The "Oscillator-Dirac" Operator, and Related Operators on \mathbb{H}^{n}

Michael Taylor

Abstract

We have several goals: to construct an interesting first order differential operator on \mathbb{R}^{n} of index one, to construct a related invertible pseudodifferential operator on \mathbb{R}^{n}, and to construct related differential and pseudodifferential operators on the Heisenberg group \mathbb{H}^{n}, including a first order operator that is hypoelliptic with loss of $1 / 2$ derivative.

1. The Oscillator-Dirac Operator

To construct the Oscillator-Dirac operator, we begin as follows. Let $\left\{A_{j}, B_{j}\right.$: $1 \leq j \leq n\}$ define the representation of the Clifford algebra $\mathrm{Cl}_{2 n}$ on $V=\Lambda^{*} \mathbb{C}^{2 n}$, given by

$$
\begin{equation*}
A_{j} \varphi=e_{j} \wedge \varphi+\iota_{e_{j}} \varphi, \quad B_{j} \varphi=e_{n+j} \wedge \varphi+\iota_{e_{n+j}} \varphi, \quad 1 \leq j \leq n \tag{1.1}
\end{equation*}
$$

where $\left\{e_{j}: 1 \leq j \leq 2 n\right\}$ is the standard basis of \mathbb{C}^{n}. We have

$$
\begin{equation*}
A_{j}^{*}=A_{j}, \quad B_{j}^{*}=B_{j}, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{j} A_{k}+A_{k} A_{j}=B_{j} B_{k}+B_{k} B_{j}=2 \delta_{j k} I, \quad A_{j} B_{k}+B_{k} A_{j}=0 . \tag{1.3}
\end{equation*}
$$

Also define unbounded self-adjoint operators D_{j} and X_{j} on $L^{2}\left(\mathbb{R}^{n}\right)$ by

$$
\begin{equation*}
D_{j} u(x)=\frac{1}{i} \frac{\partial u}{\partial x_{j}}, \quad X_{j} u(x)=x_{j} u(x), \tag{1.4}
\end{equation*}
$$

and note the commutation relations

$$
\begin{equation*}
\left[D_{j}, D_{k}\right]=0, \quad\left[X_{j}, X_{k}\right]=0, \quad\left[D_{j}, X_{k}\right]=-i \delta_{j k} I \tag{1.5}
\end{equation*}
$$

Now we define the following operator on V-valued functions on \mathbb{R}^{n} :

$$
\begin{equation*}
\mathcal{D}=\sum_{j=1}^{n}\left(A_{j} D_{j}+B_{j} X_{j}\right) \tag{1.6}
\end{equation*}
$$

This is an elliptic operator in the class denoted $O P \mathcal{H}_{b}^{1}$ in (2.13) of [T], Chapter 2. Note that A_{j} and $B_{j} \operatorname{map} \Lambda^{e} \mathbb{C}^{2 n}$ to $\Lambda^{o} \mathbb{C}^{2 n}$ and vice-versa, so we can write \mathcal{D} in block form as

$$
\mathcal{D}=\left(\begin{array}{cc}
0 & \mathcal{D}_{1} \tag{1.7}\\
\mathcal{D}_{0} & 0
\end{array}\right), \quad \text { on functions with values in } \Lambda^{e} \mathbb{C}^{2 n} \oplus \Lambda^{o} \mathbb{C}^{2 n}
$$

Note that \mathcal{D} is formally self-adjoint, hence actually self-adjoint, with domain $H^{1}\left(\mathbb{R}^{n}, V\right)$, where we set

$$
\begin{equation*}
H^{k}\left(\mathbb{R}^{n}, V\right)=\left\{u \in L^{2}\left(\mathbb{R}^{n}, V\right): x^{\alpha} \partial_{x}^{\beta} u \in L^{2}\left(\mathbb{R}^{n}, V\right), \text { for }|\alpha|+|\beta| \leq k\right\} \tag{1.8}
\end{equation*}
$$

