The "Oscillator-Dirac" Operator, and Related Operators on \mathbb{H}^n

MICHAEL TAYLOR

ABSTRACT. We have several goals: to construct an interesting first order differential operator on \mathbb{R}^n of index one, to construct a related invertible pseudodifferential operator on \mathbb{R}^n , and to construct related differential and pseudodifferential operators on the Heisenberg group \mathbb{H}^n , including a first order operator that is hypoelliptic with loss of 1/2 derivative.

1. The Oscillator-Dirac Operator

To construct the Oscillator-Dirac operator, we begin as follows. Let $\{A_j, B_j : 1 \leq j \leq n\}$ define the representation of the Clifford algebra Cl_{2n} on $V = \Lambda^* \mathbb{C}^{2n}$, given by

(1.1)
$$A_j \varphi = e_j \wedge \varphi + \iota_{e_j} \varphi, \quad B_j \varphi = e_{n+j} \wedge \varphi + \iota_{e_{n+j}} \varphi, \quad 1 \le j \le n,$$

where $\{e_j : 1 \leq j \leq 2n\}$ is the standard basis of \mathbb{C}^n . We have

(1.2)
$$A_j^* = A_j, \quad B_j^* = B_j,$$

and

(1.3)
$$A_j A_k + A_k A_j = B_j B_k + B_k B_j = 2\delta_{jk} I, \quad A_j B_k + B_k A_j = 0.$$

Also define unbounded self-adjoint operators D_j and X_j on $L^2(\mathbb{R}^n)$ by

(1.4)
$$D_j u(x) = \frac{1}{i} \frac{\partial u}{\partial x_j}, \quad X_j u(x) = x_j u(x),$$

and note the commutation relations

(1.5)
$$[D_j, D_k] = 0, \quad [X_j, X_k] = 0, \quad [D_j, X_k] = -i\delta_{jk}I.$$

Now we define the following operator on V-valued functions on \mathbb{R}^n :

(1.6)
$$\mathcal{D} = \sum_{j=1}^{n} \left(A_j D_j + B_j X_j \right).$$

This is an elliptic operator in the class denoted $OP\mathcal{H}_b^1$ in (2.13) of [T], Chapter 2. Note that A_j and B_j map $\Lambda^e \mathbb{C}^{2n}$ to $\Lambda^o \mathbb{C}^{2n}$ and vice-versa, so we can write \mathcal{D} in block form as

(1.7)
$$\mathcal{D} = \begin{pmatrix} 0 & \mathcal{D}_1 \\ \mathcal{D}_0 & 0 \end{pmatrix}$$
, on functions with values in $\Lambda^e \mathbb{C}^{2n} \oplus \Lambda^o \mathbb{C}^{2n}$.

Note that \mathcal{D} is formally self-adjoint, hence actually self-adjoint, with domain $H^1(\mathbb{R}^n, V)$, where we set

(1.8)
$$H^k(\mathbb{R}^n, V) = \{ u \in L^2(\mathbb{R}^n, V) : x^\alpha \partial_x^\beta u \in L^2(\mathbb{R}^n, V), \text{ for } |\alpha| + |\beta| \le k \}.$$

In particular, $\mathcal{D}_1 = \mathcal{D}_0^*$ and $\mathcal{D}_0 = \mathcal{D}_1^*$, and

(1.9)
$$\mathcal{D}^2 = \begin{pmatrix} \mathcal{D}_0^* \mathcal{D}_0 & \\ & \mathcal{D}_1^* \mathcal{D}_1 \end{pmatrix}.$$

We next use (1.6) to produce a useful formula for \mathcal{D}^2 . We have

(1.10)
$$\mathcal{D}^{2} = \sum_{j,k} (A_{j}D_{j} + B_{j}X_{j}) (A_{k}D_{k} + B_{k}X_{k})$$
$$= \sum_{j,k} (A_{j}A_{k}D_{j}D_{k} + B_{j}B_{k}X_{j}X_{k} + A_{j}B_{k}D_{j}X_{k} + B_{j}A_{k}X_{j}D_{k}).$$

