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Introduction

This final chapter brings to bear all the material presented before and pushes
on to the heart of the subject, nonlinear systems of differential equations.
Section 1 begins with a demonstration of existence and uniqueness (for t
close to t0) of solutions to

(0.1)
dx

dt
= F (t, x), x(t0) = x0.

Here x(t) is a path in Ω ⊂ Rn and F is bounded and continuous on I × Ω
(with t0 ∈ I), and satisfies a Lipschitz condition in x. (See (1.2) for a
definition.) We study the issue of global existence, including positive results
when F (t, x) is linear in x. Section 2 studies the smoothness of the solution
to (0.1) as a function of x0, given various additional hypotheses on F , and
related issues.

Section 3 reveals a geometric flavor to (0.1), described in the language of
vector fields and the flows they generate. A vector field on Ω ⊂ Rn is a map
F : Ω → Rn. This is a special case of (0.1), where F is independent of t. The
path x(t) in Ω satisfying (0.1) for such F is called the orbit of F through x0;
denote it Φt(x0). This gives rise to the family of maps Φt, called the flow
generated by F . The phase portrait is introduced as a tool to understand
the orbits and flow, from a visual perspective. We pay particular attention
to how phase portraits look near critical points of a vector field F (which are
points where F vanishes), including special types known as sources, sinks,
saddles, and centers.

Section 4 discusses a particular class of vector fields, gradient vector
fields, on a domain Ω ⊂ Rn. In case n = 2, this relates to the topic of exact
equations, discussed in many texts early on. We have broken with tradition
and moved the discussion of exactness to here, to see it in a broader context.

We move from generalities about nonlinear systems to settings in which
they arise. Section 5 introduces a class of differential equations arising from
Newton’s law F = ma. This resumes the study introduced in §5 of Chapter
1. This time we are studying the interaction of several bodies, each moving
in n-dimensional space. We concentrate on central force problems. We
show how a two-body central force problem (for motion in Rn) gives rise to
a second order n×n system, in “center of mass coordinates.” We look at this
two-body problem in more detail in §6, and derive Newton’s epoch-making
analysis of the planetary motion problem.

In §7 we introduce another (though ultimately related) class of problems
that lead to differential equations, namely variational problems. The general
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setup is to consider

(0.2) I(u) =
∫ b

a
L(u(t), u′(t)) dt,

for paths u : [a, b] → Ω ⊂ Rn, given smooth L on Ω×Rn, and find conditions
under which I has a minimum, or maximum, or more generally a stationary
point u. We produce a differential equation known as the Lagrange equa-
tion for u. This method has many important ramifications. One of the
most important is to produce differential equations for physical problems,
providing an alternative to the method discussed in §5. We illustrate this
in §7 by obtaining a derivation of the pendulum equation, alternative to
that given in §6 of Chapter 1. We proceed to more sophisticated uses of the
variational method. In §8 we discuss the “brachistochrone problem,” tossed
about by the early leading lights of calculus, one of the foundational varia-
tional problems. In §9 we discuss the double pendulum, a physical problem
that is confounding when one uses the F = ma approach, and which well
illustrates the “Lagrangian” approach. An alternative to Lagrangian dif-
ferential equations is the class of Hamiltonian differential equations. The
passage from Lagrangian to Hamiltonian equations is previewed (in special
cases) in §§7 and 9, and developed further in §10.

The majority of the systems studied in this chapter are not amenable to
solution in terms of explicit formulas. In §11 we introduce a tool that has
revolutionized the study of these equations, namely numerical approxima-
tion. Behind this revolution is the availability of personal computers. In §11
we present several techniques that allow for accurate approximation of so-
lutions to (0.1), the most important being Runge-Kutta difference schemes.

In §12 we return to the study of qualitative features of phase portraits,
initiated in §3. We define limit sets of orbits, and establish a result known
as the Poincaré-Bendixson theorem, which provides a condition under which
a limit set for an orbit of a planar vector field can be shown to be a closed
curve, called a limit cycle.

Sections 13–14 are devoted to some systems of differential equations
arising to model the populations of interacting species. In §13 we study
“predator-prey” equations. We study several models. In some, all the or-
bits are periodic, except for one critical point. In others, there is a limit
cycle, arising via the mechanism examined in §12. In §14 we look at other
interacting species equations, namely equations modeling competing species.

One phenomenon behind the Poincaré-Bendixson theorem is that an
orbit of a vector field F in the plane locally divides the plane into two parts,
one to the left of the orbit and one to the right. Since another orbit of F
cannot cross it, this tends to separate the plane into pieces, in each of which
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the phase portrait has a fairly simple appearance. In dimension three and
higher, this mechanism to enforce simplicity does not work, and far more
complicated scenarios are possible. This leads to the occurrence of “chaos”
for n × n systems of differential equations when n ≥ 3. We explore some
aspects of this in the last section of this chapter, §15.

This chapter has six appendices. In Appendix A we give basic informa-
tion on the derivative of functions of several variables, reviewing material
typically covered in third semester calculus and setting up notation that is
used in the chapter. Appendix B discusses some basic results about conver-
gence, including the notion of compactness. In Appendix C we show that if
the linearization of a vector field F at a critical point behaves like a saddle,
so does F . Appendix D discusses an approximation procedure for comput-
ing the periods of orbits, for a certain family of planar vector fields, with
reference to how Einstein’s correction of Newton’s equations for planetary
motion yields a calculation of the precession of the planet’s perihelion. In
Appendix E we show that a spherically symmetric planet produces the same
gravitational field as if all its mass were concentrated at its center. In Ap-
pendix F we prove the Brouwer fixed-point theorem (in dimension 2), a use
of which arises in §15. The proof we give makes use of material developed
in §4.

1. Existence and uniqueness of solutions

We investigate existence and uniqueness of solutions to a first order nonlinear
n× n system of differential equations,

(1.1)
dx

dt
= F (t, x), x(t0) = x0.

We assume F is bounded and continuous on I × Ω, where I is an open
interval about t0 and Ω is an open subset of Rn, containing x0. We also
assume F satisfies a Lipschitz condition in x:

(1.2) ‖F (t, x)− F (t, y)‖ ≤ L‖x− y‖,

for all t ∈ I, x, y ∈ Ω, with L ∈ (0,∞). Such an estimate holds if Ω is
convex and F is C1 in x and satisfies

(1.3) ‖DxF (t, x)‖ ≤ L,

for all t ∈ I, x ∈ Ω. At this point, the reader might want to review the
concept of the derivative of a function of n variables, by looking in Appendix
A. The estimate (1.3) follows readily from (A.9). Our first goal is to prove
the following.
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Proposition 1.1. Assume F : I ×Ω → Rn is bounded and continuous and
satisfies the Lipschitz condition (1.2), and let x0 ∈ Ω. Then there exists
T0 > 0 and a unique C1 solution to (1.1) for |t− t0| < T0.

The first step in proving this is to rewrite (1.1) as an integal equation:

(1.4) x(t) = x0 +
∫ t

t0

F (s, x(s)) ds.

The equivalence of (1.1) and (1.4) follows from the Fundamental Theorem of
Calculus. It suffices to find a continuous solution x to (1.4) on [t0− T0, t0 +
T0], since then the right side of (1.4) will be C1 in t.

We will apply a technique known as Picard iteration to construct a
solution to (1.4). We set x0(t) ≡ x0 and then define xn(t) inductively by

(1.5) xn+1(t) = x0 +
∫ t

t0

F (s, xn(s)) ds.

We show that this converges uniformly to a solution to (1.4), for |t−t0| ≤ T0,
if T0 is taken small enough. To get this, we quantify some hypotheses made
above. We assume

(1.6) BR(x0) = {x ∈ Rn : ‖x− x0‖ ≤ R} ⊂ Ω

and

(1.7) ‖F (s, x)‖ ≤ M, ∀ s ∈ I, x ∈ BR(x0).

Clearly x0(t) ≡ x0 takes values in BR(x0) for all t. Suppose that xn(t) has
been constructed, taking values in BR(x0), and xn+1(t) is defined by (1.5).
We have

(1.8) ‖xn+1(t)− x0‖ ≤
∫ t

t0

‖F (s, xn(s))‖ ds ≤ M |t− t0|,

so xn+1(t) also takes values in BR(x0) provided |t− t0| ≤ T0 and

(1.9) T0 ≤ R

M
.

As long as (1.9) holds and [t0 − T0, t0 + T0] ⊂ I, we get an infinite sequence
xn(t) of functions, related by (1.5).
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We produce one more constraint on T0, which will guarantee conver-
gence. Note that, for n ≥ 1,

(1.10)

‖xn+1(t)− xn(t)‖ =
∥∥∥
∫ t

t0

[
F (s, xn(s))− F (s, xn−1(s))

]
ds

∥∥∥

≤
∫ t

t0

‖F (s, xn(s))− F (x, xn−1(s))‖ ds

≤ L

∫ t

t0

‖xn(s)− xn−1(s)‖ ds,

the last inequality by (1.2). Hence

(1.11) max
|t−t0|≤T0

‖xn+1(t)− xn(t)‖ ≤ LT0 max
|s−t0|≤T0

‖xn(s)− xn−1(s)‖.

The additional constraint we impose on T0 is

(1.12) T0 ≤ 1
2L

.

Noting that

(1.13) max
|t−t0|≤T0

‖x1(t)− x0‖ ≤ R,

we see that

(1.14) max
|t−t0|≤T0

‖xn+1(t)− xn(t)‖ ≤ 2−nR.

Consequently, the infinite series

(1.15) x(t) = x0 +
∞∑

n=0

(
xn+1(t)− xn(t)

)

is absolutely and uniformly convergent for |t − t0| ≤ T0, with a continuous
sum, satisfying

(1.16) max
|t−t0|≤T0

‖x(t)− xn(t)‖ ≤ 21−nR.

It readily follows that

(1.17)
∫ t

t0

F (s, xn(s)) ds −→
∫ t

t0

F (s, x(s)) ds,

so (1.4) follows from (1.5) in the limit n →∞.
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To finish the proof of Proposition 1.1, we establish uniqueness. Suppose
y(t) also satisfies (1.4) for |t− t0| ≤ T0. Then

‖x(t)− y(t)‖ =
∥∥∥
∫ t

t0

[
F (s, x(s))− F (s, y(s))

]
ds

∥∥∥

≤
∫ t

t0

‖F (s, x(s))− F (s, y(s))‖ ds

≤ L

∫ t

t0

‖x(s)− y(s)‖ ds,

and hence

(1.18) max
|t−t0|≤T0

‖x(t)− y(t)‖ ≤ T0L max
|s−t0|≤T0

‖x(s)− y(s)‖.

As long as (1.12) holds, T0L ≤ 1/2, so (1.18) clearly implies max|t−t0|≤T0
‖x(t)−

y(t)‖ = 0, which gives the asserted uniqueness.

Note that the Lipschitz hypothesis (1.2) was needed only for x, y ∈
BR(x0). Thus we can extend Proposition 1.1 to the following setting:

(1.19)
For each closed, bounded K ⊂ Ω, there exists LK < ∞ such that

‖F (t, x)− F (t, y)‖ ≤ LK‖x− y‖, ∀x, y ∈ K, t ∈ I.

We can also replace the bound on F by

(1.20)
For each K as above, there exists MK < ∞ such that

‖F (t, x)‖ ≤ MK , ∀x ∈ K, t ∈ I.

Results of Appendix B imply that there exists RK > 0 such that

K̃ =
⋃

x∈K

BRK
(x) is a compact subset of Ω.

It follows that for each x0 ∈ K, the solution to (1.1) exists on the interval

(1.21) {t ∈ I : |t− t0| ≤ min(RK/M
K̃

, 1/2L
K̃

)}.
Now that we have local solutions to (1.1), it is of interest to investigate

when global solutions exist. Here is an example of breakdown:

(1.22)
dx

dt
= x2, x(0) = 1.

Here I = R, n = 1, Ω = R, and F (x) = x2 is smooth, satisfying the local
bounds (1.20)–(1.21). The equation (1.22) has the unique solution

(1.23) x(t) =
1

1− t
, t ∈ (−∞, 1),

which blows up as t ↗ 1. It is useful to know that “blowing up” is the only
way a solution can fail to exist globally. We have the following result.
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Proposition 1.2. Let F be as in Proposition 1.1, but with the Lipschitz and
boundedness hypotheses relaxed to (1.19)–(1.20). Assume [a, b] is contained
in the open interval I and assume x(t) solves (1.1) for t ∈ (a, b). Assume
there exists a closed, bounded set K ⊂ Ω such that x(t) ∈ K for all t ∈ (a, b).
Then there exist a1 < a and b1 > b such that x(t) solves (1.1) for t ∈ (a1, b1).

Proof. We deduce from (1.21) that there exists δ > 0 such that for each
x1 ∈ K, t1 ∈ [a, b], the solution to

(1.24)
dx

dt
= F (t, x), x(t1) = x1

exists on the interval [t1−δ, t1+δ]. Now, under the current hypotheses, take
t1 ∈ (b − δ/2, b), x1 = x(t1), with x(t) solving (1.1). Then solving (1.24)
continues x(t) past t = b. Similarly one can continue x(t) past t = a.

Here is an example of a global existence result that can be deduced from
Proposition 1.2. Consider the 2× 2 system for x = (y, v):

(1.25)

dy

dt
= v,

dv

dt
= −y3.

Here we have Ω = R2, F (t, x) = F (t, y, v) = (v,−y3). If (1.25) holds for
t ∈ (a, b), we have

(1.26)
d

dt

(v2

2
+

y4

4

)
= v

dv

dt
+ y3 dy

dt
= 0,

so each x(t) = (y(t), v(t)) solving (1.25) lies in a level curve y4/4+v2/2 = C,
hence is confined to a closed, bounded subset of R2, yielding global existence
of solutions to (1.25).

We can also apply Proposition 1.2 to establish global existence of solu-
tions to linear systems,

(1.27)
dx

dt
= A(t)x, x(0) = x0,

given A(t) continuous in t ∈ I (an interval about 0), with values in M(n,C).
It suffices to establish the following.

Proposition 1.3. If ‖A(t)‖ ≤ K for t ∈ I, then the solution to (1.27)
satisfies

(1.28) ‖x(t)‖ ≤ eK|t|‖x0‖.
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Proof. It suffices to prove (1.28) for t ≥ 0. Then y(t) = e−Ktx(t) satisfies

(1.29)
dy

dt
= C(t)y, y(0) = x0,

with C(t) = A(t)−K. Hence C(t) satisfies

(1.30) Re (C(t)u, u) ≤ 0, ∀u ∈ Cn.

Then (1.28) is a consequence of the following estimate, of interest in its own
right.

Lemma 1.4. If y(t) solves (1.29) and (1.30) holds for C(t), then

(1.31) ‖y(t)‖ ≤ ‖y(0)‖ for t ≥ 0.

Proof. We have

(1.32)

d

dt
‖y(t)‖2 = (y′(t), y(t)) + (y(t), y′(t))

= 2 Re (C(t)y(t), y(t))

≤ 0.

Thanks to Proposition 1.3, we have for s, t ∈ I, the solution operator
for (1.27),

(1.33) S(t, s) ∈ M(n,C), S(t, s)x(s) = x(t),

introduced in §8 of Chapter 3. As noted there, we have the Duhamel formula

(1.34) x(t) = S(t, t0) +
∫ t

t0

S(t, s)f(s) ds,

for the solution to

(1.35)
dx

dt
= A(t)x + f(t), x(t0) = x0.

If F (t, x) depends explicitly on t, we call (1.1) a non-autonomous system.
If F does not depend explicitly on t, we say (1.1) is autonomous. The
following device converts a non-autonomous system to an autonomous one.
Take the n× n system (1.1). Then the (n + 1)× (n + 1) system

(1.36)
dx

dt
= F (y, x),

dy

dt
= 1, x(t0) = x0, y(t0) = t0
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has the autonomous form

(1.37)
dz

dt
= G(z), z(t0) = (x0, t0),

for z = (x, y), with G(z) = (F (y, x), 1), and the solution to (1.36) is (x(t), t),
where x(t) solves (1.1). Thus for many purposes it suffices to consider au-
tonomous sytems.

To close this section, we note how a higher order n× n system, such as

(1.38)
dkx

dtk
= F (t, x, . . . , x(k−1)), x(t0) = x0, . . . , x

(k−1)(t0) = xk−1,

can be converted to a first order nk × nk system, for

(1.39) y =




y0
...

yk−1


 , yj(t) ∈ Rn, 0 ≤ j ≤ k − 1.

The system is

(1.40)

dy0

dt
= y1,

...
dyk−2

dt
= yk−1,

dyk−1

dt
= F (t, y0, . . . , yk−1),

with initial data

(1.41) yj(t0) = xj , 0 ≤ j ≤ k − 1.

If y(t) solves (1.40)–(1.41), then x(t) = y0(t) solves (1.38), and we have

(1.42) x(j)(t) = yj(t), 0 ≤ j ≤ k − 1.

Note how this construction is parallel to that done in the linear case in
Chapter 3, §3.

Exercises

1. Apply the Picard iteration method to

dx

dt
= ax, x(0) = 1,
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given a ∈ C. Taking x0(t) ≡ 1, show that

xn(t) =
n∑

k=0

ak

k!
tk.

2. Discuss the matrix analogue of Exercise 1.

3. Consider the initial value problem

dx

dt
= x2, x(0) = 1.

Take x0 ≡ 1 and use the Picard iteration method (1.5) to write out

xn(t), n = 1, 2, 3.

Compare the results with the formula (1.23).

4. Given A0, A1 ∈ M(n,C), consider the initial value problem

dx

dt
= (A0 + A1t)x, x(0) = x0.

Take x0(t) ≡ x0 and use the Picard iteration (1.5) to write out

xn(t), n = 1, 2, 3.

Compare and contrast the results with calculations from §10 of Chapter
3.

5. Let xn(t) be an approximate solution to (1.1), and assume that

‖x(t)− xn(t)‖ ≤ δn|t− t0|n, for t ∈ I.

Let xn+1(t) be defined by (1.5), and assume the Lipschitz condition
(1.2) holds. Show that

‖x(t)− xn+1(t)‖ ≤ Lδn

n + 1
|t− t0|n+1, t ∈ I.

6. Modify the system (1.25) to

dy

dt
= v,

dv

dt
= −y3 − v.
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Show that solutions satisfy

d

dt

(v2

2
+

y4

4

)
≤ 0,

and use this to establish global existence for t ≥ 0.

7. Consider the initial value problem
dx

dt
= |x|1/2, x(0) = 0.

Note that x(t) ≡ 0 is a solution, and

x(t) =
1
4
t2, t ≥ 0,

0, t ≤ 0

is another solution, on t ∈ (−∞,∞). Why does this not contradict the
uniqueness part of Proposition 1.1? Can you produce other solutions to
this initial value problem?

8. Take β ∈ (0,∞) and consider the initial value problem

dx

dt
= xβ, x(0) = 1.

Show that this has a solution for all t ≥ 0 if and only if β ≤ 1.

9. Let F : Rn → Rn be C1 and suppose x(t) solves

(1.43)
dx

dt
= F (x), x(t0) = x0,

for t ∈ I, an open interval containing t0. Show that, for t ∈ I,

(1.44)
d

dt
‖x(t)‖2 = 2x(t) · F (x(t)).

Show that, if α > 0 and x(t) 6= 0,

(1.45)
d

dt
‖x(t)‖α = α‖x(t)‖α−2x(t) · F (x(t)).

10. In the setting of Exercise 9, suppose F satisfies an estimate

(1.46) ‖F (x)‖ ≤ C(1 + ‖x‖)β, ∀x ∈ Rn, C < ∞, β < 1.

Show that there exists α > 0 and K < ∞ such that, if ‖x(t)‖ ≥ 1 for
t ∈ I,

d

dt
‖x(t)‖α ≤ K, ∀ t ∈ I.

Use this to establish that the solution to (1.43) exists for all t ∈ R.
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Exercises 11–13 below will extend the conclusion of Exercise 10 to the case
β = 1 in (1.46). One approach is via the following result, known as Gron-
wall’s inequality.

Proposition 1.5. Assume

(1.47) g ∈ C1(R), g′ ≥ 0.

Let u and v be real valued, continuous functions on I satisfying

(1.48)
u(t) ≤ A +

∫ t

t0

g(u(s)) ds,

v(t) ≥ A +
∫ t

t0

g(v(s)) ds.

Then

(1.49) u(t) ≤ v(t), for t ∈ I, t ≥ t0.

Proof. Set w(t) = u(t)− v(t). Then

(1.50)
w(t) ≤

∫ t

t0

[
g(u(s))− g(v(s))

]
ds

=
∫ t

t0

M(s)w(s) ds,

where

(1.51) M(s) =
∫ 1

0
g′(τu(s) + (1− τ)v(s)) dτ.

Hence we have

(1.52) w(t) ≤
∫ t

t0

M(s)w(s) ds, M(s) ≥ 0, M ∈ C(I),

and we claim this implies

(1.53) w(t) ≤ 0, ∀ t ∈ I, t ≥ t0.

In other words, we claim that w(t) ≤ 0 on [t0, b] whenever [t0, b] ⊂ I. To see
this, let t1 be the largest number in [t0, b] with the property that w ≤ 0 on
[t0, t1]. We claim that t1 = b.
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Assume to the contrary that t1 < b. Noting that
∫ t1
t0

M(s)w(s) ds ≤ 0,
we deduce from (1.52) that

(1.54) w(t) ≤
∫ t

t1

M(s)w(s) ds, ∀ t ∈ [t1, b].

Hence, with

(1.56) K = max
[t1,b]

M(s) < ∞,

we have, for a ∈ (t1, b),

(1.57) max
[t1,a]

w(t) ≤ (a− t1)K max
[t1,a]

w(s).

If we pick a ∈ (t1, b) such that (a− t1)K < 1, this implies

(1.58) w(t) ≤ 0, ∀ t ∈ [t1, a],

contradicting the maximality of t1. Hence actually t1 = b, and we have the
implication (1.52) ⇒ (1.53), completing the proof of Proposition 1.5.

11. Assume v ≥ 0 is a C1 function on I = (a, b), satisfying

(1.59)
dv

dt
≤ Cv, v(t0) = v0,

where C ∈ (0,∞) and t0 ∈ I. Using Proposition 1.5, show that

(1.60) v(t) ≤ eC(t−t0)v0, ∀ t ∈ [t0, b).

12. In the setting of Exercise 11, avoid use of Proposition 1.5 as follows.
Write (1.59) as

(1.61)
dv

dt
= Cv − g(t), v(t0) = v0, g ≥ 0,

with solution

(1.62) v(t) = eC(t−t0)v0 −
∫ t

t0

eC(t−s)g(s) ds.

Deduce (1.60) from this.

13. Return to the setting of Exercise 9, and replace the hypothesis (1.46) by

(1.63) ‖F (x)‖ ≤ C(1 + ‖x‖), ∀x ∈ Rn.

Show that the solution to (1.43) exists for all t ∈ R.
Hint. Take v(t) = 1+ ‖x(t)‖2 and use (1.44). Show that Exercise 11 (or
12) applies.
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2. Dependence of solutions on initial data and other
parameters

We study how the solution to a system of differential equations

(2.1)
dx

dt
= F (x), x(0) = y

depends on the initial condition y. As shown in §1, there is no loss of
generality in considering the autonomous system (2.1). We will assume
F : Ω → Rn is smooth, Ω ⊂ Rn open and convex, and denote the solution
to (2.1) by x = x(t, y). We want to examine smoothness in y. Let DF (x)
denote the n × n matrix valued function of partial derivatives of F . (See
Appendix A for more on this derivative.)

To start, we assume F is of class C1, i.e., DF is continuous on Ω, and
we want to show x(t, y) is differentiable in y. Let us recall what this means.
Take y ∈ Ω and pick R > 0 such that BR(y), defined as in (1.6), is contained
in Ω. We seek an n× n matrix W (t, y) such that, for w0 ∈ Rn, ‖w0‖ ≤ R,

(2.2) x(t, y + w0) = x(t, y) + W (t, y)w0 + r(t, y, w0),

where

(2.3) r(t, y, w0) = o(‖w0‖),

which means

(2.4) lim
w0→0

r(t, y, w0)
‖w0‖ = 0.

When this holds, x(t, y) is differentiable in y, and

(2.5) Dyx(t, y) = W (t, y).

In other words,

(2.6) x(t, y + w0) = x(t, y) + Dyx(t, y)w0 + o(‖w0‖).

In the course of proving this differentiability, we also want to produce
an equation for W (t, y) = Dyx(t, y). This can be done as follows. Suppose
x(t, y) were differentiable in y. (We do not yet know that it is, but that is
okay.) Then F (x(t, y)) is differentiable in y, so we can apply Dy to (2.1).
Using the chain rule, we get the following equation,

(2.7)
dW

dt
= DF (x)W, W (0, y) = I,
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called the linearization of (2.1). Here, I is the n×n identity matrix. Equiv-
alently, given w0 ∈ Rn,

(2.8) w(t, y) = W (t, y)w0

is expected to solve

(2.9)
dw

dt
= DF (x)w, w(0) = w0.

Now, we do not yet know that x(t, y) is differentiable, but we do know from
results of §1 that (2.7) and (2.9) are uniquely solvable. It remains to show
that, with such a choice of W (t, y), (2.2)–(2.3) hold.

To rephrase the task, set

(2.10) x(t) = x(t, y), x1(t) = x(t, y + w0), z(t) = x1(t)− x(t),

and let w(t) solve (2.9). The task of verifying (2.2)–(2.3) is equivalent to
the task of verifying

(2.11) ‖z(t)− w(t)‖ = o(‖w0‖).

To show this, we will obtain for z(t) an equation similar to (2.9). To begin,
(2.10) implies

(2.12)
dz

dt
= F (x1)− F (x), z(0) = w0.

Now the fundamental theorem of calculus gives

(2.13) F (x1)− F (x) = G(x1, x)(x1 − x),

with

(2.14) G(x1, x) =
∫ 1

0
DF

(
τx1 + (1− τ)x

)
dτ.

If F is C1, then G is continuous. Then (2.12)–(2.13) yield

(2.15)
dz

dt
= G(x1, x)z, z(0) = w0.

Given that

(2.16) ‖DF (u)‖ ≤ L, ∀u ∈ Ω,



2. Dependence of solutions on initial data and other parameters 17

which we have by continuity of DF , after possibly shrinking Ω slightly, we
deduce from Proposition 1.3 that

(2.17) ‖z(t)‖ ≤ e|t|L‖w0‖,

that is,

(2.18) ‖x(t, y)− x(t, y + w0)‖ ≤ e|t|L‖w0‖.

This establishes that x(t, y) is Lipschitz in y.
To proceed, since G is continuous and G(x, x) = DF (x), we can rewrite

(2.15) as

(2.19)
dz

dt
= G(x + z, x)z = DF (x)z + R(x, z), z(0) = w0,

where

(2.20) F ∈ C1(Ω) =⇒ ‖R(x, z)‖ = o(‖z‖) = o(‖w0‖).

Now comparing (2.19) with (2.9), we have

(2.21)
d

dt
(z − w) = DF (x)(z − w) + R(x, z), (z − w)(0) = 0.

Then Duhamel’s formula gives

(2.22) z(t)− w(t) =
∫ t

0
S(t, s)R(x(s), z(s)) ds,

where S(t, s) is the solution operator for d/dt−B(t), with B(t) = DF (x(t)),
which as in (2.17), satisfies

(2.23) ‖S(t, s)‖ ≤ e|t−s|L.

We hence have (2.11), i.e.,

(2.24) ‖z(t)− w(t)‖ = o(‖w0‖).

This is precisely what is required to show that x(t, y) is differentiable with
respect to y, with derivative W = Dyx(t, y) satisfying (2.7). Hence we have:

Proposition 2.1. If F ∈ C1(Ω) and if solutions to (2.1) exist for t ∈
(−T0, T1), then, for each such t, x(t, y) is C1 in y, with derivative Dyx(t, y)
satisfying (2.7).



18 Nonlinear Systems of Differential Equations Michael Taylor

We have shown that x(t, y) is both Lipschitz and differentiable in y.
The continuity of W (t, y) in y follows easily by comparing the differential
equations of the form (2.7) for W (t, y) and W (t, y + w0), in the spirit of the
analysis of z(t) done above.

If F possesses further smoothness, we can establish higher differentia-
bility of x(t, y) in y by the following trick. Couple (2.1) and (2.7), to get a
system of differential equations for (x,W ):

(2.25)

dx

dt
= F (x),

dW

dt
= DF (x)W,

with initial conditions

(2.26) x(0) = y, W (0) = I.

We can reiterate the preceding argument, getting results on Dy(x,W ), hence
on D2

yx(t, y), and continue, proving:

Proposition 2.2. If F ∈ Ck(Ω), then x(t, y) is Ck in y.

Similarly, we can consider dependence of the solution to

(2.27)
dx

dt
= F (τ, x), x(0) = y

on a parameter τ , assuming F smooth jointly in (τ, x). This result can be
deduced from the previous one by the following trick. Consider the system

(2.28)
dx

dt
= F (z, x),

dz

dt
= 0, x(0) = y, z(0) = τ.

Then we get smoothness of x(t, τ, y) jointly in (τ, y). As a special case, let
F (τ, x) = τF (x). In this case x(t0, τ, y) = x(τt0, y), so we can improve the
conclusion in Proposition 2.2 to the following:

(2.29) F ∈ Ck(Ω) =⇒ x ∈ Ck jointly in (t, y).

Exercises

1. Suppose τ ∈ R in (2.27). Show that ξ = ∂x/∂τ satisfies

dξ

dt
= DxF (τ, x)ξ +

∂

∂τ
F (τ, x), ξ(0) = 0.
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2. Consider the family of differential equations for xτ (t),

dx

dt
= x + τx2, x(0) = 1.

Write down the differential equations satisfied by ξ = ∂x/∂τ and by
η = ∂2x/∂τ2.

3. Let x = xτ (t), y = yτ (t) solve

(2.30)
dx

dt
= −y + τ(x2 + y2),

dy

dt
= x, x(0) = 1, y(0) = 0.

Knowing smooth dependence on τ , find differential equations for the
coefficients Xj(t), Yj(t) in power series expansions

(2.31)
xτ (t) = X0(t) + τX1(t) + τ2X2(t) + · · · ,

yτ (t) = Y0(t) + τY1(t) + τ2Y2(t) + · · · .

Note that X0(t) = cos t, Y0(t) = sin t.

4. Using the substitution ξ(t) = −x(−t), η(t) = y(−t), show that, for τ
sufficiently small, solutions to (2.30) are periodic in t.

5. Let p(τ) denote the period of the solution to (2.30). Using (2.31), show
that p(τ) is smooth in τ for |τ | small. Note that p(0) = 2π. Compute
p′(0). Compare results in Appendix C.

6. Suppose y in (2.1) is a critical point of F , i.e., F (y) = 0. Show that
(2.7) becomes

dW

dt
= LW, W (0) = I, where L = DF (y),

hence
F (y) = 0 =⇒ Dyx(t, y) = etL.

3. Vector fields, orbits, and flows

Let Ω ⊂ Rn be an open set. A vector field on Ω is simply a map

(3.1) F : Ω −→ Rn,
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such as encountered in (2.1). We say F is a Ck vector field if F is a Ck map.
A C∞ vector field is said to be smooth. By convention, if we simply call F
a vector field, we mean it is a smooth vector field. In this section we always
assume F is at least C1.

One can also look at time-dependent vector fields (cf. (1.1)), but in this
section we restrict attention to the autonomous case.

The solution to (2.1), i.e., to

(3.2)
dx

dt
= F (x), x(0) = y,

will be denoted

(3.3) x(t) = Φt
F (y).

Results of §§1–2 imply that for each closed bounded K ⊂ Ω there exists an
interval I = (−T0, T1) about 0 such that, for each t ∈ I,

(3.4) Φt
F : K −→ Ω,

and this is a Ck map if F is a Ck vector field. The family of maps Φt
F from

K to Ω is called the flow generated by F . We have

(3.5) Φ0
F (y) ≡ y,

i.e., Φ0
F is the identity map. We also have

(3.6) Φs+t
F (y) = Φt

F ◦ Φs
F (y),

provided all these maps are well defined. Given y ∈ Ω, the path

(3.7) t 7→ Φt
F (y)

is called the orbit through y.
Another way to state the defining property of Φt

F is that (3.5) holds and

(3.8)
d

dt
Φt

F (x) = F (Φt
F (x)).

We next obtain interesting information on the t-derivative of

(3.9) vt(x) = v(Φt
F (x)),

given v ∈ C1
0 (Ω), i.e., v is of class C1 and vanishes outside some closed

bounded K ⊂ Ω. The chain rule (cf. Appendix A, especially (A.8)) plus
(3.8) yields

(3.10)
d

dt
vt(x) = F (Φt

F (x)) · ∇v(Φt
F (x)).
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In particular,

(3.11)
d

ds
v(Φs

F (x))
∣∣∣
s=0

= F (x) · ∇v(x).

Here ∇v is the gradient of v, given by ∇v = (∂v/∂x1, . . . , ∂v/∂xn)t. A
useful alternative formula to (3.10) is

(3.12)
d

dt
vt(x) =

d

ds
vt(Φs

F (x))
∣∣∣
s=0

= F (x) · ∇vt(x),

the first equality following from (3.6) and the second from (3.11), with v
replaced by vt.

One significant consequence of (3.12), which will lead to the important
result (3.17) below, is that, for v ∈ C1

0 (Ω),

(3.13)

d

dt

∫

Ω

v(Φt
F (x)) dx =

∫

Ω

F (x) · ∇vt(x) dx

= −
∫

Ω

div F (x) v(Φt
F (x)) dx.

Here div F (x) is the divergence of the vector field F (x) = (F1(x), . . . , Fn(x))t,
defined by

(3.14) div F (x) =
∂F1

∂x1
(x) + · · ·+ ∂Fn

∂xn
(x).

