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Abstract

We consider 3D Navier-Stokes flows with no-slip boundary condition in an infinitely long
pipe with circular cross section. The velocity fields we consider are independent of the variable
parametrizing the axis of the pipe, and the component of the velocity normal to the axis is
arranged to be circularly symmetric, though we impose no such symmetry on the component of
velocity parallel to the axis. For such flows we analyze the limit as the viscosity tends to zero,
including boundary layer estimates.

1 Introduction

In this paper we study a class of solutions to the 3D Navier-Stokes equations

∂uν

∂t
+ ∇uνuν + ∇pν = ν∆uν + F ν , div uν = 0, (1.1)

for uν = uν(t, x, z), pν = pν(t, x, z) with (t, x, z) ∈ R
+ × Ω, where

Ω = D × R, D = {x ∈ R
2 : |x| < 1}. (1.2)

We denote the closure of D by D, with boundary ∂D. We restrict attention to the following type
of external force field F ν :

F ν(t, x, z) = (0, fν(t)), (1.3)

i.e., F ν is parallel to the z-axis, with z-component fν(t). We impose no-slip boundary data on the
boundary, which might be rotating and translating:

uν(t, x, z) =
(α(t)

2π
x⊥, β(t)

)
, |x| = 1, z ∈ R, t > 0. (1.4)

Here x⊥ = Jx where J is counterclockwise rotation by 90◦. We take initial data of the following
form:

uν(0, x, z) = u0(x) = (v0(x), w0(x)), (1.5)
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where v0 is a vector field on D and w0 is the z-component of u0. We require the conditions

div u0 = 0, u0 ‖ ∂Ω, i.e., div v0 = 0, v0 ‖ ∂D, (1.6)

and we require that the vector field v0 on D be circularly symmetric.
By definition, a vector field v0 on D is circularly symmetric provided

v0(Rθx) = Rθv0(x), ∀x ∈ D, (1.7)

for each θ ∈ [0, 2π], where Rθ is counterclockwise rotation by θ. The general planar vector field
satisfying (1.7) has the form s0(|x|)x⊥ + s1(|x|)x, with sj scalar, but the condition div v0 = 0,
together with the condition v0 ‖ ∂D, forces s1 ≡ 0, so the type of initial data we consider is
characterized by

u0(x) = (s0(|x|)x⊥, w0(x)). (1.8)

Another characterization of this special form for v0 is that

v0(Φωx) = −Φωv0(x) (1.9)

for all ω ∈ S1, where Φω : R
2 → R

2 is the reflection across the line generated by ω.
The fact that Ω in (1.2) is infinite makes uniqueness an issue. (We discuss this further in

Appendix C.) To guarantee uniqueness, we modify the set-up by requiring the solutions to be
periodic (say of period L) in z, i.e., we replace Ω in (1.2) by

ΩL = D × (R/LZ). (1.10)

In such a case, the general theory implies that (1.1), (1.4) and (1.5) has a unique strong, short-
time solution, given mild regularity hypotheses on v0(x) and w0(x) (actually the solution persists
globally in t, as we will see shortly) and the solution is z-translation invariant, i.e.,

uν = (vν(t, x), wν(t, x)), pν = pν(t, x). (1.11)

Remark. While F ν , given by (1.3), satisfies F ν = ∇(fν(t)z), this is not the gradient of a function
periodic in z.

Note that
∇uνuν = (∇vνvν ,∇vνwν), div uν = div vν . (1.12)

Hence, in the current setting, (1.1) is equivalent to the following system of equations on R
+ × D:

∂vν

∂t
+ ∇vνvν + ∇pν = ν∆vν , div vν = 0, (1.13)

∂wν

∂t
+ ∇vνwν = ν∆wν + fν(t). (1.14)

Note that (1.13) is the 2D Navier-Stokes equation for flow on D. We are imposing the boundary
condition

vν(t, x) =
α(t)

2π
x⊥, |x| = 1, t > 0, (1.15)

and the initial condition
vν(0, x) = v0(x) = s0(|x|)x⊥. (1.16)

2



Meanwhile, (1.14) is a scalar equation, with boundary condition

wν(t, x) = β(t), |x| = 1, t > 0, (1.17)

and initial condition
wν(0, x) = w0(x). (1.18)

We do not require v0(x) to equal (α(0)/2π)x⊥ when x ∈ ∂D, nor do we require w0(x) to equal β(0)
when x ∈ ∂D. At this point we recall that the solvability of (1.13) for all t ∈ R

+, for each ν > 0,
is well known, and the solvability of (1.14) for all t ∈ R

+ is then relatively elementary.
Our main goal is to study the limit as ν ց 0 of the solutions to (1.13)–(1.18), and see how

uν = (vν , wν) approaches the solution of the Euler equation

∂u0

∂t
+ ∇u0u0 + ∇p0 = F 0, div u0 = 0, (1.19)

on R
+ × ΩL, with initial condition

u0(0, x, z) = (v0(x), w0(x)), (1.20)

given in (1.16) and (1.18), and with boundary condition

u0 ‖ ∂ΩL. (1.21)

Here F 0(t, x, z) = (0, f0(t)). Arguments as above give

u0(t, x, z) = (v0(t, x), w0(t, x)), (1.22)

where v0(t, x) and w0(t, x) solve

∂v0

∂t
+ ∇v0v0 + ∇p0 = 0, div v0 = 0, (1.23)

∂w0

∂t
+ ∇v0w0 = f0(t). (1.24)

Note that (1.23) is the 2D Euler equation for flows on D. We have the boundary condition

v0(t, x) ‖ ∂D for t > 0, x ∈ ∂D, (1.25)

and initial condition
v0(0, x) = v0(x) = s0(|x|)x⊥. (1.26)

As is well known, the vector field v0 given by (1.26) is a steady solution to the Euler equation
(1.23). In fact, a calculation gives

∇v0
v0 = −s0(|x|)2x = −∇p0(x), (1.27)

with

p0(x) = p̃0(|x|), p̃0(r) = −
∫ 1

r
ρs0(ρ)2 dρ, (1.28)

which proves our assertion:
v0(t, x) ≡ v0(x), (1.29)
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when v0(x) is as in (1.26). From here, we see that (1.24) becomes

∂w0

∂t
+ ∇v0

w0 = f0(t). (1.30)

The tangency condition (1.21) imposes no boundary condition for w0. This is logical, since ∂t +∇v0

is a vector field on R ×D that is tangent to R × ∂D. The solution to (1.30), with initial condition

w0(0, x) = w0(x), (1.31)

is given by

w0(t, x) = w0(F−t
v0

(x)) +

∫ t

0
f0(s) ds, (1.32)

where F−t
v0

: D → D is the backwards flow on D generated by v0.
Now the task of analyzing how uν → u0 as ν ց 0 has two parts, namely how

vν −→ v0 as ν ց 0, (1.33)

and how
wν −→ w0 as ν ց 0. (1.34)

There is a literature on (1.33), including [7], [10], [1], and, recently, [5] and [6]. The first key to a
successful attack on (1.33) is the following result.

Proposition 1.1 Given that v0 has the form (1.26), the solution vν to (1.13), (1.15), (1.16) is
circularly symmetric for each t > 0, of the form

vν(t, x) = sν(t, |x|)x⊥, (1.35)

and it coincides with the solution to the linear PDE

∂vν

∂t
= ν∆vν , (1.36)

with boundary condition (1.15) and initial condition (1.16).

This well known result figured in the analyses in the papers cited above. A proof (using the
characterization (1.9)) is recorded in Proposition 1.1 of [6]. We mention in particular that

∇vνvν = −∇pν , pν(t, x) = p̃ν(t, |x|),

p̃ν(t, r) = −
∫ 1

r
ρsν(t, ρ)2 dρ.

(1.37)

The structure of the rest of this paper is as follows. In §2 we recall results of [5] and [6] on the
nature of the convergence vν → v0 in (1.33), and give some further results, which will be of use in
§3. Prior results include a variety of Lp-Sobolev space estimates, recalled in Propositions 2.3–2.5.
Further results include estimates in spaces Vk(D) (defined in (2.33)), available thanks to [8], given
in Proposition 2.6 and Corollary 2.7. New results (of crucial use in §3) include explicit boundary
layer analyses, following from material in Appendix B, leading to estimates in the space V∞,∞(D)
(defined in (2.52)), given in Propositions 2.8–2.10.

In §3 we discuss the nature of the convergence wν → w0 in (1.34). Here we apply results
obtained in [8]. These results were originally directed towards a different fluid problem, involving
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plane parallel channel flows, but [8] found it convenient to develop the relevant singular perturbation
theory on a more general level, and, thanks to the results of §2 of this paper, this development has
applications to (1.34). In (3.21) we write

wν(t, x) − w0(t, x) = R1(ν, t, x) + R2(ν, t, x) + R3(ν, t, x), (1.38)

and apply a variety of attacks on the three terms on the right, which are defined in (3.18)–(3.20).
We obtain estimates on R2 and R3 in Lp(D), for p ∈ [1,∞) in Proposition 3.1, and such estimates
on R1 in Proposition 3.3. These results lead to wν(t, ·) → w0(t, ·) in such Lp-norms. We obtain
Hσ,q(D) estimates on R1 and R2 in Proposition 3.5, for q ∈ [2,∞), σq ∈ [0, 1). Propositions
3.7–3.10 yield wν(t, ·) → w0(t, ·) in the spaces Vk(D), leading to convergence boundedly and locally
uniformly on D, established in Proposition 3.11.

