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Introduction

This first chapter is devoted to differential equations for a single unknown
function, with emphasis on equations of the first and second order, i.e.,

(0.1)
dx

dt
= f(t, x),

and

(0.2)
d2x

dt2
= f

(
t, x,

dx

dt

)
.

Section 1 looks at the simplest case of (0.1), namely

(0.3)
dx

dt
= x.

We construct the solution x(t) to (0.3) such that x(0) = 1 as a power series,
defining the exponential function

(0.4) x(t) = et.

More generally, x(t) = ect solves dx/dt = cx, with x(0) = 1. This holds
for all real c and also for complex c. Taking c = i and investigating basic
properties of x(t) = eit, we establish Euler’s formula,

(0.5) eit = cos t+ i sin t,

which in turn leads to a self-contained exposition of basic results on the
trigonometric functions.

Section 2 treats first order linear equations, of the form

(0.6)
dx

dt
+ a(t)x = b(t), x(t0) = x0,

and produces solutions in terms of the exponential function and integrals.
Section 3 considers some nonlinear first order equations, particularly equa-
tions for which “separation of variables” allows one to produce a solution,
in terms of various integrals.

We differ from many introductions in not lingering on the topic of first
order equations. For example, we do not treat exact equations and integrat-
ing factors in this chapter. We consider it more important to get on to the
study of second order equations. In any case, exact equations do get their
due, in §4 of Chapter 4.
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In §4 we take up second order differential equations. We concentrate
there on two special classes, each allowing for a reduction to first order
equations. In §5 we consider differential equations arising from some physical
problems for motion in one space dimension, making use of Newton’s law
F = ma. The equations that arise in this context are amenable to methods
of §4. In §5 we restate these methods in terms that celebrate the physical
quantities of kinetic and potential energy, and the conservation of total
energy. Section 6 deals with the classical pendulum, a close relative of
motion on a line. In §7 we discuss motion in the presence of resistance,
including the pendulum with resistance.

Formulas from §6 give rise to complicated integrals, and problems of §7
have additional complications. These complications arise because of nonlin-
earities in the equations. In §8 we discuss “linearization” of these equations.
The associated linear differential equations are amenable to explicit analysis.

Sections 9–15 are devoted to linear second order differential equations,
starting with constant coefficient equations

(0.7) a
d2x

dt2
+ b

dx

dt
+ cx = f(t),

first with f ≡ 0 in §9, then allowing f to be nonzero. In §10 we consider
certain special forms of f(t), including

(0.8) eκt, sinσt, cosσt, tk,

treating these cases by the “method of undetermined coefficients.” We dis-
cuss implications of results here, when f(t) = A sinσt, for the forced, lin-
earized pendulum, in §11. Sections 12–13 treat other physical problems
leading to equations of the form (0.7), namely spring motion problems and
models of certain simple electrical circuits, called RLC circuits. In §14 we
bring up another method, “variation of parameters,” which applies to gen-
eral functions f in (0.7).

Section 15 gives some results on variable coefficient second order linear
differential equations. Techniques brought to bear on these equations include
power series representations, extending the power series attack used on (0.3),
and the Wronskian, first introduced in the constant-coefficient context in
§12. In §16 we concentrate on a particularly important second-order ODE
with variable coefficients, Bessel’s equation, further pushing power series
techniques and the use of the Wronskian. In §17 we discuss differential
equations of order ≥ 3. In §18 we introdiuce the Laplace transform as a tool
to treat nonhomogeneous differential equations, such as (0.7) and higher
order variants. Material introduced in §§15–18 will be covered, on a much
more general level, in Chapter 3.
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We end with three appendices. Appendix A explains how Bessel func-
tions arise in the search for solutions to some basic partial differential equa-
tions. Appendix B has some basic material on Euler’s gamma function, of
use in §16. Appendix C establishes that convergent power series can be
differentiated term by term.

1. The exponential and trigonometric functions

We construct the exponential function to solve the differential equation

(1.1)
dx

dt
= x, x(0) = 1.

We seek a solution as a power series

(1.2) x(t) =

∞∑
k=0

akt
k.

If such a power series converges for t in an interval in R, it can be differ-
entiated term-by-term. (See (1.45)–(1.50) below, and also Appendix C, for
more on this.) In such a case,

(1.3)

x′(t) =

∞∑
k=1

kakt
k−1

=
∞∑
ℓ=0

(ℓ+ 1)aℓ+1t
ℓ,

so for (1.1) to hold we need

(1.4) a0 = 1, ak+1 =
ak
k + 1

,

i.e., ak = 1/k!, where k! = k(k − 1) · · · 2 · 1. Thus (1.1) is solved by

(1.5) x(t) = et =

∞∑
k=0

1

k!
tk, t ∈ R.

This defines the exponential function et.

More generally, we can define

(1.6) ez =
∞∑
k=0

1

k!
zk, z ∈ C.
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The issue of convergence for complex power series is essentially the same as

for real power series. Given z = x + iy, x, y ∈ R, we have |z| =
√
x2 + y2.

If also w ∈ C, then |z + w| ≤ |z|+ |w| and |zw| = |z| · |w|. Hence∣∣∣m+n∑
k=m

1

k!
zk
∣∣∣ ≤ m+n∑

k=m

1

k!
|z|k.

The ratio test then shows that the series (1.6) is absolutely convergent for
all z ∈ C, and uniformly convergent for |z| ≤ R, for each R <∞. Note that

(1.7) eat =

∞∑
k=0

ak

k!
tk

solves

(1.8)
d

dt
eat = aeat,

and this works for each a ∈ C.
We claim that eat is the only solution to

(1.9)
dy

dt
= ay, y(0) = 1.

To see this, compute the derivative of e−aty(t):

(1.10)
d

dt

(
e−aty(t)

)
= −ae−aty(t) + e−atay(t) = 0,

where we use the product rule, (1.8) (with a replaced by −a) and (1.9).
Thus e−aty(t) is independent of t. Evaluating at t = 0 gives

(1.11) e−aty(t) = 1, ∀ t ∈ R,

whenever y(t) solves (1.9). Since eat solves (1.9), we have e−ateat = 1, hence

(1.12) e−at =
1

eat
, ∀ t ∈ R, a ∈ C.

Thus multiplying both sides of (1.11) by eat gives the asserted uniqueness:

(1.13) y(t) = eat, ∀ t ∈ R.

We can draw further useful conclusions from applying d/dt to products
of exponential functions. In fact, let a, b ∈ C; then

(1.14)

d

dt

(
e−ate−bte(a+b)t

)
= −ae−ate−bte(a+b)t − be−ate−bte(a+b)t + (a+ b)e−ate−bte(a+b)t

= 0,
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so again we are differentiating a function that is independent of t. Evaluation
at t = 0 gives

(1.15) e−ate−bte(a+b)t = 1, ∀ t ∈ R.

Using (1.12), we get

(1.16) e(a+b)t = eatebt, ∀ t ∈ R, a, b ∈ C,

or, setting t = 1,

(1.17) ea+b = eaeb, ∀ a, b ∈ C.

We next record some properties of exp(t) = et for real t. The power
series (1.5) clearly gives et > 0 for t ≥ 0. Since e−t = 1/et, we see that
et > 0 for all t ∈ R. Since det/dt = et > 0, the function is monotone
increasing in t, and since d2et/dt2 = et > 0, this function is convex. Note
that

(1.18) e1 = 1 + 1 +
1

2
+ · · · > 2,

so ek > 2k ↗ +∞ as k → +∞. Hence

(1.19) lim
t→+∞

et = +∞.

Since e−t = 1/et,

(1.20) lim
t→−∞

et = 0.

As a consequence,

(1.21) exp : R −→ (0,∞)

is smooth and one-to-one and onto, with positive derivative, so the inverse
function theorem of one-variable calculus applies. There is a smooth inverse

(1.22) L : (0,∞) −→ R.

We call this inverse the natural logarithm:

(1.23) log x = L(x).

See Figures 1.1 and 1.2 for graphs of x = et and t = log x.
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Figure 1.1

Figure 1.2

Applying d/dt to

(1.24) L(et) = t

gives

(1.25) L′(et)et = 1, hence L′(et) =
1

et
,

i.e.,

(1.26)
d

dx
log x =

1

x
.
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Since log 1 = 0, we get

(1.27) log x =

∫ x

1

dy

y
.

An immediate consequence of (1.17) (for a, b ∈ R) is the identity

(1.28) log xy = log x+ log y, x, y ∈ (0,∞).

We move on to a study of ez for purely imaginary z, i.e., of

(1.29) γ(t) = eit, t ∈ R.

This traces out a curve in the complex plane, and we want to understand
which curve it is. Let us set

(1.30) eit = c(t) + is(t),

with c(t) and s(t) real valued. First we calculate |eit|2 = c(t)2 + s(t)2. For
x, y ∈ R,

(1.31) z = x+ iy =⇒ z = x− iy =⇒ zz = x2 + y2 = |z|2.

It is elementary that

(1.32)
z, w ∈ C =⇒ zw = z w =⇒ zn = zn,

and z + w = z + w.

Hence

(1.33) ez =
∞∑
k=0

zk

k!
= ez.

In particular,

(1.34) t ∈ R =⇒ |eit|2 = eite−it = 1.

Hence t 7→ γ(t) = eit has image in the unit circle centered at the origin in
C. Also

(1.35) γ′(t) = ieit =⇒ |γ′(t)| ≡ 1,

so γ(t) moves at unit speed on the unit circle. We have

(1.36) γ(0) = 1, γ′(0) = i.



1. The exponential and trigonometric functions 9

Figure 1.3

Thus, for t between 0 and the circumference of the unit circle, the arc from
γ(0) to γ(t) is an arc on the unit circle, pictured in Figure 1.3, of length

(1.37) ℓ(t) =

∫ t

0
|γ′(s)| ds = t.

Standard definitions from trigonometry say that the line segments from
0 to 1 and from 0 to γ(t) meet at angle whose measurement in radians is
equal to the length of the arc of the unit circle from 1 to γ(t), i.e., to ℓ(t).
The cosine of this angle is defined to be the x-coordinate of γ(t) and the sine
of the angle is defined to be the y-coordinate of γ(t). Hence the computation
(1.37) gives

(1.38) c(t) = cos t, s(t) = sin t.

Thus (1.30) becomes

(1.39) eit = cos t+ i sin t,

which is Euler’s formula. The identity

(1.40)
d

dt
eit = ieit,

applied to (1.39), yields

(1.41)
d

dt
cos t = − sin t,

d

dt
sin t = cos t.
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We can use (1.17) to derive formulas for sin and cos of the sum of two angles.
Indeed, comparing

(1.42) ei(s+t) = cos(s+ t) + i sin(s+ t)

with

(1.43) eiseit = (cos s+ i sin s)(cos t+ i sin t)

gives

(1.44)
cos(s+ t) = (cos s)(cos t)− (sin s)(sin t),

sin(s+ t) = (sin s)(cos t) + (cos s)(sin t).

Returning to basics, we recall that the calculations done so far in this
section were all predicated on the fact that the power series (1.7) can be
differentiated term by term. This is a special case of a general result about
convergent power series, established in Appendix C. However, making use
of the special structure of (1.7), we include a direct demonstration here. To
begin, look at

(1.45) Ean(t) =
n∑
k=0

ak

k!
tk,

which satisfies

(1.46)

d

dt
Ean(t) =

n∑
k=1

ak

(k − 1)!
tk−1

=

n−1∑
ℓ=0

aℓ+1

ℓ!
tℓ

= aEan−1(t).

Integration gives

(1.47) a

∫ t

0
Ean−1(s) ds = Ean(t)− 1.

Now we have

(1.48) Ean−1(s) −→ eas, Ean(t) −→ eat,

uniformly on finite intervals, as n→ ∞, and then the integral estimate∣∣∣∫ t

0
(E(s)− F (s)) ds

∣∣∣ ≤ |t| max
0≤s≤t

|E(s)− F (s)|
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implies

(1.49)

∫ t

0
Ean−1(s) ds −→

∫ t

0
eas ds,

as n→ ∞. Consequently, we can pass to the limit n→ ∞ in (1.47) and get

(1.50) a

∫ t

0
eas ds = eat − 1.

Applying d/dt to the left side of (1.50) gives aeat, by the fundamental theo-
rem of calculus. Hence this must be the derivative of the right side of (1.50),
and this gives (1.8).

Having the integral formula (1.50), we proceed to obtain formulas for∫
tneat dt. In fact, from (1.46), (1.8), and the product rule, we obtain

(1.51)

d

dt

(
e−atEan(t)

)
= −ae−atEan(t) + ae−atEan−1(t)

= −a
n+1

n!
tne−at.

Then the fundamental theorem of calculus gives

(1.52)

∫
tne−at dt = − n!

an+1
Ean(t)e

−at + C

= − n!

an+1

(
1 + at+

a2t2

2!
+ · · ·+ antn

n!

)
e−at + C.

We have an analogous formula for
∫
tneat dt, by replacing a by −a.

Exercises

1. As noted, if z = x + iy, x, y ∈ R, then |z| =
√
x2 + y2 is equivalent to

|z|2 = z z. Use this to show that if also w ∈ C,

|zw| = |z| · |w|.

Note that
|z + w|2 = (z + w)(z + w)

= |z|2 + |w|2 + wz + zw

= |z|2 + |w|2 + 2Re zw.
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Figure 1.4

Show that Re(zw) ≤ |zw| and use this in concert with an expansion of
(|z|+ |w|)2 and the first identity above to deduce that

|z + w| ≤ |z|+ |w|.

2. Define π to be the smallest positive number such that eπi = −1. Show
that

eπi/2 = i, eπi/3 =
1

2
+

√
3

2
i.

Hint. See Figure 1.4.
3. Show that

cos2 t+ sin2 t = 1,

and

1 + tan2 t = sec2 t,

where

tan t =
sin t

cos t
, sec t =

1

cos t
.

4. Show that
d

dt
tan t = sec2 t = 1 + tan2 t,

d

dt
sec t = sec t tan t.
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5. Evaluate ∫ y

0

dx

1 + x2
.

Hint. Set x = tan t.

6. Evaluate ∫ y

0

dx√
1− x2

.

Hint. Set x = sin t.

7. Show that
π

6
=

∫ 1/2

0

dx√
1− x2

.

Hint. Show that sinπ/6 = 1/2. Use Exercise 2 and the identity eπi/6 =

eπi/2e−πi/3.

8. Set

cosh t =
1

2
(et + e−t), sinh t =

1

2
(et − e−t).

Show that

d

dt
cosh t = sinh t,

d

dt
sinh t = cosh t,

and

cosh2 t− sinh2 t = 1.

9. Evaluate ∫ y

0

dx√
1 + x2

.

Hint. Set x = sinh t.

10. Evaluate ∫ y

0

√
1 + x2 dx.
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11. Using Exercise 4, verify that

d

dt
(sec t+ tan t) = sec t(sec t+ tan t),

d

dt
(sec t tan t) = sec3 t+ sec t tan2 t,

= 2 sec3 t− sec t.

12. Next verify that

d

dt
log | sec t| = tan t,

d

dt
log | sec t+ tan t| = sec t.

13. Now verify that ∫
tan t dt = log | sec t|,∫
sec t dt = log | sec t+ tan t|,

2

∫
sec3 t dt = sec t tan t+

∫
sec t dt.

(Here and below, we omit the arbitrary additive constants.)

14. Here is another approach to the evaluation of
∫
sec t dt. We evaluate

I(u) =

∫ u

0

dv√
1 + v2

in two ways.
(a) Using v = sinh y, show that

I(u) =

∫ sinh−1 u

0
dy = sinh−1 u.

(b) Using v = tan t, show that

I(u) =

∫ tan−1 u

0
sec t dt.
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Deduce that∫ x

0
sec t dt = sinh−1(tanx), for |x| < π

2
.

Deduce from the formula above that also

cosh
(∫ x

0
sec t dt

)
= secx.

Compare these formulas with the analogue in Exercise 13.

15. For Ean(t) as in (1.45), k ≥ 1, 0 < T <∞, show that

(1.53) max
|t|≤T

|Ean+k(t)−Ean(t)| ≤
|aT |n+1

(n+ 1)!

(
1+

|aT |
n+ 2

+
|aT |2

(n+ 2)(n+ 3)
+· · ·

)
,

and that this is

(1.54) ≤ 2
|aT |n+1

(n+ 1)!
, for n+ 2 > 2|aT |.

Deduce that

(1.55) max
|t|≤T

|eat − Ean(t)|

satisfies (1.54). Show that, for each a, T , (1.54) tends to 0 as n → ∞,
yielding the assertion made about convergence in (1.48).

16. Show that∣∣∣∫ t

0
eas ds−

∫ t

0
Ean(s) ds

∣∣∣ ≤ |t| max
|s|≤|t|

|eas − Ean(s)|,

and observe how this, together with Exercise 15, yields (1.49).

17. Show that

(1.56) |t| < 1 ⇒ log(1 + t) =

∞∑
k=1

(−1)k−1

k
tk = t− t2

2
+
t3

3
− · · · .

Hint. Rewrite (1.27) as

log(1 + t) =

∫ t

0

ds

1 + s
,
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Figure 1.5

expand
1

1 + s
= 1− s+ s2 − s3 + · · · , |s| < 1,

and integrate term by term.

18. Use (1.52) with a = −i to produce formulas for∫
tn cos t dt and

∫
tn sin t dt.

19. Figure 1.5 (a)–(b) shows graphs of the image of

γ(t) = eαt, 0 ≤ t ≤ 6π,

for

α = −1

4
+ i,

α = −1

8
− i.

Match each value of α to (a) or (b).

20. Given t > 0 and a ∈ C, we define ta by

ta = ea log t.

