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1. Introduction

The spaces now called Morrey spaces were introduced by C. B. Morrey to study
regularity properties of solutions to quasilinear elliptic PDE, but since then they
have been useful in other areas of PDE. Before saying more on this, let us first
define the Morrey spaces Mp

q (Rn).
If 1 ≤ q ≤ p < ∞ and f ∈ Lq

loc(Rn), we say f ∈ Mp
q (Rn) provided

(1.1) R−n

∫

BR

|f(x)|q dx ≤ CR−nq/p,

for all balls BR of radius R ≤ 1 in Rn. If we set δRf(x) = f(Rx), the left side of
(1.1) is equal to

∫
B1
|δRf(x)|qdx, so an equivalent condition is

(1.2) ‖δRf‖Lq(B1) ≤ C ′R−n/p,

for all balls B1 of radius 1, and for all R ∈ (0, 1]. It follows from Hölder’s inequality
that

Lp
unif(R

n) = Mp
p (Rn) ⊂ Mp

q (Rn) ⊂ Mp
1 (Rn).

We also say f ∈Mp
q(Rn) provided (1.1) holds for all R < ∞.

Morrey used these spaces to study inhomogeneous equations

(1.3)
∑

∂ja
jk(x)∂ku = f,

on a domain in Rn, when ajk(x) are bounded and measurable and (1.3) is ellip-
tic. Using a clever dilation argument and the DeGiorgi-Nash-Moser estimates on
solutions to the homogeneous version of (1.3), Morrey was able to show that, if
p = n+ δ, with small δ > 0, and f =

∑
∂jgj , with gj ∈ Lp, then ∇u ∈ Mp

2 . Hölder
continuity of the solution u is then a consequence of Morrey’s lemma:

(1.4) ∇u ∈ Mp
1 (Rn), p > n =⇒ u ∈ Cr(Rn), r = 1− n

p
.

In fact, (1.4) is a special case of the following:

(1.5) Mp
1 (Rn) ⊂ C

−n/p
∗ (Rn).

Here, Cr
∗(Rn) is a Zygmund space, which can be defined as follows. Pick Ψ0 ∈

C∞0 (Rn), such that Ψ0(ξ) = 1 for |ξ| ≤ 1, 0 for |ξ| ≥ 2, set Ψk(ξ) = Ψ0(2−kξ),
and then set ψ0 = Ψ0, ψk = Ψk − Ψk−1 for k ≥ 1. The family {ψk} is called a
Littlewood-Paley partition of unity. For any r ∈ R, one defines

(1.6) Cr
∗(Rn) = {u : ‖ψk(D)u‖L∞ ≤ C2−kr}.
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It is not hard to show that, for r ∈ R+ \ Z+, Cr(Rn) = Cr
∗(Rn). To see that (1.5)

holds, one can check from the definition (1.1) that

(1.7)
f ∈ Mp

1 (Rn) ⇐⇒ ∥∥et∆|f |∥∥
L∞ ≤ Ct−n/2p

=⇒ ‖et∆f‖L∞ ≤ Ct−n/2p,

for t ∈ (0, 1]. From this one readily deduces that, if u ∈ Mp
1 (Rn), then (1.6) holds,

with r = −n/p.
In recent times, Morrey spaces have been incorporated into techniques of mi-

crolocal analysis, and it is our purpose to carry out this development further in this
article.

In §2 we recall some known results about the action of pseudodifferential oper-
ators (ψDOs) on Morrey spaces. We define “Morrey scales,” spaces Mp,s

q (Rn), for
s ∈ R, and make note of the consequent action of ψDOs on these spaces. We also
extend to Morrey scales E. Stein’s theorem on the action of ψDOs with symbols in
Sm

1,1.
This is useful for applications of the paradifferential operator calculus of J.-

M. Bony and Y. Meyer. We recall Meyer’s formula for the action of a smooth
function F on a function u (possibly taking values in R`). More details can be
found in [Mey], or in [T1]. We have

(1.8) F (u) = M(u; x,D)u + F (u0),

where u0 = Ψ0(D)u and

(1.9)

M(u; x, ξ) =
∑

k≥0

mk(x)ψk+1(ξ),

mk(x) =
∫ 1

0

F ′(Ψk(D)u + τψk+1(D)u) dτ.

A straightforward calculation using the chain rule shows that

(1.10) u ∈ L∞(Rn) =⇒ M(u; x, ξ) ∈ S0
1,1.

We recall that, for 0 ≤ δ ≤ 1, m ∈ R,

(1.11) p(x, ξ) ∈ Sm
1,δ ⇐⇒ |Dβ

xDα
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−|α|+δ|β|,

where 〈ξ〉2 = 1 + |ξ|2. If p(x, ξ) ∈ Sm
1,0 has an asymptotic expansion in terms

homogeneous of degree m − j, j ≥ 0, we say p(x, ξ) ∈ Sm, or sometimes, for
emphasis, p(x, ξ) ∈ Sm

cl .
A further ingredient in paradifferential operator calculus is the process of “symbol

smoothing.” Given a symbol M(x, ξ) ∈ Sm
1,1, write

(1.12) M(x, ξ) = M#(x, ξ) + M b(x, ξ),

where, with Jk = Ψ0(εkDx), and εk ↘ 0,

(1.13) M#(x, ξ) =
∑

k≥0

JkM(x, ξ) ψk+1(ξ).
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Choices most frequently made are

(1.14) Jk = Ψ0(2−δkDx), or Jk = Ψk−3(Dx).

In these respective cases, one gets

(1.15) M#(x, ξ) ∈ Sm
1,δ, or M#(x, ξ) ∈ BSm

1,1,

where

(1.16) BSm
1,1 = {p(x, ξ) ∈ Sm

1,1 : p̂(η, ξ) is supported in |η| ≤ ρ|ξ|},

for some ρ < 1. For fixed ρ < 1, the class (1.16) will be denoted BρS
m
1,1. One can

show that, if M(x, ξ) = M(u;x, ξ) is given by (1.9), then, for r > 0,

(1.17) u ∈ Cr =⇒ M b(x, ξ) ∈ S−rδ
1,δ , or BS−r

1,1 ,

in the two respective cases of (1.14). Thus, the action of ψDOs with symbols in
these various classes are significant for nonlinear analysis. For example, we extend
to Morrey scales Moser estimates on nonlinear functions F (u), and also Rauch’s
lemma.

In §3 we apply Morrey space analysis in its traditional context: analysis of
quasilinear elliptic PDE. We analyze a family of such equations, containing as an
important example the system relating the metric tensor of a Riemannian manifold
to its Ricci tensor, in harmonic coordinates. The analysis involves a combination of
paradifferential operator calculus and integration by parts arguments. The specific
application to the Ricci tensor is given in §4.

In §5 we resume the internal development of analysis on Morrey spaces. We
extend a commutator estimate of T. Kato and G. Ponce [KP] to the Morrey scale
setting. We also extend to “microlocal” Morrey scales a comutator estimate of
M. Beals [Be], and we recall some known results on commutators [P,Mf ], when f ∈
bmo, and sketch a proof of this given in [AT]. One ingredient in these commutator
estimates is the decomposition

(1.18) fv = Tfv + Tvf + R(f, v),

where

(1.19) Tfv =
∑

k≥4

Ψk−4(D)f · ψk(D)v

is Bony’s paraproduct. This is an example of (1.8)–(1.14), with F (u1, u2) = u1u2.
In §6 we recall and extend some work of [CFL1-2] and [DR1-2] on a class of

pseudodifferential operators whose symbols p(x, ξ) are bmo in x, and a subalgebra
whose symbols have x-dependence in vmo ∩ L∞. Here, bmo(Rn) is the “local”
version of BMO(Rn), with norm

(1.20) ‖u‖bmo = ‖u‖BMO + ‖Ψ0(D)u‖L∞ .
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The seminorm ‖u‖BMO is give by supr ηu(r), where

(1.21) ηu(r) = sup
diam B=ρ≤r

ρ−n

∫

B

|u(x)− uB | dx.

Here, B runs over all balls of diameter ρ, and uB stands for the mean value of
u on B. The subspace VMO(Rn) consists of u ∈ BMO such that ηu(r) → 0 as
r → 0, and vmo consists of u ∈ VMO such that Ψ0(D)u ∈ L∞(Rn). It is known
(cf. [Sar]; see also [CFL]) that VMO is the closure in BMO of the space of uniformly
continuous functions on Rn, or equivalently of the space

(1.22) B∞ = {u ∈ L∞(Rn) : Dαu ∈ L∞(Rn), ∀α}.
Similarly, vmo is the closure of B∞ in bmo. Clearly vmo ∩ L∞ = VMO ∩ L∞.

In §7 we derive some Morrey space estimates for solutions to wave equations. In
§8 we discuss spaces of conormal distributions and variants.

2. Morrey scales

Since the work [P] it has been known that, if 0 ≤ δ < 1,

(12.1) P ∈ OPS0
1,δ(Rn) =⇒ P : Mp

q (Rn) → Mp
q (Rn), 1 < q ≤ p < ∞.

Thus, when 1 < q ≤ p < ∞, it is reasonable to consider the scale of spaces

(2.2) Mp,s
q (Rn) = Λ−sMp

q (Rn) = {u ∈ S ′(Rn) : Λsu ∈ Mp
q (Rn)},

where

(2.3)
(
Λsu

) ̂ (ξ) =
(
1 + |ξ|2)s

û(ξ).

Clearly the standard Sobolev space Hs,p(Rn) ⊂ Mp,s
q (Rn). It follows from (2.1)

that, given s,m ∈ R, δ ∈ [0, 1), 1 < q ≤ p < ∞,

(2.4) P ∈ OPSm
1,δ(Rn) =⇒ P : Mp,s

q (Rn) → Mp,s−m
q (Rn).

Since such P map Cs
∗ to Cs−m

∗ for all s ∈ R, we see that (1.5) implies

(2.5) Mp,s
q (Rn) ⊂ C

s−n/p
∗ (Rn).

Similarly we can define

(2.6) Mp,s
q (Rn) = Λ−sMp

q(Rn),

and we have

(2.7) P ∈ OPSm
1,δ(Rn) =⇒ P : Mp,s

q (Rn) →Mp,s−m
q (Rn),

provided 1 < q ≤ p < ∞. We will mainly use the spaces Mp,s
q (Rn), and occasionally

refer to the fact that analogous results hold for Mp,s
q (Rn).

