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Abstract. These notes discuss Hardy spaces of solutions to certain first-order
elliptic systems of PDE on uniformly rectifiable (UR) domains, singular integral op-
erators that yield projections onto the space of their boundary values, and Toeplitz
operators associated with these projections. We produce results on the index of such
Toeplitz operators, when they are Fredholm. This is a survey of work [MMT] with
I. Mitrea and M. Mitrea, following work [HMT] with S. Hofmann and M. Mitrea.
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1. Introduction

Uniformly rectifiable sets, introduced in [D], form a maximal class of sets for
which one has a viable theory of the sort of singular integral operators associated
with layer potentials. We will discuss the use of this in the study of some elliptic
PDE, concentrating on the following situation.

Let M be a compact Riemannian manifold, D a first order elliptic differential
operator (between sections of vector bundles Ej) on M , and Ω ⊂ M a uniformly
rectifiable domain. Then (under a few technical hypotheses) there is associated
a projection P of Lp(∂Ω, E0 ⊗ C`) onto the space of boundary values of “Hardy
spaces”

(1.1)
Hp(Ω, D) = {u ∈ C(Ω, E0 ⊗ C`) : Du = 0, N (u) ∈ Lp(∂Ω),

∃ nontangential a.e. limit ub},
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where N (u) is the nontangential maximal function (and p ∈ (1,∞)). Given also
Φ ∈ C(∂Ω, M(`,C)), then we can define the Toeplitz operator

(1.2) TΦf = PΦPf + (I − P)f.

We show that such operators are Fredholm if Φ takes values in G`(`,C), and discuss
properties of the index.

We also consider the more general case

(1.3) Φ ∈ L∞ ∩ vmo(∂Ω, G`(`,C)),

obtaining simultaneously extensions to higher dimensions and to domains with
rough boundary of index results of Brezis-Nirenberg [BN].

We briefly define a uniformly rectifiable domain as follows. (See [HMT], [MMT]
for more details.) Let Ω be a relatively compact open subset of an n-dimensional
Riemannian manifold M . We assume Ω has finite perimeter, i.e.,

(1.4) dχΩ = µ

is a finite, vector-valued measure. To avoid pathologies, we assume Hn−1(∂Ω \
∂∗Ω) = 0, where ∂∗Ω is the measure-theoretic boundary. Then (thanks to funda-
mental results of DeGiorgi and Federer) σ, the total variation measure associated
to µ, is equal to (n − 1)-dimensional Hausdorff measure, restricted to ∂Ω. In this
situation,

(1.5) µ = −ν σ,

where ν is the outward-pointing unit normal to ∂Ω, defined σ-a.e. on ∂Ω. We
assume ∂Ω is Ahlfors regular, i.e., there exist C0, C1 ∈ (0,∞) such that

(1.6) C0r
n−1 ≤ σ(Br(p)) ≤ C1r

n−1,

for all p ∈ ∂Ω, 0 < r ≤ diam Ω. Then we call Ω an Ahlfors regular domain.
Such a domain is a UR domain provided ∂Ω is a uniformly rectifiable set, so

it contains big pieces of Lipscihtz surfaces, at all length scales, satisfying uniform
Lipschitz bounds. In more detail, there exist ε, L ∈ (0,∞) such that, for each
x ∈ ∂Ω, R ∈ (0, 1], there is a Lipschitz map ϕ : Bn−1

R → M (where Bn−1
R is a ball

of radius R in Rn−1) with Lipschitz constant ≤ L, such that

(1.7) Hn−1(∂Ω ∩BR(x) ∩ ϕ(Bn−1
R )) ≥ εRn−1.

The setting of UR domains allows for the following analytical results. Assume
E ∈ OPS−1(M) is a pseudodifferential operator of order −1, with odd principal
symbol, and integral kernel E(x, y), so

(1.8) Eu(x) =
∫

M

E(x, y)u(y) dV (y), u ∈ C∞0 (M).
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Consider the “principal value” singular integral

(1.9)

Bf(x) = PV
∫

∂Ω

E(x, y)f(y) dσ(y)

= lim
ε→0

∫

∂Ω\Bε(x)

E(x, y)f(y) dσ(y).

Then

(1.10) B : Lp(∂Ω) −→ Lp(∂Ω), ∀ p ∈ (1,∞).

This was demonstrated in [D] when M = Rn and E is a convolution operator. Also
[D] established associated Lp-estimates on the maximal function

(1.11) sup
0<ε≤1

∣∣∣
∫

∂Ω\Bε(x)

E(x, y)f(y) dσ(y)
∣∣∣,

in the convolution setting. In [HMT] this was extended to the variable coefficient
setting, and to manifolds. Also [HMT] studied the “double layer” potential

(1.12) Bf(x) =
∫

∂Ω

E(x, y)f(y) dσ(y), x ∈ Ω,

complemented estimates on (1.11) with the nontangential maximal function esti-
mate

(1.13) ‖NBf‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω), 1 < p < ∞,

and established the nontangential a.e. convergence

(1.14) Bf
∣∣
∂Ω

(x) =
1
2i

σE(x, ν(x))f(x) + Bf(x), a.e. x ∈ ∂Ω,

where σE(x, ξ) is the principal symbol of E and B is as in (1.9)–(1.10).
With these results in hand, one is in a position to study boundary problems

for various elliptic PDE via layer potentials. Such a study carries on earlier works
on analysis on Lipschitz domains, initiated by results of [CMM] and [Ver], among
others, which in turn followed classical results treating domains with somewhat
smoother boundaries.