Show that, for t > 0,
d

dt
ta = ata−1.
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2. First order linear equations

Here we tackle first order linear equations. These are equations of the form

(2.1)
dx

dt
+ a(t)x = b(t), x(t0) = x0,

given functions a(t) and b(t), continuous on some interval containing t0. As
a warm-up, we first treat

(2.2)
dx

dt
+ ax = b, x(0) = x0,

with a and b constants. One key to solving (2.2) is the identity

(2.3)
d

dt
(eatx) = eat

(dx
dt

+ ax
)
,

which follows by applying the product formula and (1.8). Thus, multiplying
both sides of (2.2) by eat gives

(2.4)
d

dt
(eatx) = eatb,

and then integrating both sides from 0 to t gives

(2.5) eatx(t) = x0 +

∫ t

0
easb ds.

We can carry out the integral, using (1.45), and get

(2.6) eatx(t) = x0 +
eat − 1

a
b,

and finally division by eat yields

(2.7)
x(t) = e−atx0 +

b

a
(1− e−at)

=
b

a
+ e−at

(
x0 −

b

a

)
.

In order to tackle (2.1), we need a replacement for (2.3). To get it, note
that if A(t) is differentiable, the chain rule plus (1.8) gives

(2.8)
d

dt
eA(t) = eA(t)A′(t).

Hence

(2.9)
d

dt

(
eA(t)x

)
= eA(t)

(dx
dt

+A′(t)x
)
.
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Thus we can multiply (2.1) by eA(t) and get

(2.10)
d

dt

(
eA(t)x

)
= eA(t)b(t),

provided

(2.11) A′(t) = a(t).

To arrange this, we can set

(2.12) A(t) =

∫ t

t0

a(s) ds.

Then we can integrate (2.10) from t0 to t, to get

(2.13) eA(t)x(t) = x0 +

∫ t

t0

eA(s)b(s) ds,

and hence

(2.14) x(t) = e−A(t)x0 + e−A(t)
∫ t

t0

eA(s)b(s) ds.

For example, consider

(2.15)
dx

dt
− tx = b(t), x(0) = x0.

From (2.12) we get

(2.16) A(t) = − t
2

2
,

and (2.10) becomes

(2.17)
d

dt
(e−t

2/2x) = e−t
2/2b(t),

hence

(2.18) e−t
2/2x(t) = x0 +

∫ t

0
e−s

2/2b(s) ds.

Let us look at two special cases. First,

(2.19) b(t) = t.
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Then the integral in (7.18) is

(2.20)

∫ t

0
e−s

2/2s ds =

∫ t2/2

0
e−σ dσ = 1− e−t

2/2.

The second case is

(2.21) b(t) = 1.

Then the integral in (2.18) is

(2.22)

∫ t

0
e−s

2/2 ds.

This is not an elementary function, but it can be related to the special
function

(2.23) Erf(t) =
1√
2π

∫ t

−∞
e−s

2/2 ds.

Namely,

(2.24)
1√
2π

∫ t

0
e−s

2/2 ds = Erf(t)− Erf(0).

Note that

(2.25) Erf(0) =
1

2
Erf(∞) =

1

2

1√
2π
I,

where

(2.26)

I =

∫ ∞

−∞
e−s

2/2 ds⇒ I2 =

∫
R2

e−|x|2/2 dx

=

∫ 2π

0

∫ ∞

0
e−r

2/2r dr dθ

= 2π

∫ ∞

0
e−s ds

= 2π.

Hence we have

(2.27) Erf(∞) = 1, Erf(0) =
1

2
.
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Bernoulli equations

Equations of the form

(2.28)
dx

dt
+ a(t)x = b(t)xn

are called Bernoulli equations. Such an equation is not linear if n ̸= 1 or 0,
but in these cases one gets a linear equation by the substitution

(2.29) y = x1−n.

In fact, (2.29) gives y′ = (1− n)x−nx′, and plugging in (2.28) gives

(2.30)
dy

dt
= (1− n)[b(t)− a(t)y],

which is linear.

Exercises

Solve the following initial value problems. Do the integrals if you can.

(1)
dx

dt
+

1

t
x = t2, x(1) = 0.

(2)
dx

dt
+ t2x = t2, x(0) = 1.

(3)
dx

dt
+ x = cos t, x(0) = 0.

(4)
dx

dt
+ tx = t3, x(0) = 1.

(5)
dx

dt
+ tx = x3, x(0) = 1.

(6)
dx

dt
+ (tan t)x = cos t, x(0) = 1.

(7)
dx

dt
+ (sec t)x = cos t, x(0) = 1.
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3. Separable equations

A separable differential equation is one for which the method of separation
of variables, which we introduce in this section, is applicable. We illustrate
this with another approach to the equation (2.2), which we rewrite as

(3.1)
dx

dt
= b− ax, x(0) = x0.

Separating variables involves moving the x-dependent objects to the left and
the t-dependent objects to the right, when possible. In case (3.1), this is
possible; we have

(3.2)
dx

b− ax
= dt.

We next integrate both sides. A change of variable allows us to use (1.27),
to obtain

(3.3)

∫
dx

b− ax
= −1

a

∫
dx

x− b/a
= −1

a
log

∣∣∣x− b

a

∣∣∣+ C.

Hence (3.2) yields

(3.4) −1

a
log

∣∣∣x− b

a

∣∣∣ = t− C,

hence

(3.5) x(t)− b

a
= ±e−at+aC = Ke−at.

Here K is a constant, which can be found by using the initial condition
x(0) = x0. We get x0 − b/a = K, so (3.5) yields

(3.6) x(t) =
b

a
+ e−at

(
x0 −

b

a

)
,

consistent with (2.7).

Generally, a separable differential equation is one that can be put in the
form

(3.7)
dx

dt
= f(x)g(t),

and then separation of variables gives

(3.8)
dx

f(x)
= g(t) dt,
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integrating to

(3.9)

∫
dx

f(x)
=

∫
g(t) dt.

Here is another basic example:

(3.10)
dx

dt
= x2, x(0) = 1.

We get

(3.11)
dx

x2
= dt,

which integrates to

(3.12) −1

x
= t+ C,

hence x = −1/(t+ C). The initial condition in (3.10) gives C = −1, so the
solution to (3.10) is

(3.13) x(t) =
1

1− t
.

Note that this solution blows up as t↗ 1.

The hanging cable

Suppose a length of cable, lying in the (x, y)-plane, is fastened at (−a, 0)
and at (a, 0), and hangs down freely, in equilibrium, as pictured in Fig. 3.1.
The force of gravity acts in the direction of the negative y-axis. We want
the equation of the curve traced out by the cable, which we assume to have
length 2L (not stretchable) and uniform mass density.

To tackle this problem, we introduce θ(x), the angle the tangent to the
curve at (x, y(x)) makes with the x-axis, which is given by

(3.14) tan θ(x) = y′(x).

We will derive a differential equation for θ(x), as follows.

At each point (x, y(x)), there is a tension on the cable, of magnitude
T (x), and the physical laws governing the behavior of the cable are the fol-
lowing. First, the horizontal component of the tension, given by T (x) cos θ(x),
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Figure 3.1

is constant. Second, the vertical component of the tension, given by T (x) sin θ(x),
is proportional to the weight of the cable lying below y = y(x), hence to the
length L(x) of the cable, from (0, y(0)) to (x, y(x)). In other words, we have

(3.15)
T (x) cos θ(x) = T0,

T (x) sin θ(x) = κL(x),

where T0 and κ are certain constants (whose quotient will be specified be-
low). As for L(x), we have

(3.16)

L(x) =

∫ x

0

√
1 + y′(t)2 dt

=

∫ x

0
sec θ(t) dt,

by (3.14) and Exercise 3 of §1.
Taking the quotient of the two identities in (3.15) yields

(3.17) tan θ(x) = β

∫ x

0
sec θ(t) dt, β =

κ

T0
.

Differentiating (3.17) with respect to x and using Exercise 4 of §1, we get

(3.18) sec2 θ(x)
dθ

dx
= β sec θ(x),

i.e.,

(3.19)
dθ

dx
= β cos θ.
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We can separate variables here, to obtain

(3.20)

∫
sec θ dθ =

∫
β dx.

Exercise 14 of §1 applies to the integral on the left, and we get

(3.21) sec θ(x) = cosh(βx+ α).

To yield the expected result θ(0) = 0 (see Fig. 3.1 again), we set α = 0.

To get a formula for y(x), use (3.14) to write

(3.22) y(x) = y0 +

∫ x

0
tan θ(t) dt, y0 = y(0).

Now, by Exercises 3 and 8 of §1, together with (3.21), we have

(3.23) tan2 θ(x) = sec2 θ(x)− 1 = cosh2 βx− 1 = sinh2 βx,

so (3.22) gives

(3.24)

y(x) = y0 +

∫ x

0
sinhβt dt

= y0 −
1

β
+

1

β
coshβx.

The graph of such a curve is called a catenary.

If we are given that the endpoints of the cable are at (±a, 0) and that
the total length is 2L (necessarily L > a), we can recover β and y0 in (3.24),
as follows. From (3.16) and (3.21),

(3.25) L =

∫ a

0
coshβt dt =

1

β
sinhβa,

so β is uniquely determined by the property that

(3.26)
sinh τ

τ
=
L

a
, β =

τ

a
> 0.

Note that h(τ) = (sinh τ)/τ is smooth, h(0) = 1, h′(τ) > 0 for τ > 0, and
h(τ) ↗ +∞ as τ ↗ +∞. Once one has β, then the identity y(a) = 0 gives

(3.27) y0 =
1

β
− 1

β
coshβa.
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Homogeneous equations, separable in new variables

One can make a change of variable to convert a differential equation of
the form

(3.28)
dx

dt
= f(t, x)

to a separable equation when f(t, x) has the following homogeneity property:

(3.29) f(rt, rx) = f(t, x), ∀ r ∈ R \ 0.
In such a case, f has the form

(3.30) f(t, x) = g
(x
t

)
.

We can set

(3.31) y =
x

t
,

so x = ty, x′ = ty′ + y, and (3.28) turns into

(3.32)
dy

dt
=
g(y)− y

t
,

which is separable.

For example, consider

(3.33)
dx

dt
=
x2 − t2

x2 + t2
+
x

t
.

In this case, (3.29) applies, and we can take g(y) = (y2 − 1)/(y2 + 1) + y in
(3.30), so with y as in (3.31) we have

(3.34)
dy

dt
=

1

t

y2 − 1

y2 + 1
,

which separates to

(3.35)
(
1 +

2

y2 − 1

)
dy =

dt

t
.

To integrate the left side of (3.35), write

(3.36)
2

y2 − 1
=

1

y + 1
− 1

y − 1
,

to get

(3.37)

∫
2

y2 − 1
dy = log |y + 1| − log |y − 1|

= log
∣∣∣y + 1

y − 1

∣∣∣,
the latter identity by (1.28). Thus the solution to (3.33) is given implicitly
by

(3.38)
x

t
+ log

∣∣∣x+ t

x− t

∣∣∣ = log |t|+ C.
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Exercises

Solve the following initial value problems. Do the integrals, if you can.

(1)
dx

dt
= x2 + 1, x(0) = 0.

(2)
dx

dt
=

√
x2 + 1, x(0) = 0.

(3)
dx

dt
=
x2 + 1

t2 + 1
, x(0) = 1.

(4)
dx

dt
= (x2 − 1)et, x(0) = 2.

(5)
dx

dt
= ex−t, x(0) = 0.

(6)
dx

dt
=

xt

x2 + t2
, x(0) = 1.

4. Second order equations – reducible cases

Second order differential equations have the form

(4.1) x′′ = f(t, x, x′), x(t0) = x0, x′(t0) = v0.

There are some important cases, with special structure, which reduce to first
order equations for

(4.2) v(t) =
dx

dt
.

One such case is

(4.3) x′′ = f(t, x′),
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which for v given by (4.2) yields

(4.4)
dv

dt
= f(t, v), v(t0) = v0.

Depending on the nature of f(t, v), methods discussed in §§2–3 might apply
to (4.4). Once one has v(t), then

(4.5) x(t) = x0 +

∫ t

t0

v(s) ds.

The following is a more significant special case:

(4.6) x′′ = f(x, x′).

Direct substitution of v, given by (4.2), yields

(4.7)
dv

dt
= f(x, v),

which is not satisfactory, since (4.7) contains too many variables. One route
to success is to rewrite the equation as one for v as a function of x, using

(4.8)
dv

dt
=
dv

dx

dx

dt
= v

dv

dx
.

Substitution into (4.7) gives the first order equation

(4.9)
dv

dx
=
f(x, v)

v
, v(x0) = v0.

Again, depending on the nature of f(x, v)/v, methods developed in §§2–3
might apply to (4.9).

An important special case of (4.6) is

(4.10) x′′ = f(x),

in which case (4.9) becomes

(4.11)
dv

dx
=
f(x)

v
,

which is separable:

(4.12) v dv = f(x) dx,

hence

(4.13)
1

2
v2 = g(x) + C,

∫
f(x) dx = g(x) + C.

Thus

(4.14)
dx

dt
= v = ±

√
2g(x) + 2C,

which in turn is separable:

(4.15) ±
∫

dx√
2g(x) + 2C

= t+ C2.

The constants C and C2 are determined by the initial conditions.
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Exercises

Use v = dx/dt to transform each of the following equations to first order
equations, either for v = v(t) or for v = v(x), as appropriate. Solve these
first order equations, if you can.

(1)
d2x

dt2
= t

dx

dt
.

(2)
d2x

dt2
=
dx

dt
+ t.

(3)
d2x

dt2
= x

dx

dt
.

(4)
d2x

dt2
=
dx

dt
+ x.

(5)
d2x

dt2
= x2.

5. Newton’s equations for motion in 1D

Newton’s law for motion in 1D of a particle of mass m, subject to a force
F , is

(5.1) F = ma,

where a is acceleration:

(5.2) a(t) =
dv

dt
=
d2x

dt2
,

the rate of change of the velocity v(t) = dx/dt. In general one might have
F = F (t, x, x′). If F is t-independent, F = F (x, x′), which puts us in the
setting of (4.6).

Frequently one has F = F (x), which puts us in the setting of (4.10). We
revisit this setting, bringing in some more concepts from physics. We set

(5.3) F (x) = −V ′(x).
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V (x), defined up to an additive constant, is called the potential energy.
The total energy is the sum of the potential energy and the kinetic energy,
mv2/2:

(5.4) E =
1

2
mv(t)2 + V (x(t)).

Note that

(5.5)

dE

dt
= mv(t)v′(t) + V ′(x(t))x′(t)

= ma(t)v(t)− F (x(t))v(t)

= 0,

the last identity by (5.1). This identity celebrates energy conservation.
Given that x solves

(5.6) m
d2x

dt2
= −V ′(x), x(t0) = x0, x

′(t0) = v0,

one has from (5.5) that for all t,

(5.7)
1

2
mx′(t)2 + V (x(t)) = E0,

where

(5.8) E0 =
1

2
mv20 + V (x0).

The equation (5.7) is equivalent to

(5.9)
dx

dt
= ±

√
2

m

(
E0 − V (x)

)
,

which separates to

(5.10)

∫
dx√

E0 − V (x)
= ±

√
2

m
t+ C,

or, alternatively,

(5.11)

∫ x

x0

dy√
E0 − V (y)

= ±
√

2

m
(t− t0).

Note that (5.7) and (5.10) recover (4.13) and (4.15).



30 Single Differential Equations Michael Taylor

Figure 5.1

Projectile problem

Let’s look in more detail at a special case, modeling the motion of a
projectile of mass m traveling directly away from (or toward) the earth. In
such a case, Newton’s law of gravity gives

(5.12) F (x) = −Km
x2

, hence V (x) = −Km
x
, x ∈ (0,∞).

In such a case, the conserved energy is

(5.13) E0 =
m

2

(
v2 − 2K

x

)
=
m

2
E(x, v).

See Figure 5.1 for a sketch of level curves of the function E(x, v). There are
three cases to consider:

(5.14)
E = −a2 < 0, E = 0, E = a2 > 0, i.e.,

E0 = −m
2
a2 < 0, E0 = 0, E0 =

m

2
a2 > 0.

In the first case, x(t) has a maximum at xmax = 2K/a2. In the other two
cases, x(t) → +∞ as t → +∞ (if v0 > 0) or as t → −∞ (if v0 < 0). Given
x0 ∈ (0,∞), the velocity v0 ∈ (0,∞) for which E(x0, v0) = 0 is called the
“escape velocity.”

We investigate the integral on the left side of (5.10), i.e.,

(5.15)

∫
dx√

E0 +Km/x
,
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which in the three cases in (5.14) is
√
2/m times

(5.16)

∫
x dx√

2Kx− a2x2
,

∫ √
x

2K
dx,

∫
x dx√

2Kx+ a2x2
,

respectively. The second integral in (5.16) is easy; we investigate how to
compute the other two, which we rewrite as

(5.17)
1

a

∫
x dx√

2kx− x2
,

1

a

∫
x dx√

2kx+ x2
, k =

K

a2
.

We can compute these integrals by completing the square:

(5.18) x2 − 2kx = (x− k)2 − k2, x2 + 2kx = (x+ k)2 − k2.

The respective change of variables y = x−k and y = x+k turn the integrals
in (5.17) into the respective integrals

(5.19)

∫
(y + k) dy√
k2 − y2

,

∫
(y − k) dy√
y2 − k2

.

By inspection,

(5.20)

∫
y dy√
k2 − y2

= −
√
k2 − y2 + C,

∫
y dy√
y2 − k2

=
√
y2 − k2 + C.

The remaining parts of (5.19), after a change of variable y = kz, become

(5.21) k

∫
dz√
1− z2

, k

∫
dz√
z2 − 1

.

