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1. Introduction

There is a continuation of the construction leading from the real numbers to the
complex numbers that proceeds for two more steps, yielding first the quaternions (of
dimension 4 over R) and then the octonions (of dimension 8 over R). A quaternion
ξ ∈ H is given by

(1.1) ξ = a + bi + cj + dk, a, b, c, d ∈ R.

Addition is performed componentwise, and multiplication is an R-bilinear map
H×H→ H in which 1 is a unit, products of distinct factors i, j, k behave like the
cross product on R3, and i2 = j2 = k2 = −1. This product is not commutative,
but it is associative. An octonion x ∈ O is given by

(1.2) x = (ξ, η), ξ, η ∈ H.

Addition is again defined componentwise, and multiplication is an R-bilinear map
O×O→ O, whose definition (given in §3) is a somewhat subtle modification of the
definition of multiplication on H. One major difference is that multiplication on
O is no longer associative. Nevertheless, this non-associative algebra O has a very
beautiful algebraic structure, whose study is the principal object of these notes.

We begin in §2 with a brief treatment of quaternions, giving results of use in
our treatment of O, which starts in §3. After defining the product xy of two
elements of O, we establish basic properties, introduce a norm and cross product,
and study 4-dimensional subalgebras of O that are isomorphic to H. These include
A = Span{1, u1, u2, u1u2}, when u1 and u2 are orthonormal elements of Im(O).
Analysis of the relationship of A and A⊥ gives rise to orthogonal linear maps on O
that are shown to preserve the product, i.e., to automorphisms of O, which form a
group, denoted Aut(O).

1



2

Section 4 goes further into Aut(O), noting that it is a compact, connected Lie
group of dimension 14, and analyzing some of its subgroups, including groups iso-
morphic to SO(4) and groups isomorphic to SU(3). Both of these types of sub-
groups contain two-dimensional tori. It is shown that Aut(O) contains no tori of
larger dimension. These facts are used in §5 to show that Aut(O) is simple and to
analyze its root system. The analysis reveals that Aut(O) falls into the classifica-
tion of compact simple Lie groups as the group denoted G2. In §6 we make further
comments about the Lie algebra of Aut(O), including the fact that it has a Z/(3)
grading.

The Lie group G2 is the first in a list of 5 exceptional compact Lie groups, denoted
G2, F4, E6, E7, and E8, with complexified Lie algebras denoted G2,F4, E6,E7, and
E8. In Appendix A we briefly describe a unified construction of G2 and E8, due to
Freudenthal, which for G2 meshes nicely with the analysis in §6.

Further material on the algebra of octonions, its automorphism group, and other
concepts arising here can be found in a number of sources, including the survey
article [B] and the books [SV], [Por], and [H].

Acknowledgment. Thanks to Robert Bryant for valuable conversations on this
topic, particularly for sharing his insights on the Moufang identities.
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2. Quaternions

The space H of quaternions is a four-dimensional real vector space, identified
with R4, with basis elements 1, i, j, k, the element 1 identified with the real number
1. Elements of H are represented as follows:

(2.1) ξ = a + bi + cj + dk,

with a, b, c, d ∈ R. We call a the real part of ξ (a = Re ξ) and bi + cj + dk the
vector part. We also have a multiplication on H, an R-bilinear map H × H → H,
such that 1 · ξ = ξ · 1 = ξ, and otherwise governed by the rules

(2.2) ij = k = −ji, jk = i = −kj, ki = j = −ik,

and

(2.3) i2 = j2 = k2 = −1.

Otherwise stated, if we write

(2.4) ξ = a + u, a ∈ R, u ∈ R3,

and similarly write η = b + v, b ∈ R, v ∈ R3, the product is given by

(2.5) ξη = (a + u)(b + v) = (ab− u · v) + av + bu + u× v.

Here u · v is the dot product in R3, and u × v is the cross product. The quantity
ab− u · v is the real part of ξη and av + bu + u× v is the vector part. Note that

(2.6) ξη − ηξ = 2u× v.

It is useful to take note of the following symmetries of H.

Proposition 2.1. Let K : H→ H be an R-linear transformation such that K1 = 1
and K cyclically permutes (i, j, k) (e.g., Ki = j, Kj = k, Kk = i). Then K
preserves the product in H, i.e.,

K(ξη) = K(ξ)K(η), ∀ ξ, η ∈ H.

We say K is an automorphism of H.

Proof. This is straightforward from the multiplication rules (2.2)–(2.3).

We move on to the following basic result.
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Proposition 2.2. Multiplication in H is associative, i.e.,

(2.7) ζ(ξη) = (ζξ)η, ∀ ζ, ξ, η ∈ H.

Proof. Given the R-bilinearity of the product, it suffices to check (2.7) when each
ζ, ξ, and η is either 1, i, j, or k. Since 1 is the multiplicative unit, the result (2.7) is
easy when any factor is 1. Furthermore, one can use Proposition 2.1 to reduce the
possibilities further; for example, one can take ζ = i. We leave the final details to
the reader.

Remark. In the case that ξ = u, η = v, and ζ = w are purely vectorial, we have

(2.8)
w(uv) = w(−u · v + u× v) = −(u · v)w − w · (u× v) + w × (u× v),

(wu)v = (−w · u + w × u)v = −(w · u)v − (w × u) · v + (w × u)× v.

Then the identity of the two left sides is equivalent to the pair of identities

w · (u× v) = (w × u) · v,(2.9)

w × (u× v)− (w × u)× v = (w · u)v − (u · v)w.(2.10)

As for (2.10), it also follows from the pair of identities

(2.11) w × (u× v)− (w × u)× v = (v × w)× u,

and

(2.12) (v × w)× u = (w · u)v − (u · v)w,

which we leave as an exercise for the reader.

In addition to the product, we also have a conjugation operation on H:

(2.13) ξ = a− bi− cj − dk = a− u.

A calculation gives

(2.14) ξη = (ab + u · v)− av + bu− u× v.

In particular,

(2.15) Re(ξη) = Re(ηξ) = (ξ, η),

the right side denoting the Euclidean inner product on R4. Setting η = ξ in (2.14)
gives

(2.16) ξξ = |ξ|2,
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the Euclidean square-norm of ξ. In particular, whenever ξ ∈ H is nonzero, it has a
multiplicative inverse,

(2.17) ξ−1 = |ξ|−2ξ.

We say a ringR with unit 1 is a division ring if each nonzero ξ ∈ R has a multiplica-
tive inverse. It follows from (F.17) that H is a division ring. It is not a field, since
multiplication in H is not commutative. Sometimes H is called a “noncommutative
field.”

To continue with products and conjugation, a routine calculation gives

(2.18) ξη = η ξ.

Hence, via the associative law,

(2.19) |ξη|2 = (ξη)(ξη) = ξηηξ = |η|2ξξ = |ξ|2|η|2,
or

(2.20) |ξη| = |ξ| |η|.
Note that C = {a + bi : a, b ∈ R} sits in H as a commutative subring, for which the
properties (2.16) and (2.20) are familiar.

Let us examine (2.20) when ξ = u and η = v are purely vectorial. We have

(2.21) uv = −u · v + u× v.

Hence, directly,

(2.22) |uv|2 = (u · v)2 + |u× v|2,
while (2.20) implies

(2.23) |uv|2 = |u|2|v|2.
On the other hand, if θ is the angle between u and v in R3,

u · v = |u| |v| cos θ.

Hence (2.22) implies

(2.24) |u× v|2 = |u|2|v|2 sin2 θ.

We next consider the set of unit quaternions:

(2.25) Sp(1) = {ξ ∈ H : |ξ| = 1}.
Using (2.17) and (2.20), we see that Sp(1) is a group under multiplication. It sits
in R4 as the unit sphere S3. We compare Sp(1) with the group SU(2), consisting
of 2× 2 complex matrices of the form

(2.26) U =
(

ξ −η
η ξ

)
, ξ, η ∈ C, |ξ|2 + |η|2 = 1.

The group SU(2) is also in natural one-to-one correspondence with S3. Further-
more, we have:
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Proposition 2.3. The groups SU(2) and Sp(1) are isomorphic under the corre-
spondence

(2.27) U 7→ ξ + jη,

for U as in (2.26).

Proof. The correspondence (2.27) is clearly bijective. To see it is a homomorphism
of groups, we calculate:

(2.28)
(

ξ −η
η ξ

)(
ξ′ −η′

η′ ξ
′

)
=

(
ξξ′ − ηη′ −ξη′ − ηξ

′

ηξ′ + ξη′ −ηη′ + ξξ
′

)
,

given ξ, η ∈ C. Noting that, for a, b ∈ R, j(a + bi) = (a− bi)j, we have

(2.29)
(ξ + jη)(ξ′ + jη′) = ξξ′ + ξjη′ + jηξ′ + jηjη′

= ξξ′ − ηη′ + j(ηξ′ + ξη′).

Comparison of (2.28) and (2.29) verifies that (2.27) yields a homomorphism of
groups.

