f−fB | dV ≤ γ,

with

(B.17) α =
β

‖f‖bmo
, β, γ constants.

Cf. (3′) of [18].
It is convenient to know that h1(M) and bmo(M) are modules over Lip(M) ∩

L∞(M). In fact, a more precise result holds. Let σ be a modulus of continuity, and
say

(B.18) a ∈ Cσ(M) ⇐⇒ |a(x) − a(y)| ≤ Lσ(d(x, y)), for d(x, y) ≤ 1,

for some L ∈ [0,∞). Define ‖a‖Cσ to be the smallest L for which (B.18) holds (this
is a seminorm). We then have the following result, proven in [32].

Proposition B.1. Let σ be a modulus of continuity satisfying the Dini condition

(B.19) D(σ) =

∫ 1

0

σ(r)

r
dr < ∞.

We also assume σ(r)/r is monotonically decreasing on (0, 1] (or constant). Then

(B.20) a ∈ L∞(M) ∩ Cσ(M), f ∈ h1(M) =⇒ af ∈ h1(M).

On the other hand, if a ∈ L∞(M) ∩ Cσ(M) with

(B.21) σ(r) =
(
log

1

r

)−1

, 0 < r ≤ 1

2
,

then

(B.22) f ∈ bmo(M) =⇒ af ∈ bmo(M).
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The proof of (B.20) is fairly straightforward; Schur’s lemma is involved. The
proof of (B.22) uses the John-Nirenberg estimate (B.16).

Remark. Note that the Dini condition (B.19) just barely fails for σ(r) given by
(B.21). h1-bmo duality, discussed below, allows one to amalgamate these results.

Using Proposition B.1, we can establish the following result. To state it, we
define a tame partition of unity on a manifold M with bounded geometry to be a
partition of unity whose elements, pulled back by exponential maps, are bounded
in C∞

0 of a ball in R
n and whose supports have a bounded number of overlaps.

Proposition B.2. Let {ϕk : k ∈ Z
+} be a tame partition of unity. Given f ∈

L1
loc(M), we have

(B.23) f ∈ h1(M) ⇐⇒
∑

k

‖ϕkf‖h1 < ∞,

and

(B.24) ‖f‖h1 ≈
∑

k

‖ϕkf‖h1 .

Furthermore,

(B.25) f ∈ bmo(M) ⇐⇒ sup
k

‖ϕkf‖bmo < ∞,

and

(B.26) ‖f‖bmo ≈ sup
k

‖ϕkf‖bmo.

Proposition B.2 combines nicely with the following elementary result. In the
statement, we use an isometric isomorphism of the n-dimensional inner product
space TpM with R

n, determined uniquely up to the action of O(n).

Proposition B.3. We have, uniformly in k ∈ Z
+,

(B.27) ‖ϕkf‖h1(M) ≈ ‖(ϕkf) ◦ Exppk
‖h1(Rn).

and

(B.28) ‖ϕkf‖bmo(M) ≈ ‖(ϕkf) ◦ Exppk
‖bmo(Rn).

Corollary B.4. In the setting of Proposition B.2,

(B.29) ‖f‖h1(M) ≈
∑

k

‖(ϕkf) ◦ Exppk
‖h1(Rn).

and

(B.30) ‖f‖bmo(M) ≈ sup
k

‖(ϕkf) ◦ Exppk
‖bmo(Rn).

These results open the door to making use of Euclidean results of [14], and, by
extension, results of [12]. For example, we can prove the duality

(B.31) h1(M)′ = bmo(M),

using Corollary B.4 and the result of [14] that (B.31) holds for M = R
n, itself a

consequence of the famous result

(B.32) H1(Rn)′ = BMO(Rn)
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of [12]. Furthermore, the result of [14] that

(B.33)
P ∈ OPS0

1,0(R
n) =⇒ P : h1(Rn) → h1(Rn) and

P : bmo(Rn) → bmo(Rn)

can be used to prove important results on the action on h1(M) and bmo(M) of
certain classes of pseudodifferential operators, which we now define.

