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The process of localization, i.e., a map of the form u 7→ ϕ(x)u where ϕ ∈
C∞0 (Rn), is of frequent use in both linear and nonlinear PDE. In addition to
localizing in space, one often localizes in frequency, i.e., one uses u 7→ ϕ(D)u,
where ϕ(D) has the effect of multiplying the Fourier transform û(ξ) of u by
ϕ(ξ). One can combine these two types of operations, to produce ‘microlocal
analysis.’ Thus, we consider operators of the form

(1) ϕ(x,D)u =
∫

ϕ(x, ξ)û(ξ)eix·ξ dξ.

If ϕ(x, ξ) =
∑
|α|≤m aα(x)ξα, then ϕ(x, D) is just the linear differential oper-

ator
∑

aα(x)Dα. There are various ‘symbol classes,’ such as Sm
ρ,δ, introduced

in [H1], where, with 〈ξ〉 = (1 + |ξ|) 1
2 ,

(2) ϕ(x, ξ) ∈ Sm
ρ,δ ⇐⇒ |Dβ

xDα
ξ ϕ(x, ξ)| ≤ Cαβ〈ξ〉m−ρ|α|+δ|β|.

We say ϕ(x,D) ∈ OPSm
ρ,δ. Typically, we require 0 ≤ δ ≤ ρ ≤ 1. For example,

the differential operator of order m mentioned above belongs to OPSm
1,0.

If δ < ρ, there is a useful symbol calculus, arising from

(3) p1(x,D)p2(x,D) = a(x,D),

where

(4) pj(x, ξ) ∈ S
mj

ρ,δ =⇒ a(x, ξ) = p1(x, ξ)p2(x, ξ) mod S
m1+m2−(ρ−δ)
ρ,δ .

On the other hand, if ρ = 1 and also δ < 1, one has the following boundedness
on Sobolev spaces. If p(x, ξ) ∈ Sm

ρ,δ,

(5) p(x,D) : Hs,p(Rn) −→ Hs−m,p(Rn), 1 < p < ∞,

for all s ∈ R. There are also Hölder estimates:

(6) p(x,D) : Cs(Rn) −→ Cs−m(Rn),
1
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if s, s −m ∈ (0,∞) \ Z+. Proofs of these results can be found in a number
of places, such as [H2], [S2], and [T1].

These results have a well-known role in linear PDE. For the simplest
application, suppose p(x,D) is an elliptic differential operator (with smooth
coefficients) of order m, i.e., |p(x, ξ)| ≥ C|ξ|m for |ξ| ≥ B. Then

(7) q(x, ξ) = ψ(ξ)p(x, ξ)−1 ∈ S−m
1,0 ,

if ψ ∈ C∞(Rn), ψ(ξ) = 0 for |ξ| ≤ B, ψ(ξ) = 1 for |ξ| ≥ 2B. It follows from
(4) that

(8) q(x,D)p(x,D)u = u + r(x,D)u, r(x, ξ) ∈ S−1
1,0 .

Standard results on elliptic regularity follow easily from this.
There is a plethora of other applications to linear PDE, many of which are

given in [H2], [T1], and [Tr]. Our aim here is to discuss some applications to
nonlinear PDE, which have played a significant role since the foundational
work of J.-M.Bony [B1] and Y.Meyer [M1], [M2] in about 1980.

We begin with an analysis of F (u), for smooth F, given in [M1]. Take
Ψ0 ∈ C∞0 (Rn), Ψ0(ξ) = 1 for |ξ| ≤ 1, and set Ψk(ξ) = Ψ0(2−kξ), uk =
Ψk(D)u. Then

(9) F (u) = M(x,D)u + F (u0)

where the formula

(10) M(x,D)u =
∑

k≥0

{
F (uk+1)− F (uk)

}

yields

(11) M(x, ξ) =
∑

k

mk(x)ψk+1(ξ), mk(x) =
∫ 1

0

F ′
(
Ψk(τ ;D)u

)
dτ,

with

(12) ψk+1(ξ) = Ψk+1(ξ)−Ψk(ξ), Ψk(τ ;D) = Ψk(D) + τψk+1(D).