We next define the map

(2.30) π : Sp(1) −→ L(R3)

by

(2.31) π(ξ)u = ξuξ−1 = ξuξ, ξ ∈ Sp(1), u ∈ R3 ⊂ H.

To justify (2.30), we need to show that if u is purely vectorial, so is ξuξ. In fact,
by (2.18),

(2.32) ζ = ξuξ =⇒ ζ = ξuξ = −ξuξ = −ζ,

so that is indeed the case. By (2.20),

|π(ξ)u| = |ξ| |u| |ξ| = |u|, ∀u ∈ R3, ξ ∈ Sp(1),

so in fact

(2.33) π : Sp(1) −→ SO(3),

and it follows easily from the definition (2.31) that if also ζ ∈ Sp(1), then π(ξζ) =
π(ξ)π(ζ), so (2.33) is a group homomorphism. It is readily verified that

(2.34) Ker π = {±1}.
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Note that we can extend (2.30) to

(2.35) π : Sp(1) −→ L(H), π(ξ)η = ξηξ, ξ ∈ Sp(1), η ∈ H,

and again π(ξζ) = π(ξ)π(ζ) for ξ, ζ ∈ Sp(1). Furthermore, each map π(ξ) is a ring
homomorphism, i.e.,

(2.36) π(ξ)(αβ) = (π(ξ)α)(π(ξ)β), α, β ∈ H, ξ ∈ Sp(1).

Since π(ξ) is invertible, this is a group of ring automorphisms of H. The reader is
invited to draw a parallel to the following situation. Define

(2.37) π̃ : SO(3) −→ L(H), π̃(T )(a + u) = a + Tu,

given a + u ∈ H, a ∈ R, u ∈ R3. It is a consequence of the identity

T (u× v) = Tu× Tv, for u, v ∈ R3, T ∈ SO(3),

that

(2.38) π̃(T )(αβ) = (π̃(T )α)(π̃(T )β), α, β ∈ H, T ∈ SO(3).

Thus SO(3) acts as a group of automorphisms of H. (Note that Proposition 2.1
is a special case of this.) We claim this is the same group of automorphisms as
described in (2.35)–(2.36), via (2.33). This is a consequence of the fact that π in
(2.33) is surjective. We mention that the automorphism K in Proposition 2.1 has
the form (2.35) with

ξ =
1
2
(1 + i + j + k).
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3. Octonions

The set of octonions (also known as Cayley numbers) is a special but intriguing
example of a nonassociative algebra. This space is

(3.1) O = H⊕H,

with product given by

(3.2) (α, β) · (γ, δ) = (αγ − δβ, δα + βγ), α, β, γ, δ ∈ H,

with conjugation δ 7→ δ on H defined as in §2. We mention that, with H = C⊕ C,
the product in H is also given by (3.2), with α, β, γ, δ ∈ C. Furthermore, with
C = R⊕R, the product in C is given by (3.2), with α, β, γ, δ ∈ R. In the setting of
O = H⊕H, the product in (3.2) is clearly R-bilinear, but it is neither commutative
nor associative. However, it does retain a vestige of associativity, namely

(3.3) x(yz) = (xy)z whenever any two of x, y, z ∈ O coincide.

We define a conjugation on O:

(3.4) x = (α, β) =⇒ x = (α,−β).

We set Re x = (x + x)/2 = (Re α, 0). Note that a = Re x lies in the center of O
(i.e., commutes with each element of O), and x = 2a − x. It is straightforward to
check that

(3.5) x, y ∈ O =⇒ Re xy = Re yx.

We have a decomposition

(3.6) x = a + u, a = Re x, u = x− Re x = Imx,

parallel to (2.4). Again we call u the vector part of x, and we say that u ∈ Im(O).
If also y = b + v, then

(3.7) xy = ab + av + bu + uv,

with a similar formula for yx, yielding

(3.8) xy − yx = uv − vu.
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We now define the inner product

(3.9) 〈x, y〉 = Re(xy), x, y ∈ O.

To check symmetry, note that if x = a + u, y = b + v,

(3.10) 〈x, y〉 = ab− Re(uv),

and (3.5) then implies

(3.11) 〈x, y〉 = 〈y, x〉.

In fact, (3.9) yields the standard Euclidean inner product on O ≈ R8, with square
norm |x|2 =

√
〈x, x〉. We have

(3.12) x = (α, β) =⇒ xx = (αα + ββ, 0) = (|x|2, 0).

As a consequence, we see that

(3.13) x ∈ O, x 6= 0, y = |x|−2x =⇒ xy = yx = 1,

where 1 = (1, 0) is the multiplicative unit in O.
Returning to conjugation on O, we have, parallel to (2.18),

(3.14) x, y ∈ O =⇒ xy = y x,

via a calculation using the definition (3.2) of the product. Using the decomposition
x = a+u, y = b+ v, this is equivalent to uv = vu, and since uv = 2 Re(uv)−uv =
−2〈u, v〉 − uv, this is equivalent to

(3.15) u, v ∈ Im(O) =⇒ uv + vu = −2〈u, v〉.

In turn, (3.15) follows by expanding (u+ v)2 and using w2 = −|w|2 for w ∈ Im(O),
with w = u, v, and u + v. We next establish the following parallel to (2.20).

Proposition 3.1. Given x, y ∈ O,

(3.16) |xy| = |x| |y|.

Proof. To begin, we bring in the following variant of (3.3),

(3.17) x, y ∈ O =⇒ (xy)(yx) = ((xy)y)x,

which can be verified from the definition (3.2) of the product. Taking into account
x = 2a− x, y = 2b− y, and (3.14), we have

(3.18)
(xy)(xy) = (xy)(y x) = ((xy)y)x

= (x|y|2)x = |x|2|y|2,
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which gives (3.16), since |xy|2 = (xy)(xy).

Continuing to pursue parallels with §2, we define a cross product on Im(O) as
follows. Given u, v ∈ Im(O), set

(3.19) u× v =
1
2
(uv − vu).

By (3.5), this is an element of Im(O). Also, if x = a + u, y = b + v,

(3.20) xy − yx = 2u× v.

Compare (2.6). Putting together (3.15) and (3.19), we have

(3.21) uv = −〈u, v〉+ u× v, u, v ∈ Im(O).

Hence

(3.22) |uv|2 = |〈u, v〉|2 + |u× v|2.

Now (3.16) implies |uv|2 = |u|2|v|2, and of course 〈u, v〉 = |u| |v| cos θ, where θ is
the angle between u and v. Hence, parallel to (2.24),

(3.23) |u× v|2 = |u|2|v|2| sin θ|2, ∀u, v ∈ Im(O).

We have the following complement.

Proposition 3.2. If u, v ∈ Im(O), then

(3.24) w = u× v =⇒ 〈w, u〉 = 〈w, v〉 = 0.

Proof. We know that w ∈ Im(O). Hence, by (3.21),

(3.25)
〈w, v〉 = 〈uv, v〉 = Re((uv)v)

= Re(u(vv)) = |v|2 Re u = 0,

the third identity by (3.3) (applicable since v = −v). The proof that 〈w, u〉 = 0 is
similar.

Returning to basic observations about the product (3.2), we note that it is
uniquely determined as the R-bilinear map O×O→ O satisfying

(3.26)
(α, 0) · (γ, 0) = (αγ, 0), (0, β) · (γ, 0) = (0, βγ),

(α, 0) · (0, δ) = (0, δα), (0, β) · (0, δ) = (−δβ, 0),
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for α, β, γ, δ ∈ H. In particular, H ⊕ 0 is a subalgebra of O, isomorphic to H.
As we will see, O has lots of subalgebras isomorphic to H. First, let us label the
“standard” basis of O as

(3.27)
1 = (1, 0), e1 = (i, 0), e2 = (j, 0), e3 = (k, 0),

f0 = (0, 1), f1 = (0, i), f2 = (0, j), f3 = (0, k),

and describe the associated multiplication table. The mutiplication table for 1, e1, e2, e3

is the same as (2.2)–(2.3), of course. We also have f2
` = −1 and all the distinct e`

and fm anticommute. These results are special cases of the fact that

(3.28) u, v ∈ Im(O), |u| = 1, 〈u, v〉 = 0 =⇒ u2 = −1 and uv = −vu,

which is a consequence of (3.15).
To proceed with the multiplication table for O, note that (3.26) gives

(3.29) (α, 0)f0 = (0, α),

so

(3.30) e`f0 = f`, 1 ≤ ` ≤ 3.

By (3.28), f0e` = −f`. Using the notation ε1 = i, ε2 = j, ε3 = k ∈ H, we have

(3.31) e`fm = (ε`, 0) · (0, εm) = (0, εmε`), 1 ≤ `,m ≤ 3,

and the multiplication table (2.2)–(2.3) gives the result as −f0 if ` = m, and ±fµ

if ` 6= m, where {`,m, µ} = {1, 2, 3}. Again by (3.28), fme` = −e`fm. To complete
the multiplication table, we have

(3.32) f0fm = (0, 1) · (0, εm) = (εm, 0) = em, 1 ≤ m ≤ 3,

and

(3.33) f`fm = (0, ε`) · (0, εm) = (εmε`, 0) = eme`, 1 ≤ `,m ≤ 3.