Given an operator P : C∞
0 (M) → D′(M), we say P ∈ Ψm

#(M) provided the

following conditions hold. First we assume its Schwartz kernel KP ∈ D′(M × M)
satisfies

(B.34)
suppKP ⊂ {(x, y) ∈ M × M : d(x, y) ≤ 1},

sing suppKP ⊂ diag (M × M) = {(x, x) : x ∈ M}.
Next, we assume that, for each p ∈ M ,

(B.35) Mϕ1
PMϕ2

∈ OPSm
1,0(R

n),

with uniform bounds, independent of p ∈ M , where this statement has the following
meaning.

A Riemannian manifold with bounded geometry is covered by balls of radius
R0 > 0 such that the Riemannian metric tensor, pulled back by the exponential
map to a metric tensor on BR0

⊂ TpM ≈ R
n, is bounded in C∞(BR0

), with
bounded inverse, independent of p. Scaling, we take R0 ≥ 4. Thus functions
supported on B4(p) ⊂ M are identified with functions supported on B4(0) ⊂ R

n.
We pick ϕj ∈ C∞

0 (B4(0)) ≈ C∞
0 (B4(p)), equal to 1 on B2(p), and set Mϕj

f = ϕjf ,
and use these identifications to regard Mϕ1

PMϕ2
as operating on functions on R

n.
Then, given W ≥ 0, set

(B.36) Ψm
W (M) = {P# + P b : P# ∈ Ψm

#(M), P b ∈ Ψ−∞
W (M)},

where we say P b ∈ Ψ−∞
W (M) provided it has the form

(B.37) P bf(x) =

∫

M

kb(x, y)f(y) dV (y),

where kb ∈ C∞(M × M) satisfies

(B.38) |kb(x, y)| ≤ Cj〈d(x, y)〉−je−Wd(x,y),

and also such estimates for all x and y-derivatives of kb(x, y) (say in local exponen-
tial coordinates). The need for the exponential decrease follows from the fact that
for a manifold with bounded geometry, there is a volume estimate of the form

(B.39) Vol(Br(y)) ≤ C〈r〉µeκr,

and if κ > 0 one needs such decay for good operator properties. We mention that

(B.40) M = Hn =⇒ κ = n − 1.

Here are useful operator boundedness results from [32].

Proposition B.5. Take κ as in (B.39). Then

(B.41)
P ∈ Ψ0

W (M), W ≥ κ =⇒ P : h1(M) → h1(M) and

P : bmo(M) → bmo(M).



38 JASON METCALFE AND MICHAEL TAYLOR

As shown in [32],

(B.42) λ > W 2 =⇒ (λI − ∆)−s/2 ∈ Ψ−s
W (M).

We can define Hardy and bmo-Sobolev spaces. We can take λ > κ2 and set

(B.43)
hs,1(M) = (λI − ∆)−s/2 h1(M),

hs,∞(M) = (λI − ∆)−s/2 bmo(M).

These spaces are shown to be independent of the choice of λ, as long as λ > κ2.
One can show that, for k ∈ Z

+,

(B.44)
hk,1(M) = {u ∈ h1(M) : Lu ∈ h1(M), ∀L ∈ Vk(M)},

hh,∞(M) = {u ∈ bmo(M) : Lu ∈ bmo(M), ∀L ∈ Vk(M)}.
Extending Proposition B.5, we have:

Proposition B.6. Take m, s ∈ R and assume W ≥ κ. Then

(B.45)
P ∈ Ψm

W (M) =⇒ P : hs,1(M) → hs−m,1(M), and

P : hs,∞(M) → hs−m,∞(M).

Another result of [32] is the following analogue of the sharp maximal function
estimate in Lp of [12]. (For M = Hn, this also follows from results of [15].)

Proposition B.7. Assume p ∈ (1,∞), f ∈ L1
loc

(M), and N f ∈ Lp(M). Then
f ∈ Lp(M) and

(B.46) ‖f‖Lp(M) ≤ Cp‖N f‖Lp(M).

Using this, [32] establishes the following interpolation result, a variant of Corol-
lary 2 of [12]:

Proposition B.8. Take s ∈ R. Assume we have a bounded operator

(B.47) R : L2(M) → L2(M), R : L1(M) → hs,∞(M),

satisfying

(B.48) ‖Rf‖L2 ≤ M1‖f‖L2 , ‖Rf‖hs,∞ ≤ M0‖f‖L1 .