Here we apply certain layer potentials to the study of spaces (1.1) of solutions to
Du = 0 on Ω, when D is a first-order elliptic differential operator on M , acting be-
tween sections of vector bundles Ej . If D : Hs+1(M, E0) → Hs(M, E1) is invertible,
we can take E = D−1 in (1.8). However, in many interesting cases, D will not be
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invertible. It often has nonzero index. One the other hand, under mild conditions,
such as that D and D∗ have UCP, one can construct E ∈ OPS−1(M) such that,
for some neighborhood O of Ω,

(1.15) supp u ⊂ O =⇒ EDu = u.

Indeed, one can take a ∈ C∞0 (M \Ω), ≥ 0 everywhere and > 0 on an open set, such
that

(1.16) D =
(

ia D∗

D ia

)

is invertible, with inverse D−1 ∈ OPS−1(M), and then

(1.17) D−1 =
(

E11 E12

E21 E22

)
=⇒ E12D = I − iE11a,

giving (1.15) with E = E12. See [MMT] for details.
The structure of the rest of this paper is as follows. In §2 we pass from B

and B, as in (1.12)–(1.14), to operators C and C, obtained by applying B and B
to σD(y, ν(y))f(y); see (2.8) and (2.11). We approach these operators from two
different perspectives, first via a reproducing formula, and then via the goal to
obtain from (1.14) an operator such that the first term on the right side of (1.14)
gets repaced by (1/2)f(x). Comparison of these two approaches yields the basic
result that

(1.18) P =
1
2
I + C =⇒ P2 = P.

This is the projection appearing in (1.2). In §3 we analyze (1.2) for Φ ∈ C(∂Ω,M(`,C)),
obtain compactness of TΦΨ − TΦTΨ, and deduce that (1.2) is Fredholm when
Φ ∈ C(∂Ω, G`(`,C)). We note that the index of TΦ on Lp(∂Ω) is independent
of p and that ι(Φ) = IndexTΦ produces a group homomorphism

(1.19) ι : [∂Ω; G`(`,C)] −→ Z,

where [∂Ω; G`(`,C)] is the group of homotopy classes of continuous maps from ∂Ω
to G`(`,C).

In §4 we extend the scope from continuous Φ to

(1.20) Φ ∈ L∞ ∩ vmo(∂Ω, M(n,C)).

If also Φ−1 satisfies (1.20), then TΦ is Fredholm on Lp(∂Ω) for 1 < p < ∞. The
appropriate homotopy invariance in this setting is more subtle than that in §3.
We produce a result that extends the scope of some work of [BN], both to higher
dimensions and to rough boundaries.
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In §5 we extend the scope in another direction, allowing Φ to be a section of
End C, when C → M is a vector bundle, yielding “twisted” Toeplitz operators.

In §6 we introduce cobordism invariance as a useful tool to apply to the problem
of computing the index of a Toeplitz operator. A key result is that if C → M is a
vector bundle, then

(1.21) Φ ∈ C(Ω, G`(C)) =⇒ IndexTΦ = 0.

This cobordism invariance is applied in §7, in conjunction with some topological
results of Bott and index results of [Ven], [B], and [BDT], to compute the index
for a certain interesting class of Toeplitz operators. For example, if Ω ⊂ Cµ is a
bounded UR domain whose boundary ∂Ω is homeomorphic to the sphere S2µ−1,
and

(1.22) D = ∂ + ∂
∗

: Λ0,even(Cµ) −→ Λ0,odd(Cµ),

then

(1.23) Index TΦ = ±ϑ([Φ]), for Φ ∈ C(∂Ω, U(`)),

provided ` ≥ µ, where ϑ is the Bott isomorphism

(1.24) ϑ : [∂Ω; U(`)] ≈−→ Z

(well defined up to sign). If ` < µ, then Index TΦ = 0. We emphasize that, in this
setting, Ω need not be pseudoconvex, and ∂Ω can be quite rough.

2. Reproducing formulas, Cauchy integrals, and Calderón projectors

We start with a sequence of reproducing formulas, valid for progressively less
smooth functions u and for progressively less rough domains Ω. To begin, we
assume

(2.1) u ∈ C(M, E0), Du ∈ L1(M, E1).

We let f ∈ Lip(M) be scalar and note the Leibniz type formula

(2.2) D(fu) = fDu + (D0f)u, D0f(x) =
1
i
σD(x)df(x),

where the principal symbol of D is σD(x, ξ) = σD(x)ξ, linear in ξ ∈ T ∗x M . Assume
supp f ⊂ O, with O as in (1.15). Then

(2.3) fu(x) = E
(
(D0f)u

)
+ E(f Du).
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Now, assume Ω ⊂ M is a finite perimeter domain, and replace f by a sequence
fν ∈ Lip(M), supported in O, and satisfying

(2.4)
fν −→ χΩ, boundedly and a.e.,

dfν −→ dχΩ = µ, weak∗ in measure on M.