To estimate M(x, ξ), given u ∈ L∞(Rn), we have, by the chain rule,

(13) ‖D`
xmk‖L∞ ≤ C`

∑

1≤ν≤`

‖D`1uk+1‖L∞ · · · ‖D`ν uk+1‖L∞ · ‖F ′′‖Cν−1 .

Also,

(14) ‖D`j uk+1‖L∞ ≤ C`j 2
k`j‖u‖L∞ .
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Since 2k` ∼ 〈ξ〉` on the support of ψk+1(ξ), we see that

(15) u ∈ L∞(Rn) =⇒ M(x, ξ) ∈ S0
1,1.

Now δ = ρ = 1 is the ‘bad’ case we avoided when writing down (4)-(6).
However, as proved in [S1] (see also [Bour]), for p(x, ξ) ∈ Sm

1,1, (5) holds,
provided s−m > 0, and so does (6).

One immediate consequence of this is that, for s > 0, p ∈ (1,∞),

(16)
‖F (u)‖Hs,p ≤ ‖M(x,D)u‖Hs,p + ‖F (u0)‖Hs,p

≤ C
(‖u‖L∞

){‖u‖Hs,p + 1
}
,

which is a ‘Moser estimate,’ established in [Mos] and of frequent use in
nonlinear PDE. The fact that this rather subtle and powerful estimate follows
so readily is a good preliminary indication of the power of (9)-(15) as a tool
in nonlinear analysis.

In order to have a symbol calculus available, one splits such a symbol as
M(x, ξ) into two pieces:

(17) M(x, ξ) = M#(x, ξ) + M b(x, ξ),

where

(18) M#(x, ξ) =
∑

k

Jkmk(x) ψk+1(ξ),

and Jk are smoothing operators (in the x variable), forming an approximate
identity. Possible choices of Jk are

(19) Jk = Ψ0(2−kδD), or Jk = Ψk−5(D),

where δ ∈ (0, 1). Given r > 0, we have

(20) u ∈ Cr =⇒ M#(x, ξ) ∈ S0
1,δ, M b(x, ξ) ∈ S−rδ

1,1 .

If we take δ < 1, then the symbol calculus (4) applies. If instead we take
Jk = Ψk−5(D), then there is a replacement operator calculus, given by [M1],
[B1]. We have M#(x, ξ) in the symbol class BS0

1,1, where

(21) p(x, ξ) ∈ BSm
1,1 ⇐⇒ p(x, ξ) ∈ Sm

1,1, and supp p̂(η, ξ) ⊂ {|η| ≤ ρ|ξ|},

for some ρ ∈ (0, 1). Operators in OPBSm
1,1 satisfy (5), for all s ∈ R, not just

s > m. A more general operator calculus has been developed in [Bour] and
[H3].
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For a nonlinear differential operator, there is a similar construction. We
can write

(22) F (x,Dmu) = M(x, D)u + R(u),

where R(u) = F
(
x,DmΨ0(D)u

)
and

(23) u ∈ Cm =⇒ M(x, ξ) ∈ Sm
1,1,

and we can write M(x, ξ) = M#(x, ξ) + M b(x, ξ) where, given r > 0,

(24) u ∈ Cm+r =⇒ M(x, ξ) ∈ Sm
1,δ, M b(x, ξ) ∈ Sm−rδ

1,1 .

As an application of the results stated above, we can establish a Schauder
type elliptic regularity result for a solution to a completely nonlinear elliptic
PDE. Suppose

(25) F (x,Dmu) = g(x).