We turn to the task of constructing subalgebras of O. To start, pick

(3.34) u1 ∈ Im(O), such that |u1| = 1.

By (3.28), u2
1 = −1, and we have the subalgebra of O,

(3.35) Span{1, u1} ≈ C.

To proceed, pick

(3.36) u2 ∈ Im(O), such that |u2| = 1 and 〈u1, u2〉 = 0,
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and set

(3.37) u3 = u1u2.

By (3.28),

(3.38) u2
2 = −1, and u2u1 = −u1u2 = −u3.

Note that

(3.39) Re u3 = Re(u1u2) = −〈u1, u2〉 = 0.

Also, by (3.16), |u3| = 1, so

(3.40) 1 = u3u3 = −u2
3.

Furthermore, by (3.3),

(3.41)
u1u3 = u1(u1u2) = (u1u1)u2 = −u2, and

u3u2 = (u1u2)u2 = u1(u2u2) = −u1.

Let us also note that

(3.42) u3 = u1 × u2.

Hence, by Proposition 3.2,

(3.43) 〈u3, u1〉 = 〈u3, u2〉 = 0,

and, again by (3.28), u3u1 = −u1u3 and u2u3 = −u3u2. Thus we have for each
such choice of u1 and u2 a subalgebra of O,

(3.44) Span{1, u1, u2, u3} ≈ H.

At this point we can make the following observation.

Proposition 3.3. Given any two elements x1, x2 ∈ O, the algebra A generated by
1, x1, and x2 is isomorphic to either R,C, or H. In particular, it is associative.

Proof. Consider V = Span{1, x1, x2}. If dim V = 1, then A ≈ R. If dim V = 2,
the argument yielding (3.35) gives A ≈ C. If dim V = 3, then Im x1 and Im x2 are
linearly independent. We can pick orthonormal elements u1 and u2 in their span.
Then A is the algebra generated by 1, u1, and u2, and the analysis (3.34)–(3.44)
gives A ≈ H.
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The last assertion of Proposition 3.3 contains (3.3) and (3.17) as special cases.
The failure of O to be associative is clearly illustrated by (3.31), which implies

(3.45) e`(emf0) = (eme`)f0, for 1 ≤ `,m ≤ 3,

so
e`(emf0) = −(e`em)f0, if ` 6= m.

Bringing in also (3.33) yields

(3.46) f`(emf0) = eme`, while (f`em)f0 = e`em.

We next explore how the subalgebra

(3.47) A = Span{1, u1, u2, u3},

from (3.44), interacts with its orthogonal complement A⊥. Pick

(3.48) v0 ∈ A⊥, |v0| = 1.

Note that v0 ∈ Im(O). Taking a cue from (3.30), we set

(3.49) v` = u`v0, 1 ≤ ` ≤ 3.

Note that Re v` = −〈u`, v0〉 = 0, so v` ∈ Im(O). We claim that

(3.50) {v0, v1, v2, v3} is an orthonormal set in O.

To show this, we bring in the following operators. Given x ∈ O, define the R-linear
maps

(3.51) Lx, Rx : O −→ O, Lxy = xy, Rxy = yx.

By (3.16), for y ∈ O,

(3.52) |x| = 1 =⇒ |Lxy| = |Rxy| = |y|.

Hence Lx and Rx are orthogonal transformations. Since the unit sphere in O is
connected, det Lx and det Rx are ≡ 1 for such x, so

(3.53) |x| = 1 =⇒ Lx, Rx ∈ SO(O).

Hence Rv0 ∈ SO(O). Since

(3.54) v0 = Rv01, v` = Rv0u` for 1 ≤ ` ≤ 3,
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we have (3.50). We next claim that

(3.55) v` ⊥ um, ∀ `, m ∈ {1, 2, 3}.

In fact, since Lu`
∈ SO(O),

(3.56)
〈v`, um〉 = 〈u`v0, um〉 = 〈u`(u`v0), u`um〉

= 〈(u`u`)v0, u`um〉 = −〈v0, u`um〉 = 0,

the third identity by (3.3).
It follows that

(3.57) A⊥ = Span{v0, v1, v2, v3}.

Consequently

(3.58) {1, u1, u2, u3, v0, v1, v2, v3} is an orthonormal basis of O.

Results above imply that

(3.59) Rv0 : A ≈−→ A⊥.

Such an argument applies to any unit length v ⊥ A. Consequently

(3.60) x ∈ A, y ∈ A⊥ =⇒ xy ∈ A⊥.

Noting that if also x ∈ Im(O) then xy = −yx, we readily deduce that

(3.61) x ∈ A, y ∈ A⊥ =⇒ yx ∈ A⊥.

Furthermore, since |x| = 1 ⇒ Lx, Rx ∈ SO(O), we have

(3.62) x ∈ A⊥ =⇒ Lx, Rx : A⊥ −→ A,

hence

(3.63) x, y ∈ A⊥ =⇒ xy ∈ A.

Note that for the special case

(3.64) H = H⊕ 0, H⊥ = 0⊕H,

the results (3.60)–(3.63) follow immediately from (3.26).
We have the following important result about the correspondence between the

bases (3.27) and (3.58) of O.
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Proposition 3.4. Let u`, v` ∈ Im(O) be given as in (3.47)–(3.49). Then the
orthogonal transformation K : O→ O, defined by

(3.65) K1 = 1, Ke` = u`, Kf` = v`,

preserves the product on O:

(3.66) K(xy) = K(x)K(y), ∀x, y ∈ O.

That is to say, K is an automorphism of O.

Proof. What we need to show is that {u1, u2, u3, v0, v1, v2, v3} has the same multi-
plication table as {e1, e2, e3, f0, f1, f2, f3}. That products involving only {u`} have
such behavior follows from the arguments leading to (3.44). That e`f0 = f` is
paralleled by u`v0 = v`, for 1 ≤ ` ≤ 3, is the definition (3.49). It remains to show
that the products u`vm and v`vm mirror the products e`fm and f`fm, as given in
(3.31)–(3.33).

First, we have, for 1 ≤ m ≤ 3,

(3.67) v0vm = −vmv0 = −(umv0)v0 = −um(v0v0) = um,

mirroring (3.32). Mirroring the case ` = m of (3.31), we have

(3.68) u`v` = u`(u`v0) = (u`u`)v0 = −v0.

The analogue of (3.31) for ` = m is simple, thanks to (3.15):

(3.69) v`v` = −1.

It remains to establish the following:

(3.70) u`vm = (umu`)v0, v`vm = umu`, for 1 ≤ `,m ≤ 3, ` 6= m.

Expanded out, the required identities are

(3.71) u`(umv0) = (umu`)v0, 1 ≤ `,m ≤ 3, ` 6= m,

and

(3.72) (u`v0)(umv0) = umu`, 1 ≤ `,m ≤ 3, ` 6= m.

Such identities as (3.71)–(3.72) are closely related to an important class of iden-
tities known as “Moufang identities,” which we now introduce.
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Proposition 3.5. Given x, y, z ∈ O,

(3.73) (xyx)z = x(y(xz)), z(xyx) = ((zx)y)x,

and

(3.74) (xy)(zx) = x(yz)x.

Regarding the paucity of parentheses here, we use the notation xwx to mean

(3.75) xwx = (xw)x = x(wx),

the last identity by (3.3). Note also that the two identities in (3.73) are equivalent,
respectively, to

(3.76) Lxyx = LxLyLx, and Rxyx = RxRyRx.

A proof of Proposition 3.5 will be given later in this appendix. We now show how
(3.73)–(3.74) can be used to establish (3.71)–(3.72).

We start with (3.72), which is equivalent to

(3.77) (v0u`)(umv0) = u`um.

In this case, (3.74) yields

(3.78)

(v0u`)(umv0) = v0(u`um)v0

= −(u`um)v0v0 (if ` 6= m)
= u`um,

via a couple of applications of (3.15). This gives (3.72).
Moving on, applying Lv0 , we see that (3.71) is equivalent to

(3.79) v0(u`(umv0)) = v0(umu`)v0,

hence to

(3.80) v0(u`(v0um)) = v0(u`um)v0.

Now the first identity in (3.73) implies that the left side of (3.80) is equal to

(3.81) (v0u`v0)um = u`um,
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the latter identity because v0u`v0 = −u`v0v0 = u`. On the other hand, if ` 6= m,
then

(3.82) v0(u`um)v0 = −(u`um)v0v0 = u`um,

agreeing with the right side of (3.81). Thus we have (3.80), hence (3.71).

Rather than concluding that Proposition 3.4 is now proved, we must reveal that
the proof of Proposition 3.5 given below actually uses Proposition 3.4. Therefore,
it is necessary to produce an alternative endgame to the proof of Proposition 3.4.