We mention some further results, which will be useful in our development. The
following proposition was established in Theorem 3.8 of [T2]. A number of cases
had appeared earlier, e.g., in [Ad], [CF], [P].
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Proposition 2.1. If 1 < p1 < p2 < ∞ and

(2.8) m = −β = −n
( 1

p1
− 1

p2

)
< 0,

then, for 1 < q1 ≤ p1 < ∞, 0 ≤ δ < 1,

(2.9) P ∈ OPSm
1,δ(Rn) =⇒ P : Mp1

q1
(Rn) → Mp2

q2
(Rn),

with

(2.10)
q2

q1
=

p2

p1
, if also p1 ≤ n,

and otherwise (2.9) holds provided q2/q1 < p2/p1. Furthermore,

(2.11) P ∈ OPSm
1,δ(Rn) =⇒ P : Mp1

1 (Rn) → Mp2
q2

(Rn), for q2 <
p2

p1
.

In addition, (2.4), (2.9), and (2.11) hold for P ∈ OPBSm
1,1(Rn); in particular,

(2.12) P ∈ OPBSm
1,1(Rn) =⇒ P : Mp,s

q (Rn) → Mp,s−m
q (Rn),

for 1 < q ≤ p < ∞, m, s ∈ R.

It follows that, for pj and qj related as above,

(2.13) Mp1,s+|m|
q1

(Rn) ⊂ Mp2,s
q2

(Rn).

Another useful general result established in [T2] is:

Proposition 2.2. Assume the Schwartz kernel k(x, y) of T satisfies

(2.14) |k(x, y)| ≤ CM |x− y|−n
(
1 + |x− y|)−M

for sufficiently large M. Then, if 1 < q ≤ p < ∞,

(2.15) T : Lq(Rn) → Lq(Rn) =⇒ T : Mp
q (Rn) → Mp

q (Rn).

We include another proof of Proposition 2.2 in Appendix B. Proposition 2.2
implies (2.1) and (2.12). Another application of Proposition 2.2 is the following
result, noted in [T2]:

Proposition 2.3. Given k ∈ Z+ = {1, 2, 3, . . . }, we have

(2.16) P ∈ OPS−k
1,1 (Rn) =⇒ DαP : Mp

q (Rn) → Mp
q (Rn),

for |α| ≤ k, 1 < q ≤ p < ∞.

That (2.16) holds follows from the fact that DαP : Lp(Rn) → Lp(Rn) and that

(2.17) DαP (x, D) =
∑

β+γ=α

Pβ(x,D)Dγ ∈ OPS0
1,1,
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so T = DαP has Schwartz kernel satisfying (2.14). This fact, in conjunction with
(2.1), applied to DαΛ−k ∈ OPS0

1,0, shows that, for k ∈ Z+,

(2.18) P ∈ OPS−k
1,1 (Rn) =⇒ ΛkP : Mp

q (Rn) → Mp
q (Rn).

More generally, one can replace Λk in (2.18) by any A ∈ OPSk
1,δ, δ ∈ [0, 1). We

can rewrite (2.18) as

(2.19) P ∈ OPS0
1,1(Rn) =⇒ ΛkPΛ−k : Mp

q (Rn) → Mp
q (Rn),

and more generally

(2.20) P ∈ OPS0
1,1(Rn) =⇒ Λk+iσPΛ−(k+iσ) : Mp

q (Rn) → Mp
q (Rn),

for k ∈ Z+, σ ∈ R. For each k ∈ Z+, the family of operators has norm polynomially
bounded in σ. It follows that

(2.21) P ∈ OPS0
1,1, s ∈ [1,∞) =⇒ ΛsPΛ−s : Mp

q (Rn) → Mp
q (Rn).

In fact, we improve Proposition 2.3 to the following.

Proposition 2.4. Given s > 0, δ ∈ (0, 1], and 1 < q ≤ p < ∞, we have

(2.22) A ∈ OPSs
1,δ, P ∈ OPS−s

1,1 =⇒ AP : Mp
q (Rn) → Mp

q (Rn).

Proof. It suffices to show that, for s > 0,

(2.23) P ∈ OPS−s
1,1 =⇒ ΛsP : Mp

q (Rn) → Mp
q (Rn),

and, granted (2.21), we need only consider the cases 0 < s < 1. We want to apply
Proposition 2.2 to T = ΛsP, and we know that T : Lq(Rn) → Lq(Rn) under our
hypotheses. Thus we need to verify that the Schwartz kernel of T satisfies (2.14).
That this holds for |x−y| ≥ 1 is easy. The fact that it holds on the region |x−y| ≤ 1
is proved in Appendix A.

Proposition 2.4 can be rephrased in the language of Morrey scales as

(2.24) P ∈ OPSm
1,1(Rn) =⇒ P : Mp,s

q (Rn) → Mp,s−m
q (Rn), provided s−m > 0,

assuming 1 < q ≤ p < ∞.
If s > n/p and 1 < q ≤ p, then Mp,s

q (Rn) is an algebra. In fact, one can apply
a general smooth nonlinear function F to (a vector-valued) u ∈ Mp,s

q , and obtain
F (u) ∈ Mp,s

q , with Moser-type estimates. To see this, write F (u) in terms of a
paradifferential operator:

(2.25) F (u) = M(u; x,D)u + R(u),

as in (1.8)–(1.9), with R(u) ∈ C∞, and, by (1.10),

(2.26) u ∈ C0 =⇒ M(u; x, ξ) ∈ S0
1,1.

Using (2.24), we obtain:
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Proposition 2.5. If u ∈ Mp,s
q (Rn) with 1 < q ≤ p and s > n/p, then, given

smooth F, we have F (u) ∈ Mp,s
q and

(2.27) ‖F (u)‖Mp,s
q
≤ CF

(‖u‖L∞
)(

1 + ‖u‖Mp,s
q

)
.

If also v ∈ Mp,s
q (Rn), then

(2.28) ‖uv‖Mp,s
q
≤ C

[
‖u‖L∞‖v‖Mp,s

q
+ ‖u‖Mp,s

q
‖v‖L∞

]
.

If s ≤ n/p, such estimates fail, unless we also assume that u ∈ L∞. If s = 0,
what we have in place of (2.28) is

(2.29) v, w ∈ Mp
s (Rn) =⇒ vw ∈ M

p/2
s/2 (Rn),

provided 2 ≤ s ≤ p. The following, while not sharp, will be useful in §3.

Proposition 2.6. Let p > 2, q ∈ (2, p], 0 ≤ σ ≤ 1. Then

(2.30) v, w ∈ Mp,σ
q =⇒ vw ∈ M

p/2,σ
q/2 .

Proof. Say v = Λ−σf, w = Λ−σg, with f, g ∈ Mp
q . We seek an estimate of the form

(2.31) sup
z∈Ω

∥∥ez2
Λz(Λ−zf · Λ−zg)

∥∥
M

p/2
q/2

≤ C‖f‖Mp
q
‖g‖Mp

q
,

where
Ω = {z ∈ C : 0 ≤ Re z ≤ 1}.

It suffices to establish this estimate form f, g ∈ S(Rn). Note that we are taking the
norm of a holomorphic function, so it suffices to check z = iy and z = 1+ iy, y ∈ R.
We have

(2.32)
∥∥e−y2

Λiy(Λ−iyf · Λ−iyg)
∥∥

M
p/2
q/2

≤ C ′‖f · g‖
M

p/2
q/2

≤ C‖f‖Mp
q
‖g‖Mp

q
,

by the boundedness of 〈y〉−KΛiy in L(Mp/2
q/2 ) and in L(Mp

q ). Similarly,

(2.33)

∥∥e1−y2
Λ1+iy(Λ−1−iyf · Λ−1−iyg)

∥∥
M

p/2
q/2

≤ C

n∑

j=1

∥∥e−
y2

2 ∂j(Λ−1−iyf · Λ−1−iyg)
∥∥

M
p/2
q/2

+ C
∥∥e−

y2

2 Λ−i−iyf · Λ−1−iyg
∥∥

M
p/2
q/2

.

Now using

(2.34)
∂j(Λ−1−iyf · Λ−1−iyg) = (∂jΛ−1−iyf) · (Λ−1−iyg)

+ (Λ−1−iyf) · (∂jΛ−1−iyg),

plus ∂jΛ−1 ∈ OPS0, we easily bound (2.33) by C‖f‖Mp
q
‖g‖Mp

q
. This completes the

proof.

As in the case of Sobolev spaces, we can define the notion of u belonging mi-
crolocally to a space Mp,s

q . Assume 1 < q ≤ p < ∞, s ∈ R. Let Γ be a closed conic
subset of T ∗Rn \ 0. We say

(2.35) u ∈ Mp,s
q ml(Γ) ⇐⇒ Pu ∈ Mp,s

q (Rn),

for some P ∈ OPS0(Rn) which is elliptic on some conic neighborhood of Γ. There
is the following variant of Rauch’s lemma:
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Proposition 2.7. Assume u ∈ Cr ∩Mp,s
q , with r, s > 0, 1 < q ≤ p < ∞. If F is

smooth, then

(2.36) u ∈ Mp,σ
q ml(Γ) =⇒ F (u) ∈ Mp,σ

ml(Γ), provided s ≤ σ < s + r.

Proof. As in (1.12)–(1.17), write, mod C∞,

(2.37) F (u) = M#u + M bu, M# ∈ OPS0
1,δ, M b ∈ OPS−rδ

1,1 ,

for any δ < 1. Then M#u ∈ Mp,σ
q ml(Γ), by (2.1) and symbol calculus, while, by

(2.24), M bu ∈ Mp,s+rδ
q . This proves (2.36).

This result can be sharpened, in a way parallel to the treatment of [Mey] for
Sobolev spaces. In the decomposition M = M# + M b, choose the second method
of (1.14); then M b ∈ OPS−r

1,1 . Furthermore, if r > 0, u ∈ Cr ⇒ M# ∈ OPBrS0
1,1,

where BrSm
1,1 consists of p(x, ξ) ∈ BSm

1,1 satisfying the additional conditions

(2.38)
‖Dα

ξ p(·, ξ)‖Cr ≤ Cα〈ξ〉m−|α|,
|Dβ

xDα
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−|α|+δ(|β|−r), for |β| > r.