To do these integrals, use

(5.22)

z = sin s =⇒
∫

dz√
1− z2

=

∫
cos s

cos s
ds = s+ C,

z = cosh s =⇒
∫

dz√
z2 − 1

=

∫
sinh s

sinh s
ds = s+ C.

Exercises

1. Make calculations analogous to (5.12)–(5.15) for each of the following
forces. Examine whether you can do the resulting integrals.

(a) F (x) = −Kx.
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(b) F (x) = −Kx2.

(c) F (x) = −K
x
.

(d) F (x) = x− x3.

2. For such forces as given above, in each case find a potential energy V (x)
and sketch the level curves in the (x, v)-plane of the energy function

E(x, v) =
m

2
v2 + V (x).

3. Use the substitution

x = k2 sin2 θ

to evaluate ∫
dx√
k2

x − 1
,

and use

x = k2 sinh2 u

to evaluate ∫
dx√
k2

x + 1
.

Use these calculations as alternatives for evaluating (5.15), for E0 < 0
and E0 > 0, respectively.

6. The pendulum

We produce a differential equation to describe the motion of a pendulum,
which will be modeled by a rigid rod, of length ℓ, suspended at one end.
We assume the rod has negligible mass, except for an object of mass m at
the other end. See Figure 6.1. The rod is held at an angle θ = θ0 from the
downward pointing vertical, and released at time t = 0, after which it moves
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Figure 6.1

because of the force of gravity. We seek a differential equation for θ as a
function of t.

The end with the mass m traces out a path in a plane, which we identify
with the complex plane, with the origin at the point where the pendulum
is suspended, and the real axis pointing vertically down. We can write the
path as

(6.1) z(t) = ℓeiθ(t).

The velocity is

(6.2) v(t) = z′(t) = iℓθ′(t)eiθ(t),

and the acceleration is

(6.3) a(t) = v′(t) = ℓ[iθ′′(t)− θ′(t)2]eiθ(t).

The force of gravity on the mass is mg, where g = 32 ft/sec2, provided the
pendulum is located on the surface of the Earth. The total force F on the
mass is the sum of the gravitational force and the force the rod exerts on
the mass to keep it always at a distance ℓ from the origin. The force the rod
exerts is parallel to eiθ(t), so

F (t) = mg +Φ(t)eiθ(t),

for some real valued Φ(t) (to be determined). We can rewrite mg as

mg = mge−iθ(t)eiθ(t) = mg[cos θ(t)− i sin θ(t)]eiθ(t),
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and hence

(6.4) F (t) = [−img sin θ(t) +mg cos θ(t) + Φ(t)]eiθ(t).

Newton’s law F = ma applied to (6.3)–(6.4) gives

mℓ[iθ′′(t)− θ′(t)2] = −img sin θ(t) + (mg cos θ(t) + Φ(t)).

Comparing imaginary parts gives

(6.5) mℓθ′′(t) = −mg sin θ(t),

or

(6.6)
d2θ

dt2
+
g

ℓ
sin θ = 0.

This is the pendulum equation.

The kinetic energy of this pendulum is

1

2
m|v(t)|2 = mℓ2

2
θ′(t)2,

and its potential energy (up to an additive constant) is given by −mg times
the real part of z(t), i.e.,

(6.7) V (θ) = −mgℓ cos θ.

The total energy is hence

(6.8) E =
mℓ2

2
θ′(t)2 −mgℓ cos θ(t).

Note that

(6.9)

dE

dt
= mℓ2θ′(t)θ′′(t) +mgℓ(sin θ(t))θ′(t)

= mℓ2θ′(t)
(
θ′′(t) +

g

ℓ
sin θ(t)

)
,

so the pendulum equation (6.6) implies dE/dt = 0, i.e., we have conservation
of energy. Under the initial condition formulated at the beginning of this
section,

(6.10) θ(0) = θ0, θ′(0) = 0,

we have initial energy

(6.11) E0 = −mgℓ cos θ0,
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Figure 6.2

and the energy conservation gives

(6.12) E(θ, θ′) = 2E0

mℓ2
= A0,

where

(6.13) E(θ, ψ) = ψ2 − 2g

ℓ
cos θ.

Level curves of this function are depicted in Figure 6.2. If θ(t) solves (6.6)
and ψ(t) = θ′(t), then (θ(t), ψ(t)) traces out a path on one of these level
curves.

Note that

(6.14) ∇E(θ, ψ) =
(2g
ℓ
sin θ, 2ψ

)
,

so E has critical points at θ = kπ, ψ = 0. The matrix of second order partial
derivatives of E is

(6.15) D2E(θ, ψ) =
( 2g

ℓ cos θ 0
0 2

)
,

so

(6.16) D2E(kπ, 0) =
(
(−1)k 2gℓ 0

0 2

)
.

We see that at the critical point (kπ, 0), E has a local minimum if k is even
and a saddle-type behavior if k is odd, as illustrated in Figure 6.2.
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Note that if the initial condition (6.10) holds, then A0 = −(2g/ℓ) cos θ0,
and hence A0 < 2g/ℓ, so the curve traced by (θ(t), ψ(t)) is a closed curve.
One might instead have initial data of the form

(6.17) θ(0) = θ0, θ′(0) = ψ0,

and one could pick ψ0 so that E(θ0, ψ0) > 2g/ℓ.

We proceed to formulas parallel to (5.7)–(5.11). Starting from the energy
conservation (6.12), which we rewrite as

(6.18) θ′(t)2 − 2g

ℓ
cos θ(t) = A0,

we have

(6.19) θ′(t) = ±
√

2g

ℓ

√
A1 + cos θ, A1 =

ℓ

2g
A0 =

E0

mgℓ
,

which separates and integrates to

(6.20)

∫
dθ√

A1 + cos θ
= ±

√
2g

ℓ
t+ C.

Note that in the current set-up, where, by (6.8), E0 ≥ −mgℓ, we have

(6.21) A1 ≥ −1.

Note that to achieve A1 = −1 requires θ(0) = 0 and θ′(0) = 0, in which
case (6.19) yields the initial value problem

(6.22) θ′(t) = ±
√

2g

ℓ

√
−1 + cos θ, θ(0) = 0,

with solution

(6.23) θ(t) ≡ 0.

In this case (6.20) has no meaning. Indeed, if θ > 0 and one considers

(6.24)

∫ θ

0

dφ√
−1 + cosφ

,

the integrand is imaginary and furthermore it is not integrable. Nevertheless,
θ(t) ≡ 0 is a solution to the original problem.
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Let us now assume A1 > −1. Write

(6.25) B1 = A1 + 1 > 0,

so

(6.26)

A1 + cos θ = B1 − (1− cos θ)

= B1 − 2 sin2
θ

2
,

thanks to the identity cos 2φ = cos2 φ−sin2 φ = 1−2 sin2 φ. We can rewrite
the left side of (6.20) as

(6.27)

∫
dθ√

A1 + cos θ
=

∫
dθ√

B1 − 2 sin2 θ/2

=
β√
2

∫
dθ√

1− β2 sin2 θ/2
,

with

(6.28) β =

√
2

B1
> 0.

The last integral in (6.27) is known as an elliptic integral when β2 ̸= 1, i.e.,
when A1 ̸= 1. Material on such integrals can be found in books that treat
elliptic function theory, including [T4].

The case β = 1 (i.e., A1 = 1, or E0 = mgℓ) does give rise to an elemen-
tary integral, namely

(6.29)

∫
dθ√

1 + cos θ
=

1√
2

∫
sec

θ

2
dθ

=
√
2 sinh−1

(
tan

θ

2

)
+ C,

for |θ| < π, the latter identity by Exercise 14 of §1.
Let us pursue these computations in more detail, taking the initial con-

dition

(6.30) θ(0) = 0, θ′(0) = ψ0, ψ0 ∈ (0,∞).

Then (6.20) yields, for the solution θ(t),

(6.31)

∫ θ(t)

0

dϑ√
A1 + cosϑ

=

√
2g

ℓ
t.
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In such a case,

(6.32) A1 =
E0

mgℓ
=

ℓ

2g
ψ2
0 − 1, hence B1 =

ℓ

2g
ψ2
0.

Then (6.27) yields

(6.33)

∫ θ(t)

0

dϑ√
1− β2 sin2 ϑ/2

=

√
2

β

√
2g

ℓ
t

= ψ0t,

with

(6.34) β =

√
2

B1
=

2

ψ0

√
g

ℓ
.

Let us specialize (6.33) to

(6.35) β = 1, hence ψ0 = 2

√
g

ℓ
, so E0 = mgℓ.

By (6.29), we get

(6.36) tan
θ(t)

2
= sinh

ψ0

2
t = sinh

√
g

ℓ
t,

or

(6.37) θ(t) = 2 tan−1 sinh

√
g

ℓ
t.

Applying d/dt yields

(6.38) ψ(t) = 2

√
g

ℓ

1

cosh
√

g
ℓ t
.

Note that, in this case,

θ(t) → ±π and ψ(t) → 0, as t→ ±∞.

We turn to the case

(6.39) β > 1, hence 0 < ψ0 < 2

√
g

ℓ
, so E < mgℓ.
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In this case,

(6.40) θ(t) is periodic, say of period Π(ψ0),

and we want to find a formula for Π(ψ0). Looking at Fig. 6.2, we see that

(6.41) ψ(t) = 0 at t =
1

4
Π(ψ0).

Comparison with the formula

(6.42)

ψ(t) =
dθ

dt
=

√
2g

ℓ

√
B1 − 2 sin2

θ

2

= β

√
g

ℓ

√
1− β2 sin2

θ

2

gives

(6.43) ψ = 0 when sin2
θ

2
=
B1

2
,

and hence

(6.44)

1

4
Π(ψ0) =

√
ℓ

2g

∫ θ1

0

dϑ√
B1 − 2 sin2 ϑ/2

,

sin2
θ1
2

=
B1

2
=

1

β2
=

ℓ

4g
ψ2
0.

Equivalently,

(6.45)

1

4
Π(ψ0) =

1

ψ0

∫ θ1

0

dϑ√
1− β2 sin2 ϑ/2

=
2

ψ0

∫ θ1/2

0

dφ√
1− β2 sin2 φ

,

with θ1 as in (6.44). Making the change of variable x = sinφ, we get

(6.46)
1

4
Π(ψ0) =

2

ψ0

∫ 1/β

0

dx√
(1− x2)(1− β2x2)

,

and finally, setting y = βx yields

(6.47)

1

4
Π(ψ0) =

2α

ψ0

∫ 1

0

dy√
(1− y2)(1− α2y2)

=

√
ℓ

g

∫ 1

0

dy√
(1− y2)(1− α2y2)

,
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with

(6.48) α =
1

β
=

√
B1

2
=

1

2

√
ℓ

g
ψ0,

so 0 < α < 1. Clearly α→ 0 when ψ0 → 0, so we have

(6.49)

lim
ψ0→0

Π(ψ0) = 4

√
ℓ

g

∫ 1

0

dy√
1− y2

= 2π

√
ℓ

g
.

This coincides with the period of solutions to

(6.50)
d2θ

dt2
+
g

ℓ
θ = 0,

which we will identify in §8 with the linearization of the pendulum equation
about the zero solution.

Finally, we examine the case

(6.51) 0 < β < 1, hence ψ0 =
2

β

√
g

ℓ
> 2

√
g

ℓ
, so E > mgℓ.

In such a case, we see from (6.42) that θ(t) is monotone in t. However, it
does possess the “periodicity”

(6.52) θ(t+ s) = θ(t) + 2π, with s = Π(ψ0),

where, when (6.51) holds,

(6.53)

Π(ψ0) =

√
ℓ

2g

∫ 2π

0

dϑ√
A1 + cosϑ

=
1

ψ0

∫ 2π

0

dϑ√
1− β2 sin2 ϑ/2

=
2

ψ0

∫ π

0

dφ√
1− β2 sin2 φ

.

Making the change of variable x = sinφ, we get

(6.54) Π(ψ0) =
2

ψ0

∫ 1

0

dx√
(1− x2)(1− β2x2)

.
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Remark. The integrals in (6.47) and (6.54) are called complete elliptic
integrals. One can expand these integrals in convergent power series in α2

and β2, respectively, using the formula

(6.55)

1√
1− u

=

∞∑
k=0

aku
k, for |u| < 1, with

a0 = 1, ak =
(
1− 1

2

)(
2− 1

2

)
· · ·

(
k − 1

2

)
(cf. [T2], Chapter 4, §3, or [T4], §5), with u = α2x2 in (6.47) and u = β2x2 in
(6.54), and then integrating term by term. The coefficients in the resulting
power series involve

(6.56)

∫ 1

0

x2k√
1− x2

dx =

∫ π

0
sin2k φdφ

=
1

2

( 1

2i

)2k
∫ 2π

0

(
eiφ − e−iφ

)2k
dφ

= π2−2k

(
2k

k

)
.

One can also express these complete elliptic integrals in terms of a function
known as the Gauss arithmetic-geometric mean (cf. [T4], §33).

Exercises

1. Let E be given by (6.8). Show that if θ(t) solves (6.6) and |θ(t)| < π/2
for all t, then E < 0.

2. Show that the level set in Fig. 6.2 where E = 2g/ℓ (i.e., E = mgℓ) is
given by

ψ = ±2

√
g

ℓ
cos

θ

2
.

3. By (6.3), the component of acceleration parallel to eiθ is −ℓθ′(t)2eiθ(t).
Compute the component of the gravitational force parallel to eiθ(t), and
deduce that the force the rod exerts on the mass to keep it always at a
distance ℓ from the origin is Φeiθ(t), with

Φ = −mℓθ′(t)2 −mg cos θ.
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Deduce that, with E as in (6.8),

Φ(t) =
E

ℓ
− 3mℓ

2
θ′(t)2.

4. Apply the change of variable s = sinφ to the last integral in (6.27), i.e.,
to ∫

dφ√
1− β2 sin2 φ

.

Show that the integral becomes∫
ds√

(1− s2)(1− β2s2)
.

Specialize to β = 1 and obtain an alternative derivation of the formula
for

∫
secφdφ given in Exercise 13 of §1.

5. Suppose the mass at the end of the pendulum has a charge q1 and there
is a charge q2 fixed at (x, y) = (2ℓ, 0). Then the force F (t) is modified
to

F (t) = mg −Kq1q2
2ℓ− ℓeiθ(t)

|2ℓ− ℓeiθ(t)|3
+Φ(t)eiθ(t),

where K is a positive constant. Use this to produce a modification of
the pendulum equation.

7. Motion with resistance

In many real cases, the force acting on a moving object is the sum of a
force associated with a potential and a resistance, typically depending on
the velocity and acting to slow the motion down. For example, the motion
of a ball of mass m falling through the air near the surface of the earth can
be modeled by the differential equation

(7.1) m
d2x

dt2
= mg − α

dx

dt
,

where the x-axis points down toward the earth. Here g = 32 ft/sec2 and
α is an experimentally determined constant, depending on the size of the
ball, and measures air resistance. We can rewrite (7.1) as an equation for
v = dx/dt:

(7.2)
dv

dt
= g − α

m
v,
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an equation that is both linear and separable. Unless v is small, the formula
−αv for the force of air resistance is not so accurate, and a more accurate
equation might be

(7.3)
dv

dt
= g − α

m
v − β

m
v3.

This is not linear, but it is separable. For v close to the speed of sound in
air, even this model loses validity.

If the ball is falling from the stratosphere toward the surface of the
earth, the variation in air density, hence in air resistance, must be taken
into account. One might replace the model (7.1) by

(7.4) m
d2x

dt2
= mg − α(x)

dx

dt
.

The method of (4.6)–(4.9) is applicable here, yielding for v = dx/dt the
equation

(7.5)
dv

dx
=
mg

v
− α(x).

This, however, is not typically amenable to a solution in terms of elementary
functions.

Another example of motion with resistance arises in the pendulum. Be-
tween air resistance and friction where the rod is attached, the pendulum
equation (6.6) might be modified to the following damped pendulum equa-
tion:

(7.6)
d2θ

dt2
+
α

m

dθ

dt
+
g

ℓ
sin θ = 0,

for some positive constant α. Again the method of (4.6)–(4.9) is applicable,
to yield for ψ = dθ/dt the equation

(7.7)
dψ

dθ
= − α

m
− g

ℓ

sin θ

ψ
.

However, this equation is not particularly tractable, and does not yield much
insight into the behavior of solutions to (7.6).

Exercises

1. Suppose v(t) solves (7.2) and v(0) = 0. Show that

lim
t→+∞

v(t) =
mg

α
,



44 Single Differential Equations Michael Taylor

and
v(t) <

mg

α
, ∀ t ∈ [0,∞).

What does it mean to call mg/α the terminal velocity?

2. Do the analogue of Exercise 1 when v(t) solves (7.3) and v(0) = 0.

3. In the setting of Exercise 1, what happens if, instead of v(0) = 0, we
have

v(0) = v0 >
mg

α
?

4. Apply the method of separation of variables to (7.3). Note that

g − α

m
v − β

m
v3 = p(v)

has three complex roots (at least one of which must be real). For what
values of α, β, and m does p(v) have one real root and for what values
does it have three real roots? How does this bear on the behavior of∫

dv

p(v)
?

5. More general models for motion with resistance involve the following
modification of (5.6):

m
d2x

dt2
= −V ′(x)− α

dx

dt
.

Parallel to (5.4), set

E(t) =
1

2
m
(dx
dt

)2
+ V (x(t)).

Show that
dE

dt
≤ 0.

One says energy is dissipated, due to the resistance.

8. Linearization

As we have seen, some equations, such as the pendulum equation (6.6),
which we rewrite here as

(8.1)
d2x

dt2
+
g

ℓ
sinx = 0,
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can be “solved” in terms of an integral, in this case (6.20), i.e.,

(8.2)

∫
dx√

A1 + cosx
= ±

√
2g

ℓ
t+ C.