Passing to the limit gives

(2.5)

u(x) = i

∫

∂Ω

E(x, y)σD(y, ν(y))u(y) dσ(y)

+
∫

Ω

E(x, y)Du(y) dV (y), x ∈ Ω.

This is our basic reproducing formula. Note that the second integral vanishes if
Du = 0 on Ω. At this point we have (2.5) for Ω with finite perimeter, provided u
satisfies (2.1). We will need this formula for much rougher functions u.

The following is established in §2.2 of [MMT], extending a Green formula given
in §2.3 of [HMT]. To state it, we bring in the spaces

(2.6)
Lp(Ω) = {u ∈ C(Ω, E0) : Nu ∈ Lp(∂Ω), and

∃ nontangential limit ub, σ-a.e.}.

Proposition 2.1. Assume Ω is Ahlfors regular and that, for some p > 1,

(2.7) u ∈ Lp(Ω), and Du ∈ L1(Ω, E1).

Then (2.5) holds.

We now specialize to the case that Ω ⊂ M is a UR domain. As stated in §1,
the layer potential operator B defined by (1.12) satisfies (1.13)–(1.14), with B as
in (1.9)–(1.10). Given the nontangential limit result (1.14), it follows that if

(2.8) Cf(x) =
∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y), x ∈ Ω,

then

(2.9) ‖NCf‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω), 1 < p < ∞,

and, since σE(x, ξ)σD(x, ξ) = I, we have nontangential a.e. convergence

(2.10) Cf
∣∣
∂Ω

(x) =
1
2
f(x) + Cf(x), x ∈ ∂Ω,



7

where

(2.11) Cf(x) = i PV
∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y).

It follows that if 1 < p < ∞ and f ∈ Lp(∂Ω, E0), then

(2.12) u = Cf =⇒ u ∈ Hp(Ω, D),

defined in (1.1) (for now, with ` = 1). Also (2.5) applies, with Du = 0 on Ω, hence

(2.13) u = Cf =⇒ u = C(u
∣∣
∂Ω

)
.

Comparing (2.10), we deduce that

(2.14) P =
1
2
I + C =⇒ P2 = P.

By (1.10), we have

(2.15) P : Lp(∂Ω, E0) −→ Lp(∂Ω, E0), 1 < p < ∞.

The integral (2.8) is a multi-dimensional generalization of the familiar Cauchy in-
tegral, obtained when M = C and D = ∂.

When ∂Ω is smooth, P is a classical Calderón-type projector. By the definition
of Hp(Ω, D) in (1.1), there is a bounded trace map

(2.16) τ : Hp(Ω, D) −→ Lp(∂Ω, E0),

and Proposition 2.1 together with (2.8)–(2.13) imply that, when Ω is a UR domain,

(2.17) τ : Hp(Ω, D) −→ Hp(∂Ω, D),

with

(2.18) Hp(∂Ω, D) = PLp(∂Ω, E0).

In §3.1 of [MMT], it is shown that τ in (2.17) is an isomorphism.
In [MMT] the authors also treat a “Calderón-Szegö projector” S, defined initially

on L2(∂Ω, E0) as the orthogonal projection onto H2(∂Ω, D). Extensions of S to
Lp(∂Ω, E0), for a range of p, and relations with P, are discussed there. Space
considerations motivate us to pass over this topic here, so we point the reader to
§3.2 of [MMT].

Remark. It is natural to consider the following variant of (1.1):

(2.19) H̃p(Ω, D) = {u ∈ C(Ω, E0) : Du = 0, Nu ∈ Lp(∂Ω)},
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dropping the hypothesis that the trace ub exists. The assertion that

(2.20) H̃p(Ω, D) = Hp(Ω, D)

is known as a Fatou theorem. Such a result is classical when Ω is smoothly bounded.
In [MMT2] it is shown that (2.20) holds when Ω is a Lipschitz domain, and also
when Ω is a regular SKT domain (a class of domains defined in §4.1 of [HMT]).

3. Toeplitz operators – Fredholmness

Here, Ω will be a UR domain.
The maps C, C, and P, defined in (2.8), (2.11), and (2.14), extend natually from

acting on sections of E0 to acting on sections of E0 ⊗ C`, giving rise to projections

(3.1) P : Lp(∂Ω, E0 ⊗ C`) −→ Lp(∂Ω, E0 ⊗ C`), 1 < p < ∞,

and we have (2.17)–(2.18), with Hp(Ω, D) as in (1.1) for general ` ≥ 1.
For notational simplicity, we will henceforth typically denote Lp(∂Ω, E0⊗C`) by

Lp(∂Ω), unless we need to explicitly specify the relevant vector bundle.
If Φ ∈ L∞(∂Ω,M(`,C)), then multiplication by Φ also naturally acts on sections

of E0 ⊗ C`, and we have the following Toeplitz operator:

(3.2) TΦf = PΦPf + (I − P)f.