Operator calculus then yields the following.

Lemma 2.8. If p(x, ξ) ∈ BrSm
1,1 and u ∈ Mp,s

q , with 1 < q ≤ p < ∞, s > 0, then

(2.39) u ∈ Mp,σ
q ml(Γ) =⇒ p(x,D)u ∈ Mp,σ−m

q ml(Γ), s ≤ σ ≤ s + r.

The proof is parallel to that in [Mey]; see also Proposition 3.4.D in [T1]. With
this in hand, one can now replace the condition s ≤ σ < s + r in (2.36) by s ≤ σ ≤
s + r.

3. A class of second order elliptic systems in divergence form

Here we study regularity of solutions to elliptic equations of the form

(3.1)
∑

∂jajk(x, u)∂ku + B(x, u,∇u) = f.

This can be an M ×M system, with u taking values in RM . We assume B(x, u, ζ)
is smooth in x and u, and is a quadratic form in ζ, or more generally satisfies

|B(x, u, ζ)| ≤ C〈ζ〉2.

Proposition 3.1. Assume that a solution u to (3.1) satisfies

(3.2) ∇u ∈ Mq
2 , for some q > n, hence u ∈ Cr,

for some r ∈ (0, 1), and

(3.3) f ∈ Mp,−1
s ,
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for some p ∈ (q,∞), s ∈ [2, p]. Then

(3.4) ∇u ∈ Mp
s ,

If s = p, then (3.4) is the conclusion of Proposition 2.2.I of [T1], but the hypoth-
esis (3.2) above is weaker than the corresponding hypothesis made in [T1]. The
case f = 0 of Proposition 3.1 is also contained in Theorem 4.1 of [Sch], when dim
Ω = 2.

To begin the proof of Proposition 3.1, we write

(3.5)
∑

k

ajk(x, u)∂ku = Aj(u;x, D)u,

mod C∞, with

(3.6) Aj(u;x, ξ) ∈ CrS1
1,0 ∩ S1

1,1 + S1−r
1,1 ,

as established in (3.3.23) of [T1], and hence, by (3.3.25) of [T1], given δ ∈ (0, 1),

(3.7)
Aj(u; x, ξ) = A#

j (x, ξ) + Ab
j(x, ξ),

A#
j (x, ξ) ∈ S1

1,δ, Ab
j(x, ξ) ∈ S1−rδ

1,1 .

It follows that we can write

(3.8)
∑

∂jajk(x, u)∂ku = P#u + P bu,

with

(3.9) P# =
∑

∂jA
#
j (x,D) ∈ OPS2

1,δ, elliptic,

and

(3.10) P b =
∑

∂jA
b
j(x,D).

By Proposition 2.4, we have

(3.11) Λrδ−1P bΛ−1 : Mp′

q′ −→ Mp′

q′ , 1 < q′ ≤ p′ < ∞.

In particular,

(3.12) ∇u ∈ Mq
2 =⇒ P bu ∈ Mq,−1+rδ

2 .

Now, if

(3.13) E# ∈ OPS−2
1,δ

denotes a parametrix of P#, we have, mod C∞,

(3.14) u = E#f − E#B(x, u,∇u)− E#P bu,
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and we see that, under the hypothesis (3.2), we have some control over the last
term:

(3.15) E#P bu ∈ Mq,1+rδ
2 .

Note also that, under our hypothesis on B(x, u, ζ),

(3.16) ∇u ∈ Mq
2 =⇒ B(x, u,∇u) ∈ M

q/2
1 .

Now, by (2.12),

(3.17) Λ−1 : M
q/2
1 −→ M p̃

2 , p̃ =
q

2− q/n
, if n < q < 2n,

while the range is contained in Cσ for some σ > 0 if q > 2n, by Morrey’s Lemma,
and the range is contained in BMO if q = 2n. Thus

(3.18) E#B(x, u,∇u) ∈ M p̃,1
2 ,

with p̃ = q/(2−q/n) if q < 2n and for all p̃ < ∞ if q ≥ 2n. Note that p̃ > q(1+a/n)
if q = n + a. This treats the middle term on the right side of (3.14). Of course, the
hypothesis (3.3) yields

(3.19) E#f ∈ Mp,1
s ,

which is just where we want to place u.
We can draw from (3.15) a conclusion parallel to (3.18)–(3.19), using

(3.20) Λ−rδ : Mq
2 −→ M q̃

2 ,
1
q̃

=
1
q
− rδ

n
,

which follows from (2.9). We then have

(3.21) E#P bu ∈ M q̃,1
2 .

Having thus analyzed the three terms on the right side of (3.14), we have

(3.22) u ∈ Mq#,1
2 , q# = min (p̃, p, q̃).

Iterating this argument a finite number of times, we get

(3.23) u ∈ Mp,1
2 .

If s = 2 in (3.3), our work is done.
If s ∈ (2, p], we can proceed with an argument similar to that above. Details are

omitted.
We next establish the following generalization of Proposition 3.1.
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Proposition 3.2. Assume that ∇u ∈ Mq
2 for some q > n, that u satisfies (3.1),

and that

(3.24) f ∈ Mp,τ−1
s ,

for some p ∈ (q,∞), s ∈ [2, p], τ ≥ 0. Then

(3.25) ∇u ∈ Mp,τ
s .

Proof. Note that Proposition 3.1 handles the case τ = 0. Thus we can assume

(3.26) u ∈ Mp,ρ
s ,

with ρ = 1. We want to show that (3.26) holds with ρ = 1 + τ. As before, we make
use of (3.14). The hypothesis (3.24) yields

(3.27) E#f ∈ Mp,τ+1
s ,

which is where we want to place u. Whenever (3.26) holds, with ρ ≥ 1, we have

(3.28) E#P bu ∈ Mp,ρ+rδ
s ,

parallel to (3.15). This is a desirable gain in regularity. It remains to examine the
term E#B(x, u,∇u) in (3.14).

To begin,

(3.29) u ∈ Mp,1
s =⇒ B(x, u,∇u) ∈ M

p/2
s/2 .

Thus, by Proposition 2.1, for arbitrarily small ε > 0,

(3.30) Λ−µB(x, u,∇u) ∈ Mp
s , µ =

n

p
+ ε.

Since p > n, we can take µ < 1. Hence

(3.31) u ∈ Mp,1
s =⇒ E#B(x, u,∇u) ∈ Mp,1+σ

s , ∀ σ < 1− n

p
.

We now prove Proposition 3.2 for 0 < τ ≤ 1. First assume s > 2; use Proposition
2.6 to get, for any β ∈ (0, 1],

(3.32) u ∈ Mp,1+β
s =⇒ B(x, u,∇u) ∈ M

p/2,β
s/2 ,

given that B(x, u,∇u) is a quadratic form in ∇u. This time, an application of
Proposition 2.1 to the analysis of E#B(x, u,∇u) yields

(3.33) u ∈ Mp,1+β
s =⇒ E#B(x, u,∇u) ∈ Mp,1+β+σ

s , ∀ σ < 1− n

p
,

given β ∈ (0, 1], p > n, provided s > 2. On the other hand, if s = 2, the arguments
(3.27)–(3.31) yield u ∈ Mp,1+β

s for β = min {τ, 1− n/p− ε}, ∀ ε > 0. Then, use

Mp,1+β
2 ⊂ Mp,1+β−δ

2+ε
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for some small positive ε, δ, and again apply the argument above. Thus we extend
the implication (3.33) to the case s = 2.

This is a desirable gain in regularity. Thus a finite iteration of the arguments
above establishes Proposition 3.2, if τ ∈ [0, 1].

On the other hand, by Proposition 2.5, if s > 2,

(3.34)
u ∈ Mp,1+σ, σ >

n

p
=⇒ B(x, u,∇u) ∈ Mp,σ

s

=⇒ E#B(x, u,∇u) ∈ Mp,2+σ
s .

Thus, if we have u ∈ Mp,1+σ
s for some σ > n/p, a finite number of iterations of this

argument will yield the desired conclusion (3.26), provided s > 2. If s = 2, use

(3.35) Mp,1+σ
2 ⊂ Mp,1+σ−δ

2+ε

for small ε > 0, δ > 0, and again apply Proposition 2.5 to get

(3.36) u ∈ Mp,1+σ
2 , σ >

n

p
=⇒ E#B(x, u,∇u) ∈ Mp,2+σ−δ

2 ,

and iterate.
Using this, we can establish Proposition 3.2 in the case τ > 1. Indeed, in such a

case, we can use the conclusion from the τ = 1 case to deduce that u ∈ Mp,2
s . This

is more than enough regularity to apply (3.34)–(3.36), so the proof is complete.

Our next goal is to derive the hypothesis (3.2) on u as a consequence of a weaker
hypothesis, at least for an important special case of systems of the form (3.1).

Proposition 3.3. Let u ∈ H1(Ω) solve (3.1). Assume the very strong ellipticity
condition

(3.37) ajk
αβ(x, u)ζjαζkβ ≥ λ0|ζ|2, λ0 > 0.

Also assume B(x, u,∇u) is a quadratic form in ∇u. Assume furthermore that u is
continuous on Ω. Then, locally, if p > n/2,

(3.38) f ∈ Mp
2 =⇒ ∇u ∈ Mq

2 , for some q > n.

Hence u ∈ Cr, for some r > 0.

To begin, given x0 ∈ Ω, shrink Ω down to a smaller neighborhood, on which

(3.39) |u(x)− u0| ≤ E,

for some u0 ∈ RM (if (3.1) is an M ×M system). We will specify E below. Write

(3.40)
(
∂ja

jk(x, u)∂ku,w
)
L2 = −

∫
〈∇u,∇w〉 dx,

where ajk
αβ(x, u) determines an inner product on T ∗x⊗RM for each x ∈ Ω, in a fashion

that depends on u, perhaps, but one has bounds on the set of inner products so
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arising. Now, if we let ψ ∈ C∞0 (Ω) and w = ψ(x)2(u − u0), and take the inner
product of (2.1) with w, we have

(3.41)

∫
ψ2|∇u|2 dx + 2

∫
ψ(∇u)(∇ψ)(u− u0) dx

−
∫

ψ2(u− u0)B(x, u,∇u) dx = −
∫

ψ2f(u− u0) dx.

