Microlocal Concentration of Eigenfunctions of Subelliptic Operators

Michael Taylor

Let M be a compact, n-dimensional Riemannian manifold, and let $L \in O P S^{2}(M)$ be a positive, self-adjoint operator. We assume L is not elliptic, but that it is subelliptic, in the sense that there exists $\sigma>0$ (necessarily $\sigma<2$) such that

$$
\begin{equation*}
(L+1)^{-1}: H^{s}(M) \longrightarrow H^{s+\sigma}(M), \quad \forall s \in \mathbb{R} \tag{1}
\end{equation*}
$$

Let $\left\{\varphi_{k}\right\}$ be an orthonormal basis of $L^{2}(M)$ consisting of eigenfunctions of L :

$$
\begin{equation*}
L \varphi_{k}=\lambda_{k} \varphi_{k}, \quad 0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots \nearrow+\infty . \tag{2}
\end{equation*}
$$

We aim to prove the following.
Theorem 1. Take L as above, and denote its principal symbol by L_{2}. Assume

$$
\begin{equation*}
\int_{S * M} L_{2}(x, \omega)^{-n / 2} d S(x, \omega)=\infty \tag{3}
\end{equation*}
$$

Then, except perhaps for a "sparse" subsequence, the sequence $\left\{\varphi_{k}\right\}$ concentrates microlocally on the characteristic set $\Sigma \subset S^{*} M$, given by

$$
\begin{equation*}
\Sigma=\left\{(x, \omega) \in S^{*} M: L_{2}(x, \omega)=0\right\} . \tag{4}
\end{equation*}
$$

The proof will involve a study of the semigroup $\left\{e^{-t L}: t \geq 0\right\}$, and of products $A e^{-t L}$, with $A \in O P S^{0}(M)$. The hypothesis (1) implies

$$
\begin{equation*}
e^{-t L}: \mathcal{D}^{\prime}(M) \longrightarrow C^{\infty}(M) \tag{5}
\end{equation*}
$$

for each $t>0$. In particular, $\operatorname{Tr} e^{-t L}<\infty$ for each $t>0$. We will show that, under the hypotheses of Theorem 1,

$$
\begin{equation*}
t^{n / 2} \operatorname{Tr} e^{-t L} \longrightarrow+\infty, \quad \text { as } t \searrow 0 \tag{6}
\end{equation*}
$$

Furthermore, if the principal symbol A_{0} of A satisfies

$$
\begin{equation*}
A_{0}=0 \text { on a neighborhood of } \Sigma \text { in } S^{*} M, \tag{7}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\operatorname{Tr} A e^{-t L} \sim C\left(A_{0}\right) t^{-n / 2}, \quad \text { as } t \searrow 0, \tag{8}
\end{equation*}
$$

with $C\left(A_{0}\right) \in \mathbb{C}$. From (8) we obtain

$$
\begin{equation*}
\sum_{k \geq 0} e^{-t \lambda_{k}}\left(A \varphi_{k}, \varphi_{k}\right) \sim C\left(A_{0}\right) t^{-n / 2}, \quad t \searrow 0 \tag{9}
\end{equation*}
$$

when (7) holds. Applying this observation to $A^{*} A$ yields

$$
\begin{equation*}
\lim _{t \rightarrow 0} t^{n / 2} \sum_{k \geq 0} e^{-t \lambda_{k}}\left\|A \varphi_{k}\right\|_{L^{2}}^{2}=C\left(\left|A_{0}\right|^{2}\right) . \tag{10}
\end{equation*}
$$

Meanwhile, (6) implies

$$
\begin{equation*}
\lim _{t \rightarrow 0} t^{n / 2} \sum_{k \geq 0} e^{-t \lambda_{k}}=+\infty \tag{11}
\end{equation*}
$$

In preparation for proving (6), we will find it useful to recall some properties of $e^{-t M}$ when $M \in O P S^{2}(M)$ is an elliptic, positive, self-adjoint operator, with principal symbol M_{2}. In such a case, parametrix constructions yield

$$
\begin{equation*}
e^{-t M} u(x)=\int_{M} H(t, x, y) u(y) d V(y), \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
H(t, x, y)=C_{n} \int_{T_{x}^{*} M} e^{-t M_{2}(x, \xi)} e^{i(x-y) \cdot \xi} d \xi+\cdots \tag{12A}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
H(t, x, x)=C_{n} \int_{T_{x}^{* M}} e^{-t M_{2}(x, \xi)} d \xi+o\left(t^{-n / 2}\right) \tag{13}
\end{equation*}
$$

as $t \searrow 0$. Now

$$
\begin{equation*}
\int_{T_{x}^{*} M} e^{-t M_{2}(x, \xi)} d \xi=C_{n}^{\prime} t^{-n / 2} \int_{S_{x}^{* M}} M_{2}(x, \omega)^{-n / 2} d S_{x}(\omega), \tag{14}
\end{equation*}
$$

hence

$$
\begin{equation*}
\operatorname{Tr} e^{-t M}=(4 \pi t)^{-n / 2} \frac{1}{A_{n-1}} \int_{S^{*} M} M_{2}(x, \omega)^{-n / 2} d S(x, \omega)+o\left(t^{-n / 2}\right) \tag{15}
\end{equation*}
$$

where A_{n-1} is the area of the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$, so

$$
\begin{equation*}
\frac{1}{A_{n-1}} \int_{S^{*} M} d S(x, \omega)=\operatorname{Vol} M \tag{16}
\end{equation*}
$$