We begin by noting that the approach to the proof of Proposition 3.4 described
above uses the identities (3.73)–(3.74) with

(3.83) x = v0, y = u`, z = um, ` 6= m,

hence xy = −v`, zx = vm, yz = ±uh, {h, `, m} = {1, 2, 3}. Thus the application
of the first identity of (3.73) in (3.81) is justified by the following special case of
(3.76):

Proposition 3.6. If {u, v} ∈ Im(O) is an orthonormal set, then

(3.84) Luvu = Lv = LuLvLu.

Proof. Under these hypotheses, u2 = −1 and uv = −vu. Bringing in (3.3), we have

(3.85) uvu = −u2v = v,

which gives the first identity in (3.84). We also have

(3.86) a ∈ Im(O) =⇒ L2
a = La2 = −|a|2I,

the first identity by (3.3). Thus

(3.87)
−2I = L2

(u+v) = (Lu + Lv)(Lu + Lv)

= L2
u + L2

v + LuLv + LvLu,

so

(3.88) LuLv = −LvLu,

and hence

(3.89) LuLvLu = −LvL2
u = Lv,

giving the second identity in (3.84).
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As for the application of (3.74) to (3.78), we need the special case

(3.90) (uv)(wu) = u(vw)u,

for u = v0, v = u`, w = um, ` 6= m, 1 ≤ `,m ≤ 3 (so uv = −v`), in which cases

(3.91) {u, v, w, uv}, {u, vw} ⊂ Im(O), are orthonormal sets.

In such a case, u(vw)u = −(vw)u2 = vw, so it suffices to show that

(3.92) (uv)(wu) = vw,

for

(3.93) {u, v, w, uv} ⊂ Im(O), orthonormal.

When (3.93) holds, we say {u, v, w} is a Cayley triangle. The following takes care
of our needs.

Proposition 3.7. Assume {u, v, w} is a Cayley triangle. Then

(3.94) v(uw) = −(vu)w,

(3.95) 〈uv, uw〉 = 0, so {u, v, uw} is a Cayley triangle,

and (3.92) holds.

Proof. To start, the hypotheses imply

(3.96) vu = −uv, vw = −wv, uw = −wu, (vu)w = −w(vu),

so

(3.97)

v(uw) + (vu)w = −v(wu)− w(vu)

= (v2 + w2)u− (v + w)(vu + wu)

= (v + w)2u− (v + w)((v + w)u)
= 0,

and we have (3.94). Next,

(3.98) 〈uv, uw〉 = 〈Luv, Luw〉 = 〈u, w〉 = 0,

since Lu ∈ SO(O). Thus {u, v, uw} is a Cayley triangle. Applying (3.94) to this
Cayley triangle (and bringing in (3.3)) then gives

(3.99)

(vu)(uw) = −v(u(uw))

= −v(u2w)
= vw,

yielding (3.92).

At this point, we have a complete proof of Proposition 3.4. The proof of Propo-
sition 3.5 will be given in the following section.
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4. The automorphism group of O

The set of automorphisms of O is denoted Aut(O). Note that Aut(O) is a group,
i.e.,

(4.1) Kj ∈ Aut(O) =⇒ K1K2, K−1
j ∈ Aut(O).

Clearly K ∈ Aut(O) ⇒ K1 = 1. The following result will allow us to establish a
converse to Proposition 3.4.

Proposition 4.1. Assume K ∈ Aut(O). Then

(4.2) K : Im(O) −→ Im(O).

Consequently

(4.3) Kx = Kx, ∀x ∈ O,

and

(4.4) |Kx| = |x|, ∀x ∈ O,

so K : O→ O is an orthogonal transformation.

Proof. To start, we note that, given x ∈ O, x2 is real if and only if either x is real
or x ∈ Im(O). Now, given u ∈ Im(O),

(4.5) (Ku)2 = K(u2) = −|u|2K1 = −|u|2 (real),

so either Ku ∈ Im(O) or Ku = a is real. In the latter case, we have K(a−1u) = 1,
so a−1u = 1, so u = a, contradicting the hypothesis that u ∈ Im(O). This gives
(4.2). The result (4.3) is an immediate consequence. Thus, for x ∈ O,

(4.6) |Kx|2 = (Kx)(Kx) = (Kx)(Kx) = K(xx) = |x|2,

giving (4.4).

Now, given K ∈ Aut(O), define u1, u2, and v0 by

(4.7) u1 = Ke1, u2 = Ke2, v0 = Kf0.

By Proposition 4.1, these are orthonormal elements of Im(O). Also, A = K(H),
spanned by 1, u1, u2, and u1u2 = u1×u2, is a subalgebra of O, and v0 ∈ A⊥. These
observations, together with Proposition 3.4, yield the following.
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Proposition 4.2. The formulas (4.7) provide a one-to-one correspondence between
the set of automorphisms of O and

(4.8)

the set of ordered orthonormal triples (u1, u2, v0) in Im(O)
such that v0 is also orthogonal to u1 × u2, that is,

the set of Cayley triangles in Im(O).

It can be deduced from (4.8) that Aut(O) is a compact, connected Lie group of
dimension 14.

We return to the Moufang identities and use the results on Aut(O) established
above to prove them.

Proof of Proposition 3.5. Consider the first identity in (3.73), i.e.,

(4.9) (xyx)z = x(y(xz)), ∀x, y, z ∈ O.

We begin with a few simple observations. First, (4.9) is clearly true if any one of
x, y, z is scalar, or if any two of them coincide (thanks to Proposition 3.3). Also,
both sides of (4.9) are linear in y and in z. Thus, it suffices to treat (4.9) for
y, z ∈ Im(O). Meanwhile, multiplying by a real number and applying an element
of Aut(O), we can assume x = a + e1, for some a ∈ R.

To proceed, (4.9) is clear for y ∈ Span(1, x), so, using the linearity in y, and
applying Proposition 4.2 again, we can arrange that y = e2. Given this, (4.9) is
clear for z ∈ H = Span(1, e2, e2, e3 = e1e2). Thus, using linearity of (4.9) in z, it
suffices to treat z ∈ H⊥, and again applying an element of Aut(O), we can assume
z = f1.

At this point, we have reduced the task of proving (4.9) to checking it for

(4.10) x = a + e1, y = e2, z = f1, a ∈ R,

and this is straightforward. Similar arguments applied to the second identity in
(3.73), and to (3.74), reduce their proofs to a check in the case (4.10).

We next look at some interesting subgroups of Aut(O). Taking Sp(1) to be the
group of unit quaternions, as in (2.25), we have group homomorphisms

(4.11) α, β : Sp(1) −→ Aut(O),

given by

(4.12)
α(ξ)(ζ, η) = (ξζξ, ξηξ),

β(ξ)(ζ, η) = (ζ, ξη),

where ζ, η ∈ H define (ζ, η) ∈ O. As in (2.31)–(2.36), for ξ ∈ Sp(1), π(ξ)ζ = ξζξ
gives an automorphism of H, and it commutes with conjugation in H, so the fact
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that α(ξ) is an automorphism of O follows from the definition (3.2) of the product
in O. The fact that β(ξ) is an automorphism of O also follows directly from (3.2).
Parallel to (2.34),

(4.13) Kerα = {±1} ⊂ Sp(1),

so the image of Sp(1) under α is a subgroup of Aut(O) isomorphic to SO(3). Clearly
β is one-to-one, so it yields a subgroup of Aut(O) isomorphic to Sp(1).

These two subgroups of Aut(O) do not commute with each other. In fact, we
have, for ξj ∈ Sp(1), (ζ, η) ∈ O,

(4.14)
α(ξ1)β(ξ2)(ζ, η) = (ξ1ζξ1, ξ1ξ2ηξ1),

β(ξ2)α(ξ1)(ζ, η) = (ξ1ζξ1, ξ2ξ1ηξ1).

Note that, since ξ2ξ1 = ξ1(ξ1ξ2ξ1),

(4.15) β(ξ2)α(ξ1) = α(ξ1)β(ξ1ξ2ξ1).

It follows that

(4.16) GH = {α(ξ1)β(ξ2) : ξj ∈ Sp(1)}

is a subgroup of Aut(O). It is clear from (4.12) that each automorphism α(ξ1), β(ξ2),
and hence each element of GH, preserves H (and also H⊥). The converse also holds:

Proposition 4.3. The group GH is the group of all automorphisms of O that
preserve H.

Proof. Indeed, suppose K ∈ Aut(O) preserves H. Then K|H is an automorphism
of H ≈ H. Arguments in the paragraph containing (2.35)–(2.38) imply that there
exists ξ1 ∈ Sp(1) such that K|H = α(ξ1)|H, so K0 = α(ξ1)−1K ∈ Aut(O) is the
identity on H. Now K0f1 = (0, ξ2) for some ξ2 ∈ Sp(1), and it then follows from
Proposition 4.2 that K0 = β(ξ2). Hence K = α(ξ1)β(ξ2), as desired.

For another perspective on GH, we bring in

(4.17) α̃ : Sp(1) −→ Aut(O), α̃(ξ) = β(ξ)α(ξ).