If also Ψ ∈ L∞(∂Ω,M(`,C)), then

(3.3) TΦTΨ − TΦΨ = PΦ[P, Ψ]P,

which is then compact on Lp(∂Ω) as long as [P, Ψ] is. Note that

(3.4) [P,Ψ]f(x) = [C, Ψ]f(x) = i PV
∫

∂Ω

E(x, y){Ψ(y)−Ψ(x)}g(y) dσ(y),

where g(y) = σD(y, ν(y))f(y). If Ψ is Hölder continuous,

(3.5) Ψ ∈ Cα(∂Ω,M(`,C)), α > 0,

then the integral in (3.4) is weakly singular, and compactness on Lp(∂Ω) for 1 <
p < ∞ is elementary. If

(3.6) Ψ ∈ C(∂Ω,M(`,C)),

then we can take Ψν ∈ Cα(∂Ω,M(`,C)), Ψν → Ψ uniformly, and deduce that
[P, Ψ] is compact, hence

(3.7)
Ψ ∈ L∞(∂Ω,M(`,C)), Φ ∈ C(∂Ω, M(`,C))

=⇒ TΦTΨ − TΦΨ compact on Lp(∂Ω), 1 < p < ∞.

From here we readily get
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Proposition 3.1. Let Ω be a UR domain, and assume

(3.8) Φ : ∂Ω −→ G`(`,C)

is continuous. Then TΦ−1TΦ − I and TΦTΦ−1 − I are compact on Lp(∂Ω) for all
p ∈ (1,∞), so

(3.9) TΦ : Lp(∂Ω) −→ Lp(∂Ω) is Fredholm, ∀ p ∈ (1,∞).

In §4.1 of [MMT] it is shown that

(3.10) ι(Φ) = ι(Φ; D) := IndexTΦ on Lp(∂Ω)

is independent of p. In fact, KerTΦ on Lp(∂Ω) and Ker T ∗Φ on Lp′(∂Ω) are both
independent of p. (This can be interpreted as a regularity result.) From (3.7), we
have that, if also Ψ : ∂Ω → G`(`,C) is continuous, then

(3.11) ι(ΦΨ) = ι(Φ) + ι(Ψ).

Note that is Φt is a continuous family of elements of C(∂Ω, G`(`,C)), then TΦt

is a norm continuous family of Fredholm operators, so has a constant index. That
is, Index TΦ depends only on the homotopy class of Φ in [∂Ω; G`(`,C)], the group
of homotopy classes of continuous maps ∂Ω → G`(`,C). By (3.11), we obtain a
group homomorphism

(3.12) ι : [∂Ω; G`(`,C)] −→ Z,

We return to this in §7.
In §4.3 of [MMT] the authors show that, if Ω is a UR domain satisfying the

two-sided John condition (defined in §4.1 of [HMT]), and if

(3.13) Φ ∈ Lq
1(∂Ω, G`(`,C)), q ≥ p > 1, q ∈ (n− 1,∞),

then

(3.14) TΦ : Lp
1(∂Ω) −→ Lp

1(∂Ω) is Fredholm,

where Lp
1(∂Ω) is the Lp-Sobolev space (developed for ∂Ω Ahlfors regular in §A.2

of [MMT]). In particular, (3.13)–(3.14) hold for Φ ∈ Lip(∂Ω, G`(`,C)). It is also
shown that the index of TΦ in (3.14) is equal to that in (3.9)–(3.10). There is the
corresponding regularity result that KerTΦ on Lp

1(∂Ω) is equal to that on Lp(∂Ω).
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4. Toeplitz operators with coefficients in L∞ ∩ vmo(∂Ω)

We begin by defining some relevant function spaces. We take Ω to be a relatively
compact UR domain, with boundary ∂Ω, and define bmo(∂Ω) and vmo(∂Ω). These
definitions extend to a broader class of measured metric spaces; cf. [HMT], §2.4.
We have the BMO-seminorm

(4.1) ‖Φ‖BMO = sup
B

1
σ(B)

‖Φ− ΦB‖L1(B),

where B runs over all balls in ∂Ω and

(4.2) ΦB =
1

σ(B)

∫

B

Φ(y) dσ(y).

This is only a seminorm since Φ const ⇒ ‖Φ‖BMO = 0. We use the norm

(4.3) ‖Φ‖bmo = ‖Φ‖BMO + ‖Φ‖L1(∂Ω).

The space vmo(∂Ω) is the closure in bmo-norm of C(∂Ω).
Here we study Toeplitz operators TΦ with

(4.4) Φ ∈ L∞ ∩ vmo(∂Ω).

The following is proved in [T3], p. 81, for scalar functions. It extends readily to
functions with values in End(C`).

Lemma 4.1. L∞ ∩ vmo(∂Ω) is a closed linear subspace of L∞(∂Ω), closed under
products, hence a closed ∗-subalgebra of the C∗-algebra L∞(∂Ω).

Generally, if A is a C∗-algebra with unit 1 and B a C∗-subalgebra containing 1,
then an element ϕ ∈ B is invertible in B if and only if it is invertible in A. This
has the following consequence:

(4.5)
Φ ∈ L∞ ∩ vmo(∂Ω, EndC`), Φ−1 ∈ L∞(∂Ω, EndC`)

=⇒ Φ−1 ∈ L∞ ∩ vmo(∂Ω,EndC`).

When Φ satisfies (4.5), we say

(4.6) Φ ∈ L∞(∂Ω, G`(`,C)).

The following extends the compactness result on [P, Ψ] in §3.