That this is elliptic implies that M(x, ξ) ∈ Sm
1,1 is elliptic, and that M#(x, ξ) ∈

Sm
1,δ is elliptic. Pick δ < 1. Then the symbol calculus (4) yields a parametrix

E ∈ OPS−m
1,δ of M#(x,D), such that EM#(x,D) = I modulo a smoothing

operator. Writing (25) as M#(x,D)u = g −M b(x,D)u and applying E, we
have

(26) u = Eg − EM b(x,D)u, mod C∞.

Suppose we assume initially that

(27) u ∈ Cm+ε, ε > 0.

Also assume that g ∈ Hs,p(Rn), 1 < p < ∞, s > 0. The hypothesis
(27) implies M b(x,D) ∈ OPSm−εδ

1,1 . Hence the right side of (26) belongs
to Hs+m,p(Rn) + Cm+ε+εδ(Rn). This is contained in Hm+γ,p(Rn), for any
γ < min(s, ε + εδ). Given this, we have Eg − EM b(x,D)u ∈ Hs+m,p(Rn) +
Hm+γ+εδ,p(Rn). Iterating this argument, we obtain

(28) g ∈ Hs,p(Rn) =⇒ u ∈ Hs+m,p(Rn),

for a solution to (25) when this PDE is elliptic, given 1 < p < ∞, s > 0,
and (27). A similar argument yields

(29) g ∈ Cs(Rn) =⇒ u ∈ Cs+m(Rn),

for a solution u to (25), in the elliptic case, given s ∈ R+ \ Z+ and (27).
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Note that the seminorms of E(x, ξ) in S−m
1,δ depend only on ‖u‖Cm while

those of M b(x, ξ) in Sm−εδ
1,1 depend on ‖u‖Cm+ε . Using this, we can establish

the following Moser type estimate for a solution u to (25), when it is elliptic:

(30) ‖u‖Cm+s ≤ As

(‖u‖Cm

)‖g‖Cs + Bs

(‖u‖Cm+ε

)
,

the significant part of this estimate being the linear dependence on ‖g‖Cs .
Note that the m = 0 case of (30), which is an estimate on a solution to
F (u) = g when F is invertible, is just a little weaker than the estimate (16)
(with F replaced by F−1 and Hs,p replaced by Cs).

Another important Moser estimate is the commutator estimate

(31) ‖P (fu)− fPu‖Hs,p ≤ C‖f‖Lip1‖u‖Hm−1+s,p + C‖f‖Hm+s,p‖u‖L∞ ,

when s ≥ 0, p ∈ (1,∞), and P is a differential operator of order m ∈ Z+.
This was extended in [KP] to the case P ∈ OPSm

1,0, m > 0. In [T2] it
was shown how this result can be derived from the paradifferential operator
calculus.

In the approach of [T2], to establish (31), one starts with the following
representation of a product:

(32) fg = Tfg + Tgf + R(f, g),

where Tf is Bony’s ‘paraproduct,’ defined by

Tfg =
∑

k≥5

Ψk−5(D)f · ψk+1(D)g.

This arises from the construction (9)-(19), applied to F (f, g) = fg, and with
Jk given by the second formula in (19). Clearly f ∈ L∞ ⇒ Tf ∈ OPS0

1,1. In
fact, it belongs to OPBS0

1,1, and hence is bounded on all the Sobolev spaces
Hs,p, for s ∈ R, p ∈ (1,∞). There are the following important estimates:

(33) ‖Tfg‖Lp ≤ Cp‖f‖Lp‖g‖BMO, ‖R(f, g)‖Lp ≤ Cp‖f‖BMO‖g‖Lp ,

for p ∈ (1,∞), which follow from work of [CM]; proofs are also given in [T2].
Another useful estimate, established in [T2], is

(34) ‖R(f, g)‖Hσ,p ≤ C‖f‖Lip1‖g‖Hσ−1,p , σ ∈ [0,∞), p ∈ (1,∞).