Note that

(4.18) α̃(ξ)(ζ, η) = (ξζξ, ηξ),

so α̃ is a group homomorphism. Another easy consequence of (4.18) is that α̃(ξ1)
and β(ξ2) commute, for each ξj ∈ Sp(1). We have a surjective group homomorphism

(4.19) α̃× β : Sp(1)× Sp(1) −→ GH.



22

Note that Ker(α̃×β) = {(1, 1), (−1,−1)}, with 1 denoting the unit in H. It follows
that

(4.20) GH ≈ SO(4).

We now take a look at one-parameter families of automorphisms of O, of the
form

(4.21) K(t) = etA, A ∈ L(O),

where etA is the matrix exponential, studied in §25 of [T6], and in Chapter 3 of [T4].
To see when such linear transformations on O are automorphisms, we differentiate
the identity

(4.22) K(t)(xy) = (K(t)x)(K(t)y), x, y ∈ O,

obtaining

(4.23) A(xy) = (Ax)y + x(Ay), x, y ∈ O.

When (4.23) holds, we say

(4.24) A ∈ Der(O).

Proposition 4.4. Given A ∈ L(O), etA ∈ Aut(O) for all t ∈ R if and only if
A ∈ Der(O).

Proof. The implication ⇒ was established above. For the converse, suppose A
satisfies (4.23). Take x, y ∈ O, and set

(4.25) X(t) = (etAx)(etAy).

Applying d/dt gives

(4.26)

dX

dt
= (AetAx)(etAy) + (etAx)(AetAy)

= A
(
(etAx)(etAy)

)

= AX(t),

the second identity by (4.23). Since X(0) = xy, it follows from the standard
uniqueness argument of ODE, cf. (25.11)–(25.16) of [T6], that

(4.27) X(t) = etA(xy),

so indeed etA ∈ Aut(O).

The set Der(O) has the following structure.
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Proposition 4.5. Der(O) is a linear subspace of L(O) satisfying

(4.28) A,B ∈ Der(O) =⇒ [A, B] ∈ Der(O),

where [A,B] = AB −BA. That is, Der(O) is a Lie algebra.

Proof. That Der(O) is a linear space is clear from the defining property (4.23).
Furthermore, if A, B ∈ Der(O), then, for all x, y ∈ O,

(4.29)
AB(xy) = A((Bx)y) + A(x(By))

= (ABx)y + (Bx)(Ay) + (Ax)(By) + x(ABy),

and similarly

(4.30) BA(xy) = (BAx)y + (Ax)(By) + (Bx)(Ay) + x(BAy),

so

(4.31) [A,B](xy) = ([A,B]x)y + x([A,B]y),

and we have (4.28).

By Proposition 4.1, if A ∈ Der(O), then etA is an orthogonal transformation for
each t ∈ R. We have

(4.32) (etA)∗ = etA∗ ,

so

(4.33) A ∈ Der(O) =⇒ A∗ = −A,

i.e., A is skew-adjoint. It is clear that

(4.34) A ∈ Der(O) =⇒ A : Im(O) → Im(O),

and since Im(O) is odd dimensional, the structural result Proposition 11.4 of [T6]
implies

(4.35) A ∈ Der(O) =⇒ N (A) ∩ Im(O) 6= 0.

As long as A 6= 0, we can also deduce from Proposition 11.4 of [T6] that Im(O)
contains a two-dimensional subspace with orthonormal basis {u1, u2}, invariant
under A, and with repect to which A is represented by a 2× 2 block

(4.36)
(

0 −λ
λ 0

)
.

Then, by (4.23),

(4.37)

A(u1u2) = (Au1)u2 + u1(Au2)

= λu2
2 − λu2

1

= 0,

so u1u2 = u1 × u2 ∈ N (A) ∩ Im(O). As in (3.36)–(3.44), Span{1, u1, u2, u3 =
u1u2} = A is a subalgebra of O isomorphic to H. We see that A preserves A, so
the associated one-parameter group of automorphisms etA preserves A.

Using Proposition 4.2, we can pick K ∈ Aut(O) taking A to H, and deduce the
following.
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Proposition 4.6. Given A ∈ Der(O), there exists K ∈ Aut(O) such that

(4.38) KetAK−1 ∈ GH, ∀ t ∈ R.

Note that then

(4.39) KetAK−1 = etÃ, Ã = KAK−1 ∈ Der(O),

and (4.38) is equivalent to

(4.40) Ã : H −→ H, Ã ∈ Der(O),

which also entails Ã : H⊥ → H⊥, since Ã is skew-adjoint. When (4.40) holds, we
say

(4.41) Ã ∈ DH.

Going further, suppose we have d commuting elements of Der(O):

(4.42) Aj ∈ Der(O), AjAk = AkAj , j, k ∈ {1, . . . , d}.
A modification of the arguments leading to Proposition 11.4 of [T6] yields a two-
dimensional subspace of Im(O), with orthonormal basis {u1, u2}, invariant under
each Aj , with respect to which each Aj is represented by a 2× 2 block as in (4.36),
with λ replaced by λj (possibly 0). As in (4.37),

(4.43) Aj(u1u2) = 0, 1 ≤ j ≤ d,

so each Aj preserves A = Span{1, u1, u2, u3 = u1u2}, and so does each one-
parameter group of automorphisms etAj . Bringing in K ∈ Aut(O), taking A to
H, we have the following variant of Proposition 4.6.

Proposition 4.7. Given commuting Aj ∈ Der(O), 1 ≤ j ≤ d, there exists K ∈
Aut(O) such that

(4.44) KetAj K−1 ∈ GH, ∀ t ∈ R, j ∈ {1, . . . , d}.
As a consequence, we have

(4.45) Ãj = KAjK
−1 ∈ DH, ÃjÃk = ÃkÃj , 1 ≤ j, k ≤ d.

Consequently, etÃj are mutually commuting one-parameter subgroups of GH, i.e.,

(4.46) etjÃj ∈ GH, etjÃj etkÃk = etkÃketjÃj , 1 ≤ j, k ≤ d.

One can produce pairs of such commuting groups, as follows. Take

(4.47) α̃(ξ1(t1)), β(ξ2(t2)) ∈ GH,

with β as in (4.11)–(4.12), α̃ as in (4.17)–(4.18), and ξν(t) one-parameter subgroups
of Sp(1), for example

(4.48) ξν(t) = etων , ων ∈ Im(H) = Span{i, j, k}.
The exponential etων is amenable to a treatment parallel to that given in §25 of [T6].
Mutual commutativity in (4.47) follows from the general mutual commutativity of
α̃ and β. The following important structural information on Aut(O) says d = 2 is
as high as one can go.
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Proposition 4.8. If Aj ∈ Der(O) are mutually commuting, for j ∈ {1, . . . , d},
and if {Aj} is linearly independent in L(O), then d ≤ 2.

Proof. To start, we obtain from Aj the mutually commuting one-parameter groups
KetAj K−1, subgroups of GH. Taking inverse images under the two-to-one surjec-
tive homomorphism (4.19), we get mutually commuting one-parameter subgroups
γj(t) of Sp(1)× Sp(1), which can be written

(4.49) γj(t) =
(

eωjt

eσjt

)
, ωj , σj ∈ Im(H), 1 ≤ j ≤ d.

Parallel to Proposition 25.6 of [T6], this commutativity requires {ωj : 1 ≤ j ≤ d}
to commute in H and it also requires {σj : 1 ≤ j ≤ d} to commute in H. These
conditions in turn require each ωj to be a real multiple of some ω# ∈ Im(H) and
each σj to be a real multiple of some σ# ∈ Im(H).

Now the linear independence of {Aj : 1 ≤ j ≤ d} in Der(O) implies the linear
independence of {(ωj , σj) : 1 ≤ j ≤ d} in Im(H)⊕ Im(H), and this implies d ≤ 2.

We turn to the introduction of another interesting subgroup of Aut(O). Note
that, by Proposition I.7, given any unit u1 ∈ Im(O), there exists K ∈ Aut(O) such
that Ke1 = u1. Consequently, Aut(O), acting on Im(O) as a group of orthogonal
transformations, acts transitively on the unit sphere S in Im(O) ≈ R7, i.e., on
S ≈ S6. We are hence interested in the group

(4.50) {K ∈ Aut(O) : Ke1 = e1} = Ge1 .

We claim that

(4.51) Ge1 ≈ SU(3).

As preparation for the demonstration, note that each K ∈ Ge1 is an orthogonal
linear transformation on O that leaves invariant Span{1, e1}, and hence it also
leaves invariant the orthogonal complement

(4.52) V = Span{1, e1}⊥ = Span{e2, e3, f0, f1, f2, f3},
a linear space of R-dimension 6. We endow V with a complex structure. Generally,
a complex structure on a real vector space V is an R-linear map J : V → V such
that J2 = −IV . One can check that this requires dimR V to be even, say 2k. Then
(V, J) has the structure of a complex vector space, with

(4.53) (a + ib)v = av + bJv, a, b ∈ R, v ∈ V.