Hence we obtain the inequality

(3.42)

∫
ψ2

[|∇u|2 − |u− u0| · |B(x, u,∇u)| − δ2|∇u|2] dx

≤ 1
δ2

∫
|∇ψ|2|u− u0|2 dx +

∫
ψ2|f | · |u− u0| dx,

for any δ ∈ (0, 1). Now, for some A < ∞, we have

(3.43) |B(x, u,∇u)| ≤ A|∇u|2.

Then we choose E in (3.39) so that

(3.44) EA ≤ 1− a < 1.

Then take δ2 = a/2, and we have

(3.45)
a

2

∫
ψ2|∇u|2 dx ≤ 2

a

∫
|∇ψ|2 · |u− u0|2 dx +

∫
ψ2|f | · |u− u0| dx.

Now, given x ∈ Ω, for r < dist(x, ∂Ω) define U(x,R) by

(3.46) U(x,R) = R−n

∫

BR(x)

|u(y)− ux,R|2 dy,

where, as before, ux,R is the mean value of u
∣∣
BR(x)

.

Lemma 3.4. Let O ⊂⊂ Ω. There exist R0 > 0, ρ ∈ (0, 1), ϑ < 1, and C0 < ∞
such that, if x ∈ O and r ≤ R0, then either

(3.47) U(x, r) ≤ C0r
2(2−n

p ),

or

(3.48) U(x, ρr) ≤ ϑU(x, r).

We first describe how to pick ρ, using the following; compare [Gia], pp. 91–92.
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Lemma 3.5. There is a constant A0 = A0(n,M, λ1/λ0) such that, whenever bjk
αβ

are constants satisfying

(3.49) λ1|ζ|2 ≥
∑

bjk
αβζjαζkβ ≥ λ0|ζ|2, λ0 > 0,

the following holds. If u ∈ H1
(
B1(0),RM

)
solves

(3.50) ∂jb
jk
αβ∂kuβ = 0 on B1(0),

then, for all ρ ∈ (0, 1),

(3.51) U(0, ρ) ≤ A0ρ
2U(0, 1).

Proof. For ρ ∈ (0, 1/2], we have

(3.52) U(0, ρ) ≤ ρ2−n

∫

Bρ(0)

|∇u(y)|2 dy ≤ Cnρ2‖∇u‖2L∞(B1/2(0))
.

On the other hand, regularity for the constant coefficient elliptic PDE (3.50) readily
yields an estimate

(3.53) ‖∇u‖2L∞(B1/2(0))
≤ B0‖∇u‖2L2(B3/4(0))

≤ B1‖u− u0,1‖2L2(B1(0))
,

with Bj = Bj(n,M, λ1/λ0), from which (2.51) easily follows.

Now, to pick ρ for Lemma 3.4, we assume (3.49) holds for all frozen coefficient
principal parts of (3.1), take the A0 given by Lemma 3.5, and then pick ρ so that
A0ρ

2 ≤ 1/2.
Having picked ρ, we proceed to prove Lemma 3.4 by contradiction. If the result

is false, there exist xν ∈ O, Rν → 0, ϑν → 1, and uν ∈ H1(Ω,RM ) solving (3.1)
such that

(3.54) Uν(xν , Rν) = ε2
ν > C0R

2(2−n/p)
ν

and

(3.55) Uν(xν , ρRν) > ϑνUν(xν , Rν).

The hypothesis that u is continuous implies εν → 0. We want to obtain a contra-
diction.

We next set

(3.56) vν(x) = ε−1
ν

[
uν(xν + Rνx)− uνxν ,Rν

]
.

Then vν solves

(3.57)
∂ja

jk
αβ

(
xν + Rνx, ενvν(x) + uνxν ,Rν

)
∂kvβ

ν

+ ενB
(
xν + Rνx, ενvν(x) + uνxν ,Rν ,∇vν(x)

)
=

R2
ν

εν
f.
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Note that, by the hypothesis (3.54),

(3.58)
R2

ν

εν
<

1
C0

Rn/p
ν .

Now set

(3.59) Vν(0, r) = r−n

∫

Br(0)

|vν(y)− vν0,r|2 dy.

Then, since vν0,1 = 0, we have

(3.60) Vν(0, 1) = ‖vν‖2L2(B1(0))
= 1, Vν(0, ρ) > ϑν .

Passing to a subsequence, we can assume that

(3.61) vν → v weakly in L2
(
B1(0),RM

)
, ενvν → 0 a.e. in B1(0).

Also

(3.62) ajk
αβ(xν , uνxν ,Rν ) −→ bjk

αβ ,

an array of constants satisfying (3.49). Boundedness of ενvν(x) + uνxν ,Rν plus
continuity of ajk

αβ imply

(3.63) ajk
αβ

(
xν + Rνx, ενvν(x) + uνxν ,Rν

) −→ bjk
αβ a.e. in B1(0),

and this is bounded convergence.
We next need to estimate the L2-norm of∇vν . Substituting ενvν

(
x−xν

Rν

)
+uνxν ,Rν

for uν(x) in (3.45), and replacing u0 by uνxν ,Rν , we have

(3.64)

a

2

∫
ψ2

∣∣∣∇vν

(x− xν

Rν

)∣∣∣
2

dx

≤ 2
a

∫
R2

ν |∇ψ|2
∣∣∣vν

(x− xν

Rν

)∣∣∣
2

dx +
R2

ν

εν

∫
ψ2|f | ·

∣∣∣vν

(x− xν

Rν

)∣∣∣ dx,

for ψ ∈ C∞0
(
BRν (xν)

)
. Actually, for this new value of u0, the estimate (3.39) might

change to |u(x)− u0| ≤ 2E, so at this point we strengthen the hypothesis (3.44) to

(3.65) 2EA ≤ 1− a < 1,

in order to get (3.59). Since R2
ν/εν ≤ R

n/p
ν /C0, we have, for Ψ(x) = ψ(xν +Rνx) ∈

C∞0
(
B1(0)

)
,

(3.66)
a

2

∫
Ψ2|∇vν |2 dx ≤ 2

a

∫
|∇Ψ|2|vν |2 dx +

R
n/p
ν

C0

∫
Ψ2|F | · |vν | dx,

where F (x) = f(xν + Rνx).
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Since ‖vν‖L2(B1(0)) = 1, if Ψ ≤ 1 we have

(3.67)
∫

Ψ2|F | · |vν | dx ≤
( ∫

B1(0)

|F |2 dx
)1/2

≤ C1R
−n/p
ν ,

if f ∈ Mp
2 , so we have

(3.68)
a

2

∫
Ψ2|∇vν |2 dx ≤ 2

a

∫
|∇Ψ|2|vν |2 dx +

C1

C0
‖f‖Mp

2
.

This implies that vν is bounded in H1
(
Bρ(0)

)
for each ρ < 1. Now, we can pass to

a further subsequence and obtain

(3.69)
vν −→ v strongly in L2

loc

(
B1(0)

)

∇vν −→ ∇v weakly in L2
loc

(
B1(0)

)
.

Thus, we can pass to the limit in (3.57), to obtain

(3.70) ∂jb
jk
αβ∂kvβ = 0, on B1(0).

Also, by (3.60),

(3.71) V (0, 1) = ‖v‖L2(B1(0)) ≤ 1, V (0, ρ) ≥ 1.

This contradicts Lemma 3.5, which requires V (0, ρ) ≤ (1/2)V (0, 1).
Now that we have Lemma 3.4, the proof of Proposition 3.3 is easily completed.

From (3.47)–(3.48) we have

(3.72) U(x, r) ≤ Cr2α

for some α > 0. In other words

(3.73)
∫

Br(x)

∣∣u(y)− ux,r

∣∣2 dy ≤ Crn+2α,

uniformly for x ∈ O ⊂⊂ Ω. This in itself implies u ∈ Cα(O). Furthermore, by
(3.45), we have

(3.74)
∫

Br(x)

|∇u|2 dy ≤ Crn−2(1−α),

which implies

(3.75) ∇u
∣∣
O ∈ Mq

2 , q =
n

1− α
.

Thus Proposition 3.3 is proved.
We can extend Proposition 3.3 to the following result, which interfaces most

conveniently with Propositions 3.1–3.2.
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Proposition 3.6. Under the hypotheses of Proposition 3.3, if p > n,

(3.76) f ∈ Mp,−1
2 =⇒ u ∈ Mq,1

2 , for some q > n.

Proof. Writing f =
∑

∂jgj , gj ∈ Mp
2 , we replace the right side of (3.41) by (the

sum over j of)

(3.77) −
∫

ψ2(∂jgj)(u− u0) dx =
∫

ψ2gj(∂ju) dx + 2
∫

ψ(∂jψ)gj(u− u0) dx.

Thus, in place of (3.42), we have the inequality

(3.78)

∫
ψ2

[|∇u|2 − |u− u0| · |B(x, u,∇u)| − 2δ2|∇u|2] dx

≤ 1
δ2

∫ {|∇ψ|2|u− u0|2 + ψ2|g|2} dx + 2
∫
|ψ| · |∇ψ| · |g| · |u− u0| dx,

where |g|2 =
∑ |gj |2. The estimates (3.43)–(3.75) proceed essentially as before, with

a few minor changes, resulting from replacing the estimate for F (x) = f(xν +Rνx)
by the following estimate for Gj(x) = gj(xν + Rνx) :

(3.79)
( ∫

B1(0)

|Gj |2 dx
)1/2

≤ C ′1R
−n/p,

if gj ∈ Mp
2 . Details are left to the reader.

Combining Propositions 3.2 and 3.6, we have:

Proposition 3.7. Assume u ∈ H1(Ω) ∩ C(Ω) solves (3.1), that the very strong
ellipticity condition (3.37) holds, and that B(x, u,∇u) is a quadratic form in ∇u.
If p > n, τ ≥ 0, 2 ≤ s ≤ p, then

(3.80) f ∈ Mp,τ−1
s =⇒ u ∈ Mp,τ+1

s .

4. Connections with Ricci curvature bounds

Consider a Riemannian metric gjk defined on the unit ball B1 ⊂ Rn. We will
work under the following hypotheses:
(i) For some constants aj ∈ (0,∞), there are estimates

(4.1) 0 < a0I ≤
(
gjk(x)

) ≤ a1I.