To apply the decomposition (32) to (31), we write

(35)
f(Pu) = TfPu + TPuf + R(f, Pu),

P (fu) = PTfu + PTuf + PR(f, u).
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The operator calculus readily yields

(36) ‖TfPu− PTfu‖Hs,p ≤ C‖f‖Lip1‖u‖Hm−1+s,p ,

for all m, s ∈ R, p ∈ (1,∞). Meanwhile, (34) implies

(37) ‖R(f, Pu)‖Hs,p + ‖PR(f, u)‖Hs,p ≤ C‖f‖Lip1‖u‖Hm−1+s,p ,

provided s ≥ 0, m + s ≥ 0, and p ∈ (1,∞). To estimate PTuf, we use the
fact that u ∈ L∞ ⇒ Tu ∈ OPBS0

1,1, so Tu : Hσ,p → Hσ,p for all σ ∈ R, to
get

(38) ‖PTuf‖Hs,p ≤ C‖u‖L∞‖f‖Hm+s,p .

Finally, if u ∈ L∞ and m > 0, Pu belongs to the ‘Zygmund space’ C−m
∗

(which we define below; see (55)), and one can show that TPu belongs to
OPBSm

1,1 and thus maps Hσ,p → Hσ−m,p, for all σ ∈ R. Hence

(39) ‖TPuf‖Hs,p ≤ C‖u‖L∞‖f‖Hm+s,p ,

provided m > 0, 1 < p < ∞. Thus we have (31). For details of the arguments
sketched above, see [T2].

We next sketch a method for establishing existence of solutions to first
order quasilinear symmetric hyperbolic systems:

(40)
∂u

∂t
= K(u,D)u, u(0, x) = f(x),

where

(41) K(u,D)u =
n∑

j=1

Kj(u)∂ju,

with ∂ju = ∂u/∂xj . Here, f and u take values in R`, and each Kj is an `× `
matrix valued function. The hypothesis that (40) is symmetric hyperbolic is
that Kj(u)∗ = Kj(u). We could just as easily have Kj = Kj(x, u).

We obtain a solution to (40) as a limit of solutions uε to

(42)
∂uε

∂t
= JεK(Jεuε, D)Jεuε, uε(0) = f,

where Jε = Ψ0(εD). For simplicity, write Kε = K(Jεuε, D). For any ε > 0,
(42) has a unique solution on some t-interval containing 0. We need to show
that the size of the t-interval does not shrink to zero as ε → 0, and to obtain
appropriate bounds on uε. To do this, we estimate the rate of change of
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‖Λmuε(t)‖2L2 , where Λm ∈ OPSm
1,0 is Fourier multiplication by 〈ξ〉m. Here m

is some positive real number. We have

(43)

d

dt
‖Λmuε‖2L2 = 2(ΛmJεKεJεuε, Λmuε)L2

= 2(ΛmKεJεuε, ΛmJεuε)L2

= A1 + A2,

where

(44) A1 = 2(KεΛmJεuε, ΛmJεuε)L2 , A2 = 2
(
[Λm,Kε]Jεuε,ΛmJεuε

)
L2 .

To estimate A1, we have

(45)
(Kεv, v)L2 =

∑(
Kj(Jεuε)∂jv, v

)
L2

= −
∑(

∂j [Kj(Jεuε)v], v
)
L2 ,

upon integrating by parts and using Kj = K∗
j . Taking the sum of the two

expressions on the right, we obtain

(46) (Kεv, v)L2 =
1
2

∑(
[∂jKj(Jεuε)]v, v

)
L2 .

Hence

(47)
|A1| ≤

∑
‖∂jKj(Jεuε)‖L∞‖ΛmJεuε‖2L2

≤ C
(‖Jεuε‖C1

)‖ΛmJεuε‖2L2 .