Then, for θ ∈ (0, 1),

(B.49) R : Lp(θ)(M) → H(1−θ)s,p(θ)′(M), p(θ) =
2

2 − θ
, p(θ)′ =

2

θ
,

and (with Cθ ∈ (0,∞) independent of R and f),

(B.50) ‖Rf‖H(1−θ)s,p(θ)′ ≤ CθM
θ
1 M1−θ

0 ‖f‖Lp(θ) .

It is this result which is used in (3.12)–(3.15).

Remark. Results mentioned above are counterparts to Lp-Sobolev space results,
which are also covered in [32], as well as other places. There are sharper results
covered in [32], which we will not discuss in detail here. We mention that (3.48) is
given as Proposition C.1 of [32].
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Appendix C. Generalities on global smooth solutions

For use in §8, we present some general results on when one can guarantee that
solutions to a nonlinear wave equation for t ∈ [0, T ) do not break down at t = T .
We consider solutions of semilinear wave equations of the form

(C.1) (∂2
t − ∆)u = F (u), u(0) = f, ∂tu(0) = g,

on R × M , where M is a complete Riemannian manifold, of dimension n, with
bounded geometry and ∆ its Laplace-Beltrami operator. We assume F is smooth
and F (0) = 0. We take f, g ∈ C∞

0 (M). In this setting, local solvability of (C.1) is
well known.

We assume the following special property on M :

(C.2) Spec (−∆) ⊂ [A,∞), A > 0.

Recall our application of the material in this appendix will be to the case M =
H3. In case M = Hn, n-dimensional hyperbolic space, having constant sectional
curvature −1, then equality holds in (C.2), with A = (n− 1)2/4; for n = 3, A = 1.
(Cf. [30], Chapter 8, §5.)

To start, we assume u is a smooth solution to (C.1) on [0, T )×M , with compact
support in M for each t (by finite propagation speed) and examine some energy
estimates. First,

(C.3)

d

dt

(
‖∂tu(t)‖2

L2 + ‖∇u(t)‖2
L2

)
= 2(utt − ∆u, ut)L2

= 2(F (u), ut)L2

≤ 2‖F (u(t))‖L2‖∂tu(t)‖L2 .

Next,

(C.4)

d

dt

(
‖∆u‖2

L2 + ‖∇ut‖2
L2

)
= 2(∆ut,∆u) + 2(∇utt,∇ut)

= 2(∆ut,∆u − utt)

= −2(F (u),∆ut)

= 2(∇F (u),∇ut)

= 2(F ′(u)∇u,∇ut)

≤ 2‖F ′(u(t))‖L4‖∇u(t)‖L4‖∇ut‖L2 .

We bring in the following well known general result. (Cf. [30], Chapter 16, §3.)

Proposition C.1. Smooth solutions to (C.1) on [0, T ) do not break down as t → T
as long as ‖u(t)‖L∞ is bounded.

Since D(∆) ⊂ L∞(M) for n ≤ 3, we have:

Corollary C.2. Assume n ≤ 3. Then smooth solutions to (C.1) on [0, T ) do not
break down as t → T , as long as there exist Kj < ∞ such that

(C.5) ‖F (u(t))‖L2 ≤ K1, ‖F ′(u(t))‖L4 ≤ K2, ‖∇u(t)‖L4 ≤ K3.

In more detail, set

(C.6)
E1(t) = ‖∂tu(t)‖2

L2 + ‖∇u(t)‖2
L2 ,

E2(t) = ‖∆u(t)‖2
L2 + ‖∇ut(t)‖2

L2 .
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Then we have

(C.7)

d

dt
E1(t) ≤ 2K1

√
E1(t),

d

dt
E2(t) ≤ 2K2K3

√
E2(t),

and Gronwall’s inequality gives

(C.8)
E1(t) ≤ (K1t + E1(0)1/2)2,

E2(t) ≤ (K2K3t + E2(0)1/2)2.

Corollary C.2 is applied in §8, in the form of Proposition 8.1.
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