The last equality in (3.13) follows by integration by parts,
∫

Ω

Fk(x)
∂vt

∂xk
dx = −

∫

Ω

∂Fk

∂xk
vt(x) dx,

followed by summation over k. We reiterate the content of (3.13):

(3.15)
d

dt

∫

Ω

v(Φt
F (x)) dx = −

∫

Ω

div F (x) v(Φt
F (x)) dx.

So far, we have (3.15) for v ∈ C1
0 (Ω). We can extend this by noting that

(3.15) implies

(3.16)

∫

Ω

v(Φt
F (x)) dx−

∫

Ω

v(x) dx

= −
∫ t

0

∫

Ω

div F (x)v(Φs
F (x)) dx ds.
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Basic results on the integral allow one to pass from v ∈ C1
0 (Ω) in (3.16) to

more general v, including v = χB (the characteristic function of B, defined
to be equal to 1 on B and 0 on Ω \B), for smoothly bounded closed B ⊂ Ω,
amongst other functions.

In more detail, if B ⊂ Ω is a smoothly bounded, closed set, let Bδ = {x ∈
Rn : dist(x, B) ≤ δ}. There exists δ0 > 0 such that Bδ ⊂ Ω for δ ∈ (0, δ0].
For such δ, one can produce vδ ∈ C1

0 (Ω) such that

vδ = 1 on B, 0 ≤ vδ ≤ 1, vδ = 0 on Rn \Bδ.

Then
∣∣∣
∫

χB(x) dx−
∫

vδ(x) dx
∣∣∣ ≤ vol(Bδ \B) → 0, as δ → 0,

so, as δ → 0, ∫

Ω

vδ(x) dx −→
∫

Ω

χB(x) dx.

Similar arguments give
∫

Ω

vδ(Φt
F (x)) dx −→

∫

Ω

χB(Φt
F (x)) dx,

and
∫ t

0

∫

Ω

div F (x) vδ(Φs
F (x)) dx ds −→

∫ t

0

∫

Ω

div F (x) χB(Φs
F (x)) dx ds.

These results allow one to take v = χB in (3.16).
Now one can pass from (3.16) back to (3.15), via the fundamental the-

orem of calculus. Note that

VolΦt
F (B) =

∫
χB(Φ−t

F (x)) dx.

We can apply (3.15) with t replaced by −t, and v by χB, and deduce the
following.

Proposition 3.1. If F is a C1 vector field, generating the flow Φt
F , well

defined on Ω for t ∈ I, and B ⊂ Ω is smoothly bounded, then, for t ∈ I,

(3.17)
d

dt
VolΦt

F (B) =
∫

Φt
F (B)

div F (x) dx.
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This result is behind the notation div F , i.e., the divergence of F . Vector
fields F with positive divergence generate flows Φt

F that magnify volumes as
t increases, while vector fields with negative divergence generate flows that
shrink volumes as t increases.

We say the flow generated by a vector field F is complete provided Φt
F (y)

is defined for all t ∈ R, y ∈ Ω. We say it is forward complete if Φt
F (y) is

defined for all t ∈ [0,∞), y ∈ Ω. The flow is backward complete if Φt
F (y) is

defined for all t ∈ (−∞, 0], y ∈ Ω. Here is an occasionally useful criterion
for forward completeness.

Proposition 3.2. Let F be a C1 vector field on Ω = Rn. Assume there
exists R < ∞ and a function V ∈ C1(Rn) such that

(3.18) V (x) → +∞ as ‖x‖ → ∞

and

(3.19) ‖x‖ ≥ R =⇒ ∇V (x) · F (x) ≤ 0.

Then the flow Φt
F is forward complete.

Proof. Let x(t) = Φt
F (x0) be an orbit, defined for t ∈ I, some interval

about 0. Then

(3.20) ‖x(t)‖ ≥ R =⇒ d

dt
V (x(t)) = ∇V (x(t)) · F (x(t)) ≤ 0.

Hence, for t ∈ I, t ≥ 0, x(t) is confined to the closed bounded set

(3.21)
{

x ∈ Rn : V (x) ≤ maxV (y), y ∈ BR(0) ∪ {x0}
}

.

From here, Proposition 1.2 yields forward completeness.

One way to display the behavior of the flow generated by a vector field
F on a domain Ω is to draw a “phase portrait.” This consists of graphs
of selected integral curves of F , with arrows indicating the direction of F
along each integral curve. Such portraits are particularly revealing when
dimΩ = 2, and also of considerable use when dim Ω = 3. As an example,
consider Fig. 3.1, the phase portrait of the flow associated to the 2×2 system

(3.22)

dθ

dt
= ψ,

dψ

dt
= −g

`
sin θ,
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Figure 3.1

which arises from the pendulum equation (cf. Chapter 1, (6.6))

(3.23)
d2θ

dt2
+

g

`
sin θ = 0,

by adding the variable ψ = dθ/dt. Here g, ` > 0. The system (3.22) has the
form (3.2) with x = (θ, ψ) and

(3.24) F (θ, ψ) =
(

ψ
−g

` sin θ

)
.

Note that Fig. 3.1 looks like Fig. 6.2 of Chapter 1, except that here we have
added arrows, to indicate the direction of the flow. As noted in Chapter 1,
the orbits of this flow are level curves of the function

(3.25) E(θ, ψ) =
ψ2

2
− g

`
cos θ,

since if (θ(t), ψ(t)) solves (3.22),

(3.26)
d

dt
E(θ, ψ) = ψψ′ +

g

`
(sin θ)θ′ = 0.

It is instructive to expand on this last calculation. In general, if (θ′, ψ′) =
F (θ, ψ),

(3.27)
d

dt
E(θ, ψ) = ∇E(θ, ψ) · F (θ, ψ), where ∇E(θ, ψ) =

(
∂E/∂θ

∂E/∂ψ

)
.
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Figure 3.2

Now the formula (3.24) gives

(3.28) F (θ, ψ) = −J ∇E(θ, ψ),

where

(3.29) J =
(

0 −1
1 0

)
,

so the vanishing of dE(θ, ψ)/dt follows from (3.27)–(3.28) and the skew-
symmetry of J , which implies

(3.30) v · Jv = 0, ∀ v ∈ R2.

A vector field of the form (3.28) is a special case of a Hamiltonian vector
field, a class of vector fields that will be discussed further in §§5, 7, and 10.

We mention some noteworthy features of the phase portrait in Fig. 3.1,
features to look for in other such portraits. First, there are the critical
points of F , i.e., the points where F vanishes. In case (3.24), the set of
critical points in

{(kπ, 0) : k ∈ Z}.
Fig. 3.1 indicates different natures of the orbits near these critical points,
depending on whether k is even or odd. For k even, the orbits near (kπ, 0)
consist of closed curves. We say these critical points are centers; cf. Fig. 3.2.

For k odd, the orbits near p = (kπ, 0) consist of curves of the following
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Figure 3.3

nature:

(3.31)

(a) two orbits that approach p as t → +∞,

(b) two orbits that approach p as t → −∞,

(c) orbits that miss p, looking like saddles.

We say these critical points are saddles. Cf. Fig. 3.3. Sometimes one calls
them hyperbolic critical points.

Considerable insight is obtained from the study of the linearization of F
at each critical point. Generally, if F is a C1 vector field on Ω ⊂ Rn, x0 ∈ Ω,
and F (x0) = 0, the linearization of F at x0 is given by

(3.32) L = DF (x0) ∈ L(Rn).

This construction extends the notion of linearization given in §8 of Chapter
1. We expect that

Φt
F (x0 + y) ≈ x0 + etLy,

for ‖y‖ small. Cf. Exercise 6 of §2 (but mind the change in notation). Going
further, we expect some important qualitative features of the flow Φt

F near
x0 to be captured by the behavior of etL, and this is born out, with some
exceptions. If DF (x0) has zero as an eigenvalue (we say x0 is a degenerate
critical point) this approximation is not typically useful. It has a better
chance if detDF (x0) 6= 0. We then say x0 is a nondegenerate critical point
for F .
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In case F is given by (3.24), with critical points at pk = (kπ, 0), we have

(3.33) L0 = DF (0, 0) =
(

0 1
−g

` 0

)
.

The eigenvalues of this matrix are±i
√

g/`, and the orbits of etL0 are ellipses,
with qualitative features like Fig. 3.2, a center. Meanwhile,

(3.34) L1 = DF (±π, 0) =
(

0 1
g
` 0

)
.

The eigenvalues of this matrix are ±
√

g/`, with corresponding eigenvectors
(1,±

√
g/`)t, and the orbit structure for etL1 has qualitative features like

Fig. 3.3, a saddle.
In general, if F is a planar vector field with a nondegenerate critical

point at x0, and if all the eigenvalues of DF (x0) are purely imaginary, F
itself might not have a center at x0, i.e., the orbits of F near x0 might not
be closed orbits surrounding x0. Here is an example. Take

(3.35) F (x) = Jx− ‖x‖2x, x ∈ R2,

with J as in (3.29). Then x0 = 0 is a critical point, and DF (0) = J . Thus
the linearization has a center. However, if x(t) is an orbit for this vector
field, then

(3.36)

d

dt
‖x(t)‖2 = 2x · x′

= 2x · (Jx− ‖x‖2x)

= −2‖x‖4,

i.e., ρ(t) = ‖x(t)‖2 satisfies

(3.37)
dρ

dt
= −2ρ2.

This is separable and we have

(3.38) ρ(0) = ρ0 =⇒ ρ(t) =
ρ0

1 + 2tρ0
→ 0 as t ↗ +∞,

so the orbits of this vector field spiral into the origin as t ↗ +∞, though
much more slowly than they do in the case of spiral sinks, a type of critical
point that we will encounter shortly.
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Despite the existence of such examples as (3.35), the fact that (0, 0) is
a center for F , given by (3.24), is no accident, but rather a consequence of
the fact that F has the form (3.28),

(3.39) F (x) = −J∇E(x),

so that, as derived in (3.27)–(3.30), orbits of F lie on level curves of E .
Generally, if E is a smooth real-valued function on a planar domain Ω ⊂ R2

and the vector field F is given by (3.39), (nondegenerate) critical points of
F and (nondegenerate) critical points of E coincide. If x0 ∈ Ω is such a
point

(3.40) DF (x0) = −JD2E(x0),

where D2E(x0) is the matrix of second-order partial derivatives of E at x0,
i.e.,

D2E =
(

∂2E/∂θ2 ∂2E/∂ψ∂θ
∂2E/∂θ∂ψ ∂2E/∂ψ2

)
.

We recall the following result, established in basic multivariable calculus.
Let x0 be a nondegenerate critical point of E , so D2E(x0) is an invertible,
real symmetric matrix. Then

(3.41)

D2E(x0) positive definite ⇔ E has a local minimum at x0,

D2E(x0) negative definite ⇔ E has a local maximum at x0,

D2E(x0) indefinite ⇔ E has a saddle at x0,

We also note that, whenever A ∈ M(2,R) is symmetric and invertible,

(3.42)

A positive definite ⇔ det A > 0 and TrA > 0,

A negative definite ⇔ det A > 0 and TrA < 0,

A indefinite ⇔ det A < 0.

Furthermore, if A is such a matrix and

(3.43) B = −JA,

then

(3.44) detB = det A,

and, for such B ∈ M(2,R),

(3.45)
B has 2 real eigenvalues of opposite signs ⇔ det B < 0,

B has 2 purely imaginary eigenvalues ⇔ detB > 0 and TrB = 0,
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Figure 3.4

Putting these observations together (cf. also Exercise 8 below), we have:

Proposition 3.3. Let E be a smooth function on Ω ⊂ R2, with a nonde-
generate critical point at x0. Let F be given by (3.39). Then

(3.46)
DF (x0) has 2 purely imaginary eigenvalues

⇔ E has a local max or local min at x0,

and

(3.47)
DF (x0) has 2 real eigenvalues of opposite sign

⇔ E has a saddle at x0.

We move on to the 2× 2 system

(3.48)

dθ

dt
= ψ,

dψ

dt
= − α

m
ψ − g

`
sin θ,

which arises from the damped pendulum equation (cf. Chapter 1, (7.6)),

(3.49)
d2θ

dt2
+

α

m

dθ

dt
+

g

`
sin θ = 0,

by adding the variable ψ = dθ/dt. Here g, `, α,m > 0. The system (3.48)
has the form (3.2) with x = (θ, ψ) and

(3.50) F (θ, ψ) =
(

ψ
− α

mψ − g
` sin θ

)
.

The phase portrait for this system is illustrated in Fig. 3.4. We compare
and contrast this portrait with that depicted in Fig. 3.1.
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To start, the vector field (3.50) has the same critical points as the field
given by (3.24), namely {(kπ, 0) : k ∈ Z}. The first striking difference
is in the behavior near the critical points (kπ, 0) with k even. Fig. 3.4
depicts orbits spiraling into these critical points, as opposed to the picture
in Fig. 3.1 of closed orbits circling these critical points. Let us consider the
linearizations about these critical points. For F as in (3.50), we have

(3.51) L = DF (0, 0) =
(

0 1
−g

` − α
m

)
,

with characteristic polynomial λ(λ + α/m) + g/`, hence with eigenvalues

(3.52) λ± = − α

2m
±

√
α2

m2
− 4g

`
.

There are three cases:

Case I. α2/m2 < 4g/`. Then λ± are complex conjugates, each with real
part −α/2m.

Case II. α2/m2 = 4g/`. Then λ+ = λ− = −α/2m.

Case III. α2/m2 > 4g/`. Then λ+ and λ− are distinct real numbers, each
negative.

In all three cases, we have etLv → 0 as t ↗ +∞, for each v ∈ R2. In
Case I, there is also spiraling, and the orbits look like those in Fig. 3.5(a).
Fig. 3.4 depicts such behavior. In Case III, the orbits look like those in
Fig. 3.5(c). In Case II, the orbits look like a cross between Fig. 3.5(b) and
Fig. 3.5(c). These critical points are all called sinks. (Reverse the sign on
F , and the associated orbits are called sources; cf. Fig. 3.6.) The three cases
described above correspond to damped oscillatory, critically damped, and
overdamped motion, as discussed in §9 of Chapter 1.

Further information on the nature of these orbits spiraling in toward
these sinks can be obtained from a computation of the rate of change along
the orbits of E(θ, ψ), given by (3.25), i.e.,

(3.53) E(θ, ψ) =
ψ2

2
− g

`
cos θ.
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Figure 3.5

Figure 3.6

This time, instead of (3.26), we have

(3.54)

d

dt
E(θ, ψ) = ψψ′ +

g

`
(sin θ)θ′

= −ψ
( α

m
ψ +

g

`
sin θ

)
+

g

`
(sin θ)ψ

= − α

m
ψ2.

While this calculation applies nicely to the problem at hand, it is useful to
note the following general phenomenon.

Proposition 3.4. Let F be a smooth vector field on Ω ⊂ Rn, with a critical
point at x0 ∈ Ω. Assume

(3.55) all the eigenvalues of DF (x0) have negative real part.

Then there exists δ > 0 such that

(3.56) ‖x− x0‖ ≤ δ =⇒ lim
t→+∞ Φt

F x = x0.
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To prove this, we bring in the following linear algebra result.

Lemma 3.5. Let L ∈ M(n,R) and assume all the eigenvalues of L have real
part < 0. Then there exists a (symmetric, positive definite) inner product
〈 , 〉 on Rn and a positive constant K such that

(3.57) 〈Lv, v〉 ≤ −K〈v, v〉, ∀ v ∈ Rn.

We show how Lemma 3.5 allows us to prove Proposition 3.4. Apply the
lemma to L = DF (x0). Note that there exist a, b ∈ (0,∞) such that

(3.58) a‖v‖2 ≤ 〈v, v〉 ≤ b‖v‖2, ∀ v ∈ Rn,

where 〈v, v〉 is as in (3.57) and, as usual, ‖v‖2 = v · v. Since F is smooth,

(3.59) F (x0 + y) = Ly + R(y),

with R smooth on a ball about 0 and DR(0) = 0. Hence

(3.60) ‖R(y)‖ ≤ C‖y‖2 ≤ C ′〈y, y〉.

For y(t) = Φt
F (x0 + y0)− x0, we have

(3.61)

d

dt
〈y(t), y(t)〉 = 2〈y′(t), y(t)〉

= 2〈F (x0 + y), y〉
= 2〈Ly, y〉+ 2〈R(y), y〉.

Now (3.57) applies to the first term in the last line of (3.61), while Cauchy’s
inequality plus (3.60) yields

(3.62)
|〈R(y), y〉| ≤ 〈R(y), R(y)〉1/2〈y, y〉1/2

≤ C〈y, y〉3/2.

Hence

(3.63)
d

dt
〈y, y〉 ≤ −2K〈y, y〉+ C〈y, y〉3/2

≤ −K〈y, y〉,

the last inequality holding provided 〈y, y〉1/2 ≤ K/C. As long as δ in (3.56)
is small enough that {x ∈ Rn : ‖x − x0‖ ≤ δ} is contained in Ω and ‖v‖ ≤
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δ ⇒ 〈v, v〉1/2 ≤ K/C, if x = x0 + y0 and ‖y0‖ ≤ δ, then (3.63) holds for
y(t) = Φt

F (x0 + y0)− x0 for all t ≥ 0, and yields

(3.64) 〈y(t), y(t)〉 ≤ e−Kt〈y0, y0〉,

which in turn gives (3.56).

We now prove Lemma 3.5. As shown in §8 of Chapter 2, Cn has a basis
{v1, . . . , vn} with respect to which L is upper triangular, i.e.,

(3.65) Lvj = λjvj +
∑

k<j

ajkvk.

Alternatively, Appendix B of Chapter 2 shows that Cn has an orthonormal
basis {vj} for which (3.65) holds. The eigenvalues of L are λj , so by hy-
pothesis there exists K1 ∈ (0,∞) such that Reλj ≤ −K1 for all j. Now if
we take ε > 0 and set wj = εjvj , we get

(3.66) Lwj = λjwj +
∑

k<j

εj−kajkwk.

Then setting

(3.67)
〈∑

ajwj ,
∑

bkwk

〉
= Re

∑
ajbj

defines a positive definite inner product (depending on ε > 0) on Cn, hence
by restriction on Rn, and if ε > 0 is taken sufficiently small, the desired
conclusion (3.57) follows, with K = K1/2, from (3.66).

Having discussed the critical points of the vector field (3.50) at (0, 0)
and related issues, we now consider the critical points at (±π, 0). We have

(3.68) DF (±π, 0) =
(

0 1
g
` − α

m

)
.

This matrix has eigenvalues

(3.69) λ± = − α

2m
±

√
α2

m2
+

4g

`
,

one positive and one negative. These critical points are saddles. The orbits
near these critical points have a behavior such as described in (3.31). Unlike
the case of F given by (3.24), where the orbits are level curves of E , the proof
of this is more subtle in the present situation. See Appendix C for a proof.
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Having studied the various critical points depicted in Figs. 3.1 and 3.4,
we point out some special orbits that appear in these phase portraits, namely
orbits connecting two critical points. Generally, if F is a C1 vector field on
Ω ⊂ Rn with critical points p1, p2 ∈ Ω, an orbit x(t) of Φt

F satisfying

(3.70) lim
t→−∞ x(t) = p1, lim

t→+∞ x(t) = p2

is called a heteroclinic orbit, from p1 to p2, if p1 6= p2. If p1 = p2, such
an orbit is called a homoclinic orbit. In Fig. 3.1, we see heteroclinic orbits
connecting p1 = (−π, 0) and p2 = (π, 0), one from p1 to p2 and one from p2

to p1. These lie on level curves where E(θ, ψ) = g/`.
Such a heteroclinic orbit describes the motion of a pendulum that is

heading towards pointing vertically upward. As time goes on, the pendu-
lum ascends more and more slowly, never quite reaching the vertical position.
With a little less energy, the pendulum would stop a bit short of vertical and
fall back, swinging back and forth. With a little more energy, the pendulum
would swing past the vertical position. Recall that Fig. 3.1 portrays the mo-
tion of an idealized pendulum, without friction. The motion of a pendulum
with friction is portrayed in Fig. 3.4.

In Fig. 3.4, we see a heteroclinic orbit from (−π, 0) to (0, 0), another
from (−π, 0) to (−2π, 0), another from (π, 0) to (0, 0), another from (π, 0)
to (2π, 0), etc. Given that there is an orbit x(t) = (θ(t), ψ(t)) here such
that limt→−∞ x(t) = (−π, 0) and ψ(t) > 0 for large negative t, the fact that
limt→+∞ x(t) = (0, 0) can be deduced from (3.54), i.e.,

(3.71)
d

dt
E(θ, ψ) = − α

m
ψ2.

We end this section with a look at the phase portrait for one more vector
field, namely

(3.72) F (θ, ψ) =
( g

` sin θ
ψ

)
.

See Fig. 3.7. In this case,

(3.73) F = ∇E =
(

∂E/∂θ
∂E/∂ψ

)
,

with E given by (3.25), i.e.,

(3.74) E(θ, ψ) =
ψ2

2
− g

`
cos θ.
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Figure 3.7

Such a vector field is called a gradient vector field, and its flow Φt
F is called

a gradient flow. Note that if F (x) = ∇E(x) and x(t) is an orbit of Φt
F , then

(3.75)
d

dt
E(x(t)) = ∇E(x(t)) · ∇E(x(t)) = ‖∇E(x(t))‖2.

The critical points of F again consist of {(kπ, 0) : k ∈ Z}, and again they
behave differently for even k than for odd k. This time

(3.76) DF (0, 0) =
( g

` 0
0 1

)
,

which is positive definite. The origin is a (non-spiraling) source; cf. Fig. 3.6.
In particular, if x(t) = (θ(t), ψ(t)) is an orbit and x(0) is close to (0, 0), then

(3.77) lim
t→−∞ x(t) = (0, 0).

This can be deduced from Proposition 3.4 by reversing time. It also follows
directly from (3.75). For k odd, we have saddles:

(3.78) DF (±π, 0) =
(−g

` 0
0 1

)
.

In this case, segments of the real axis provide heteroclinic orbits, from (0, 0)
to (−π, 0), from (0, 0) to (π, 0), etc.
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Exercises

1. If F generates the flow Φt
F and vt(x) = v(Φt

F (x)), show that

(3.79) DΦt
F (x)F (x) = F (Φt

F (x))

and

(3.80) Dvt(x) = Dv(Φt
F (x))DΦt

F (x).

Relate these identities to the simultaneous validity of (3.10) and (3.12).
Hint. To get (3.79), use

(3.81)
d

dt
Φt

F (x) =
d

ds
Φt

F ◦ Φs
F (x)

∣∣∣
s=0

= DΦt
F (x)F (x),

and compare (3.8).

2. Extend Proposition 3.2 as follows. Replace hypothesis (3.19) by

∇V (x) · F (x) ≤ K, ∀x ∈ Rn,

for some K < ∞. Show that the flow Φt
F is forward complete.

3. Let Ω = Rn and assume F is a C1 vector field on Ω. Show that if

‖F (x)‖ ≤ C(1 + ‖x‖),

then the flow generated by F is complete.
(Hint. Recall Exercise 12 of §1.)
Show that the flow is forward complete if

F (x) · x ≤ C(1 + ‖x‖2).

4. Let Ω ⊂ Rn be open and F be a C1 vector field on Ω. Let U ⊂ Ω
be an open set whose closure U is a compact subset of Ω, and whose
boundary ∂U is smooth. Let n : ∂U → Rn denote the outward pointing
unit normal to ∂U . Assume

(3.82) n(x) · F (x) < 0, ∀x ∈ ∂U.
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Show that Φt
F (x) ∈ U if x ∈ U and t ≥ 0, and deduce that Φt

F is forward
complete on U , and also on U .

5. In the setting of Exercise 4, relax the hypothesis (3.82) to

(3.83) n(x) · F (x) ≤ 0, ∀x ∈ ∂U.

Show that Φt
F (x) ∈ U if x ∈ U and t ≥ 0, and deduce that Φt

F is forward
complete on U .
Hint. Find a smooth family Fτ of C1 vector fields on Ω such that F0 = F
and, for 0 < τ < 1, Fτ has the property given in (3.82). Then make use
of Exercise 4 and of results of §2.

6. In the setting of Exercise 5, replace the hypothesis (3.83) by

(3.84) n(x) · F (x) = 0, ∀x ∈ ∂U.

Show that Φt
F is complete on U , and that Φt

F (x) ∈ ∂U whenever x ∈ ∂U
and t ∈ R.

7. Show that if F is given by (3.24), then

div F = 0,

while if F is given by (3.50), then

div F = − α

m
,

and if F is given by (3.72), then

div F =
g

`
cos θ + 1.

8. Let A ∈ M(2,R), and take J as in (3.29). Show that if A is positive
definite then A = P 2 with P positive definite. Show that

−JA and − PJP are similar,

and deduce that

A ∈ M(2,R) positive definite =⇒ B = −JA has 2 purely imaginary eigenvalues.

Relate this to Proposition 3.3.
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9. Give an alternative proof of Proposition 3.4, avoiding use of Lemma 3.5,
starting with the representation of y(t) = Φt

F (x0 + y0)− x0 as

y(t) = etLy0 +
∫ t

0
e(t−s)LR(y(s)) ds,

and using the fact that (3.55) implies

‖etL‖ ≤ Ce−Kt,

for some C, K ∈ (0,∞).

10. Consider the system

(3.85)
dx

dt
= y,

dy

dt
= 1− x2.

Take E(x, y) = y2/2 + x3/3− x. Show that if (x(t), y(t)) solves (3.85),
then dE(x(t), y(t)) = 0. Show that the associated vector field has two
critical points, one a center and the other a saddle. Sketch level curves
of E and put in arrows to show the phase space portrait of F . Show
that there is a homoclinic orbit connecting the saddle to itself.

11. Returning to the context of Exercise 1, show that (2.2) gives

(3.86)
d

dt
DΦt

F (x) = DF (Φt
F (x))DΦt

F (x), DΦ0
F (x) = I.

Recall from (8.6)–(8.10) of Chapter 3 that, for an n×n matrix function
M(t),

d

dt
M(t) = A(t)M(t) =⇒ d

dt
detM(t) = (TrA(t)) detM(t).

Deduce that

(3.87)
d

dt
detDΦt

F (x) = TrDF (Φt
F (x)) detDΦt

F (x)

= div F (Φt
F (x)) det DΦt

F (x)).

Relate this to (3.13), using the change of variable formula

(3.88)
∫

u(x) dx =
∫

u(Φt
F (x)) detDΦt

F (x) dx.
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12. Use (8.10) of Chapter 3 to conclude from (3.87) that

(3.89) detDΦt
F (x) = exp

{∫ t

0
div F (Φs

F (x)) ds
}

.

13. Let U ⊂ Ω ⊂ Rn be a smoothly bounded domain. The divergence
theorem says that if F is a C1 vector field on Ω,

(3.90)
∫

U

div F (x) dx =
∫

∂U

n(x) · F (x) dS(x),

where n(x) is the outward pointing unit normal to ∂U and dS(x) is
(n − 1)-dimensional surface area on ∂U (arc length if n = 2). Given
this identity, we see that, in the setting of Proposition 3.1, (3.17) is
equivalent to

(3.91)
d

dt
VolΦt

F (B) =
∫

∂Φt
F (B)

n(x) · F (x) dS(x).

Show that this holds if and only if for each smoothly bounded U ⊂ Ω,

(3.92)
d

dt
VolΦt

F (U)
∣∣
t=0

=
∫

∂U

n(x) · F (x) dS(x).

Try to provide a direct demonstration of (3.92) (at least for n = 2).

4. Gradient vector fields

As mentioned in §3, a vector field F on an open subset Ω ⊂ Rn is a gradient
vector field provided there exists u ∈ C1(Ω) such that

(4.1) F = ∇u,

i.e., F = (F1, . . . , Fn)t with Fk = ∂u/∂xk. It is of interest to characterize
which vector fields are gradient fields. Here is one necessary condition.
Suppose u ∈ C2(Ω) and (4.1) holds. Then

(4.2)
∂Fk

∂xj
=

∂

∂xj

∂u

∂xk
,

and

(4.3)
∂

∂xj

∂u

∂xk
=

∂

∂xk

∂u

∂xj
,
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so if (4.1) holds then

(4.4)
∂Fk

∂xj
=

∂Fj

∂xk
, ∀ j, k ∈ {1, . . . , n}.

We will establish the following converse.

Proposition 4.1. Assume Ω ⊂ Rn is a connected open set satisfying the
condition (4.13) given below. Let F be a C1 vector field on Ω. If (4.4) holds
on Ω, then there exists u ∈ C2(Ω) such that (4.1) holds.

We will construct u as a line integral. Namely, fix p ∈ Ω, and for each
x ∈ Ω let γ be a smooth path from p to x:

(4.5) γ : [0, 1] −→ Ω, γ(0) = p, γ(1) = x.

We propose that, under the hypotheses of Proposition 4.1, we can take

(4.6) u(x) =
∫

γ

F (y) · dy.

Here the line integral is defined by

(4.7)
∫

γ

F (y) · dy =
∫ t

0
F (γ(t)) · γ′(t) dt.

For this to work, we need to know that (4.6) is independent of the choice of
such a path. A key step to getting this is to consider a smooth 1-parameter
family of paths γs from p to x:

(4.8)
γs(t) = γ(s, t), γ : [0, 1]× [0, 1] −→ Ω,

γ(s, 0) = p, γ(s, 1) = x.

Lemma 4.2. If F is a C1 vector field satisfying (4.4) and γs is a smooth
family satisfying (4.8), then

(4.9)
∫

γs

F (y) · dy is independent of s ∈ [0, 1].
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Proof. We compute the s-derivative of this family of line integrals, i.e., of

(4.10)

∫ 1

0
F (γ(s, t)) · ∂γ

∂t
(s, t) dt

=
∫ 1

0

∑

j

Fj(γ(s, t))
∂γj

∂t
(s, t) dt.

The s-derivative of the integrand is obtained via the product rule and the
chain rule. We obtain

(4.11)

d

ds

∫

γs

F (y) · dy =
∫ 1

0

∑

j,k

∂Fj

∂xk
(γ(s, t))

∂

∂s
γk(s, t)

∂

∂t
γj(s, t) dt

+
∫ 1

0

∑

j

Fj(γ(s, t))
∂

∂s

∂

∂t
γj(s, t) dt.

We can apply the identity

∂

∂s

∂

∂t
γj(s, t) =

∂

∂t

∂

∂s
γj(s, t)

to the second integrand on the right side of (4.11) and then integrate by
parts. This involves applying ∂/∂t to Fj(γ(s, t)), and hence another appli-
cation of the chain rule. When this is done, the second integral on the right
side of (4.11) becomes

(4.12) −
∫ 1

0

∑

j,k

∂Fj

∂xk
(γ(s, t))

∂

∂t
γk(s, t)

∂

∂s
γj(s, t) dt.

Now if we interchange the roles of j and k in (4.12), we cancel the first
integral on the right side of (4.11), provided (4.4) holds. This proves the
lemma.

Given Ω ⊂ Rn open and connected, we say Ω is simply connected pro-
vided it has the following property:

(4.13)
Given p, x ∈ Ω, if γ0 and γ1 are smooth paths from p to x,

they are connected by a smooth family γs of paths from p to x.

Here is a class of such domains.

Lemma 4.3. If Ω ⊂ Rn is an open convex domain, then Ω is simply con-
nected.
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Proof. If Ω is convex, two paths γ0 and γ1 from p ∈ Ω to x ∈ Ω are
connected by

(4.14) γs(t) = (1− s)γ0(t) + sγ1(t), 0 ≤ s ≤ 1.

Of course there are many other simply connected domains, as the reader
is invited to explore.

Now that we have Lemma 4.2, under the hypotheses of Proposition 4.1
we simply write

(4.15) u(x) =
∫ x

p
F (y) · dy.

Note that if q is another point in Ω, we can take a smooth path from p to
x, passing through q, and write

(4.16) u(x) =
∫ q

p
F (y) · dy +

∫ x

q
F (y) · dy.

Again using the path independence, we see we can independently choose
paths from p to q and from q to x in (4.16); these paths need not match up
smoothly at q.

We are now in a position to complete the proof of Proposition 4.1. Take
δ > 0 so that {y ∈ Rn : ‖x− y‖ ≤ δ} ⊂ Ω. Take k ∈ {1, . . . , n}, fix qk such
that |qk − xk| < δ, and write

(4.17) u(x) =
∫ (x1,...,qk,...,xn)

p
F (y) · dy +

∫ x

(x1,...,qk,...,xn)
F (y) · dy.

Here the intermediate point is obtained by replacing xk in x = (x1, . . . , xn)
by qk. The first term on the right side of (4.17) is independent of xk, so

(4.18)

∂u

∂xk
(x) =

∂

∂xk

∫ x

(x1,...,qk,...,xn)
F (y) · dy

=
∂

∂xk

∫ xk

qk

Fk(x1, . . . , xk−1, s, xk+1, . . . , xn) ds

= Fk(x),

the last identity by the fundamental theorem of calculus. This proves Propo-
sition 4.1.
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An example of a domain that is not simply connected is the punctured
plane R2 \ 0. Consider on this domain the vector field

(4.19) F (x) =
Jx

‖x‖2
, J =

(
0 −1
1 0

)
,

with components

(4.20) F1(x) =
−x2

x2
1 + x2

2

, F2(x) =
x1

x2
1 + x2

2

.

We have

(4.21)
∂F1

∂x2
=

x2
2 − x2

1

‖x‖4
=

∂F2

∂x1
, on R2 \ 0.

However, F is not a gradient vector field on R2 \ 0. Up to an additive
constant, the only candidate for u in (4.1) is the angular coordinate θ:

(4.22) F (x) = ∇θ(x),

and this identity is true on any region Ω formed by removing from R2 a ray
starting from the origin. However, θ cannot be defined as a smooth, single
valued function on R2 \ 0.