Lemma 4.2. If Ψ ∈ L∞ ∩ vmo(∂Ω, EndC`), then

(4.7) [P, Ψ] : Lp(∂Ω) −→ Lp(∂Ω) is compact, ∀ p ∈ (1,∞).

Proof. The assertion is that (3.4) is compact on Lp(∂Ω) for such Ψ. This is es-
tablished in §4.2 of [HMT], building on a fundamental commutator estimate of
[CRW].

This leads to the following extension of Proposition 3.1.
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Proposition 4.3. If Ω is a UR domain and Φ satisfies (4.6), then TΦ−1TΦ − I
and TΦTΦ−1 − I are compact on Lp(∂Ω) for all p ∈ (1,∞), so

(4.8) TΦ : Lp(∂Ω) −→ Lp(∂Ω) is Fredholm, ∀ p ∈ (1,∞).

Again the index ι(Φ) = ι(Φ;D) = Index TΦ is independent of p ∈ (1,∞). Also,
we have

(4.9) ι(ΦΨ) = ι(Φ) + ι(Ψ),

when Φ, Ψ ∈ L∞ ∩ vmo(∂Ω, G`(`,C)).
The appropriate homotopy invariance is a bit more subtle in this setting than in

§3. As a first step, given Φ as in (4.6), one can set

(4.10)
Φ = AU, A = (ΦΦ∗)1/2,

U = A−1Φ ∈ L∞ ∩ vmo(∂Ω, U(`)).

Then

(4.11) ι(Φ) = ι(U) + ι(A).

Now (1 − t)A + tI ∈ L∞ ∩ vmo(∂Ω, G`(`,C)) for 0 ≤ t ≤ 1, and the identity
T(1−t)A+tI = (1− t)TA + tTI yields

(4.12) ι(A) = 0, hence ι(Φ) = ι(U).

Hence to examine the index of TΦ, it suffices to consider Φ ∈ L∞ ∩ vmo(∂Ω, U(`)).
The following two propositions are established in §4.2 of [MMT].

Proposition 4.4. Assume Φt ∈ L∞ ∩ vmo(∂Ω, U(`)) for each t ∈ [0, 1] and

(4.13) t 7→ Φt is continuous from [0, 1] to bmo(∂Ω, EndC`).

Then ι(Φt) is independent of t ∈ [0, 1].

The following result reduces index computations for TΦ to the continuous case.

Proposition 4.5. Given Φ ∈ L∞∩vmo(∂Ω, U(`)), there exists an explicit approx-
imation procedure, producing

(4.14) Φt ∈ C(∂Ω, U(`)), t > 0,

such that

(4.15) ‖Φt − Φ‖bmo −→ 0, as t → 0.
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There exists ε1 > 0 such that

(4.16) ι(Φ) = ι(Φt), ∀ t ∈ (0, ε1].

In the special case where Ω ⊂ C is the unit disk (hence has smooth boundary) and
D = ∂ (and ` = 1), such results are obtained in [BN], making use of the homotopy
theory of BMO maps X → Y obtained in [BN] when X and Y are smooth compact
manifolds. The analysis in [MMT] requires extending the homotopy theory to allow
X to be a compact, Ahlfors regular set. Among other things, a somewhat more
complicated approximation procedure is required to produce Φt in (4.14)–(4.16).
The arguments needed to prove Propositions 4.4–4.5 are fairly elaborate, so we refer
to §4.2 of [MMT] for details.

5. Twisted Toeplitz operators

We extend the setting of Toeplitz operators from (3.1) to

(5.1) TΦ : Lp(∂Ω, E0 ⊗ C) −→ Lp(∂Ω, E0 ⊗ C), 1 < p < ∞,

where C → M is a smooth vector bundle and

(5.2) Φ ∈ C(∂Ω,End C)

is a continuous section of End C over ∂Ω. The case treated in §3 amounts to taking
C to be the trivial bundle of rank `. In that setting, P was extended to act on
sections of E0 ⊗ C` = E0 ⊕ · · · ⊕ E0 componentwise. The current setting requires a
more elaborate construction.

To begin, we move from D to

(5.3) DC : Hs+1(M, E0 ⊗ C) −→ Hs(M, E1 ⊗ C),

such that

(5.4) σDC (x, ξ) = σD(x, ξ)⊗ IC .

To do this, we provide C with a smooth connection ∇. Then, to define (5.3), we
take a cue from (2.2) and seek to set

(5.5) DC(u⊗ v) = Du⊗ v + (D0v)u,

where u is a section of E0 and v a section of C. We need to define (D0v)u, as a
section of E1 ⊗ C, again taking a cue from (2.2). Now σD(x, ξ) = σD(x)ξ is linear
in ξ, and we have

(5.6) σD(x) : T ∗x −→ Hom(E0x, E1x),
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or equivalently

(5.7) σD(x) : E0x ⊗ T ∗x −→ E1x.

Tensoring with IC gives

(5.8) σD(x) : E0x ⊗ T ∗x ⊗ Cx −→ E1x ⊗ Cx,

and it is natural to set

(5.9) (D0v)u(x) =
1
i
σD(x)

(
u(x)⊗∇v(x)

)
.

The symbol identity (5.4) is readily verified, and the analysis of §§2–3 is applicable
to DC , yielding the projection

(5.10) PC : Lp(∂Ω, E0 ⊗ C) −→ Lp(∂Ω, E0 ⊗ C).