One has dimC(V, J) = k. If V is a real inner product space, with inner product
〈 , 〉, and if J is orthogonal (hence skew-adjoint) on V , then (V, J) gets a natural
Hermitian inner product

(4.54) (u, v) = 〈u, v〉+ i〈u, Jv〉.



26

If T : V → V preserves 〈 , 〉 and commutes with J , then it also preserves ( , ), so
it is a unitary transformation on (V, J).

We can apply this construction to V as in (4.52), with

(4.55) Jv = Le1v = e1v,

noting that Le1 is an orthogonal map on O that preserves Span{1, e1}, and hence
also preserves V . To say that an R-linear map K : V → V is C-linear is to say
that K(e1v) = e1K(v), for all v ∈ V . Clearly this holds if K ∈ Aut(O) and
Ke1 = e1. Thus each element of Ge1 defines a complex linear orthogonal (hence
unitary) transformation on V , and we have an injective group homomorphism

(4.56) Ge1 −→ U(V, J).

Note that the 6 element real orthonormal basis of V in (4.52) yields the 3 element
orthonormal basis of (V, J),

(4.57) {e2, f0, f2},

since

(4.58) e3 = e1e2, f1 = e1f0, f3 = −e1f2,

the latter two identities by (3.30)–(3.31). This choice of basis yields the isomor-
phism

(4.59) U(V, J) ≈ U(3).

We aim to identify the image of Ge1 in U(3) that comes from (4.56) and (4.59).
To accomplish this, we reason as follows. From Proposition 4.2 it follows that

there is a natural one-to-one correspondence between the elements of Ge1 and

(4.60)
the set of ordered orthonormal pairs {u2, v0} in V

such that also v0 ⊥ e1u2,

or, equivalently,

(4.61) the set of ordered orthonormal pairs {u2, v0} in (V, J),

where (V, J) carries the Hermitian inner product (4.54). In fact, the correspondence
associates to K ∈ Ge1 (i.e., K ∈ Aut(O) and Ke1 = e1) the pair

(4.62) u2 = Ke2, v0 = Kf0.
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Then the image of Ge1 in U(V, J) in (4.56) is uniquely determined by the action of
K on the third basis element in (4.57), as

(4.63) Kf2 = K(e2f0) = K(e2)K(f0) = u2v0 = u2 × v0,

where we recall from (3.30) that f2 = e2f0, and the last identity in (4.63) follows
from (3.21).

From (4.60)–(4.61), it can be deduced that Ge1 is a compact, connected Lie group
of dimension 8. Then (4.55) and (4.58) present Ge1 as isomorphic to a subgroup (call
it G̃) of U(3) that is a compact, connected Lie group of dimension 8. Meanwhile,
dim U(3) = 9, so G̃ has codimension 1. We claim that this implies

(4.64) G̃ = SU(3).

We sketch a proof of (4.64), using some elements of Lie group theory.
To start, one can show that a connected, codimension-one subgroup of a compact,

connected Lie group must be normal. Hence G̃ is a normal subgroup of U(3). This
implies U(3)/G̃ is a group. This quotient is a compact Lie group of dimension 1,
hence isomorphic to S1 = {z ∈ C : |z| = 1}, and the projection U(3) → U(3)/G̃
produces a continuous, surjective group homomorphism

(4.65) ϑ : U(3) −→ S1, Ker ϑ = G̃.

Now a complete list of such homomorphisms is given by

(4.66) ϑj(K) = (det K)j , j ∈ Z \ 0,

and in such a case, Ker ϑj has |j| connected components. Then connectivity of G̃
forces ϑ = ϑ±1 in (4.65), which in turn gives (4.64).

It is useful to take account of various subgroups of Aut(O) that are conjugate
to GH (given by (4.16)) or to Ge1 (given by (4.50)). In particular, when A ⊂ O is
a four-dimensional subalgebra, we set

(4.67) GA = {K ∈ Aut(O) : K(A) ⊂ A},

and if u ∈ Im(O), |u| = 1, we set

(4.68) Gu = {K ∈ Aut(O) : Ku = u}.

We see that each group GA is conjugate to GH, and isomorphic to SO(4), and each
group Gu is conjugate to Ge1 , and isomorphic to SU(3).

It is of interest to look at Gu ∩ Gv, where u and v are unit elements of Im(O)
that are not collinear. Then

(4.69) Gu ∩ Gv = {K ∈ Aut(O) : K = I on Span{u, v}}.
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Now we can write Span{u, v} = Span{u1, u2}, with u1 = u, u2 ⊥ u1, and note that
Kuj = uj ⇒ K(u1u2) = u1u2, so (4.69) is equal to

(4.70) GA = {K ∈ Aut(O) : K = I on A},
where A = Span{1, u1, u2, u1u2} is a four-dimensional subalgebra of O. Clearly

(4.71) GA ⊂ GA, and GA ≈ Sp(1) ≈ SU(2).

In fact, GA is conjugate to GH = β(Sp(1)), with β as in (4.11)–(4.12).
Extending (4.52), we have associated to each unit u ∈ Im(O) the space

(4.72) Vu = Span{1, u}⊥,

and Lu : Vu → Vu gives a complex structure Ju = Lu|Vu , so (Vu, Ju) is a three-
dimensional complex vector space. Parallel to (4.56), we have an injective group
homomorphism

(4.73) Gu −→ U(Vu, Ju),

whose image is a codimension-one subgroup isomorphic to SU(3). Associated to
the family (Vu, Ju) is the following interesting geometrical structure. Consider the
unit sphere S ≈ S6 in Im(O). There is a natural identification of Vu with the
tangent space TuS to S at u:

(4.74) TuS = Vu,

and the collection of complex structures Ju gives S what is called an almost complex
structure. Now an element K ∈ Aut(O) acts on S, thanks to Proposition 4.1.
Furthermore, for each u ∈ S,

(4.75) K : Vu −→ VKu

is an isomtery, and it is C-linear, since

(4.76) v ∈ Vu =⇒ K(uv) = K(u)K(v).

Thus Aut(O) acts as a group of rotations on S that preserve its almost complex
structure. In fact, this property characterizes Aut(O). To state this precisely, we
bring in the following notation. Set

(4.77) ι : Aut(O) −→ SO(Im(O)), ι(K) = K
∣∣
Im(O)

.

This is an injective group homomorphism, whose image we denote

(4.78) Ab(O) = ιAut(O).

The inverse of the isomorphism ι : Aut(O) → Ab(O) is given by

(4.79)
j
∣∣∣
Ab(O)

, j : SO(Im(O)) → SO(O),

J(K0)(a + u) = a + K0u.

Our result can be stated as follows.
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Proposition 4.9. The group Γ of rotations on Im(O) that preserve the almost
complex structure of S is equal to Ab(O).

Proof. We have seen that Ab(O) ⊂ Γ. It remains to prove that Γ ⊂ Ab(O), so take
K0 ∈ Γ, and set K = j(K0), as in (4.79). We need to show that K ∈ Aut(O).
First, one readily checks that, if K = j(K0), then

(4.80) K ∈ Aut(O) ⇐⇒ K(uv) = K(u)K(v), ∀u, v ∈ Im(O),

and furthermore we can take |u| = 1. Now the condition K0 ∈ Γ implies

(4.81) K0(uv) = K0(u)K0(v), ∀u ∈ Im(O), v ∈ Vu.

To finish the argument, we simply note that if K0 ∈ Γ and K = j(K0), and if u is
a unit element of Im(O) and v ∈ Vu, then for all a ∈ R,

(4.82)

K(u(au + v)) = K(−a + uv)

= −a + K0(uv)

= −a + K0(u)K0(v),

while

(4.83)

(Ku)(K(au + v)) = (K0u)(aK0u + K0v)

= a(K0u)2 + (K0u)(K0v)

= −a + K0(u)K0(v).

This finishes the proof.

Further results on almost complex 6-dimensional submanifolds, including sub-
manifolds of O, can be found in [Br1] and [Br2].
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5. Simplicity and root structure of Aut(O)

Our first goal in this section is to establish the following.

Proposition 5.1. The group Aut(O) is simple.

We will deduce this from the facts that Aut(O) is a compact, connected Lie group
of dimension 14 and that it has rank 2. We recall from basic Lie group theory that if
G is a compact Lie group, it has a maximal torus, and any two such are conjugate.
The dimension of such a maximal torus is the rank of G. That Aut(O) has rank 2
follows from Proposition 4.8. The following general result basically does the trick.

Proposition 5.2. Let G be a compact Lie group of rank 2. If its Lie algebra g has
a non-trivial ideal, h, then dim G ≤ 6.

Proof. Give g an ad-invariant inner product. If h ⊂ g is an ideal, then ad g preserves
both h and h⊥, so h⊥ is also an ideal, and each X ∈ h commutes with each Y ∈ h⊥.
Now if h and h⊥ are both nonzero,

Rank g = 2 =⇒ Rank h = Rank h⊥ = 1.