Of course, Proposition 3.11 does not establish uniform convergence on D. There is a boundary
layer effect at work here, as there was for vν → v. The corresponding study of boundary layer effects
for wν → w is taken up in §4. Again we use the decomposition (1.38) and apply separate analyses
to the three terms on the right. Results of Appendix B give an explicit boundary layer analysis of
R2. Layer potential techniques developed in [8] give an almost equally precise analysis of R1. This
leaves R3, and as we show in (4.47)–(4.51), we can obtain at least an estimate on boundary layer
thickness for this term, consistent with the boundary layer thickness results apparent for R1 and
R2, though fine detail on the boundary layer behavior of R3 remains a topic for further work.

In §5 we briefly focus on the special case where w0(x) in (1.5) is also circularly symmetric. In
this case, the system (1.13)–(1.14) simplifies further to the linear system (5.2)–(5.3). Here we note
how results of [6] and Appendix B yield definitive results on convergence uν → u0 in this case,
including explicit boundary layer analyses. The main message is that the lack of circular symmetry
for w0(x) is the source of the difficulties (otherwise said, the most interesting phenomena) for the
results discussed in §§3–4.

This paper ends with four appendices. Appendix A deals with the phenomenon of concentration
of vorticity. This concentration effect was established in [6] for circularly symmetric 2D flow. There,
use was made of L1-norm bounds on the vorticity. Then [4] produced a more general result on
vorticity concentration, involving however convergence in a weaker topology. We produce further
variants of this result in Appendix A, and discuss problems yet to be resolved regarding L1-vorticity
estimates.

Appendix B, which has already been mentioned, studies limits as ν ց 0 of solutions to

∂uν

∂t
= ν∆uν on R

+ × Ω, (1.39)

satisfying
uν

∣∣
R+×∂Ω

= 0, uν(0, x) = f(x). (1.40)

We take f ∈ C∞(Ω), and do not require it to vanish on the boundary. We make use of wave equation
techniques to produce explicit boundary layer analyses of solutions to this equation, whose utility
is manifested in §§2–5.

Appendix C discusses a class of Poisseuille flows, and places their analysis in the context of
problems treated in this paper.

Finally, in Appendix D we make a close examination of a model case of layer potentials arising
in §4, illustrating in particular L1-gradient estimates applicable to R1.

5



2 Nature of the convergence v
ν → v

0

As explained in the introduction, the component of the solution to (1.1)–(1.8) normal to the axis
of the pipe solves the linear system

∂vν

∂t
= ν∆vν on R

+ × D, (2.1)

vν(t, x) =
α(t)

2π
x⊥ on (0,∞) × ∂D, (2.2)

vν(0, x) = v0(x) = s0(|x|)x⊥. (2.3)

Here, for each t ≥ 0, vν(t, ·) is a planar vector field on the disk D = {x ∈ R
2 : |x| ≤ 1}, tangent

to the boundary. We do not require s0(1) to be equal to α(0)/2π. This non-matching is what
produces the boundary layer effect. In this section we recall some results from [5] and [6] on the
nature of the convergence vν → v0 ≡ v0, and produce some additional results, which will be of use
in §3.

One tool to analyze solutions to (2.1)–(2.3) is the semigroup et∆, defined by u(t) = et∆f solving

∂u

∂t
= ∆u on R

+ × D, u
∣∣
R+×∂D

= 0, u(0) = f. (2.4)

We have
vν(t) = eνt∆v0 + Sνα, (2.5)

where Sνα = V ν solves
∂V ν

∂t
= ν∆V ν , V ν = 0 for t < 0,

V ν
∣∣
R+×∂D

=
α(t)

2π
x⊥.

(2.6)

If we set
C∞

b (R) = {α ∈ C∞(R) : α(t) = 0 for t < 0},
Cb(R) = {α ∈ C(R) : α(t) = 0 for t < 0},

(2.7)

we have for each ν > 0,
Sν : C∞

b (R) −→ C∞
b (R × D),

Sν : Cb(R) −→ Cb(R × D),
(2.8)

where the subscript b in the spaces on the right side of (2.8) also denote vanishing for t < 0, as it
does in (2.9) below. As shown in [6], we have a continuous extension

Sν : Lp
b(R) −→ C([0, 1], H−1

loc,b(R × ∂D)), (2.9)

where we use polar coordinates [0, 1] × ∂D → D, (r, eiθ) 7→ reiθ. In each case (2.8)–(2.9),

Tr(Sνα) =
α

2π
x⊥, (2.10)

for each ν > 0.
The behavior as ν ց 0 of the first term of the right side of (2.5) is governed by the behavior

as t ց 0 of et∆, acting on u0. The behavior of Sνα as ν ց 0 is attacked as follows. First assume
α ∈ C∞

b (R). Set

Ṽ ν(t, x) = V ν(t, x) − α(t)

2π
x⊥. (2.11)
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This solves
∂Ṽ ν

∂t
= ν∆Ṽ ν − α′(t)f1, Ṽ ν(0) = 0, Ṽ ν

∣∣
R+×∂D

= 0, (2.12)

where

f1(x) =
x⊥

2π
. (2.13)

Hence, by Duhamel’s formula,

Ṽ ν(t) = −
∫ t

0
eν(t−s)∆f1 α′(s) ds. (2.14)

Substitution into (2.11) gives

Sνα(t) =

∫ t

0

(
I − eν(t−s)∆

)
f1 α′(s) ds. (2.15)

A mollifier argument gives the following (Proposition 2.1 of [6]).

Proposition 2.1 Let X be a Banach space of functions on D such that f1 ∈ X and {et∆ : t ≥ 0}
is a strongly continuous semigroup on X. Then

Sν : BVb(R) −→ Cb(R, X), (2.16)

with

Sνα(t) =

∫

I(t)

(
I − eν(t−s)∆

)
f1 dα(s), (2.17)

where we can take either I(t) = [0, t] or I(t) = [0, t). Furthermore,

Sνα(t) = − lim
ε→0

ν

∫ t−ε

0
∆eν(t−s)∆f1 α(s) ds. (2.18)

Corollary 2.2 In the setting of Proposition 2.1,

‖Sνα(t)‖X ≤ ‖α‖BV ([0,t]) sup
s∈[0,t]

‖eνs∆f1 − f1‖X. (2.19)

Hence, if vν solves (2.1)–(2.3) and v0 ∈ X, then

‖vν(t) − v0‖X ≤ ‖eνt∆v0 − v0‖X

+ ‖α‖BV ([0,t]) sup
s∈[0,t]

‖eνs∆f1 − f1‖X. (2.20)

The following records spaces X to which Proposition 2.1 applies.

Proposition 2.3 {et∆ : t ≥ 0} is a strongly continuous semigroup on the following spaces:

Lp(D), 1 ≤ p < ∞, (2.21)

more generally the Lp-Sobolev spaces

Hs,p(D), 1 ≤ p < ∞, 0 ≤ s <
1

p
. (2.22)
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Also
C∗(D) = {f ∈ C(D) : f |∂D = 0}, (2.23)

H1
0 (D) = {f ∈ H1,2(D) : f |∂D = 0}, (2.24)

and

H1
0 (D) ∩ Hσ,2(D), 1 ≤ σ <

5

2
. (2.25)

See [6] for more details and references. We mention that {et∆ : t ≥ 0} is a contraction semigroup
on the spaces (2.21), and also on

L∞(D), C(D), (2.26)

but it is not strongly continuous at t = 0 on the spaces (2.26).
Proposition 2.3 has obvious applications to the limiting behavior as ν ց 0 of the first term on

the right side of (2.5). As for Sνα, Proposition 2.3 together with the formulas (2.17) and (2.18)
can be used to establish the following (Proposition 4.2 of [6]).

Proposition 2.4 Assume q ∈ (1,∞) and assume

0 ≤ σ < τ <
1

q
, p ∈

[
1,

2

2 − 1/q + σ

)
. (2.27)

Then
Sν : Lp′

b (R) −→ Cb(R, Hσ,q(D)), (2.28)

and
‖Sνα(t)‖Hσ,q(D) ≤ C(t)ν(τ−σ)/2‖α‖Lp′ ([0,t]) ‖f1‖Hτ,q(D), (2.29)

provided that also

1 ≤ p <
2

2 − (τ − σ)
. (2.30)

Note. For a given p, there exist q, τ, σ satisfying the hypotheses above, provided 1 ≤ p < 2, i.e.,
provided p′ > 2.

In addition to such global convergence results as given above, there are local convergence results,
which hold in stronger norms, such as the following (Proposition 7.1 of [6]).

Proposition 2.5 Let O ⊂ D be open, Ω ⊂ Ω ⊂ O, Ω smoothly bounded. Assume

v0 ∈ L2(D), v0

∣∣
O ∈ Hk(O), α ∈ L1

b(R). (2.31)

Then, given T0 < ∞,
lim
νց0

vν(t)
∣∣
Ω

= v0

∣∣
Ω

in Hk(Ω), (2.32)

uniformly for t ∈ [0, T0].

