Microlocal Concentration of Eigenfunctions of Subelliptic Operators

MICHAEL TAYLOR

Let M be a compact, n-dimensional Riemannian manifold, and let $L \in OPS^2(M)$ be a positive, self-adjoint operator. We assume L is not elliptic, but that it is subelliptic, in the sense that there exists $\sigma > 0$ (necessarily $\sigma < 2$) such that

(1)
$$(L+1)^{-1}: H^s(M) \longrightarrow H^{s+\sigma}(M), \quad \forall s \in \mathbb{R}.$$

Let $\{\varphi_k\}$ be an orthonormal basis of $L^2(M)$ consisting of eigenfunctions of L:

(2)
$$L\varphi_k = \lambda_k \varphi_k, \quad 0 \le \lambda_1 \le \lambda_2 \le \cdots \nearrow +\infty.$$

We aim to prove the following.

Theorem 1. Take L as above, and denote its principal symbol by L_2 . Assume

(3)
$$\int_{S^*M} L_2(x,\omega)^{-n/2} \, dS(x,\omega) = \infty.$$

Then, except perhaps for a "sparse" subsequence, the sequence $\{\varphi_k\}$ concentrates microlocally on the characteristic set $\Sigma \subset S^*M$, given by

(4)
$$\Sigma = \{(x, \omega) \in S^*M : L_2(x, \omega) = 0\}.$$

The proof will involve a study of the semigroup $\{e^{-tL} : t \ge 0\}$, and of products Ae^{-tL} , with $A \in OPS^0(M)$. The hypothesis (1) implies

(5)
$$e^{-tL}: \mathcal{D}'(M) \longrightarrow C^{\infty}(M),$$

for each t > 0. In particular, $\operatorname{Tr} e^{-tL} < \infty$ for each t > 0. We will show that, under the hypotheses of Theorem 1,

(6)
$$t^{n/2} \operatorname{Tr} e^{-tL} \longrightarrow +\infty, \text{ as } t \searrow 0.$$

Furthermore, if the principal symbol A_0 of A satisfies

(7)
$$A_0 = 0$$
 on a neighborhood of Σ in S^*M ,

we obtain

(8)
$$\operatorname{Tr} A e^{-tL} \sim C(A_0) t^{-n/2}, \quad \text{as} \ t \searrow 0,$$

$$1$$

with $C(A_0) \in \mathbb{C}$. From (8) we obtain

(9)
$$\sum_{k\geq 0} e^{-t\lambda_k} (A\varphi_k, \varphi_k) \sim C(A_0) t^{-n/2}, \quad t \searrow 0,$$

when (7) holds. Applying this observation to A^*A yields

(10)
$$\lim_{t \to 0} t^{n/2} \sum_{k \ge 0} e^{-t\lambda_k} \|A\varphi_k\|_{L^2}^2 = C(|A_0|^2).$$

Meanwhile, (6) implies

(11)
$$\lim_{t \to 0} t^{n/2} \sum_{k \ge 0} e^{-t\lambda_k} = +\infty.$$

In preparation for proving (6), we will find it useful to recall some properties of e^{-tM} when $M \in OPS^2(M)$ is an *elliptic*, positive, self-adjoint operator, with principal symbol M_2 . In such a case, parametrix constructions yield

(12)
$$e^{-tM}u(x) = \int_{M} H(t, x, y)u(y) \, dV(y),$$

with

(12A)
$$H(t, x, y) = C_n \int_{T_x^*M} e^{-tM_2(x,\xi)} e^{i(x-y)\cdot\xi} d\xi + \cdots$$

In particular,

(13)
$$H(t, x, x) = C_n \int_{T_x^*M} e^{-tM_2(x,\xi)} d\xi + o(t^{-n/2}),$$

as $t \searrow 0$. Now

(14)
$$\int_{T_x^*M} e^{-tM_2(x,\xi)} d\xi = C'_n t^{-n/2} \int_{S_x^*M} M_2(x,\omega)^{-n/2} dS_x(\omega),$$

hence

(15)
$$\operatorname{Tr} e^{-tM} = (4\pi t)^{-n/2} \frac{1}{A_{n-1}} \int_{S^*M} M_2(x,\omega)^{-n/2} \, dS(x,\omega) + o(t^{-n/2}),$$

where A_{n-1} is the area of the unit sphere $S^{n-1} \subset \mathbb{R}^n$, so

(16)
$$\frac{1}{A_{n-1}} \int_{S^*M} dS(x,\omega) = \operatorname{Vol} M.$$

In particular, if $M = -\Delta$, where Δ is the Laplace operator on M, we have

(17)
$$\operatorname{Tr} e^{t\Delta} = (4\pi t)^{-n/2} \operatorname{Vol} M + o(t^{-n/2}).$$