But, as is well known,

Rank h = 1 =⇒ dim h = 1 or 3,

so we have the conclusion that dim G ≤ 6.

It follows from Proposition 5.2 that the Lie algebra Der(O) of Aut(O) has no
nontrivial ideals. A connected Lie group with this property is typically said to be
simple. However, we can establish the more precise result that Aut(O) contains
no nontrivial normal subgroups. Indeed, if H were such a subgroup, so would be
its closure, so it suffices to consider the case when H is closed. (The reader can
show that a proper dense subgroup of a noncommutative, connected Lie group
cannot be normal.) Then H is a Lie group, and Proposition 5.2 implies that either
H = Aut(O) or H is discrete, hence finite. In such a case, H normal implies H is
the center of Aut(O), so our task is reduced to showing

(5.1) Aut(O) has trivial center.

Indeed, suppose K0 belongs to the center of Aut(O). Then K0 belongs to a one-
parameter subgroup etA, and (4.35) applies, to yield u ∈ S ⊂ Im(O), fixed under
the action of etA, hence fixed by K0. Then, for each K ∈ Aut(O), KK0K

−1 = K0

fixes Ku, and since Aut(O) acts transitively on the unit sphere S ⊂ Im(O), K0

must fix each point of Im(O), so K0 = I, and we have (5.1).
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Our next goal is to analyze the root structure of Aut(O). We start with a
general definition. Let G be a compact, connected Lie group, with maximal torus
T, having associated Lie algebras t ⊂ g. Give g an Ad-invariant inner product. The
adjoint representation Ad of G on gC has derived Lie algebra representation ad of
g by skew-adjoint transformations on gC, which simultaneously diagonalize when
restricted to t. We have the root space decomposition

(5.2) gC = tC ⊕
⊕

α

gα,

where, given α ∈ t′, α 6= 0,

(5.3) gα = {z ∈ gC : [x, z] = iα(x)z, ∀x ∈ t}.

If gα 6= 0, we call α a root, and nonzero elements of gα are called root vectors. It
is a fact (cf. [T2], §35), that

(5.4) [gα, gβ ] ⊂ gα+β ,

that

(5.5) α root =⇒ dim gα = 1,

and that if z denotes the center of g,

(5.6) z = 0 =⇒ the set of roots spans t′.

Before tackling the particulars for G = Aut(O), we describe the most classical case
SU(n). Details can be found in §§19–22 of [T2].

The group SU(n) has maximal torus

(5.7) T =
{




eix1

. . .
eixn


 : xj ∈ R,

∑

j

xj = 0
}

,

leading to the identification

(5.8) t = {x = (x1, . . . , xn) ∈ Rn : x1 + · · ·+ xn = 0}.

Then the set ∆ of roots of SU(n) is given by

(5.9) ∆ = {ωjk : j 6= k, 1 ≤ j, k ≤ n},

where ωjk ∈ t′ is given by

(5.10) ωjk(x) = xj − xk, x ∈ t.
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See [T2], (19.13).
Such results, for n = 3, actually yield half the roots of Aut(O), as we now

explain. As seen in §4, we have the subgroup

(5.11) Ge1 = {K ∈ Aut(O) : Ke1 = e1} ≈ SU(3).

Thus a maximal torus T of Ge1 is two-dimensional, and, by Proposition 4.8, this
must also be a maximal torus of Aut(O). The adjoint action of t on Der(O) leaves
invariant the Lie algebra ge1 of Ge1 , so, with the identification (5.8), we see that

(5.12) {ωjk : 1 ≤ j, k ≤ 3, j 6= k}, ωjk(x) = xj − xk,

are roots of Aut(O). This gives six roots. Since dimAut(O) = 14 and t has
dimension 2, it follows from (5.2)–(5.5) that Aut(O) has 12 roots. It remains to
find the other six.

Let us abstract the setting. Let G be a compact, connected Lie group, H ⊂ G a
compact, connected subgroup, and assume that a maximal torus T of G is contained
in H, i.e., T ⊂ H. Then the adjoint action of G on gC, restricted to T, is also the
restriction to T of the action of H on gC, obtained by restricting Ad from G to H.
This latter is a unitary representation of H on gC, which we will denote by π. Thus
the roots of G coincide with the weights of π.

We recall the definition of weights. Let H be as above, with maximal torus
T, whose Lie algebra is t, and let π be a unitary representation of H on a finite-
dimensional complex inner-product space V . Then there is an orthogonal decom-
position

(5.13) V =
⊕

λ

Vλ,

where, for λ ∈ t′,

(5.14) Vλ = {v ∈ V : dπ(x)v = iλ(x)v, ∀x ∈ t}.
If Vλ 6= 0, we call λ a weight, and any nonzero v ∈ Vλ a weight vector. Generally,
if π is a representation of H on V , we define the contragredient representation π of
H on V ′ by π(g) = π(g−1)t. It is readily verified that λ ∈ t′ is a weight of π if and
only if −λ is a weight of π.

To take an example, let H = SU(n), with maximal torus given by (5.7) and t
as in (5.8), and let π0 be the standard representation of SU(n) on Cn. Then the
weights of π0 are

(5.15) {λj : 1 ≤ j ≤ n}, λj(x) = xj ,

with asociated weight spaces Vλj = Span{ej}, where {e1, . . . , en} is the standard
basis of Cn. The weights of the contragredient representation π0 of SU(n) on Cn

are given by

(5.16) {−λj : 1 ≤ j ≤ n}.
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We return to the situation introduced three paragraphs above, with T ⊂ H ⊂ G,
and π the restriction to H of the adjoint representation of G on g (and on its
complexification gC). Taking an Ad-invariant inner product on g, we can write

(5.17) g = h⊕ h⊥,

and both pieces are invariant under π, say

(5.18) π = πh ⊕ π1.

Of course, πh is simply the adjoint action of H on h. We need to analyze π1.
To do this, it is convenient to look at the homogeneous space M = G/H, on

which G acts transitively. Then H is the subgroup of elements of G that fix the point
p = eH ∈ M . This gives rise to an action of H on TpM , i.e., a real representation
ρ of H on TpM . Furthermore, we have natural equivalences

(5.19) h⊥ ≈ TpM, π1 ≈ ρ.

We now apply this to

(5.20) G = Aut(O), H = Ge1 , M = S ⊂ Im(O), p = e1.

Then, as seen in §4, TpS carries a complex structure, with respect to which, via the
isomorphism Ge1 ≈ SU(3) set up in §4, ρ becomes the standard representation π0

of SU(3) on C3.
However, we need to regard ρ as a real representation on TpS, and then com-

plexify this vector space. When this is done, the resulting representation on (h⊥)C
is seen to be

(5.21) π0 ⊕ π0,

with weights

(5.22) {λj ,−λj : 1 ≤ j ≤ 3}, λj(x) = xj .

We have the following conclusion.

Proposition 5.3. The roots of Aut(O) are the linear functionals on

(5.23) t = {x ∈ R3 : x1 + x2 + x3 = 0}

given by (5.12) and (5.22).

We want to investigate the Weyl group of Aut(O). Generally, if G is a compact,
connected Lie group with maximal torus T, the Weyl group of G is

(5.24) W (G) = N(T)/T, N(T) = {g ∈ G : g−1Tg = T}.
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We define the representation W of N(T) on t by

(5.25) W(g) = Ad(g)
∣∣∣
t
, for g ∈ N(T),

and denote by W the contragredient representation on t′ (and its complexification).
Of course, these two representations are equivalent via the isomorphism t ≈ t′

induced by the Ad-invariant inner product we use on g.
A key example is

(5.26) W (SU(n)) ≈ Sn,

the symmetric group on n symbols, which arises as follows (if n is odd). For σ ∈ Sn,
the permutation matrix Eσ ∈ U(n), defined on the standard basis {u1, . . . , un} of
Cn by Eσuk = uσ(k), has the property that

(5.27) C(Eσ) : T −→ T, C(Eσ)V = E−1
σ V Eσ,

with T as in (5.7). Since det Eσ = sgn σ, we need to alter (5.27) to get an element
of N(T) ⊂ SU(n). For n odd, we can just replace Eσ in (5.27) by

(5.28) Ẽσ = (sgn σ)Eσ.

For n even, see (37.35)–(37.37) of [T2]. Of immediate interest here is the case n = 3.
Note that σ 7→ Ẽσ gives a group homomorphism

(5.29) S3 −→ N(T) ⊂ SU(3),

whose composition with Ẽσ 7→ C(Ẽσ) : T→ T yields an isomorphism of S3 with the
image of W (SU(3)) under the map W. In connection with these facts, we mention
the following general results regarding W (G), for an arbitrary compact, connected,
semisimple Lie group G. For details, see §37 of [T2] and Chapter 8 of [Si].

Proposition A. Let π be a unitary representation of G on V , with weight space
decomposition V = ⊕Vλ. Then

(5.30) g ∈ N(T) =⇒ π(g) : Vλ → VW(g)λ.