In particular, if $M=-\Delta$, where Δ is the Laplace operator on M, we have

$$
\begin{equation*}
\operatorname{Tr} e^{t \Delta}=(4 \pi t)^{-n / 2} \operatorname{Vol} M+o\left(t^{-n / 2}\right) \tag{17}
\end{equation*}
$$

Behind (12)-(13) is a parametrix construction of $e^{-t M}$ as a family of pseudodifferential operators. Then pseudodifferential operator calculus yields, for $A \in O P S^{0}(M)$, with principal symbol A_{0},

$$
\begin{equation*}
\operatorname{Tr} A e^{-t M}=(4 \pi t)^{-n / 2} \frac{1}{A_{n-1}} \int_{S^{*} M} A_{0}(x, \omega) M_{2}(x, \omega)^{-n / 2} d S(x, \omega)+o\left(t^{-n / 2}\right) . \tag{18}
\end{equation*}
$$

To establish (6), we argue as follows. Take $\varepsilon>0$ and set $M=L-\varepsilon \Delta$. We apply (15) to such M. The relevance of such an application arises as follows. Say $\left\{\psi_{k}\right\}$ is an orthonormal basis of $L^{2}(M)$ consisting of eigenfunctions of M :

$$
\begin{equation*}
L \psi_{k}=\mu_{k} \psi_{k}, \quad 0 \leq \mu_{1} \leq \mu_{2} \leq \cdots \nearrow+\infty . \tag{19}
\end{equation*}
$$

Lemma 2. Let L, M be positive, self-adjoint operators with compact resolvents. Assume

$$
\begin{equation*}
\mathcal{D}(M) \subset \mathcal{D}(L), \quad L \leq M \tag{20}
\end{equation*}
$$

Let the eigenvalues be $\left\{\lambda_{k}\right\},\left\{\mu_{k}\right\}$, as in (2) and (19). Then, for each k,

$$
\begin{equation*}
\lambda_{k} \leq \mu_{k} \tag{21}
\end{equation*}
$$

Proof. Pick $\mu \in(0, \infty)$, and let $V_{\nu} \subset L^{2}(M)$ be the span of $\left\{\psi_{k}: \mu_{k}<\mu\right\}$, so $((M-\mu I) v, v)<0$ for all nonzero $v \in V_{\mu}$, but not for all v in a linear space of larger dimension. The hypotheses above yield $((L-\mu I) v, v)<0$, for all nonzero $v \in V_{\mu}$, so

$$
\#\left\{\lambda_{j}: \lambda_{j}<\mu\right\} \geq \#\left\{\mu_{j}: \mu_{j}<\mu\right\} .
$$

From the lemma, we deduce that

$$
\begin{equation*}
\operatorname{Tr} e^{-t L} \geq \operatorname{Tr} e^{-t(L-\varepsilon \Delta)} \tag{22}
\end{equation*}
$$

for each $\varepsilon>0, t>0$. Applying (15) to $M=L-\varepsilon \Delta$, we have

$$
\begin{equation*}
\lim _{t \rightarrow 0}(4 \pi t)^{n / 2} \operatorname{Tr} e^{-(L-\varepsilon \Delta)}=\frac{1}{A_{n-1}} \int_{S^{*} M}\left(L_{2}(x, \omega)+\varepsilon\right)^{-n / 2} d S(x, \omega) \tag{23}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\liminf _{t \rightarrow 0}(4 \pi t)^{n / 2} \operatorname{Tr} e^{-t L} \geq \frac{1}{A_{n-1}} \int_{S^{*} M}\left(L_{2}(x, \omega)+\varepsilon\right)^{-n / 2} d S(x, \omega) \tag{24}
\end{equation*}
$$

for each $\varepsilon>0$. Hence

$$
\begin{equation*}
\liminf _{t \rightarrow 0}(4 \pi t)^{n / 2} \operatorname{Tr} e^{-t L} \geq \frac{1}{A_{n-1}} \int_{S^{*} M} L_{2}(x, \omega)^{-n / 2} d S(x, \omega) . \tag{25}
\end{equation*}
$$

Thus, given the hypothesis (3), we have (6).
Next, we bring in the fact that, if $A \in O P S^{0}(M)$ satisfies (7), then the construction of a parametrix for $e^{-t L} A$ is microlocal, and yields, parallel to (18),

$$
\begin{equation*}
\operatorname{Tr} e^{-t L} A=(4 \pi t)^{-n / 2} \frac{1}{A_{n-1}} \int_{S^{*} M} A_{0}(x, \omega) L_{2}(x, \omega)^{-n / 2} d S(x, \omega)+o\left(t^{-n / 2}\right) \tag{26}
\end{equation*}
$$

and, of course,

$$
\begin{equation*}
\operatorname{Tr} A e^{-t L}=\operatorname{Tr} e^{-t L} A, \tag{27}
\end{equation*}
$$

so we have (8).
Examples. Let $M=S^{2} \subset \mathbb{R}^{3}$ be the unit sphere, and let X_{j} be vector fields generating 2π-periodic rotation about the x_{j}-axis, for $1 \leq j \leq 3$. Then $\Delta=$ $X_{1}^{2}+X_{2}^{2}+X_{3}^{2}$. Now

$$
L=-\left(X_{1}^{2}+X_{2}^{2}\right)
$$

satisfies (1), with $\sigma=1$, and we also have (3). On the other hand,

$$
L=-\left(X_{1}^{2}+X_{2}^{2}+X_{3} M_{x_{1}}^{2} X_{3}\right)
$$

also satisfies (1), with $\sigma=1$, but (3) does not hold. In this case, the integral $\int_{S^{*} M} L_{2}(x, \omega)^{-1} d S$ is finite.