Proposition 2.5 applies in particular when v0 ∈ Hk(D). In such a case, we can draw a stronger
conclusion, via some analysis done in [8], which will also prove useful in §3. We introduce the
following spaces:

Vk(D) = {u ∈ L2(D) : Lu ∈ L2(D), ∀L ∈ X
k}, (2.33)

where
X

k = Span {Z1 · · ·Zj : j ≤ k, Zℓ ∈ X
1}, (2.34)
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with
X

1 = {Y smooth vector field on D : Y ‖ ∂D}. (2.35)

We note that there exists a finite family {Yj : 1 ≤ j ≤ M} ⊂ X
1 that spans X

1 over C∞(D). In
fact, we can take M = 3 and

Yj = (1 − r2)
∂

∂xj
(j = 1, 2), Y3 =

∂

∂θ
. (2.36)

We can set
Y J = Yj1 · · ·Yjk

, |J | = k, (2.37)

and
‖u‖2

Vk =
∑

|J |≤k

‖Y Ju‖2
L2 . (2.38)

We mention that, for each k ∈ Z
+,

C∞
0 (D) is dense in Vk(D). (2.39)

The following result is a special case of results of §3.3 of [8], to which we will return in the following
section of this paper.

Proposition 2.6 For each k ∈ Z
+, {et∆ : t ≥ 0} is a strongly continuous semigroup on Vk(D).

We can then bring in Corollary 2.2 and deduce:

Corollary 2.7 If vν solves (2.1)–(2.3) and v0 ∈ Vk(D), then

‖vν(t) − v0‖Vk ≤ ‖eνt∆v0 − v0‖Vk

+ ‖α‖BV ([0,t]) sup
s∈[0,t]

‖eνs∆f1 − f1‖Vk , (2.40)

which tends to 0 as ν ց 0, uniformly for t ∈ [0, T0], provided α ∈ BV ([0, T0]).

We now describe more detailed behavior of et∆v0(x) in case v0 ∈ C∞(D). Parallel to Proposition
2.5, we have the interior regularity result

v0 ∈ C∞(D), v(t, x) = et∆v0(x) =⇒ v ∈ C∞([0,∞) × D), (2.41)

as well as v ∈ C∞((0,∞) × D). It remains to analyze the behavior near t = 0 on a neighborhood
of ∂D. In [6] this was attacked via the use of layer potentials. In Appendix B of this paper we use
another method, exploiting a connection with the wave equation and the method of geometrical
optics. In Proposition B.1 we exhibit et∆v0(x) near ∂D (for v0 ∈ C∞(D)) as

et∆v0(x) = v0(x) +
N∑

k=1

tk

k!
∆kv0(x)

−
2N∑

j=0

2bj(x)(4t)j/2Ej

(ϕ(x)√
4t

)
+ R̂N (t, x).

(2.42)

Here we have
bj ∈ C∞(D), ϕ(x) = 1 − |x|, (2.43)
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and

Ej(y) =
1√
π

∫ ∞

y
e−s2

(s − y)j ds

=
e−y2

√
π

∫ ∞

0
e−s2−2sysj ds.

(2.44)

The term R̂N is a remainder. Its significance is that, for each M, k ∈ N there exists N such that

‖R̂N (t, ·)‖Ck(D) ≤ CM,kt
M , t ∈ (0, 1]. (2.45)

Note that for each j ≥ 0, Ej ∈ C∞([0,∞)) is positive and rapidly decreasing at infinity. The
boundary layer phenomenon is captured by these terms, particularly the leading term

−2b0(x)E0

(1 − |x|√
4t

)
. (2.46)

Note that E0(0) = 1/2, and hence

b0(x) = v0(x) for x ∈ ∂D. (2.47)

These results apply to f1, given by (2.13). In this case, ∆f1 = 0, and we get

et∆f1(x) = f1(x) −
2N∑

j=0

2gj(x)(4t)j/2Ej

(1 − |x|√
4t

)
+ R̂N (t, x), (2.48)

with gj ∈ C∞(D). By (2.17), we get

Sνα(t) =
2N∑

j=0

2gj(x)

∫ t

0
(4ν(t − s))j/2Ej

( 1 − |x|√
4ν(t − s)

)
dα(s)

−
∫ t

0
R̂N (ν(t − s), x) dα(s).

(2.49)

The estimate (2.45) implies

∥∥
∫ t

0
R̂N (ν(t − s), ·) dα(s)

∥∥
Ck(D)

≤ CM,k(T )‖α‖BV νM , 0 < t ≤ T. (2.50)

By (2.5), the results (2.42) (with t replaced by νt) and (2.49) apply to produce an asymptotic
expansion for vν(t, x) as ν ց 0, valid uniformly for t ∈ [0, T ].

We use these asymptotic results to obtain further estimates on et∆v0, for v0 ∈ C∞(D), which
will be of use in §3. To set this up, we introduce the following generalization of Vk(D) in (2.33).
Given k ∈ Z

+, p ∈ [1,∞], set

Vk,p(D) = {u ∈ Lp(D) : Lu ∈ Lp(D), ∀L ∈ X
k}. (2.51)

Also set
V∞,p(D) =

⋂

k

Vk,p(D). (2.52)

Proposition 2.8 Given v0 ∈ C∞(D), we have

{et∆v0 : t ≥ 0} bounded in V∞,∞(D). (2.53)
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Proof. The bound in C∞(D) ⊂ V∞,∞(D) for t ≥ 1 is elementary. Also the bound in C∞({x : |x| ≤
1/2}) for t ∈ [0, 1] follows from (2.41). To finish, it suffices to show that

{
Ej

(1 − |x|√
4t

)
: 0 < t ≤ 1

}
is bounded in V∞,∞, (2.54)

near ∂D, which follows from the assertion that

{(
y

d

dy

)k
Ej

( y√
4t

)
: 0 < t ≤ 1

}
is bounded in L∞([0, 1]), ∀ j, k. (2.55)

The identity

y
d

dy
Ej

( y√
4t

)
=

y√
4t

E′
j

( y√
4t

)
(2.56)

gives (2.55) for k = 1, and the result for general k follows by induction. ¤

Applying this to (2.5) and (2.17), we have:

Proposition 2.9 Given vν solving (2.1)–(2.3) with v0 ∈ C∞(D), α ∈ BVb(R), we have

{vν(t) : ν ∈ (0, 1]} bounded in V∞,∞(D), (2.57)

uniformly for t ∈ [0, T0], T0 < ∞.

Recall from Proposition 1.1 that solutions to (2.1)–(2.3) have the form

vν(t, x) = s̃ν(t, x)x⊥ = sν(t, |x|)x⊥. (2.58)

The following complement to Proposition 2.9 will also be useful in §3.

Proposition 2.10 When (2.55) and (2.56) hold, we have

{s̃ν(t, ·) : ν ∈ (0, 1], t ∈ [0, T0]} bounded in V∞,∞(D). (2.59)

Proof. First note that
vν(t, x) · x⊥ = s̃ν(t, x)|x|2, (2.60)

which gives the desired estimate on A1/2 = {x ∈ D : |x| ≥ 1/2}:

‖s̃ν(t, ·)‖Vk,∞(A1/2) ≤ Ck‖vν(t, ·)‖Vk,∞(A1/2). (2.61)

It remains to show that

{s̃ν(t, ·)
∣∣
D1/2

: ν ∈ (0, 1], t ∈ [0, T0]} bounded in C∞(D1/2), (2.62)

where D1/2 = {x ∈ R
2 : |x| ≤ 1/2}. To do this, note that

sν(t, r)r = vν(t, re1) · e2, (2.63)

where {e1, e2} is the standard basis of R
2. Hence

sν(t, r) =

∫ 1

0
e2 · ∇e1

vν(t, rσe1) dσ. (2.64)
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This defines sν(t, r) as an even function of r ∈ [−1, 1], and we have

‖sν(t, ·)‖Ck([−1/2,1/2]) ≤ Ck‖vν(t, ·)‖Ck+1(D1/2). (2.65)

Now s̃ν and sν are related by (2.58), hence

s̃ν(t, x) = σν(t, |x|2), σν(t, ρ) = sν(t, ρ1/2). (2.66)

We have
‖s̃ν(t, ·)‖Cℓ(D1/2) ≤ C‖σν(t, ·)‖Cℓ([−1/4,1/4]). (2.67)

Clearly
‖σν(t, ·)‖C0([−1/4,1/4]) = ‖sν(t, ·)‖C0([−1/2,1/2]). (2.68)

Next

∂ρσν(t, ρ) =
1

2
ρ−1/2∂rs

ν(t, ρ1/2)

=
1

2

∫ 1

0
∂2

rsν(t, ρ1/2τ) dτ,

(2.69)

the latter identity using ∂rs
ν(t, 0) = 0. Inductively, we obtain

‖σν(t, ·)‖Cℓ([−1/4,1/4]) ≤ C‖sν(t, ·)‖C2ℓ([−1/2,1/2]). (2.70)

Recalling (2.65) and (2.67), we get

‖s̃ν(t, ·)‖Ck(D1/2) ≤ C‖sν(t, ·)‖C2k([−1/2,1,2])

≤ C‖vν(t, ·)‖C2k+1(D1/2),
(2.71)

finishing the proof of Proposition 2.10. ¤

We record some more estimates that follow from the arguments given above. Since

∫

D

|x|−p dx = 2π

∫ 1

0
r1−p dr < ∞ for p ∈ [1, 2), (2.72)

we have
‖s̃ν(t, ·)‖Lp(D) ≤ C‖vν(t, ·)‖Lp(D) + C‖vν(t, ·)‖L∞(D1/2), p ∈ [1, 2). (2.73)

We also have

‖s̃ν(t, ·)‖Lp(D) ≤ C‖vν(t, ·)‖Lp(D) + C‖vν(t, ·)‖C1(D1/2), p ∈ [1,∞]. (2.74)

3 Nature of the convergence w
ν → w

0

Recall from the introduction that the component of the solution to (1.1)–(1.8) parallel to the axis
of the pipe solves the scalar equation