In particular, $\mathcal{D}_{1}=\mathcal{D}_{0}^{*}$ and $\mathcal{D}_{0}=\mathcal{D}_{1}^{*}$, and

$$
\mathcal{D}^{2}=\left(\begin{array}{cc}
\mathcal{D}_{0}^{*} \mathcal{D}_{0} & \tag{1.9}\\
& \mathcal{D}_{1}^{*} \mathcal{D}_{1}
\end{array}\right)
$$

We next use (1.6) to produce a useful formula for \mathcal{D}^{2}. We have

$$
\begin{align*}
\mathcal{D}^{2} & =\sum_{j, k}\left(A_{j} D_{j}+B_{j} X_{j}\right)\left(A_{k} D_{k}+B_{k} X_{k}\right) \\
& =\sum_{j, k}\left(A_{j} A_{k} D_{j} D_{k}+B_{j} B_{k} X_{j} X_{k}+A_{j} B_{k} D_{j} X_{k}+B_{j} A_{k} X_{j} D_{k}\right) . \tag{1.10}
\end{align*}
$$

The identities (1.3) and (1.5) yield

$$
\begin{equation*}
\sum_{j, k} A_{j} A_{k} D_{j} D_{k}=\sum_{j} D_{j}^{2}, \quad \sum_{j, k} B_{j} B_{k} X_{j} X_{k}=\sum_{j} X_{j}^{2} \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j \neq k}\left(A_{j} B_{k} D_{j} X_{k}+B_{j} A_{k} X_{j} D_{k}\right)=0 . \tag{1.12}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\sum_{j}\left(A_{j} B_{j} D_{j} X_{j}+B_{j} A_{j} X_{j} D_{j}\right)=-i \sum_{j} A_{j} B_{j}, \tag{1.13}
\end{equation*}
$$

so we have

$$
\begin{equation*}
\mathcal{D}^{2}=H-i \sum_{j} A_{j} B_{j}, \tag{1.14}
\end{equation*}
$$

where H is the quantum harmonic oscillator,

$$
\begin{equation*}
H u=\left(-\Delta+|x|^{2}\right) u . \tag{1.15}
\end{equation*}
$$

As is well known,

$$
\begin{equation*}
\text { Spec } H=\{n+2 k: k=0,1,2, \ldots\}, \tag{1.16}
\end{equation*}
$$

and the n-eigenspace of H, acting on V-valued functions, consists of

$$
\begin{equation*}
\varphi e^{-|x|^{2} / 2}, \quad \varphi \in V \tag{1.17}
\end{equation*}
$$

The operators $i A_{j} B_{j}$ are each self-adjoint on $L^{2}\left(\mathbb{R}^{n}, V\right)$, and they commute with H and with each other. We take a closer look at these operators. Note that

$$
\begin{equation*}
A_{j} B_{j} \varphi=e_{j} \wedge e_{n+j} \wedge \varphi+\iota_{e_{j}} \iota_{e_{n+j}} \varphi \tag{1.18}
\end{equation*}
$$

If ψ is a monomial that does not contain e_{j} or e_{n+1}, then

$$
\begin{align*}
A_{j} B_{j} \psi & =e_{j} \wedge e_{n+j} \wedge \psi \\
A_{j} B_{j}\left(e_{j} \wedge \psi\right) & =A_{j} B_{j}\left(e_{n+j} \wedge \psi\right)=0 \tag{1.19}\\
A_{j} B_{j}\left(e_{j}\right. & \left.\wedge e_{n+j} \wedge \psi\right)=-\psi
\end{align*}
$$

Thus

$$
\begin{equation*}
\text { Spec } A_{j} B_{j}=\{0, \pm i\} \tag{1.20}
\end{equation*}
$$

and the $-i$-eigenspace of $A_{j} B_{j}$ is

$$
\begin{equation*}
\left\{\left(1+i e_{j} \wedge e_{n+j}\right) \wedge \psi: \psi \in \operatorname{Ker} \iota_{e_{j}} \iota_{e_{n+j}}\right\} \tag{1.21}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\operatorname{Spec} \sum_{j} A_{j} B_{j} \subset\{-n i, \ldots,-i, 0, i, \ldots, n i\}, \tag{1.22}
\end{equation*}
$$

and the $-n i$-eigenspace of this operator is the intersection of the spaces (1.21), over $1 \leq j \leq n$.