To estimate A2, we have

(48) [Λm,Kε]v =
∑

j

[Λm,Kj(Jεuε)]∂jv,

and applying the estimate (31), with s = 0, p = 2, gives

(49)
‖[Λm,Kε]v‖L2 ≤

C
∑

j

{‖Kj(Jεuε)‖Hm‖∂jv‖L∞ + ‖Kj(Jεuε)‖Lip1‖∂jv‖Hm−1

}
.

Hence, using (16) to estimate ‖Kj(Jεuε)‖Hm , we have

(50) |A2| ≤ C
(‖Jεuε‖C1

)‖ΛmJεuε‖2L2 .

Thus we have

(51)
d

dt
‖Λmuε‖2L2 ≤ C

(‖Jεuε‖C1

)‖Λmuε‖2L2 .
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If f ∈ Hm(Rn) and m > n
2 + 1, so ‖v‖C1 ≤ C‖v‖Hm , we have

(52)
d

dt
‖uε‖2Hm ≤ B

(‖uε‖Hm

)
,

where the form of B(λ) is independent of ε. Gronwall’s inequality then yields
an estimate

(53)
∥∥uε(t)

∥∥
Hm ≤ C

(‖f‖Hm

)
, for t ∈ (−T, T ),

with T independent of ε. The PDE (42) then yields a bound on ‖∂tuε‖Hm−1 ,
and a standard argument yields a limit uεν → u, solving (40). A variant of
(43)-(51) demonstrates that the solution u(t) persists as long as there is a
bound on ‖u(t)‖C1 .

A more general class of first order quasilinear hyperbolic system (40) is
the class of symmetrizable hyperbolic systems. If we do not assume that
Kj(u)∗ = Kj(u), but that there exists R(u), positive definite, such that
R(u)Kj(u) is symmetric for 1 ≤ j ≤ n, then R(u) is called a symmetrizer for
(40). Basic examples arise in the equations of compressible fluid flow. There
is a more general notion of symmetrizer, introduced by P.Lax. Namely, we
consider R(u, x, ξ), smooth on R`×Rn×(Rn\0), homogeneous of degree 0 in ξ,
which is positive definite and satisfies the property that R(u, x, ξ)

∑
Kj(u)ξj

is symmetric. One can modify the analysis in (42)-(53) to treat such sym-
metrizable hyperbolic systems; see [T2].

Higher order quasilinear hyperbolic systems can be reduced to systems of
a more complicated form than (40):

(54)
∂u

∂t
= K(Au, x, D)u + F (x,Au), u(0, x) = f(x),

where A ∈ OPS0
1,0, and K(v, x, ξ) ∈ S1

1,0. Again a treatment parallel to (42)-
(53) is effective, though there are some significant differences. For example,
dependence on ‖u‖C1 is replaced by dependence on ‖Bu‖C1 , for some B ∈
OPS0

1,0, which might not be bounded on C1. This appears to lead to a weaker
sort of persistence result than the one mentioned above. In fact, in all these
cases such a persistence result can be strengthened, using a technique from
[BKM]. Namely, for a solution to (54) to persist, in the hyperbolic case, it
suffices to have a bound on ‖u(t)‖C1∗ , where we use the Zygmund norm:

(55) ‖u‖Cr∗ = sup
k≥0

〈k〉r‖ψk(D)u‖L∞(Rn),

with r = 1. This result is proved in [T2].
Solutions to hyperbolic equations involve the propagation of waves, and at

this point let us mention that the first major application of paradifferential
operator calculus, in [B1], was to the study of propagation of singularities
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of solutions to nonlinear PDE. At the same time, an alternative approach
to propagation of singularities, in the semilinear case, was given in [RR].
Variants of Bony’s proof are also given in [H4] and [T2], and in [Be] there is an
extensive discussion of the semilinear case. Further important developments
include [Del], [MSZ]; see also [BMR] for a number of survey papers. A related
subject is the propagation of highly oscillatory solutions to nonlinear wave
equations; papers on this include [HMR], [JMR].