∂wν

∂t
= ν∆wν − Xνw

ν + fν(t) on R
+ × D, (3.1)

wν(t, x) = β(t) on (0,∞) × ∂D, (3.2)

wν(0, x) = w0(x), (3.3)
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where

Xνg = ∇vνg = sν(t, |x|)∂g

∂θ
. (3.4)

We do not require w0(x) = β(0) for x ∈ ∂D. We assume vν is given by (2.1)–(2.3), with

v0 ∈ C∞(D), α ∈ BVb(R), (3.5)

so the results of §2 are available. In this section we show how results of §2 allow us to apply results
of [8] to draw conclusions about the nature of the convergence wν → w0, the solution to

∂w0

∂t
= −Xw0 + f0(t), (3.6)

w0(0, x) = w0(x), (3.7)

where

Xg = ∇v0
g = s0(|x|)

∂g

∂θ
. (3.8)

The initial-boundary problem (3.1)–(3.3) is a singular perturbation of (3.6)–(3.8) in two ways,
due both to the presence of ν∆wν in (3.1) and to the nature of the convergence of the coefficients
of Xν to those of X. We can partially separate these two mechanisms by rewriting (3.1) as

∂wν

∂t
= (ν∆ − X)wν + (X − Xν)w

ν + fν(t). (3.9)

Also let us set
W ν(t, x) = wν(t, x) − β(t), (3.10)

so W ν(t, x) solves
∂W ν

∂t
= (ν∆ − X)W ν + (X − Xν)W

ν + gν(t),

W ν(t, x) = 0 on (0,∞) × ∂D,

W ν(0, x) = W0(x) = w0(x) − β(0),

(3.11)

where
gν(t) = fν(t) − β′(t), (3.12)

assuming β ∈ C1
b (R). (We relax this requirement below.) Duhamel’s formula gives

W ν(t) = et(ν∆−X)W0 +

∫ t

0
e(t−s)(ν∆−X)(XW ν − XνW

ν + gν(s)) ds

= et(ν∆−X)W0 +

∫ t

0
e(t−s)(ν∆−X)(s0 − sν)

∂W ν

∂θ
ds

+

∫ t

0
gν(s)e(t−s)(ν∆−X)1 ds.

(3.13)

By comparison, if we set
W 0(t, x) = w0(t, x) − β(t), (3.14)

which solves
∂W 0

∂t
= −XW 0 + g0(t), W 0(0, x) = W0(x), (3.15)

with
g0(t) = f0(t) − β′(t), (3.16)
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we have

W 0(t) = e−tXW0 +

∫ t

0
g0(s) ds. (3.17)

To compare wν(t, x) and w0(t, x), we will separately estimate

R1(ν, t, x) = et(ν∆−X)W0 − e−tXW0, (3.18)

R2(ν, t, x) =

∫ t

0

[
gν(s)e(t−s)(ν∆−X)1 − g0(s)

]
ds, and (3.19)

R3(ν, t, x) =

∫ t

0
e(t−s)(ν∆−X)(s0 − sν)

∂W ν

∂θ
ds, (3.20)

which fit together as follows:

wν(t, x) − w0(t, x) = W ν(t, x) − W 0(t, x) =
3∑

j=1

Rj(ν, t, x). (3.21)

We begin with an estimate on R3(ν, t, x). Note that

∂

∂θ
commutes with X, Xν , and ∆. (3.22)

Hence

Zν =
∂W ν

∂θ
=⇒

∂Zν

∂t
= (ν∆ − Xν)Z

ν , Zν
∣∣
R+×∂D

= 0, Zν(0) =
∂W0

∂θ
=

∂w0

∂θ
.

(3.23)

Thus the maximum principle gives

∥∥∥∂W ν

∂θ
(s)

∥∥∥
L∞(D)

≤
∥∥∥∂W0

∂θ

∥∥∥
L∞(D)

=
∥∥∥∂w0

∂θ

∥∥∥
L∞(D)

. (3.24)

Since the semigroup et(ν∆−X) is positivity preserving, we have

|R3(ν, t, x)| ≤ ‖∂θw0‖L∞

∫ t

0
e(t−s)(ν∆−X)

∣∣s0(|x|) − sν(s, |x|)
∣∣ ds. (3.25)

We also have, by radial symmetry,

e(t−s)(ν∆−X)|s0 − sν | = eν(t−s)∆|s0 − sν |, (3.26)

hence

|R3(ν, t, x)| ≤ ‖∂θw0‖L∞

∫ t

0
eν(t−s)∆|s̃0 − s̃ν | ds. (3.27)

Here, as in (2.58), s̃ν(t, x) = sν(t, |x|), and similarly s̃0(x) = s0(|x|).
Moving on to R2(ν, t, x), we have, as in (3.26),

e(t−s)(ν∆−X)1 = eν(t−s)∆1, (3.28)
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and hence

R2(ν, t, x) =

∫ t

0

[
(gν(s) − g0(s)) + gν(s)(eν(t−s)∆1 − 1)

]
ds

=

∫ t

0
[fν(s) − f0(s)] ds +

∫ t

0
gν(s)

(
eν(t−s)∆1 − 1

)
ds

=

∫ t

0
[fν(s) − f0(s)] ds + R#

2 (ν, t, x).

(3.29)

Using (3.12), we can write

R#
2 (ν, t, x) =

∫ t

0
fν(s)(eν(t−s)∆1 − 1) ds +

∫ t

0
(eν(t−s)∆1 − 1) dβ(s), (3.30)

and by a mollifier argument such as described in §1 extend the validity of this identity from
β ∈ C1

b (R) to β ∈ BVb(R).
We record some Lp-estimates on R3 and R2. Since et∆ is a contraction semigroup on Lp(D),

(3.27) yields

‖R3(ν, t, ·)‖Lp ≤ ‖∂θw0‖L∞

∫ t

0
‖s̃0 − s̃ν(s, ·)‖Lp ds

≤ ‖∂θw0‖L∞ sup
s∈[0,t]

‖s̃0(·) − s̃ν(s, ·)‖Lp · t.
(3.31)

Meanwhile, (3.30) yields

‖R#
2 (ν, t, ·)‖Lp ≤

(
‖fν‖L1([0,t]) + ‖β‖BV ([0,t])

)
· sup

s∈[0,t]
‖1 − eν(t−s)∆1‖Lp . (3.32)

The arguments yielding (2.73)–(2.74) also yield

‖s̃0(·) − s̃ν(t, ·)‖Lp(D)

≤ C‖vν(t, ·) − v0(·)‖Lp(D) + C‖vν(t, ·) − v0(·)‖L∞(D1/2), p ∈ [1, 2),
(3.33)

and
‖s̃0(·) − s̃ν(t, ·)‖Lp(D)

≤ C‖vν(t, ·) − v0(·)‖Lp(D) + C‖vν(t, ·) − v0(·)‖C1(D1/2), p ∈ [2,∞).
(3.34)

Results of §2 guarantee that these quantities tend to 0 as ν ց 0, uniformly in t ∈ [0, T0], under
hypotheses weaker than (3.5). Results of Appendix B give

‖1 − eνt∆1‖Lp(D) ≤ C(T0)ν
1/2p, (3.35)

for t ∈ [0, T0]. We have:

Proposition 3.1 Assume that (3.5) holds. Also assume w0 ∈ C1(D), β ∈ BVb(R), f0, fν ∈ L1
b(R)

and ‖fν − f0‖L1([0,T ]) → 0, for each T < ∞. Then, for each p ∈ [1,∞),

‖R2(ν, t, ·)‖Lp(D) + ‖R3(ν, t, ·)‖Lp(D) → 0 as ν ց 0, (3.36)

uniformly in t ∈ [0, T ].
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We turn our attention to R1(ν, t, x), given by (3.18), i.e., to the nature of the convergence

et(ν∆−X)W0 −→ e−tXW0, (3.37)

as ν ց 0. Chapter 3 of [8] was devoted to such an analysis, in a more general setting, in which D
is replaced by a general compact Riemannian manifold with boundary O, with Laplace-Beltrami
operator ∆, and X is taken to be a smooth vector field on O, tangent to the boundary ∂O and
satisfying divX = 0. We recall some of these results.

Let us set
Uν(t, x) = et(ν∆−X)U0(x). (3.38)

The identity

Uν(t) = e−tXU0 + ν

∫ t

0
e−(t−s)X∆Uν(s) ds (3.39)

is useful once one has the following (Lemma 3.1.2 of [8]).

Lemma 3.2 There exists K ∈ (0,∞), independent of ν ∈ (0, 1], such that, if U0 ∈ D(∆2),

‖∆Uν(t)‖2
L2 ≤ e2Kt‖∆U0‖2

L2 . (3.40)

This is proven by estimating

d

dt
‖∆Uν(t)‖2

L2 = 2 Re (∆∂tU
ν , ∆Uν)L2 = · · · . (3.41)

The proof exploits the identity
D((ν∆ − X)2) = D(∆2). (3.42)

With this in hand, one proceeds to Proposition 3.1.3 of [8]:

Proposition 3.3 Given p ∈ [1,∞),

et(ν∆−X)W0 −→ e−tXW0 as ν → 0, (3.43)

in Lp-norm, for all W0 ∈ Lp(D).

Ingredients in the proof include the contraction property on Lp(D) of et(ν∆−X), the validity of
(3.43) on a dense subspace of L2(D), via Lemma 3.2, to get (3.43) for p ∈ [1, 2], and then use of
duality to get (3.43) for p > 2, first weak∗, then, via uniform convexity, in norm.