(ii) The coordinates x1, . . . , xn are harmonic, i.e.,

(4.2) ∆x` = 0.
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Here, ∆ is the Laplace operator determined by the metric gjk. In general,

(4.3) ∆v = gjk∂j∂kv − λ`∂`v, λ` = gjkΓ`
jk.

Note that ∆x` = λ`, so the coordinates are harmonic if and only if λ` = 0. Thus,
in harmonic coordinates,

(4.4) ∆v = gjk∂j∂kv.

We will also assume some bounds on the Ricci tensor, and desire to see how this
influences the regularity of gjk in these coordinates. Generally, the Ricci tensor is
given by

(4.5)
Ricjk =

1
2
g`m

[−∂`∂mgjk − ∂j∂kg`m + ∂k∂mg`j + ∂`∂jgkm

]
+ Mjk(g,∇g)

= −1
2
g`m∂`∂mgjk +

1
2
gj`∂kλ` +

1
2
gk`∂jλ

` + Hjk(g,∇g),

with λ` as in (4.3). In harmonic coordinates, we obtain

(4.6)
∑

∂jg
jk(x)∂kg`m + Q`m(g,∇g) = Ric`m,

and Q`m(g,∇g) is a quadratic form in ∇g, with coefficients which are smooth
functions of g, as long as (4.1) holds. Also, when (4.1) holds, the equation (4.6) is
elliptic, of the form (3.1). Thus Proposition 3.7 directly implies the following.

Proposition 4.1. Assume the metric tensor satisfies hypotheses (i) and (ii). Also
assume that

(4.7) gjk ∈ H1(B1) ∩ C(B1),

and

(4.8) Ric`m ∈ Mp,r−1
s ,

for some p ∈ (n,∞), 2 ≤ s ≤ p, r ≥ 0. Then, on the ball B9/10,

(4.9) gjk ∈ Mp,r+1
s .

Geometrical consequences of estimates on the Ricci tensor can be found in [An],
[AC], and references given in these papers.

5. Commutator estimates on Morrey scales

In this section we establish a number of commutator estimates, starting with the
following variant of an estimate of T. Kato and G. Ponce [KP]:
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Theorem 5.1. If P ∈ OPBSm
1,1 and m > 0, then

(5.1) ‖P (fu)− fPu‖Mp,s
q
≤ C‖f‖Lip1‖u‖Mp,m−1+s

q
+ C‖f‖Mp,m+s

q
‖u‖L∞ ,

provided s ≥ 0, 1 < q ≤ p < ∞.

Proof. We start with

(5.2)
f(Pu) = TfPu + TPuf + R(f, Pu),

P (fu) = PTfu + PTuf + PR(f, u).

As shown in Proposition 4.2 of [AT], possibly replacing the ‘4’ in (1.19) by a larger
number, we have [Tf , P ] ∈ OPBSm−1

1,1 when f ∈ Lip1(Rn). Hence

(5.3) ‖[Tf , P ]u‖Mp,s
q
≤ C‖f‖Lip1‖u‖Mp,m−1+s

q
.

Next, u ∈ L∞ ⇒ Tu ∈ OPBS0
1,1, so

(5.4) ‖PTuf‖Mp,s
q
≤ C‖u‖L∞‖f‖Mp,m+s

q
.

Furthermore,

(5.5) u ∈ L∞ =⇒ Pu ∈ C−m
∗ =⇒ TPu ∈ OPBSm

1,1, if m > 0,

so

(5.6) ‖TPuf‖Mp,s
q
≤ C‖u‖L∞‖f‖Mp,m+s

q
.

It remains to estimate R(f, Pu) and PR(f, u).
First, we mention that Rf , given by Rfu = R(f, u), is a Calderon-Zygmund

operator, for any f ∈ bmo, satisfying

(5.7) ‖Rfu‖Lq ≤ Cq‖f‖BMO‖u‖Lq , 1 < q < ∞,

and with Schwartz kernel Kf satisfying (cf. Lemma 3.5.E of [T1])

(5.8) |Kf (x, y)| ≤ C‖f‖C0∗ |x− y|−n,

as well as

(5.9) |∇x,yKf (x, y)| ≤ C‖f‖C0∗ |x− y|−n−1.

As shown in Appendix B, (5.7)–(5.8) lead to Mp
q boundedness. Since bmo ⊂

BMO ∩ C0
∗ , we have

(5.10) ‖R(f, u)‖Mp
q
≤ Cpq‖f‖bmo‖u‖Mp

q
,

for 1 < q ≤ p < ∞. Now we establish a variant of Proposition 3.5.D in [T1]:
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Lemma 5.2. Let hr,∞ denote the bmo-Sobolev space, which has the property that

(5.11) P ∈ OPSr
1,0 =⇒ P : hr,∞ → bmo.

Then

(5.12) ‖R(f, u)‖Mp,s
q
≤ Cpqrs‖f‖hr,∞‖u‖Mp,s−r

q
, s ≥ 0, 1 < q ≤ p < ∞.

Proof. First we treat the case s = 0. Decompose f into
∑20

`=1 f`, via operators in
OPS0

1,0, so that

supp f̂ ⊂
⋃{

2k ≤ |ξ| ≤ 2k+2 : k = ` mod 20
}

.

Similarly decompose u. (We needn’t worry about pieces left over with spectrum
contained in, say, |ξ| ≤ 3.) It suffices to estimate such R(f`, um). In such a case, we
can find

(5.13) F` = Q+f` ∈ bmo, Vm = Q−um, Q± ∈ OPS±r
1,0

such that, for each k,

(5.14) ψa
k(D)f` = 2−krψa

k(D)F`, ψk(D)um = 2krψk(D)Vm.

Here, {ψk} is a Littlewood-Paley partition of unity and ψa
k(ξ) =

∑k+5
`=k−5 ψ`(ξ), so

that

(5.15) R(f, u) =
∑

k

(
ψa

k(D)f
) · ψk(D)u.

Hence

(5.16) R(f, u) = R(F`, Vm),

so the s = 0 case of (5.12) follows from the estimate

(5.17) ‖Vm‖Mp
q
≤ C‖um‖Mp,−r

q
,

plus (5.10).
So far, we have

(5.18) Rf : Mp,−r
q −→Mp

q , for f ∈ hr,∞,

under the hypothesis (5.11). Next, we claim Rf : Mp,1−r
q → Mp,1

q , for f ∈ hr,∞.
This follows from

(5.19) ∂j(Rfu) = R(∂jf)u + Rf (∂ju),

plus the fact that, if f ∈ hr,∞, then P ∈ OPSr−1
1,0 ⇒ P (∂jf) ∈ bmo, and hence the

argument above shows that R(∂jf) : Mp,1−r
q →Mp

q . Once we have (5.19), then by
induction we obtain

(5.20) Rf : Mp,j−r
q −→Mp,j

q , j = 0, 1, 2, . . .
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for f ∈ hr,∞, and then (5.12) follows by interpolation.

Our application of Lemma 5.2 to the estimation of R(f, Pu) and PR(f, u) in
(5.2) is the following:

(5.21) ‖R(f, u)‖Mp,σ
q
≤ C‖f‖Lip1‖w‖Mp,σ−1

q
, σ ≥ 0, 1 < q ≤ p < ∞.

Hence, given P ∈ OPBSm
1,1, we have, taking σ = s,

(5.22) ‖R(f, Pu)‖Mp,s
q
≤ C‖f‖Lip1‖u‖Mp,m−1+s

q
, s ≥ 0,

and, taking σ = s + m,

(5.23) ‖PR(f, u)‖Mp,s
q
≤ C‖f‖Lip1‖u‖Mp,m−1+s

q
, s + m ≥ 0.

The proof of Theorem 5.1 is complete.

We next establish a commutator result along the lines of Lemma 1.13 in [Be].
Set Mbu = bu.

Proposition 5.3. Let 1 < p ≤ q < ∞; consider

(5.24) v ∈ Mp,s
q (Rn) ∩Mp,r

q ml(Γ), b ∈ Mp,s+1
q (Rn) ∩Mp,r+1

q ml(Γ).

Assume

(5.25)
n

p
< s ≤ r < 2s− n

p
.

Then

(5.26) P ∈ OPS1
1,0 =⇒ [P, Mb]v ∈ Mp,s

q (Rn) ∩Mp,r
q ml(Γ).

Proof. Write

(5.27) Mbv = Tbv + Tvb + Rbv.

Then, as in (5.2),

(5.28) [P,Mb]v = [P, Tb]v + PTvb− TPvb + PRbv −RbPv.

The hypotheses imply b ∈ C
s+1−n/p
∗ , hence, if s > n/p, the OPBSm

1,1 calculus gives

(5.29) Tb ∈ OPBσ+1S0
1,1, [P, Tb] ∈ OPBσS0

1,1, σ = s− n

p
,

where BσSm
1,1 is the subspace of BSm

1,1 defined by (2.38).
Also, v ∈ Cσ

∗ , hence

(5.30) Tv ∈ OPBσS0
1,1, TPv ∈ OPBσS1

1,1.
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Now (5.29) plus the hypothesis (5.24) on v gives

(5.31) [P, Tb]v ∈ Mp,s
q (Rn) ∩Mp,r

q ml(Γ), r < s + σ.

Also, (5.30) implies that, for r < s + σ,

(5.32)
Tvb ∈ Mp,s+1

q (Rn) ∩Mp,r+1
q ml(Γ),

TPv ∈ Mp,s
q (Rn) ∩Mp,r

q ml(Γ).

Finally, we have

(5.33) Rb ∈ OPS−σ−1
1,1 , hence PRbv, RbPv ∈ Mp,s+σ

q (Rn).

It follows from (5.31)–(5.33) that

(5.34) [P, Mb]v ∈ Mp,s
q (Rn) ∩Mp,r

q ml(Γ) + Mp,2s−n/p
q (Rn),

which gives (5.25).

The next result was proven for P ∈ OPS0
cl in [DR1], following the seminal Lp

estimate of [CRW]. This estimate will be useful in §6. We sketch a proof of an
extension given in [AT].

Proposition 5.4. If P ∈ OPBS0
1,1, f ∈ bmo(Rn), and 1 < q ≤ p < ∞, then

(5.35) ‖fPu− P (fu)‖Mq
p
≤ C‖f‖bmo‖u‖Mp

q
.