However, the integral is a complicated special function. Meanwhile other
equations, such as the damped pendulum equation (7.6), which we rewrite

(8.3)
d2x

dt2
+
α

m

dx

dt
+
g

ℓ
sinx = 0,

are not even amenable to solutions as “explicit” as (8.2). In such cases
one might nevertheless gain valuable insight into solutions that are small
perturbations of some known particular solution to (8.1) or (8.3), or more
generally

(8.4) x′′(t) = f(t, x(t), x′(t)).

In case (8.1) and (8.3), x(t) ≡ 0 is a solution. More generally, one might
have a known solution y(t) of (8.4); i.e., y(t) is known and satisfies

(8.5) y′′(t) = f(t, y(t), y′(t)).

Now take x(t) = y(t) + εu(t). We derive an equation for u(t) so that x(t)
satisfies (8.4), at least up to O(ε2), i.e.,

(8.6) y′′(t) + εu′′(t) = f
(
t, y(t) + εu(t), y′(t) + εu′(t)

)
+O(ε2).

To get this equation, write, with f = f(t, x, v),
(8.7)

f(t, y + εu, y′ + εu′) = f(t, y, y′) + ε
(∂f
∂x

(t, y, y′)u+
∂f

∂v
(t, y, y′)u′

)
+O(ε2),

the first order Taylor polynomial approximation. Plugging this into (8.6)
and using (8.5), we see that (8.6) holds provided u(t) satisfies the equation

(8.8) u′′(t) = A(t)u(t) +B(t)u′(t),

where

(8.9) A(t) =
∂f

∂x

(
t, y(t), y′(t)

)
, B(t) =

∂f

∂v

(
t, y(t), y′(t)

)
.

The equation (8.8) is a linear equation, called the linearization of (8.4) about
the solution y(t).
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In case (8.1), f(t, x, v) = −(g/ℓ) sinx, and the linearization about y(t) =
0 of this equation is

(8.10)
d2u

dt2
+
g

ℓ
u = 0.

In case (8.3), f(t, x, v) = (α/m)v + (g/ℓ) sinx, and the linearization about
y(t) = 0 of this equation is

(8.11)
d2u

dt2
+
α

m

du

dt
+
g

ℓ
u = 0.

To take another example, consider

(8.12) x′′(t) = tx(t)− x(t)2.

One solution is

(8.13) y(t) = t.

In this case we have (8.4) with f(t, x, v) = tx−x2, hence fx(t, x, v) = t− 2x
and fv(t, x, v) = 0. Then fx(t, y, y

′) = fx(t, t, 1) = −t, and the linearization
of (8.12) about y(t) = t is

(8.14) u′′(t) + tu(t) = 0.

Exercises

Compute the linearizations of the following equations, about the given
solution y(t).

(1) x′′ + coshx− cosh 1 = 0, y(t) = 1.

(2) x′′ + coshx− cosh t = 0, y(t) = t.

(3) x′′ + x′ sinx = 0, y(t) = 0.

(4) x′′ + x′ sinx = 0, y(t) =
π

2
.

(5) x′′ + sinx = 0, y(t) = π.
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9. Second order constant-coefficient linear equations –
homogeneous

Here we look into solving differential equations of the form

(9.1) a
d2x

dt2
+ b

dx

dt
+ cx = 0,

with constants a, b, and c. We assume a ̸= 0. We impose an initial condition,
such as

(9.2) x(0) = α, x′(0) = β.

We look for solutions in the form

(9.3) x(t) = ert,

for some constant r, which worked so well for first order equations in §1.
By results derived there, if x(t) has the form (9.3), then x′(t) = rert and
x′′(t) = r2ert, so substitution into the left side of (9.1) gives

(9.4) (ar2 + br + c)ert,

which vanishes if and only if r satisfies the equation

(9.5) ar2 + br + c = 0.

The polynomial p(r) = ar2 + br + c is called the characteristic polynomial
associated with the differential equation (9.1). Its roots are given by

(9.6) r± = − b

2a
± 1

2a

√
b2 − 4ac.

There are two cases to consider:

b2 − 4ac ̸= 0,(I)

b2 − 4ac = 0.(II)

In Case I, the equation (9.5) has two distinct roots, and we get two
distinct solutions to (9.1), er+t and er−t. It is easy to see that whenever
x1(t) and x2(t) solve (9.1), so does C1x1(t)+C2x2(t), for arbitrary constants
C1 and C2. Hence

(9.7) x(t) = C+e
r+t + C−e

r−t

solves (9.1), for all constants C+ and C−.
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Having this, we can find a solution to (9.1) with initial data (9.2) as
follows. Taking x(t) as in (9.7), so x′(t) = C+r+e

r+t + C−r−e
r−t, we set

t = 0 to obtain

(9.8) x(0) = C+ + C−, x′(0) = r+C+ + r−C−,

so (9.2) holds if and only if C+ and C− satisfy

(9.9)
C+ + C− = α,

r+C+ + r−C− = β.

This set of two linear equations for C+ and C− has a unique solution if and
only if r+ ̸= r−. In fact, the first equation in (9.9) gives

(9.10) r−C+ + r−C− = r−α,

and subtracting this from the second equation in (9.9) yields

(9.11) C+ =
β − αr−
r+ − r−

,

and then the first equation in (9.9) yields

(9.12) C− = α− C+ =
αr+ − β

r+ − r−
.

In Case II, r = −b/2a is a double root of the characteristic polynomial,
and we have the solution x(t) = ert to (9.1). We claim there is another
solution to (9.1) that is not simply a constant multiple of this one. We look
for a second solution in the form

(9.13) x(t) = u(t)ert,

hoping to get a simpler differential equation for u(t). Note that then x′ =
(u′ + ru)ert and x′′ = (u′′ + 2ru′ + r2u)ert, and hence

(9.14)

ax′′ + bx′ + cx =
{
a(u′′ + 2ru′ + r2u) + b(u′ + ru) + cu

}
ert

=
{
au′′ + (2ar + b)u′ + (ar2 + br + c)u

}
ert

= au′′ert,

given that (9.5) holds with r = −b/2a. Thus the vanishing of (9.14) is
equivalent to u′′(t) = 0, i.e., to u(t) = C1 + C2t. Hence another solution to
(9.1) in this case is tert, and, in place of (9.7), we have solutions

(9.15) x(t) = C1e
rt + C2te

rt,
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for all constants C1 and C2.

We can then find a solution to (9.1) with initial data (9.2) as follows.
Taking x(t) as in (9.15), so x′(t) = C1re

rt+C2rte
rt+C2e

rt, we set t = 0 to
obtain

(9.16) x(0) = C1, x′(0) = C1 + C2,

so (9.2) is satisfied if and only if C1 and C2 satisfy

(9.17) C1 = α, C1 + C2 = β,

i.e., if and only if

(9.18) C1 = α, C2 = β − α.

We claim the constructions given above provide all of the solutions to
(9.1), in the two respective cases. To see this, let x(t) be any solution to
(9.1), let r = r+ (which equals r− in Case II), and consider u(t) = e−rtx(t),
as in (9.13). The computation (9.14) holds if r+ = r−, and if r+ ̸= r− we
get

(9.19) ax′′ + bx′ + cx =
{
au′′ + (2ar + b)u′

}
ert.

As we have seen, when r+ = r− this forces u′′(t) ≡ 0, which hence forces
u(t) to have the form C1 + C2t for some constants Cj , and hence x(t) =
C1e

rt + C2te
rt. When r+ ̸= r−, vanishing of (9.19) forces

(9.20) av′ + (2ar + b)v = 0, with v = u′,

which, by results of §1, forces

(9.21)
v(t) = K0e

−(2r+b/a)t, hence

u(t) = K1 +K2e
−(2r+b/a)t,

for some constants K0, K1, and K2. This in turn implies

(9.22) x(t) = K1e
rt +K2e

−(r+b/a)t.

But (9.6) gives r+ + r− = −b/a, hence

(9.23) r = r+ =⇒ −
(
r +

b

a

)
= r−,

so (9.22) is indeed of the form (9.7), with C+ = K1 and C− = K2.
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The arguments given above show that indeed all solutions to (9.1) have
the form (9.7) or (9.15), in Cases I and II, respectively. We say that (9.7)
(in Case I) and (9.15) (in Case II) provide the general solution to (9.1).
This analysis of the general solutions together with the computations giving
(9.12) and (9.18), establish the following.

Theorem 9.1. Given a, b, and c, with a ̸= 0, and given α and β, the initial
value problem (9.1)–(9.2) has a unique solution x(t). In Case I, x(t) has
the form (9.7), and in Case II, it has the form (9.15).

The results derived above apply whether a, b, and c are real or not. If
we assume they are real, then Case I naturally divides into two sub cases:

b2 − 4ac > 0,(IA)

b2 − 4ac < 0.(IB)

In Case IA, the roots of the characteristic equation (9.5) given by (9.6) are
real. In Case IB, we have complex roots, of the form

(9.24) r± = r ± iσ, r = − b

2a
, σ =

1

2a

√
4ac− b2.

Hence the solutions (9.7) have the form

(9.25) x(t) = C+x+(t) + C−x−(t), x±(t) = e(r±iσ)t.

From §1 we have e(r±iσ)t = erte±iσt, and also

(9.26) e±iσt = cosσt± i sinσt.

Hence

(9.27) x±(t) = ert(cosσt± i sinσt).

In particular, the following are also solutions to (9.1):

(9.28)
x1(t) =

1

2

(
x+(t) + x−(t)

)
= ert cosσt,

x2(t) =
1

2i

(
x+(t)− x−(t)

)
= ert sinσt.

We can hence rewrite (9.25) as x(t) = C1x1(t) + C2x2(t), or equivalently

(9.29) x(t) = C1e
rt cosσt+ C2e

rt sinσt,

for some constants C1 and C2, related to C+ and C− by

(9.30) C1 = C+ + C−, C2 = i(C+ − C−).
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We can combine these relations with (9.11)–(9.12) to solve the initial value
problem (9.1)–(9.2).

We now apply the methods just developed to the linearized pendulum
and damped pendulum equations (8.10) and (8.11), i.e.,

(9.31)
d2u

dt2
+
g

ℓ
u = 0,

and

(9.32)
d2u

dt2
+
α

m

du

dt
+
g

ℓ
u = 0.

Here, g, ℓ, α, and m are all > 0. Let us set

(9.33) k =

√
g

ℓ
, b =

α

m
,

so b > 0, k > 0, and the equations (9.31)–(9.32) become

(9.34)
d2u

dt2
+ k2u = 0,

and

(9.35)
d2u

dt2
+ b

du

dt
+ k2u = 0.

The characteristic equation for (9.34) is r2+k2 = 0, with roots r = ±ik.
The general solution to (9.34) can hence be written either as u(t) = C+e

ikt+
C−e

−ikt or as

(9.36) u(t) = C1 cos kt+ C2 sin kt.

The resulting motion is oscillatory motion, with period 2π/k.

The characteristic equation for (9.35) is r2 + br + k2 = 0, with roots

(9.37) r± = − b
2
± 1

2

√
b2 − 4k2.

There are three cases to consider:

b2 − 4k2 < 0,(IB)

b2 − 4k2 = 0,(II)

b2 − 4k2 > 0.(IA)
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In Case IB, say b2 − 4k2 = −4κ2. Then r± = −(b/2) ± iκ, and the general
solution to (9.35) has the form

(9.38) u(t) = C1e
−bt/2 cosκt+ C2e

−bt/2 sinκt.

These decay exponentially as t ↗ +∞. This is damped oscillatory motion.
The oscillatory factors have period

2π

κ
=

2π√
k2 − (b/2)2

,

which approaches ∞ as b↗ 2k.

In Case IA, say β =
√
b2 − 4k2, so r± = (−b±β)/2. Note that 0 < β < b,

so both r+ and r− are negative. The general solution to (9.35) then has the
form

(9.39) u(t) = C1e
(−b+β)t/2 + C2e

(−b−β)t/2, −b± β < 0.

These decay without oscillation as t ↗ +∞. One says this motion is over-
damped. In Case II, the characteristic equation for (9.35) has the double
root −b/2, and the general solution to (9.35) has the form

(9.40) u(t) = C1e
−bt/2 + C2te

−bt/2.

These also decay without oscillation as t ↗ +∞. One says this motion is
critically damped.

The nonlinear damped pendulum equation (7.6) can also be shown to
manifest these damped oscillatory, critically damped, and overdamped be-
haviors.

Exercises

1. Find the general solution to each of the following equations for x = x(t).

(a) x′′ + 25x = 0.

(b) x′′ − 25x = 0.

(c) x′′ − 2x′ + x = 0.



10. Nonhomogeneous equations I – undetermined coefficients 53

(d) x′′ + 2x′ + x = 0.

(e) x′′ + x′ + x = 0.

2. In each case (a)–(e) of Exercise 1, find the solution satisfying the initial
condiiton

x(0) = 1, x′(0) = 0.

3. In each case (a)–(e) of Exercise 1, find the solution satisfying the initial
condition

x(0) = 0, x′(0) = 1.

4. For ε ̸= 0, solve the initial value problem

x′′ε − 2x′ε + (1− ε2)xε = 0, xε(0) = 0, x′ε(0) = 1.

Compute the limit
x(t) = lim

ε→0
xε(t),

and show that the limit solves

x′′ − 2x′ + x = 0, x(0) = 0, x′(0) = 1.

10. Nonhomogeneous equations I – undetermined
coefficients

We study nonhomogeneous, second order, constant coefficient linear +equa-
tions, that is to say, equations of the form

(10.1) a
d2x

dt2
+ b

dx

dt
+ cx = f(t),

with constants a, b, and c (a ̸= 0) and a given function f(t). The equation
(10.1) is called nonhomogeneous whenever f(t) is not identically 0. We
might impose initial conditions, like

(10.2) x(0) = α, x′(0) = β.
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In this section we assume f(t) is a constant multiple of one of the following
functions, or perhaps a finite sum of such functions:

eκt,(10.3)

sinσt,(10.4)

cosσt,(10.5)

tk.(10.6)

We discuss a method, called the “method of undetermined coefficients,” to
solve (10.1) in such cases. In §14 we will discuss a method that applies to a
broader class of functions f .

We begin with the case (10.3). The first strategy is to seek a solution in
the form

(10.7) x(t) = Aeκt.

Here A is the “undetermined coefficient.” The goal will be to determine it.
Plugging (10.7) into the left side of (10.1) gives

(10.8) ax′′ + bx′ + cx = A(aκ2 + bκ+ c)eκt.

As long as κ is not a root of the characteristic polynomial p(r) = ar2+br+c,
we get a solution to (10.1) in the form (10.7), with

(10.9) A =
1

aκ2 + bκ+ c
.

In such a case, the equation

(10.10) a
d2x

dt2
+ b

dx

dt
+ cx = Beκt

has a solution

(10.11) xp(t) = ABeκt,

with A given by (10.9). We say xp(t) is a particular solution to (10.10). If
x(t) is another solution, then, because the equation is linear, y(t) = x(t) −
xp(t) solves the homogeneous equation

(10.12) a
d2y

dt2
+ b

dy

dt
+ cy = 0,

which was treated in §9. If, for example, p(r) has distinct roots r+ and r−,
we know the general solution of (10.11) is

(10.13) y(t) = C+e
r+t + C−e

r−t.
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Then the general solution to (10.10) is

(10.14) x(t) =
B

aκ2 + bκ+ c
eκt + C+e

r+t + C−e
r−t.

In (10.14), a, b, c, B, and κ are given by (10.10), and C+ and C− are arbitrary
constants. If the initial conditions in (10.2) are imposed, they will determine
C+ and C−. If r+ and r− are complex, we could rewrite (10.13)–(10.14),
using Euler’s formula, as in §9.

Formulas (10.11)–(10.14) hold under the hypothesis that r+, r−, and κ
are all distinct. If the characteristic polynomial has a double root r = r+ =
r−, distinct from κ, then we replace (10.13) by

(10.15) y(t) = C1e
rt + C2te

rt,

and the general solution to (10.10) has the form

(10.16) x(t) =
B

aκ2 + bκ+ c
eκt + C1e

rt + C2te
rt.

Again, the initial conditions (10.2) would determine C1 and C2.

We turn to the case that κ is a root of the characteristic polynomial
p(r). In such a case, (10.8) vanishes, and there is not a solution to (10.1)
in the form (10.7). This study splits into two cases. First assume p(r) has
distinct roots. Say κ = r+ ̸= r−. Then (10.1) (with f(t) = eκt) will have a
solution of the form

(10.17) x(t) = Ateκt.

Indeed, a computation parallel to (9.14), with u(t) = At, r = κ, gives

(10.18) ax′′ + bx′ + cx = (2aκ+ b)Aeκt,

since in this case u′′ = 0 and aκ2 + bκ + c = 0. Then (10.1) holds with
f(t) = eκt, provided

(10.19) A =
1

2aκ+ b
,

and more generally a particular solution to (10.10) is given by

(10.20) xp(t) = ABteκt,

with A given by (10.19). As above, the general solution to (10.10) then has
the form

(10.21) x(t) = xp(t) + y(t),
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where y(t) solves (10.12), hence has the form (10.13). (Recall we are assum-
ing r+ ̸= r−.)

To finish the analysis of (10.10), it remains to consider the case κ =
r+ = r−. Then functions of the form (10.15) (with r = κ) solve (10.12),
so there is not a solution to (10.1) (with f(t) = eκt) of the form (10.17).
Instead, we will find a solution of the form

(10.22) x(t) = At2eκt.