Putting together Propositions 3.1 and 3.3, we have Lp estimates on

wν(t, x) − w0(t, x) = W ν(t, x) − W 0(t, x)

= R1(ν, t, x) + R2(ν, t, x) + R3(ν, t, x).
(3.44)

Proposition 3.4 Under the hypotheses of Proposition 3.1, as ν ց 0,

W ν(t, ·) −→ W 0(t, ·), and hence (3.45)

wν(t, ·) −→ w0(t, ·), (3.46)

in norm, in Lp(D), for each p ∈ [1,∞).
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We now discuss convergence in stronger topologies, starting with R1(ν, t, x). In (3.1.19) of [8],
we obtain

‖et(ν∆−X)W0‖Hs(D) ≤ CeKt‖W0‖Hs(D), s ∈
[
0,

1

2

)
, (3.47)

with C and K independent of ν ∈ (0, 1]. On the other hand (as mentioned above), et(ν∆−X) is a
contraction semigroup on Lp(D) for each p. Interpolation with (3.47) gives

‖et(ν∆−X)W0‖Hσ,q(D) ≤ CeKt‖W0‖Hσ,q(D), (3.48)

provided
q ∈ [2,∞), σq ∈ [0, 1). (3.49)

Using this leads to Proposition 3.1.4 of [8]:

Proposition 3.5 Given (3.49), then

W0 ∈ Hσ,q(D) =⇒ lim
νց0

et(ν∆−X)W0 = e−tXW0, (3.50)

in Hσ,q-norm, uniformly in t ∈ [0, T0].

A similar (but slightly more elementary) analysis of R2(ν, t, x) via (3.29)–(3.30) gives, under
the hypotheses of Proposition 3.1,

lim
νց0

R2(ν, t, ·) = 0, in Hσ,q-norm, (3.51)

for σ and q as in (3.49).
We move on to estimates in the spaces Vk(D), defined in (2.33)–(2.38). The following result

(which extends Proposition 2.6) is Proposition 3.3.3 of [8].

Proposition 3.6 For each k ∈ Z
+, ν > 0, et(ν∆−X) is a strongly continuous semigroup on Vk(D),

and, with Bk independent of ν ∈ (0, 1],

‖et(ν∆−X)W0‖Vk ≤ etBk‖W0‖Vk . (3.52)

The proof involves estimating a weighted sum of terms

d

dt
‖Y JUν(t)‖2

L2 , |J | ≤ k, (3.53)

and takes about 4 pages in [8]. From here, we get Proposition 3.3.4 of [8]:

Proposition 3.7 In the setting of Proposition 3.6,

W0 ∈ Vk(D) =⇒ lim
νց0

et(ν∆−X)W0 → e−tXW0, (3.54)

in norm, in Vk(D).

We make some comments about the proof of this result. The boundedness result (3.52) plus the
L2-convergence from (3.43) imply convergence in (3.54), weak∗ in Vk(D). To get norm convergence,
one argues further. It suffices to get norm convergence on a dense subspace, e.g.,

C∞
0 (D) ⊂ V2k(D) ⊂ Vk(D). (3.55)
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Appendix A of [8] establishes the complex interpolation property

Vk(D) = [L2(D),V2k(D)]1/2. (3.56)

Hence, for f ∈ V2k(D),

‖et(ν∆−X)f − e−tXf‖Vk

≤ ‖et(ν∆−X)f − e−tXf‖1/2
L2 · ‖et(ν∆−X)f − e−tXf‖1/2

V2k .
(3.57)

The first factor on the right side of (3.57) tends to 0 as ν ց 0, by Proposition 3.3, and the last
factor is uniformly bounded as ν ց 0 by (3.52), with k replaced by 2k.

We next discuss convergence of (3.45) in the spaces Vk(D). For simplicity, we assume here that

gν , g0 ≡ 0, (3.58)

so W ν is given by

∂W ν

∂t
= (ν∆ − Xν)W

ν , W ν
∣∣
R+×∂D

= 0, W ν(0, x) = W0(x), (3.59)

and W 0 by
∂W 0

∂t
= −XW 0, W 0(0, x) = W0(x), i.e., W 0(t) = e−tXW0. (3.60)

(Treating the general case simply involves one more use of Duhamel’s formula.) To set up the
analysis, Chapter 4 of [8] defined a class X̂

1 of vector fields on D, depending on t and ν, as follows.
Recall X

1, given by (2.35), and let {Yj} be a finite spanning set, as in (2.36). We say Zν ∈ X̂
1

provided we can write

Zν =
∑

j

Aν
j (t, x)Yj , (3.61)

with
{Aν

j (t, ·) : ν ∈ (0, 1], t ∈ [0, T0]} bounded in V∞,∞(D), (3.62)

for each T0 ∈ (0,∞). In the current case of interest,

Xν = s̃ν(t, x)
∂

∂θ
, (3.63)

Proposition 2.10 gives
Xν ∈ X̂

1. (3.64)

We also set
X̂

k = Span{ZνY
J : Zν ∈ X̂

1, Y J ∈ X
k−1}. (3.65)

The following results are established in Chapter 4 of [8]:

Zν ∈ X̂
1, Y ∈ X

1 =⇒ [Zν , Y ] ∈ X̂
1,

Pν ∈ X̂
k, Y I ∈ X

ℓ =⇒ Y IPν ∈ X̂
k+ℓ,

(3.66)

and play a role in the demonstration of the next result (Proposition 4.1.5 of [8]).
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Proposition 3.8 Assume W0 ∈ Vk(D). Given that Xν satisfies (3.64), there is a unique solution
W ν to (3.59), satisfying

W ν ∈ C([0,∞),Vk(D)) ∩ C∞((0,∞) × D), (3.67)

and we have
‖W ν(t)‖Vk ≤ etBk‖W0‖Vk , (3.68)

with Bk independent of ν ∈ (0, 1].

The proof involves estimating a weighted sum of terms

d

dt
‖Y JW ν(t)‖2

L2 , |J | ≤ k, (3.69)

and is a bit more elaborate than the proof of Proposition 3.6, bringing in the results of (3.66).
The uniform bounds (3.68) plus the Lp-norm convergence (3.45), with p = 2, imply the following,

as shown in Proposition 4.2.1 of [8]:

Proposition 3.9 Retain the hypotheses of Proposition 3.1 (which imply (3.64), and assume (3.58).
Assume W0 ∈ Vk(D). Then, as ν ց 0,

W ν(t) −→ e−tXW0, (3.70)

weak∗ in Vk(D).

The same argument used to go from weak∗ convergence to Vk-norm convergence in Proposition
3.7, involving (3.55)–(3.57), works here, yielding the following improvement of Proposition 3.9,
proved as in Proposition 4.2.4 of [8]:

Proposition 3.10 In the setting of Proposition 3.9, we have convergence in (3.70), in Vk-norm.

We conclude this section with some complementary results. First there is the contraction
property:

‖W ν(t, ·)‖Lp ≤ ‖W0‖Lp , 1 ≤ p ≤ ∞. (3.71)

Next, if also W0 ∈ Vk(D) with k > 1, the result (3.70) implies

W ν(t, x) −→ e−tXW0, locally uniformly in D. (3.72)

In particular,

W0 ∈ C∞(D) =⇒ W ν(t) → e−tXW0, boundedly and locally uniformly on D. (3.73)

Combining (3.71) and (3.73) and using standard approximation arguments yields:

Proposition 3.11 In the setting of Proposition 3.9,

W0 ∈ C(D) =⇒ W ν(t) → e−tXW0, boundedly and locally uniformly on D. (3.74)
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4 Further boundary layer estimates

In §3 we have seen various spaces in which

wν(t, x) − w0(t, x) −→ 0 (4.1)

as ν ց 0. Here we take a closer look at the boundary layers that form and prevent (4.1) from
holding in sup norm. We work with the decomposition (3.21), i.e.,

wν(t, x) − w0(t, x) = R1(ν, t, x) + R2(ν, t, x) + R3(ν, t, x), (4.2)

where, we recall,

R1(ν, t, x) = et(ν∆−X)W0 − e−tXW0, (4.3)

R2(ν, t, x) =

∫ t

0

[
fν(s) − f0(s)

]
ds (4.4)

+

∫ t

0
fν(s)

(
eν(t−s)∆1 − 1

)
ds (4.5)

+

∫ t

0

(
eν(t−s)∆1 − 1

)
dβ(s), (4.6)

R3(ν, t, x) =

∫ t

0
e(t−s)(ν∆−X)(s0 − sν)

∂W ν

∂θ
ds. (4.7)

We also recall that W0(x) = w0(x) − β(0) and W ν(t, x) is given by (3.10)–(3.11). Note therefore
that

∂W ν

∂θ
=

∂wν

∂θ
. (4.8)

Of the three terms on the right side of (4.2), R2(ν, t, x) is the easiest to analyze precisely.
Proposition B.1 applied to f ≡ 1 gives

eν(t−s)∆1 − 1

= −
2N∑

j=0

2bj(x)
(
4ν(t − s)

)j/2
Ej

( ϕ(x)√
4ν(t − s)

)
+ R̂N (ν(t − s), x),

(4.9)

where, for each M, k ∈ N, there exists N such that

‖R̂N (ν(t − s), ·)‖Ck(D) ≤ CM,k

(
ν(t − s)

)M
, 0 ≤ s ≤ t ≤ T0. (4.10)

Thus, for example, the term (4.6) has the form

−
2N∑

j=0

2bj(x)

∫ t

0

(
4ν(t − s)

)j/2
Ej

( ϕ(x)√
4ν(t − s)

)
dβ(s)

+

∫ t

0
R̂N (ν(t − s), x) dβ(s).

(4.11)

We recall that
ϕ(x) = 1 − |x|, b0

∣∣
∂D

= 1, (4.12)
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and that Ej is given by (B.39); in particular,

E0(y) =
1√
π

∫ ∞

y
e−s2

ds. (4.13)

Thus the principal term in (4.11) is

−2b0(x)

∫ t

0
E0

( 1 − |x|√
4ν(t − s)

)
dβ(s), (4.14)

and for j ≥ 1 the jth term in (4.11) is ≤ Cjν
j/2tj/2, uniformly in x ∈ D.