Actually, in light of (5.9), this operator depends on the choice of connection ∇ on
C, but we will not burden the notation with this. Instead, we lighten the notation
and simply use P to denote (5.10), and again (usually) denote the Lp-spaces in
(5.10) simply by Lp(∂Ω). Thus we set

(5.11) TΦu = PΦPu + (I − P)u,

when u is a section of E0 ⊗ C, and (5.1) holds, for Φ of the form (5.2), and more
generally for

(5.12) Φ ∈ L∞ ∩ vmo(∂Ω,End C).

Parallel to Lemma 4.2, we have:

Lemma 5.1. If Ψ ∈ L∞ ∩ vmo(∂Ω, End C), then

(5.13) [P,Ψ] : Lp(∂Ω) −→ Lp(∂Ω) is compact, ∀ p ∈ (1,∞).

Proof. This time, the identity (3.4) does not quite hold, but, via an argument
involving (5.4), the difference between the left and the right sides of (3.4) is given
by a weakly singular integral, whose compactness is elementary. See §4.5 of [MMT]
for details.

This leads to the following extension of Proposition 4.3.
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Proposition 5.2. Assume Ω is a UR domain and

(5.14) Φ, Φ−1 ∈ L∞ ∩ vmo(∂Ω, End C),

which we also write as

(5.15) Φ ∈ L∞ ∩ vmo(∂Ω, G`(C)).

Then TΦ−1TΦ − I and TΦTΦ−1 − I are compact on Lp(∂Ω) for p ∈ (1,∞), so

(5.16) TΦ : Lp(∂Ω) −→ Lp(∂Ω) is Fredholm, ∀ p ∈ (1,∞).

Thus we can set

(5.17) ι(Φ) = IndexTΦ on Lp(∂Ω, E0 ⊗ C), p ∈ (1,∞).

As before, this index is independent of p ∈ (1,∞). If Ψ also satisfies (5.15), then

(5.18) ι(ΦΨ) = ι(Φ) + ι(Ψ).

It is useful to have the following.

Proposition 5.3. Given Φ satisfying (5.15), the index of TΦ is independent of the
choice of connection on C.
Proof. Two connections on C give two elliptic operators DC that differ by an oper-
ator of order zero. Hence the integral kernels of E(x, y) differ by a weakly singular
term, and so the two versions of TΦ differ by a compact operator.

6. Localization and cobordism invariance

Tools developed in [MMT] to analyze the index of TΦ include localization and
cobordism invariance. We describe these here. To begin, suppose

(6.1) ∂Ω =
J⋃

j=1

Γj , disjoint, closed subsets.

Define Cj : Lp(Γj) → Lp(Γj) by restricting the integral (2.11) to Γj , and set
Pj = (1/2)I + Cj , Pj : Lp(Γj) → Lp(Γj). We have

(6.2) P −
J⊕

j=1

Pj compact on Lp(∂Ω), P2
j − Pj compact on Lp(Γj).
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Thus, with

(6.3) TΓj ,Ω,Φf = PjΦPjf + (I − Pj)f, f ∈ Lp(Γj),

we have

(6.4) TΦ −
J⊕

j=1

TΓj ,Ω,Φ compact on Lp(∂Ω),

for p ∈ (1,∞), if Φ ∈ L∞ ∩ vmo(∂Ω,End C). Clearly TΓj ,Ω,Φ depends only on Φ|Γj .
If

(6.5) Φ ∈ L∞ ∩ vmo(∂Ω, G`(C)),
then each operator TΓj ,Ω,Φ is Fredholm on Lp(Γj , E0 ⊗ C), and

(6.6) Index TΦ =
J∑

j=1

IndexTΓj ,Ω,Φ.

Here is a related localization. Given the UR domain Ω ⊂ M , assume there
is another Riemannian manifold M̃ , a neighborhood O of Ω in M , and an open
Õ ⊂ M̃ , isometric to O. (From here on, we identify O and Õ.) Assume there exists
a first order elliptic differential operator D̃ on M̃ acting on sections of Ẽ0⊗C̃ → M̃ ,
these bundles agreeing with E0 ⊗ C on Õ = O, such that D̃ = D on O. Then we
have the Toeplitz operator

(6.7) T
M̃,Φ

: Lp(∂Ω) −→ Lp(∂Ω),

and

(6.8) Φ ∈ L∞ ∩ vmo(∂Ω, End C) =⇒ TΦ − T
M̃,Φ

compact on Lp(∂Ω),

for p ∈ (1,∞), so

(6.9) Φ ∈ L∞ ∩ vmo(∂Ω, G`(C)) =⇒ Index TΦ = Index T
M̃,Φ

.

The following cobordism result is established in §4.7 of [MMT].

Proposition 6.1. If Φ ∈ C(Ω, G`(C)), then

(6.10) Index TΦ = 0.

This proposition applies in the following setting. Take an open set O ⊂ Ω such
that

(6.11) O is a UR domain, and ∂O = ∂Ω ∪ Γ, disjoint closed sets.
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Let

(6.12) Φ ∈ C(O, G`(C)).

