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LetM be a compact, n-dimensional Riemannian manifold, and let L ∈ OPS2(M)
be a positive, self-adjoint operator. We assume L is not elliptic, but that it is subel-
liptic, in the sense that there exists σ > 0 (necessarily σ < 2) such that

(1) (L+ 1)−1 : Hs(M) −→ Hs+σ(M), ∀ s ∈ R.

Let {φk} be an orthonormal basis of L2(M) consisting of eigenfunctions of L:

(2) Lφk = λkφk, 0 ≤ λ1 ≤ λ2 ≤ · · · ↗ +∞.

We aim to prove the following.

Theorem 1. Take L as above, and denote its principal symbol by L2. Assume

(3)

∫
S∗M

L2(x, ω)
−n/2 dS(x, ω) = ∞.

Then, except perhaps for a “sparse” subsequence, the sequence {φk} concentrates
microlocally on the characteristic set Σ ⊂ S∗M , given by

(4) Σ = {(x, ω) ∈ S∗M : L2(x, ω) = 0}.

The proof will involve a study of the semigroup {e−tL : t ≥ 0}, and of products
Ae−tL, with A ∈ OPS0(M). The hypothesis (1) implies

(5) e−tL : D′(M) −→ C∞(M),

for each t > 0. In particular, Tr e−tL <∞ for each t > 0. We will show that, under
the hypotheses of Theorem 1,

(6) tn/2 Tr e−tL −→ +∞, as t↘ 0.

Furthermore, if the principal symbol A0 of A satisfies

(7) A0 = 0 on a neighborhood of Σ in S∗M,

we obtain

(8) TrAe−tL ∼ C(A0)t
−n/2, as t↘ 0,
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with C(A0) ∈ C. From (8) we obtain

(9)
∑
k≥0

e−tλk(Aφk, φk) ∼ C(A0)t
−n/2, t↘ 0,

when (7) holds. Applying this observation to A∗A yields

(10) lim
t→0

tn/2
∑
k≥0

e−tλk∥Aφk∥2L2 = C(|A0|2).

Meanwhile, (6) implies

(11) lim
t→0

tn/2
∑
k≥0

e−tλk = +∞.

In preparation for proving (6), we will find it useful to recall some properties
of e−tM when M ∈ OPS2(M) is an elliptic, positive, self-adjoint operator, with
principal symbol M2. In such a case, parametrix constructions yield

(12) e−tMu(x) =

∫
M

H(t, x, y)u(y) dV (y),

with

(12A) H(t, x, y) = Cn

∫
T∗
xM

e−tM2(x,ξ)ei(x−y)·ξ dξ + · · · .

In particular,

(13) H(t, x, x) = Cn

∫
T∗
xM

e−tM2(x,ξ) dξ + o(t−n/2),

as t↘ 0. Now

(14)

∫
T∗
xM

e−tM2(x,ξ) dξ = C ′
nt

−n/2

∫
S∗
xM

M2(x, ω)
−n/2 dSx(ω),

hence

(15) Tr e−tM = (4πt)−n/2 1

An−1

∫
S∗M

M2(x, ω)
−n/2 dS(x, ω) + o(t−n/2),
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where An−1 is the area of the unit sphere Sn−1 ⊂ Rn, so

(16)
1

An−1

∫
S∗M

dS(x, ω) = VolM.

In particular, if M = −∆, where ∆ is the Laplace operator on M , we have

(17) Tr et∆ = (4πt)−n/2 VolM + o(t−n/2).

Behind (12)–(13) is a parametrix construction of e−tM as a family of pseudodifferen-
tial operators. Then pseudodifferential operator calculus yields, for A ∈ OPS0(M),
with principal symbol A0,

(18) TrAe−tM = (4πt)−n/2 1

An−1

∫
S∗M

A0(x, ω)M2(x, ω)
−n/2 dS(x, ω) + o(t−n/2).

To establish (6), we argue as follows. Take ε > 0 and setM = L−ε∆. We apply
(15) to such M . The relevance of such an application arises as follows. Say {ψk} is
an orthonormal basis of L2(M) consisting of eigenfunctions of M :

(19) Lψk = µkψk, 0 ≤ µ1 ≤ µ2 ≤ · · · ↗ +∞.

Lemma 2. Let L,M be positive, self-adjoint operators with compact resolvents.
Assume

(20) D(M) ⊂ D(L), L ≤M.

Let the eigenvalues be {λk}, {µk}, as in (2) and (19). Then, for each k,

(21) λk ≤ µk.

Proof. Pick µ ∈ (0,∞), and let Vν ⊂ L2(M) be the span of {ψk : µk < µ}, so
((M − µI)v, v) < 0 for all nonzero v ∈ Vµ, but not for all v in a linear space of
larger dimension. The hypotheses above yield ((L − µI)v, v) < 0, for all nonzero
v ∈ Vµ, so

#{λj : λj < µ} ≥ #{µj : µj < µ}.

From the lemma, we deduce that

(22) Tr e−tL ≥ Tr e−t(L−ε∆),

for each ε > 0, t > 0. Applying (15) to M = L− ε∆, we have

(23) lim
t→0

(4πt)n/2 Tr e−(L−ε∆) =
1

An−1

∫
S∗M

(L2(x, ω) + ε)−n/2 dS(x, ω).
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Hence

(24) lim inf
t→0

(4πt)n/2 Tr e−tL ≥ 1

An−1

∫
S∗M

(L2(x, ω) + ε)−n/2 dS(x, ω),

for each ε > 0. Hence

(25) lim inf
t→0

(4πt)n/2 Tr e−tL ≥ 1

An−1

∫
S∗M

L2(x, ω)
−n/2 dS(x, ω).

Thus, given the hypothesis (3), we have (6).
Next, we bring in the fact that, if A ∈ OPS0(M) satisfies (7), then the construc-

tion of a parametrix for e−tLA is microlocal, and yields, parallel to (18),

(26) Tr e−tLA = (4πt)−n/2 1

An−1

∫
S∗M

A0(x, ω)L2(x, ω)
−n/2 dS(x, ω) + o(t−n/2),

and, of course,

(27) TrAe−tL = Tr e−tLA,

so we have (8).

Examples. Let M = S2 ⊂ R3 be the unit sphere, and let Xj be vector fields
generating 2π-periodic rotation about the xj-axis, for 1 ≤ j ≤ 3. Then ∆ =
X2

1 +X2
2 +X2

3 . Now
L = −(X2

1 +X2
2 )

satisfies (1), with σ = 1, and we also have (3). On the other hand,

L = −(X2
1 +X2

2 +X3M
2
x1
X3)

also satisfies (1), with σ = 1, but (3) does not hold. In this case, the integral∫
S∗M

L2(x, ω)
−1 dS is finite.