The term (4.5) has a similar form as (4.6), and of course the term on the right side of (4.4) is
completely elementary. We summarize.

Proposition 4.1 We have

R2(ν, t, x) = −2b0(x)

∫ t

0
E0

( 1 − |x|√
4ν(t − s)

)(
dβ(s) + fν(s) ds

)

+

∫ t

0

[
fν(s) − f0(s)

]
ds + O(ν1/2t1/2),

(4.15)

uniformly in x ∈ D, t ∈ [0, T0], ν ∈ (0, 1].

We turn to R1(ν, t, x), given by (4.3). We assume W0 ∈ C∞(D). Results here are as precise as
those for R2, but somewhat more complicated. For the analysis, we use results from §§3.6–3.7 of
[8]. The attack combines the use of layer potentials and semiclassical analysis. Before starting this
attack, we first deal with the fact that the equation

∂Wν

∂t
= ν∆Wν − XWν , Wν

∣∣
R+×∂D

= 0, Wν(0, x) = W0(x) (4.16)

for
Wν(t) = et(ν∆−X)W0 (4.17)

does not fit the pattern typically encountered in semiclassical analysis. One could regard (4.16)
as semiclassical (with ν = ~

2) if X were zero order (which it is not) or if the vector field X were
accompanied by a factor ~ = ν1/2. As it is, (4.16) is a more singular perturbation than that. The
first step is to ameliorate this by considering

vν(t, x) = etXet(ν∆−X)W0(x), (4.18)

which solves
∂vν

∂t
= νL(t)vν on R

+ × D, vν

∣∣
R+×∂D

= 0, vν(0) = W0, (4.19)

with
L(t) = etX∆e−tX , (4.20)

a t-dependent family of second order, strongly elliptic operators with smooth coefficients on D. (The
functions vν and uν , used below, are not to be confused with vν and uν from previous sections.
Nor should Wν be confused with W ν .) The solutions to (4.16) and (4.20) are related by the simple
transformation

Wν(t) = e−tXvν(t). (4.21)
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We aim to express the solution to (4.19) as a sum of a “free space” solution and a layer-
potential correction. To construct the free space solution, we put D in a box in R

2 and identify
opposite edges, so D is a domain with boundary in a compact manifold without boundary, say
M = T

2 = R
2/(4Z

2). We extend X from D to a smooth vector field on M , and of course ∆
extends to the Laplace operator on M , with its standard flat metric tensor. Then L(t) in (4.20)
is a well defined t-dependent family of second order strongly elliptic operators on M . Also extend
W0 ∈ C∞(D) to W̃0 ∈ C∞(M). The free space solution is then Vν(t), given by

∂Vν

∂t
= νL(t)Vν on R

+ × M, Vν(0, x) = W̃0(x). (4.22)

The solution to (4.19) then has the form

vν(t, x) = Vν(t, x) − uν(t, x), t ≥ 0, x ∈ D, (4.23)

where uν(t, x) satisfies
∂uν

∂t
= νL(t)uν on R × D,

uν = gν = χR+(t)Vν(t, x), x ∈ ∂D,

uν = 0 on (−∞, 0) × D.

(4.24)

The method of layer potentials is brought to bear to solve (4.24). This method involves the use of
functions H(ν, s, t, x, y), defined as follows. First, the solution to (4.22) is given by

Vν(t, x) =

∫

M

W̃0(y)H(ν, 0, t, x, y) dV (y), (4.25)

where dV (y) = dy is the standard area element on M = T
2. More generally, for 0 ≤ s ≤ t,

Vν(t, x) =

∫

M

Vν(s, y)H(ν, s, t, x, y) dVs(y), (4.26)

where dVs(y) =
√

g(s, y) dy is the pull-back of dV via the flow generated by X, i.e., the Riemannian
area element for gs, the pull-back via this flow of the standard flat metric tensor on M .

It is not hard to analyze Vν as a smooth function on [0,∞)×M , depending smoothly on ν ∈ [0, 1],

given W̃0 ∈ C∞(M). Details can be found in §3.5 of [8]. Going from here to a layer potential analysis
of uν in (4.24) requires an accurate approximation to the integral kernel H(ν, s, t, x, y). This was
carried out in §3.6 of [8], in the more general context where D is a smoothly bounded domain in
a compact n-dimensional Riemannian manifold M , via techniques of semiclassical analysis. We
summarize the results. We have

H(ν, s, t, x, y) = g(s, y)−1/2K(ν, s, t, x, x − y), (4.27)

where K(ν, s, t, x, x − y) has the form

K(ν, s, t, x, z) =
N∑

j=0

Kj(ν, s, t, x, z) + RN (ν, s, t, x, z), (4.28)

where RN is increasingly negligible for large N (cf. [8], Proposition 3.6.6), and the principal term
K0(ν, s, t, x, z) is given (with n = 2) by

K0(ν, s, t, x, z)

=
(
4πν(t − s)

)−n/2
detG(s, t, x)1/2e−G(s,t,x)z·z/4ν(t−s).

(4.29)
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Here G(s, t, x) is a smooth positive-definite n × n (i.e., 2 × 2) matrix valued function of (s, t, x) ∈
[0,∞) × [0,∞) × M , whose construction involves a transport equation; cf. (3.6.79) of [8]. For
j ≥ 1, formulas for Kj(ν, s, t, x, z) are somewhat more elaborate variants of (4.29). They are
given in (3.6.90) and (3.6.93) of [8]. The main point to take from these formulas is that, for j ≥ 1,
Kj(ν, s, t, x, z) is smaller and smoother than K0(ν, s, t, x, z), which has a δ-function type singularity
in the limit ν ց 0. In addition, these terms get progressively smaller and smoother as j increases.

With these results in hand, we bring in the method of layer potentials to treat (4.24), following
§3.7 of [8]. The double layer potential is given by

Dνh(t, x) = ν

∫ t

0

∫

∂D

h(s, y)
∂H

∂ns,y
(ν, s, t, x, y) dSs(y) ds. (4.30)

Here dSs is the arc length on ∂D induced by the metric tensor gs, and ∂/∂ns,y is the outward unit
normal to ∂D at y ∈ ∂D, determined by this metric tensor. The boundary trace relation for Dν is

Dνh
∣∣
R×∂D

=
(1

2
I + νNν

)
h, (4.31)

for supp h ⊂ R
+ × ∂D, where

Nνh(t, x) =

∫ t

0

∫

∂D

h(s, y)
∂H

∂ns,y
(ν, s, t, x, y) dSs(y) ds. (4.32)

Thus the solution to (4.24) has the form

uν(t, x) = Dνhν(t, x), (4.33)

provided hν solves (1

2
I + νNν

)
hν = gν , (4.34)

with gν given in (4.24).
Solvability of (4.34), on any given I = [0, T0], for ν > 0 small enough, is achieved as follows.

From (4.27)–(4.29) and related results on Kj , one has

‖νNνh‖L∞(I×∂D) ≤ C(I)ν1/2‖h‖L∞(I×∂D). (4.35)

Cf. [8], (3.7.27). Hence, as long as ν1/2 ≤ 1/2C(I), if gν ∈ L∞(I × ∂D), the equation (4.34) is
solved by

hν = 2(I + 2νNν)
−1gν

= 2(I − 2νNν + 4ν2N2
ν − · · · )gν .

(4.36)

We can take some finite sum of the series in (4.36) and have a rather small remainder. In particular,

‖hν − 2gν‖L∞(I×∂D) ≤ C(I)ν1/2‖gν‖L∞(I×∂D). (4.37)

Since, by (4.33),
uν = 2Dνgν + Dν(hν − 2gν), (4.38)

it is useful to know that
‖Dνh‖L∞(I×D) ≤ C‖h‖L∞(I×∂D), (4.39)
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with C independent of ν ∈ (0, 1]; cf. (3.7.34) of [8]. Hence

‖uν − 2Dνgν‖L∞(I×D) ≤ C(I)ν1/2‖gν‖L∞(I×∂D)

≤ C ′(I)ν1/2‖W̃0‖L∞(M),
(4.40)

the latter inequality by (4.22)–(4.24) and the maximum principle.
The estimate (4.40) implies that 2Dνgν is a good enough approximation to uν to resolve the

boundary layer behavior of uν , hence, via (4.23), that of vν , and hence, by (4.21), the boundary
layer behavior of Wν = et(ν∆−X)W0, given by (4.16)–(4.17). Thus we resolve the boundary layer
behavior of R1(ν, t, x), at least to leading order. Taking more terms in the series in (4.36) leads to
higher order approximation.