In this case, a computation parallel to (9.14), with u(t) = At2, r = κ, gives

(10.23) ax′′ + bx′ + cx = 2aAeκt,

since in this case u′′ = 2A, 2aκ+ b = 0, and aκ2 + bκ+ c = 0. Then (10.1)
holds with f(t) = eκt provided

(10.24) A =
1

2a
,

and more generally a particular solution to (10.10) is given by

(10.25) xp(t) = ABt2eκt,

with A given by (10.24). Then the general solution to (10.10) has the form
(10.21), where y(t) solves (10.12), hence has the form (10.15), with r = κ.
(Recall we are assuming r+ = r−.)

As a slight extension of (10.10), consider the equation

(10.26) a
d2x

dt2
+ b

dx

dt
+ cx = B1e

κ1t +B2e
κ2t.

This has a solution of the form

(10.27) xp(t) = xp1(t) + xp2(t),

where xpj(t) are particular solutions of (10.10), with B replaced by Bj and
κ replaced by κj . Then the general solution to (10.26) has the form (10.21),
with xp(t) given by (10.27) and y(t) solving (10.12).

We move on to cases of f(t) given by (10.4) and (10.5), which we combine
as follows:

(10.28) a
d2x

dt2
+ c

dx

dt
+ cx = b1 sinσt+ b2 cosσt.

Via Euler’s formula we can write

(10.29)
b1 sinσt+ b2 cosσt = B1e

iσt +B2e
−iσt,

B1 =
b1
2i

+
b2
2
, B2 = −b1

2i
+
b2
2
,
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and we are back in the setting (10.26), with κ1 = iσ, κ2 = −iσ. Thus,
for example, if ±iσ are not roots of the characteristic polynomial p(r) =
ar2 + br + c, we have a particular solution of the form

(10.30) xp(t) = A1B1e
iσt +A2B2e

−iσt,

where B1 and B2 are as in (10.29) and the undetermined coefficients A1 and
A2 can be obtained by plugging into (10.28). As an alternative presentation,
we can again use Euler’s formula to rewrite (10.30) as

(10.31) xp(t) = a1 sinσt+ a2 cosσt,

where the undetermined coefficients a1 and a2 are obtained by plugging into
(10.28).

If a, b, and c in (10.1) are all real, then p(r) will not have purely imagi-

nary roots if b ̸= 0. If b = 0, the roots will be r± = ±
√
−c/a, which are real

if c/a < 0 and purely imaginary if c/a > 0. In case r± = ±iσ, considerations
parallel to (10.17)–(10.20) apply, with κ = ±iσ. Again a further application
of Euler’s formula gives

(10.32) xp(t) = a1t sinσt+ a2t cosσt,

where the coefficients a1 and a2 are obtained by plugging into (10.28).

We now move to cases of f(t) given by (10.6). Take k = 1, so we are
looking at

(10.33) ax′′ + bx′ + cx = t.

We try

(10.34) x(t) = At+B,

for which x′ = A, x′′ = 0, and the left side of (10.33) is cAt+(B+ bA). The
condition that (10.33) hold is

cA = 1, B + bA = 0,

solved by

(10.35) A =
1

c
, B = −b

c
,

assuming c ̸= 0. If c = 0, we want to solve (for v = dx/dt)

(10.36) av′ + bv = t.
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We try

(10.37) v(t) = αt+ β,

for which v′ = α and the left side of (10.36) is aα+ b(αt+β). The condition
that (10.36) hold is

(10.38) bα = 1, aα+ bβ = 0,

solved by

(10.39) α =
1

b
, β = − a

b2
,

assuming b ̸= 0. In such a case, we can take

(10.40) x(t) =
α

2
t2 + βt.

In case c = b = 0, (10.32) becomes

(10.41) ax′′ = t,

with solution

(10.42) x(t) =
1

6a
t3.

Analogous considerations apply to (10.6) with k ≥ 2. The method can
also be extended to treat f(t) in the form

(10.43) tkeκt, tk sinσt, tk cosσt.

We omit details. In such cases, it is just as convenient to use the method
developed in §14.

See §16 for further insight on why the method of undetermined coeffi-
cients works for functions f(t) of the form (10.3)–(10.6), and more generally
of the form (10.43).

Exercises

1. Find the general solution to each of the following equations for x = x(t).

(a) x′′ + 25x = e5t.
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(b) x′′ − 25x = e5t.

(c) x′′ − 2x+ x = sin t.

(d) x′′ + 2x′ + x = et.

(e) x′′ + x′ + x = cos t.

2. In each case (a)–(e) of Exercise 1, find the solution satisfying the initial
conditions

x(0) = 1, x′(0) = 0.

3. In each case (a)–(e) of Exercises 1, find the solution satisfying the initial
conditions

x(0) = 0, x′(0) = 1.

4. For ε ̸= 0, solve the initial value problem

x′′ε − 25xε = e(5+ε)t, xε(0) = 1, x′ε(0) = 0.

Compute the limit
x(t) = lim

ε→0
xε(t),

and show that the limit solves

x′′ − 25x = e5t, x(0) = 1, x′(0) = 0.

11. Forced pendulum – resonance

Here we study the following special cases of (10.28), modeling the linearized
pendulum and damped pendulum, respectively, subjected to an additional
periodic force of the form F0 sinσt. The equations we consider are, respec-
tively,

(11.1)
d2u

dt2
+
g

ℓ
u = F0 sinσt,
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and

(11.2)
d2u

dt2
+
α

m

du

dt
+
g

ℓ
u = F0 sinσt.

The quantities α,m, g, and ℓ are all positive, and we take F0 and σ to be
real. As in (9.33), we set

(11.3) k =

√
g

ℓ
, b =

α

m
,

so b > 0, k > 0, and the equations (11.1)–(11.2) become

(11.4)
d2u

dt2
+ k2u = F0 sinσt,

and

(11.5)
d2u

dt2
+ b

du

dt
+ k2u = F0 sinσt.

As long as k ̸= ±σ, we can set u(t) = a1 sinσt and the left side of (11.4)
equals a1(k

2 − σ2) sinσt, so a solution to (11.4) is

(11.6) up(t) =
F0

k2 − σ2
sinσt,

in such a case. Note how the coefficient F0/(k
2 − σ2) blows up as σ → ±k.

If σ = k, then, as in (10.32), we need to seek a solution to (11.4) of the form

(11.7) up(t) = a1t sinσt+ a2t cosσt.

In such a case,

(11.8) u′′p + k2up = 2a1σ cosσt− 2a2σ sinσt,

so (11.4) holds provided

(11.9) −2a2σ = F0, 2a1σ = 0,

i.e., we have

(11.10) up(t) = −F0

2σ
t cosσt.

Note that up(t) grows without bound as |t| → ∞ in this case, as opposed to
the bounded behavior in t given by (11.6) when σ2 ̸= k2. We say we have a
resonance at σ2 = k2.
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Moving on to (11.5), as in (9.37) the characteristic polynomial p(r) =
r2 + br + k2 has roots

(11.11) r± = − b
2
± 1

2

√
b2 − 4k2,

and as long as b > 0, ±iσ ̸= r±. Hence we can seek a solution to (11.5) in
the form

(11.12) up(t) = a1 sinσt+ a2 cosσt.

A computation gives

(11.13)
u′′p + bu′p + k2up = (−a1σ2 − a2bσ + a1k

2) sinσt

+ (−a2σ2 + a1bσ + a2k
2) cosσt,

so up is a solution to (11.5) if and only if

(11.14)
(k2 − σ2)a1 − (bσ)a2 = F0,

(bσ)a1 + (k2 − σ2)a2 = 0.

Solving for a1 and a2 gives

(11.15)

a1 =
k2 − σ2

(k2 − σ2)2 + (bσ)2
F0,

a2 = − bσ

(k2 − σ2)2 + (bσ)2
F0.

We can rewrite (11.12) as

(11.16) up(t) = A sin(σt+ θ),

for some constants A and θ, using the identity

(11.17) A sin(σt+ θ) = A(cos θ) sinσt+A(sin θ) cosσt.

It follows that (11.16) is equivalent to (11.12) provided

(11.18) A cos θ = a1, A sin θ = a2,

i.e., provided

(11.19) a1 + ia2 = Aeiθ.

We take A > 0 such that

(11.20) A2 = a21 + a22 =
F 2
0

(k2 − σ2)2 + (bσ)2
.
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Thus

(11.21) A =
|F0|√

(k2 − σ2)2 + (bσ)2

is the amplitude of the solution (11.16).

If b, k, and F0 are fixed quantities in (11.5) and σ is allowed to vary, A
in (11.21) is maximized at the value of σ for which

(11.22) β(σ) = (k2 − σ2)2 + (bσ)2

is minimal. We have

(11.23)

β′(σ) = 4σ3 + 2(b2 − 2k2)σ

= 4σ
[
σ2 −

(
k2 − b2

2

)]
.

Note that σ = 0 is a critical point, and β(0) = k4. There are two cases.
First,

(11.24)
k2 − b2

2
> 0 =⇒ βmin = β

(
±
√
k2 − b2

2

)
= b2

(
k2 − b2

4

)
,

since k4 ≥ b2(k2 − b2/4). (Indeed, taking ξ = k2/b2, this inequality is
equivalent to ξ2 ≥ ξ − 1/4; but ξ2 − ξ + 1/4 = (ξ − 1/2)2.) In the second
case,

(11.25) k2 − b2

2
≤ 0 =⇒ βmin = β(0) = k4.

In these respective cases, we get

(11.26) Amax =
|F0|
b

(
k2 − b2

4

)−1/2
,

and

(11.27) Amax =
|F0|
k2

.

In the first case, i.e., (11.24), we say resonance is achieved at σ2 = k2−b2/2.
Recall from §9 that critical damping occurs for k2 = b2/4, for the unforced
pendulum, so in case (11.24) the unforced pendulum has damped oscillatory
motion.
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Exercises

1. Find the general solution to

(11.28)
d2u

dt2
+
du

dt
+ u = 3 sinσt.

2. For the equation in Exercise 1, find the value of σ for which there is
resonance.

3. Would the answer to Exercise 2 change if the right side of (11.28) were
changed to

10 sinσt?

Explain.

4. Do analogues of Exercises 1–2 with (11.28) replaced by each of the
following:

d2u

dt2
+
du

dt
+ 3u = sinσt,

d2u

dt2
+ 2

du

dt
+ 3u = 2 sinσt.

5. Do analogues of Exercise 1 with (11.28) replaced by the following:

d2u

dt2
+ 2

du

dt
+ u = 3 sinσt.

Discuss the issue of resonance in this case.

12. Spring motion

We consider the motion of a body of mass m, attached to one end of a
spring, as depicted in Fig. 12.1. The other end of the spring is attached to
a rigid wall, and the weight slides along the floor, pushed or pulled by the
spring. We assume that the force of the spring is a function of position:

(12.1) F1 = F1(x).
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Figure 12.1

We pick the origin to be the position where the spring is relaxed, so
F (0) = 0. A good approximation, valid for small oscillations, is

(12.2) F1(x) = −Kx,

with a positive constant K (called the spring constant). This approxima-
tion loses accuracy if |x| is large. Sliding along the floor typically produces
a frictional force that is a function of the velocity v = dx/dt. A good
approximation for the frictional force is

(12.3) F2 = F2(v) = −av,

where a is a positive constant, called the coefficient of friction. The total
force on the mass is F = F1 + F2, and Newton’s law F = ma yields the
differential equation

(12.4) m
d2x

dt2
+ a

dx

dt
+Kx = 0.

This has the same form as (9.35), i.e.,

(12.5)
d2x

dt2
+ b

dx

dt
+ k2x = 0,

with

(12.6) b =
a

m
, k2 =

K

m
,

both positive, and the analysis of (9.35) applies here, including notions of
oscillatory damped, critically damped, and overdamped motion.

One can consider systems of several masses, connected via springs. These
situations lead to systems of differential equations, studied in Chapter 3.



13. RLC circuits 65

Exercises

1. Suppose one has a spring system as in Fig. 12.1. Assume the mass m is
2 kg and the spring constant K is 6 kg/sec2. There is a frictional force
of a kg/sec. Find the values of a for which the spring motion is

(a) damped oscillatory,

(b) critically damped,

(c) overdamped.

2. In the context of Exercise 1, suppose there is also an external force of
the form

10 sinσt kg-m/sec2.

(Assume x is given in meters.) Take

a = 2,

so (12.4) becomes

2
d2x

dt2
+ 2

dx

dt
+ 6x = 10 sinσt.

Find the value of σ for which there is resonance.

13. RLC circuits

Here we derive a differential equation for the current flowing through the
circuit depicted in Fig. 13.1, which consists of a resistor, with resistance R
(in ohms), a capacitor, with capacitance C (in farads), and an inductor, with
inductance L (in henrys). The circuit is plugged into a source of electricity,
providing voltage E(t) (in volts). As stated, we want to find a differential
equation for the current I(t) (in amps).

The equation is derived using two types of basic laws. The first type
consists of two rules, which are special cases of Kirchhoff’s laws:

(A) The sum of the voltage drops across the three circuit elements is E(t).
(B) For each t, the same current I(t) flows through each circuit element.
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For more complicated circuits than the one depicted in Fig. 13.1, these rules
take a more elaborate form. We return to this in Chapter 3.

The second type of law specifies the voltage drop across each circuit element:

Resistor: V = IR,(a)

Inductor: V = L
dI

dt
,(b)

Capacitor: V =
Q

C
.(c)

As stated above, V is measured in volts, I in amps, R in ohms, L in henrys,
and C in farads. In addition, Q is the charge on the capacitor, measured
in coulombs. The rule (c) is supplemented by the following formula for the
current across the capacitor:

(c2) I =
dQ

dt
.

In (b) and (c2), time is measured in seconds.

In Fig. 13.1, the circuit elements are numbered. We let Vj = Vj(t) denote
the voltage drop across element j. Rules (A), (B), and (a) give

V1 + V2 + V3 = E(t),(13.1)

V1 = RI.(13.2)

Rules (B), (b), and (c)–(c2) give differential equations:

L
dI

dt
= V3,(13.3)

C
dV2
dt

= I.(13.4)

Plugging (13.2)–(13.3) into (13.1) gives

(13.5) RI + V2 + L
dI

dt
= E(t).

Applying d/dt to (13.5) and using (13.4) gives

(13.6) L
d2I

dt2
+R

dI

dt
+

1

C
I = E′(t).
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This is the equation for the RLC circuit in Fig. 13.1. If we divide by L we
get

(13.7)
d2I

dt2
+
R

L

dI

dt
+

1

LC
I =

E′(t)

L
,

which has the same form as the (linearized) damped driven pendulum (11.5),
with

(13.8) b =
R

L
, k2 =

1

LC
,

except that at this point E′(t)/L is not specified to agree with the right side
of (11.5). However, indeed, if alternating current powers this circuit, it is
reasonable to take

(13.9) E(t) = E0 cosσt,

so

(13.10)
1

L
E′(t) = −σE0

L
sinσt = F0 sinσt.

Then analyses of solutions done in §11, including analyses of resonance
phenomena, apply in this setting.

Actually, in this setting a different perspective on resonance is in order.
The frequency σ/2π cycles/sec of the alternating current is typically fixed,
while one might be able to adjust the capacitance C. Let us assume R and
L are also fixed, so b in (13.8) is fixed but one might adjust k. Recalling the
formulas (11.16) and (11.21), which in this setting take the form

(13.11) Ip(t) = A sin(σt+ θ), A =
|F0|√

(k2 − σ2)2 + (bσ)2
,

we see that for fixed b and σ, this amplitude is maximized for k satisfying

(13.12) k2 = σ2,

i.e., for

(13.13) LC =
1

σ2
.

More elaborate circuits, containing a larger number of circuit elements,
and more loops, are naturally treated in the context of systems of differential
equations. See Chapter 3 for more on this.
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Remark. Consistent with formulas (a)–(c) and (c2), the units mentioned
above are related as follows:

1 amp = 1
coulomb

sec

1 farad = 1
coulomb

volt

1 henry = 1
volt-sec

amp

1 ohm = 1
volt

amp
.

To relate these to other physical units, we mention that

1 volt = 1 joule/coulomb

1 watt = 1 volt-amp = 1 joule/sec

1 joule = 1 Newton-meter

1 Newton = 1 kg-m/sec2.

The force of gravity at the surface of the earth on a 1 kg. object is 9.8
Newtons, or, alternatively, 2.2 pounds. In other words, 1 Newton is about
0.224 pounds.

The Coulomb is a unit of charge with the following property. If two
particles, of charge q1 and q2 Coulombs, are separated by r meters, the force
between them is given by Coulomb’s law:

F = k
q1q2
r2

Newtons, k = 8.99× 109.

Investigations into the nature of electrons have shown that

−1 Coulomb = charge of 6.24× 1018 electrons.

In connection with this, we mention that one gram of water contains 3.3×
1023 electrons.

Execises

1. Consider a circuit as in Fig. 13.1. Assume the inductance is 4 henrys
and the applied current has the form (13.9) with a frequency of 60 hertz,
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Figure 13.1

i.e., 60 cycles/sec. Find the value of the capacitance C, in farads, to
achieve resonance.

2. Redo Exercise 1, this time with inductance of 10−6 henry and applied
current of the form (13.9) with a frequency of 120 megahertz.

14. Nonhomogeneous equations II – variation of
parameters

Here we present another approach to solving

(14.1)
d2x

dt2
+ b

dx

dt
+ cx = f(t),

(with constant b and c) called the method of variation of parameters. It
works as follows. Let y1(t) and y2(t) be a complete set of solutions of the
homogeneous equation

(14.2)
d2y

dt2
+ b

dy

dt
+ cy = 0.

The method consists of seeking a solution to (14.1) in the form

(14.3) x(t) = u1(t)y1(t) + u2(t)y2(t),

and finding equations for uj(t) that are simpler then the original equation
(14.1). We have

(14.4) x′ = u1y
′
1 + u2y

′
2 + u′1y1 + u′2y2.