Sketch of proof. As before, we use (5.2). We have (5.10), and similarly

(5.36) ‖Tuf‖Mp
q
≤ C‖f‖bmo‖u‖Mp

q
.

Hence

(5.37)
‖TPuf‖Mp

q
+ ‖PTuf‖Mp

q
+ ‖R(f, Pu)‖Mp

q
+ ‖PR(f, u)‖Mp

q

≤ C‖f‖bmo‖u‖Mp
q
.

On the other hand, bmo(Rn) ⊂ C0
∗(Rn), and, as shown in [AT],

(5.38) f ∈ C0
∗(Rn) =⇒ [Tf , P ] ∈ OPBS0

1,1,

so

(5.39) ‖[Tf , P ]u‖Mp
q
≤ C‖f‖bmo‖u‖Mp

q
.

This gives (5.35).

6. Operators with vmo coefficients
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Consider a symbol

(6.1) p(x, ξ) ∈ bmoSm
1,0

such that

(6.2) p(x, rξ) = rmp(x, ξ), r ≥ 1, |ξ| ≥ 1.

Thus, if {wj : j ≥ 1} is an orthonormal basis of L2(Sn−1) consisting of eigenfunc-
tions of the Laplace operator ∆S on Sn−1, we can write

(6.3) p(x, ξ) = p0(x, ξ) +
∑

j

fj(x)wj

( ξ

|ξ|
)
|ξ|m(

1− ϕ(ξ)
)
,

where ϕ ∈ C∞0 (Rn), ϕ(ξ) = 1 for |ξ| ≤ 1/2, and p0(x, ξ) is supported on |ξ| ≤ 1.
Furthermore,

(6.4) ‖fj‖bmo ≤ CN 〈j〉−N .

Write

(6.5) pj(x, ξ) = fj(x)wj

( ξ

|ξ|
)
|ξ|m(

1− ϕ(ξ)
)

= fj(x)ajm(ξ),

so we have

(6.6) p(x, ξ) =
∑

j≥0

pj(x, ξ).

The operator p0(x,D) has a simple analysis. One can write

(6.7) p0(x, ξ) =
∑

`

p`(x)ei`·ξϕ(ξ/2),

with

(6.8) ‖p`‖bmo ≤ C ′N 〈`〉−N .

Thus

(6.9) p0(x,D)u =
∑

p`(x)ψ`(D)u =
∑

p`(x)ψ̂` ∗ u,

where

(6.10) ψ̂`(x) = Cϕ̂(2x + `).

Hence

(6.11) p0(x, D) : Lp(Rn) −→ Lp(Rn) ∩ bmo(Rn), ∀ p ∈ [1,∞).
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We now establish some commutator estimates. First, suppose

(6.12) B = b(x, D) ∈ OPS0
1,δ, 0 ≤ δ < 1.

Take m = 0 above, and use the notation aj(ξ) instead of aj0(ξ). Then

(6.13)
[B, pj(x,D)]u = [B, Mfj aj(D)]u

= fj(x)[B, aj(D)]u + [B, Mfj ]aj(D)u.

Since

(6.14) Cj = [B, aj(D)] ∈ OPS
−(1−δ)
1,δ ,

and there are polynomial bounds (in j) on the relevant seminorms of the symbols,
we have

(6.15) ‖fj [B, aj(D)]u‖Mp
q
≤ CN,K〈j〉−N‖u‖Mp

q
, 1 < q ≤ p < ∞,

given supp u ⊂ K, compact. Also, by Proposition 5.4,

(6.16) ‖[B, Mfj ]v‖Mp
q
≤ C‖fj‖bmo‖v‖Mp

q
,

so we have

(6.17) ‖[B, pj(x,D)]u‖Mp
q
≤ CN 〈j〉−N‖u‖Mp

q
,

for j ≥ 1. Summing over j, we have:

Proposition 6.1. If p(x, ξ) ∈ bmoS0
cl and B ∈ OPS0

1,δ, δ < 1, then, for K ⊂ Rn

compact,

(6.18) [B, p(x,D)] : Mp
q (K) −→ Mp

q , 1 < q ≤ p < ∞.

If p(x, ξ) ∈ vmoS0
cl, this comutator is compact.

Next, we consider the commutator [Mg, p(x,D)]. We have

(6.19) [Mg, p(x,D)] = [Mg, p0(x,D)] +
∑

j≥1

[Mg, pj(x,D)].

Clearly, for g ∈ bmo,

(6.20) [Mg, p0(x, D)] : Mp
q (K) −→ Mp

q , 1 < q ≤ p < ∞.

Next, for j ≥ 1,

(6.21) [Mg, pj(x,D)] = Mfj [Mg, aj(D)].

Thus, applying Proposition 5.4 to the commutator [Mg, aj(D)], we have

(6.22) ‖[Mg, pj(x,D)]u‖Mp
q
≤ C‖fj‖L∞‖g‖bmo‖u‖Mp

q
,

and, if g ∈ vmo, this commutator is compact. Summing, we have:
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Proposition 6.2. If p(x, ξ) ∈ L∞S0
cl and g ∈ bmo, then

(6.23) [Mg, p(x,D)] : Mp
q (K) −→ Mp

q , 1 < q ≤ p < ∞.

If also g ∈ vmo and p(x, ξ) is supported on x ∈ K compact, then this commutator
is compact.

For the spaces Lp, this result was proved in [CFL]; see Theorem 2.11 there.
Furthermore, weighted Lp estimates are obtained in Theorem 2.1 of [DR2], and the
Morrey space estimate (6.23) is contained in Theorems 2.2–2.3 of [DR2].

Now suppose q(x, ξ) has the form

(6.24)
q(x, ξ) =

∑

j≥0

qj(x, ξ), q0(x, ξ) =
∑

`

q`(x)ψ`(ξ),

qj(x, ξ) = gj(x)aj(ξ), j ≥ 1,

with ψ` as in (6.9)–(6.10). Then

(6.25) [q(x, D), p(x,D)] = [q0(x,D), p(x,D)] +
∑

j≥1

[qj(x, D), p(x,D)].

Clearly, if p(x, ξ) and q(x, ξ) have compact x-support, then

(6.26) p(x, ξ), q(x, ξ) ∈ L∞S0
cl =⇒ [q0(x,D), p(x,D)] compact on Mp

q .

Next,

(6.27) [qj(x,D), p(x,D)] = Mgj [aj(D), p(x,D)] + aj(D)[Mgj , p(x,D)].

Now we have, for some M < ∞,

(6.28) ‖Mgj [aj(D), p(x,D)]u‖Mp
q
≤ C‖gj‖L∞〈j〉M‖u‖Mp

q
,

if p(x, ξ) ∈ bmoS0
cl, and compactness if p(x, ξ) ∈ vmoS0

cl. Also, we have

(6.29) ‖aj(D)[Mgj , p(x, D)]u‖Mp
q
≤ C〈j〉M‖g‖bmo‖u‖Mp

q
,

if p(x, ξ) ∈ L∞S0
cl, and compactness if gj ∈ vmo. This proves:

Proposition 6.3. Assume p(x, ξ), q(x, ξ) ∈ (L∞∩vmo)S0
cl, with compact x-support.

Then

(6.30) [p(x,D), q(x,D)] is compact on Mp
q (Rn), 1 < p < ∞.

In fact, we have the following result, which is more precise than Proposition 6.3.
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Theorem 6.4. Assume p(x, ξ), q(x, ξ) ∈ (L∞ ∩ vmo)S0
cl, with compact support.

Then

(6.31) p(x,D)q(x,D) = a(x,D) + K, a(x, ξ) = p(x, ξ)q(x, ξ),

where K is compact on Mp
q .

Proof. The argument is similar to that given above. We have

(6.32)
p(x,D)q(x,D) = p0(x,D)q(x,D) + p(x,D)q0(x,D)

+
∑

j,k

Mfj
aj(D)Mgk

ak(D),

and the first two terms on the right are compact. The double sum is equal to

(6.33)
∑

j,k

Mfjgk
aj(D)ak(D) +

∑

j,k

Mfj [aj(D),Mgk
]ak(D).

The first sum in (6.33) differs from a(x,D) by a compact operator, and the second
sum is equal to

(6.34)
∑

j

Mfj [aj(D), q̃(x,D)],

where q̃(x, ξ) = q(x, ξ) − q0(x, ξ). The estimate (6.28) (with the roles of p(x, ξ)
and q(x, ξ) reversed) shows this is a norm convergent sum of compact operators, so
(6.31) is proven.

It is known that L∞ ∩ vmo is a closed linear subspace of L∞(Rn), and also an
algebra. We will sketch a proof, shown to the author by Pascal Auscher, of these
two facts.

First, assume fj ∈ L∞ ∩ vmo, fjν ∈ B∞ (given by (1.22)). Assume fjν → fj in
bmo-norm, and fj → f in L∞-norm. Then

‖f − fjν‖bmo ≤ ‖f − fj‖L∞ + ‖fj − fjν‖bmo,

which implies f ∈ vmo.
Next, if f, g ∈ L∞ ∩ vmo and B is some ball of radius r, then

r−n

∫

B

|fg − fBgB | dx ≤ ‖f‖L∞r−n

∫

B

|g − gB | dx + ‖g‖L∞r−n

∫

B

|f − fB | dx,

which implies fg ∈ vmo.
It is a general fact that, if A is a C∗-algebra and B a closed ∗-subalgebra od A,

containing the identity element, and if f ∈ B, then f is invertible in B if and only
if f is invertible in A. To see this, consider h = f∗f and expand (h + 1− z)−1 in a
power series about z = 0.

As a consequence, if p(x, ξ) ∈ (L∞ ∩ vmo)S0
cl is elliptic, i.e., |p(x, ξ)−1| ≤ C1 for

|ξ| ≤ C2, then p(x, ξ)−1(1 − ϕ(ξ)) ∈ (L∞ ∩ vmo)S0
cl, where ϕ(ξ) is an appropriate

cut-off.
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We next consider a “parametrix” for an elliptic PDE with vmo coefficients.
Consider an operator of the form

(6.35) Lu =
∑

ajk(x)∂j∂ku.