Let us linger on the case n = 2 and make contact with the concept of
“exact equations.” Consider a 2× 2 system

(4.23)
dx

dt
= f1(x, y),

dy

dt
= f2(x, y).

We take (x, y) ∈ Ω ⊂ R2 and assume fj ∈ C1(Ω). This system turns into a
single differential equation for y as a function of x:

(4.24)
dy

dx
=

f2(x, y)
f1(x, y)

,

which we rewrite as

(4.25)
g1(x, y) dx + g2(x, y) dy = 0,

g1(x, y) = f2(x, y), g2(x, y) = −f1(x, y).

The equation (4.25) is called exact if there exists u ∈ C2(Ω) such that

(4.26) g1 =
∂u

∂x
, g2 =

∂u

∂y
.
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If there is such a u, solutions to (4.24) or (4.25) are given by

(4.27) u(x, y) = C.

Now (4.26) is the condition that G = (g1, g2)t be a gradient vector field on
Ω. Note that the relation between F = (f1, f2)t and G = (g1, g2)t, with
components given by (4.25), is

(4.28) G = −JF,

where

(4.29) J =
(

0 −1
1 0

)
.

As we have seen, when Ω is simply connected, (4.26) holds for some u if and
only if

(4.30)
∂g1

∂y
=

∂g2

∂x
.

Note that this is equivalent to

(4.31) div F = 0.

Remark. If F = (F1, F2, F3)t is a vector field on Ω ⊂ R3, its curl is defined
as

(4.32)

curlF = ∇× F

= det




i j k
∂/∂x ∂/∂y ∂/∂z
F1 F2 F3




=
(∂F3

∂y
− ∂F2

∂z

)
i +

(∂F1

∂z
− ∂F3

∂x

)
j +

(∂F2

∂x
− ∂F1

∂y

)
k.

We see that

(4.33) (4.4) holds ⇐⇒ curlF = 0.

We conclude with some remarks on how to construct u(x), satisfying

(4.34)
∂u

∂xj
(x) = Fj(x), 1 ≤ j ≤ n,
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given the compatibility conditions (4.4), without evaluating line integrals.
We start with

(4.35) un(x) =
∫

Fn(x) dxn, so
∂un

∂xn
= Fn(x).

Then ∂(u− un)/∂xn = 0, so

(4.36) u(x) = un(x) + v(x′), x′ = (x1, . . . , xn−1).

It remains to find v, a function of fewer variables. It must solve

(4.37)
∂v

∂xj
= Fj(x)− ∂un

∂xj
, 1 ≤ j ≤ n− 1.

Note that the left side is independent of xn, which requires that the right
side have this property. To check this, we calculate

(4.38)

∂

∂xn

(
Fj(x)− ∂un

∂xj

)
=

∂Fj

∂xn
− ∂

∂xn

∂un

∂xj

=
∂Fn

∂xj
− ∂

∂xj

∂un

∂xn

= 0,

the second identity by (4.4) (and (4.3)). Thus (4.37) takes the form

(4.39)
∂v

∂xj
= Gj(x′), 1 ≤ j ≤ n− 1,

with Gj(x′) = Fj(x)− ∂un/∂xj . Note that, for 1 ≤ j, k ≤ n− 1,

(4.40)

∂Gj

∂xk
=

∂Fj

∂xk
− ∂

∂xk

∂un

∂xj

=
∂Fk

∂xj
− ∂

∂xj

∂un

∂xk

=
∂Gk

∂xj
,

so the task of solving (4.39) is just like that in (4.34), but with one fewer
variable. An iteration yields the solution to (4.34).

Example. Take

(4.41) F (x, y, z) = (y, x + z2, 2yz)t.
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One readily verfies (4.4), or equivalently that curl F = 0. Here (4.35) gives

(4.42) u3(x, y, z) =
∫

2yz dz = yz2,

so

(4.43) u(x, y, z) = yz2 + v(x, y).

Next, requiring ∂u/∂y = x + z2 means

(4.44)
∂v

∂y
= x,

so

(4.45) v(x, y) = xy + w(x).

Then, requiring ∂u/∂x = y means ∂w/∂x = 0, so we get

(4.46) u(x, y, z) = yz2 + xy,

as the unique function on R3 such that ∇u = F , up to an additive constant.

One can turn the method given by (4.35)–(4.40) into an alternative proof
of Proposition 4.1, at least if Ω is an n-dimensional box. The reader is invited
to look into what happens when this method is applied to F given on R2 \ 0
by (4.19).

Exercises

For (1)–(4), identify which vector fields are gradient fields. If the field
is a gradient field ∇u, find u.

(yz, xz, xy),(1)

(xy, yz, xz),(2)

(2x, z, y),(3)

(2x, y, z).(4)
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For (5)–(8), identify which equations are exact. If the equation is exact,
write down the solution, in implicit form (4.27).

(2x + y) dx + x dy = 0,(5)

x dx + (2x + y) dy = 0,(6)

dx + x dy = 0,(7)

ey dx + xey dy = 0.(8)

Given f(x, y) dx + g(x, y) dy, a function u(x, y) is called an integrating
factor if uf dx + ug dy is exact. For example, ey is an integrating factor
for dx + x dy. Find integrating factors for the left sides of (9)–(12), and
use them to find solutions, in implicit form.

(x2 + y2 − 1) dx− 2xy dy = 0,(9)

x2y3 dx + x(1 + y2) dy = 0,(10)

y dx + (2x− yey) dy = 0,(11)

dx + 2xy dy = 0.(12)

13. Establish the following variant of Lemma 4.2:

Lemma 4.2A. If F is a C1 vector field on Ω satisfying (4.4) and γs is
a smooth family satisfying

γs(t) = γ(s, t), γ : [0, 1]× [0, 1] → Ω, γ(s, 0) ≡ γ(s, 1),

then ∫

γs

F (y) · dy is independent of s ∈ [0, 1].

5. Newtonian equations

In Chapter 1 we saw how Newton’s law F = ma leads to a second order
differential equation for the motion on a line of a single particle, acted on
by a force. Newton’s laws also apply to a system of m interacting particles,
moving in n-dimensional space, to give a second order system of the form

(5.1) mk
d2xk

dt2
=

∑

{j:j 6=k}
Fjk(xk − xj), 1 ≤ k ≤ m.
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Each xk takes values in Rn, so x = (x1, . . . , xm) takes values in Rmn. Here xk

is the location of a particle of mass mk. The law that each action produces
an equal and opposite reaction translates to

(5.2) Fjk(xk − xj) = −Fkj(xj − xk).

A particularly important class of forces Fjk(xk − xj) are those parallel (or
antiparallel) to the line from xj to xk:

(5.3) Fjk(xk − xj) = fjk(‖xk − xj‖)(xk − xj).

In such a case, (5.2) is equivalent to

(5.4) fjk(r) = fkj(r).

A force field of the form (5.3) is a gradient vector field:

(5.5)
fjk(‖u‖)u = −∇Vjk(u),

Vjk(u) = vjk(‖u‖), v′jk(r) = −rfjk(r).

If (5.4) holds,

(5.6) Vjk(u) = Vkj(u).

The total energy of this system of interacting particles is

(5.7) E =
1
2

∑

k

mk

∥∥∥dxk

dt

∥∥∥
2
+

1
2

∑

j 6=k

Vjk(xk − xj).

The first sum is the total kinetic energy and the second sum is the total
potential energy. The following calculations yield conservation of energy.
First,

(5.8)
dE

dt
=

∑

k

mk
d2xk

dt2
· dxk

dt
+

1
2

∑

j 6=k

∇Vjk(xk − xj) ·
(dxk

dt
− dxj

dt

)
.

Next, (5.1) implies that the first sum on the right side of (5.8) is equal to

(5.9)
∑

j 6=k

Fjk(xk − xj) · dxk

dt
,

and (5.3)–(5.5) imply that the second sum on the right side of (5.8) is equal
to

(5.10) −1
2

∑

j 6=k

Fjk(xk − xj) ·
(dxk

dt
− dxj

dt

)
= −

∑

j 6=k

Fjk(xk − xj) · dxk

dt
.
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Comparing (5.9) and (5.10), we have energy conservation:

(5.11)
dE

dt
= 0.

We can convert the second order system (5.1) for mn variables into a
first order system for 2mn variables. One way would be to introduce the
velocities vk = x′k, but we get a better mathematical structure by instead
using the momenta:

(5.12) pk = mk
dxk

dt
, 1 ≤ k ≤ m.

We can express the energy E in (5.7) as a function of position x = (x1, . . . , xm)
and momentum p = (p1, . . . , pm):

(5.13) E(x, p) =
∑

k

1
2mk

‖pk‖2 +
1
2

∑

j 6=k

Vjk(xk − xj).

Recall that xk = (xk1, . . . , xkn) ∈ Rn and pk = (pk1, . . . , pkn) ∈ Rn. We have

(5.14)
∂E

∂pk`
=

1
mk

pk`,

and

(5.15)
∂E

∂xk`
=

∑

{j:j 6=k}

∂Vjk

∂u`
(xk − xj),

invoking (5.6). Let us write (5.14)–(5.15) in vector form,

(5.16)
∂E

∂pk
=

1
mk

pk,
∂E

∂xk
=

∑

{j:j 6=k}
∇Vjk(xk − xj),

where ∂E/∂pk = (∂E/∂pk1, . . . , ∂E/∂pkn)t, etc. Now the system (5.1) yields
the first order system

(5.17)
dxk

dt
=

1
mk

pk,
dpk

dt
=

∑

{j:j 6=k}
Fjk(xk − xj),

which in turn, given (5.3)–(5.5), gives

(5.18)
dxk

dt
=

∂E

∂pk
,

dpk

dt
= − ∂E

∂xk
.
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The system (5.18) is said to be in Hamiltonian form.
We can place the study of Hamiltonian equations in a more general

framework, as follows. Let R2K have points (x, p), x = (x1, . . . , xK), p =
(p1, . . . , pK). Let Ω ⊂ R2K be open and E ∈ C1(Ω). Consider the system

(5.19)

dxk

dt
=

∂E

∂pk
,

dpk

dt
= − ∂E

∂xk
,

for 1 ≤ k ≤ K. This is called a Hamiltonian system. It is of the form

(5.20)
d

dt

(
x

p

)
= XE(x, p),

where XE is a vector field on Ω, called the Hamiltonian vector field asso-
ciated to E. In this general setting, E is constant on each solution curve
(x(t), p(t)) of (5.19). Indeed, in such a case,

(5.21)

d

dt
E(x(t), p(t)) =

∑

k

∂E

∂xk
· dxk

dt
+

∑

k

∂E

∂pk
· dpk

dt

=
∑

k

∂E

∂xk
· ∂E

∂pk
−

∑

k

∂E

∂pk
· ∂E

∂xk

= 0.

Returning to the setting (5.1)–(5.2), we next discuss the conservation of
the total momentum

(5.22) P =
∑

k

pk =
∑

k

mk
dxk

dt
.

Indeed,

(5.23)

dP

dt
=

∑

k

mk
d2xk

dt2

=
∑

j 6=k

Fjk(xk − xj)

= 0,

the last identity by (5.2). Thus, for each solution x(t) to (5.1), there exist
a, b ∈ Rn such that

(5.24)
1
M

∑

k

mkxk(t) = a + bt, M =
∑

k

mk.
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The left side is the center of mass of the system of interacting particles. The
vectors a, b ∈ Rn are given by the initial data for (5.1):

(5.25) a =
1
M

∑

k

mkxk(0), b =
1
M

∑

k

mkx
′
k(0).

Given this, we can obtain a system similar to (5.1) for the variables

(5.26) yk(t) = xk(t)− (a + bt).

We have y′′k = x′′k and yk − yj = xk − xj , so (5.1) gives

(5.27) mk
d2yk

dt2
=

∑

{j:j 6=k}
Fjk(yk − yj), 1 ≤ k ≤ m.

In this case we have the identity

(5.28)
∑

k

mkyk(t) ≡ 0,

as a consequence of (5.24). We can use this to reduce the size of (5.27), from
a system of mn equations to a system of (m−1)n equations, by substituting

(5.29) ym = − 1
mm

m−1∑

`=1

m`y`

into (5.27), for 1 ≤ k ≤ m − 1. One calls (y1, . . . , ym) center of mass
coordinates.

In case m = 2, this substitution works out quite nicely. We have

(5.30) y2 = −m1

m2
y1,

and the system (5.27) reduces to

(5.31) m1
d2y1

dt2
= F21

((
1 +

m1

m2

)
y1

)
,

the equation of motion of a single particle in an external force field. Alter-
natively, for x = x1 − x2 = y1 − y2 = (1 + m1/m2)y1,

(5.32)
m1m2

m1 + m2

d2x

dt2
= F21(x).

For m > 2, the resulting equations are not so neat. For example, for
m = 3, we have

(5.33) y3 = −m1

m3
y1 − m2

m3
y2,

and the system (5.27) reduces to

(5.34)
m1y

′′
1 = F21(y1 − y2) + F31

((
1 +

m1

m2

)
y1 +

m2

m1
y2

)
,

m2y
′′
2 = F12(y2 − y1) + F32

(m1

m3
y1 +

(
1 +

m2

m3

)
y2

)
.
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Exercises

In (1)–(5), take n = 1, m = 3, and m1 = m2 = m3 = 1. Set up
the equations of motion in center of mass coordinates and analyze the
solution.

Fjk(x) = x(1)

Fjk(x) = −x(2)

F12(x) = F13(x) = x, F23(x) = −x(3)

F12(x) = F13(x) = −x, F23(x) = x.(4)

F12(x) = F23(x) = −x, F23(x) = 1.(5)

In all cases, (5.2) must be enforced.

6. Central force problems and two-body planetary motion

As seen in §5, one can transform the m-body problem (5.1) to center of mass
coordinates, under the hypothesis (5.2), and obtain a smaller system, which
for m = 2 is given by (5.32). Changing notation, we rewrite (5.32) as

(6.1) m
d2x

dt2
= F (x).

Here x ∈ Rn. We assume F ∈ C1(Rn \ 0) but allow blowup at x = 0. Under
hypotheses (5.3)–(5.4) for the two body problem, we have

(6.2) F (x) = f(‖x‖)x.

In such a case, (6.1) is called a central force problem. Parallel to (5.5), we
have

(6.3)
F (x) = −∇V (x),

V (x) = v(‖x‖), v′(r) = −rf(r).

The total energy is given by

(6.4) E =
1
2
m

∥∥∥dx

dt

∥∥∥
2
+ V (x),

and if x(t) solves (6.1), then

(6.5)
dE

dt
= m

d2x

dt
· dx

dt
+∇V (x) · dx

dt
= 0,
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yielding conservation of energy.
There are further conservation laws, starting with the following.

Proposition 6.1. Assume x(0) 6= 0 and let W ⊂ Rn be the linear span of
x(0) and x′(0). If x(t) solves (6.1) for t ∈ I and (6.2) holds, we have

(6.6) x(t) ∈ W, ∀ t ∈ I.

Proof. One way to see this is to note that (6.1) is a well posed system for
x(t) taking values in W . Then uniqueness of solutions yields (6.6). Here is
another demonstration.

Define A ∈ L(Rn) by

(6.7)
Av = v, ∀ v ∈ W,

Av = −v, ∀v ∈ W⊥.

Note that A is an orthogonal transformation. Let y(t) = Ax(t). The hy-
pothesis on the initial data gives

(6.8) y(0) = x(0), y′(0) = x′(0).

Also, given F (x) of the form (6.2), we have AF (x) = F (y), so y(t) solves
(6.1). The basic uniqueness result proven in §1 implies y ≡ x on I, which in
turn gives (6.6).

A third proof of Proposition 6.1, valid for n = 3, can be obtained from
conservation of angular momentum, established in (6.11) below.

Proposition 6.1 guarantees that each path x(t) solving (6.1) lies in a
plane, and we can take n = 2. For the next step, it is actually convenient
to take n = 3. Thus x(t) solves (6.1) and x(t) is a path in R3. We define
the angular momentum

(6.9) α(t) = mx(t)× x′(t).

We then have, under hypothesis (6.2),

(6.10)

α′(t) = mx(t)× x′′(t)
= x(t)× F (x)

= f(‖x‖) x(t)× x(t)

= 0.

This yields conservation of angular momentum:

(6.11) x(t)× x′(t) ≡ L,
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where L = x(0)× x′(0) ∈ R3. In case x(t) = (x1(t), x2(t), 0), we have

(6.12) x(t)× x′(t) = (0, 0, x1(t)x′2(t)− x′1(t)x2(t)),

so the conservation law (6.11) gives

(6.13) x1(t)x′2(t)− x′1(t)x2(t) ≡ L3.

Let’s return to the planar setting, and also use complex notation:

(6.14) x(t) = x1(t) + ix2(t) = r(t)eiθ(t).

A computation gives

(6.15)
x′ = (r′ + irθ′)eiθ,

x′′ = [r′′ − r(θ′)2 + i(2r′θ′ + rθ′′)]eiθ,

so (6.1)–(6.2) becomes

(6.16) m
[
r′′ − r(θ′)2 + i(2r′θ′ + rθ′′)

]
= f(r)r.

Equating real and imaginary parts separately, we get

(6.17)
r′′ − r(θ′)2 =

f(r)r
m

,

2r′θ′ + rθ′′ = 0.

Note that

(6.18)
d

dt
(r2θ′) = r(2r′θ′ + rθ′′),

so the second equation in (6.17) says r2θ′ is independent of t. This is actually
equivalent to the conservation of angular momentum, (6.13). In fact, we have
x1 = r cos θ, x2 = r sin θ, hence

(6.19) x′1 = r′ cos θ − rθ′ sin θ, x′2 = r′ sin θ + rθ′ cos θ,

and hence

(6.20) x1x
′
2 − x′1x2 = r2θ′.

Thus we have in two ways derived the identity

(6.21) r2θ′ = L.
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(For notational simplicity, we drop the subscript 3 from (6.13).)
There is the following geometrical interpretation of (6.21). The (signed)

area A(t) swept out by the ray from 0 to x(s), as s runs from t0 to t, is given
by

(6.22) A(t) =
1
2

∫ θ(t)

θ(t0)
r2 dθ =

1
2

∫ t

t0

r(s)2θ′(s) ds,

so

(6.23) A′(t) =
1
2
r2θ′ =

L

2
.

This says

(6.24) Equal areas are swept out in equal times,

which, as we will discuss below, is Kepler’s second law.
Next, we can plug θ′ = L/r2 into the first equation of (6.17), obtaining

(6.25)
d2r

dt2
=

f(r)r
m

+
L2

r3
.

This has the form

(6.26)
d2r

dt2
= g(r),

treated in Chapter 1, §5. We recall that treatment. Take w(r) such that
g(r) = −w′(r), so (6.26) becomes

(6.27)
d2r

dt2
= −w′(r).

Then form the “energy”

(6.28) E =
1
2

(dr

dt

)2
+ w(r),

and compute that if r(t) solves (6.27) then

(6.29)
dE

dt
=

d2r

dt2
dr

dt
+ w′(r)

dr

dt
= 0,

so for each solution to (6.27), there is a constant E such that

(6.30)
dr

dt
= ±

√
2E − 2w(r).
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Separation of variables gives

(6.31)
∫

dr√
2E − 2w(r)

= ±t + C.

This integral can be quite messy.
Note that dividing (6.30) by (6.21) yields a differential equation for r as

a function of θ:

(6.32)
dr

dθ
= ±r2

L

√
2E − 2w(r),

which separates to

(6.33) L

∫
dr

r2
√

2E − 2w(r)
= ±θ + C.

Let us recall that

(6.34) w′(r) = −f(r)r
m

− L2

r3
.

Typically the integral in (6.33) is as messy as the one in (6.31). These
integrals do turn out to be tractable in one very important case, the Kepler
problem, to which we now turn.

This problem is named after the astronomer Johannes Kepler, who from
observations formulated the following three laws for planetary motion.

1. The planets move on ellipses with the sun at one focus.

2. The line segment from the sun to a planet sweeps out equal areas in equal
time intervals.

3. The period of revolution of a planet is proportional to a3/2, where a is
the semi-major axis of its ellipse.

The Kepler problem is to provide a theoretical framework in which to derive
these three laws. This was solved by Isaac Newton, who formulated his
universal law of gravitation, used it to derive a differential equation for the
position of a planet, and solved the differential equation.

Newton’s law of gravitation specifies the force between two objects, of
mass m1 and m2, located at points x1 and x2 in R3. Let us say the center
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of the planet is at x1 and the center of the sun is at x2. In the framework
of (5.1), this means specifying the vector field F21 on R3. The formula is

(6.35) F21(x) = −Gm1m2
x

‖x‖3
.

Here G is the universal gravitational constant. If we go to center of mass
coordinates, the motion of the planet is governed by (5.32), yielding (6.1)
with

(6.36) F (x) = −Km
x

‖x‖3
, K = G(m + m2).

Here m = m1 is the mass of the planet and m2 is the mass of the sun.
Consequently we have (6.17) with

(6.37)
f(r)r

m
= −K

r2
,

and (6.25) becomes

(6.38)
d2r

dt2
= −K

r2
+

L2

r3
.

Thus w(r) in (6.27)–(6.34) is given by

(6.39) w(r) = −K

r
+

L2

2r2
.

Thus the integral in (6.31) is

(6.40)
∫

r dr√
2Er2 + 2Kr − L2

,

and the integral in (6.33) is

(6.41)
∫

dr

r
√

2Er2 + 2Kr − L2
.

The integral (6.40) can be evaluated by completing the square for 2Er2 +
2Kr−L2. The integral (6.41) can also be evaluated, but rather than tackling
this directly, we instead produce a differential equation for u, defined by

(6.42) u =
1
r
.

By the chain rule,

(6.43)
dr

dt
= −r2 du

dt
= −r2 du

dθ

dθ

dt
= −L

du

dθ
,
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the last identity by (6.21). Taking another t-derivative gives

(6.44)
d2r

dt2
= −L

d

dt

du

dθ
= −L

d2u

dθ2

dθ

dt
= −L2u2 d2u

dθ2
,

again using (6.21). Comparing this with (6.38), we get

(6.45) −L2u2 d2u

dθ2
= L2u3 −Ku2,

or equivalently

(6.46)
d2u

dθ2
+ u =

K

L2
.

Miraculously, we have obtained a linear equation! The general solution to
(6.46) is

(6.47) u(θ) = A cos(θ − θ0) +
K

L2
,

which by (6.42) gives

(6.48) r
[
A cos(θ − θ0) +

K

L2

]
= 1.

This is equivalent to

(6.49) r
[
1 + e cos(θ − θ0)

]
= p, p =

L2

K
, e = A

L2

K
.

If e = 0, this is the equation of a circle. If 0 < e < 1, it is the equation of
an ellipse. If e = 1, it is the equation of a parabola, and if e > 1, it is the
equation of one branch of a hyperbola. Among these curves, those that are
bounded are the ellipses, and the circle, which we regard as a special case
of an ellipse.

Since planets move in bounded orbits, this establishes Kepler’s first law
(with caveats, which we discuss below). Kepler’s second law holds for general
central force problems, as noted already in (6.24). To establish the third law,
recall from (6.23) that L/2 is the rate at which such area is swept out, so
the period T of the orbit satisfies

(6.50)
L

2
T = area enclosed by the ellipse

= πab,
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where a is the semi-major axis and b the semi-minor axis. For an ellipse
given by (6.49), we have

(6.51) a =
p

1− e2
, b =

p√
1− e2

= p1/2a1/2,

which yields

(6.52) T =
2πab

L
= 2π

√
p

L
a3/2 =

2π√
K

a3/2.

This establishes Kepler’s third law.
We now discuss some caveats. Our solar system has nine planets, plus

numerous other satellites. In the calculations above, all but one planet
was ignored. One can expect this approximation to work best for Jupiter.
Jupiter has about 10−3 the sun’s mass, and its distance from the sun is
about 400 times the sun’s radius. Hence the center of mass of Jupiter and
the sun is located about 0.4 times the sun’s radius from the center of the
sun. The sun and Jupiter engage in a close to circular elliptical orbit with
a focus at this center of mass. Clearly this motion is going to influence the
orbits of the other planets. In fact, each planet influences all the others,
including Jupiter, in ways not captured by the calculations of this section.
Realization of this situation led to a vigorous development of the subject
known as celestial mechanics, from Newton’s time on. Material on this can
be found in [AM] and [Gr], and references given there.

Advances in celestial mechanics led to the discovery of the planet Nep-
tune. By the early 1900s, this subject was sufficiently well developed that
astronomers were certain that an observed anomaly in the motion of Mer-
cury could not be explained by the Newtonian theory. This discrepancy was
accounted for by Einstein’s theory of general relativity, which provided a
new foundation for the theory of gravity. This is discussed in [ABS] and
also in Chapter 18 of [T]. While a derivation is well outside the scope of
this book, we mention that the relativistic treatment leads to the following
variant of (6.46):

(6.53)
d2u

dθ2
+ u = A + εu2,

where A ≈ K/L2 and ε is a certain (small) positive constant, determined
by the mass of the sun. This can be converted into the first order system

(6.54)
du

dθ
= v,

dv

dθ
= −u + A + εu2.

In analogy with (6.26)–(6.29), we can form

(6.55) F (u, v) =
1
2
v2 +

1
2
u2 −Au− ε

3
u3,



60 Nonlinear Systems of Differential Equations Michael Taylor

and check that if (u(θ), v(θ)) solves (6.54), then

(6.56)
d

dθ
F (u, v) = 0,

so the orbits for (6.54) lie on level curves of F . As long as Aε ∈ (0, 1/4),
F has two critical points, a minimum and a saddle. Thus (6.54) has some
solutions periodic in θ. However, the period is generally not equal to 2π.
(See Appendix D for results related to computing this period.) This fact
leads to the precession of the perihelion of the planet orbiting the sun, where
the perihelion is the place where u is maximal, so r is minimal. In the non-
relativistic situation covered by (6.46), all the solutions in (6.47) are periodic
in θ of period 2π.

Exercises

1. Solve explicitly
w′′(t) = −w(t),

for w taking values in R2 = C. Show that

|w(t)|2 + |w′(t)|2 = 2E

is constant on each orbit.

2. For w(t) taking values in C, define a new curve by

z(s) = w(t)2,
ds

dt
= |w(t)|2.

Show that if w′′(t) = −w(t), then

z′′(s) = −4E
z(s)
|z(s)|3 ,

so z(s) solves the Kepler problem.

3. Take u = 1/r as in (6.42), and generalize the calculations (6.43)–(6.46)
to obtain a differential equation for u as a function of θ, for more general
central forces. Consider particularly f(x) = −∇V (x) in the cases

V (x) = −K‖x‖2, V (x) = −K‖x‖.
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4. Take the following steps to show that if p > 0 and 0 < e < 1, then

(6.57) r(1 + e cos θ) = p

is the equation in polar coordinates of an ellipse.

(a) Show that (6.57) describes a closed, bounded curve, since 1+e cos θ >
0 for all θ if 0 < θ < 1, and cos θ is periodic in θ of period 2π. Denote
the curve by γ(θ) = (x(θ), y(θ)), in Cartesian coordinates.

(b) Show that this curve is symmetric about the x-axis and cuts the
axis at two points, whose distance apart is

2a = r(0) + r(π),

so

(6.58) a =
p

1− e2
.

(c) Show that the midpoint between γ(0) and γ(π) is given by

x0 = −ea, y0 = 0.

(d) For γ(θ) = (x(θ), y(θ)), as in part (a), show that

(6.59)
(x + ea)2

a2
+

y2

b2
= 1,

i.e., that
(r cos θ + ea)2

a2
+

r2(1− cos2 θ)
b2

= 1,

provided (6.57) holds, when a is given by (6.58) and

(6.60) b =
p√

1− e2
.

5. As an approximation, assume that the earth has a circular orbit about
the sun with a radius

(6.61) a = 1.496× 1011 m,
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and its period is one year, i.e.,

(6.62) T = 31.536× 106 sec.

The gravitational constant G has been measured as

(6.63) G = 6.674× 10−11 m3/(kg sec2).

With this information, use (6.36) and (6.52) to calculate the mass m2

of the sun. Assume the mass of the earth is negligible compared to m2.
You should get

(6.64) m2 = α× 1030 kg,

with α between 1 and 10.

Remark. Historically, T was measured by the position of the “fixed
stars.” Modern methods to measure a involve bouncing a radar signal
off Venus to measure its distance, given that we have an accurate mea-
surement of the speed of light. Then trigonometry is used to determine
a. See [GM] for a discussion of how G has been measured; this is the
most difficult issue.

6. The force of gravity the earth exerts on a body of mass m at the earth’s
surface is

(6.65) −Gmmer
−2,

where G is given in Exercise 5,

(6.66) r = 6.38× 106 m

is the radius of the earth, and me is the mass of the earth. It is observed
that the earth’s gravity accelerates objects at its surface downward at
9.8 m/sec2, so we have

(6.67) 9.8 m/sec2 = Gmer
−2.

Use this to compute me. You should get

(6.68) me = β × 1024 kg,

with β between 1 and 10.
Remark. See Appendix E for more on (6.65).
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7. As an approximation, assume that the moon has a circular orbit about
the earth, of radius

a = 3.8× 108 m,

and its period is 27.3 days, i.e.,

T = 2.359× 106 sec.

Assume the mass of the moon is negligible compared to the mass of the
earth. Use the method of Exercise 5 to calculate the mass of the earth.
Compare your result with that of Exercise 6.

8. Use the data presented in Exercises 5 and 7 to calculate the ratio of the
masses of the earth and the sun, irrespective of the knowledge of G.

9. Jupiter has a moon, Ganymede, which orbits the planet at a distance
1.07 × 109 m, with a period of 7.15 earth days. Using the method of
Exercise 5 (or 8), compute the mass mJ of Jupiter. You should get

mJ ≈ 318 me.

7. Variational problems and the stationary action principle

A rich source of second order systems of differential equations is provided
by variational problems, which we will consider here. Let Ω ⊂ Rn be open,
and let L ∈ C2(Ω×Rn), say L = L(x, v). For a path u : [a, b] → Ω, consider

(7.1) I(u) =
∫ b

a
L(u(t), u′(t)) dt.

We desire to find equations for a path that minimizes I(u), among all such
paths for which the endpoints u(a) = p and u(b) = q are fixed. More
generally, we desire to specify when u is a stationary path, meaning that

(7.2)
d

ds
I(us)

∣∣∣
s=0

= 0,

for all smooth families of paths us such that u0 = u, us(a) = p, and us(b) =
q. Let us write

(7.3)
∂

∂s
us(t)

∣∣∣
s=0

= w(t),

so w : [a, b] → Rn is an arbitrary smooth function such that w(a) = w(b) = 0.
To compute (d/ds)I(us), let us denote

(7.4) Lxk
=

∂L

∂xk
, Lvk

=
∂L

∂vk
.
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Then

(7.5)

d

ds
I(us)

∣∣∣
s=0

=
∫ b

a

∑

k

Lxk
(u(t), u′(t))wk(t) dt

+
∫ b

a

∑

k

Lvk
(u(t), u′(t))w′k(t) dt.

We can apply integration by parts to the last integral. The condition that
wk(a) = wk(b) = 0 implies that there are no endpoint contributions, so

(7.6)
d

dt
I(us)

∣∣∣
s=0

=
∫ b

a

∑

k

[
Lxk

(u(t), u′(t))− d

dt
Lvk

(u(t), u′(t))
]
wk(t) dt.

For this to vanish for all smooth wk that vanish at t = a and b, it is necessary
and sufficient that

(7.7)
d

dt
Lvk

(u(t), u′(t))− Lxk
(u(t), u′(t)) = 0, ∀ k.

This system is called the Lagrange equation for stationarity of (7.1). Ap-
plying the chain rule to the first sum, we can expand this out as

(7.8)

∑

`

Lvkv`
(u(t), u′(t))u′′` (t) +

∑

`

Lvkx`
(u(t), u′(t))u′`(t)

−Lxk
(u(t), u′(t)) = 0, ∀ k.

This can be converted to a first order system for (u(t), u′(t)), to which the
results of §1 apply, provided the n× n matrix

(7.9)
(
Lvkv`

(x, v)
)

of second order partial derivatives of L(x, v) with respect to v is invertible.
The Newtonian equations of motion can be put into this Lagrangian

framework, as follows. A particle of mass m, position x, and velocity v,
moving in a force field F (x) = −∇V (x), has kinetic energy and potential
energy

(7.10) T =
1
2
m‖v‖2, and V = V (x),

respectively. The Lagrangian L(x, v) is given by the difference:

(7.11) L(x, v) = T − V =
1
2
m‖v‖2 − V (x).
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Figure 7.1

In such a case,

(7.12) Lvk
(x, v) = mvk, Lxk

(x, v) = − ∂V

∂xk
,

and the Lagrange system (7.7) becomes the standard Newtonian system

(7.13) m
d2u

dt2
= −∇V (u).

In this setting, the integral (7.1) is called the action. The assertion that the
laws of motion are given by the stationary condition for (7.1) where L is the
Lagrangian (7.11) is the stationary action principle.

The Lagrangian approach can be particularly convenient in situations
where coordinates other than Cartesian coordinates are used. As an exam-
ple, we consider the simple pendulum problem, and give a treatment that
can be compared and contrasted with that given in §6 of Chapter 1. As
there, we have a rigid rod, of length `, suspended at one end. We assume
the rod has negligible mass, except for an object of mass m at the other
end. See Fig. 7.1. The rod makes an angle θ with the downward vertical.
We seek a differential equation for θ as a function of t.

The end with the mass m traces out a path in a plane, which, as in
Chapter 1, we identify with the complex plane, with the origin at the point
where the pendulum is suspended and the real axis pointing vertically down.
We can write the path as

(7.14) z(t) = `eiθ(t).
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The velocity is

(7.15) v(t) = z′(t) = i`θ′(t)eiθ(t),

so the kinetic energy is

(7.16) T =
1
2
m‖v(t)‖2 =

m`2

2
θ′(t)2.