Then we have TΦ : Lp(∂Ω) → Lp(∂Ω). Also, we have an analogue, which we denote
TO,Φ, defined by replacing Ω by O. Proposition 6.1, with O in place of Ω, implies

(6.13) Index TO,Φ = 0.

Furthermore,

(6.14) Ω̃ = Ω \ O =⇒ ∂Ω̃ = Γ,

and via (6.13) and a localization argument, one gets

(6.15) Index TΦ = Index T
Ω̃,Φ

.

See §4.7 of [MMT] for details.
The result (6.15) sometimes applies in cases where ∂Ω is rough but ∂Ω̃ is smooth.

There are tools available for calculating the right side of (6.15), including the
Atiyah-Singer index formula, when ∂Ω̃ is smooth, so the identity (6.15) provides a
path for the calculation of the index of TΦ, in many cases where ∂Ω is rough.

7. Further results on index computations

As usual, Ω is a relatively compact UR domain. For simplicity, we assume here
that Φ ∈ C(∂Ω, G`(`,C)). In fact, going further, as in (4.10)–(4.12), we may as
well take

(7.1) Φ ∈ C(∂Ω, U(`)).

As in (3.12), ι(Φ) = Index TΦ defines a group homomorphism

(7.2) ι : [∂Ω; U(`)] −→ Z.

When (7.1) holds, we can write

(7.3) Φ(x) = Φ0(x)Φ1(x),

with

(7.4) Φ0(x) =
(

ϕ
I

)
, ϕ(x) = detΦ(x), Φ1 ∈ C(∂Ω, SU(`)),
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and

(7.5) ι(Φ) = ι(Φ0) + ι(Φ1) = ι(ϕ) + ι(Φ1),

with ϕ ∈ C(∂Ω, S1), S1 ⊂ C. Then

(7.6) [∂Ω; S1] = 0 =⇒ ι(Φ) = ι(Φ1),

and

(7.7) [∂Ω; SU(`)] = 0 =⇒ ι(Φ) = ι(ϕ).

Note that (7.6) holds when ∂Ω is simply connected and (7.7) holds if ` = 2 and
dimΩ ≤ 3.

We now specialize to the case where ∂Ω is homeomorphic to a sphere:

(7.8) ∂Ω ≈ Sm, m = n− 1 (n = dimΩ).

In such a case, [∂Ω; U(`)] ≈ πm(U(`)). Thus we are in the setting of πm(Y ),
the group of homotopy classes of maps from the sphere Sm to a space Y (with
Y = U(`)). Classical results of Bott (cf. [Mil]) imply

(7.9) m = 2µ− 1 =⇒ πm(U(`)) ≈ Z, if ` ≥ µ.

By contrast,

(7.10) m /∈ {1, 3, . . . , 2`− 1} =⇒ πm(U(`)) is finite.

When (7.9) holds, let

(7.11) ϑ : [∂Ω; U(`)] ≈−→ Z

denote the induced isomorphism (uniquely defined up to sign). We have the fol-
lowing.

Proposition 7.1. Assume Ω is a UR domain and (7.8) holds. If m = 2µ− 1 and
` ≥ µ, there exists α = α(Ω, D) ∈ Z such that

(7.12) ι(Φ; D) = αϑ([Φ]), ∀Φ ∈ C(∂Ω, U(`)).

If m /∈ {1, 3, . . . , 2`− 1}, then

(7.13) ι(Φ;D) = 0, ∀Φ ∈ C(∂Ω, U(`)).

An extra argument is required to show that α in (7.12) is independent of ` (up
to sign, when ` satisfies ` ≥ µ, m = 2µ − 1). See §4.8 of [MMT] for details. This
argument also yields the following.
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Corollary 7.2. In the setting of Proposition 7.1, if m = 2µ − 1 and `1 ≥ µ, and
if there exists Φ1 ∈ C(∂Ω, U(`1)) such that

(7.14) Index TΦ1 = 1,

then (7.12) holds with α = ±1, for all ` ≥ µ.

In fact, we see that α must be a nonzero integer of magnitude ≤ 1.
We aim to produce some cases where Corollary 7.2 applies. We begin with

an apparent digression. Let B ⊂ Cµ be the unit ball. Assume µ ≥ 2. Let
Sh : L2(∂B) → L2(∂B) be the Szegö projector onto the space of boundary values
of functions holomorphic on B. Since holomorphic functions satisfy an overdeter-
mined elliptic system, this is a different sort of projector from what we have been
considering. For example,

(7.15) Sh ∈ OPS0
1/2,1/2(∂B).

This is sufficient to imply that operators τΦ = ShΦSh + (I − Sh) are Fredholm if
Φ ∈ C(∂B, U(`)), and one has an analogue of (7.12):

(7.16) Index τΦ = αhϑ([Φ]).

In [Ven], it is shown that (7.16) holds with αh = ±1. An alternative treatment of
such an index formula, in a more general setting, was done by Boutet de Monvel in
[B]. His formula, valid when B ⊂ Cµ is a smoothly bounded, strongly pseudoconvex
domain, can be described as follows. Consider

(7.17) D = ∂ + ∂
∗

: Λ0,even(Cµ) −→ Λ0,odd(Cµ).

This is an operator of Dirac type. Then

(7.18) Index τΦ = ι(Φ; D).

See also [BDT] for a proof of (7.18) using K-homology. We have the following
consequence.