Assume

(6.36) ajk ∈ L∞ ∩ vmo, A−1|ξ|2 ≤
∑

ajk(x)ξjξk ≤ A|ξ|2,

for some A ∈ (0,∞). Then form

(6.37) B(x, ξ) = −
(∑

ajk(x)ξjξk

)−1(
1− ϕ(ξ)

) ∈ (L∞ ∩ vmo)S−2
cl ,

where ϕ ∈ C∞0 (Rn), ϕ(ξ) = 1 for |ξ| ≤ 1. Thus

(6.38) Bjk(x, ξ) = B(x, D)∂j∂k ∈ OP (L∞ ∩ vmo)S0
cl.

The following result arose in [CFL], and was also used in [DR2]:

Lemma 6.5. If u ∈ H2,p has compact support, then

(6.39) ∂j∂ku = Bjk(x, D)Lu +
∑

`,m

[Ma`m
, Bjk(x,D)]∂`∂mu + Rjku,

where

(6.40) Rjku = ϕ(D)∂j∂ku ∈ C∞.

Proof. The right side of (6.39), with Rjku omitted, is equal to

(6.41)

∑

`,m

a`m(x)Bjk(x, D)∂`∂mu

=
∫

∑
`,m

a`m(x)ξ`ξm

∑
µ,ν

aµν(x)ξµξν

(
1− ϕ(ξ)

)
ξjξkû(ξ)eix·ξ dξ,

and the fraction is equal to 1.

We now examine Fredholm properties of L. For simplicity, let us suppose u is
defined on the torus Tn. Set

(6.42) E = (1−∆)−1B(x,D)(1−∆).

We have, under the standing assumption 1 < q ≤ p < ∞,

(6.43) E : Mp
q −→ Mp,2

q .
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Proposition 6.6. Under the hypotheses (6.35)–(6.36), E is a two-sided Fredholm
inverse of L.

Proof. If we sum (6.39) over j = k = 1, . . . , n, we get

(6.44) ∆u = B(x,D)∆Lu +
∑

`,m

[Ma`m
, B(x,D)∆]∂`∂mu + ϕ(D)∆u,

hence, for u ∈ Mp,2
q ,

(6.45) u = ELu + (1−∆)−1K(1−∆)u = ELu + K̃u,

with

(6.46) K : Mp
q −→ Mp

q compact,

as a consequence of Proposition 6.2, hence

(6.47) K̃ : Mp,2
q −→ Mp,2

q compact.

Thus E is a left Fredholm inverse of L.
On the other hand,

(6.48) LE = L(1−∆)−1B(x,D)(1−∆) = P (x,D)Q(x,D),

with

(6.49) P (x, ξ) = −
∑

ajk(x)ξjξk〈ξ〉−2, Q(x, ξ) = P (x, ξ)−1(1− ϕ(ξ)),

both symbols belonging to (L∞∩vmo)S0
cl. Thus Theorem 6.4 implies P (x,D)Q(x, D) =

I +K2, with K2 compact. Hence E is a two-sided Fredholm inverse of L.

7. Morrey-space estimates for wave equations

Proposition 7.1. Assume n is odd. Let w(t, x) solve the Cauchy problem

(7.1) (∂2
t −∆)w = 0, w(0) = f, wt(0) = 0,

on R× Rn. If f ∈ L∞(Rn), then, for z ∈ Rn, ρ ∈ (0, 1],

(7.2) ‖w(t, ·)‖L2(Bρ(z)) ≤ C〈t〉‖f‖L∞ρ1/2.

Proof. By the strong Huygens principle, the value of w(t, x) for x ∈ Bρ(z) is unaf-
fected if f is replaced by

(7.3)
f#(x) = f(x) if |t| − 2ρ ≤ |x− z| ≤ |t|+ 2ρ,

0 otherwise.
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Clearly

(7.4) ‖f#‖L2(Rn) ≤ C〈t〉ρ1/2‖f‖L∞ ,

so

(7.5) w#(t) = cos t
√
−∆ f# =⇒ ‖w#(t)‖L2 ≤ C〈t〉ρ1/2‖f‖L∞ .

Since w(t, x) = w#(t, x) for x ∈ Bρ(z), we have (7.2).

Note that Proposition 7.1 can be stated in terms of a Morrey space:

(7.6) cos t
√
−∆ : L∞(Rn) −→ M

2n/(n−1)
2 (Rn).

More generally, we can replace L∞ by Lp, 2 ≤ p ≤ ∞, obtaining

(7.7) ‖w(t, ·)‖L2(Bρ(z)) ≤ C(t)‖f‖Lp ρ1/2−1/p,

so, for p ≥ 2, n odd,

(7.8) cos t
√
−∆ : Lp(Rn) −→ Mq

2 (Rn), q =
2n

n− 1 + 2/p
.

We now extend Proposition 7.1 to the case where ∆ is the Laplace operator on
a complete Riemannian manifold M , with bounded geometry, whose dimension n
is odd. In such a case, there exists τ ∈ (0,∞] such that the solution to (7.1) can
be written

(7.9) w(t) = R′(t)f,

and, for |t| < τ ,

(7.10) R(t) = R0(t) + B(t),

where R0(t) and B(t) have the following properties. First, the Schwartz kernel
of R0(t) is supported on the “light cone” {(t, x, y) : dist(x, y) = |t|}. Next, for
|t| < τ, B(t) is a family of FIOs of order −2, and B′(t) is a family of FIOs of order
−1, having the mapping properties

(7.11) B(t) : Hs(M) → Hs+2(M), B′(t) : Hs(M) → Hs+1(M).

We can now prove the following extension of Proposition 7.1.

Proposition 7.2. Let w(t, z) solve the Cauchy problem (7.1) on R × M , where
M is a complete Riemannian manifold with bounded geometry whose dimension n
is odd. There exists τ ∈ (0,∞] such that, if p ∈ [2,∞] and f ∈ Lp(M), then, for
|t| < τ, z ∈ M , and ρ ∈ (0, 1], we have

(7.12) ‖w(t, ·)‖L2(Bρ(z)) ≤ C(t)‖f‖Lp ρ1/2−1/p.

Proof. Defining f# as in (7.3), but using dist(x, z), we see that

(7.13) R′0(t)f = R′0(t)f
#, for x ∈ Bρ(z),
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and since R′0(t) : L2(M) → L2(M), we obtain

(7.14) ‖R′0(t)f‖L2(Bρ(z)) ≤ C(t)‖f#‖L2 ≤ C(t)‖f‖Lp ρ1/2−1/p.

Meanwhile, by finite propagation speed and (7.11) we have

(7.15) ‖B′(t)f‖H1(B1(z)) ≤ C(t)‖f‖Lp ,

and (7.12) follows from (7.14)–(7.15), since

(7.16) H1(B1(z)) ⊂ L2n/(n−2)(B1(z)) ⊂ M
2n/(n−2)
2 (B1(z)).

A statement equivalent to (7.12) is

(7.17) ‖w(t)‖Mq
2
≤ C(t)‖f‖Lp , q =

2n

n− 1 + 2/p
.

8. Conormal spaces and variants

We now define a class of spaces that includes “conormal spaces.” Let M be a
collection of vector fields in Rn (which may or may not be smooth everywhere).
If J = (j`, . . . , j1), we set XJ = Xj`

· · ·Xj1 , and we set |J | = `. By convention,
X∅u = u. Assume 1 < q ≤ p < ∞, k ∈ Z+, s ∈ R. We say u ∈ Nk(Mp,s

q ,M) if
u ∈ Mp,s

q and

(8.1) Xjν ∈M, |J | ≤ k =⇒ XJu ∈ Mp,s
q .

Important special cases include the following. Suppose Σ ⊂ Rn is a smooth
submanifold and M consists of all smooth vector fields (well behaved at infinity)
which are tangent to Σ. We denote the space defined above by Nk(Mp,s

q , Σ) in this
case. Compare the definition of Nk,s(Σ) in [Be], p. 52. As another example, F
could be a smooth foliation of Rn (by submanifolds of dimension d), and M could
consist of all smooth vector fields tangent to F . We denote the resulting space by
Nk(Mp,s

q ,F). An example of a collection M of vector fields Xj which are smooth
on Rn \ 0 is given in [Be], p. 119.

Let f be smooth; we want to estimate XJf(u), for u ∈ Nk(Mp,s
q ,M). Repeated

application of the chain rule gives

(8.2) XJf(u) =
∑

I1+···+I`=J

CI(XI1u) · · · (XI`u) f (`)(u).

If we set

(8.3) g(u,XI1u, . . . ,XI`u) = (XI1u) · · · (XI`u)f (`)(u),

then we know that, for s > 0,

(8.4)

‖g(u, vI1 , . . . , vI`
)‖Mp,s

q

≤ C(‖u‖L∞ , ‖vI1‖L∞ , . . . , ‖vI`
‖L∞)

· (1 + ‖u‖Mp,s
q

+ ‖vI1‖Mp,s
q

+ · · ·+ ‖vI`
‖Mp,s

q

)
.
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Hence we have the estimate:

(8.5) ‖XJf(u)‖Mp,s
q
≤ C(‖XIu‖L∞ : I ≤ J) ·

(
1 +

∑

I≤J

‖XIu‖Mp,s
q

)
.

While we have briefly allowed the possibility that M contains nonsmooth vector
fields, we will henceforth assume that all the vector fields in M are smooth, with
coefficients that are bounded on Rn, together with all their derivatives. We will
also adopt the standing assumption that

(8.6) 1 < q ≤ p < ∞.

Proposition 8.1. Given P ∈ OPSm
1,0, s,m ∈ R,

(8.7) P : Nk(Mp,s
q ,M) −→ Nk(Mp,s−m

q ,M).

Proof. For any X ∈M, we have

(8.8) XPu = PXu + PXu,

where PX = [X,P ] ∈ OPSm
1,0; in fact, if X =

∑
aj(x)∂/∂xj ,

(8.9) PX(x, ξ) = X · P (x, ξ) + P b
X(x, ξ),

where

(8.10)

X · P (x, ξ) =
∑

aj(x)∂xj P (x, ξ),

P b
X(x, ξ) ∼

∑

|α|≥1

i|α|

α!
P (α)(x, ξ)∂α

x X(x, ξ).

Inductively, we obtain

(8.11) XJPu =
∑

I≤J

PJ\IXIu, PJ\I ∈ OPSm
1,0.