Meanwhile the potential energy, due to the force of gravity, is

(7.17) V = −mg` cos θ.

Taking ψ = θ′, we have the Lagrangian

(7.18)
L(θ, ψ) =

m`2

2
ψ2 + mg` cos θ,

Lψ(θ, ψ) = m`2ψ, Lθ(θ, ψ) = −mg` sin θ,

and Lagrange’s equation

(7.19)
d

dt
Lψ(θ(t), θ′(t))− Lθ(θ(t), θ′(t)) = 0

yields the pendulum equation

(7.20)
d2θ

dt2
+

g

`
sin θ = 0,

in agreement with (6.6) of Chapter 1.
The approach above avoided a computation of the force acting on the

pendulum (cf. (6.4) of Chapter 1), and is arguably a bit simpler than the
approach given in Chapter 1. The Lagrangian approach can be very much
simpler in more complex situations, such as the double pendulum, which we
will discuss in §9.

An important variant of these variational problems is the class of con-
strained variational problems, which we now discuss. For the sake of defi-
niteness, let M be either a smooth curve in Ω ⊂ R2 or a smooth surface in
Ω ⊂ R3, and let n(x) be a smooth unit normal to M , for x ∈ M . Again, let
L ∈ C2(Ω×Rn), n = 2 or 3, and define I(u) by (7.1). We look for equations
for

(7.21) u : [a, b] −→ M,

satisfying the stationary condition (7.2), not for all smooth families of paths
us such that u0 = u and us(0) = p, us(b) = q, but rather for all such paths
satisfying the constraint

(7.22) us : [a, b] −→ M.
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Again we take w(t) as in (7.3), and this time we obtain an arbitrary smooth
function w : [a, b] → Rn, satisfying w(a) = w(b) = 0, and the additional
constraint

(7.23) w(t) · n(u(t)) ≡ 0.

The calculations (7.4)–(7.6) still apply, but from here we get a conclusion
different from (7.7). Since (7.6) holds for all w(t) described as just above,
the conclusion is

(7.24)
d

dt
Lv(u(t), u′(t))− Lx(u(t), u′(t)) is parallel to n(u(t)),

where Lv = (Lv1 , . . . , Lvn)t and Lx = (Lx1 , . . . , Lxn)t. In case n = 3, an
equivalent formulation of (7.24) is

(7.25)
[ d

dt
Lv(u(t), u′(t))− Lx(u(t), u′(t))

]
× n(u(t)) = 0.

Let’s specialize this constrained variational problem to the case

(7.26) L(x, v) =
1
2
‖v‖2.

The associated integral

(7.27) E(u) =
1
2

∫ b

a
‖u′(t)‖2 dt

is called the energy of u : [a, b] → M . In this case, Lv = v and Lx = 0, so
(7.24) becomes

(7.28) u′′(t) is parallel to n(u(t)).

That is, u′′(t) = a(t)n(u(t)). Taking the inner product with n(t) gives
a(t) = n(u(t)) · u′′(t), so (7.28) yields

(7.29) u′′(t) = n(u(t)) · u′′(t)n(u(t)).

An equation with a better form can be obtained by differentiating

(7.30) u′(t) · n(u(t)) ≡ 0,

to get

(7.31) u′′ · n(u(t)) = −u′(t) · d

dt
n(u(t)).
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Plugging this into the right side of (7.29) gives the differential equation

(7.32) u′′(t) + u′(t) ·
( d

dt
n(u(t))

)
n(u(t)) = 0.

Note by (7.28) that u′′ is orthogonal to u′(t), so

(7.33)
d

dt
‖u′(t)‖2 = 2u′(t) · u′′(t) ≡ 0.

Thus stationary paths u : [a, b] → M for the energy have constant speed.
Such curves on M are geodesics. These curves are also constant speed

curves on M that are stationary curves for the arclength:

(7.34) `(u) =
∫ b

a
‖u′(t)‖ dt.

We will not go further into this here. The reader can consult texts on
elementary differential geometry, such as [DoC], [Hen]], or [Op], or see
[T], Chapter 1, §11.

We next present another approach to finding equations for stationary
paths of (7.27). Suppose Ω = O × R and M is the graph of a function
z = ϕ(x1, x2), for x = (x1, x2) ∈ O. Then a curve u : [a, b] → M has the
form

(7.35) u(t) =
(
x(t), ϕ(x(t))

)
,

and

(7.36) u′(t) = (x′(y),∇ϕ(x(t)) · x′(t)),

so

(7.37)
‖u′(t)‖2 = ‖x′(t)‖2 + (∇ϕ(x(t)) · x′(t))2

= x′(t) ·G(x(t))x′(t),

where

(7.38) G(x) =
(

1 + ϕ1(x)2 ϕ1(x)ϕ2(x)
ϕ1(x)ϕ2(x) 1 + ϕ2(x)2

)
, ϕj(x) =

∂ϕ

∂xj
.

Thus the problem of finding a constrained stationary path u(t) for the energy
(7.27) is equivalent to the problem of finding an unconstrained stationary
path x(t) for

(7.39) E(x) =
1
2

∫ b

a
x′(t) ·G(x(t))x(t) dt.
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In this case,

(7.40)

L(x, v) =
1
2
v ·G(x)v,

Lv(x, v) = G(x)v, and,

Lx(x, v) =
1
2
v · ∇G(x)v,

where the last identity means

(7.41) Lxk
(x, v) =

1
2
v · ∂G

∂xk
v.

In this setting, the Lagrange equation (7.7) becomes

(7.42)
d

dt

[
G(x(t))x′(t)

]
− 1

2
x′(t) · ∇G(x(t))x′(t) = 0,

i.e.,

(7.43)
d

dt

∑

j

Gkj(x(t))x′j(t)−
1
2

∑

i,j

x′i(t)
∂Gij

∂xk
x′j(t) = 0, ∀ k.

Exercises

1. Given a Lagrangian L(x, v), we define the “energy”

(7.44)
E(x, v) = Lv(x, v) · v − L(x, v)

=
∑

k

Lvk
(x, v)vk − L(x, v).

Show that if u(t) solves the Lagrange equation (7.7), then

(7.45)
d

dt
E(u(t), u′(t)) ≡ 0.

This is energy conservation,onservation of energy in this setting.

2. Suppose

(7.46) L(x, v) =
m

2
v ·G(x)v − V (x),
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Assume G(x) ∈ M(n,R) is symmetric and invertible, and define E(x, v)
as in (7.44). Show that

(7.47) E(x, v) =
m

2
v ·G(x)v + V (x).

3. Let L(x, v) be given by (7.46). Show that the Lagrange equation (7.7)
is

(7.48) m
d

dt

[
G(u(t))u′(t)

]
− m

2
u′(t) · ∇G(t)u′(t) = −∇V (u(t)),

where the second term is evaluated as in (7.42)–(7.43). Show in turn
that this yields the first order system

duk

dt
= vk

m
∑

j

Gkj(u(t))
dvj

dt
+ m

∑

i,j

vi(t)
[∂Gkj

∂xi
− 1

2
∂Gij

∂xk

]
vj(t) = − ∂V

∂xk
(u(t)).

Produce a variant by symmetrizing the term in brackets in the second
sum, with respect to i and j.

4. Consider the setting of constrained motion on M ⊂ Ω, as in (7.21)–
(7.24), and consider the following generalization of (7.26):

(7.49) L(x, v) =
m

2
‖v‖2 − V (x).

Establish the following replacement for (7.32):

(7.50) mu′′(t) + mu′(t) ·
( d

dt
n(u(t))

)
n(u(t)) = −PM (u(t))∇V (u(t)),

where, for x ∈ M, w ∈ Rn,

(7.51) PM (x)w = w −
(
n(x) · w

)
n(x).

This describes motion of a particle in a force field F (x) = −∇V (x),
constrained to move on M .

5. Motion of a spherical pendulum in R3, in the presence of Earth’s grav-
itational field, is described as in Exercise 4 with

(7.52) M = {x ∈ R3 : ‖x‖ = `},
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and L(x, v) as in (7.49), with V (x) = mg(x · k), where k = (0, 0, 1)t.
Show that in this case, (7.50) produces, for

(7.53) u(t) = `ω(t),

the system

(7.54) ω′′(t) + ‖ω′(t)‖2ω(t) = −g

`
k +

g

`
(ω(t) · k)ω(t).

6. Results of Exercise 5 are also valid in the setting where R3 is replaced
by R2. Show that, in this setting, with

(7.55) ω(t) = (sin θ(t),− cos θ(t))t, k = (0, 1)t,

the equation (7.54) leads to the (planar) pendulum equation

(7.56) θ′′(t) +
g

`
sin θ(t) = 0.

7. Let us return to the setting of Exercise 2, and set

(7.57) p = Lv(x, v) = mG(x)v.

Also set

(7.58) E(x, p) = E(x, v) = E(x,G(x)−1p/m).

Show that

(7.59) E(x, p) =
1

2m
p ·G(x)−1p + V (x).

Show that the Lagrange equation (7.48) for u(t) = x(t) is equivalent to
the following Hamiltonian system:

(7.60)
dxk

dt
=

∂E
∂pk

,
dpk

dt
= − ∂E

∂xk
.

Hint. To get started on (7.60), note that if (7.59) holds, then

(7.61)
∂E
∂p

=
1
m

G(x)−1p = v,
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and that the Lagrange equation implies

(7.62)
dpk

dt
= Lxk

(x, v) =
m

2
v · ∂G

∂xk
(x)v − ∂V

∂xk
(x).

Furthermore, as in (8.13) of Chapter 3,

(7.63)
∂

∂xk
G(x)−1 = −G(x)−1 ∂G

∂xk
(x)G(x)−1.

Remark. More general cases in which the change of variable p = Lv(x, v)
converts Lagrange’s equation to Hamiltonian form are discussed in [AM],
[Ar], and Chapter 1 of [T].

Exercises 8–11 study sufaces of revolution that are surfaces of “least
area.” To set this up, let u : [0, 1] → (0,∞) be smooth, and rotate
the graph of y = u(x) about the x-axis in (x, y, z)-space. Elementary
calculus gives the formula

(7.64) A(u) = 2π

∫ 1

0
u(t)

√
1 + u′(t)2 dt

for the area of the resulting surface of revolution. The problem is to
find u for which the area is minimal, given constraints

(7.65) u(0) = α, u(1) = β, α, β > 0.

8. In (7.64), L(x, v) = x
√

1 + v2. Show that the “energy” E(x, v) in (7.44)
is given by

(7.66) E(x, v) = − x√
1 + v2

.

9. Using (7.45), show that if u(t) solves the Lagrange equation (7.7) in this
setting, then there is a constant a such that

(7.67)
u(t)√

1 + u′(t)2
= a,

hence

(7.68)
du

dt
= ±

√
b2u2 − 1, b =

1
a
.
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10. Separate variables in (7.68) and use the substitution bu = cosh v to
evaluate the u-integral and conclude that

(7.69) u(t) =
1
b

cosh(bt + c),

for some constant c. Equation (7.69) is the equation of a catenary, seen
before in (3.24) of Chapter 1, for the hanging cable.

11. Consider the problem of finding b and c in (7.69) such that the con-
straints (7.65) are satisfied. Show that sometimes no solutions exist,
and sometimes two solutions exist, but one gives a smaller area than
the other.

Exercises 12–15 take another look at the hanging cable problem men-
tioned in Exercise 10. Here we state it as the problem of minimizing
the potential energy, which is mg times

(7.70) V (u) =
∫ A

−A
u(t)

√
1 + u′(t)2 dt,

subject to the boundary conditions

(7.71) u(−A) = u(A) = 0,

and the constraint that the curve y = u(x), −A ≤ x ≤ A, have length
L,

(7.72) `(u) =
∫ A

−A

√
1 + u′(t)2 dt = L.

Such a curve describes a cable, of length L, hanging from the two points
(−A, 0) and (A, 0), under the force of gravity. To deal with the con-
straint (7.72), we bring in the Lagrange multiplier method. That is, we
set

(7.73) Iλ(u) = V (u) + λ`(u),

find the stationary path for (7.73) (subject to (7.71)) as a function of λ,
and then find for which λ the constraint (7.72) holds. Note that Iλ(u)
has the form (7.1) with

(7.74) Lλ(x, v) = (x + λ)
√

1 + v2.
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12. Show that the “energy” Eλ(x, v) in (7.44) is given by

(7.75) Eλ(x, v) =
x + λ√
1 + v2

.

13. Using (7.45), show that if u(t) solves the Lagrange equation (7.7) in this
setting, then there exists a constant a (maybe depending on λ) such that

(7.76)
u(t) + λ√
1 + u′(t)2

= a,

hence

(7.77)
du

dt
= ±

√
b2(u + λ)2 − 1, b =

1
a
.

14. Separate variables in (7.77) and use the substitution b(u + λ) = cosh v
to evaluate the u-integral and obtain

u(t) = −λ +
1
b

cosh(bt + c),

for some constant c. Show that (7.71) forces c = 0, so

(7.78) u(t) = −λ +
1
b

cosh bt.

15. Calculate the length of the curve y = u(x), −A ≤ x ≤ A, when u is
given by (7.78), and show that the constraints (7.71)–(7.72) yield the
equations

(7.79) sinh bA =
bL

2
, λ =

1
b

cosh bA.

Note that the first equation has a unique solution b ∈ (0,∞) if and only
if L > 2A.

16. Recall the planar pendulum problem illustrated in Fig. 7.1. Instead of
assuming all the mass is at the end of the rod, assume the rod has a mass
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Figure 8.1

distribution m(s) ds, 0 ≤ s ≤ `, so the total mass is m =
∫ `
0 m(s) ds.

Show that for the potential energy V you replace (7.17) by

(7.80) V = −mag` cos θ, ma =
∫ `

0
m(s)

s

`
ds,

and for the kinetic energy T , you replace (7.16) by

(7.81) T =
mb`

2

2
θ′(t)2, mb =

∫ `

0
m(s)

(s

`

)2
ds.

Write down the replacement for the pendulum equation (7.20) in this
setting. Specialize the calculation to the case

(7.82) m(s) =
m

`
, 0 ≤ s ≤ `,

which represents a rod with uniform mass distribution.

8. The brachistochrone problem

The early masters of calculus enjoyed posing challenging problems to each
other. The most famous of these is called the brachistrochrone problem. It
was posed by Johann Bernoulli in 1696, and solved by him, by his brother
Jakob, and also by Newton and by Leibniz. The problem is to find the curve
along which a particle will slide without friction in the minimum time, from
one given point p in the (x, y)-plane to another, q, starting at rest at p. Say
p = (0, 0) and q = (a, b). We assume a > 0 and b < 0; see Fig. 8.1. The
force of gravity acts in the direction of the negative y-axis, with acceleration
g.
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Our approach to this problem will involve two applications of the vari-
ational method developed in §7. (In fact, this problem helped spark the
creation of the variational method.) First, let ϕ : [0, a] → R with ϕ(0) =
0, ϕ(a) = b, and consider the constrained motion of a particle,

(8.1) u : [0, t0] −→ M = {(x, ϕ(x)) : 0 ≤ x ≤ a},

under the force of gravity. Thus, in place of (7.27), we look for stationary
paths for

(8.2) I(u) =
∫ a

0

[m

2
‖u′(t)‖2 − V (u(t))

]
dt,

subject to the constraint (8.1), and with

(8.3) V (x, y) = mgy.

We can convert this to an unconstrained variational problem as was done in
(7.35)–(7.42), now with a nonzero V , and with lower dimension. We have

(8.4) u(t) =
(
x(t), ϕ(x(t))

)
,

and

(8.5) ‖u′(t)‖2 =
(
1 + ϕ′(x(t))2

)
x′(t)2,

so the problem of finding a constrained stationary path u(t) for (8.2) is
equivalent to the problem of finding an unconstrained stationary path x(t)
for

(8.6) J(x) =
∫ a

0
L(x(t), x′(t)) dt,

with

(8.7) L(x, v) =
m

2
(
1 + ϕ′(x)2

)
v2 −mgϕ(x).

The path x(t) is governed by the differential equation

(8.8)
d

dt
Lv(x(t), x′(t))− Lx(x(t), x′(t)) = 0.

We need not write this more explicitly, since by now our experience tells us
that to describe solutions to such a single equation, all we need is conserva-
tion of energy:

(8.9) E(x, v) =
m

2
(
1 + ϕ′(x)2

)
v2 + mgϕ(x),
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that is, for a solution to (8.8),

(8.10)
m

2
(
1 + ϕ′(x(t))2

)
x′(t)2 + mgϕ(x(t)) = E

is constant. In the current set-up, x(0) = 0 and x′(0) = 0, so E = 0. We get

(8.11)
dx

dt
= ±

√
−2gϕ(x)
1 + ϕ′(x)2

,

which separates to

(8.12)
1√
2g

∫ a

0

√
1 + ϕ′(x)2

−ϕ(x)
dx =

∫ t0

0
dt.

In other words, the elapsed time for the particle to move from p = (0, 0) to
q = (a, b) along the path y = ϕ(x) is given by the left side of (8.12).

Hence the brachistochrone problem is reduced to the problem of finding
ϕ : [0, a] −→ R, minimizing

(8.13) K(ϕ) =
∫ a

0
L(ϕ(x), ϕ′(x)) dx,

subject to the condition

(8.14) ϕ(0) = 0, ϕ(a) = b,

where

(8.15) L(ϕ, ψ) =

√
1 + ψ2

−ϕ
.

Stationary paths for (8.13) satisfy the Lagrange equation

(8.16)
d

dt
Lψ(ϕ(x), ϕ′(x))− Lϕ(ϕ(x), ϕ′(x)) = 0.

Note that

(8.17) Lψ(ϕ,ψ) =
ψ√

−ϕ(1 + ψ2)
, Lϕ(ϕ, ψ) = −1

2

√
−ϕ(1 + ψ2)

ϕ2
.

Solutions to (8.16) have the property that

(8.18) E(ϕ(t), ϕ′(t)) = E
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is constant, where (parallel to (7.44))

(8.19) E(ϕ,ψ) = Lψ(ϕ,ψ)− L(ϕ,ψ).

Using (8.15) and (8.17), we have

(8.20)
E(ϕ,ψ) =

ψ2

√
−ϕ(1 + ψ2)

−
√

1 + ψ2

−ϕ

= − 1√
−ϕ(1 + ψ2)

.

Thus, if ϕ(x) satisfies (8.16), then

(8.21) ϕ(x)
(
1 + ϕ′(x)2

)
= −k2, const.,

where we have written the constant as −k2 to enforce the condition that
ϕ(x) < 0 for 0 < x ≤ a. For notational convenience, we make the change of
variable

(8.22) y(x) = −ϕ(x),

so (8.21) becomes

(8.23) y(x)
(
1 + y′(x)2

)
= k2,

giving

(8.24)
dy

dx
=

√
k2

y
− 1.

The equation (8.24) separates to

(8.25)
∫

dy√
k2

y − 1
=

∫
dx.

The left integral has the form of (5.15) in Chapter 1, with E0 = −1, Km =
k2. Rather then recall the formulas (5.16)–(5.22) of Chapter 1, we implement
the method previewed in Exercise 3 of that section. We use the change of
variable

(8.26) y = k2 sin2 τ, 2τ = θ.

Then

(8.27) dy = 2k2 sin τ cos τ dτ,

√
k2

y
− 1 =

cos τ

sin τ
,
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Figure 8.2

so

(8.28)

∫
dy√
k2

y − 1
= 2k2

∫
sin2 τ dτ

=
k2

2

∫
(1− cos θ) dθ

=
k2

2
(θ − sin θ),

the second identity because sin2 τ = (1−cos 2τ)/2. Thus the curve (x, y(x)), x ∈
[0, a], is parametrized by

(8.29)
x = x(θ) =

k2

2
(θ − sin θ),

y = y(θ) =
k2

2
(1− cos θ).

The choice of k2 > 0 is dictated by the implication

(8.30) 0 < θ < πk2,
k2

2
(θ − sin θ) = a =⇒ k2

2
(1− cos θ) = |b|.

This solves the brachistochrone problem. The curve defined by (8.29) is
known as a cycloid. See Fig. 8.2. Here ρ = k2/2.

Remark. Note that y′(0) = +∞, so the optimal path starts directly down.
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Exercises

1. Show that for each a, |b| ∈ (0,∞), there is a unique k2 > 0 such that
(a, |b|) ∈ R2

+ lies on the curve (8.29), for some θ ∈ (0, πk2).
Hint. Consult Fig. 8.2.

2. In the setting of Exercise 1, show that if |b|/a < 2/π, then θ > πk2/2,
and the optimal path dips below b before reaching the endpoint q =
(a, b).

3. With x(θ) and y(θ) as in (8.29), set ϕ(θ) = −y(θ). Let

(8.31) θ1 =
k2

2
π, θ0 ∈ [0, θ1).

Show that the time it takes a particle starting at rest at (x(θ0), ϕ(θ0)) to
slide down the curve (x(θ), ϕ(θ)), θ0 ≤ θ ≤ θ1, to the point (x(θ1), ϕ(θ1))
(the bottom of the cycloid) is independent of θ0. One says the cycloid
also solves the tautochrone problem.

9. The double pendulum

Here we study the motion of a double pendulum, such as illustrated in
Fig. 9.1. We have a pair of rigid rods, of lengths `1 and `2, of negligible
mass except for objects of mass m1 and m2 attached to one end of each rod.
The other end of rod 1 is attached to a fixed point, and the end of rod 2
not containing mass 2 is attached to rod 1 at mass 1. The rods are assumed
free to swing back and forth in a plane. Thus the configuration at time t is
described by the angles θ1(t) and θ2(t), that the rods make with the vertical.
Gravity acts on the masses mj , with a downward force of mjg.

We identify the plane mentioned above with the complex plane, with rod
1 attached to the origin and the real axis pointing down. Thus the position
of mass 1 is

(9.1) z1(t) = `1e
iθ1(t),

and the position of mass 2 is

(9.2) z2(t) = z1(t) + `2e
iθ2(t).

Their velocities are

(9.3)
z′1 = i`1θ

′
1e

iθ1 ,

z′2 = i`1θ
′
1e

iθ1 + i`2θ
′
2e

iθ2 ,



9. The double pendulum 81

Figure 9.1

with square norms

(9.4)

|z′1|2 = `2
1(θ

′
1)

2,

|z′2|2 = (`1θ
′
1e

iθ1 + `2θ
′
2e

iθ2)(`1θ
′
1e
−iθ1 + `2θ

′
2e
−iθ2)

= `2
1(θ

′
1)

2 + `2
2(θ

′
2)

2 + 2`1`2θ
′
1θ
′
2 cos(θ1 − θ2).

The potential energy of this system is given by

(9.5)
V = −m1g Re z1(t)−m2g Re z2(t)

= −m1g`1 cos θ1 −m2g(`1 cos θ1 + `2 cos θ2),

and the kinetic energy by

(9.6) T =
m1

2
|z′1(t)|2 +

m2

2
|z′2(t)|2.

If we write

(9.7) θ =
(

θ1

θ2

)
, ψ =

(
ψ1

ψ2

)
=

(
θ′1
θ′2

)
,

then (9.4) gives

(9.8) T =
1
2
ψ ·G(θ)ψ,



82 Nonlinear Systems of Differential Equations Michael Taylor

with

(9.9) G(θ) =
(

(m1 + m2)`2
1 m2`1`2 cos(θ1 − θ2)

m2`1`2 cos(θ1 − θ2) m2`
2
2

)
.

Thus the Lagrangian L = T − V is given by

(9.10) L(θ, ψ) =
1
2
ψ ·G(θ)ψ − V (θ),

with V (θ) as in (9.5), and the equation of motion for the double pendulum
is

(9.11)
d

dt
Lψ(θ, θ′)− Lθ(θ, θ′) = 0.

As in (7.48), this expands out to the 2 by 2 system

(9.12)
d

dt

∑

j

Gkj(θ(t))θ′j(t)−
1
2

∑

i,j

θ′i(t)
∂Gij

∂θk
θ′j(t) = − ∂V

∂θk
(θ(t)),

for k = 1, 2. Making explicit use of (9.5) and (9.9), we have

(9.13)
Lψ1(θ, ψ) = (m1 + m2)`2

1ψ1 + m2`1`2ψ2 cos(θ1 − θ2),

Lψ2(θ, ψ) = m2`
2
2ψ2 + m2`1`2ψ1 cos(θ1 − θ2),

and

(9.14)
Lθ1(θ, ψ) = −m2`1`2ψ1ψ2 sin(θ1 − θ2)− (m1 + m2)g`1 sin θ1,

Lθ2(θ, ψ) = m2`1`2ψ1ψ2 sin(θ1 − θ2)−m2g`2 sin θ2.

Thus the explicit version of (9.11)–(9.12) is the pair of equations

(9.15)
(m1 + m2)`2

1θ
′′
1 + m2`1`2

d

dt

[
θ′2 cos(θ1 − θ2)

]

= −m2`1`2θ
′
1θ
′
2 sin(θ1 − θ2)− (m1 + m2)g`1 sin θ1,

and

(9.16)
`2
2θ
′′
2+ `1`2

d

dt

[
θ′1 cos(θ1 − θ2)

]

= `1`2θ
′
1θ
′
2 sin(θ1 − θ2)− g`2 sin θ2.

Note that the masses m1 and m2 do not appear in (9.16); m1 does not
appear in either term of (d/dt)Lψ2 − Lθ2 , and m2 factors out.
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As in (7.44)–(7.47), we have the energy

(9.17) E(θ, ψ) =
1
2
ψ ·G(θ)ψ + V (θ),

and if θ(t) solves (9.11), or equivalently (9.15)–(9.16), then

(9.18)
d

dt
E(θ(t), θ′(t)) = 0.

By (9.5) and (9.9), the explicit form of the energy is

(9.19)
E(θ, ψ) =

1
2
(m1 + m2)`2

1ψ
2
1 + m2`1`2ψ1ψ2 cos(θ1 − θ2)

+
1
2
m2`

2
2ψ

2
2 −m1g`1 cos θ1 −m2g(`1 cos θ1 + `2 cos θ2).

As in (7.57)–(7.60), we can convert the equations of motion to Hamil-
tonian form, by setting

(9.20) p = G(θ)ψ.

The energy (9.17) becomes

(9.21)
E(θ, p) = E(θ, G(θ)−1p)

=
1
2
p ·G(θ)−1p + V (θ),

and (9.11) is equivalent to

(9.22)
dθk

dt
=

∂E
∂pk

,
dpk

dt
= − ∂E

∂θk
.

Note that, for G(θ) given by (9.9),
(9.23)

G(θ)−1 =
1

det G(θ)

(
m2`

2
2 −m2`1`2 cos(θ1 − θ2)

−m2`1`2 cos(θ1 − θ2) (m1 + m2)`2
1

)
,

and

(9.24) detG(θ) = m1m2`
2
1`

2
2 + m2

2`
2
1`

2
2 sin2(θ1 − θ2).

For notational simplicity we write

(9.25) E(θ, p) =
1
2
p ·H(θ)p + V (θ), H(θ) = G(θ)−1.
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Solutions to (9.22) are orbits of the flow generated by the Hamiltonian
vector field

(9.26)

XE(θ, p) = −J∇θ,pE(θ, p)

=
(

0 I
−I 0

) (∇θE
∇pE

)

=
( ∇pE
−∇θE

)
.

Here I ∈ M(2,R) is the identity matrix and J ∈ M(4,R) is defined by the
second identity in (9.26). From this formula we see that the critical points
of XE coincide with the critical points of E . Note that

(9.27) ∇pE(θ, p) = H(θ)p,

and H(θ) is invertible for all θ, so if E has a critical point at (θ, p), p = 0.
Now

(9.28) ∇θE(θ, 0) = ∇V (θ),

so we deduce that (θ, p) is a critical point of XE if and only if p = 0 and
∇V (θ) = 0. Rewriting (9.5) as

(9.29) V (θ) = −(m1 + m2)g`1 cos θ1 −m2g`2 cos θ2,

we see that

(9.30) ∇V (θ) =
(

(m1 + m2)g`1 sin θ1

m2g`2 sin θ2

)
,

so the critical points of V consist of θ1 = jπ, θ2 = kπ, j, k ∈ Z. In summary,
the critical points of XE consist of

(9.31) (θ1, θ2, p1, p2) = (jπ, kπ, 0, 0), j, k ∈ Z.

Towards the goal of understanding the behavior of XE near these critical
points, we examine its derivative. We have

(9.32) DXE(θ, 0) =
(

0 H(θ)
−D2V (θ) 0

)
.

The matrix H(θ) is positive definite for all θ, and in particular, since sin jπ =
0 and cos jπ = (−1)j ,

(9.33) H(jπ, kπ) =
1

m1m2`2
1`

2
2

(
m2`

2
2 (−1)j−k+1m2`1`2

(−1)j−k+1m2`1`2 (m1 + m2)`2
1

)
.

Also,

(9.34) D2V (jπ, kπ) =
(

(−1)j(m1 + m2)g`1 0
0 (−1)km2g`2

)
.

We are set up to examine the linearization of the flow generated by XE at
the critical points. This will be pursued, in a more general setting, in the
next section.
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Exercises

1. Pass to the limit m2 → 0 in the double pendulum system (9.15)–(9.16)
and derive the limiting system

θ′′1 +
g

`1
sin θ1 = 0,

(9.35)

θ′′2 +
`1

`2

d

dt

[
θ′1 cos(θ1 − θ2)

]
=

`1

`2
θ′1θ

′
2 sin(θ1 − θ2)− g

`2
sin θ2.

(9.36)

2. Recall the spherical pendulum, introduced in Exercise 5 of §7. Derive
equations of motion for a double spherical pendulum.

3. Instead of assuming all the mass of rods 1 and 2 is concentrated at an
end, assume that rod j has mass distribution mj(s) ds, 0 ≤ s ≤ `j , so
the total mass of rod j is mj =

∫ `j

0 mj(s) ds, j = 1, 2. Obtain formulas
for the potential and kinetic energy, replacing (9.5) and (9.6), and then
obtain equations of motion, replacing (9.15)–(9.16).
Note. See Exercise 16 in §7 to get started.

10. Momentum-quadratic Hamiltonian systems

Most of the Lagrangians arising in the last three sections have been of the
form

(10.1) L(x, v) =
1
2
v ·G(x)v − V (x),

for x ∈ Ω ⊂ Rn, v ∈ Rn, where G(x) ∈ M(n,R) is symmetric and invertible,
in fact positive definite, but for awhile we will work in this more general
setting. As exercises in §7 have revealed, making the change of variables
(x, v) 7→ (x, p) with p = G(x)v, one can convert the Lagrange system of
differential equations to Hamiltonian form,

(10.2)
dxk

dt
=

∂E
∂pk

,
dpk

dt
= − ∂E

∂xk
,

where

(10.3) E(x, p) =
1
2
p ·H(x)p + V (x), H(x) = G(x)−1.



86 Nonlinear Systems of Differential Equations Michael Taylor

We call such systems momentum-quadratic Hamiltonian systems. Note that
H(x) is also symmetric and invertible, and furthermore positive definite if
G(x) is. Solutions of (10.2) are orbits of the flow generated by the Hamil-
tonian vector field

(10.4)

XE(x, p) = −J∇x,pE(x, p)

=
(

0 I
−I 0

)(∇xE
∇pE

)

=
( ∇pE
−∇xE

)
.

Here, I ∈ M(n,R) is the identity matrix, and J ∈ M(2n,R) is defined by
the second identity in (10.4).

We record some general results about the critical points of such fields,
and their linearizations. To begin, the critical points of XE coincide with
the critical points of E . Note that

(10.5) ∇pE(x, p) = H(x)p,

so, since H(x) is invertible, we see that if E has a critical point at (x, p),
then p = 0. Now

(10.6) ∇xE(x, 0) = ∇V (x),

so we deduce that the critical points of XE consist of

(10.7) {(x, 0) : ∇V (x) = 0}.

We next look at the linearization (cf. (3.32)) of XE at a critical point
(x0, 0), given by

(10.8) DXE(x0, 0) =
(

0 H(x0)
−D2V (x0) 0

)
.

From here on, we assume H(x0) is positive definite. For notational simplic-
ity, we set

(10.9) H = H(x0), W = D2V (x0), L =
(

0 H
−W 0

)
.

Then the linearization of (10.2) at (x0, 0) is

(10.10)
dx

dt
= Hp,

dp

dt
= −Wx.
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To analyze the structure of solutions to (10.10), it is convenient to di-
rectly tackle the second order system

(10.11)
d2x

dt2
= −HWx,

and to do this we bring in the following.

Lemma 10.1. Given that H ∈ M(n,R) is positive definite, there exists a
positive definite A ∈ M(n,R) such that

(10.12) H = A2.

Proof. From Chapter 2 we know that Rn has an orthonormal basis {vj} of
eigenvectors of H, so Hvj = λjvj , 1 ≤ j ≤ n. Each λj is positive, so we can
define A by Avj =

√
λjvj , 1 ≤ j ≤ n.

If we make the change of variable

(10.13) x = Ay,

then (10.11) is converted to

(10.14) y′′ + AWAy = 0.

Note that W ∈ M(n,R) is symmetric and so is AWA. Also AWA is invert-
ible if and only if W is. This invertibility is equivalent to the assertion that
(x0, 0) is a nondegenerate critical point of XE . We restrict attention to such
cases. The following result will be useful.

Lemma 10.2. Let W ∈ M(n,R) be a symmetric matrix, and assume

(10.15) W has k positive and n− k negative eigenvalues.

Then so does AWA, when A ∈ M(n,R) is positive definite.