As for approximating uν within O(ν1/2) in sup norm, one can do this with a simplification of
2Dνgν , namely 2D0

νgν , where

D0
νh(t, x) = ν

∫ t

0

∫

∂D

h(s, y)
∂H0

∂ns,y
(ν, s, t, x, y) dSs(y) ds, (4.41)

where, in place of (4.27)–(4.28), we take

H0(ν, s, t, x, y) = g(s, y)−1K0(ν, s, t, x, x − y), (4.42)

again with K0 as in (4.29). We have, via estimates on Kj for j ≥ 1,

‖Dνh −D0
νh‖L∞(I×D) ≤ C(I)ν1/2‖h‖L∞(I×∂D). (4.43)

Further estimates on Vν in (4.22)–(4.24) yield, for δ > 0,

‖vν − (W0 − 2D0
νW

b
0 )‖L∞(I×D) ≤ C(I)ν1/2‖W0‖C1+δ(D), (4.44)

where
W b

0 = χR+(t)W0

∣∣
∂D

. (4.45)

Cf. [8], Proposition 3.7.4. Recalling (4.16)–(4.18), we reach the following conclusion.

Proposition 4.2 Assuming v0, w0 ∈ C∞(D),

‖R1(ν, ·, ·) + 2e−tXD0
νW

b
0‖L∞(I×D) ≤ C(I)ν1/2‖W0‖C1+δ(D). (4.46)

It remains to analyze R3(ν, t, x). Since W ν occurs on the right side of (4.7), we do not have as
precise an analysis of R3 as we got for R1 and R2, but we are able to show the following.

Proposition 4.3 In the setting of Proposition 4.2,

R3(ν, t, x) −→ 0, (4.47)

as long as
1 − |x|√

νt
−→ ∞. (4.48)
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We get this from the estimate (3.27), i.e.,

|R3(ν, t, x)| ≤ ‖∂θw0‖L∞

∫ t

0
eν(t−s)∆|s̃0 − s̃ν(s)| ds, (4.49)

together with the fact that, uniformly on t ∈ (0, T0], ν ∈ (0, 1],

|s̃0(x) − s̃ν(t, x)| ≤ ψ
(1 − |x|√

νt

)
+ Cν, (4.50)

where ψ(λ) → 0 as λ → ∞. Such an estimate on

|v0(x) − vν(t, x)| (4.51)

follows from (2.42)–(2.49), and then the estimate (4.50) follows by the arguments involving (2.60)–
(2.71).

5 Completely circularly symmetric pipe flows

If we impose not only the circular symmetry hypothesis (1.26) on v0(x) but also the following
circular symmetry hypothesis on w0(x),

w0(Rθx) = w0(x), ∀x ∈ D, θ ∈ [0, 2π], (5.1)

which implies w0(x) is a function of |x|, it follows that wν(t, x) satisfies such circular symmetry for
all t > 0, and the system (1.13)–(1.14) simplifies to

∂vν

∂t
= ν∆vν , div vν = 0, (5.2)

∂wν

∂t
= ν∆wν + fν(t). (5.3)

We continue to have the boundary conditions (1.15) and (1.17), i.e.,

vν(t, x) =
α(t)

2π
x⊥, wν(t, x) = β(t), |x| = 1, t > 0. (5.4)

Of course, (5.2) is identical to (1.36), and we have nothing further beyond the material of §2 to say
about that. The simplification occurs in (5.3).

Let us suppose to start that
fν , β ∈ C∞

b (R), (5.5)

i.e., fν and β are C∞ on R and vanish on (−∞, 0]. Setting

W ν(t, x) = wν(t, x) − β(t) (5.6)

yields
∂W ν

∂t
= ν∆W ν + fν(t) − β′(t),

W ν(0, x) = w0(x), W ν
∣∣
R+×∂D

= 0,
(5.7)

and an application of Duhamel’s formula gives

W ν(t, x) = eνt∆w0(x) +

∫ t

0
[fν(s) − β′(s)]eν(t−s)∆1(x) ds, (5.8)
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hence

wν(t, x) = eνt∆w0(x) + β(t) +

∫ t

0
[fν(s) − β′(s)]eν(t−s)∆1(x) ds. (5.9)

Alternatively,

wν(t, x) = eνt∆w0(x) +

∫ t

0
fν(s)eν(t−s)∆1(x) ds +

∫

I(t)

(
I − eν(t−s)∆

)
1(x) dβ(s), (5.10)

where I(t) = [0, t].
Recall we are interested in the nature of the convergence of wν(t, x) to w0(t, x), given in this

case by
∂w0

∂t
= f0(t), w0(0, x) = w0(x), (5.11)

i.e.,

w0(t, x) = w0(x) +

∫ t

0
f0(s) ds. (5.12)

Reasoning from [6], recalled in §2 of this paper, gives the following.

Proposition 5.1 Let X be a Banach space of (real valued) functions on D with the properties that
1, w0 ∈ X and that {et∆ : t ≥ 0} is a strongly continuous semigroup on X. Take T ∈ (0,∞) and
assume

β ∈ BV ([0, T ]), (5.13)

fν ∈ L1([0, T ]), fν → f0 in L1([0, T ]). (5.14)

Then wν(t, x), given by (5.10), satisfies

wν(t, ·) −→ w0 in norm, in X, as ν ց 0, (5.15)

uniformly in t ∈ [0, T ].

In case w0 ∈ C∞(D), results of Appendix B yield precise asymptotic expansions for wν(t, x)
in (5.10), analogous to the expansion for vν(t, x) described by (2.42)–(2.50). There is no need to
repeat such formulas, but we do point out the following consequence of Corollary B.2, which is
relevant for vorticity concentration.

Proposition 5.2 In the setting of Proposition 5.1, if (5.13)–(5.14) hold, and if w0 ∈ C∞(D), then

‖∇wν(t, ·)‖L1(D) ≤ Cw0
+ C‖fν‖L1([0,T ]) + C‖β‖BV ([0,T ]), (5.16)

with constants independent of ν ∈ (0, 1], t ∈ [0, T ].

A Variant of J. Kelliher’s concentration calculation

In [6] it was shown that for a class of circularly symmetric planar vector fields uν on D = {x ∈ R
2 :

|x| < 1}, solving the Navier-Stokes equations, converging to u, solving the Euler equations, one has

rotuν −→ rotu − (u · τ)σ, (A.1)

weak∗ in the space M(D) of finite Borel measures on D, where τ is the unit tangent to ∂D and
σ is arclength measure on ∂D. In [4] such a limit was shown to hold in a much more general
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context (including more general domains Ω), provided one weakens the convergence to convergence
in H1(Ω)′. That result included concentration of vorticity on ∂Ω for domains Ω ⊂ R

n with Lipschitz
boundary. In that treatment, one sees that the concentration of vorticity phenomenon is actually a
consequence of a general concentration of gradient phenomenon, for scalar fields. Here, we present
another perspective on this calculation, with the goal of allowing ∂Ω to be quite rough.

Let Ω ⊂ R
n be an open set. We assume uν and u are real valued functions on Ω satisfying

uν ∈ H1
0 (Ω), u = ũ

∣∣
Ω
, ũ ∈ H1(Rn), (A.2)

and that
uν −→ u in L2(Ω), weakly. (A.3)

We can regard uν as an element of H1
0 (Rn), equal to 0 on R

n \ Ω. Then (A.3) implies

uν −→ χΩũ in L2(Rn), weakly. (A.4)

Standard distribution theory implies

∇uν −→ ∇(χΩũ) in H−1(Rn), weakly. (A.5)

Now we claim that
∇(χΩũ) = χΩ∇ũ + ũ∇χΩ. (A.6)

To see this, let vε = ψε ∗ ũ → ũ be a family of mollifications of ũ, vε ∈ C∞(Rn). It is elementary
that

∇(χΩvε) = χΩ∇vε + vε∇χΩ. (A.7)

In the limit as ε → 0, χΩvε → χΩũ in L2(Rn), so ∇(χΩvε) → ∇(χΩũ) in H−1(Rn). Meanwhile
∇vε → ∇ũ in L2(Rn), so χΩ∇vε → χΩ∇ũ in L2(Rn). Furthermore, vε → ũ in H1(Rn), while
∇χΩ ∈ H−1

loc (Rn), so vε∇χΩ → ũ∇χΩ in D′(Rn). Thus (A.6) follows in the limit from (A.7). Note
that the last part of this demonstration just has ũ∇χΩ ∈ D′(Rn), but now that we have (A.6) we
also have

ũ∇χΩ ∈ H−1(Rn). (A.8)

From (A.5) and (A.6) we have, weakly in H−1(Rn),

∇uν −→ χΩ∇ũ + ũ∇χΩ

= ∇u + ũ∇χΩ.
(A.9)

In case Ω has a mildly regular boundary

∇χΩ = −n σ, (A.10)

where n is the unit outward pointing normal and σ is surface area on ∂Ω.
We expand on this last point. In geometric measure theory, one says Ω is a domain of locally

finite perimeter provided ∇χΩ is a locally finite R
n-valued measure. It is a result of E. DeGiorgi

that in such a case, (A.10) holds, where n is the “measure-theoretic unit normal,” and

σ = Hn−1⌊∂∗Ω, (A.11)

where Hn−1 is (n − 1)-dimensional Hausdorff measure and ∂∗Ω ⊂ ∂Ω is the measure-theoretic
boundary of Ω. When ∂Ω is smooth, or even Lipschitz, ∂∗Ω = ∂Ω. When ∂Ω is locally the graph
of a continuous function with gradient in L1, it is known that Hn−1(∂Ω \ ∂∗Ω) = 0. In rougher
cases, ∂Ω \ ∂∗Ω might be quite large.

Putting these results together, we have the following extension of (A.1).
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Proposition A.1 Let Ω ⊂ R
n be an open set with locally finite perimeter. Under the hypotheses

(A.2)–(A.3), we have
∇uν −→ ∇u − (ũn)σ, (A.12)

weakly in H−1(Rn). Here, ∇u ∈ L2(Ω) is extended by 0 on R
n \ Ω.