The identities (1.3) and (1.5) yield

(1.11)
$$\sum_{j,k} A_j A_k D_j D_k = \sum_j D_j^2, \quad \sum_{j,k} B_j B_k X_j X_k = \sum_j X_j^2,$$

and

(1.12)
$$\sum_{j\neq k} \left(A_j B_k D_j X_k + B_j A_k X_j D_k \right) = 0.$$

Furthermore,

(1.13)
$$\sum_{j} \left(A_j B_j D_j X_j + B_j A_j X_j D_j \right) = -i \sum_{j} A_j B_j,$$

so we have

(1.14)
$$\mathcal{D}^2 = H - i \sum_j A_j B_j,$$

where H is the quantum harmonic oscillator,

(1.15)
$$Hu = (-\Delta + |x|^2)u.$$

As is well known,

(1.16)
$$\operatorname{Spec} H = \{ n + 2k : k = 0, 1, 2, \dots \},\$$

and the n-eigenspace of H, acting on V-valued functions, consists of

(1.17)
$$\varphi \, e^{-|x|^2/2}, \quad \varphi \in V.$$

The operators iA_jB_j are each self-adjoint on $L^2(\mathbb{R}^n, V)$, and they commute with H and with each other. We take a closer look at these operators. Note that

(1.18)
$$A_j B_j \varphi = e_j \wedge e_{n+j} \wedge \varphi + \iota_{e_j} \iota_{e_{n+j}} \varphi.$$

If ψ is a monomial that does not contain e_j or e_{n+1} , then

(1.19)
$$A_{j}B_{j}\psi = e_{j} \wedge e_{n+j} \wedge \psi,$$
$$A_{j}B_{j}(e_{j} \wedge \psi) = A_{j}B_{j}(e_{n+j} \wedge \psi) = 0,$$
$$A_{j}B_{j}(e_{j} \wedge e_{n+j} \wedge \psi) = -\psi.$$

Thus

(1.20)
$$\operatorname{Spec} A_j B_j = \{0, \pm i\},\$$

and the -i-eigenspace of $A_j B_j$ is

(1.21)
$$\{(1+ie_j \wedge e_{n+j}) \wedge \psi : \psi \in \operatorname{Ker} \iota_{e_j} \iota_{e_{n+j}}\}.$$

It follows that

and the -ni-eigenspace of this operator is the intersection of the spaces (1.21), over $1 \le j \le n$.

We deduce that the null space of

(1.23)
$$\mathcal{D}^2: H^2(\mathbb{R}^n, V) \longrightarrow L^2(\mathbb{R}^n, V)$$

is one-dimensional, spanned by

(1.24)
$$\psi e^{-|x|^2}, \quad \psi = (1 + ie_1 \wedge e_{n+1}) \wedge \dots \wedge (1 + ie_n \wedge e_{2n}).$$

In turn we have that

(1.25)
$$\mathcal{D}_0, \mathcal{D}_1: H^1(\mathbb{R}^n, \Lambda^{eo}) \longrightarrow L^2(\mathbb{R}^n, \Lambda^{oe})$$

are Fredholm, with

(1.26) Dim Ker
$$\mathcal{D}_0 = 1$$
, Dim Ker $\mathcal{D}_1 = 0$,

and hence

(1.27)
$$\operatorname{Index} \mathcal{D}_0 = 1, \quad \operatorname{Index} \mathcal{D}_1 = -1.$$

Furthermore, we see that if π_0 is the orthogonal projection of $L^2(\mathbb{R}^n, \Lambda^e)$ onto Ker \mathcal{D}_0 , then

(1.28)
$$\mathcal{E} = \begin{pmatrix} \pi_0 & \mathcal{D}_1 \\ \mathcal{D}_0 & 0 \end{pmatrix} : H^1(\mathbb{R}^n, V) \xrightarrow{\approx} L^2(\mathbb{R}^n, V),$$

and, by Proposition 2.8 of [T], Chapter 2,

(1.29)
$$\mathcal{E}^{-1} \in OP\mathcal{H}_b^{-1}.$$

2. Related operators on the Heisenberg group

We can define some first and second order operators on the Heisenberg group \mathbb{H}^n , associated with the operators discussed in §1. We take $(t, q, p) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$ to be coordinates on \mathbb{H}^n , such that the group law is given by (1.1) in [T], Chapter 2, and set