70 Single Differential Equations Michael Taylor

It will be convenient to arrange that x′′ not involve second order derivatives
of u1 and u2. To achieve this, we impose the condition

(14.5) u′1y1 + u′2y2 = 0.

Then x′′ = u′1y
′
1 + u′2y

′
2 + u1y

′′
1 + u2y

′′
2 , and using (14.2) to replace y′′j by

−by′j − cyj , we get

(14.6) x′′ = u′1y
′
1 + u′2y

′
2 − (by′1 + cy1)u1 − (by′2 + cy2)u2,

hence

(14.7) x′′ + bx′ + cx = y′1u
′
1 + y′2u

′
2.

Thus we have a solution to (14.1) in the form (14.3) provided u′1 and u′2
solve

(14.8)
y1u

′
1 + y2u

′
2 = 0,

y′1u
′
1 + y′2u

′
2 = f.

This linear system for u′1 and u′2 has the explicit solution

(14.9) u′1 = − y2
W
f, u′2 =

y1
W
f,

whereW (t) is the following determinant, called the Wronskian determinant:

(14.10) W = y1y
′
2 − y2y

′
1 = det

(
y1 y2
y′1 y′2

)
.

Determinants will be studied in the next chapter. The reader who has not
seen them can take the first identity in (14.10) as a definition and ignore the
second identity.

Note that if the roots of the characteristic polynomial p(r) = r2+ br+ c
are distinct, r+ ̸= r−, we can take

(14.11) y1 = er+t, y2 = er−t,

and then

(14.12)
W (t) = r−e

r+ter−t − r+e
r−ter+t

= (r− − r+)e
(r++r−)t,

which is nowhere vanishing. If there is a double root, r+ = r− = r, we can
take

(14.13) y1 = ert, y2 = tert,
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and then

(14.14) W (t) = ert(ert + trert)− tertrert = e2rt,

which is also nowhere vanishing.

Returning to (14.9), we can take

(14.15)

u1(t) = −
∫ t

0

y2(s)

W (s)
f(s) ds+ C1,

u2(t) =

∫ t

0

y1(s)

W (s)
f(s) ds+ C2,

so

(14.16) x(t) = C1y1(t) + C2y2(t) +

∫ t

0

[
y2(t)y1(s)− y1(t)y2(s)

] f(s)
W (s)

ds.

Denote the last term, i.e., the integral, by xp(t).

Note that when the characteristic polynomial r2 + br + c has distinct
roots r+ ̸= r− and (14.11)–(14.12) hold, we get

(14.17)

xp(t) =
1

r− − r+

∫ t

0

[
er−ter+s − er+ter−s

] f(s)

e(r++r−)s
ds

=
1

r− − r+

∫ t

0

[
er−(t−s) − er+(t−s)]f(s) ds.

When the characteristic polynomial has double roots r+ = r− = r and
(14.13)–(14.14) hold, we get

(14.18)

xp(t) =

∫ t

0

[
terters − ertsers

]f(s)
e2rs

ds

=

∫ t

0
(t− s)er(t−s)f(s) ds.

Further material on the Wronskian and the method of variation of pa-
rameters, in a more general context, can be found in Chapter 3. See also
§15 of this chapter for more on the Wronskian.

Exercises

Use the method of variation of parameters to solve each of the following
for x = x(t).

(a) x′′ + x = et.
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(b) x′′ + x = sin t.

(c) x′′ + x = t.

(d) x′′ + x = t2.

(e) x′′ + x = tan t.

15. Variable coefficient second order equations

The general, possibly nonlinear, second order differential equation

(15.1)
d2x

dt2
= F

(
t, x,

dx

dt

)
,

has already been mentioned in §4. If F (t, x, v) is defined and smooth on a
neighborhood of t0, x0, v0, and one imposes an initial condition

(15.2) x(t0) = x0, x′(t0) = v0,

it is a fundamental result that (15.1)–(15.2) has a unique solution, at least
for t in some interval containing t0. A more general result of this sort will
be proven in Chapter 4.

Linear second order equations have the form

(15.3) a(t)
d2x

dt2
+ b(t)

dx

dt
+ c(t)x = f(t).

The existence and uniqueness results stated above apply. There are many
specific and much studied examples, such as Bessel’s equation

(15.4)
d2x

dt2
+

1

t

dx

dt
+
(
1− ν2

t2

)
x = 0,

whose solutions are called Bessel functions, and Airy’s equation,

(15.5)
d2x

dt2
− tx = 0,

whose solutions are Airy functions, just to mention two examples. Such
functions are important and show up in many contexts. Linear variable
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coefficient equations could arise from RLC circuits in which one has variable
capacitors, resistors, and inductors, turning (14.6) into

(15.6) L(t)
d2I

dt2
+R(t)

dI

dt
+

1

C(t)
I = E′(t).

However, the most frequent source of such equations as (15.4)–(15.5) comes
from the theory of Partial Differential Equations. One such indication of how
(15.4) arises is given in Appendix A, at the end of this Chapter. The reader
can find out much more about these equations in a text on Partial Differ-
ential Equations, such as [T]. Solutions to these equations cannot generally
be given in terms of elementary functions, such as exponential functions,
but are further special functions, for which many analytical techniques have
been developed.

As with the exponential function, analyzed in §1, power series techniques
are very useful. We illustrate this by producing a power series

(15.7) x(t) =
∞∑
k−0

akt
k

for the solution to the Airy equation (15.5), with initial data

(15.8) x(0) = 1, x′(0) = 0.

If (15.7) is a convergent power series, then

(15.9)

x′′(t) =

∞∑
k=2

k(k − 1)akt
k−2

=

∞∑
k=0

(k + 2)(k + 1)ak+2t
k,

while

(15.10) tx(t) =
∞∑
k=1

ak−1t
k.

Comparison gives the recursive formula

(15.11) ak+3 =
ak

(k + 3)(k + 2)
.

To get started, we note that

(15.12) a0 = x(0) = 1, a1 = x′(0) = 0, a2 =
1

2
x′′(0) = 0.



74 Single Differential Equations Michael Taylor

Thus a3ℓ+j = 0 for j = 1, 2, and we get

(15.13) x(t) =

∞∑
ℓ=0

αℓt
3ℓ,

where αℓ = a3ℓ is given recursively by

(15.14) αℓ+1 =
αℓ

(3ℓ+ 3)(3ℓ+ 2)
, α0 = 1.

The ratio test applies to show that the power series (15.13) converges for all
t ∈ R, yielding a solution to Airy’s equation (15.5), with initial data (15.8).

A study of power series as a technique for solving ODE in a more general
setting is given in §10 of Chapter 3.

Another useful tool is the Wronskian determinant, defined on a pair of
functions y1 and y2 by

(15.15) W (y1, y2)(t) = y1y
′
2 − y2y

′
1 = det

(
y1 y2
y′1 y′2

)
.

If y1 and y2 both solve (15.3) with f ≡ 0, i.e.,

(15.16) a(t)y′′ + b(t)y′ + c(t)y = 0,

then substituting for y′′j in

(15.17)
dW

dt
= y1y

′′
2 − y2y

′′
1

yields

(15.18)
dW

dt
= − b(t)

a(t)
W,

a useful first order linear equation for W . Note that if we have such y1 and
y2, solving (15.16) with initial condition

(15.19) y(t0) = α, y′(t0) = β,

in the form y(t) = C1y1(t) + C2y2(t) involves finding C1 and C2 such that

(15.20)
C1y1(t0) + C2y2(t0) = α,

C1y
′
1(t0) + C2y

′
2(t0) = β,

which uniquely determines C1 and C2 precisely when W (y1, y2)(t0) ̸= 0.

In light of the existence and uniqueness statement made above (to be
proved in Chapter 4), it follows that if y1 and y2 solve (15.16) and have
nonvanishing Wronskian, on an interval on which a, b, and c are smooth
and a is nonvanishing, then the general solution to (15.16) has the form
C1y1 + C2y2.

We also mention that the Wronskian enters into a natural extension of
the method of variation of parameters to the variable coefficient setting.
This is covered in a more general setting in Chapter 3.
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Exercises

Equations of the form

(15.21) at2
d2x

dt2
+ bt

dx

dt
+ cx = 0

are called Euler equations.

1. Show that x(t) = tr = er log t solves (15.21) for t > 0 provided r satisfies

(15.22) ar(r − 1) + br + c = 0.

2. Show that if (15.22) has two distinct solutions r1 and r2, then

C1t
r1 + C2t

r2

is the general solution to (15.21) on t ∈ (0,∞).

3. Show that if r is a double root of (15.22), then

C1t
r + C2(log t)t

r

is the general solution to (15.21) for t ∈ (0,∞).

4. Find the coefficients ak in the power series expansion

x(t) =

∞∑
k=0

akt
k

for the solution to the Airy equation

(15.23)
d2x

dt2
− tx = 0,

with initial data
x(0) = 0, x′(0) = 1.

Show that this power series converges for all t.

5. Show that the Wronskian of two solutions to the Airy equation (15.23)
solves the equation

dW

dt
= 0.
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16. Bessel’s equation

Here we construct solutions to Bessel’s equation

(16.1)
d2x

dt2
+

1

t

dx

dt
+
(
1− ν2

t2

)
x = 0.

This is an important equation, whose roots in partial differential equations
are discussed in Appendix A. Note that if the factor (1− ν2/t2) in front of
x had the term 1 dropped, one would have the Euler equation

(16.2) t2x′′ + tx′ − ν2x = 0,

with solutions

(16.3) x(t) = t±ν ,

as seen in (15.21)–(15.22). In light of this, we are motivated to set

(16.4) x(t) = tνy(t),

and study the resulting differential equation for y:

(16.5)
d2y

dt2
+

2ν + 1

t

dy

dt
+ y = 0.

This might seem only moderately less singular than (16.1) at t = 0, but in
fact it has a smooth solution. To obtain it, let us note that if y(t) solves
(16.5), so does y(−t), hence so does y(t) + y(−t), which is even in t. Thus,
we look for a solution to (16.5) in the form

(16.6) y(t) =
∞∑
k=0

akt
2k.

Substitution into (16.5) yields for the left side of (16.5) the power series

(16.7)
∞∑
k=0

{
(2k + 2)(2k + 2ν + 2)ak+1 + ak

}
t2k,

assuming convergence, which we will examine shortly. From this we see that,
as long as

(16.8) ν /∈ {−1,−2,−3, . . . },

we can fix a0 = a0(ν) and solve recursively for ak+1, for each k ≥ 0, obtaining

(16.9) ak+1 = −1

4

ak
(k + 1)(k + ν + 1)

.
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Given (16.8), this recursion works, and one can readily apply the ratio test
to show that the power series (16.6) converges for all t ∈ R.

We will find it useful to produce an explicit solution to the recursive
formula (16.9). For this, it is convenient to write

(16.10) ak = αkβkγk,

with

(16.11) αk+1 = −1

4
αk, βk+1 =

βk
k + 1

, γk+1 =
γk

k + ν + 1
.

Clearly the first two equations have the explicit solutions

(16.12) αk =
(
−1

4

)k
α0, βk =

β0
k!
.

We can solve the third if we have in hand a function Γ(z) satisfying

(16.13) Γ(z + 1) = zΓ(z).

Indeed, the Euler gamma function Γ(z), discussed in Appendix B, is a
smooth function on R \ {0,−1,−2, . . . } that satisfies (16.13). With this
function in hand, we can write

(16.14) γk =
γ̃0

Γ(k + ν + 1)
,

and putting together (16.10)–(16.14) yields

(16.15) ak =
(
−1

4

)k ã0
k!Γ(k + ν + 1)

.

We initialize this with ã0 = 2−ν . There results the solution y(t) = Jν(t) to
(16.5), and x(t) = Jν(t) = tνJν(t) to (16.1), given by

(16.16) Jν(t) =
∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

( t
2

)2k+ν
.

Supplementing the regularity of Γ(z) on R \ {0,−1,−2, . . . }, we will see in
Appendix B that

(16.17)

1

Γ(z)
is well defined and smooth in z ∈ R

vanishing for z ∈ {0,−1,−2, . . . }.
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Consequently (16.16) is a valid solution to (16.1) for t ∈ (0,∞), for each
ν ∈ R. In fact,

(16.18) Jν and J−ν solve (16.1), for ν ∈ R.

Let us examine the behavior of Jν(t) as t↘ 0. We have

(16.19) Jν(t) =
1

Γ(ν + 1)

( t
2

)ν
+O(tν+1), as t↘ 0.

As long as ν satisfies (16.8), the coefficient 1/Γ(ν + 1) is nonzero. Further-
more,

(16.20) J−ν(t) =
1

Γ(1− ν)

( t
2

)−ν
+O(t−ν+1), as t↘ 0,

and as long as ν /∈ {1, 2, 3, . . . }, the coefficient 1/Γ(1 − ν) is nonzero. In
particular, we see that

(16.21)
If ν /∈ Z, Jν and J−ν are linearly independent solutions

to (16.1) on (0,∞).

In contrast to this, we have the following:

(16.22) If n ∈ Z, Jn(t) = (−1)nJ−n(t).

To see this, we assume n ∈ {1, 2, 3, . . . }, and note that

(16.23)
1

Γ(k − n+ 1)
= 0, for 0 ≤ k ≤ n− 1.

We use this, together with the restatement of (16.16) that

(16.24) Jν(t) =
∞∑
k=0

(−1)k

Γ(k + 1)Γ(k + ν + 1)

( t
2

)2k+ν
,

which follows from the identity Γ(k + 1) = k!, to deduce that, for n ∈ N,

(16.25)

J−n(t) =

∞∑
k=n

(−1)k

Γ(k + 1)Γ(k − n+ 1)

( t
2

)2k−n

=
∞∑
ℓ=0

(−1)ℓ+n

Γ(ℓ+ 1)Γ(ℓ+ n+ 1)

( t
2

)2ℓ+n

= (−1)nJn(t).
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Consequently Jν(t) and J−ν(t) are linearly independent solutions to
(16.1) as long as ν /∈ Z, but this fails for ν ∈ Z. We now seek a family
of solutions Yν(t) to (16.1) with the property that Jν and Yν are linearly
independent solutions, for all ν ∈ R. The key to this construction lies in an
analysis of the Wronskian

(16.26) Wν(t) =W (Jν , J−ν)(t) = Jν(t)J
′
−ν(t)− J ′

ν(t)J−ν(t).

By (15.10), we have

(16.27)
dWν

dt
= −1

t
Wν ,

hence

(16.28) Wν(t) =
K(ν)

t
.

To evaluate K(ν), we calculate

(16.29)
W (Jν , J−ν) =W (tνJν , t−νJ−ν)

=W (Jν ,J−ν)−
2ν

t
Jν(t)J−ν(t).

Since Jν(t) and J−ν(t) are smooth in t, so is W (Jν ,J−ν), and we deduce
from (16.28)–(16.29) that

(16.30) Wν(t) = −2ν

t
Jν(0)J−ν(0).

Now, since Jν(0) = 1/2νΓ(ν + 1), we have

(16.31)

νJν(0)J−ν(0) =
ν

Γ(ν + 1)Γ(1− ν)

=
1

Γ(ν)Γ(1− ν)
.

An importent gamma function identity, stated in Appendix B, is

(16.32) Γ(ν)Γ(1− ν) =
π

sinπν
.

Hence (16.30)–(16.31) yields

(16.33) W (Jν , J−ν)(t) = − 2

π

sinπν

t
.
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This motivates the following. For ν /∈ Z, set

(16.34) Yν(t) =
Jν(t) cosπν − J−ν(t)

sinπν
.

Note that, by (16.25), numerator and denominator both vanish for ν ∈ Z.
Now, for ν /∈ Z, we have

(16.35)
W (Jν , Yν)(t) = − 1

sinπν
W (Jν , J−ν)(t)

=
2

πt
.

Consequently, for n ∈ Z, we set

(16.36) Yn(t) = lim
ν→n

Yν(t) =
1

π

[∂Jν(t)
∂ν

− (−1)n
∂J−ν(t)

∂ν

]∣∣∣
ν=n

,

and we also have (16.35) for ν ∈ Z.
Another construction of a solution to accompany Jn(t) is given in Chap-

ter 3, (11.65)–(11.79).

We end this section with the following integral formula for Jν(t), which
plays an important role in further investigations, such as the behavior of
Jν(t) for large t.

Proposition 16.1. If ν > −1/2,

(16.37) Jν(t) =
(t/2)ν

Γ(1/2)Γ(ν + 1/2)

∫ 1

−1
(1− s2)ν−1/2eist ds.

Proof. To verify (16.37), we replace eist by its power series, integrate term
by term, and use some identites from Appendix B. To begin, the integral on
the right side of (16.37) is equal to

(16.38)
∞∑
k=0

1

(2k)!

∫ 1

−1
(ist)2k(1− s2)ν−1/2 ds.

The identity (B.16) implies

(16.39)

∫ 1

−1
s2k(1− s2)ν−1/2 ds =

Γ(k + 1/2)Γ(ν + 1/2)

Γ(k + ν + 1)
,

so the right side of (16.37) equals

(16.40)
(t/2)ν

Γ(1/2)Γ(ν + 1/2)

∞∑
k=0

1

(2k)!
(it)2k

Γ(k + 1/2)Γ(ν + 1/2)

Γ(k + ν + 1)
.
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As seen in (B.7), we have

(16.41) Γ
(1
2

)
(2k)! = 22kk! Γ

(
k +

1

2

)
,

so (16.40) is equal to

(16.42)
( t
2

)ν ∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

( t
2

)2k
,

which agrees with our formula (16.16) for Jν(t).