We next discuss another commutator estimate, first established in [CRW],
and then used in [CLMS]: given P ∈ OPS0

1,0, 1 < p < ∞,

(56) ‖fPu− P (fu)‖Lp ≤ Cp‖f‖BMO‖u‖Lp .

In [AT], there is a proof of this result (with the BMO-norm replaced by
the slightly stronger bmo-norm) using paradifferential operator calculus, in
particular the decomposition (35). In place of (37)-(39), we have

(57)
‖TPuf‖Lp + ‖R(f, Pu)‖Lp + ‖PTuf‖Lp + ‖PR(f, u)‖Lp

≤ Cp‖f‖BMO‖u‖Lp ,

as a consequence of (33). One gets (56) (with bmo) from this and the fol-
lowing result of [AT]:

(58) ‖[P, Tf ]u‖Lp ≤ C‖f‖C0∗‖u‖Lp ,

where C0
∗ is a Zygmund norm, as in (55). Several proofs of this are given

in [AT]. One approach used there is to give a refinement of the analysis of
products of operators in [M1] and then show that

(59) f ∈ C0
∗(Rn) =⇒ [P, Tf ] ∈ OPBS0

1,1,

modulo a smoothing operator, given P ∈ OPS0
1,0, or more generally, (essen-

tially) P ∈ OPBS0
1,1.

One primary corollary of the commutator estimate (56) is a ‘div-curl
lemma,’ as discussed in [CLMS]. We give here an abstract version of such a
result, using a formulation of P.Auscher and the author. Consider a bilinear
form

(60) Pu · Qv =
N∑

j=1

(Pju)(Qjv),

where P, Q ∈ OPS0
1,0 (more generally, we can take P,Q ∈ OPBS0

1,1). Here,
u and v can take values in Rk and R`, respectively, so P is a k ×N matrix
of operators and Q is an `×N matrix of operators. Take

(61) f ∈ bmo, u ∈ Lp(Rn), v ∈ Lp′(Rn).
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We have

(62)

(
f,

∑

j

(Pju)(Qjv)
)

=
∫

f(Pu) · (Qv) dx =
∫

v Qt(fPu) dx

=
(
v, [Qt,Mf ]Pu

)
+ (fv,QtPu).

Now, we make the hypothesis that

(63) h = QtPu =
∑

Qt
jPju ∈ Lr(Rn), r > p.

Then, if f has support in a compact set K ⊂ Rn, we have

|(fv, h)| ≤ CK‖f‖bmo‖v‖Lp′‖h‖Lr .

Since (56) implies that

(64) ‖[Qt,Mf ]w‖Lp ≤ Cp‖f‖bmo‖w‖Lp ,

for 1 < p < ∞, we have (when supp f ⊂ K)

(65)
∣∣∣
(
f,

∑
(Pju)(Qjv)

)∣∣∣ ≤ CpK‖f‖bmo

(
‖u‖Lp + ‖h‖Lr

)
‖v‖Lp′ .

In the standard div-curl lemma, u = (u1, . . . , un), Pju = uj , and Qjv =
∂jΛ−1v, 1 ≤ j ≤ n. Then (63) is the hypothesis that div u ∈ H−1,r(Rn).
One particularly successful application of this result is given in [Hel], on the
regularity of harmonic maps of 2-dimensional Riemannian manifolds into
spheres. See [Ev] for another proof of the div-curl lemma and application
to results on partial regularity. We also mention the proof of [DM], which
makes use of ‘product renormalization.’

A number of variants of the div-curl lemma, discussed in [CLMS] and
elsewhere, involve estimation of wedge products. We take the space here
to mention an approach to such estimates, using the following estimate on
a ‘super-commutator.’ Let M be a compact, oriented, n-dimensional Rie-
mannian manifold. Let f be an `-form, on M, set Wfu = f ∧ u, and define

(66)
[[Λ−1d, Wf ]] = [Λ−1d,Wf ] if ` is even,

{Λ−1d,Wf} if ` is odd,

where [A,B] = AB − BA and {A,B} = AB + BA. Here, d is the exterior
derivative and Λ = (I −∆)

1
2 . We prove the following estimate.