(2.1)
$$T = \frac{\partial}{\partial t}, \quad L_j = \frac{\partial}{\partial q_j} - \frac{p_j}{2}\frac{\partial}{\partial t}, \quad M_j = \frac{\partial}{\partial p_j} + \frac{q_j}{2}\frac{\partial}{\partial t},$$

 \mathbf{SO}

(2.2)
$$[L_j, M_j] = -[M_j, L_j] = T,$$

all other commutators being zero. Parallel to (1.3), we set

(2.3)
$$\mathcal{K} = \sum_{j} \left(A_j M_j + B_j L_j \right),$$

a first order differential operator on \mathbb{H}^n . In the notation of Definition 2.1 on [T], Chapter 2, we have

(2.4)
$$\mathcal{K} \in OP\Psi_0^1.$$

Furthermore, symbols $\sigma_{\mathcal{K}}(\pm 1)(X, D)$ associated to \mathcal{K} as in §1, Chapter 2 of [T], have the following nature:

(2.5)
$$\sigma_{\mathcal{K}}(\pm 1)(X,D) = \mathcal{D}^{\pm},$$

with $\mathcal{D}^+ = \mathcal{D}$, given by (1.6), and

(2.6)
$$\mathcal{D}^{-} = \sum_{j=1}^{n} \left(A_j D_j - B_j X_j \right) = \begin{pmatrix} 0 & \mathcal{D}_1^{-} \\ \mathcal{D}_0^{-} & 0 \end{pmatrix}.$$

Calculations analogous to (1.10)–(1.14) give

(2.7)
$$(\mathcal{D}^{-})^2 = H + i \sum_j A_j B_j,$$

whose null space is spanned by

(2.8)
$$\psi^{-} e^{-|x|^{2}/2}, \quad \psi^{-} = (1 - ie_{1} \wedge e_{n+1}) \wedge \dots \wedge (1 - ie_{n} \wedge e_{2n}),$$

so if π_0^- is the orthogonal projection of $L^2(\mathbb{R}^n, \Lambda^e)$ onto $\operatorname{Ker} \mathcal{D}_0^-$,

(2.9)
$$\mathcal{E}^{-} = \begin{pmatrix} \pi_0^{-} & \mathcal{D}_1^{-} \\ \mathcal{D}_0^{-} & 0 \end{pmatrix} : H^1(\mathbb{R}^n, V) \xrightarrow{\sim} L^2(\mathbb{R}^n, V),$$

and

(2.10)
$$(\mathcal{E}^{-})^{-1} \in OP\mathcal{H}_b^{-1}.$$

Furthermore, we can define

(2.11)
$$\mathcal{S} \in OP\Psi_0^{1,\infty}, \quad \sigma_{\mathcal{S}}(\pm 1)(X,D) = \begin{pmatrix} \pi_0^{\pm} & 0\\ 0 & 0 \end{pmatrix},$$

where $\pi_0^+ = \pi_0$. The class $OP\Psi_0^{1,\infty}$ is as in Definition 2.9 of [T], Chapter 2. Then (2.12) $\mathcal{K}_b = \mathcal{K} + \mathcal{S} \in OP\Psi_0^1$

(2.13)
$$\mathcal{K}_b^{-1} \in OP\Psi_0^{-1} \subset OPS_{1/2,1/2}^{-1/2}$$

Thus the first order operator \mathcal{K}_b is hypoelliptic, with loss of 1/2 derivative.

REMARK. The operator \mathcal{D} in (1.6) is vaguely similar to \mathcal{D}_+ in (113) of [E].

References

- [E] C. Epstein, Subelliptic Spin_C Dirac Operators, II, Preprint, 2005.
- [T] M. Taylor, Noncommutative Microlocal Analysis (Revised Version), 1999 update of Memoir #313, AMS, 1984.