Exercises

1. Show that the Bessel functions Jν satisfy the following recursion rela-
tions:

d

dt

(
tνJν(t)

)
= tνJν−1(t),

d

dt

(
t−νJν(t)

)
= −t−νJν+1(t),

or equivalently

Jν+1(t) = −J ′
ν(t) +

ν

t
Jν(t),

Jν−1(t) = J ′
ν(t) +

ν

t
Jν(t).

2. Show that J−1/2(t) =
√
2/π cos t, and deduce that

J−1/2(t) =

√
2

πt
cos t, J1/2(t) =

√
2

πt
sin t.

Deduce from Exercise 1 that, for n ∈ Z+,

Jn+1/2(t) = (−1)n
{ n∏
j=1

( d
dt

− j − 1/2

t

)} sin t√
2πt

,

J−n−1/2(t) =
{ n∏
j=1

( d
dt

− j − 1/2

t

)} cos t√
2πt

.

Hint. The differential equation (16.5) for J−1/2 is y′′ + y = 0. Since
J−1/2(t) is even in t, J−1/2(t) = C cos t, and the evaluation of C comes

from J−1/2(0) =
√
2/Γ(1/2) =

√
2/π, thanks to (B.6).
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3. Show that the functions Yν satisfy the same recursion relations as Jν ,
i.e.,

d

dt

(
tνYν(t)

)
= tνYν−1(t),

d

dt

(
t−νYν(t)

)
= −t−νYν+1(t).

4. The Hankel functions H
(1)
ν (t) and H

(2)
ν (t) are defined to be

H(1)
ν (t) = Jν(t) + iYν(t), H(2)

ν (t) = Jν(t)− iYν(t).

Show that they satisfy the same recursion relations as Jν , i.e.,

d

dt

(
tνH(j)

ν (t)
)
= tνH

(j)
ν−1(t),

d

dt

(
t−νH(j)

ν (t)
)
= −t−νH(j)

ν+1(t),

for j = 1, 2.
5. Show that

H
(1)
−ν (t) = eπiνH(1)

ν (t), H
(2)
−ν (t) = e−πiνH(2)

ν (t).

6. Show that Y1/2(t) = −J−1/2(t), and deduce that

H
(1)
1/2(t) = −i

√
2

πt
eit, H

(2)
1/2(t) = i

√
2

πt
e−it.

17. Higher order linear equations

A linear differential equation of order n has the form

(17.1) an(t)
dnx

dtn
+ an−1(t)

dn−1x

dtn−1
+ · · ·+ a0(t)x = f(t).

If aj(t) are continuous for t in an interval I containing t0, and an(t) is
nonvanishing on this interval, one has a unique solution to (16.1) given an
initial condition of the form

(17.2) x(t0) = α0, x
′(t0) = α1, . . . , x

(n−1)(t0) = αn−1.

(As with (15.1)–(15.2), this also follows from a general result that will be
established in Chapter 4.) If aj(t) are all constant, the equation (17.1) has
the form

(17.3) an
dnx

dtn
+ an−1

dn−1x

dtn−1
+ · · ·+ a0x = f(t).
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It is homogeneous if f ≡ 0, in which case one has

(17.4) an
dnx

dtn
+ an−1

dn−1x

dtn−1
+ · · ·+ a0x = 0.

We assume an ̸= 0.

Methods developed in §§9–10 have natural extensions to (17.4) and
(17.3). The function x(t) = ert solves (17.4) provided r satisfies the charac-
teristic equation

(17.5) anr
n + an−1r

n−1 + · · ·+ a0 = 0.

The fundamental theorem of algebra guarantees that (17.5) has n roots, i.e.,
there exist r1, . . . , rn ∈ C such that

(17.6) anr
n + an−1r

n−1 + · · ·+ a0 = an(r − r1) · · · (r − rn).

A proof of this theorem is given in an appendix to Chapter 2. These roots
r1, . . . , rn may or may not be distinct. If they are distinct, the general
solution to (17.4) has the form

(17.7) x(t) = C1e
r1t + · · ·+ Cne

rnt.

If rj is a root of multiplicity k, one has solutions to (17.4) of the form

(17.8) C1e
rjt + C2te

rjt + · · ·+ Ckt
k−1erjt.

This observation can be used to yield a fresh perspective on what makes the
calculations in §10 work. Consider for example the equation

(17.9) ax′′ + bx′ + cx = eκt.

The right side solves the equation (d/dt−κ)eκt = 0, so any solution to (17.9)
also solves

(17.10)
( d
dt

− κ
)(
a
d2

dt2
+ b

d

dt
+ c

)
x = 0,

a homogeneous equation whose characteristic polynomial is

(17.11) q(r) = (r − κ)(ar2 + br + c) = (r − κ)p(r).

If κ is not a root of p(r), then certainly (17.9) has a solution of the form
Aeκt. If κ is a root of p(r), then it is a double (or, perhaps, triple) root of
q(r), and (16.8) applies, leading one to (10.17) or (10.25).

One can also extend the method of variation of parameters to higher
order equations (17.3), though the details get grim.

The equations (17.1)–(17.4) can each be recast as n× n first order sys-
tems of differential equations, and all the results on these equations are
special cases of results to be covered in Chapter 3, so we will say no more
here, except to advertise that this transformation leads to a much simplified
approach to the method of variation of parameters.
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Exercises

1. Assume the existence and uniqueness results for the solution to (17.1)
stated in the first paragraph of this section. Show that there exist n
solutions uj to

an(t)u
(n)
j (t) + an−1(t)u

(n−1)(t) + · · ·+ a0(t)uj(t) = 0

on I such that every solution to (16.1) with f ≡ 0 can be written
uniquely in the form

x(t) = C1u1(t) + · · ·+ Cnun(t).

For general continuous f , let xp be a particular solution to (17.1). Show
that if x(t) is an arbitrary solution to (17.1), then there exist unique
constants Cj , 1 ≤ j ≤ n, such that

x(t) = xp(t) + C1u1(t) + · · ·+ Cnun(t).

This is called the general solution to (17.1).

Hint. Require u
(k−1)
j (t0) = δjk, 1 ≤ k ≤ n, where δjk = 1 for j = k, 0

for j ̸= k.
2. Find the general solution to each of the following equations for x = x(t).

(a)
d4x

dt4
− x = 0.

(b)
d3x

dt3
− x = 0.

(c) x′′′ − 2x′′ − 4x′ + 8x = 0.

(d) x′′′ − 2x′′ + 4x′ − 8x = 0.

(e) x′′′ + x = et.
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3. For each of the cases (a)–(e) in Exercise 1 of §10, produce a third or
fourth order homogeneous differential equation solved by x(t).

Exercises 4–6 will exploit the fact that if the characteristic polyno-
mial (17.6) factors as stated there, then the left side of (17.4) is equal
to

an

( d
dt

− r1

)
· · ·

( d
dt

− rn

)
x = an

n∏
j=1

( d
dt

− rj

)
x.

4. Show that ( d
dt

− rj

)
(ertu) = ert

( d
dt

− rj + r
)
u,

and more generally

n∏
j=1

( d
dt

− rj

)
(ertu) = ert

n∏
j=1

( d
dt

− rj + r
)
u.

5. Suppose rj is a root of multiplicity k of (17.6). Show that x(t) = erjtu
solves (17.4) if and only if∏

{ℓ:rℓ ̸=rj}

( d
dt

− rℓ + rj

)( d
dt

)k
u = 0.

Use this to show that functions of the form (17.8) solve (17.4).

6. In light of Exercise 5, use an inductive argument to show the following.
Assume the roots {rj} of (17.6) are

rν , with multiplicity kν , 1 ≤ ν ≤ m, k1 + · · ·+ km = n.

Then the general solution to (17.4) is a linear combination of

tℓνerνt, 0 ≤ ℓν ≤ kν − 1, 1 ≤ ν ≤ m.

18. The Laplace transform

The Laplace transform provides a tool to treat nonhomogeneous differential
equations of the form

(18.1) cn
dnf

dtn
+ cn−1

dn−1f

dtn−1
+ · · ·+ c0f(t) = g(t),
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for t ≥ 0, with initial data

(18.2) f(0) = a0, . . . , f
(n−1)(0) = an−1,

for certain classes of functions g. It is defined as follows. Assume f : R+ → C
is integrable on [0, R] for all R <∞, and satisfies

(18.3)

∫ ∞

0
|f(t)|e−at dt <∞, ∀ a > A,

for some A ∈ R. We define the Laplace transform of f by

(18.4) Lf(s) =
∫ ∞

0
f(t)e−st dt, Re s > A.

By our hypotheses, this integral is absolutely convergent for each s in the
half-plane HA = {s ∈ C : Re s > A}. For our current purposes, it will suffice
to take s real, in (A,∞). Note that, for such s,

(18.5)
d

ds
Lf(s) = Lg(s), g(t) = −tf(t).

If we assume that f ′ is continuous on [0,∞) and

(18.6) |f(t)|+ |f ′(t)| ≤ Cεe
(A+ε)t, for t ≥ 0,

for each ε > 0, we can integrate by parts and get

(18.7) Lf ′(s) = sLf(s)− f(0),

and similar hypotheses for higher derivatives of f gives

(18.8) Lf (k)(s) = skLf(s)− sk−1f(0)− · · · − f (k−1)(0).

Hence, if f satisfies an ODE of the form (18.1)–(18.2) and if f, f ′, . . . f (n−1)

all satisfy (18.6), and g satisfies (18.3), we have

(18.9) p(s)Lf(s) = Lg(s) + q(s),

with

(18.10)
p(s) = cns

n + cn−1s
n−1 + · · ·+ c0,

q(s) = cn(a0s
n−1 + · · ·+ an−1) + · · ·+ c1a0.

If all the roots of p(s) satisfy Re s < B, we have

(18.11) Lf(s) = Lg(s) + q(s)

p(s)
, Re s > C = max(A,B).
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Making use of (18.11) to solve (18.1)–(18.2) brings in two problems, which
we now state.

I. The recognition problem. Given the right side of (18.11), i.e., given

(18.12)
Lg(s) + q(s)

p(s)
= R(s),

find a function f1 : [0,∞) → C, such that

(18.13) Lf1(s) = R(s), for Re s > C.

II. The uniqueness problem. Given f and f1 : [0,∞) → C, both satis-
fying (18.3), one wants to know that

(18.14) Lf(s) = Lf1(s), ∀ s > A =⇒ f = f1 on [0,∞).

The uniqueness problem has a satisfactory solution. As long as f and
f1 satisfy the hypotheses just stated, the result (18.14) is true. The proof
of this can be found in §15 of [T4]. In addition there are inversion formulas.
Here is one, established in §15 of [T4].

Proposition 18.1. Assume f and f ′ are continuous on [0,∞), and

(18.15) |f(t)|+ |f ′(t)| ≤ CeAt, t ≥ 0.

Then, for t > 0,

(18.16) tf(t) = − 1

2π

∫ ∞

−∞

d

ds
Lf(B + iξ)et(B+iξ) dξ,

as long as B > A, with an absolutely convergent integral on the right side.

In light of the uniqueness, if f satisfies (18.3), we say

(18.17) g = Lf =⇒ f = L−1g,

and call L−1 the inverse Laplace transform.

Generally speaking, for functions R(s) that arise in (18.12), calculation
of the integral ∫ ∞

−∞
R′(B + iξ)eitξ dξ
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is not so easy, though methods of residue calculus, discussed in §16 of [T4]
can be effective. For the purpose of using (18.11) to solve (18.1)–(18.2), by
finding f that satisfies

(18.18) Lf(s) = R(s),

with R(s) as in (18.12), it is useful to have a collection of functions that are
known Laplace transforms, in order to solve the recognition problem.

To start our collection, we consider the Laplace transform of eat:

(18.19)

∫ ∞

0
eate−st dt =

∫ ∞

0
e−(s−a)t dt =

1

s− a
.

If a is real, this is valid for Re s > a. However, using results from §1, we find
it useful to note that (18.19) holds for complex a, as long as Re s > Re a.
We can apply this to

(18.20) f(t) = cos at =
1

2
(eiat + e−iat),

for a ∈ R, to get

(18.21)
Lf(s) = 1

2

( 1

s− ia
+

1

s+ ia

)
=

s

s2 + a2
.

Similar techniques yield the following table of Laplace transforms.

f(t) Lf(s)
(a) sin at a

s2+a2

(b) cos at s
s2+a2

(c) sinh at a
s2−a2

(d) cosh at s
s2−a2

If a ∈ R, the range of validity of (a)–(b) is Re s > 0, and that of (c)–(d)
is Re s > |a|.

Laplace transforms of other functions, such as e−bt cos at, etc., can be
identified via the identity

(18.22) L(e−btf)(s) = Lf(s+ b).

Also, one can turn (18.5) around, to write

(18.23) L(tf)(s) = − d

ds
Lf(s),
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and, inductively,

(18.24) L(tnf)(s) = (−1)n
dn

dsn
Lf(s).

For example,

(18.25)

L(tneat)(s) = (−1)n
dn

dsn
(s− a)−1

=
n!

(s− a)n+1
,

for a ∈ C, Re s > Re a. In particular,

(18.26) f(t) = tn =⇒ Lf(s) = n! s−(n+1).

Of course, by (18.22), the result (18.25) follows from its special case (18.26).
A natural generalization of (18.16) arises from taking

(18.27) fz(t) = tz−1, z > 0.

We get

(18.28)

Lfz(s) =
∫ ∞

0
e−sttz−1 dt

=
(∫ ∞

0
e−ttz−1 dt

)
s−z

= Γ(z)s−z,

where

(18.29) Γ(z) =

∫ ∞

0
e−ttz−1 dt, z > 1,

is the Gamma function, which plays a role in §16, via (16.13)–(16.16), and
is treated in Appendix B. Let us note that (18.23) implies

(18.30) Lfz+1f(s) = − d

ds
Lfz(s),

which in view of (18.28) is equivalent to the identity

(18.31) Γ(z + 1) = zΓ(z).

Also comparison of (18.26) and (18.28), with z = n+ 1, yields

Γ(n+ 1) = n!
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We can obtain another Laplace transform identity by applying d/dz to
(18.28), noting that, since s−z = e−z log s,

(18.32)
d

dz
s−z = −(log s)s−z, s > 0,

with an analogous formula for (d/dz)tz−1:

(18.33)
d

dz
tz−1 = (log t)tz−1.

Hence (18.28) yields

(18.34) f(t) = (log t)tz−1 ⇒ Lf(s) =
(
Γ′(z)− Γ(z) log s

)
s−z.

In particular,

(18.35)
f(t) = log t⇒ Lf(s) = (Γ′(1)− log s)s−1

= −γ + log s

s
,

where γ = −Γ′(1) is known as Euler’s constant. Taking s = 1 in (18.35), we
have the formula

(18.36) γ = −
∫ ∞

0
(log t)e−t dt.

Collecting these results, we complement the table of Laplace transforms
compiled above with the following.

f(t) Lf(s)
(e) tz−1 Γ(z)s−z

(f) log t −γ+log s
s

(g) (log t)tz−1 Γ′(z)−Γ(z) log s
sz

(h) tz−1eat Γ(z)(s− a)−z

Note that (h) follows from (e), via (18.22). One has similar variants of
(f)–(g).

Another function to consider is the “impulse function”

(18.37)
χI(t) = 1, if t ∈ I,

0, if t /∈ I.

where I = [a, b] is an interval, with 0 ≤ a < b <∞. We have

(18.38) LχI(s) =
∫ b

a
e−st dt =

e−as − e−bs

s
.
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Let us apply the Laplace transform method to the following initial value
problem. Take k, a, α0, α1 ∈ R, and consider

(18.39) f ′′(t) + k2f(t) = cos at, f(0) = α0, f
′(0) = α1.

From (18.8),
Lf ′′(s) = s2Lf(s)− α0s− α1,

and since L(cos at)(s) = s/(s2 + a2), (18.11) becomes

(18.40) Lf(s) = s

(s2 + k2)(s2 + a2)
+
α0s+ α1

s2 + k2
.

The last term on the right is the Laplace transform of

(18.41) α0 cos kt+
α1

k
sin kt.

It remains to write the first term on the right side of (18.40) as a Laplace
transform. For this, we apply the method of partial fractions. To start, we
try

(18.42)
s

(s2 + k2)(s2 + a2)
=
αs+ β

s2 + a2
+
γs+ δ

s2 + k2
,

with unknowns α, β, γ, δ. Multiplying through by (s2 + k2)(s2 + a2) and
equating coefficients of various powers of s leads to four linear equations in
these four unknowns. Two of them yield α = −γ and β = −δ, and then the
other two become

(18.43) (k2 − a2)α = 1, (k2 − a2)β = 0.

If k2 ̸= a2, these are uniquely solvable, for α = (k2 − a2)−1, β = 0, and
(18.46) becomes

(18.44)
s

(s2 + k2)(s2 + a2)
=

1

k2 − a2

( s

s2 + a2
− s

s2 + k2

)
.

This is the Laplace transform of

(18.45) φa,k(t) =
1

k2 − a2
(cos at− cos kt).

Then the solution to the differential equation (18.39) is

(18.46) f(t) = φa,k(t) + α0 cos kt+
α1

k
sin kt.
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This approach fails for k2 = a2, paralleling the situation we encountered
in examining (11.4). One way to treat this exceptional case is to pass to the
limit in (18.45), obtaining

(18.47)

φk,k(t) = lim
a→k

φa,k(t)

= lim
a→k

1

k + a

cos at− cos kt

k − a

=
t

2k
sin kt.

Another approach is to refine the method of partial fractions. In lieu of
(18.42), we have

(18.48)

s

(s2 + k2)2
=

s

(s+ ik)2(s− ik)2

=
i

4k

( 1

(s+ ik)2
− 1

(s− ik)2

)
.