Behind (12)–(13) is a parametrix construction of e^{-tM} as a family of pseudodifferential operators. Then pseudodifferential operator calculus yields, for $A \in OPS^0(M)$, with principal symbol A_0 ,

(18) Tr
$$Ae^{-tM} = (4\pi t)^{-n/2} \frac{1}{A_{n-1}} \int_{S^*M} A_0(x,\omega) M_2(x,\omega)^{-n/2} dS(x,\omega) + o(t^{-n/2}).$$

To establish (6), we argue as follows. Take $\varepsilon > 0$ and set $M = L - \varepsilon \Delta$. We apply (15) to such M. The relevance of such an application arises as follows. Say $\{\psi_k\}$ is an orthonormal basis of $L^2(M)$ consisting of eigenfunctions of M:

(19)
$$L\psi_k = \mu_k \psi_k, \quad 0 \le \mu_1 \le \mu_2 \le \cdots \nearrow +\infty.$$

Lemma 2. Let L, M be positive, self-adjoint operators with compact resolvents. Assume

(20)
$$\mathcal{D}(M) \subset \mathcal{D}(L), \quad L \leq M.$$

Let the eigenvalues be $\{\lambda_k\}$, $\{\mu_k\}$, as in (2) and (19). Then, for each k,

$$(21) \qquad \qquad \lambda_k \le \mu_k$$

Proof. Pick $\mu \in (0,\infty)$, and let $V_{\nu} \subset L^2(M)$ be the span of $\{\psi_k : \mu_k < \mu\}$, so $((M - \mu I)v, v) < 0$ for all nonzero $v \in V_{\mu}$, but not for all v in a linear space of larger dimension. The hypotheses above yield $((L - \mu I)v, v) < 0$, for all nonzero $v \in V_{\mu}$, so

$$\#\{\lambda_j:\lambda_j<\mu\}\geq\#\{\mu_j:\mu_j<\mu\}.$$

From the lemma, we deduce that

(22)
$$\operatorname{Tr} e^{-tL} \ge \operatorname{Tr} e^{-t(L-\varepsilon\Delta)},$$

for each $\varepsilon > 0$, t > 0. Applying (15) to $M = L - \varepsilon \Delta$, we have

(23)
$$\lim_{t \to 0} (4\pi t)^{n/2} \operatorname{Tr} e^{-(L-\varepsilon\Delta)} = \frac{1}{A_{n-1}} \int_{S^*M} (L_2(x,\omega) + \varepsilon)^{-n/2} \, dS(x,\omega).$$

Hence

(24)
$$\liminf_{t \to 0} (4\pi t)^{n/2} \operatorname{Tr} e^{-tL} \ge \frac{1}{A_{n-1}} \int_{S^*M} (L_2(x,\omega) + \varepsilon)^{-n/2} \, dS(x,\omega),$$

for each $\varepsilon > 0$. Hence

(25)
$$\liminf_{t \to 0} (4\pi t)^{n/2} \operatorname{Tr} e^{-tL} \ge \frac{1}{A_{n-1}} \int_{S^*M} L_2(x,\omega)^{-n/2} \, dS(x,\omega).$$

Thus, given the hypothesis (3), we have (6).

Next, we bring in the fact that, if $A \in OPS^0(M)$ satisfies (7), then the construction of a parametrix for $e^{-tL}A$ is microlocal, and yields, parallel to (18),

(26) Tr
$$e^{-tL}A = (4\pi t)^{-n/2} \frac{1}{A_{n-1}} \int_{S^*M} A_0(x,\omega) L_2(x,\omega)^{-n/2} dS(x,\omega) + o(t^{-n/2}),$$

and, of course,

(27)
$$\operatorname{Tr} A e^{-tL} = \operatorname{Tr} e^{-tL} A,$$

so we have (8).

EXAMPLES. Let $M = S^2 \subset \mathbb{R}^3$ be the unit sphere, and let X_j be vector fields generating 2π -periodic rotation about the x_j -axis, for $1 \leq j \leq 3$. Then $\Delta = X_1^2 + X_2^2 + X_3^2$. Now

$$L = -(X_1^2 + X_2^2)$$

satisfies (1), with $\sigma = 1$, and we also have (3). On the other hand,

$$L = -(X_1^2 + X_2^2 + X_3 M_{x_1}^2 X_3)$$

also satisfies (1), with $\sigma = 1$, but (3) does not hold. In this case, the integral $\int_{S^*M} L_2(x,\omega)^{-1} dS$ is finite.