Proposition 7.3. When Ω = B is the unit ball in Cµ and D is given by (7.17),
then (7.12) holds with α = ±1, provided ` ≥ µ.

From here, we obtain the following.

Proposition 7.4. Let Ω ⊂ Cµ be a bounded UR domain and let D be given by
(7.17). Let ` ≥ µ. Then

(7.19) there exists Φ1 ∈ C(∂Ω, U(`)) such that IndexTΦ1 = 1.

Proof. We can assume 0 ∈ B ⊂ B ⊂ Ω. Take Φ1 ∈ C(∂B, U(`)) such that TB,Φ1

has index 1, using Proposition 7.3. Then extend Φ1 to an element of C(Cµ\0, U(`)),
homogeneous of degree 0, and restrict to ∂Ω. The cobordism argument of §6 implies

(7.20) Index TΩ,Φ1 = IndexTB,Φ1 ,

so we have (7.19).
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Corollary 7.5. Let Ω ⊂ Cµ be a bounded UR domain and let D be given by (7.17).
If ∂Ω is homeomorphic to S2µ−1, then (7.12) holds, with α = ±1.

A. Examples of UR domains

We describe some classes of relatively compact domains Ω that are UR domains.
Clearly each Lipschitz domain is a UR domain. Here is a nontrivial generalization
of this, from §3.1 of [HMT].

Proposition A.1. If ∂Ω is locally the graph of a function with gradient in bmo,
then Ω is a UR domain.

First, it is shown in §2.5 of [HMT] that such a domain is Ahlfors regular. The
rest of the demonstration relies on the following result, from [DJ] and [Se].

Proposition A.2. Assume Ω ⊂ M is Ahlfors regular and the following holds.
There exists C0 ∈ (0,∞) such that for each x ∈ ∂Ω, r ∈ (0, 1], there are two
balls, with centers of distance ≤ r from x, of radius r/C0, one in Ω and one in
M \ Ω. (We say Ω has the two balls property.) More generally, assume there are
two (n − 1)-dimensional disks, with centers of distance ≤ r from x, radius r/C0,
one in Ω and one in M \ Ω. (We say Ω has the two disks property.) Then Ω is a
UR domain.

As for the applicability of Proposition A.2, there is the following, from [JK].

Proposition A.3. Let Ω ⊂ M have the property that ∂Ω is locally the graph of a
function in the Zygmund space C1

∗ = B1
∞,∞. Then the two balls property described

in Proposition A.2 holds.

The applicability of Proposition A.3 follows from the implication ∇f ∈ bmo ⇒
f ∈ C1

∗ .
We now describe examples of UR domains in Rn of infinite topological type. We

begin with an Ahlfors regular surface O that is a bounded subset of Rn−1 ⊂ Rn.
For example, we might have

(A.1) O = D1(0) \
⋃

k≥1

D2−k−2(2−kvk),

where
Dρ(p) = {x′ ∈ Rn−1 : |x′ − p| < ρ},

and vk are unit vectors in Rn−1.
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Lemma A.4. If f : Rn−1 → R is Lipschitz, then the set

(A.2) Σ = {(x′, f(x′)) : x′ ∈ O}

is an Ahlfors regular surface.

Proof. Given p = (q, f(q)) ∈ Σ, r ∈ (0, 1], the desired upper bound onHn−1(Br(p)∩
Σ) is straightforward. It remains to establish a lower bound. For this, assume the
Lipschitz constant of f is ≤ L, and set β = (1 + L2)−1/2. Then

x′ ∈ Dβr(q) ∩ O =⇒ (x′, f(x′)) ∈ Br(p) ∩ Σ,

so
Hn−1(Br(p) ∩ Σ) ≥ Hn−1(Dβr(q) ∩ O),

yielding the desired lower bound.

We then have the following UR domains.

Proposition A.5. If f, g : Rn−1 → R are Lipschitz,

(A.3) f = g on ∂O, and f > g on O,

then

(A.4) Ω = {(x′, xn) : x′ ∈ O, g(x′) < xn < f(x′)}

is a UR domain.

Proof. That Ω is an Ahlfors regular domain follows from Lemma A.4. The UR
property then follows directly from the definition.

Remark. For O as in (A.1), one could take f(x′) = dist(x′,Rn−1 \O), and g ≡ 0,
or perhaps g = −f .

B. Compactness of weakly singular integral operators

In various places we have indicated that certain integral operators were weakly
singular, and hence compact on Lp. Here we provide an explicit statement of such
a result. A proof can be found in §2.4 of [HMT].



21

Proposition B.1. Let X be a compact, (n− 1)-dimensional, Ahlfors regular sur-
face, with surface measure σ. Let k(x, y) be a measurable function on X × X
satisfying

(B.1) |k(x, y)| ≤ Cψ(d(x, y)) d(x, y)−(n−1),

with

(B.2)
∫ 1

0

ψ(t)
t

dt < ∞.

Consider

(B.3) Kf(x) =
∫

X

k(x, y)f(y) dσ(y).

Then

(B.4) K : Lp(X,σ) −→ Lp(X, σ) is compact, ∀ p ∈ (1,∞).

This result typically applies with ψ(r) = ra, with a > 0. In fact, for use in these
notes, typically a = 1.
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