Using (18.25), with n = 1, we have

(18.49) L−1
( 1

(s± ik)2

)
(t) = te∓ikt.

Hence the right side of (18.48) is the Laplace transform of

(18.50)
i

4k
(te−ikt − teikt) =

t

2k
sin kt,

and again we obtain the conclusion of (18.47), from a different perspective.

In light of this analysis, and recalling (18.12), we are motivated to com-
pute the inverse Laplace transform of functions of the form q(s)/p(s), where
p(s) is a polynomial of degree n, say

(18.51) p(s) = sn + cn−1s
n−1 + · · ·+ c0,

and q(s) is a polynomial of degree ≤ n−1. The polynomial p(s) has complex
roots r1, . . . , rm, of multiplicity k1, . . . , km, and we can write (18.51) as

(18.52) p(s) = (s− r1)
k1 · · · (s− rm)

km , k1 + · · ·+ km = n.

This is a consequence of the fundamental theorem of algebra, which is proved
in Appendix C of Chapter 2. The following is an incisive result on the
method of partial fractions.
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Proposition 18.2. If p(s) is a polynomial of the form (18.52), with {r1, . . . , rm}
distinct, and if q(s) is a polynomial of degree ≤ n−1, then there exist unique
ajℓ ∈ C, for 1 ≤ ℓ ≤ m, 1 ≤ j ≤ kℓ, such that

(18.53)
q(s)

p(s)
=

m∑
ℓ=1

kℓ∑
j=1

ajℓ
(s− rℓ)j

.

Proof. We use some concepts developed in Chapter 2. The set of collections
(ajℓ) of the form

{ajℓ ∈ C : 1 ≤ j ≤ kℓ, 1 ≤ ℓ ≤ m}

forms a vector space V0, of dimension k1 + · · · + km = n. Meanwhile, the
space Pn−1 of polynomials q(s) of degree ≤ n − 1 is also a vector space
of dimension n. Now the correspondence in (18.53) yields a well defined
linear map T from V0 to Pn−1, given by T (ajℓ) = q(s), the numerator in
the left side of (18.53), and one can verify that this map is one-to-one.
Hence (cf. Corollary 3.7 of Chapter 2), this map is also onto, and this gives
Proposition 18.2.

Given the representation (18.53), we deduce from (18.25) that

(18.54) L−1
(q
p

)
(t) =

m∑
ℓ=1

kℓ∑
j=1

ajℓ
(j − 1)!

tj−1erℓt.

Taking q(s) = 1, we obtain a function φ(t), of the form (18.54), such
that

(18.55) Lφ(s) = 1

p(s)
.

Then the solution f(t) to (18.1)–(18.2) is equal to L−1(q/p)(t) plus f0(t),
satisfying

(18.56) Lf0(s) =
Lg(s)
p(s)

= Lφ(s)Lg(s).

The following result provides a useful integral formula for f0.

Proposition 18.2. Let φ and g satisfy (18.3), and set

(18.57) φ ∗ g(t) =
∫ t

0
φ(t− τ)g(τ) dτ.

Then, for s > A,

(18.58) L(φ ∗ g)(s) = Lφ(s)Lg(s).
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Proof. Given (18.57), we have

(18.59)

L(φ ∗ g)(s) =
∫ ∞

0
e−st

∫ t

0
φ(t− τ)g(τ) dτ dt

=

∫ ∞

0

∫ t

0
e−s(t−τ)e−sτφ(t− τ)g(τ) dτ dt

=

∫ ∞

0

∫ ∞

τ
e−s(t−τ)e−sτφ(t− τ)g(τ) dt dτ

= Lφ(s)
∫ ∞

0
e−sτg(τ) dτ

= Lφ(s)Lg(s),

as asserted.

Recall that the method of variation of parameters, discussed in §14, also
leads to an integral formula involving an integral over [0, t]. In fact, the
method of variation of parameters and the use of the Laplace transform
discussed here can both be understood as special cases of a general method,
involving Duhamel’s formula, arising when the equations are recast as first-
order systems. This is explained in Appendix B of Chapter 3

Exercises

1. Compute the inverse Laplace transform of the following functions.

1

s4 − 1
,(a)

s+ 1

s3 + 3s2 + 2s
.(b)

2. Use the Laplace transform to solve the following initial value problems.

f ′′(t) + 3f ′(t) + 2f(t) = e−t sin t, f(0) = 0, f ′(0) = 1,(a)

f (4)(t)− f(t) = sin t, f (j)(t) = 0 for 0 ≤ j ≤ 3.(b)
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3. Show that

f(t) =
sin t

t
=⇒ Lf(s) = π

2
− tan−1 s.

Hint. By (18.5),

d

ds
Lf(s) = −L(tf)(s) = − 1

s2 + 1
.

Integrate, and find the constant of integration using

lim
s→∞

Lf(s) = 0.

4. Compute the Laplace transform of

1− cos t

t2
.

A. Where Bessel functions come from

Bessel functions, the subject of §16, arise in the natural generalization of
the equation

(A.1)
d2u

dx2
+ k2u = 0,

with solutions sin kx and cos kx, to partial differential equations

(A.2) ∆u+ k2u = 0,

where ∆ is the Laplace operator, acting on a function u on a domain Ω ⊂ Rn
by

(A.3) ∆u =
∂2u

∂x21
+ · · ·+ ∂2u

∂x2n
.

We can eliminate k2 from (A.2) by scaling. Set u(x) = v(kx). Then equation
(A.2) becomes

(A.4) (∆ + 1)v = 0.

We specialize to the case n = 2 and write

(A.5) ∆u =
∂2u

∂x2
+
∂2u

∂y2
.
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For a number of special domains Ω ⊂ R2, such as circular domains, annular
domains, angular sectors, and pie-shaped domains, it is convenient to switch
to polar coordinates (r, θ), related to (x, y)-coordinates by

(A.6) x = r cos θ, y = r sin θ.

In such coordinates,

(A.7) ∆v =
( ∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
v.

A special class of solutions to (A.4) has the form

(A.8) v = w(r)eiνθ.

By (A.7), for such v,

(A.9) (∆ + 1)v =
[d2w
dr2

+
1

r

dw

dr
+
(
1− ν2

r2

)
w
]
eiνθ,

so (A.4) holds if and only if

(A.10)
d2w

dr2
+

1

r

dw

dr
+
(
1− ν2

r2

)
w = 0.

This is Bessel’s equation (16.1) (with different variables).

Note that if v solves (A.4) on Ω ⊂ R2 and if Ω is a circular domain or an
annular domain, centered at the origin, then ν must be an integer. However,
if Ω is an angular sector or a pie-shaped domain, with vertex at the origin,
ν need not be an integer.

In n dimensions, the Laplace operator (A.3) can be written

(A.11) ∆v =
( ∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆S

)
v,

where ∆S is a second-order differential operator acting on functions on the
unit sphere Sn−1 ⊂ Rn, called the Laplace-Beltrami operator. Generalizing
(A.8), one looks for solutions to (A.4) of the form

(A.12) v(x) = w(r)ψ(ω),

where x = rω, r ∈ (0,∞), ω ∈ Sn−1. Parallel to (A.9), for such v,

(A.13) (∆ + 1)v =
[d2w
dr2

+
n− 1

r

dw

dr
+

(
1− ν2

r2

)
w
]
ψ(ω),
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provided

(A.14) ∆Sψ = −ν2ψ.

The equation

(A.15)
d2w

dr2
+
n− 1

r

dw

dr
+
(
1− ν2

r2

)
w = 0

is a variant of Bessel’s equation. If we set

(A.16) φ(r) = rn/2−1w(r),

then (A.15) is converted into the Bessel equation

(A.17)
d2φ

dr2
+

1

r

dφ

dr
+
(
1− µ2

r2

)
φ = 0, µ2 = ν2 +

(n− 2

2

)2
.

The study of solutions to (A.14) gives rise to the study of spherical harmon-
ics, and from there to other special functions, such as Legendre functions.

The search for solutions of the form (A.12) is a key example of the
method of separation of variables for partial differential equations. It arises
in numerous other contexts. Here are a couple of other examples:

(A.18) (∆− |x|2 + k2)u = 0,

and

(A.19)
(
∆+

K

|x|
+ k2

)
u = 0.

The first describes the n-dimensional quantum harmonic oscillator. The
second (for n = 3) describes the quantum mechanical model of a hydrogen
atom, according to Schrödinger. Study of these equations leads to other
special functions defined by differential equations, such as Hermite functions
and Whittaker functions.

Much further material on these topics can be found in books on partial
differential equations, such as [T] (particularly Chapters 3 and 8).

B. Euler’s gamma function

We saw in (16.13) the need for a function Γ(z) satisfying

(B.1) Γ(z + 1) = zΓ(z).
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Here we produce a function that has this property, namely

(B.2) Γ(z) =

∫ ∞

0
e−ttz−1 dt, for z > 0.

To check (B.1) for z > 0, we apply integration by parts.

(B.3)

Γ(z + 1) =

∫ ∞

0
e−ttz dt

= −
∫ ∞

0

( d
dt
e−t

)
tz dt

=

∫ ∞

0
e−t

( d
dt
tz
)
dt

= zΓ(z),

since dtz/dt = ztz−1.

The integral (B.2) is readily evaluated for z = 1, yielding

(B.4) Γ(1) = 1.

Then repeated use of (B.3) gives

(B.5) Γ(k + 1) = k!, for k ∈ Z+.

There is also a useful formula for Γ(1/2), given by

(B.6)

Γ
(1
2

)
=

∫ ∞

0
e−tt−1/2 dt

= 2

∫ ∞

0
e−x

2
dx

=
√
π,

the last identity by (2.26). Then repeated use of (B.3) gives

(B.7)
Γ
(
k +

1

2

)
=

2k − 1

2

2k − 3

2
· · · 1

2
Γ
(1
2

)
= 2−2k (2k)!

k!

√
π.

Having (B.1), we can extend Γ(z) to be well defined and smooth on
R \ {0,−1,−2, . . . }. To see this, rewrite (B.1) as

(B.8) Γ(z) =
1

z
Γ(z + 1).
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Having Γ(z) defined and smooth on z ∈ (0,∞), by (B.2), we see that the
right side of (B.8) is defined and smooth for z ∈ (−1,∞), except for a pole
at z = 0. This extends Γ(z) to z ∈ (−1,∞) \ {0}. Then the right side of
(B.8) is defined and smooth for z ∈ (−2,∞), except for poles at z = 0 and
z = −1. This argument can be continued. Let us further note that, by
(B.2),

(B.9) Γ(z) > 0 for z > 0,

so 1/Γ(z) is defined and smooth for z ∈ (0,∞). Rewriting (B.8) as

(B.10)
1

Γ(z)
=

z

Γ(z + 1)

and arguing as above, we have 1/Γ(z) defined and smooth for all z ∈ R,
vanishing precisely for z ∈ {0,−1,−2, . . . }.

We derive another identity that is useful for the treatment of Bessel
functions in §16, involving the beta function B(x, y), defined for x, y > 0 by

(B.11)

B(x, y) =

∫ 1

0
sx−1(1− s)y−1 ds

=

∫ ∞

0
(1 + u)−x−yux−1 du,

the latter identity via the change of variable u = s/(1 − s). Our asserted
identity is

(B.12) B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

To prove this, note that since

(B.13) Γ(z)p−z =

∫ ∞

0
e−pttz−1 dt,

we have

(1 + u)−x−y =
1

Γ(x+ y)

∫ ∞

0
e−(1+u)ttx+y−1 dt,

so

(B.14)

B(x, y) =
1

Γ(x+ y)

∫ ∞

0
e−ttx+y−1

∫ ∞

0
e−utux−1 du dt

=
Γ(x)

Γ(x+ y)

∫ ∞

0
e−tty−1 dt

=
Γ(x)Γ(y)

Γ(x+ y)
,
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as asserted.

For closer contact with (16.38), note that setting s = t2 in (B.11) gives

(B.15) B(x, y) = 2

∫ 1

0
t2x−1(1− t2)y−1 dt,

so, if k ∈ Z+ and ν > −1/2,

(B.16) B
(
k +

1

2
, ν +

1

2

)
=

∫ 1

−1
t2k(1− t2)ν−1/2 dt.

There is much more that can be said about the gamma function, such
as that it extends to C \ {0,−1,−2, . . . }, with 1/Γ(z) defined and smooth
for all z ∈ C (which permits one to define Jν(z) for complex ν). We refer
the reader to [Leb], or [T], Chapter 3, Appendix A for further material. We
mention the following identity, of use in (16.33), whose proof can be found
in these references:

(B.17) Γ(ν)Γ(1− ν) =
π

sinπν
.

Note that both sides are defined and smooth for ν ∈ R\Z, with singularities
on Z.

C. Differentiating power series

Here we establish continuity and differentiability properties for a power series

(C.1) f(t) =
∞∑
k=0

akt
k.

We allow the coefficients ak to be complex numbers. To start, we assume
this series converges for some nonzero t = t0. This implies that the terms
in this series are uniformly bounded for t = t0:

(C.2) |aktk0| ≤ B <∞, ∀k.

The following result establishes convergence for all smaller |t|.

Proposition C.1. Given (C.2), the series (C.1) converges absolutely for
|t| < T = |t0|.
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Proof. Pick S ∈ (0, T ), and assume |t| ≤ S. Then

(C.3) |aktk| ≤ |akT k|
(S
T

)k
≤ Brk,

where r = S/T ∈ (0, 1). Hence, for each n ∈ N, if |t| ≤ S,

(C.4)
n∑
k=0

|aktk| ≤ B
n∑
k=0

rk.

Now we can evaluate the geometrical series on the right:

(C.5)

Sn =

n∑
k=0

rk ⇒ rSn =

n+1∑
k=1

rk

⇒ (1− r)Sn = 1− rn+1

⇒ Sn =
1− rn+1

1− r
.

Consequently,

(C.6)
0 < r < 1 ⇒ rn+1 ↘ 0 as n→ ∞

⇒ Sn ↗ 1

1− r
as n→ ∞.

This establishes the asserted absolute convergence.

Similar arguments also lead to the following.

Proposition C.2. In the setting of Proposition C.1, if 0 < S < T , the
series (C.1) converges uniformly on |t| ≤ S.

Proof. For each n ∈ N, write

(C.7)
f(t) =

n∑
k=0

akt
k +

∞∑
k=n+1

akt
k

= Sn(t) +Rn(t).

The claim is that Sn(t) → f(t), uniformly on |t| ≤ S. Indeed, for |t| ≤ S,

(C.8)

|Rn(t)| ≤
∞∑

k=n+1

|aktk|

≤ B
∞∑

k=n+1

r ∗ k

= Brn+1
∞∑
ℓ=0

rℓ

= B
rn+1

1− r
,
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yielding |Rn(t)| → 0 uniformly for |t| ≤ S.

Before continuiug our study of the power series (C.1), we pause to note
that calculations above involving the geometric series (C.8) enable us to
establish the following result, known as the ratio test.

Proposition C.3. Let ak ∈ C and assume there exist N < ∞ and r < 1
such that

(C.9) k ≥ N =⇒
∣∣∣ak+1

ak

∣∣∣ ≤ r.

Then the series
∑

k≥0 ak is absolutely convergent.

Proof. From (C.9) we have, by induction,

(C.10) |aN+ℓ| ≤ rℓ|aN |.

Hence

(C.11)

∞∑
ℓ=0

|aN+ℓ| ≤ |aN |
∞∑
ℓ=0

rℓ

=
|aN |
1− r

.

This yields absolute convergence.

We now state the main result of this appendix.

Proposition C.4. If the power series (C.1) converges for |t| < R, then f
is differentiable in t ∈ (−R,R), and, for such t,

(C.12) f ′(t) =

∞∑
k=1

kakt
k−1.

Proof. It suffices to show that (C.12) holds for |t| ≤ S, for each S < R.
Pick T ∈ (S,R), and note that the estimate (C.3) holds, when |t| ≤ S, with
r = S/T < 1. Hence, for |t| ≤ S,

(C.13)
|kaktk−1| ≤ k

T
|akT k|

(S
T

)k−1

≤ B

T
krk−1.
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Now the ratio test applies to
∑

k≥1 kr
k−1, given r < 1, so the series

(C.14) g(t) =
∞∑
k=1

kakt
k−1

is absolutely convergent, and also uniformly convergent, for |t| ≤ S. It
remains to show that g(t) = f ′(t) for |t| ≤ S, or equivalently that

(C.15)

∫ t

0
g(s) ds = f(t)− f(0).

This is a consequence of the following result.

Proposition C.5. Given bk ∈ C, assume

(C.16) g(t) =
∞∑
k=0

bkt
k

is absolutely convergent, for |t| < R. Then, for |t| < R,

(C.17)

∫ t

0
g(s) ds =

∞∑
k=0

bk
k + 1

tk+1.

Proof. It is elementary that the series on the right side of (C.17) converges
for |t| < R. Call the sum F (t). As before, pick S < T < R. For n ∈ N,
write

(C.18)
g(t) =

n∑
k=0

bkt
k +

∞∑
k=n+1

bkt
k

= gn(t) +Rn(t).

As in Proposition C.2, we have gn(t) → g(t) and Rn(t) → 0, uniformly for
|t| ≤ S, especially

(C.19) max
|t|≤S

|Rn(t)| ≤ εn → 0.

Clearly, for |t| < R,

(C.20)

∫ t

0
gn(s) ds =

n∑
k=0

bk
k + 1

tk+1 → F (t),
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as n→ ∞. Meanwhile,

(C.21)
∣∣∣∫ t

0
Rn(s) ds

∣∣∣ ≤ Rεn.

Taking n→ ∞ in (C.18)–(C.21) yields

(C.22)

∫ t

0
g(s) ds = F (t),

as asserted. This proves Proposition C.5, so we have Proposition C.4.
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