Proof. Write Rn = W+⊕W−, where W+ is the linear span of the eigenvec-
tors of W with positive eigenvalue, W− the linear span of the eigenvectors
of W with negative eigenvalue. Similarly, write Rn = W̃+ ⊕ W̃−, with W

replaced by AWA. The image AW̃+ of W̃+ under A is a linear subspace of
Rn, and

(10.16) v = Aw ∈ AW̃+ =⇒ v ·Wv = w ·AWAw ≥ 0 =⇒ v ∈ W+.
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Thus

(10.17) A : W̃+ −→W+, injectively,

so

(10.18) dim W̃+ ≤ dimW+.

A similar argument gives

(10.19) dim W̃− ≤ dimW−,

and finishes the proof.

To continue, under the hypotheses of Lemma 10.2, we have an orthonor-
mal basis {u1, . . . , un} of Rn such that, with µj ∈ (0,∞),

(10.20)
AWAuj = µ2

juj , j ≤ k,

AWAuj = −µ2
juj , j > k.

in such a case, the general solution to (10.14) is

(10.21)

y(t) =
∑

j≤k

(aj sinµjt + bj cosµjt)uj

+
∑

j>k

(aje
µjt + bje

−µjt)uj .

Such y(t) leads to

(10.22)
(

Ay(t)
A−1y′(t)

)
=

(
x(t)
p(t)

)
= etL

(
v0

v1

)
,

for general v0, v1 ∈ Rn. As a result, we have the following.

Proposition 10.3. Under the hypotheses of Lemma 10.2, L, given by (10.9),
is diagonalizable, and its eigenvalues are

(10.23)
±iµj for j ≤ k,

±µj for j > k.

Proof. The eigenvalues of L are what appear in the exponents in the matrix
coefficients of etL. If L were not diagonalizable, some matrix coefficients
would also contain terms of the form t`etλ, ` ≥ 1, where µ = ±iµj or ±µj

in (10.23), depending on j.

A critical point of XE is said to be hyperbolic if all of the eigenvalues of
DXE have nonzero real part. From the analysis above, we have the following.
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Proposition 10.4. A critical point (x0, 0) of XE is hyperbolic if and only
if

(10.24) D2V (x0) is negative definite.

If (10.24) holds, DXE(x0, 0) has n positive eigenvalues and n negative eigen-
values.

Whenever a vector field X (Hamiltonian or not) has a hyperbolic critical
point, say at z0, the phase portrait near z0 for the flow generated by X has
a similar appearance to that for the flow generated by its linearization at
z0. This is a generalization of the two dimensional result mentioned below
(3.69). See Appendix C for further discussion.

The opposite extreme can also be read off from (10.23).

Proposition 10.5. At a critical point (x0, 0) of XE , all the eigenvalues of
DXE are purely imaginary if and only if

(10.25) D2V (x0) is positive definite.

Recalling that E(x, p) is given by (10.3), we see that (10.25) is equivalent
to

(10.26) D2E(x0, 0) ∈ M(2n,R) is positive definite,

in which case E has a local minimum at (x0, 0).
In case (10.25) holds, we can deduce from (10.21)–(10.22), with k = n,

that the orbits of etL all lie in n-dimensional tori. As for the flow generated
by XE itself, we know that its orbits all lie on level surfaces of E . Near
(x, p) = (x0, 0), these level sets look like (2n − 1)-dimensional spheres in
Rn. In case n = 1, these are closed curves in R2, and indeed the phase
portrait for the flow generated by XE near (x0, 0) looks like that for the flow
generated by its linearization. In such a case, (x0, 0) is a center, discussed
in §3. In case n > 1, the orbits of the flow generated by XE near (x0, 0)
do not necessarily lie on n-dimensional tori. The analysis of this behavior
is much more subtle than in the case of hyperbolic critical points. There
will be n-dimensional invariant tori that are invariant under the flow, arising
rather densely near (x0, 0), but the flow generated by XE often has chaotic
behavior on the complement of these tori. Study of this situation is part
of the deep Kolmogorov-Arnold-Moser (KAM) theory. Discussion of this,
and references to further work, can be found in [AM], Chapter 8, and [Ar],
Appendices 7–8.

For n ≥ 2, there can be cases intermediate between those covered by
Proposition 10.4 and those covered by Proposition 10.5.
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Proposition 10.6. If (x0, 0) is a critical point for XE and
(10.27)

D2V (x0) has k positive eigenvalues and n− k negative eigenvalues,

then

(10.28)
DXE(x0, 0) has 2k imaginary eigenvalues, and

n− k positive, and n− k negative eigenvalues.

In such cases, with k ≥ 1 and n ≥ 2, the phase portrait for the flow
generated by XE near (x0, 0) will generally differ from that of its linearization
in important details, with some exceptions, arising when XE is “integrable.”
We refer to the sources cited above for more on this.

Let us specialize these results to the case of the double pendulum, dis-
cussed in §9. There V was given by (9.29), and the critical points by (9.31),
i.e., (jπ, kπ, 0, 0), and D2V (jπ, kπ) by (9.34). We have

(10.29)

j and k even =⇒ D2V (jπ, kπ) positive definite,

j and k odd =⇒ D2V (jπ, kπ) negative definite,

j and k of opposite parity =⇒ D2V (jπ, kπ) indefinite.

In the first case Proposition 10.5 applies, in the second case Proposition
10.4 applies, and in the third case Proposition 10.6 applies, with k = 1 and
n− k = 1.

Exercises

1. Establish analogues of Propositions 10.3, 10.5, and 10.6 in case H is
allowed to be indefinite (nondegenerate), and we assume

(10.30) D2V (x0) is either positive definite or negative definite.

Exercises 2–6 deal with the 2× 2 system

(10.31)
d2

dt2

(
x

y

)
= −∇x,yV (x, y),

for various functions V . The associated energy function, as in (10.3), is

(10.32) E(x, y, p, q) =
1
2
(p2 + q2) + V (x, y).
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In each case, do the following.
(a) Find all the critical points of E .
(b) Determine the type of each critical point of E .
(c) Determine the behavior of the eigenvalues of DXE at each such
critical point (via Proposition 10.6).

2. Take
V (x, y) = (cosx)(cos y).

3. Take
V (x, y) = x2 + xy + y4.

4. Take
V (x, y) = x4 + xy + y4.

5. Take
V (x, y) = x4 − xy + y4.

6. Take
V (x, y) = x4 − x2y + y4.

7. Do analogues of Exercises 2–6 with (10.32) replaced by

(10.33) E(x, y, p, q) =
1
2
(p2 − q2) + V (x, y).

Now Proposition 10.6 will not apply, but Exercise 1 might (or might
not).

11. Numerical study – difference schemes

We describe some ways of numerically approximating the solution to a sys-
tem of differential equations

(11.1)
dx

dt
= F (x), x(t0) = x0.
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Higher order systems can be transformed to first order systems and treated
by these methods, which are known as difference schemes.

To start, we pick a time step h and attempt an approximation to the
solution to (11.1) at times t0 + nh:

(11.2) xn ≈ x(t0 + nh).

Noting that a smooth solution to (11.1) satisfies

(11.3)
x(t + h) = x(t) + hx′(t) + O(h2)

= x(t) + hF (x(t)) + O(h2),

we have the following crude difference scheme:

(11.4) xn+1 = xn + hF (xn).

This is said to be first order accurate, meaning that over an interval of unit
length one carries out 1/h such operations, each with error O(h2), giving
an accumulated error O(h), i.e., on the order of h to the first power. This
method of approximating the solution x(t) is often called the Euler method,
though considering what a great master of computation Euler was, it is
hard to believe he actually took it seriously. Shortly we will present a fourth
order accurate method, which is generally satisfactory, after describing some
second order accurate methods.

These better difference schemes will be suggested by higher order ac-
curate methods of numerical integration. The connection between the two
comes from rewriting (11.1) as

(11.5) x(t + h) = x(t) +
∫ h

0
F (x(t + s)) ds.

Consider methods of approximating

(11.6)
∫ h

0
g(s) ds

better than hg(0) + O(h2), for smooth g. Two simple improvements are

(11.7)
h

2

[
g(0) + g(h)

]
+ O(h3),

the trapezoidal method, and

(11.8) hg
(h

2

)
+ O(h3),



11. Numerical study – difference schemes 93

the midpoint method. These lead respectively to

(11.9) x(t + h) = x(t) +
h

2

[
F (x(t)) + F (x(t + h))

]
+ O(h3)

and

(11.10) x(t + h) = x(t) + hF
(
x
(
t +

h

2

))
+ O(h3).

Neither of them immediately converts to an explicit difference scheme, but in
(11.9) we can substitute F (X(t+h)) = F

(
X(t)+hF (X(t))

)
+O(h2) and in

(11.10) we can substitute F
(
X(t+h/2)

)
= F

(
X(t)+(h/2)F (X(t))

)
+O(h2),

to obtain the second order accurate difference schemes

(11.11) xn+1 = xn +
h

2

[
F (xn) + F

(
xn + hF (xn)

)]

and

(11.12) xn+1 = xn + hF
(
xn +

h

2
F (xn)

)
.

Often (11.11) is called Heun’s method and (11.12) a modified Euler method.
We now come to the heart of the matter for this section. The Runge-

Kutta scheme for (11.1) is specified as follows. The approximation xn to
x(t0 + nh) is given recursively by

(11.13) xn+1 = xn +
h

6

(
Kn1 + 2Kn2 + 2Kn3 + Kn4

)
,

where

(11.14)

Kn1 = F (xn),

Kn2 = F
(
xn +

1
2
hKn1

)
,

Kn3 = F
(
xn +

1
2
hKn2

)
,

Kn4 = F (xn + hKn3).

This scheme is 4th order accurate. It is one of the most popular and impor-
tant difference schemes used for numerical studies of systems of differential
equations. We make some comments about its derivation.

We will consider a method of deriving 4th order accurate difference
schemes, based on Simpson’s formula

(11.15)
∫ h

0
g(s) ds =

h

6

(
g
(
0
)

+ 4g
(h

2
)

+ g
(
h
))

+ O(h5).
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This formula is derived by producing a quadratic polynomial p(s) such that
p(s) = g(s) at s = 0, h/2, and h, and then exactly integrating p(s). The
formula can be verified by rewriting it as

(11.16)
∫ h

−h
G(s) ds =

h

3

[
G(−h) + 4G(0) + G(h)

]
+ O(h5).

The main part on the right is exact for all odd G(s), and it is also exact for
G(s) = 1 and G(s) = s2, so it is exact when G(s) is a polynomial of degree
≤ 3. Making a power series expansion G(s) =

∑3
j=0 ajs

j +O(s4) then yields
(11.16).

Now, write the equation (11.1) as the integral equation (11.5). By
(11.15),
(11.17)∫ h

0
F (X(t+ s)) ds =

h

6

[
F (X(t))+4F

(
X

(
t+

h

2

))
+F (X(t+h))

]
+O(h5).

We then have as an immediate consequence the following result on producing
accurate difference schemes.

Proposition 11.1. Suppose the approximation

(11.18) x(t + h) ≈ x(t) + Φ(x(t), h) = X (x(t), h)

produces a jth order accurate difference scheme for the solution to (11.1).
If j ≤ 3, then a difference scheme accurate of order j + 1 is given by

(11.19) xn+1 = xn +
h

6

[
F (xn) + 4F

(
X

(
xn,

h

2

))
+ F (X (xn, h))

]
.

Furthermore, if x(t + h) ≈ X`(x(t), h) both work in (11.18), ` = 0, 1, then
you can use

(11.20) xn+1 = xn +
h

6

[
F (xn) + 4F

(
X0

(
xn,

h

2

))
+ F (X1(xn, h))

]
.

We apply this to two second order methods derived before:

(11.21) X0(xn, h) = xn +
h

2

[
F (xn) + F (xn + hF (xn))

]
, Heun,

and

(11.22) X1(xn, h) = xn + hF
(
xn +

h

2
F (xn)

)
, modified Euler.
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Thus a third order accurate scheme is produced. The last term in (11.19)
becomes
(11.23)
h

6

[
F (xn)+4F

(
xn +

h

4

[
F (xn)+F

(
xn +

h

2
F

)])
+F

(
xn +hF

(
xn +

h

2
F

))]
,

where F = F (xn). In terms of Kn1, Kn2 as defined in (11.14), we have

(11.24)
h

6

[
Kn1 + 4F

(
xn +

h

4
[Kn1 + Kn2]

)
+ F (xn + hKn2)

]
.

This could be used in a 3rd order accurate scheme, but some simplification
of the middle term is desirable. Note that, for smooth H,

(11.25) H
(
x +

1
2
η
)

=
1
2
H(x) +

1
2
H(x + η) + O(|η|2).

Consequently, as |Kn1 −Kn2| = O(h), by (11.14),
(11.26)

F
(
xn +

h

4
[Kn1 + Kn2]

)
=

1
2
F

(
xn +

h

2
Kn1

)
+

1
2
F

(
xn +

h

2
Kn2

)
+ O(h4).

Therefore we have the following.

Proposition 11.2. A third order accurate difference scheme for (11.1) is
given by

(11.27) xn+1 = xn +
h

6
[Kn1 + 2Kn2 + 2Kn3 + Ln4]

where Kn1, Kn2, Kn3 are given by (11.14) and

(11.28) Ln4 = F (xn + hKn2).

We can now produce a 4th order accurate difference scheme by applying
Proposition 11.1 with X (xn, h) defined by (11.27). Thus we obtain the
difference scheme.

(11.29)
xn+1 = xn +

h

6

{
Kn1 + 4F

(
xn +

h

12
[Kn1 + 2kn2 + 2kn3 + `n4]

)

+ F
(
xn +

h

6
[Kn1 + 2Kn2 + 2Kn3 + Ln4]

)}
,

where Knj , Ln4 are as above and

(11.30)

kn2 = F
(
xn +

h

4
Kn1

)
,

kn3 = F
(
xn +

h

4
kn2

)
,

`n4 = F
(
xn +

h

2
kn2

)
.
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This formula is more complicated than the Runge-Kutta formula (11.13).
We say no more about how to obtain (11.13), which represents a masterpiece
of insight.

We have dealt specifically with autonomous systems in (11.1), but a
non-autonomous system

(11.31)
dx

dt
= G(t, x), x(t0) = x0,

can be treated similarly, as one can see by writing its autonomous analogue

(11.32)
d

dt

(
x

y

)
=

(
G(y, x)

1

)
,

(
x(t0)
y(t0)

)
=

(
x0

t0

)
,

and applying the formulas just derived to (11.32).
We move briefly to another class of difference schemes, based on power

series. It derives from the expansion

(11.33) x(t + h) = x(t) + hx′(t) +
h2

2
x′′(t) + · · ·+ hk

k!
x(k)(t) + O(hk+1).

To begin, differentiate (11.1), producing

(11.38) x′′(t) = F2(x, x′), F2(x, x′) = DF (x)x′.

Continue differentiating, getting

(11.35) x(j)(t) = Fj(x, x′, . . . , x(j−1)), j ≤ k.

Then one obtains a difference scheme for an approximation xn to x(t0 +nh),
of the form

(11.36) xn+1 = xn + hx′n +
h2

2
x′′n + · · ·+ hk

k!
x(k)

n ,

where

(11.37) x′n = F (xn), x′′n = F2(xn, x′n),

and, inductively,

(11.38) x(j)
n = Fj(xn, x′n, . . . , x(j−1)

n ).

This difference scheme is kth order accurate. In practice, this is not usually
a good method, because the formulas for Fj tend to become rapidly more
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complex. However, in some cases the functions Fj happen not to become
very complex, and then this is a good method.

To mention a couple of examples, first consider the central force problem

(11.39)

x′ = v,

y′ = w,

v′ = −x(x2 + y2)−3/2,

w′ = −y(x2 + y2)−3/2.

Here, the power series method is not nearly as convenient as the Runge-
Kutta method. On the other hand, for the pendulum problem, which for
g/` = 1 we can write as

(11.40) θ′ = ψ, ψ′ = − sin θ,

we have

(11.41)

θ′′ = ψ′, ψ′′ = −ψ cos θ,

θ(3) = ψ′′, ψ(3) = −ψ′ cos θ + ψ2 sin θ,

θ(4) = ψ(3), ψ(4) = −ψ′′ cos θ + 3ψ′ψ sin θ + ψ3 cos θ,

from which one can get a workable fourth order difference scheme of the
form (11.36)–(11.38).

There are other classes of difference schemes, such as “predictor-corrector”
methods, which we will not discuss here. More about this can be found in
numerical analysis texts, such as [At] and [Sh].

Readers with a working knowledge of a general purpose computer pro-
gramming language, such as FORTRAN or C, will find it interesting to
implement the Runge-Kutta method on a variety of systems of differential
equations, including (11.39) and (11.40). Be sure to use double precision
arithmetic, which makes computations to 16 digits of accuracy. Alterna-
tively, specialized programming tools such as MATLAB and Mathematica
can be used. These tools have built-in graphics capability, with which one
can produce phase portraits, and they also have built-in differential equa-
tion solvers, whose output one can compare with the output from one’s own
program. Useful literature on these latter tools for the study of differential
equations can be found in [PA] and [GMP].

When running such programs, pay attention to the way solutions behave
when the step size h is changed. As a rule of thumb, if the solution does not
change appreciably when the step size is halved, the solution is accurate.
To be sure, there is frequently more to obtaining accurate solutions than
just choosing a small step size. For more on this, we recommend numerical
analysis texts, such as cited above, and of course we also recommend lots of
practice on various systems of differential equations.
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Exercises

The following exercises are for readers who can use a programming
language.

1. Write a program to apply the Runge-Kutta method to the pendulum
problem (11.40).

2. Write a program to apply the power series method described in (11.33)–
(11.38) to (11.40). Produce a fourth order accurate method.

3. Consider applying the Runge-Kutta scheme to the problem of motion
in a planar force field,

(11.42) x′′ = f(x, y), y′′ = g(x, y),

which can be written as the first order system

(11.43)
x′ = v, v′ = f(x, y),

y′ = w, w′ = g(x, y).

Show that (11.13)–(11.14) in this context become

(11.44)

x 7→ x +
h

6
(v + 2v2 + 2v3 + v4),

y 7→ y +
h

6
(w + 2w2 + 2w3 + w4),

v 7→ v +
h

6
(a1 + 2a2 + 2a3 + a4),

w 7→ w +
h

6
(b1 + 2b2 + 2b3 + b4),

where aj , bj , vj , and wj are computed as follows. First,

(11.45) a1 = f(x, y), b1 = g(x, y);

then

(11.46)
x2 = x +

h

2
v, y2 = y +

h

2
w,

v2 = v +
h

2
a1, w2 = w +

h

2
b1,
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and

(11.47) a2 = f(x2, y2), b2 = g(x2, y2);

then

(11.48)
x3 = x +

h

2
v2, y3 = y +

h

2
w2,

v3 = v +
h

2
a2, w3 = w +

h

2
b2,

and

(11.49) a3 = f(x3, y3), b3 = g(x3, y3);

then

(11.50)
x4 = x + hv3, y4 = y + hw3,

v4 = v + ha3, w4 = w + hb3,

and finally,

(11.51) a4 = f(x4, y4), b4 = g(x4, y4).

Write a program to implement this difference scheme. Test it for various
functions f(x, y) and g(x, y). Consider particularly

(11.52) f(x, y) = − x

(x2 + y2)3/2
, g(x, y) = − y

(x2 + y2)3/2
,

arising in the Kepler problem, (11.39).

4. Extend the scope of Exercise 3 to treat

x′′ = f(x, y, x′, y′), y′′ = g(x, y, x′, y′).

5. Write a program to apply the Runge-Kutta method to the double pen-
dulum problem (9.15)–(9.16).

12. Limit sets and periodic orbits

Let F be a C1 vector field on an open set O ⊂ Rn, generating the flow Φt.
Take x ∈ O. If Φt(x) is well defined for all t ≥ 0, we define the ω-limit
set Lω(x) to consist of all points y ∈ O such that there exist tk ↗ +∞
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Figure 12.1

Figure 12.2

with Φtk(x) → y. Similarly, if Φt(x) is well defined for all t ≤ 0, we define
the α-limit set Lα(x) to consist of all points y ∈ O such that there exist
tk ↘ −∞ with Φtk(x) → y. Sinks are ω-limit sets for all nearby points.
Other examples of ω-limit sets are pictured in Figs. 12.1–12.3. In Fig. 12.1,
Lω(x) is a periodic orbit, i.e., for some T ∈ (0,∞), ΦT (y) = y. In Fig. 12.2,
Lω(x) is a figure eight, containing a hyperbolic critical point of the vector
field. In Fig. 12.3, Lω(x) contains several critical points.

The following result, characterizing ω-limit sets in the plane without
critical points (under a few additional hypotheses), is called the Poincaré-
Bendixson theorem.

Theorem 12.1. Let O be a planar domain, and let F generate a flow Φt

on O. Assume there is a set K ⊂ O that is a closed, bounded subset of R2

and satisfies Φt(K) ⊂ K for all t > 0. Take x ∈ K. If Lω(x) contains no
critical point of F , then it is a periodic orbit of Φ.
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Figure 12.3

An important ingredient in the proof of the Poincaré-Bendixson theorem
is the following classical result about closed curves in the plane.

Jordan Curve Theorem. Let C be a simple closed curve in R2, i.e., a
continuous, one-to-one image of the unit circle. Then R2 \C consists of two
connected pieces. Any curve from a point in one of these pieces to a point
in the other must cross C.

We will not present a proof of the Jordan curve theorem. Proofs can
be found in [GrH], §18, and in [Mun]. We do mention that actually we
will need this result only for piecewise smooth simple closed curves, where
a simpler proof exists; see [Sto], pp. 34–40, or [T], Chapter 1, §19. The
ability of a simple closed curve to separate Rn fails for n ≥ 3, which makes
the Poincaré-Bendixson theorem an essentially two-dimensional result. Ex-
amples discussed in §15 illustrate how much more complex matters can be
in higher dimension.

To tackle Theorem 12.1, first note that the hypotheses imply Lω(x) is a
nonempty subset of K. Let y ∈ Lω(x), and say

(12.1) yk = Φtk(x), tk ↗ +∞, yk → y.

We have F (y) 6= 0. Let Γ be a smooth curve segment in O, containing y,
such that the tangent to Γ at y is linearly independent of F (y). Shrinking
Γ if necessary, we can assume that for each z ∈ Γ, the tangent to Γ at z is
linearly independent of F (z). We say F is transverse to Γ; cf. Fig. 12.4.

With yk as in (12.1), we can assume all yk are sufficiently close to y to lie
in orbits through Γ, and adjusting each tk as needed, we can take

(12.2) yk ∈ Γ, ∀ k.
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Figure 12.4

At this point, is is useful to revise the list {tk} slightly. Let t1 ∈ R+, y1 =
Φt1(x) be as above. Now let tk ↗ +∞ denote all the successive times when
Φt(x) intersects Γ, so we may be adding times to the set denoted tk in (12.1).
Shortly we will show that (12.1) continues to hold for this expanded set of
points yk = Φtk(x). First, we make the following useful observation.

Lemma 12.2. With tj < tj+1 < tj+2 as above,

(12.3) yj+1 lies between yj and yj+2 on Γ.

Proof. Consider the curve Cj starting at yj , running to yj+1 along Φt(x), tj ≤
t ≤ tj+1, and returning to yj along Γ. Cf. Fig. 12.5. This is a simple closed
curve, and the Jordan curve theorem applies.

Now for s and σ small and positive, and z ∈ Γ, not on the opposite
side of yj+1 from yj , we have Φs(yj+1) = Φtj+s(x) and Φ−σ(z) in the two
different connected components of R2 \Cj . Since {Φs(yj+1) : s ≥ 0} cannot
cross Cj at any point but a point in Γ, we must have

Φ−σ(yj+2) = Φtj+2−σ(x)

in the opposite component of R2 \Cj from that containing such Φ−σ(z), so
yj+2 must be on the opposite side of yj+1 from yj in Γ.

Having Lemma 12.2, we see that the expanded set of points {yk} ⊂ Γ
interlaces the original set, so (12.1) continues to hold. We see that the
convergence of yk to y is monotone on Γ. If by chance some yj = y, then all
yk = y. Otherwise, all the points yk lie on the same side of y, i.e., on the
same connected component of Γ \ {y}.

The main thing we need to establish to prove Theorem 12.1 is that the
orbit through y is periodic. The next result takes us closer to that goal.

Lemma 12.3. Suppose s > 0 and Φs(y) ∈ Γ. Then Φs(y) = y.
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Figure 12.5

Proof. We have

(12.4) sup
0≤t≤s+1

‖Φt(yk)− Φt(y)‖ = εk → 0, as k →∞.

It follows that there exist δk → 0 such that Φs+δk(yk) ∈ Γ, and hence

(12.5) Φs+δk(yk) = yk+`(k), for some `(k) ∈ {1, 2, 3, . . . }.

Thus

(12.6) Φs(y) = lim
k→∞

Φs+δk(yk) = lim
k→∞

yk+`(k) = y,

as asserted.

We are ready for the endgame in the proof of Theorem 12.1. Let sj ↗
+∞ and consider zj = Φsj (y). We have each zj ∈ K, and passing to a
subsequence, we can assume

(12.7) zj = Φsj (y) −→ z ∈ K.

We have F (z) 6= 0, so there is a curve segment Γ̃ through z, transverse to
F . Adjusting sj , we can arrange

(12.8) zj ∈ Γ̃j .

We need only two such points in such a curve Γ̃; say, upon relabeling,

(12.9) z1 = Φs1(y), z2 = Φs2(y) = Φs2−s1(z1) ∈ Γ̃.
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Figure 12.6

See Fig. 12.6.

Note that

(12.10) Φtk+s1(x) −→ z1,

so we can use the previous results, with tk replaced by tk + s1 and y by z1,
and Γ by Γ̃. In this case, the analogue of the hypothesis in Lemma 12.3
applies:

(12.11) s2 − s1 > 0, Φs2−s1(z1) ∈ Γ̃.

The conclusion of Lemma 12.3 is

(12.12) Φs2−s1(z1) = z1,

i.e., actually z2 = z1.
Thus the orbit of Φ through y is periodic, of period s2 − s1. Since

y ∈ Lω(x), it follows that this periodic orbit is contained in Lω(x). It is also
readily seen that no other point in O can belong to Lω(x), so Theorem 12.1
is proved.

The following equation, known as the van der Pol equation, illustrates
the workings of Theorem 12.1. The equation is

(12.13) x′′ − µ(1− x2)x′ + x = 0.

Here µ is a positive parameter. This models the current in a nonlinear
circuit that amplifies a weak current (|x| < 1) and damps a strong current
(|x| > 1). See the exercises for more on this. The equation (12.13) converts
to the first order system

(12.14) x′ = y, y′ = −x + µ(1− x2)y.
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Figure 12.7

Fig. 12.7 is a phase portrait for the case µ = 1. The vector field F associated
with (12.14) has one critical point, at the origin. The linearization of (12.14)
at the origin is

(12.15)
d

dt

(
ξ

η

)
=

(
0 1
−1 µ

) (
ξ

η

)
,

and the eigenvalues of this matrix are

(12.16)
µ

2
± 1

2

√
µ2 − 4.

Thus the origin is a source whenever µ > 0. It is a spiral source provided
also µ < 2. Note that when (x(t), y(t)) solves (12.14),

(12.17)
d

dt
(x2 + y2) = 2µ(1− x2)y2,

which is ≥ 0 for |x| ≤ 1, and in particular is ≥ 0 near the origin.
An examination of Fig. 12.7 indicates the presence of a periodic orbit,

attracting all the other orbits. Let us see how this fits into the set-up of
Theorem 12.1. To do this, we need to describe a closed bounded set K ⊂ R2

such that Φt(K) ⊂ K for all t > 0, where Φt is the flow generated by F , and
such that F has no critical points in K. We construct K as follows. Look
at the orbit of F starting at the point A on the positive y-axis, shown in
Fig. 12.7 and again in Fig. 12.8.

A numerical integration of (12.14) (using the Runge-Kutta scheme) shows
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Figure 12.8

that

(12.18)

Φt(A) winds clockwise about the origin,

and again hits the positive y-axis

at the point B, lying below A.

To this path from A to B, one adds the line segment (on the y-axis) from
B to A, producing a simple closed curve C. It follows readily from (12.14)
that on this line segment the vector field F points to the right. Thus the
closed region K̃ bounded by this curve has the invariance property

(12.19) Φt(K̃) ⊂ K̃, ∀ t ≥ 0.

We then pick ε > 0 small enough (in particular < 1), and set

(12.20) K = K̃ \ {(x, y) : x2 + y2 < ε2}.

The fact that

(12.21) Φt(K) ⊂ K, ∀ t ≥ 0

follows from (12.19) and (12.17). We have removed the only critical point
of F , so K contains no critical points, and Theorem 12.1 applies.

It must be said that the validity of the argument just given relies on the
accuracy of the statement (12.18) about the orbit through A. Here we have
relied on a numerical approximation to that orbit. We applied the Runge-
Kutta scheme, described in §11, with step sizes h = 10−2, 10−3, and 10−4,
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using double precision (16 digit) variables, and got consistent results in all
three cases. The last case involves quite a small step size, and if one were to
use 8 digit arithmetic, there could be a danger of accumulating truncation
errors. In any case, with today’s computers there is no point in using 8 digit
arithmetic.

Theorem 12.1 is a special case of the following result.

Bendixson’s Theorem. Let F be a C1 vector field on O ⊂ R2, generating
a flow Φt. Assume there is a set K ⊂ O that is a closed, bounded subset of
R2 and satisfies Φt(K) ⊂ K for all t > 0. Assume F has at most finitely
many critical points in K. Then if x ∈ K, Lω(x) is one of the following:
(a) a critical point,
(b) a periodic orbit,
(c) a cyclic graph consisting of critical points joined by orbits.

A proof can be found in [CL], Chapter 16, or in [Lef], Chapter 10.
Note that alternative (c) is illustrated in Figs. 12.2 and 12.3. We emphasize
that both this result and Theorem 12.1 are results for planar vetor fields.
In higher dimension, matters are completely different, as we will discuss in
§15.

We recall a device already used to deal with alternative (a), and develop
it a little further. Suppose F is a C1 vector field on O ⊂ Rn, and there is
a function V ∈ C1(O). Assume V has a unique minimum, at p ∈ K. If
x(t) = Φt(x0), then, by the chain rule,

(12.22)
d

dt
V (x(t)) = ∇V (x(t)) · F (x(t)).

If also V has the property

(12.23) ∇V (y) · F (y) < 0, ∀ y ∈ O \ p,

we say V is a strong Lyapunov function for F . In such a case,

(12.24)
d

dt
V (x(t)) < 0, whenever x(t) 6= p.

If we replace (12.23) by the weaker property

(12.25) ∇V (y) · F (y) ≤ 0, ∀ y ∈ O,

we say V is a Lyapunov function for F . In such a case,

(12.26)
d

dt
V (x(t)) ≤ 0, ∀ t ≥ 0.

Thus, as t ↗ +∞, V (x(t)) monotonically approaches a limit, V0, which
must be ≥ V (p), and furthermore,

(12.27) lim
t→+∞

d

dt
V (x(t)) = 0.

This has the following immediate consequence.
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Proposition 12.4. Let F be a C1 vector field on O ⊂ Rn, generating a
flow Φt. Assume there is a set K ⊂ O that is a closed, bounded subset of Rn

and satisfies Φt(K) ⊂ K for all t > 0. Take x0 ∈ K. Assume V ∈ C1(O) is
a Lyapunov function for F . Then

(12.28) Lω(x0) ⊂ {y ∈ O : ∇V (y) · F (y) = 0}.

If V is a strong Lyapunov function, then

(12.29) Lω(x0) = {p}.

Exercises

1. Let O ⊂ Rn be open and Ω ⊂ O a closed bounded set with smooth
boundary ∂Ω, with outward pointing normal n. Let F be a C1 vector
field on O, generating the flow Φt. Assume

(12.30) F · n ≤ 0 on ∂Ω.

Show that

(12.31) Φt(Ω) ⊂ Ω, ∀ t ≥ 0.

2. In the setting of Exercise 1, show that

(12.32) Φt(Ω) ⊂ Φs(Ω) for 0 < s < t.

Set

(12.33) B =
⋂

t∈R+

Φt(Ω) =
⋂

k∈Z+

Φk(Ω).

Show that

(12.34) Φt(B) = B, ∀ t ≥ 0.

Remark. It can be shown from material in Appendix B that B is
nonempty, closed, and bounded.
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3. In the setting of Exercise 2, show that

(12.35) ∀x ∈ Ω, Lω(x) ⊂ B.

4. In the setting of Exercise 2, show that

(12.36) div F < 0 on Ω =⇒ Vol(B) = 0.

5. In the setting of Exercise 4, assume that n = 2, and that F has no
critical points in Ω, so by Theorem 12.1 there is a periodic orbit of Φ in
Ω. Show that, due to (12.36), there can be only one periodic orbit of Φ
in Ω.
Hint. Feel free to use the Jordan Curve Theorem.

Exercises 6–8 deal with a nonlinear RLC circuit, as pictured in Fig. 12.9.
The setup is as in §13 of Chapter 1 (see also Chapter 3, §5), except that
Ohm’s law is modified. The voltage drop across the “resistor” is given
by

(12.37) V = f(I),

where f can be nonlinear, and not necessarily monotonic. As an exam-
ple, one could have

(12.38) f(I) = µ
(1

3
I3 − I

)
.

Vacuum tubes and transistors can behave as such circuit elements. The
voltage drop across the capacitor and the inductor are, as before, given
respectively by

(12.39) V = L
dI

dt
, V =

Q

C
.

Units of current, etc., are as in §13 of Chapter 1.
6. Modify the computations done in (14.1)–(14.7) of Chapter 1 and show

that the current I(t) satisfies the differential equation

(12.40)
d2I

dt2
+

f ′(I)
L

dI

dt
+

1
LC

I =
E′(t)

L
.
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Figure 12.9

Show that rescaling I and t leads to (12.14), when f(I) is given by
(12.38) and E ≡ 0. More generally, rescale (12.40) to

(12.41)
d2x

dt2
+ f ′(x)

dx

dt
+ x = g(t).