Lemma. For 1 < p < ∞, we have

(67) ‖ [[Λ−1d,Wf ]]β‖Lp ≤ Cp‖f‖bmo‖β‖Lp .
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Proof. Write Wf =
∑

Mfi
Wei

where ei are smooth `-forms and
∑ ‖fi‖bmo

∼ ‖f‖bmo. Then

(68) [[Λ−1d,Wf ]]β =
∑

i

[Λ−1d, Mfi
]Wei

β +
∑

i

Mfi
[[Λ−1d,Wei

]]β.

Now the estimate (56) applies to the first sum on the right. Since the prin-
cipal symbol of Λ−1d is wedge by i|ξ|−1ξ, we have

(69) [[Λ−1d,Wei
]] ∈ OPS−1

1,0 ,

so the estimate on the second term on the right side of (68) is elementary.

We apply this lemma, first to an estimate of du ∧ dv. Let u be a j-form
and v a k-form on M, j + k ≤ n− 2. Let f be an `-form, ` = n− j − k − 2.
We set u = Λ−1ũ, v = Λ−1ṽ, and desire to estimate

(70)
∫

f ∧ du ∧ dv = (WfdΛ−1ũ, δΛ−1 ∗ ṽ).

Here, δ is the adjoint of d, and ∗ is the Hodge star operator. Since WfΛ−1ddΛ−1 =
0, the right side of (70) is equal to

(71) (Λ−1dWfdΛ−1ũ, ∗ṽ) =
(
[[Λ−1d,Wf ]]dΛ−1ũ, ∗ṽ)

.

Applying the Lemma, we deduce that

(72)
∣∣∣
∫

f ∧ du ∧ dv
∣∣∣ ≤ Cp‖f‖bmo‖u‖H1,p‖v‖H1,p′ .

Next, we estimate k-fold wedge products. Assume uj are `j-forms,
k∑

j=1

(`j+

1) = m ≤ n. Let f be an (n−m)-form. Then we will show that

(73)
∣∣∣
∫

f ∧ du1 ∧ · · · ∧ duk

∣∣∣ ≤ Cp‖f‖bmo‖u1‖H1,p1 · · · ‖uk‖H1,pk ,

provided pj ∈ (1,∞] and

(74)
1
p1

+ · · ·+ 1
pk

= 1, pk ∈ (1,∞).

To prove this, note that, since du1 ∧ · · · ∧ duk−1 is closed, we can use Hodge
theory to write

(75) du1 ∧ · · · ∧ duk−1 = du + h,
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where h is a harmonic form and

(76)
‖u‖H1,p + ‖h‖L∞ ≤ C‖u1‖H1,p1 · · · ‖uk−1‖H1,pk−1 ,

1
p1

+ · · ·+ 1
pk−1

=
1
p
, p ∈ (1,∞), pk = p′.

Then, with v = uk, we have

(77)
∫

f ∧ du1 ∧ · · · ∧ duk =
∫

f ∧ du ∧ dv +
∫

f ∧ h ∧ dv.

The last integral in (77) is easy to estimate, and the estimate (72) applies to
the other integral on the right side of (77). This proves the desired estimate
(73). The case k = n, `j = 0 yields a Jacobian determinant estimate, which
played a particularly significant role in [CLMS].

There are a number of other topics in nonlinear PDE in which microlocal
analysis has been influential recently. We mention particularly the study
of the Euler equation for incompressible fluid flow; see [Che]. Microlocal
analysis in nonlinear PDE is still a young area, and one can expect a good
deal of development to alter the landscape considerably over the next decade.
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[H3] L.Hörmander, Pseudo-differential operators of type 1,1. Comm. PDE 13(1988),

1085-1111.
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