Given this, (8.7) follows from (2.4).

In fact, using (8.8)–(8.9), we can say more. Let us say that

(8.12) p(x, ξ) ∈ (Mk)Sm
1,δ

provided p(x, ξ) ∈ Sm
1,δ and

(8.13) XJ · p(x, ξ) ∈ Sm
1,δ, ∀ |J | ≤ k.

Similarly define (Mk)BSm
1,1 to consist of p(x, ξ) ∈ BSm

1,1 such that XJ · p(x, ξ) ∈
BSm

1,1 whenever |J | ≤ k. Replacing the use of (2.4) by that of (2.12) and (2.24),
and noting that (8.9)–(8.10) is valid even for P ∈ OPSm

1,1, we have:
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Proposition 8.2. Given P ∈ OP (Mk)BSm
1,1, the property (8.7) holds. Further-

more, given P ∈ OP (Mk)Sm
1,1, (8.7) holds provided s−m > 0.

Note that we can substitute other spaces for Mp,s
q in (8.1), producing such spaces

as Nk(Cs
∗ ,M), for which we have analogues of Propositions 8.1–8.2.

Next, given a smooth function F , write

(8.14) F (u) = MF (u; x,D)u + F (u0),

as in (1.8)–(1.9).

Proposition 8.3. If u ∈ Nk(Cr
∗ ,M), r > 0, then

(8.15) MF (u; x, ξ) ∈ (Mk)Ar
∗S

m
1,1.

Here, Ar
∗S

m
1,δ ⊂ Sm

1,δ consists of symbols satisfying

(8.16) ‖Dξp(·, ξ)‖Cs∗ ≤ Cs〈ξ〉m−|α|+δ(s−r), s ≥ r.

Proof. Using (1.9), we need to estimate

(8.17) m`(x) =
∫ 1

0

F ′(u`,τ ) dτ, u`,τ = Ψ`(D)u + τψ`+1(D)u.

The analogue of (8.5), with Mp,s
q replaced by Cs

∗ , is

(8.18) ‖XJF ′(u`,τ )‖Cs∗ ≤ C(‖XIu`,τ‖L∞ : I ≤ J) ·
(
1 +

∑

I≤J

‖XIu`,τ‖Cs∗

)
.

To proceed, we use the following:

Lemma 8.4. If u ∈ Nk(Cr
∗ ,M), r > 0, then

(8.19) ‖XIΨ`(D)u‖Cs∗ ≤ Cs,I · 2`(s−r), s ≥ r, |I| ≤ k.

We will establish this after using it to prove the proposition. In fact, we now
deduce from (8.18) that

(8.20) ‖XJm`‖Cs∗ ≤ CJ,s · 2`(s−r), s ≥ r, |J | ≤ k.

Since ψ`+1(ξ) in (1.9) is supported on 〈ξ〉 ∼ 2`, we have (8.16), and Proposition 8.3
is established, modulo a proof of Lemma 8.4.

To prove Lemma 8.4, we can treat XIΨ`(D) as in (8.8)–(8.11), obtaining

(8.21) XIΨ`(D) =
∑

K≤I

ψI\K,`(x,D)XK .

Furthermore,

(8.22) ψI\K,`(x,D)− ψI\K,`(x,D)Ψ`+3(D)
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is bounded in OPS−∞1,0 . Since XKu ∈ Cr
∗ for |K| ≤ k, (8.19) follows from:

(8.23) v ∈ Cr
∗ =⇒ ‖Ψ`+3(D)v‖Cs∗ ≤ Cs · 2`(s−r), s ≥ r,

which is elementary.

A. A Schwartz kernel estimate

Here we want to prove that, if p(x, ξ) ∈ S0
1,1(Rn), then the operator product

(A.1) Λsp(x, D)Λ−s = Ps

has Schwartz kernel Ks satisfying

(A.2) |Ks(x, y)| ≤ Cs|x− y|−n,

for 0 < s < 1. Note that Ps defines a bounded linear operator on Hσ,p(Rn) for all
σ > −s, p ∈ (1,∞). However, Ps is perhaps not an element of OPS0

1,1(Rn). Of
course, (A.2) clearly holds for s = 0, as a consequence of the implication

(A.3) |Dα
ξ A(ξ)| ≤ Cα|ξ|τ−|α| =⇒ |Â(x)| ≤ Cτ |x|−n−τ , τ > −n.

Recall that Λs is Fourier multiplication by 〈ξ〉s. It will be convenient for the
dilation argument we intend to apply, to replace Λs by λs, Fourier multiplication
by |ξ|s. We will show that

(A.4) P̃s = λsp(x,D)λ−s

has Schwartz kernel K̃s satisfying

(A.5) |K̃s(x, y)| ≤ Cs|x− y|−n.

It is clear that

(A.6) P̃s − Ps : Hσ,p
comp(Rn) → C∞(Rn), σ > −s, 1 < p < ∞,

provided 0 < s < n, and hence (A.5) readily implies (A.2).
To prove (A.5), we will examine

(A.7) ϑrKs(x, y) = Ks(rx, ry),

which is the Schwartz kernel of

(A.8) P̃sr = r−nδrP̃sδ
−1
r ; δrf(x) = f(rx).

We will show that, for r ∈ (0, 1],

(A.9) |ϑrKs(x, y)| ≤ Cr−n on Ω = {(x, y) : 1 ≤ |x− y| ≤ 2},
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which implies (A.5) for |x− y| ≤ 1, hence (A.2) for |x− y| ≤ 1. It is relatively easy
to show that Ks(x, y) is rapidly decreasing as |x−y| → ∞, so this will suffice. Now,
since λsδ−1

r = r−sδ−1
r λs, we have

(A.10) ϑrKs(x, y) = r−nK̃s,r(x, y)

where

(A.11) K̃s,r(x, y) = Schwartz kernel of λsδrp(x, D)δ−1
r λ−s,

or, setting

(A.12) κr(x, y) = Schwartz kernel of pr(x,D) = δrp(x,D)δ−1
r ,

we have

(A.13) K̃s,r(x, y) = λs
xλ−s

y κr(x, y),

and we want to show that

(A.14) |λs
xλ−s

y κr(x, y)| ≤ Cs on Ω, 0 < r ≤ 1,

with Cs independent of r.
Note that the symbol of pr(x,D) is

(A.15) pr(x, ξ) = p(rx, ξ/r),

which satisfies

(A.16)

|Dβ
xDα

ξ pr(x, ξ)| ≤ Cαβr|β|−|α|〈ξ/r〉|β|−|α|

= Cαβ

(
r2 + |ξ|2)(|β|−|α|)/2

≤ Cαβ〈ξ〉|β||ξ|−|α|, for 0 < r ≤ 1.

Hence, by (A.3),

(A.17) |κr(x, y)| ≤ C|x− y|−n,

with C independent of r ∈ (0, 1].
Similarly, λ−s

y κr(x, y) is the Schwartz kernel of qr(x,D) = pr(x,D)λ−s, with
symbol

(A.18) qr(x, ξ) = p(rx, ξ/r)|ξ|−s

satisfying

(A.19) |Dβ
xDα

ξ qr(x, ξ)| ≤ Cαβ〈ξ〉|β||ξ|−s−|α|,

which implies

(A.20) |λ−s
y κr(x, y)| ≤ Cs|x− y|s−n,

and more generally

(A.21) |Dβ
xDγ

yλ−s
y κr(x, y)| ≤ Csαβ |x− y|s−n−|β|−|γ|,

provided s < n. The estimate (A.14) is a simple consequence of this.

B. Another proof of Proposition 2.2

Here we include a self-contained proof of:
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Proposition B.1. Assume the Schwartz kernel k(x, y) of T satisfies

(B.1) |k(x, y)| ≤ C|x− y|−n
(
1 + |x− y|)−M

for some M > 0. Then, if 1 < q ≤ p < ∞,

(B.2) T : Lq(Rn) → Lq(Rn) =⇒ T : Mp
q (Rn) → Mp

q (Rn).

Proof. Let f ∈ Mp
q (Rn). Pick z ∈ Rn, r ∈ (0, 1], and write

(B.3) f = f0 +
∑

2jr≤1

gj + h,

where

(B.4) f0 = χB2r(z)f, gj = χArj f, Arj = {x : |x− z| ∈ [2jr, 2j+1r]},

and j ≥ 1 in the sum. We want to estimate Tf on Br(z). Clearly

(B.5) ‖Tf0‖Lq(Rn) ≤ C‖f0‖Lq(Rn) ≤ Cra, a =
n

q
− n

p
,

and the estimate (B.1) for |x− y| ≥ 1 implies

(B.6) ‖Th‖L∞(B1/2(z)) ≤ C‖h‖Mp
q (Rn).

It remains to estimate
∑

Tgj on Br(z). To do this, write

(B.7) χBr(z)Tgj = Tj(χArj f),

where Tj has integral kernel

(B.8) kj(x, y) = χBr(z)k(x, y)χArj (y).

Now, using (B.1) for |x− y| ≤ 1, we have

(B.9)

∫
|kj(x, y)| dx =

∫

Br(z)

|k(x, y)|χArj (y) dx

≤ C(2jr)−n · vol Br(z)

≤ C2−jn,

and

(B.10)

∫
|kj(x, y)| dy =

∫

Arj

χBr(z)|k(x, y)| dy

≤ C(2jr)−n · vol Arj

≤ C.
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Hence, if f ∈ Mp
q (Rn),

(B.11)

‖Tj(χArj
f)‖Lq ≤ C2−jn/q‖χArj

f‖Lq

≤ C2−jn/q(2jr)a

≤ C2−jn/pra,

so, if p < ∞,

(B.12)
∑

‖Tgj‖Lq(Br(z)) ≤ C
(∑

j≥1

2−jn/p
)
ra ≤ C ′ra,

as desired. This completes the proof.

If f ∈Mp
q(Rn), one can replace (B.3) by

f = f0 +
∞∑

j=1

gj

and repeat the estimates above, obtaining:

Proposition B.2. Assume the Schwartz kernel k(x, y) of T satisfies

(B.13) |k(x, y)| ≤ C|x− y|−n.

Then, if 1 < q ≤ p < ∞,

(B.14) T : Lq(Rn) → Lq(Rn) =⇒ T : Mp
q(Rn) →Mp

q(Rn).
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