7. Assume g ≡ 0 in (12.41). Parallel to (12.14), one can convert this
equation to the first order system

x′ = y, y′ = −x− f ′(x)y.

Show that you can also convert it to the first order system

(12.43)

dx

dt
= y − f(x),

dy

dt
= −x.

This is called a Lienard equation.

8. Show that if (x(t), y(t)) solves (12.43), then

(12.44)
d

dt
(x2 + y2) = −2xf(x).
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Figure 13.1

13. Predator-prey equations

Here and in the following section we consider differential equations that
model population densities. We start with one species. The simplest model
is the exponential growth model:

(13.1)
dx

dt
= ax.

Here x(t) denotes the population of the species (or rather, an approximation
to what would be an integer valued function). The model simply states that
the rate of growth of the population is proportional to the population itself.
The solution to (13.1) is our old friend x(t) = eatx(0). This unbounded
increase in population is predicated on the existence of limitless resources to
nourish the species. An alternative to (13.1) posits that the resources can
support a population no greater than K. The following is called the logistic
equation:

(13.2)
dx

dt
= ax(1− bx),

where b = 1/K. In this model, (13.1) is a good approximation for small x,
but the rate of growth slows down to 0 as x approaches its upper limit K.
The equation (13.2) can be solved by separation of variables:

(13.3)
dx

x(1− bx)
= a dt.

The reader can perform the integration as an exercise.
The function F (x) = ax(1 − bx) on the right side of (13.2) is a one-

dimensional vector field, with critical points at x = 0 and x = 1/b. The
intervals (−∞, 0), (0, 1/b), and (1/b,∞) are all invariant under the flow
generated by F , although only the interval (0, 1/b) has biological relevance.
See Fig. 13.1 for the “phase portrait.”

We turn to a class of 2 × 2 systems called “predator-prey” equations.
For this, we set

(13.4)

x(t) = population of predators,

y(t) = population of prey,

z(t) = rate at which each predator eats prey.
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Figure 13.2

Depending on the choice of the exponential growth model or the logistic
model for the species of prey in the absence of predators, the following
systems arise to model these populations:

(13.5)

dx

dt
= −ax + bzx,

dy

dt
= ry − zx,

or

(13.6)

dx

dt
= −ax + bzx,

dy

dt
= ry(1− cy)− zx.

Here, a, b, c, and r are positive constants. As for the rate of feeding z, we
assume

(13.7) z = ζ(y).

Clearly if y = 0 then z = 0. One possibility that is used is

(13.8) ζ(y) = κy,

for some positive constant κ. This posits that the rate of feeding of a preda-
tor is proportional to the rate of close encounters of that predator with
members of the other species, which in turn is proportional to the popula-
tion y. This seems intuitively reasonable if y is not large, but most creatures
stop eating once they are full, so a more reasonable candidate for ζ(y) might
be as pictured in Fig. 13.2, representing a feeding rate bounded by β.

A class of functions of this sort is given by

(13.9) ζ(y) =
κy

1 + γy
,

κ

γ
= β.
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Another class is

(13.10) ζ(y) = β(1− e−γy), βγ = κ.

Let us examine various cases in more detail.

Volterra-Lotka equations

The case (13.5) with z given by (13.8) produces systems called Volterra-
Lotka equations:

(13.11)

dx

dt
= −ax + σxy, σ = bκ,

dy

dt
= ry − κxy.

Note that the x-axis and y-axis are invariant under the flow defined by this
system. We have x′ = −ax on the x-axis and y′ = ry on the y-axis. It
follows that the first quadrant, where x ≥ 0 and y ≥ 0, is invariant under
the flow. This is the region in the (x, y)-plane of biological significance. The
vector field V (x, y) = (−ax + σxy, ry − κxy)t has two critical points. One
is the origin. Note that

(13.12) DV (0, 0) =
(−a 0

0 r

)
,

so the origin is a saddle. The other critical point is

(13.13) (x0, y0) =
( r

κ
,
a

σ

)
.

Note that

(13.14) DV (x0, y0) =
(

0 σx0

−κy0 0

)
,

with purely imaginary eigenvalues, so we have a center for the linearization
of V at (x0, y0). In fact, (x0, y0) is a center for V , as we now show.

From (13.11) we get

(13.15)
dy

dx
=

y(r − κx)
x(σy − a)

,

which separates to

(13.16)
(
σ − a

y

)
dy =

( r

x
− κ

)
dx.
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Figure 13.3

Integrating yields

(13.17) σy − a log y = r log x− κx + C.

We deduce that the following smooth function on the region x, y > 0,

(13.18) H(x, y) = σy − a log y + κx− r log x,

is constant on orbits of (13.11), i.e., these orbits lie on level curves of H.
Note that

(13.19) ∇H(x, y) =
(

κ− r
x

σ − a
y

)
, D2H(x, y) =

( r
x2 0
0 a

y2

)
,

hence, with (x0, y0) as in (13.13),

(13.20) ∇H(x0, y0) = 0, D2H(x0, y0) =
( r

x2
0

0
0 a

y2
0

)
,

the latter matrix being positive definite, so H has a minimum at (x0, y0),
which implies that (x0, y0) is a center for V . The phase portrait for orbits
of (13.11) is pictured in Fig. 13.3.

The system (13.11) was studied independently by Lotka and Volterra
around 1925, by Lotka as a model of some chemical reactions and by Volterra
as a predator-prey model, specifically for sharks preying on another species
of fish. Volterra made the following further observation. Bring in another
type of predator, fishermen. Assume the fishermen keep everything they
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catch and that the probability of getting caught in their nets is the same for
sharks and their prey. Then the system (13.11) gets revised to

(13.21)

dx

dt
= −ax + σxy − ex,

dy

dt
= ry − κxy − ey.

Now (13.21) has the same form as (13.11), with a replaced by a+e and with
r replaced by r − e, all these constants remaining positive as long as

(13.22) 0 < e < r.

Then the previous analysis applies. The system (13.21) has a stable critical
point at

(13.23) (x1, y1) =
(r − e

κ
,
a + e

σ

)
.

Note that at this critical point there are fewer sharks and more prey, com-
pared to (13.13). Of course, this depends on the hypothesis (13.22). If e > r,
things are catastrophically different.

First modification

We turn from Volterra-Lotka equations to predator-prey models given
by (13.6), still keeping (13.8). Then we have the following system:

(13.24)

dx

dt
= −ax + σxy, σ = bκ,

dy

dt
= ry(1− cy)− κxy.

As with (13.11), the x-axis and y-axis are invariant under the flow defined
by this system. We have x′ = −ax on the x-axis and y′ = ry(1− cy) on the
y-axis. Again, the first quadrant (x ≥ 0, y ≥ 0) is invariant under the flow.
Note furthermore that, for

(13.25) V (x, y) = (−ax + σxy, ry(1− cy)− κxy)t,

we have

(13.26) V
(
x,

1
c

)
=

((σ

c
− a

)
x,−κ

c
x
)t

,

which points downward for x > 0. It follows that

(13.27) R =
{

(x, y) : x ≥ 0, 0 ≤ y ≤ 1
c

}
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is invariant under this flow. It is this region in the (x, y)-plane that is of
biological significance.

To proceed, we find the critical points of V (x, y), given by (13.25). Two
of these are

(13.28) (0, 0) and
(
0,

1
c

)
.

DV (0, 0) is again given by (13.12), so (0, 0) is a saddle. Also,

(13.29) DV
(
0,

1
c

)
=

(−a + σ
c 0

−κ
c −r

)
.

V has a third critical point, at

(13.30) y0 =
a

σ
, x0 =

r

κ

(
1− ca

σ

)
=

rc

κσ

(σ

c
− a

)
.

Note how this point is shifted to the left from the point (13.13). There are
three cases to consider.

Case I. σ/c− a < 0.
In this case, the critical point (13.30) is not in the first quadrant, so V
has only the critical points (13.28) in R. In this case (13.29) has two neg-
ative eigenvalues, so the critical point (0, 1/c) is a sink. Note that the
x-component of V (x, y) is

(13.31) x(σy − a) ≤ x
(σ

c
− a

)
, for x ≥ 0, y ≤ 1

c
,

so V points to the left everywhere in R except the left edge. Consequently,
the population of predators is driven to extinction as t → +∞, whatever
the initial condition.

Case II. σ/c− a > 0.
In this case the third critical point (x0, y0) is in the first quadrant. In fact,
y0 = a/σ < 1/c, so (x0, y0) ∈ R. Now (13.29) has one positive and one
negative eigenvalue, so the critical point (0, 1/c) is a saddle. As for the
nature of (x0, y0), we have

(13.32)
DV (x0, y0) =

(−a + σy0 σx0

−κy0 r(1− 2cy0)− κx0

)

=
(

0 rc
κ (σ

c − a)
−κa

σ − rca
σ

)
.
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Figure 13.4

Note that

(13.33)
det DV (x0, y0) =

rca

σ

(σ

c
− a

)
> 0,

TrDV (x0, y0) = −rca

σ
< 0.

It follows that the eigenvalues of DV (x0, y0) are either both negative or have
negative real part. Hence (x0, y0) is a sink.

We claim that the orbit through each point in R not on the x or y-
axis approaches (x0, y0) as t → +∞. To see this, we construct a Liapunov
function. We do this by modifying H(x, y) in (13.18), which has a minimum
at the point (13.13), to one that has a minimum at the point (13.30). We
take

(13.34) H̃(x, y) = σy − a log y + κx− r
(
1− ca

σ

)
log x.

If (x(t), y(t)) solves (13.24), a computation gives

(13.35)
d

dt
H̃(x, y) = −rc

σ
(σy − a)2.

By Proposition 12.4, if we take any point p ∈ R, with positive x and y-
coordinates (so it is in the domain of H̃), the ω-limit set of p satisfies

(13.36) Lω(p) ⊂
{

(x, y) ∈ R : y =
a

σ

}
.

The right side is a horizontal line to which V is clearly transverse except at
the critical point (x0, y0), so indeed Lω(p) = (x0, y0).

See Fig. 13.4 for a phase portrait treating Case II.
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Case III. σ/c− a = 0.
In this case (x0, y0) = (0, 1/c). In (13.29) the eigenvalues are 0 and −r, so
(0, 1/c) is a degenerate critical point. In place of (13.31) we have that the
x-component of V (x, y) is

(13.37) x(σy − a) ≤ 0, for x ≥ 0, y ≤ 1
c
,

and it is strictly negative for x > 0, y < 1/c. Hence, as in Case I, the
population of predators is driven to extinction as t → +∞.

Second modification

We now move to the next level of sophistication, using the system (13.6)
with z = ζ(y), described as in Fig. 13.2. Thus, we look at systems of the
form

(13.37)

dx

dt
= −ax + bxζ(y),

dy

dt
= ry(1− cy)− xζ(y).

As before, a, b, c, and r are all positive constants. To be precise about what
we mean when we say ζ(y) behaves as in Fig. 13.2, we make the following
hypotheses:

(13.38)

(a) ζ : [0,∞) → [0,∞) is smooth,

(b) ζ(0) = 0,

(c) ζ ′(y) > 0, ∀ y ≥ 0,

(d) sup ζ(y) = β < ∞,

(e) ζ ′′(y) ≤ 0.

All these conditions are satisfied by the examples (13.9) and (13.10). Hy-
pothesis (c) implies ζ is strictly monotone increasing, and hypothesis (e)
implies ζ is concave.

In this case, the vector field is

(13.39) V (x, y) = (x(bζ(y)− a), ry(1− cy)− xζ(y))t.

Parallel to (13.26),

(13.40) V
(
x,

1
c

)
=

((
bζ

(1
c

)
− a

)
x,−ζ

(1
c

)
x
)t

,
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which points downward for x > 0, and again it follows that the region R,
given by (13.27), is invariant under the flow Φt generated by V , for t ≥ 0,
and this is the region in the (x, y)-plane that is of biological significance.

Next, we find the critical points of V (x, y). Again, two of them are

(0, 0) and
(
0,

1
c

)
,

and again DV (0, 0) is given by (13.12), so (0, 0) is a saddle. This time,

(13.41) DV
(
0,

1
c

)
=

(
bζ(1

c )− a 0
−ζ(1

c ) −r

)
.

Also, a critical point would occur at (x0, y0) if these coordinates satisfy

(13.42) ζ(y0) =
a

b
, x0 =

b

a
ry0(1− cy0).

Under the hypotheses (13.38), the first equation in (13.42) has a (unique)
solution if and only if

(13.43)
a

b
< β.

From here on we will assume (13.43) holds, and leave it to the reader to
consider the behavior of the flow when (13.43) fails. Given (13.43), x0 and
y0 are well defined by (13.42). Parallel to the study of (13.30), again we
have three cases.

Case I. 1− cy0 < 0,
Case II. 1− cy0 > 0,
Case III. 1− cy0 = 0.

In Case I, (x0, y0) is not in the first quadrant, and in Case III, (x0, y0) =
(0, 1/c). Again we leave these cases to the reader to think about. We
concentrate on Case II.

In Case II, x0 > 0 and 0 < y0 < 1/c, so

(13.44) (x0, y0) ∈ R.

Given ζ(y0) = a/b and the hypotheses (13.38) on ζ, we have

(13.45) ζ
(1

c

)
>

a

b
⇐⇒ 1

c
> y0 ⇐⇒ 1− cy0 > 0,



120 Nonlinear Systems of Differential Equations Michael Taylor

and hence in Case II, DV (0, 1/c) has one positive eigenvalue and one nega-
tive eigenvalue, so

(13.46)
(
0,

1
c

)
is a saddle.

(In Case I, the eigenvalues of DV (0, 1/c) are both negative, so (0, 1/c) is a
sink, and in Case III these eigenvalues are 0 and −r.) Next, a computation
gives the following analogue of (13.32):

(13.47)
DV (x0, y0) =

(
bζ(y0)− a bζ ′(y0)x0

−ζ(y0) r(1− 2cy0)− x0ζ
′(y0)

)

=
(

0 bζ ′(y0)x0

−a
b r(1− 2cy0)− x0ζ

′(y0)

)
,

and parallel to (13.33) we have

(13.48)

det DV (x0, y0) = ax0ζ
′(y0) > 0,

TrDV (x0, y0) = r(1− 2cy0)− x0ζ
′(y0)

= r
[
−cy0 + (1− cy0)

{
1− ζ ′(y0)y0

ζ(y0)

}]
.

Let us set

(13.49) Z0 = 1− ζ ′(y0)y0

ζ(y0)
.

Given ζ, this is a function of a/b, but it is independent of c and r. Note
that, since ζ(0) = 0,

(13.50)
ζ(y0)
y0

= ζ ′(ỹ), for some ỹ ∈ (0, y0),

by the mean value theorem, so the hypotheses on ζ in (13.38) imply

(13.51) 0 < Z0 < 1.

(Note that in the context of the previous model, with ζ(y) given by (13.8),
Z0 = 0.) We have

(13.52) TrDV (x0, y0) = r
[
Z0(1− cy0)− cy0

]
.

This gives rise to three cases.

Case IIA. Z0 < cy0/(1− cy0).
Then TrDV (x0, y0) < 0, so, by (13.48),

(13.53) (x0, y0) is a sink.
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Figure 13.5

Case IIB. Z0 > cy0/(1− cy0).
Then TrDV (x0, y0) > 0, so, by (13.48),

(13.54) (x0, y0) is a source.

Case IIC. Z0 = cy0/(1− cy0).
Then TrDV (x0, y0) = 0, so, by (13.48), the eigenvalues of DV (x0, y0) are
(nonzero) purely imaginary numbers. In this case, (x0, y0) is a center for
the linearization of V .

We will concentrate on Cases IIA and IIB. Before pursuing these cases
further, we want to describe a family of bounded domains in R that are
invariant under the flow Φt for t ≥ 0. Namely, consider the triangle Tµ with
vertices at (0, 1/c), (0, 0), and (µ, 0), as pictured in Fig. 13.5.

Claim. If µ > 0 is large enough, the triangle Tµ is invariant under Φt, for
t ≥ 0.

Proof. Note that V is vertical on the left edge of Tµ, with critical points
at the endpoints of this line segment. Also V points horizontally to the left
on the bottom edge of Tµ. It remains to show that V points into Tµ along
the line segment from (0, 1/c) to (µ, 0), provided µ is sufficiently large. This
line segment is given by

(13.55) x = µ(1− cy), 0 ≤ y ≤ 1
c
,

and the vector

(13.56) Nµ =
(

1
µc

)
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is normal to this segment, and points away from Tµ. We want to show that
V ·Nµ ≤ 0 along this line segment, for µ large. Indeed, from (13.39),

(13.57)
V (µ(1− cy), y) ·Nµ = (1− cy)

[
µ(bζ(y)− a) + µcry − µ2cζ(y)

]

= µ(1− cy)
[−a + cry − (µc− b)ζ(y)

]
,

and under the hypotheses (13.38) on ζ, this is

(13.58) ≤ 0, ∀ y ∈
[
0,

1
c

]
,

if µ is sufficiently large, say µ ≥ µ0.

A similar computation shows that, if µ1 > µ0, then, for each p ∈ R,
Φt(p) ∈ Tµ1 for all sufficiently large t.

Back to Cases IIA and IIB, as we have seen, in Case IIA (x0, y0) is a
sink. It is possible to show that

(13.59) in Case IIA, Φt(p) −→ (x0, y0), as t → +∞,

for all p in the interior of R, so the phase portrait has qualitative features
similar to Fig. 13.4. On the other hand, in Case IIB, (x0, y0) is a source.
Hence there is an open set U containing (x0, y0) such that

(13.60) Tµ0 \ U is invariant under Φt, for t ≥ 0.

This region does contain the two critical points (0, 0) and (0, 1/c), on its
boundary, but since they are saddles, the argument used to establish the
Poincaré-Bendixson theorem, Theorem 12.1, shows that

(13.61) in Case IIB, Lω(p) is a periodic orbit,

for all p 6= (x0, y0) in the interior of R. The phase portrait is depicted in
Fig. 13.6.

Exercises

Exercises 1–5 deal with the system (13.37), i.e.,

(13.62)
x′ = −ax + bxζ(y),

y′ = ry(1− cy)− xζ(y),
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Figure 13.6

where ζ(y) is given by (13.9), i.e.,

(13.63) ζ(y) =
κy

1 + γy
,

κ

γ
= β.

As usual, a, b, c, κ, γ, r ∈ (0,∞). The exercises deal with when Cases
I–III, specified below (13.43), hold. Recall these cases apply if and only
if there is a critical point (x0, y0) given by (13.42), i.e., of and only if

(13.64)
a

b
< β =

κ

γ
.

We will assume this holds.

1. Show that the critical point (x0, y0) is given by

(13.65) y0 =
a

bκ− aγ
, x0 =

b

a
ry0(1− cy0).

2. Show that
Case I ⇐⇒ ac > bκ− aγ,

Case II ⇐⇒ ac < bκ− aγ,

Case III ⇐⇒ ac = bκ− aγ.

3. Let Z0 be given by (13.49), i.e.,

(13.66) Z0 = 1− ζ ′(y0)y0

ζ(y0)
.
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Show that

(13.67) Z0 =
aγ

bκ
.

4. In Case II, recall Cases IIA–IIC, specified below (13.52). Show that

Case IIA ⇐⇒ γ

κ
<

c

bκ− aγ − ac
,

Case IIB ⇐⇒ γ

κ
>

c

bκ− aγ − ac
,

Case IIC ⇐⇒ γ

κ
=

c

bκ− aγ − ac
,

5. Let us take

(13.68) a = 1, b = 2, κ = 1, γ = 1.

Note that (13.64) holds. Show that

Case I ⇐⇒ c > 1,

Case II ⇐⇒ c < 1,

Case III ⇐⇒ c = 1.

In Case II, show that

Case IIA ⇐⇒ c >
1
3
,

Case IIB ⇐⇒ c <
1
3
,

Case IIC ⇐⇒ c =
1
3
.

Exercises 6–10 deal with the system (13.62), where ζ(y) is given by
(13.10), i.e.,

(13.69) ζ(y) = β(1− e−γy), βγ = κ.

Again there is a critical point (x0, y0), given by (13.42), if and only if
(13.64) holds. We assume this holds, so bβ > a.
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6. Show that the critical point (x0, y0) is given by

(13.70) y0 =
1
γ

log
bβ

bβ − a
, x0 =

b

a
ry0(1− cy0).

7. For Z0, defined by (13.66), show that

(13.71) Z0 = 1− bβ − a

a
log

bβ

bβ − a
.

8. Parallel to Exercise 2, study when Cases I–III hold.

9. Parallel to Exercise 4, study when Cases IIA–IIC hold.

10. Take a, b, κ,, and γ as in (13.68). Work out a parallel to Exercise 5.

For Exercises 11–12, consider the following system, for x predators and
y prey, presented in [Tau], p. 376:

(13.72)
x′ = ax

(
b− x

y

)
,

y′ = ry(1− cy)− xζ(y).

Here the equation for y is as in (13.62), modeling the population of prey
in terms of the logistic equation, modified by how fast the prey is eaten.
The equation for x has a different basis, a sort of logistic equation in
which the population y determines the population limit of x, at any
given time.

11. Work out an analysis of the system (13.72) as parallel as possible to the
analysis done in this section for (13.62).

12. Take ζ(y) as in (13.63) and work out results parallel to those of Exercises
1–5.

Exercises 13–15 are for readers who can use a programming language,
with graphics capabilities.
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13. The following system is known as the basic model of virus dynamics
(cf. [NM], p. 100, [W], p. 26):

(13.73)

dx

dt
= λ− dx− βxv,

dy

dt
= βxv − ay,

dv

dt
= ky − uv.

Here, x represents the uninfected cell population, y the infected cell pop-
ulation, and v the virus population. The positive parameters λ, d, β, a, k,
and u are taken to be constant. The ratio

(13.74) R0 =
λβk

adu

is called the basic reproducive ratio. Graph solution curves for (13.73),
with various choices of parameters. Account for the assertion that if
R0 < 1 the virus cannot maintain an infection, but if R0 > 1 the system
converges to an equilibrium, in which v > 0.

14. The simplifying assumption that the virus population is proportional to
the infected cell population (say βv = by) leads to the system

(13.75)

dx

dt
= λ− dx− bxy,

dy

dt
= −ay + bxy.

Study this system, with an eye to comparison with the Volterra-Lotka
system (13.11). Here, replace (13.74) by

(13.76) R0 =
bλ

ad
.

15. The following system modifies (13.75) by introducing z(t), the popula-
tion of “killer T cells,” which kill off infected cells, thereby negatively
affecting y:

(13.77)

dx

dt
= λ− dx− bxy,

dy

dt
= bxy − ay − pyz,

dz

dt
= cyz − bz,
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now with positive parameters λ, d, b, a, p, and c. Continue to define R0

by (13.76). Consider particularly cases where

(13.78) R0 > 1, c
(λ

a
− d

b

)
> b.

Account for the assertion that in this case the virus population first
grows, stimulating the production of killer T cells, which in turn fight
the infection and lead to an equilibrium.

For more on these models, see [NM] and [W], and references therein.

14. Competing species equations

The following system models the populations x(t) and y(t) of two competing
species:

(14.1)

dx

dt
= ax(1− bx)− cxy,

dy

dt
= αy(1− βy)− γxy.

In this model, each population is governed by a logistic equation in the
absence of the other species. The presence of the other species reduces the
population of its opponent, at a rate proportional to xy. Setting X = bx and
Y = βy produces an equation like (14.1), but with X(1−X) and Y (1− Y )
in place of x(1− bx) and y(1− βy), and with different factors. A change of
notation gives the system

(14.2)

dx

dt
= ax(1− x)− cxy,

dy

dt
= αy(1− y)− γxy.

which we will consider henceforth. We take a, c, α, γ ∈ (0,∞). Associated
to this system is the vector field

(14.3) V =
(

ax(1− x)− cxy

αy(1− y)− γxy

)
.

Note that V (x, 0) = (ax(1 − x), 0)t and V (0, y) = (0, αy(1 − y))t, so the
x-axis and y-axis are invariant under the flow Φt generated by V . Hence
the quadrant {x ≥ 0, y ≥ 0}, which is the region of biological significance,
is invariant under Φt. Note also that

(14.4) V (x, 1) =
(

ax(1− x)− cx

−γx

)
, V (1, y) =

( −cy

αy(1− y)− γy

)
,
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so Φt leaves invariant the region

(14.5) B = {(x, y) : 0 ≤ x, y ≤ 1},

for t ≥ 0.
The vector field V has the following critical points,

(14.6) (0, 0), (0, 1), (1, 0),

and a fourth critical point (x0, y0), satisfying

(14.7) cy0 = a(1− x0), γx0 = α(1− y0).

A calculation gives

(14.8) x0 = α
a− c

aα− cγ
, y0 = a

α− γ

aα− cγ
.

The point (x0, y0) may or may not lie in the first quadrant. We investigate
this further below.

We have

(14.9) DV (0, 0) =
(

a 0
0 α

)
,

so (0, 0) is a source. Also,

(14.10) DV (0, 1) =
(

a− c 0
−γ −α

)
, DV (1, 0) =

(−a −c
0 α− γ

)
,

and each of these might be a saddle or a sink, depending on the signs of
a− c and α− γ. Next,

(14.11)
DV (x0, y0) =

(
a(1− 2x0)− cy0 −cx0

−γy0 α(1− 2y0)− γx0

)

=
(−ax0 −cx0

−γy0 −αy0

)
,

the second identity by (14.7). Hence

(14.12)
detDV (x0, y0) = (aα− cγ)x0y0,

TrDV (x0, y0) = −ax0 − αy0.

At this point, it is natural to consider the following cases:
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Figure 14.1

Case I. a > c and α > γ.
Case II. a < c and α < γ.
Case III. a > c and α < γ.
Case IV. a < c and α > γ.

In Case I, we see from (14.10) that

(14.13) (0, 1) and (1, 0) are saddles.

In this case, aα > cγ, so, by (14.8),

(14.14) x0 > 0, y0 > 0,

and the critical point (x0, y0) is in the first quadrant. Then we see from
(14.12) that

(14.15) detDV (x0, y0) > 0, TrDV (x0, y0) < 0,

so

(14.16) (x0, y0) is a sink.

We have

(14.17) Φt(x, y) −→ (x0, y0) as t → +∞,

whenever x > 0 and y > 0. The two competing species tend to an equilib-
rium of coexistence. The phase portrait for this case, with a = 2, α = 2, c =
1, γ = 1, is illustrated in Fig. 14.1.
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Figure 14.2

In Case II, we see from (14.10) that

(14.18) (0, 1) and (1, 0) are sinks.

In this case, aα < cγ, so, by (14.8), again (14.14) holds, and the critical
point (x0, y0) is in the first quadrant. We see from (14.12) that

(14.19) detDV (x0, y0) < 0,

so

(14.20) (x0, y0) is a saddle.

The phase portrait for this case, with a = 1, α = 1, c = 2, γ = 2, is illustrated
in Fig. 14.2. For almost all initial data (x, y) in the first quadrant, Φt(x, y)
tends to either (0, 1) or (1, 0) as t → +∞. One species or the other tends
toward extinction, depending on the initial conditions.

In Case III, we see from (14.10) that

(14.21) (0, 1) is a saddle and (1, 0) is a sink.

From here two sub-cases arise, depending on the relative size of aα and cγ.

Case IIIA. aα > cγ.
This time, by (14.8),

(14.22) x0 > 0, y0 < 0,
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Figure 14.3

so the critical point (x0, y0) is not in the first quadrant. We see from (14.12)
that

(14.23) detDV (x0, y0) < 0,

so

(14.24) (x0, y0) is a saddle.

The phase portrait for this case, with a = 2, α = 1, c = 1/4, γ = 2, is
illustrated in Fig. 14.3. We have

(14.25) Φt(x, y) −→ (1, 0) as t → +∞,

whenever x > 0 and y > 0. Species y tends to extinction.

Case IIIB. aα < cγ.
This time, by (14.8),

(14.26) x0 < 0, y0 > 0,

and again the critical point (x0, y0) is not in the first quadrant. We see from
(14.22) that

(14.27) detDV (x0, y0) > 0.

Thus

(14.28) (x0, y0) is a source or a sink,
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Figure 14.4

depending on the sign of TrDV (x0, y0). The phase portrait for this case,
with a = 2, α = 1/2, c = 1, γ = 2, is illustrated in Fig. 14.4. (In this
example, (x0, y0) is a sink.) Again (14.25) holds whenever x > 0 and y > 0.

To summarize Case III, the flows in the first quadrant have the same
qualitative features in the two sub-cases; (14.25) holds. The features differ
outside the first quadrant.

As for Case IV, this reduces to Case III by switching the roles of x and
y.

Exercises

1. Note that if x and y solve (14.2), then

d

dt
(x + y) = −ax2 − αy2 − (c + γ)xy + ax + αy.

Show that there exists R ∈ (0,∞) such that

x, y ≥ 0, x2 + y2 ≥ R2 =⇒ d

dt
(x + y) ≤ 0.

Deduce global existence of solutions to (14.2), for t ≥ 0, given (x(0), y(0))
in the first quadrant.



15. Chaos in multidimensional systems 133

2. In the setting of Exercise 1, show that whenever x(0) > 0 and y(0) > 0,
we have (x(t), y(t)) ∈ B, given by (14.5), for t > 0 sufficiently large.

3. Consider the system

dx

dt
= x(1− x)− xy,

dy

dt
= y(1− y)− γxy,

with γ ∈ (0,∞). Specify when Cases I–IV hold. Record the possible
outcomes, as regards coexistence/extinction.

4. Consider the system

dx

dt
=

1
2
x(1− x)− cxy,

dy

dt
= y(1− y)− 2xy,

with c ∈ (0,∞). Specify when Cases I–IV hold. Record the possible
outcomes, as regards coexistence/extinction.

5. Consider the system

dx

dt
= ax(1− x)− xy,

dy

dt
= 2y(1− y)− xy,

with a ∈ (0,∞). Specify when Cases I–IV hold. Record the possible
outcomes, as regards coexistence/extinction.

15. Chaos in multidimensional systems

As previewed in the introduction to this chapter, two phenomena conspire to
limit the complexity of flows generated by autonomous planar vector fields.
One is that orbits cannot cross each other, due to uniqueness (this holds
in any number of dimensions). The other is that a directed curve (with
nonzero velocity) in the plane divides a neighborhood of each of its points
into two parts, the left and the right. This latter fact played an important
role in §12. In dimension 3 and higher, this breaks down completely, and
allows for far more complex flows.

Newtonian motion in a force field in the plane is described by a second
order 2×2 system of differential equations, which is converted to a 4×4 first
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order system. Energy conservation confines the motion to a 3-dimensional
constant energy surface. If the force is a central force, there is also conser-
vation of angular momentum. These two conservation laws make for regular
motion, as seen in §§5–6. These are “integrable” systems. Such integrability
is special. Most systems from physics and other sources do not possess it.
For example, the double pendulum equation, derived in §9, does not have
this property. (We do not prove this here.)

Flows generated by vector fields on n-dimensional domains with n ≥ 3
are thus sometimes regular, but often they lack regularity to such a degree
that they are deemed “chaotic.” Signatures of chaos include the inability to
predict the long time behavior of orbits. This inability arises not only from
the lack of a formula for the solution in terms of elementary functions. In
addition, numerical approximations to the orbits of these flows reveal a “sen-
sitive dependence” on initial conditions and other parameters. Furthermore,
phase portraits of these orbits look complex.

Research into these chaotic flows takes the study of differential equations
to the next level, beyond this introduction. We end this chapter with a
discussion of two special cases of 3 × 3 systems, to give a flavor of the
complexities that lie beyond, and we provide pointers to literature that
addresses the deep questions raised by efforts to understand such systems.

Lorenz equations

The first example is the following system, produced by E. Lorenz in 1963
to model some aspects of fluid turbulence:

(15.1)

x′ = σ(y − x),

y′ = rx− y − xz,

z′ = xy − bz.

An alternative presentation is

(15.2)
d

dt




x
y
z


 =



−σ σ 0
r −1 0
0 0 −b







x
y
z


 +




0 0 0
0 0 −x
0 x 0







x
y
z


 .

Denoting the right side of (15.2) by V (x, y, z), we see that the first matrix
on the right side is DV (0, 0, 0). One assumes the parameters σ, b, and r are
all positive. Lorenz took

(15.3) σ = 10, b =
8
3
,

and considered various values of r, with emphasis on

(15.4) r = 28.



15. Chaos in multidimensional systems 135

Phase portraits of some orbits for (15.1), with σ and b given by (15.3) and
with various values of r are given in Fig. 15.1. Each of the six portraits
depicts the forward orbits through the three points

(15.5) x =
k

100
, y = 0, z = 5, k = −1, 0, 1.

The portraits start out simple, execute a sequence of changes, as r increases,
reaching substantial apparent complexity at r = 28. We discuss some as-
pects of this.

First, some global results. Global forward solvability of (15.1) can be
established with the help of the remarkable function

(15.6) f(x, y, z) = rx2 + σy2 + σ(z − 2r)2.

A calculation shows that if (x(t), y(t), z(t)) solves (15.1), then

(15.7)
d

dt
f(x, y, z) = −2σ(rx2 + y2 + bz2 − 2brz).

Clearly there exists K ∈ (0,∞) such that

(15.8) B = {(x, y, z) ∈ R3 : f(x, y, z) ≤ K}

is a closed, bounded subset of R3 and the right side of (15.7) is < 0 on the
complement of B. Hence

(15.9) Φt(B) ⊂ B, ∀ t > 0,

where Φt is the flow generated by V (x, y, z). Moreover, for each (x, y, z) ∈
R3,

(15.10) Φt(x, y, z) ∈ B, for all sufficiently large t > 0.