We deduce that the null space of

$$
\begin{equation*}
\mathcal{D}^{2}: H^{2}\left(\mathbb{R}^{n}, V\right) \longrightarrow L^{2}\left(\mathbb{R}^{n}, V\right) \tag{1.23}
\end{equation*}
$$

is one-dimensional, spanned by

$$
\begin{equation*}
\psi e^{-|x|^{2}}, \quad \psi=\left(1+i e_{1} \wedge e_{n+1}\right) \wedge \cdots \wedge\left(1+i e_{n} \wedge e_{2 n}\right) . \tag{1.24}
\end{equation*}
$$

In turn we have that

$$
\begin{equation*}
\mathcal{D}_{0}, \mathcal{D}_{1}: H^{1}\left(\mathbb{R}^{n}, \Lambda^{e o}\right) \longrightarrow L^{2}\left(\mathbb{R}^{n}, \Lambda^{o e}\right) \tag{1.25}
\end{equation*}
$$

are Fredholm, with

$$
\begin{equation*}
\operatorname{Dim} \operatorname{Ker} \mathcal{D}_{0}=1, \quad \text { Dim Ker } \mathcal{D}_{1}=0 \tag{1.26}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\text { Index } \mathcal{D}_{0}=1, \quad \text { Index } \mathcal{D}_{1}=-1 \tag{1.27}
\end{equation*}
$$

Furthermore, we see that if π_{0} is the orthogonal projection of $L^{2}\left(\mathbb{R}^{n}, \Lambda^{e}\right)$ onto Ker \mathcal{D}_{0}, then

$$
\mathcal{E}=\left(\begin{array}{cc}
\pi_{0} & \mathcal{D}_{1} \tag{1.28}\\
\mathcal{D}_{0} & 0
\end{array}\right): H^{1}\left(\mathbb{R}^{n}, V\right) \stackrel{\approx}{\Longrightarrow} L^{2}\left(\mathbb{R}^{n}, V\right)
$$

and, by Proposition 2.8 of [T], Chapter 2,

$$
\begin{equation*}
\mathcal{E}^{-1} \in O P \mathcal{H}_{b}^{-1} \tag{1.29}
\end{equation*}
$$

2. Related operators on the Heisenberg group

We can define some first and second order operators on the Heisenberg group \mathbb{H}^{n}, associated with the operators discussed in $\S 1$. We take $(t, q, p) \in \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ to be coordinates on \mathbb{H}^{n}, such that the group law is given by (1.1) in [T], Chapter 2 , and set

$$
\begin{equation*}
T=\frac{\partial}{\partial t}, \quad L_{j}=\frac{\partial}{\partial q_{j}}-\frac{p_{j}}{2} \frac{\partial}{\partial t}, \quad M_{j}=\frac{\partial}{\partial p_{j}}+\frac{q_{j}}{2} \frac{\partial}{\partial t}, \tag{2.1}
\end{equation*}
$$

so

$$
\begin{equation*}
\left[L_{j}, M_{j}\right]=-\left[M_{j}, L_{j}\right]=T, \tag{2.2}
\end{equation*}
$$

all other commutators being zero. Parallel to (1.3), we set

$$
\begin{equation*}
\mathcal{K}=\sum_{j}\left(A_{j} M_{j}+B_{j} L_{j}\right), \tag{2.3}
\end{equation*}
$$

a first order differential operator on \mathbb{H}^{n}. In the notation of Definition 2.1 on $[T]$, Chapter 2, we have

$$
\begin{equation*}
\mathcal{K} \in O P \Psi_{0}^{1} \tag{2.4}
\end{equation*}
$$