Proposition B. If g ∈ G and g−1ug = u for each u ∈ T, then g ∈ T. Hence if
g ∈ N(T) and W(g) = I on t, then g ∈ T. Consequently, we can identify W (G)
with its image under W in G`(t), and therefore also with its image under W in
G`(t′).
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Proposition C. The image of W (G) under W in G`(t′) is generated by the set of
reflections Sα across hyperplanes in t′ orthogonal to α, as α runs over the set of
roots of G.

It is straightforward to verify these results for G = SU(3). Note that, under W,
the Weyl group W (SU(3)) acts transitively on each of the sets

(5.31) {ωjk : j 6= k, 1 ≤ j, k ≤ 3}, {λj : 1 ≤ j ≤ 3}, {−λj : 1 ≤ j ≤ 3},

defined as in (5.12), (5.15), and (5.16). The first set is the set of roots for SU(3),
and the last two sets are, respectively, the sets of weights for π0 and π0.

Composing the map σ 7→ Ẽσ in (5.29) with the inclusion SU(3) ≈ Ge1 ⊂ Aut(O)
yields the injective group homomorphism

(5.32) W (SU(3)) −→ W (Aut(O)).

However, W (Aut(O)) is bigger than W (SU(3)). By Proposition C, the image
under W of W (SU(3)) is generated by the reflections in t′ across lines orthogonal
to ω12, ω23, and ω31, respectively. The image underW of W (Aut(O) is generated by
these 3 reflections plus 3 more: reflections in t′ across lines orthogonal to λ1, λ2, and
λ3, rspectively. In particular, the image under W of W (Aut(O)) acts transitively
on each of the sets

(5.33) {ωjk : j 6= k, 1 ≤ j, k ≤ 3}, {λj ,−λj : 1 ≤ j ≤ 3},

which together give all the roots of Aut(O). We see that W (Aut(O)) is isomorphic
to the group of isometries of a regular hexagon.
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6. More on the Lie algebra of Aut(O)

As seen in §§4-5, the Lie algebra Der(O) of Aut(O) can be written as a vector
space sum

(6.1) Der(O) = su(3)⊕ V,

where su(3) is the Lie algebra of Ge1 ≈ SU(3) and V , the orthogonal complement
of su(3), is isomorphic to Te1S, a vector space of R-dimension 6, with a complex
structure J , so (V, J) ≈ C3, and the natural action ρ of Ge1 on V is equivalent to
the standard action of SU(3) on C3. Thus an element of Der(O) can be represented
as a pair (X, v), with X ∈ su(3), v ∈ V . If also (Y, w) ∈ Der(O), we want to look
at the Lie bracket

(6.2) [(X, v), (Y, w)] = [X, Y ] + [X,w] + [v, Y ] + [v, w].

Of course, [X, Y ] is the standard bracket on su(3). Meanwhile, by (5.18)–(5.19),

(6.3) [X, w] = dρ(X)w ∈ V,

and similarly [v, Y ] = −[Y, v] = −dρ(Y )v.
It remains to examine [v, w], which will typically have a component in su(3) and

a component in V . The component in su(3) is specified by

(6.4)

〈X, [v, w]〉 = 〈X, ad(v), w〉
= −〈ad(v)X, w〉
= 〈dρ(X)v, w〉.

For further analysis of [v, w], it is convenient to bring in the complexification

(6.5) VC = V1 ⊕ V−1,

where

(6.6) Vµ = {v ∈ VC : Jv = µiv}, µ = ±1.

Since dρ(X) commutes with J , we have, for v, w ∈ VC,

(6.7)

〈X, [Jv, w]〉 = 〈dρ(X)Jv, w〉
= 〈Jdρ(X)v, w〉
= −〈dρ(X)v, Jw〉
= −〈X, [v, Jw]〉,
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and hence

(6.8)
〈X, [Jv, Jw]〉 = −〈X, [v, J2w]〉

= 〈X, [v, w]〉.

Meanwhile, for each µ = ±1,

(6.9) v, w ∈ Vµ =⇒ [Jv, Jw] = −[v, w],

so

(6.10) v, w ∈ Vµ =⇒ [v, w] ⊥ X, ∀X ∈ su(3).

More precisely, we can show that

(6.11) v, w ∈ Vµ =⇒ [v, w] ∈ V−µ.

This can be seen from the root space decomposition, established in §5. With gC
denoting the complexification of Der(O), we have

(6.12)
gC = g0 ⊕ g1 ⊕ g−1,

g0 = su(3)C, g1 = V1, g−1 = V−1,

and

(6.13) g0 = tC ⊕
⊕

j 6=k

gωjk
, g1 =

⊕

j

gλj , g−1 =
⊕

j

g−λj ,

with {ωjk} and {±λj} as in (5.10), (5.15). It follows from (5.4) that

(6.14) [gj , gk] ⊂ g`, ` = j + k mod 3.

In particular,

(6.15) [g1, g−1] ⊂ g0,

so this bracket action is completely determined by (6.4). It remains to analyze

(6.16) [g1, g1] → g−1, and [g−1, g−1] → g1,

or equivalently

(6.17) [V1, V1] → V−1, [V−1, V−1] → V1,

with V±1 as in (6.5)–(6.6). The following observation is useful.



38

Lemma 6.1. If (V, J) is a vector space with complex structure J , equipped with a
Hermitian inner product ( , ), and VC = V1⊕V−1, as in (6.5)–(6.6), then there are
natural C-linear isomorphisms

(6.18) V ′
1 ≈ V−1 and V ′

−1 ≈ V1.

Proof. The inner product ( , ) on V extends to a C-bilinear form on VC. If u−iJu ∈
V1 and v + iJv ∈ V−1 (with u, v ∈ V ), then

(6.19)
(u− iJu, v + iJv) = (u, v)− i(Ju, v) + i(u, Jv) + (Ju, Jv)

= 2(u, v),

so the left side yields a C-linear dual pairing of V1 and V−1. Note that (i(u−iJu), v+
iJv) = 2(Ju, v) = 2i(u, v) and (u− iJu, i(v + iJv)) = −2(u, Jv) = 2i(u, v).

It follows that the bilinear maps in (6.17) yield tri-linear maps

(6.20) ϕ : V1 × V1 × V1 → C, ψ : V−1 × V−1 × V−1 → C,

via

(6.21) ϕ(u, v, w) = ([u, v], w), u, v, w ∈ V1,

and analogously for ψ. Note that

([u, v], w) = (ad u(v), w)

= −(v, adu(w))

= −(v, [u,w])

= −([u,w], v),

so ϕ is anti-symmetric in its arguments. On the other hand,

(6.22) dimC V1 = 3 =⇒ Λ3
CV1 ≈ C,

so ϕ is uniquely determined, up to a scalar multiple, by the anti-symmetry prop-
erty. Let us note that ϕ in (6.20) is not zero, i.e., the bracket [V1, V1] ↪→ V−1

is not identically zero. In fact, for example, [gλ1 , gλ3 ] has nonzero image in g−λ2

(cf. Proposition 35.6 of [T2]).
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A. From G2 to E8

The complexification of Der(O), analyzed in §6, is the first of 5 exceptional com-
plex simple Lie algebras, introduced by Killing and Cartan, denoted G2,F4,E6, E7,
and E8. We describe a uniform construction of G2 and E8, due to Freudenthal. In
each case, the complex Lie algebra has a Z/(3) grading:

(A.1) g = g−1 ⊕ g0 ⊕ g1, Z/(3) = {−1, 0, 1}.
We will have [gj , gk] ⊂ gj+k, with j +k computed mod 3. In each case, the complex
Lie algebra g0 has a representation ρ on a complex vector space, with contragredient
representation ρ′ on V ′. We set

(A.2) g1 = V, g−1 = V ′,

and define the actions [g0, gj ] → gj via these representations. In the cases g = G2

or E8, we take respectively

(A.3) g0 = s`(3,C), g0 = s`(9,C),

and, respectively,

(A.4) V = C3 and V = Λ3C9.

There is a natural representation ρ of g0 on V in each case. In the first case, we
have Λ3V = Λ3C3 ≈ C, via an invariant complex volume element, and in the second
case Λ3V → Λ9C9 ≈ C. Thus we have natural bilinear maps

(A.5) V × V −→ V ′, V ′ × V ′ −→ V,

which are anti-symmetric. These define Lie brackets

(A.6) [g1, g1] → g−1, [g−1, g−1] → g1.

It remains to specify

(A.7) [g1, g−1] → g0.

This is done as follows. Given v ∈ V, v′ ∈ V ′, we define [v, v′] ∈ g0 by

(A.8) −B(λ, [v, v′]) = 〈ρ(λ)v, v′〉, λ ∈ g0,

where B is the Killing form on the simple Lie algebra g0.
In this fashion, the Lie algebras are constructed. For G2, the construction out-

lined here is consistent with the analysis of the complexification of Der(O) done in
§6. For E8, one needs to verify that the “products” defined above satisfy the Jacobi
identity. For details on this, and the analysis of the root system for E8, see [Ad],
[SV].
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