Note that (15.9) plus the identity Φt = Φs ◦ Φt−s implies

(15.11) Φt(B) ⊂ Φs(B) for 0 < s < t,

so B(t) = Φt(B) is a family of closed, bounded sets that is decreasing as
t ↗ +∞. Now set

(15.12) B =
⋂

t∈R+

B(t) =
⋂

k∈Z+

B(k).
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Figure 15.1
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The set B is called the attractor for (15.1). We have

(15.13) Φt(B) = B, ∀ t ≥ 0.

Note that

(15.14) div V = −σ − 1− b < 0,

so results of §3 imply

(15.15) VolB = 0.

This attractor has a simple description for small r, but becomes very com-
plex for larger r.

To proceed with the analysis, consider the critical points. The origin is
a critical point of V for all σ, b, r ∈ (0,∞). Since DV (0) is the first matrix
on the right side of (15.2), we see its eigenvalues are

(15.16) λ± = −σ + 1
2

± 1
2

√
(σ + 1)2 + 4σ(r − 1), λ3 = −b,

with eigenvectors

(15.17) v± =




σ
λ± + σ

0


 , v3 =




0
0
1


 .

It follows from (15.16) that
(15.18)

0 < r < 1 =⇒ DV (0) has 3 negative eigenvalues,

r > 1 =⇒ DV (0) has 2 negative and one positive eigenvalue.

For r > 1, the positive eigenvalue is λ+ and its associated eigenvector
is v+. There is a parallel to the results in (3.31) describing saddles. It
is shown in [Hart] that there is a smooth 2-dimensional surface through
the origin consisting of points p such that Φt(p) → 0 as t → +∞ and a
smooth 1-dimensional curve through the origin consisting of points p such
that Φt(p) → 0 as t → −∞. In general, a smooth k-dimensional surface in
Rn is called a k-dimensional manifold. The sets described above are called
a “stable manifold” and an “unstable manifold,” respectively. See also Ap-
pendic C for further discussion.

For r > 1, V has two additional critical points, satisfying

(15.19) x = y, (r − 1− z)x = 0, bz = x2,
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i.e.,

(15.20) C± = (±
√

b(r − 1),±
√

b(r − 1), r − 1).

We have

(15.21) DV (C±) =



−σ σ 0
1 −1 ±ξ
±ξ ±ξ −b


 , ξ =

√
b(r − 1).

Note that DV (C+) and DV (C−) are conjugate by the action of

(15.22)



−1

−1
1


 ,

so they have the same eigenvalues. This mirrors the fact that (15.1) is invari-
ant under the transformation (x, y, z) 7→ (−x,−y, z). Further calculations
give the following results, when σ and b are given by (15.3):
(15.23)

DV (C±) has

3 negative eigenvalues for 1 < r < 1.346 · · ·
1 negative and 2 with negative real part for 1.346 · · · < r < 24.74 · · ·
1 negative and 2 with positive real part for r > 24.74 · · · .

In the first two cases in (15.23), Proposition 3.4 applies, and for all points p
sufficiently close to C+, Φt(p) → C+ as t → +∞, and similarly for C−. The
third case in (15.23) is like the second case in (15.18), except the numbers
are reversed. In such a case, there are a 2-dimensional unstable manifold
and a 1-dimensional stable manifold through C+, and similarly for C−, in
the language introduced below (15.18).

With these calculations in hand, let’s take a closer look at the six phase
portraits depicted in Fig. 15.1, orbits with initial data given by (15.5). In
all cases there is a vertical line segment from (0, 0, 5) to (0, 0, 0), and we
see from (15.1) that the z-axis is invariant under the flow for all values
of the parameters. Furthermore, on the z-axis, z′ = −bz. Now the initial
points (±0.01, 0, 5) are close by, but for all r-values depicted, DV (0) has one
positive eigenvalue, and the orbits push away from the origin, in a direction
close to ±v+, where v+ is given by (15.17). The orbit from (+0.01, 0, 5)
spirals into the critical point C+, and the orbit from (−0.01, 0, 5) spirals
into C−, in the first two portraits, where r = 4.667 and 9.333. Around
r ≈ 14, something new happens. These orbits pass close to the origin.
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Fig. 15.2 shows such a transition in more detail. Here we have two orbits
with slightly different initial conditions, namely

(15.24) p± = ±εv+,

with ε chosen small, to capture the unstable manifold of the origin more
accurately. At a certain critical value rh ≈ 13.926, the unstable manifold is
actually a pair of homoclinic orbits, approaching the origin both as t → −∞
and as t → +∞. For larger values of r, the orbit from p+ (and that from
(+0.01, 0, 5)) crosses over and spirals into C−, while the orbit from p− (and
that from (−0.01, 0, 5)) spirals into C+, as depicted in the fourth portrait in
Fig. 15.1.

This spiraling into C± does not endure as r increases. As stated in
(15.23), there is a critical rc ≈ 24.74 past which DV (C±) has two eigenvalues
with positive rather than negative real part. At r = 23.333, this spiraling
has slowed. In fact, the fifth portrait in Fig. 15.1 does not reveal spiraling all
the way in. The orbits pictured there are of the form Φt(pj) for t ∈ [0, 40].
If t is taken somewhat larger, one sees asymptotic approaches to C±, with
r = 23.333.

In the sixth phase portrait of Fig. 15.1, we have r = 28 > rc. The or-
bits approach the unstable manifolds of C± and then spiral out from these
critical points. After some spiraling out from C−, the orbit starting from
(+0.01, 0, 5) makes a jump to the vicinity of C+, approaches its unstable
manifold, and starts spiraling out from C+. After a while, the orbit jumps
back to the vicinity of C−, and this spiraling and jumping is endlessly re-
peated. The six phase portraits in Fig. 15.3 show

(15.25) Φt(0.01, 0, 5), 80j < t < 80(j + 1), 0 ≤ j ≤ 5.

The portraits differ in fine detail from each other, but they are fairly similar,
and seem to reveal what is called a strange attractor.

Figures 15.1–3 were produced by numerically integrating (15.1), using a
fourth-order Runge-Kutta scheme, described in §11, with step size

(15.26) h = 0.0005.

Use of the step size h = 0.001 produced apparently identical phase portraits
in Fig. 15.2, and in all but the last portrait in Fig. 15.1. There were notice-
able differences in the last phase portrait of Fig. 15.1 and in the portraits of
Fig. 15.3. This phenomenon gives evidence of sensitive dependence of the
orbits on initial conditions, and leads to unpredictibility of orbits, which is
part of the signature of chaos.
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Figure 15.2
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Figure 15.3



142 Nonlinear Systems of Differential Equations Michael Taylor

We make one further comment about Figs. 15.1–15.3. Of course, the
orbits depicted are curves (x(t), y(t), z(t)) in R3. What is shown in these
figures are 2-dimensional projections, namely (u(t), v(t)), with u(t) = x(t)+
y(t)/2, v(t) = z(t)− y(t)/2.

Periodically forced Duffing equation

Our second example arises from motion in 1 dimension, in a nonlinear
background field, with a periodic forcing term added:

(15.27)
d2x

dt2
= f(x) + r cos t.

Here r is a parameter. When converted to a first order system and put in
autonomous form, this becomes

(15.28)

dx

dt
= y,

dy

dt
= f(x) + r cos z,

dz

dt
= 1.

We take

(15.29) f(x) = x− x3.

Then (15.27) is called a periodically forced Duffing equation if r 6= 0. For
r = 0 it is called Duffing’s equation, and it reduces to a 2× 2 system, whose
phase portrait is given in Fig. 15.4. There are two homoclinic orbits, each
tending to the origin as t → ±∞. All the other orbits are closed, and lie on
level curves of

(15.30) E(x, y) =
y2

2
− x2

2
+

x4

4
.

Fig. 15.5 shows six individual orbits of (15.28) with r = 0, orbits through
the six points

(15.31) x =
√

2 +
3k

10
, −4 ≤ k ≤ 1, y = 0.

The orbits for (15.28) are curves (x(t), y(t), z(t)), but for r = 0 we simply
plot (x(t), y(t)) in Fig. 15.5.

For r 6= 0, matters are more complicated, since z is coupled to (x, y) in
(15.28). We need a different way to portray the orbits (x(t), y(t), z(t)). In
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Figure 15.4

this case, unlike for the Lorenz system, a linear projection of (x, y, z) space
onto (u, v) space is not the best way to proceed. Taking into account the
periodicity of the right side of (15.28) in z, we treat z = t as an angular
variable, and transfer (x, y, z) space to (x̃, ỹ, z̃) space, with

x̃ = (x + 2) cos t, ỹ = y, z̃ = (x + 2) sin t.

This corresponds to taking the (x, y) plane pictured in Fig. 15.5 and rotating
it about the vertical axis x = −2. We follow this with the linear map to
the (u, v) plane, u = z̃ − x̃/2, v = ỹ − x̃/2. Consequently, to produce
Figs. 15.6–15.8, we draw curves (u(t), v(t)), with

(15.32) u(t) = (x(t) + 2)
(
sin t− cos t

2

)
, v(t) = y(t)− (x(t) + 2)

cos t

2
.

For initial data, we take x and y as in (15.31) and z = 0. We use a fourth
order Runge-Kutta scheme.

Fig. 15.6 draws such curves when (x, y, z) solve (15.28) with r = 0. Note
that in all but the fifth portrait, the orbits lie on smooth donut-shaped
surfaces (called tori). The fifth portrait depicts the homoclinic orbit, which
spends most of its time near the origin in (x, y)-space. It lies on a surface
that is smooth except along a curve, where it has a corner.

Figure 15.7 gives this representation of orbits of (15.28), with

(15.33) r = 0.1.

Two of the six orbits seem to lie on smooth tori (one very thin, the other
somewhat deformed). The other four are all apparently a mess, and also,
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Figure 15.5
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Figure 15.6
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Figure 15.7
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Figure 15.8



148 Nonlinear Systems of Differential Equations Michael Taylor

Figure 15.9

apparently, about the same mess. In Fig. 15.8 we present such orbits with
initial data

(15.34) x =
√

2 +
k

20
, 0 ≤ k ≤ 5, y = 0,

interpolating from the fifth orbit of Fig. 15.7 halfway to the sixth orbit.
Here the first three orbits appear chaotic and the last three appear to lie on
smooth surfaces.

An alternative to depicting orbits of the system (15.28)–(15.29) is to
depict orbits of the associated Poincaré map, characterized as follows. Take
an initial point p = (x0, y0, 0). Solve (15.28) with this initial data, and
then set q = (x(2π), y(2π), 2π). The nature of the mapping on the third
coordinate is trivial in this case, so we just consider

(15.35) (x(0), y(0)) 7→ (x(2π), y(2π)).

This is the Poincaré map associated to the system (15.28).
The Poincaré map is defined in a more general context. Let X be a

smooth vector field on Ω ⊂ Rn and let S be an (n− 1)-dimensional surface
transversal to X, i.e., X is nowhere tangent to S. Under certain circum-
stances, one has a Poincaré map

(15.36) P : O −→ S,

defined on an open subset O ⊂ S, where p ∈ O and P (p) = q is the point
Φt

X(p) with smallest t > 0 such that Φt
X(p) ∈ S. See Fig. 15.9.
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In the setting of (15.28), (15.35), the orbit for Poincaré map (x(0), y(0)) =
(x, 0), with x as in (15.34), is presented in Fig. 15.10, which can be appre-
ciated in light of Fig. 15.8. Each picture in Fig. 15.10 is made of 9000
points in the orbit of the Poincaré map (or rather an approximation via a
Runge-Kutta difference scheme). The first three pictures seem to show or-
bits spread out in a 2-dimensional region, while the last three seem to show
orbits lying on smooth curves.

Going further, each of the last three pictures in Fig. 15.10 suggest the
following:

Assertion. There is a region Ω ⊂ R2, smoothly equivalent to the disk

(15.37) D = {x ∈ R2 : ‖x‖ ≤ 1},
that is to say, there is a smooth one-to-one map ϕ : Ω → D with smooth
inverse ϕ−1 : D → Ω, and the Poincaré map takes Ω into itself, i.e.,

(15.38) P : Ω −→ Ω.

Granted this, we can make use of the following result, known as Brouwer’s
fixed-point theorem.

Theorem. Each smooth map

(15.39) ψ : D −→ D

has a fixed point, i.e., there exists p ∈ D such that ψ(p) = p.

See Appendix F for a proof of this result. Given the assertion above, we
can take ψ = ϕ ◦ P ◦ ϕ−1 and conclude that

(15.40) P (q) = q, q = ϕ−1(p).

Such fixed points of the Poincaré map give rise to periodic solutions to the
associated systems of differential equations (in this case, (15.27)). Estab-
lishing the existence of periodic solutions is one of many uses for Poincaré
maps. We refer to references cited in the next paragraph for discussions of
other uses.

Understanding how the chaotic looking orbits for the Lorenz and Duffing
systems and other systems are chaotic has engendered a lot of work. For
more material on this, we particularly recommend the Introduction to Chaos
in Chapter 2 of [GH], which treats four examples, including the Lorenz
system and the forced Duffing system. Other material on chaotic systems
can be found in [AS], [AP], [HK], [HSD], [J], and [LL]. A detailed study
of the Lorenz system is given in [Sp].
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Figure 15.10
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Exercises

1. Consider the double pendulum system, in the limit m2 = 0, given by
(9.35)–(9.36). Substitute

(15.41) θ1(t) ≈ r cosωt, ω =
√

g

`1

into (9.36), expand in powers of r, and throw away terms containing
second and higher powers of r. Show that you get

(15.42) θ′′2(t) +
g

`2
sin θ2(t) = rω2 `1

`2
cos θ2(t) cos ωt.

Exercises 2–9 are for readers who can use a programming language, with
graphics capabilities.

2. Write a program to exhibit solution curves of (15.42), in a fashion anal-
ogous to the treatment of (15.27), involving an analogue of (15.28). Try
various values of r, g/`2, etc., and see when the behavior is more chaotic
or less chaotic.

3. Write a program to exhibit solutions to the full double pendulum system
(9.15)–(9.16). Take, e.g., m1 = m2 = 1, `1 = `2 = 1, and variants.

4. Examine orbits and Poincaré maps for the periodically forced Duffing
equation for other values of r, such as r = 0.2, 0.05, 10−2, 10−3, etc.

Exercises 5–8 deal with systems of the form

(15.43)
d2

dt2

(
x

y

)
= −∇V (x, y).

These are 2× 2 second order systems, which convert to 4× 4 first order
systems. Energy conservation leads to flows on 3-dimensional constant
energy surfaces. In each case, write a program to exhibit solution curves
(x(t), y(t)). See whether the displayed solutions seem to be regular or
chaotic.

5. Take
V (x, y) = x2 + axy + y4.
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Try various a ∈ [0, 10].

6. Take
V (x, y) = x4 + axy + y4, a ∈ [−2, 2].

7. Take
V (x, y) = x4 + ax2y + y4, a ∈ [−1, 1].

8. Take

V (x, y) =
1
2
(x2 + y2) + a(x4 − x2y + y4), a ∈ [0, 1].

9. Taking off from models in §§13–14, see if you can construct models of
interactions of 3 species that exhibit chaotic behavior.

A. The derivative in several variables

To start this section off, we define the derivative and discuss some of its basic
properties. Let O be an open subset of Rn, and F : O → Rm a continuous
function. We say F is differentiable at a point x ∈ O, with derivative L, if
L : Rn → Rm is a linear transformation such that, for y ∈ Rn, small,

(A.1) F (x + y) = F (x) + Ly + R(x, y)

with ‖R(x, y)‖ = o(‖y‖), i.e.,

(A.2)
‖R(x, y)‖
‖y‖ → 0 as y → 0.

We denote the derivative at x by DF (x) = L. With respect to the standard
bases of Rn and Rm, DF (x) is simply the matrix of partial derivatives,

(A.3) DF (x) =
(

∂Fj

∂xk

)
,

so that, if v = (v1, . . . , vn)t, (regarded as a column vector) then

(A.4) DF (x)v =
(∑

k

∂F1

∂xk
vk, . . . ,

∑

k

∂Fm

∂xk
vk

)t
.
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It will be shown below that F is differentiable whenever all the partial
derivatives exist and are continuous on O. In such a case we say F is a C1

function on O. More generally, F is said to be Ck if all its partial derivatives
of order ≤ k exist and are continuous. If F is Ck for all k, we say F is C∞.

Sometimes one might want to differentiate an Rm-valued function F (x, t)
only with respect to x. In that case, if

F (x + y, t) = F (x, t) + Ly + R(x, y, t),

with ‖R(x, y, t)‖ = o(‖y‖), we write DxF (x, t) = L.
We now derive the chain rule for the derivative. Let F : O → Rm be

differentiable at x ∈ O, as above, let U be a neighborhood of z = F (x) in
Rm, and let G : U → Rk be differentiable at z. Consider H = G ◦ F. We
have

(A.5)

H(x + y) = G(F (x + y))

= G
(
F (x) + DF (x)y + R(x, y)

)

= G(z) + DG(z)
(
DF (x)y + R(x, y)

)
+ R1(x, y)

= G(z) + DG(z)DF (x)y + R2(x, y)

with ‖R2(x, y)‖
‖y‖ → 0 as y → 0.

Thus G ◦ F is differentiable at x, and

(A.6) D(G ◦ F )(x) = DG(F (x)) ·DF (x).

In case k = 1, so G : U → R, we can rewrite (A.6) as

(A.7) D(G ◦ F )(x) = ∇G(F (x))tDF (x),

where ∇G(y)t = (∂G/∂y1, . . . , ∂G/∂ym). If in addition n = 1, so F is a
function of one variable x ∈ O ⊂ R, with values in Rm, this in turn leads to

(A.8)
d

dx
G(F (x)) = ∇G(F (x)) · F ′(x).

This leads to such formulas as (3.10).
Another useful remark is that, by the Fundamental Theorem of Calculus,

applied to ϕ(t) = F (x + ty),

(A.9) F (x + y) = F (x) +
∫ 1

0
DF (x + ty)y dt,
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provided DF is continuous. A closely related application of the Fundamental
Theorem of Calculus is that, if we assume F : O → Rm is differentiable in
each variable separately, and that each ∂F/∂xj is continuous on O, then
(A.10)

F (x + y) = F (x) +
n∑

j=1

[
F (x + zj)− F (x + zj−1)

]
= F (x) +

n∑

j=1

Aj(x, y)yj ,

Aj(x, y) =
∫ 1

0

∂F

∂xj

(
x + zj−1 + tyjej

)
dt,

where z0 = 0, zj = (y1, . . . , yj , 0, . . . , 0), and {ej} is the standard basis of
Rn. Now (A.10) implies F is differentiable on O, as we stated below (A.4).
Thus we have established the following.

Proposition A.1. If O is an open subset of Rn and F : O → Rm is of
class C1, then F is differentiable at each point x ∈ O.

For the study of higher order derivatives of a function, the following
result is fundamental.

Proposition A.2. Assume F : O → Rm is of class C2, with O open in Rn.
Then, for each x ∈ O, 1 ≤ j, k ≤ n,

(A.11)
∂

∂xj

∂F

∂xk
(x) =

∂

∂xk

∂F

∂xj
(x).

To prove Proposition A.2, it suffices to treat real valued functions, so
consider f : O → R. For 1 ≤ j ≤ n, we set

(A.12) ∆j,hf(x) =
1
h

(
f(x + hej)− f(x)

)
,

where {e1, . . . , en} is the standard basis of Rn. The mean value theorem (for
functions of xj alone) implies that if ∂jf = ∂f/∂xj exists on O, then, for
x ∈ O, h > 0 sufficiently small,

(A.13) ∆j,hf(x) = ∂jf(x + αjhej),

for some αj ∈ (0, 1), depending on x and h. Iterating this, if ∂j(∂kf) exists
on O, then, for x ∈ O, h > 0 sufficiently small,

(A.14)

∆k,h∆j,hf(x) = ∂k(∆j,hf)(x + αkhek)

= ∆j,h(∂kf)(x + αkhek)

= ∂j∂kf(x + αkhek + αjhej),

with αj , αk ∈ (0, 1). Here we have used the elementary result

(A.15) ∂k∆j,hf = ∆j,h(∂kf).

We deduce the following.
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Proposition A.3. If ∂kf and ∂j∂kf exist on O and ∂j∂kf is continuous
at x0 ∈ O, then

(A.16) ∂j∂kf(x0) = lim
h→0

∆k,h∆j,hf(x0).

Clearly

(A.17) ∆k,h∆j,hf = ∆j,h∆k,hf,

so we have the following, which easily implies Proposition A.2.

Corollary A.4. In the setting of Proposition A.3, if also ∂jf and ∂k∂jf
exist on O and ∂k∂jf is continuous at x0, then

(A.18) ∂j∂kf(x0) = ∂k∂jf(x0).

If U and V are open subsets of Rn and F : U → V is a C1 map, we
say F is a diffeomorphism of U onto V provided F maps U one-to-one and
onto V , and its inverse G = F−1 is a C1 map. If F is a diffeomorphism,
it follows from the chain rule that DF (x) is invertible for each x ∈ U . We
now state a partial converse of this, the Inverse Function Theorem, which is
a fundamental result in multivariable calculus.

Theorem A.5. Let F be a Ck map from an open neighborhood Ω of p0 ∈ Rn

to Rn, with q0 = F (p0). Assume k ≥ 1. Suppose the derivative DF (p0) is
invertible. Then there is a neighborhood U of p0 and a neighborhood V of
q0 such that F : U → V is one-to-one and onto, and F−1 : V → U is a Ck

map. (So F : U → V is a diffeomorphism.)

Proofs of Theorem A.5 can be found in a number of texts, including [LS]
and Chapter 1 of [T].

B. Convergence, compactness, and continuity

We discuss a number of notions and results related to convergence in Rn,
of use in this chapter. First, a sequence of points (pj) in Rn converges to a
limit p ∈ Rn (we write pj → p) if and only if

(B.1) ‖pj − p‖ −→ 0.

Here ‖ · ‖ is the norm on Rn arising in §10 of Chapter 2, and the meaning
of (B.1) is that for every ε > 0 there exists N such that

(B.2) j ≥ N =⇒ ‖pj − p‖ < ε.
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A set S ⊂ Rn is said to be closed if and only if

(B.3) pj ∈ S, pj → p =⇒ p ∈ S.

The complement Rn \ S of a closed set S is open. Alternatively, Ω ⊂ Rn is
open if and only if, given q ∈ Ω, there exists ε > 0 such that Bε(q) ⊂ Ω,
where

(B.4) Bε(q) = {p ∈ Rn : ‖p− q‖ < ε},

so q cannot be a limit of a sequence of points in Rn \ Ω.
An important property of Rn is completeness, a property defined as

follows. A sequence (pj) of points in Rn is called a Cauchy sequence if and
only if

(B.5) ‖pj − pk‖ −→ 0, as j, k →∞.

It is easy to see that if pj → p for some p ∈ Rn, then (B.5) holds. The
completeness property is the converse.

Theorem B.1. If (pj) is a Cauchy sequence in Rn, then it has a limit, i.e.,
(B.1) holds for some p ∈ Rn.

Since convergence pj → p in Rn is equivalent to convergence in R of each
component, it is the fundamental property of completeness of R that is the
issue. This is discussed in [BS], from an axiomatic viewpoint, and in [Kr],
and also [T2], from a more constructive viewpoint.

Completeness provides a path to the following key notion of compactness.
A set K ⊂ Rn is compact if and only if the following property holds.

(B.6)
Each infinite sequence (pj) in K has a subsequence

that converges to a point in K.

It is clear that if K is compact, then it must be closed. It must also be
bounded, i.e., there exists R < ∞ such that K ⊂ BR(0). Indeed, if K is not
bounded, there exist pj ∈ K such that ‖pj+1‖ ≥ ‖pj‖ + 1. In such a case,
‖pj−pk‖ ≥ 1 whenever j 6= k, so (pj) cannot have a convergent subsequence.
The following converse statement is a key result.

Theorem B.2. If K ⊂ Rn is closed and bounded, then it is compact.

We start with a special case.

Proposition B.3. Each closed bounded interval I = [a, b] ⊂ R is compact.
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Proof. Let (pj) be an infinite sequence in [a, b], j ∈ Z+. Divide I into two
halves, I0 = [a, (a + b)/2], I1 = [(a + b)/2, b]. If pj ∈ I0 for infinitely many
j, pick some pj0 ∈ I0, and set a1 = 0. Otherwise, pick some pj0 ∈ I1, and
set a1 = 1. Set q0 = pj0 .

Now divide Ia1 into two equal intervals, Ia10 and Ia11. If pj ∈ Ia10 for
infinitely many j, pick pj1 ∈ Ia10, j1 > j0. Otherwise, pick pj1 ∈ Ia11, j1 >
j0. Set q1 = pj1 . Continue.

One gets (qj), a subsequence of (pj), with the property that

(B.7) |qj − qj+k| ≤ 2−j |b− a|, ∀ k ≥ 0.

Thus (qj) is a Cauchy sequence, so by the completeness of R, it converges,
to the desired limit p ∈ [a, b].

From Proposition B.3 it is easy enough to show that any closed, bounded
box

(B.8) B = {(x1, . . . , xn) ∈ Rn : aj ≤ xj ≤ bj , ∀ j}

is compact. If K ⊂ Rn is closed and bounded, it is a subset of such a box,
and clearly every closed subset of a compact set is compact, so we have
Theorem B.2.

We next discuss continuity. If S ⊂ Rn, a function

(B.9) f : S −→ Rm

is said to be continuous at p ∈ S provided

(B.10) pj ∈ S, pj → p =⇒ f(pj) → f(p).

If f is continuous at each p ∈ S, we say f is continuous on S.
The following two results give important connections between continuity

and compactness.

Proposition B.4. If K ⊂ Rn is compact and f : K → Rm is continuous,
then f(K) is compact.

Proof. If (qk) is an infinite sequence of points in f(K), pick pk ∈ K such
that f(pk) = qk. If K is compact, we have a subsequence pkν → p in K, and
then qkν → f(p) in Rm.

This leads to the second connection.
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Proposition B.5. If K ⊂ Rn is compact and f : K → Rm is continuous,
then there exists p ∈ K such that

(B.11) ‖f(p)‖ = max
x∈K

‖f(x)‖,

and there exists q ∈ K such that

(B.12) ‖f(q)‖ = min
x∈K

‖f(x)‖.

The meaning of (B.11) is that ‖f(p)‖ ≥ ‖f(x)‖ for all x ∈ K, and the
meaning of (B.12) is similar.

For the proof, consider

(B.13) g : K −→ R, g(p) = ‖f(p)‖.
This is continuous, so g(K) is compact. Hence g(K) is bounded; say g(K) ⊂
I = [a, b]. Repeatedly subdividing I into equal halves, as in the proof of
Proposition B.3, at each stage throwing out subintervals that do not intersect
g(K) and keeping only the leftmost and rightmost amongst those remaining,
we obtain α ∈ g(K) and β ∈ g(K) such that g(K) ⊂ [α, β]. Then α = f(q)
and β = f(p) for some p and q ∈ K satisfying (B.11)–(B.12).

A variant of Proposition B.5, with a very similar proof, is that if K ⊂ Rn

is compact and f : K → R is continuous, then there exist p, q ∈ K such that

(B.14) f(p) = max
x∈K

f(x), f(q) = min
x∈K

f(x).

We next define the closure S of a set S ⊂ Rn, to consist of all points
p ∈ Rn such that Bε(p)∩S 6= ∅ for all ε > 0. Equivalently, p ∈ S if and only
if there exists an infinite sequence (pj) of points in S such that pj → p.

Now we define supS and inf S. First, let S ⊂ R be nonempty and
bounded from above, i.e., there exists R < ∞ such that x ≤ R for all x ∈ S.
Hence x ≤ R for all x ∈ S. In such a case, there exists an interval [R−k, R]
whose intersection with S is nonempty, hence compact. We set

(B.15) sup S = max
S∩[R−k,R]

x,

the right side well defined by (B.14), with f(x) = x. There is a similar
definition of

(B.16) inf S,

when S is bounded from below.
We establish some further properties of compact sets K ⊂ Rn, leading

to the important result, Proposition B.9 below.
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Proposition B.6. Let K ⊂ Rn be compact. Assume X1 ⊃ X2 ⊃ X3 ⊃ · · ·
form a decreasing sequence of closed subsets of K. If each Xm 6= ∅, then
∩mXm 6= ∅.
Proof. Pick xm ∈ Xm. If K is compact, (xm) has a convergent subse-
quence, xmk

→ y. Since {xmk
: k ≥ `} ⊂ Xm`

, which is closed, we have
y ∈ ∩mXm.

Corolary B.7. Let K ⊂ Rn be compact. Assume U1 ⊂ U2 ⊂ U3 ⊂ · · · form
an increasing sequence of open sets in Rn. If ∪mUm ⊃ K, then UM ⊃ K
for some M .

Proof. Consider Xm = K \ Um.

Before getting to Proposition B.9, we bring in the following. Let Q
denote the set of rational numbers, and let Qn denote the set of points in
Rn all of whose components are rational. The set Qn ⊂ Rn has the following
“denseness” property: given p ∈ Rn and ε > 0, there exists q ∈ Qn such
that ‖p− q‖ < ε. Let

(B.17) R = {Brj (qj) : qj ∈ Qn, rj ∈ Q ∩ (0,∞)}.
Note that Q and Qn are countable, i.e., they can be put in one-to-one corre-
spondence with N. Hence R is a countable collection of balls. The following
lemma is left as an exercise for the reader.

Lemma B.8. Let Ω ⊂ Rn be a nonempty open set. Then

(B.18) Ω =
⋃
{B : B ∈ R, B ⊂ Ω}.

To state the next result, we say that a collection {Uα : α ∈ A} covers K
if K ⊂ ∪α∈AUα. If each Uα ⊂ Rn is open, it is called an open cover of K. If
B ⊂ A and K ⊂ ∪β∈BUβ, we say {Uβ : β ∈ B} is a subcover.

Proposition B.9. If K ⊂ Rn is compact, then it has the following property.

(B.19) Every open cover {Uα : α ∈ A} of K has a finite subcover.

Proof. By Lemma B.8, it suffices to prove the following.

(B.20)
Every countable cover {Bj : j ∈ N} of K by open balls

has a finite subcover.

For this, we set

(B.21) Um = B1 ∪ · · · ∪Bm

and apply Corollary B.7.



160 Nonlinear Systems of Differential Equations Michael Taylor

C. Critical points that are saddles

Let F be a C3 vector field on Ω ⊂ Rn, with a critical point at p ∈ Ω. We say
p is a simple critical point if L = DF (p) has no eigenvalues that are purely
imaginary (or zero). From here on we assume this condition holds. As seen
in Chapter 2, we can write

(C.1) Cn = W+ ⊕W−,

where W+ is the direct sum of the generalized eigenspaces of L associated
to eigenvalues with positive real part and W− is the direct sum of the gen-
eralized eigenspaces associated to eigenvalues with negative real part. Since
L ∈ M(n,R), non-real eigenvalues of L must occur in complex conjugate
pairs, and

(C.2) Rn = V+ ⊕ V−, V± = W± ∩ Rn.

We have

(C.3) v ∈ W± =⇒ etLv → 0 as t → ∓∞,

and a fortiori

(C.4) v ∈ V± =⇒ etLv → 0 as t → ∓∞.

We say the critical point at p is a source if V− = 0, a sink if V+ = 0, and
a saddle if V− 6= 0 and V+ 6= 0. The fact that

(C.5) V− = Rn =⇒ Φt
F (x) → p as t → +∞,

for x sufficiently close to p, where Φt
F is the flow generated by F , was proven

in §3 (cf. Proposition 3.4), and similarly we have

(C.6) V+ = Rn =⇒ Φt
F (x) → p as t → −∞,

for x sufficiently close to p. The purpose of this appendix is to discuss the
saddle case, where n+ = dim V+ > 0 and n− = dim V− > 0. In such a case,
as advertised in §3, there is a neighborhood U of p and there are C1 surfaces
S±, of dimension n±, such that

(C.7) {p} = S+ ∩ S−,

and

(C.8) x ∈ S± =⇒ Φt
F (x) → p as t → ∓∞.
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The surfaces S− and S+ are called, respectively, the stable and unstable
manifolds of F at p. They have the further property that if γ is a C1

curve in S+ (respectively, S−), and γ(0) = p, then γ′(0) ∈ V+ (respectively,
V−). In addition, given ε > 0, there exists δ > 0 such that if x ∈ U \ S−
but dist(x, S−) < δ, then for some t1 > 0, ‖Φt1

F (x) − p‖ < ε, and for all
t ≥ t1, dist(Φt

F (x), S+) < ε, at least until Φt
F (x) exits U . We want to

demonstrate this result. For simplicity of presentation, we concentrate on
the case n = 2 (and n+ = n− = 1). However, the argument we present can
be modified to treat saddles in higher dimension.

We make some preliminary constructions. Relabeling the coordinates,
we can assume p = 0. Altering F outside some neighborhood of p = 0
if necessary, we can assume F is a C3 vector field on Rn and there exists
C < ∞ such that

(C.9) ‖F (x)‖ ≤ C‖x‖, ∀x ∈ Rn.

Hence, as seen in §3 (Exercise 3), Φt
F (x) is well defined for all x ∈ Rn, t ∈ R.

Applying the fundamental theorem of calculus twice gives

(C.10) F (x) = Lx +
∑

j,k

xjxkGjk(x),

where

(C.11) L = DF (0),

and Gjk are C1 vector fields, given by

(C.12) Gjk(x) =
∫ 1

0

∫ 1

0

∂2

∂xk∂xj
F (stx) ds dt.

We define the family of vector fields Fε by

(C.13) Fε(x) =
1
ε
F (εx),

for ε > 0. By (C.10),

(C.14) Fε(x) = Lx + εGε(x),

where

(C.15) Gε(x) =
∑

j,k

xjxkGjk(εx).



162 Nonlinear Systems of Differential Equations Michael Taylor

Passing to the limit ε → 0 gives F0(x) = Lx. Results of §2 yield the
following.