Furthermore, symbols $\sigma_{\mathcal{K}}(\pm 1)(X, D)$ associated to \mathcal{K} as in $\S 1$, Chapter 2 of $[\mathrm{T}]$, have the following nature:

$$
\begin{equation*}
\sigma_{\mathcal{K}}(\pm 1)(X, D)=\mathcal{D}^{ \pm} \tag{2.5}
\end{equation*}
$$

with $\mathcal{D}^{+}=\mathcal{D}$, given by (1.6), and

$$
\mathcal{D}^{-}=\sum_{j=1}^{n}\left(A_{j} D_{j}-B_{j} X_{j}\right)=\left(\begin{array}{cc}
0 & \mathcal{D}_{1}^{-} \tag{2.6}\\
\mathcal{D}_{0}^{-} & 0
\end{array}\right) .
$$

Calculations analogous to (1.10)-(1.14) give

$$
\begin{equation*}
\left(\mathcal{D}^{-}\right)^{2}=H+i \sum_{j} A_{j} B_{j}, \tag{2.7}
\end{equation*}
$$

whose null space is spanned by

$$
\begin{equation*}
\psi^{-} e^{-|x|^{2} / 2}, \quad \psi^{-}=\left(1-i e_{1} \wedge e_{n+1}\right) \wedge \cdots \wedge\left(1-i e_{n} \wedge e_{2 n}\right) \tag{2.8}
\end{equation*}
$$

so if π_{0}^{-}is the orthogonal projection of $L^{2}\left(\mathbb{R}^{n}, \Lambda^{e}\right)$ onto $\operatorname{Ker} \mathcal{D}_{0}^{-}$,

$$
\mathcal{E}^{-}=\left(\begin{array}{cc}
\pi_{0}^{-} & \mathcal{D}_{1}^{-} \tag{2.9}\\
\mathcal{D}_{0}^{-} & 0
\end{array}\right): H^{1}\left(\mathbb{R}^{n}, V\right) \xrightarrow{\sim} L^{2}\left(\mathbb{R}^{n}, V\right),
$$

and

$$
\begin{equation*}
\left(\mathcal{E}^{-}\right)^{-1} \in O P \mathcal{H}_{b}^{-1} . \tag{2.10}
\end{equation*}
$$

Furthermore, we can define

$$
\mathcal{S} \in O P \Psi_{0}^{1, \infty}, \quad \sigma_{\mathcal{S}}(\pm 1)(X, D)=\left(\begin{array}{cc}
\pi_{0}^{ \pm} & 0 \tag{2.11}\\
0 & 0
\end{array}\right)
$$

where $\pi_{0}^{+}=\pi_{0}$. The class $O P \Psi_{0}^{1, \infty}$ is as in Definition 2.9 of $[\mathrm{T}]$, Chapter 2. Then

$$
\begin{equation*}
\mathcal{K}_{b}=\mathcal{K}+\mathcal{S} \in O P \Psi_{0}^{1} \tag{2.12}
\end{equation*}
$$

has inverse

$$
\begin{equation*}
\mathcal{K}_{b}^{-1} \in O P \Psi_{0}^{-1} \subset O P S_{1 / 2,1 / 2}^{-1 / 2} \tag{2.13}
\end{equation*}
$$

Thus the first order operator \mathcal{K}_{b} is hypoelliptic, with loss of $1 / 2$ derivative.
Remark. The operator \mathcal{D} in (1.6) is vaguely similar to \mathcal{D}_{+}in (113) of [E].

References

[E] C. Epstein, Subelliptic Spin $_{\mathbb{C}}$ Dirac Operators, II, Preprint, 2005.
[T] M. Taylor, Noncommutative Microlocal Analysis (Revised Version), 1999 update of Memoir \#313, AMS, 1984.