Lemma C.1. Given δ > 0, T < ∞, there exists ε0 = ε0(δ, T, F ) > 0 such
that for all ε ∈ (0, ε0],

(C.16)
‖x‖ ≤ 2, |t| ≤ T, ‖Φs

Fε
(x)‖ ≤ 2 ∀ s ∈ [0, t]

=⇒ ‖Φt
Fε

(x)− etLx‖ ≤ δ.

Specializing to n = 2, we can assume that

(C.17) L =
(

a
−b

)
, a, b > 0.

We take the box

(C.18) O = {(x1, x2) : |x1|, |x2| ≤ 1},

and set

(C.19) Ok = 2−kO.

We define four families of maps

(C.20) ϕεj , ψεj :
[
−1

2
,
1
2

]
−→ [−1, 1], j = 1, 2, 0 ≤ ε ≤ 1,

as follows. For j = 1, define tε(s) as the smallest positive number such that

Φ−tε(s)
Fε

(
s,

1
2

)
∈ {(σ, 1) : −1 ≤ σ ≤ 1},

and then set ϕε1(s) to be the x1-coordinate of Φ−tε(s)
Fε

(s, 1/2). To give an
alternative description, we are mapping the top edge of O1 (identified with
[−1/2, 1/2]) to the top edge of O (identified with [−1, 1]) by the backward
flow generated by Fε. Similarly define ϕε2 via the backward flow map of the
bottom edge of O1 to the bottom edge of O, and define ψε1 and ψε2 via the
forward flow maps of the right and left edges of O1 to the corresponding
edges of O. See Fig. C.1. It is readily verified that these maps are contrac-
tions for ε = 0, where F0(x) = Lx, i.e., there exists A = A(a, b) < 1 such
that

(C.21)
|ϕεj(s)− ϕεj(t)| ≤ A|s− t|,
|ψεj(s)− ψεj(t)| ≤ A|s− t|,
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Figure C.1

for all s, t ∈ [−1/2, 1/2].
Results of §2 then establish the following.

Lemma C.2. There exists ε1 = ε1(F ) > 0 and A = A(F ) < 1 such that
whenever 0 ≤ ε ≤ ε1, the maps ϕεj and ψεj in (C.20) are well defined on
[−1/2, 1/2] and (C.21) holds for all s, t ∈ [−1/2, 1/2].

We make a further adjustment. Take ε2 ≤ min(ε1(F ), ε0(1/10, 10, F )).
Further shrinking ε2 is nesessary, arrange that, whenever ε ∈ (0, ε2],

(C.22) ‖x‖ ≤ 2 =⇒ ‖Fε(x)− Lx‖ ≤ 1
2
‖Lx‖,

so that, if (x1, x2) ∈ O, Fε(x1, x2) points down if x2 ∈ [1/2, 1], up if x2 ∈
[−1,−1/2], left if x1 ∈ [1/2, 1], and right if x1 ∈ [−1,−1/2]. Now replace F
by Fε2 , denoting this scaled vector field by F . Then (C.16) holds with T = 10
and δ = 1/10 for all ε ∈ (0, 1] and (C.21) holds for all s, t ∈ [−1/2, 1/2],
with A < 1, for all ε ∈ (0, 1]. For notational simplicity, set

(C.23) Φt
k = Φt

Fε
, ε = 2−k.

Note that dilation by the factor 2k takes the flow Φt
F on Ok to the flow Φt

k

on O.
With these preliminaries done, we start in earnest our demonstration

that the flow generated by F has saddle-like behavior near the critical point
p = 0. Denote by T ,B,L, and R the top, bottom, left, and right edges of O,
and similarly denote by Tk,Bk,Lk, and Rk the top, bottom, left, and right
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Figure C.2

sides of Ok. Then the maps (C.20) can by slight abuse of terminology be
labeled

(C.24)
ϕε1 : T1 → T , ϕε2 : B1 → B,

ψε1 : R1 → R, ψε2 : L1 → L.

Pick two points p0`, p0r ∈ T such that for some t0`, t0r ∈ (0, 1),

(C.25) p∗0` = Φt0`
F (p0`) ∈ L, p∗0r = Φt0r

F (p0r) ∈ R,

and pick two points q0`, q0r ∈ B such that for some s0`, s0r ∈ (0, 1),

(C.26) q∗0` = Φs0`
F (q0`) ∈ L, q∗0r = Φs0r

F (q0r) ∈ R.

See Fig. C.2. The possibility to do this is guaranteed by Lemma C.1. Denote
the orbits of Φt

0 = Φt
F through p0`, p0r by γ0`, γ0r and those through q0`, q0r

by σ0`, σ0r.
Let us call the construction just described Step 0. To continue, at Step 1,

pick p̃1`, p̃1r ∈ T1 and q̃1`, q̃1r ∈ B1 such that the following holds. Note that
2p̃1`, 2p̃1r ∈ T and 2q̃1`, 2q̃1r ∈ B. We require that, for some t1`, t1r ∈ (0, T1),

(C.27) Φt1`
1 (2p̃1`) ∈ L, Φt1r

1 (2p̃1r) ∈ R,

and for some s1`, s1r ∈ (0, T1),

(C.28) Φs1`
1 (2q̃1`) ∈ L, Φs1r

1 (2q̃1r) ∈ R.

The conditions (C.27) and (C.28) are equivalent to

(C.29) p̃∗1` = Φt1`
F (p̃1`) ∈ L1, p̃∗1r = Φt1r

F (p̃1r) ∈ R1,
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Figure C.3

and

(C.30) q̃∗1` = Φs1`
F (q̃1`) ∈ L1, q̃∗1r = Φs1r

F (q̃1r) ∈ R1.

See Fig. C.3. Denote the orbits of F through p̃1`, p̃1r by γ1`, γ1r and those
through q̃1`, q̃1r by σ1`, σ1r. When picking p̃1`, p̃1r, q̃1`, and q̃1r, one can and
should enforce the following condition. If γ0` intersects T1, p̃1` should be to
the right of such an intersection, if γ0r intersects T1, p̃1r should be to the
left of such an intersection, and similarly for cases when σ0` or σ0r intersect
B1. Also, we can take T1 > 1. (More on this below.)

Now we continue the orbits γ1`, γ1r, σ1`, and σ1r forward and back-
ward, until they intersect the boundary of O, at points p1`, p1r, q1`, q1r and
p∗1`, p

∗
1r, q

∗
1`, q

∗
1r, as illustrated in Fig. C.4. That such an intersection must

occur is guaranteed by (C.22). This, together with the fact that orbits of F
cannot intersect, guarantees that

(C.31) p0` < p1` < p1r < p0r,

in the sense that p < p′ means p is to the left of p′. In a similar sense, made
clear in Fig. C.4, we have

(C.32)

q0` < q1` < q1r < q0r,

p∗0r < p∗1r < q∗1r < q∗0r,

p∗0` < p∗1` < q∗1` < q∗0`.
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Figure C.4

Furthermore, as a consequence of (C.21), we have

(C.33)

|p1` − p1r| ≤ A|p̃1` − p̃1r| ≤ A,

|q1` − q1r| ≤ A|q̃1` − q̃1r| ≤ A,

|p∗1r − q∗1r| ≤ A|p̃∗1r − q̃∗1r| ≤ A,

|p∗1` − q∗1`| ≤ A|p̃∗1` − q̃∗1r| ≤ A.

We proceed iteratively. At step k, pick p̃k`, p̃kr ∈ Tk and q̃k`, q̃kr ∈ Bk

such that the following holds. Note that 2kp̃k`, 2kp̃kr ∈ T and 2kq̃k`, 2kq̃kr ∈
B. We require that, for some tk`, tkr ∈ (0, Tk),

(C.34) Φtk`
k (2kp̃k`) ∈ L, Φtkr

k (2kp̃kr) ∈ R,

and for some sk`, skr ∈ (0, Tk),

(C.35) Φsk`
k (2kq̃k`) ∈ L, Φskr

k (2kq̃kr) ∈ R.

The conditions (C.34) and (C.35) are equivalent to

(C.36) p̃∗k` = Φtk`
F (p̃k`) ∈ Lk, p̃∗kr = Φtkr

F (p̃kr) ∈ Rk,

and

(C.37) q̃∗k` = Φsk`
F (q̃k`) ∈ Lk, q̃∗kr = Φskr

F (q̃kr) ∈ Rk.

Denote the orbits of F through p̃k`, p̃kr by γk`, γkr, and those through q̃k`, q̃kr

by σk`, σkr. When picking p̃k`, p̃kr, q̃k`, and q̃kr, one can and should enforce



C. Critical points that are saddles 167

Cigure C.5

the following condition. If γk−1,` intersects Tk, p̃k` should lie to the right of
such a point of intersection, if γk−1,r intersects Tk, p̃kr should lie to the left
of such a point of intersection, and similarly for cases where σk−1,` or σk−1,r

intersect Bk. At this point it is useful to note that, by Lemma D.1, we can
take

(C.38) Tk →∞ as k →∞,

and hence take (with z = ` or r)

(C.39) ‖2kp̃kz − (0, 1)‖ ≤ ηk, ‖2kq̃kz − (0, 1)‖ ≤ ηk, ηk → 0 as k →∞.

It then follows that (again with z = ` or r)
(C.40)
‖p̃∗kz − (2−k, 0)‖ ≤ 2−kη̃k, ‖q̃∗kz − (2−k, 0)‖ ≤ 2−kη̃k, η̃k → 0 as k →∞.

Now we continue the orbits γk`, γkr, σk`, and σkr forward and back-
ward, until they intersect the boundary of O, at points pk`, pkr, qk`, qkr,
and p∗k`, p

∗
kr, q

∗
k`, q

∗
kr, as illustrated in Fig. C.5. That such intersections must

occur is guaranteed by (C.22). As before, the fact that orbits of Φt
F cannot

intersect guarantees that

(C.41) p0` < · · · < pk` < pkr < · · · < p0r,

in the sense specified in (C.31), and, as in (C.32),

(C.42)

q0` < · · · < qk` < qkr < · · · < q0r,

p∗0r < · · · < p∗kr < q∗kr < · · · < q∗0r,

p∗0` < · · · < p∗k` < q∗k` < · · · < q∗0`.
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Figure C.6

Furthermore, as a consequence of (C.21), we have

(C.43)

|pk` − pkr| ≤ Ak|p̃k` − p̃kr| ≤ Ak2−kηk,

|qk` − qkr| ≤ Ak|q̃k` − q̃kr| ≤ Ak2−kηk,

|p∗k` − p∗kr| ≤ Ak|p̃∗k` − p̃∗kr| ≤ Ak2−kη̃k,

|q∗k` − q∗kr| ≤ Ak|q̃∗k` − q̃∗kr| ≤ Ak2−kη̃k.

In particular, these distances are converging to 0 quite rapidly. We obtain
limits

(C.44)
pk`, pkr → pt ∈ T , qk`, qkr → pb ∈ B,

p∗k`, q
∗
kr → p∗r ∈ R, p∗k`, q

∗
k` → p∗` ∈ L.

See Fig. C.6. We have

(C.45) Φt
F (pt), Φt

F (pb) → 0 as t → +∞,

and

(C.46) Φt
F (p∗`), Φt

F (p∗r) → 0 as t → −∞,

since the paths in (C.45) meet each Ok for large positive t and those in
(C.46) meet each Ok for large negative t. Furthermore, by (C.39)–(C.40),
plus the fact that all these paths solve dx/dt = F (x), the curves in (C.45)
fit together to form a C1 curve tangent to the x2-axis at p = 0, and those
in (C.46) fit together to form a C1 curve tangent to the x1-axis at p = 0.
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We sketch how to treat the case n = 3, n+ = 2, n− = 1. In place of
(C.17), we can take

(C.47) L =
(

A
−b

)
, A ∈ M(2,R), b > 0,

and, via Lemma 3.5, arrange that

(C.48) Av · v ≥ a‖v‖2, a > 0, ∀ v ∈ R2.

In place of (C.18), we use the cylinder

(C.49) O = {(x1, x2, x3) : x2
1 + x2

2 ≤ 1, |x3| ≤ 1}.

with boundary

(C.50) ∂O = T ∪ B ∪ L,

where T and B (the top and bottom) are disks and L (the side) is S1×[−1, 1].
We then take Ok = 2−kO, with boundary Tk ∪ Bk ∪ Lk. Parallel to (C.24),
we have (at least for small ε) maps

(C.51)
ϕε1 : T1 → T , ϕε2 : B1 → B,

ψε : L1 → L,

with ϕεj defined by backward flow of Φt
Fε

and ψε defined by forward flow.
Again the maps ϕεj are contractions for small ε. The maps ψε are not con-
tractions, but composing them on the left with the projection S1× [−1, 1] →
[−1, 1] produces a contraction, for small ε, and this is what one needs. In
place of a pair of initial data on T and a pair on B, one takes a circle of
initial data on T and one on B. Applying Φt

F yields a pair of flared tubes,
as pictured in Fig. C.7. From here, an iteration produces nested families
of such flared tubes, converging in on the one-dimensional stable manifold
S− and the two-dimensional unstable manifold S+. The interested reader is
invited to fill in the details, and work out the higher dimensional cases. See
also [CL] and [Hart] for other approaches to this result.

D. Periodic solutions of x′′ + x = εψ(x)

Equations of the form

(D.1) x′′ + x = εψ(x)

with “small” ε arise in a number of cases, and it is of interest to analyze
various features of these solutions. For example, as mentioned in §6, the
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Figure C.7

relativistic correction for planetary motion gives rise to the equation (6.53),
which takes the form (D.1) for x = u−A, with

(D.2) ψ(x) = (x + A)2.

Another example,

(D.3) ψ(x) = −x3,

yields a special case of Duffing’s equation. As we mentioned in §6, solutions
to (6.53) tend not to be periodic of period 2π, and this leads to the phe-
nomenon of precession of perihelia. It is of general interest to compute the
period of a solution to (D.1), and we discuss this problem here. We assume
ψ is smooth.

We rewrite (D.1) as a first order system and also explicitly record the
dependence on ε:

(D.4)
x′ε(t) = yε(t),

y′ε(t) = −xε(t) + εψ(xε(t)).

We pick a ∈ (0,∞) and impose the initial conditions

(D.5) xε(0) = a, yε(0) = 0.

Note that if we take

(D.6) Fε(x, y) =
y2

2
+

x2

2
− εΨ(x),
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where Ψ′(x) = ψ(x), then (d/dt)Fε(xε(t), yε(t)) = 0 for solutions to (D.4),
so orbits of (D.4) lie on level curves of Fε. For ε sufficiently small with
respect to a, the level curves of Fε on {(x, y) : x2 + y2 ≤ 2a2} will be close
to those of F0, that is to say, such level curves of Fε will be closed curves,
close to circles, and the associated solutions to (D.4)–(D.5) will be periodic.
The period T (ε) will have the following two properties, at least for small ε:

(D.7) T (ε) = 2π + O(ε), yε(T (ε)) = 0.

We will calculate a more precise approximation to T (ε), accurate for small
ε.

The first order of business is to calculate accurate approximations to
xε(t) and yε(t), valid uniformly for t in an interval containing [0, 2π]. It
follows from §2 that xε(t) and yε(t) are smooth functions of ε. Hence, for
each N ∈ N, we can write

(D.8)

xε(t) = a cos t +
N∑

k=1

Xk(t)εk + R1N (t, ε),

yε(t) = −a sin t +
N∑

k=1

Yk(t)εk + R2N (t, ε),

where

(D.9) |RjN (t, ε)| ≤ CKNεN+1, ∀ |t| ≤ K.

We write RjN (t, ε) = O(εN+1). The coefficients Xk(t) and Yk(t) satisfy
differential equations, obtained as follows. We have from (D.8)

(D.10) x′′ε(t) + xε(t) =
N∑

k=1

[
X ′′

k (t) + Xk(t)
]
εk + O(εN+1),

while
(D.11)

εψ(xε(t)) = εψ
(
a cos t +

N∑

k=1

Xk(t)εk
)

+ O(εN+1)

= ε
[
ψ(a cos t) +

N∑

j=1

1
j!

ψ(j)(a cos t)
( N∑

k=1

Xk(t)εk
)j]

+ O(εN+1).

We match up the coefficients of εk in (D.10) and (D.11) to obtain equations
for Xk(t). The case k = 1 gives

(D.12) X ′′
1 (t) + X1(t) = ψ(a cos t),
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and from (D.5) the initial conditions are seen to be

(D.13) X1(0) = 0, X ′
1(0) = 0.

The solution to (D.12)–(D.13) is given by Duhamel’s formula, cf. (4.10) of
Chapter 3:

(D.14) X1(t) =
∫ t

0
sin(t− s) ψ(a cos s) ds.

It is convenient to expand sin(t− s) and rewrite (D.14) as

(D.15) X1(t) = (sin t)
∫ t

0
cos sψ(a cos s) ds− (cos t)

∫ t

0
sin sψ(a cos s) ds.

Regarding Yk(t), we have

(D.16) Yk(t) = X ′
k(t),

for all k, and in particular

(D.17) Y1(t) = (cos t)
∫ t

0
cos sψ(a cos s) ds + (sin t)

∫ t

0
sin sψ(a cos s) ds.

In case ψ(x) is given by (D.2), we have

(D.18) ψ(a cos s) =
a2

2
cos 2s + 2aA cos s +

(
A2 +

a2

2

)
,

hence

(D.19)

∫ t

0
cos sψ(a cos s) ds

=
(
A2 +

3a2

4

)
sin t +

aA

2
sin 2t +

a2

12
sin 3t + aAt,

and

(D.20)

∫ t

0
sin sψ(a cos s) ds

=
(
A2 +

aA

2
+

a2

2

)
−

(
A2 +

5a2

12

)
cos t− aA

2
cos 2t− a2

12
cos 3t.

One can compute higher terms in (D.8). For example, matching up
coefficients of ε2 in (D.10) and (D.11) yields

(D.21) X ′′
2 (t) + X2(t) = ψ′(a cos t)X1(t).
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Again X2(0) = X ′
2(0) = 0, and, parallel to (D.14), we have

(D.22) X2(t) =
∫ t

0
sin(t− s) ψ′(a cos s)X1(s) ds.

Y2(t) is given by (D.16). One can continue this, but we will leave off at this
point.

We return to the problem of approximating the period T (ε), making use
of (D.7). A very effective method for solving yε(T ) = 0 with T ≈ 2π is
Newton’s method, which gives T (ε) as the limit of Tn(ε), defined recursively
by

(D.23) T0(ε) = 2π, Tn+1(ε) = Tn(ε)− yε(Tn(ε))
y′ε(Tn(ε))

.

This sequence converges fast:

(D.24) T (ε) = Tn(ε) + O(ε2n
),

provided one has yε(t) evaluated exactly. Given an approximation to yε(t),

(D.25) yε(t) = ỹε(t) + O(εN ), y′ε(t) = ỹ′ε(t) + O(εN ),

we can work with T̃n(ε), given by

(D.26) T̃0(ε) = 2π, T̃n+1(ε) = T̃n(ε)− ỹε(T̃n(ε))

ỹ′(T̃n(ε))
,

and we get

(D.27) T (ε) = T̃n(ε) + O(εN ), provided 2n ≥ N.

In particular, taking

(D.27) yε(t) = a sin t + Y1(t)ε + O(ε2),

we have

(D.28) T (ε) = T̃1(ε) + O(ε2),

with

(D.29)
T̃1(ε) = 2π − ỹε(2π)

ỹ′ε(2π)

= 2π +
1
a
Y1(2π)ε,
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hence, by (D.17),

(D.30) T (ε) = 2π +
ε

a

∫ 2π

0
cos sψ(a cos s) ds + O(ε2).

In case ψ(x) is given by (D.2), we have from (D.19) that

(D.31)
∫ 2π

0
cos sψ(a cos s) ds = 2πaA,

so in this case

(D.32) T (ε) = 2π(1 + Aε) + O(ε2).

Given an approximation ỹε(t) satisfying (D.25) with N = 3 or 4, we can
iterate (D.26) once more, obtaining T2(ε) = T (ε) + O(εN ), and so on. We
will not pursue the details.

We now return to the problem of approximating the solution (xε(t), yε(t))
of (D.4), and address a limitation of the approximations of the form (D.8).
As follows from (D.15)–(D.20), the first order approximation has the form

(D.33)
xε(t) = a cos t + X1(t)ε + O(ε2),

yε(t) = −a sin t + Y1(t)ε + O(ε2),

and, in the case that ψ(x) is given by (D.2),

(D.34)
X1(t) = Xb

1(t) + aAt sin t,

Y1(t) = Y b
1 (t)− aAt cos t,

where Xb
1(t) and Y b

1 (t) are periodic in t, of period 2π, being sums of products
of sin kt and cos kt (0 ≤ k ≤ 3). In (D.33), the notation O(ε2) means that,
for any given bounded interval [−K, K], the remainder is bounded by CKε2,
for t ∈ [−K, K]. However, it is apparent from (D.34) that the accuracy of
this approximation breaks down severely on intervals of length ≈ 1/ε. In
fact, both xε(t) and yε(t) are uniformly bounded, being periodic of period
T (ε). As far as the terms on the right side of (D.33) are concerned,

a cos t + Xb
1(t)ε and

−a sin t + Y b
1 (t)ε

are uniformly bounded, of period 2π, but

(D.35) aAεt sin t and − aAεt cos t
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are unbounded as |t| → ∞. These terms are called secular terms, and it is
desirable to have a replacement for (D.8), in which such secular terms do
not appear. To get this, we proceed as follows.

The functions

(D.36) x#
ε (t) = xε

(T (ε)t
2π

)
, y#

ε (t) = yε

(T (ε)t
2π

)

are periodic of period 2π in t and smooth in ε. Hence we have expansions

(D.37)

x#
ε (t) = a cos t +

N∑

k=1

X#
k (t)εk + O(εN+1),

y#
ε (t) = −a sin t +

N∑

k=1

Y #
k (t)εk + O(εN+1).

Note that

(D.38)
d

dt
x#

ε (t) =
T (ε)
2π

y#
ε (t),

which leads to a variant of (D.16). We have the following.

Proposition D.1. The solution to (D.4)–(D.5) has the expansion

(D.39)

xε(t) = a cos
2πt

T (ε)
+

N∑

k=1

X#
k

( 2πt

T (ε)

)
εk + O(εN+1),

yε(t) = −a sin
2πt

T (ε)
+

N∑

k=1

Y #
k

( 2πt

T (ε)

)
εk + O(εN+1).

Each term in this series is periodic in t of period T (ε), and the remainders
are O(εN+1) uniformly for all t ∈ R.

It is natural and convenient to set

(D.40) X0(t) = X#
0 (t) = a cos t, Y0(t) = Y #

0 (t) = −a sin t.

It remains to compute X#
k (t) and Y #

k (t) for k ≥ 1. To this end, set

(D.41)
T (ε)
2π

= 1 + γ(ε), γ(ε) = ε
∑

`≥0

γ`ε
`.
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If we compare the expressions for xε(t) in (D.8) and (D.39) and make the
substitution s = 2πt/T (ε), we obtain

(D.42)

∑

k≥0

X#
k (s)εk =

∑

i≥0

Xi(s + γ(ε)s)εi

=
∑

i≥0

∑

j≥0

1
j!

X
(j)
i (s)sjγ(ε)jεi

=
∑

i≥0

∑

j≥0

1
j!

X
(j)
i (s)sj

(∑

`≥0

γ`ε
`
)j

εi+j .

We conclude that X#
k (s) is equal to the coefficient of εk in the last power

series. For k = 0, we get

(D.43) X#
0 (s) = X0(s) = a cos s,

as already noted in (D.40). For k = 1, we get

(D.44)
X#

1 (s) = X1(s) + γ0sX
′
0(s)

= X1(s)− γ0as sin s.

When ψ(x) is given by (D.2), we have from (D.34) that this is

= Xb
1(s) + aAs sin s− γ0as sin s

= Xb
1(s),

the last identity by (D.41) and (D.32), which gives γ0 = A in this case.
Alternatively, since X#

1 (s) and Xb
1(s) are periodic in s and the other terms

are secular, these secular terms have to cancel. This holds for general ψ(x);
X#

1 (s) is obtained from X1(s) by striking out the secular terms. One can
similarly characterize the higher order terms X#

k (t) in (D.37). We forego
the details.

We end this appendix with an indication of how to extend the scope of
(D.1). We treat the pendulum equation

(D.45) u′′ + sin u = 0,

and seek information on small oscillations, solving (D.45) with initial data

(D.46) u(0) = a
√

ε, u′(0) = 0.

Thus we set

(D.47) x(t) =
√

ε u(t),
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which solves

(D.48) x′′ +
sin
√

εx√
ε

= 0, x(0) = a, x′(0) = 0.

If we set

(D.49)
sin τ

τ
= 1− τ2F (τ), F (τ) =

1
3!
− τ2

5!
+ · · · ,

we get

(D.50)
x′′ + x = εx3F (

√
εx)

= ε
x3

3!
− ε2 x5

5!
+ · · · .

This has a form similar to (D.1), but generalized to

(D.51) x′′ + x = εψ(ε, x),

with ψ smooth in (ε, x). Treatments of the solutions to (D.1) and their
periods T (ε) extend to the case (D.51). The reader is invited to work out
details.

E. A dram of potential theory

Newton’s law of gravitation states that the force a particle of mass m1

located at p ∈ R3 exerts on a particle of mass m2 located at x ∈ R3 is

(E.1) F (x) = Gm1m2
p− x

‖p− x‖3
.

Here G is the gravitational constant, given by (6.63). As indicated in Exer-
cise 6 of §6, the force that a planet exerts on an external body is the same
as what would be exerted if all the mass of the planet were concentrated at
its center, in the Newtonian theory. In this appendix we explain why this
is true, and in the course of doing so introduce an area of mathematical
analysis known as potential theory. We establish this identity of force fields
under the hypothesis that the mass distribution of the planet is spherically
symmetric about its center. That is to say, we assume the planet, centered
at p, has mass density ρ, and

(E.2) ρ(p + Ry) = ρ(p + y), ∀R ∈ O(3), y ∈ R3,

where we recall from Chapter 2 that O(3) is the set of orthogonal transfor-
mations of R3. Say the planet has radius a, so

(E.3) ‖y‖ > a =⇒ ρ(p + y) = 0.
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The planet’s mass is

(E.4) m1 =
∫

ρ(y) dy.

If a particle of mass m2 is located at x ∈ R3 and ‖p−x‖ > a, then the force
the planet exerts on this particle is given by

(E.5) G(x) = Gm2

∫
y − x

‖y − x‖3
ρ(y) dy.

We will show that if (E.2)–(E.4) hold and ‖p− x‖ > a, then F (x) = G(x).
For notational simplicity, we may as well take

(E.6) p = 0,

so

(E.7) F (x) = −Gm1m2
x

‖x‖3
.

Note that

(E.8) F (x) = −∇V (x), G(x) = −∇W (x),

with

(E.9) V (x) = −Gm1m2

‖x‖ , W (x) = −Gm2

∫

‖y‖≤a

1
‖x− y‖ρ(y) dy,

so it suffices to prove that these potential energies coincide for ‖x‖ > a, i.e.,

(E.10) ‖x‖ > a =⇒ V (x) = W (x).

As a first step toward proving (E.10), note that clearly, for all R ∈ O(3),

(E.11) V (Rx) = V (x),

and furthermore

(E.12)

W (Rx) = −Gm1

∫
1

‖Rx− y‖ρ(y) dy

= −Gm1

∫
1

‖Rx−Rz‖ρ(Rz) dz

= −Gm1

∫
1

‖x− z‖ρ(z) dz

= W (x),
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the second identity by change of variable and the third by (E.2). Conse-
quently, we have

(E.13) V (x) = v(r), W (x) = w(r), r = ‖x‖,

and it remains to show that

(E.14) r > a =⇒ v(r) = w(r).

As another step toward showing this, we note that, given a ∈ (0,∞), there
exists C < ∞ such that

(E.15) ‖y‖ ≤ a, ‖x‖ ≥ a + 1 =⇒
∣∣∣ 1
‖x‖ −

1
‖x− y‖

∣∣∣ ≤ C

‖x‖2
,

and hence, by (E.4), (E.9) and (E.13), there exists C2 < ∞ such that

(E.16)
r = ‖x‖ ≥ a + 1 =⇒ |V (x)−W (x)| ≤ C2

‖x‖2

=⇒ |v(r)− w(r)| ≤ C2

r2
.

The next step toward establishing (E.14) involves the following har-
monicity,

(E.17) ∆V (x) = 0, ∀x ∈ R3 \ 0,

where ∆ is the Laplace operator,

(E.18) ∆f(x) =
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

.

To see this, recall from (A.11) of Chapter 1 that (on R3)

(E.19) f(x) = g(r) =⇒ ∆f(x) = g′′(r) +
2
r
g′(r),

and by results on Euler equations from §15 of Chapter 1,

(E.20) g′′(r) +
2
r
g′(r) = 0 ⇐⇒ g(r) =

c1

r
+ c2,

Since

(E.21) V (x) = v(r) = −Gm1m2

r
,
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we have (E.17), and hence we also have

(E.22) ∆
( 1
‖x− y‖

)
= 0 for x 6= y,

so a direct consequence of the integral formula (E.9) for W (x) is

(E.23) ∆W (x) = 0 for ‖x‖ > a.

Hence, by (E.13), (E.19), and (E.20),

(E.24)
r > a =⇒ w′′(r) +

2
r
w′(r) = 0

=⇒ w(r) =
c1

r
+ c2,

for some constants c1 and c2. This identity together with (E.21) and (E.16)
proves (E.14). Hence we have (E.10), so indeed, under the hypotheses (E.2)–
(E.4) (and with p = 0),

(E.25) ‖x‖ > a =⇒ F (x) = G(x).

We mention the following refinement of (E.23),

(E.26) ∆W = 4πGm2ρ.

This is not needed to establish (E.14), so we will not prove it here. A proof
can be found in [T], Chapter 3, §4. Further exploration of the relation be-
tween the Laplace operator and the “potential” function W , through (E.9),
leads to the subject of potential theory, addressed in Chapters 3–5 of [T]
and in other books on partial differential equations.

The earth, the sun, and other planets and stars are approximately spher-
ically symmetric, but not exactly so. This leads to further corrections in cal-
culations in celestial mechanics. In addition, measurements of the strength
of the earth’s gravitational field give information on the inhomogeneities of
the earth’s composition, leading to the field of physical geodesy; cf. [HM].

F. Brouwer’s fixed-point theorem

Here we prove the following fixed-point theorem of L. Brouwer, which arose
in §15. Take

(F.1) D = {x ∈ R2 : ‖x‖ ≤ 1}.

Theorem F.1. Each smooth map F : D → D has a fixed point.
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The proof proceeds by contradiction. We are claiming that F (x) = x
for some x ∈ D. If not, then for each x ∈ D define ϕ(x) to be the endpoint
of the ray from F (x) to x, continued until it hits

(F.2) ∂D = {x ∈ R2 : ‖x‖ = 1}.
An explicit formula is

(F.3)
ϕ(x) = x + t(x− F (x)), t =

√
b2 + 4ac− b

2a
,

a = ‖x− F (x)‖2, b = 2x · (x− F (x)), c = 1− ‖x‖2.

Here t is picked to solve the equation ‖x + t(x − F (x))‖2 = 1. Note that
ac ≥ 0, so t ≥ 0. It is clear that ϕ would have the following properties:

(F.4) ϕ : D → ∂D smoothly, x ∈ ∂D ⇒ ϕ(x) = x.

Such a map is called a smooth retraction. The contradiction that proves
Theorem F.1 is provided by the following result, called Brouwer’s no-retraction
theorem.

Theorem F.2. There is no smooth retraction ϕ : D → ∂D of D onto its
boundary.

Proof. This proof, also by contradiction, brings in material developed in
§4. Suppose we had such a retraction ϕ. Consider the closed curve

(F.5) γ : [0, 2π] −→ ∂D, γ(t) = (cos t, sin t),

and form

(F.6) γs(t) = ϕ(sγ(t)), 0 ≤ s ≤ 1.

This would be a smooth family of maps

(F.7) γs : [0, 2π] −→ ∂D, γs(0) = γs(2π),

such that γ1 = γ and γ0(t) = ϕ(0) for all t. The variant of Lemma 4.2 given
in Exercise 13 of §4 implies

(F.7)
∫

γs

F (y) · dy is independent of s ∈ [0, 1],

for each C1 vector field F defined on a neighborhood of ∂D and satisfying
(4.4). Clearly the line integral (F.7) is 0 for s = 0, so we deduce that

(F.8)
∫

γ

F (y) · dy = 0
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for each such vector field. In particular, this would apply to the vector field
given by (4.19)–(4.20), i.e.,

(F.9) F (x) =
1

‖x‖2

(−x2

x1

)
,

which is smooth on R2 \0 and satisfies (4.4) (cf. (4.21)). On the other hand,
we compute

(F.10)

∫

γ

F (y) · dy =
∫ 2π

0
(− sin t, cos t) · (− sin t, cos t) dt

= 2π,

contradicting (F.8) and hence contradicting the existence of such a retrac-
tion.

The fixed-point theorem is valid for all continuous F : D → D. In fact,
an approximation argument, which we omit here, can be used to show that
if such continuous F has no fixed point, there is a smooth approximation
F̃ : D → D that would also have no fixed point.

Furthermore, Theorem F.1 holds in n dimensions, i.e., when

(F.11) D = {x ∈ Rn : ‖x‖ ≤ 1}.

The reduction to Theorem F.2, in the setting of (F.11), is the same as above,
but the proof of Theorem F.2 in the n-dimensional setting requires a further
argument. Proofs using topology can be found in [GrH] and [Mun]. Proofs
using differential forms can be found in [Kan], [T], Chapter 1, and [T3],
Appendix G. We have no space to introduce differential forms here, but as
shown in [T], and also in [AM] and [Ar], they give rise to many important
results in the study of differential equations, at the next level.
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