Vector analogues can be deduced from Proposition A.1 via linear algebra, or established directly.
For example, suppose n = 3 and u, uν are vector fields on Ω ⊂ R

3, satisfying (A.2)–(A.3). We have
analogues of (A.4)–(A.5) for curluν , with (A.6) replaced by

curl(χΩũ) = χΩ curl ũ + ∇χΩ × ũ. (A.13)

Hence in place of (A.12), we have

curluν −→ curlu − (n × ũ)σ, (A.14)

weakly in H−1(R3).
We mention that the first part of (A.2) applies directly to fluids with zero velocity on ∂Ω. In

case there is a nonzero velocity specified on ∂Ω, the appropriate replacement for the first part of
(A.2) would be

uν − ϕ ∈ H1
0 (Ω), ϕ = ϕ̃

∣∣
Ω
, ϕ̃ ∈ H1(Rn). (A.15)

We keep the rest of (A.2) and (A.3). Then the previous argument applies directly to uν − ϕ, to
give, in the setting of Proposition A.1,

∇uν −→ ∇u − (ũ − ϕ̃)nσ, (A.16)

and similarly, for vector fields on Ω ⊂ R
3, one replaces (A.14) by

curluν −→ curlu − n × (ũ − ϕ̃)σ. (A.17)

We make some further comments on the vorticity of a t-dependent family of vector fields on Ω
of the form (1.11), i.e.,

uν(t, x, z) = (vν(t, x), wν(t, x)), (A.18)

where x ∈ D, v = v1i + v2j is a planar vector field, and w is the z-component of u. Then

curluν = det




i j k
∂x1

∂x2
∂z

vν
1 vν

2 wν




= (∂x2
wν)i − (∂x1

wν)j + (∂x1
vν
2 − ∂x2

vν
1 )k,

(A.19)

hence
curluν = (∇⊥wν , rot vν). (A.20)

Now [6] obtained uniform L1 bounds on rot vν , given such a bound on the initial data v0(x), which
led to the weak∗ convergence in the space M(D) in (A.1) (with a slight change of notation, namely
vν and v in place of uν and u). It would be interesting to know whether we also have L1-gradient
bounds on wν in (A.20), given such bounds on w0(x), as well as appropriate bounds on v0(x).

In this regard, the following comments are in order. In the setting of (4.2) we have

wν(t, x) − w0(t, x) = R1(ν, t, x) + R2(ν, t, x) + R3(ν, t, x) (A.21)

(denoting the limit here by w0 rather than w). An L1-gradient bound on R2 follows from the
representation (4.4)–(4.8) and results of Appendix B, via Corollary B.2. An L1-gradient bound on
R1 follows from the representation (4.3) and the layer potential attack described in §4, together
with layer potential estimates of the sort discussed in Appendix D. This leaves R3 to analyze. The
authors hope to return to this point in future work.
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B Purely diffusive boundary layers

Here we give some rather explicit formulas for the asymptotic behavior as ν ց 0 of solutions to

∂uν

∂t
= ν∆uν on R

+ × Ω, (B.1)

satisfying
uν

∣∣
R+×∂Ω

= 0, uν(0, x) = f(x), (B.2)

where Ω is a compact Riemannian manifold with smooth boundary and Laplace-Beltrami operator
∆, and

f ∈ C∞(Ω). (B.3)

Note that the solution to (B.1)–(B.2) is

uν(t, x) = eνt∆f(x) = u(νt, x), (B.4)

where u = uν with ν = 1. Thus the small ν analysis of (B.1)–(B.3) is just the small t analysis of
et∆f , for f ∈ C∞(Ω). Here ∆ is the self-adjoint extension of the Laplace-Beltrami operator with
domain D(∆) = H2(Ω) ∩ H1

0 (Ω).
We assume (without loss of generality) that Ω is a smoothly bounded open subset of M , a

compact Riemannian manifold without boundary. Let L denote the Laplace-Beltrami operator on
M , and assume

f = f̃
∣∣
Ω
, f̃ ∈ C∞(M). (B.5)

Note that, for x ∈ Ω, t > 0,
et∆f(x) = etLf̃(x) − U(t, x), (B.6)

where U(t, x) satisfies

(∂t − ∆)U = 0 on R × Ω,

U(t, x) = 0 for t < 0, U(t, ·)
∣∣
∂Ω

= χR+(t)etLf̃
∣∣
∂Ω

.
(B.7)

Standard hypoellipticity results give U ∈ C∞(R × Ω), hence, for t ∈ (0, 1], O ⊂⊂ Ω, k, N ∈ N,

‖U(t, ·)‖Ck(O) ≤ CN,kt
N . (B.8)

On the other hand, given f̃ ∈ C∞(M), the nature of the convergence of etLf̃ to f̃ is elementary
and well known. From the fact that etLf̃ ∈ C∞([0,∞) × M) it follows that, for each k, N ∈ N,

etLf̃(x) = f̃(x) + tLf̃(x) + · · · + tN

N !
LN f̃(x) + RN (x), (B.9)

with
‖RN‖Ck(M) ≤ Ck,N tN , 0 < t ≤ 1. (B.10)

What remains is to analyze the precise nature of the boundary layer that forms for U(t, x) as
t ց 0, preventing the uniform convergence to 0 on Ω. One way to attack this problem is via the
method of layer potentials. This was used in [6], and extended in [8] to study the more complicated
problem in which (B.1) is replaced by ∂uν/∂t = ν∆uν + Xuν , where X is a smooth vector field on
Ω, tangent to ∂Ω. (These results are recalled in §4.) Here we bring in another method, based on a
wave equation approach.
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This approach starts with the identity

et∆f(x) =
1√
4πt

∫ ∞

−∞
e−s2/4t cos s

√
−∆ f(x) ds, (B.11)

where v(s, x) = cos s
√
−∆ f(x) solves the wave equation

(∂2
t − ∆)v = 0 on R × Ω,

v
∣∣
R×∂Ω

= 0, v(0, x) = f(x), ∂sv(0, x) = 0.
(B.12)

The identity (B.11) follows from the Fourier inversion formula and the spectral theorem (cf. [9],
Chapter 8, and [2]). More generally than (B.11), one has

ϕ(
√
−∆)f =

1√
2π

∫ ∞

−∞
ϕ̂(s) cos s

√
−∆ f ds, (B.13)

valid for even ϕ ∈ S(R), where ϕ̂(s) = (2π)−1/2
∫

ϕ(λ)e−iλs dλ. Taking ϕ(λ) = e−tλ2

yields (B.11).
Parallel to (B.6), we have, for x ∈ Ω, s ≥ 0,

cos s
√
−∆ f(x) = cos s

√
−L f̃(x) − V (s, x), (B.14)

where V (s, x) solves

(∂2
s − ∆)V = 0 on R × Ω, V (s, x) = 0 for s < 0,

V (s, ·)
∣∣
∂Ω

= g(s, ·) = χR+(s) cos s
√
−L f̃

∣∣
∂Ω

.
(B.15)

Also, parallel to (B.11),

etLf̃(x) =
1√
4πt

∫ ∞

−∞
e−s2/4t cos s

√
−L f̃(x) ds. (B.16)

Together (B.11), (B.14) and (B.16) and the evenness in s of e−s2/4t yield, for t > 0, x ∈ Ω,

et∆f(x) = etLf̃(x) − 2√
4πt

∫ ∞

0
e−s2/4tV (s, x) ds, (B.17)

hence, by (B.6),

U(t, x) =
1√
πt

∫ ∞

0
e−s2/4tV (s, x) ds. (B.18)

We aim to analyze V (s, x) and use this analysis in (B.18). The first step is to localize this
analysis to small s. Given a > 0, pick an even function ψ1 ∈ C∞

0 (R) such that ψ1(s) = 1 for
|s| ≤ a, 0 for |s| ≥ 2a, and set ψ2(s) = 1 − ψ1(s). We have

U(t, x) = U1(t, x) + U2(t, x),

Uj(t, x) =
1√
πt

∫ ∞

0
ψj(s)e

−s2/4tV (s, x) ds.
(B.19)

In turn
et∆ = Φt

1(
√
−∆) + Φt

2(
√
−∆), (B.20)

where

Φt
j(
√
−∆) =

1√
4πt

∫ ∞

−∞
ψj(s)e

−s2/4t cos s
√
−∆ ds. (B.21)
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We see that for t ∈ (0, 1], k, N ∈ N,

Φt
2(λ) ≤ Ck,N tN (1 + |λ|)−k, (B.22)

and hence
‖Φt

2(
√
−∆)f‖Hk(Ω) ≤ Ck,N tN‖f‖L2(Ω). (B.23)

Similarly
etL = Φt

1(
√
−L) + Φt

2(
√
−L), (B.24)

with similar estimates, including

‖Φt
2(
√
−L)f̃‖Hk(M) ≤ Ck,N tN‖f̃‖L2(M). (B.25)

Consequently we have

U2(t, x) = Φt
2(
√
−L)f̃(x) − Φt

2(
√
−∆)f(x),

‖U2(t, ·)‖Hk(Ω) ≤ Ck,N tN
(
‖f‖L2(Ω) + ‖f̃‖L2(M)

)
.

(B.26)

Thus the boundary layer behavior of U(t, x) is completely captured by U1(t, x). Hence we need a
further analysis of V (s, x) only for s ∈ [0, 2a], where a > 0 can be taken as small as desired.

Note that in (B.15), g, defined on R × ∂Ω, is supported in {s ≥ 0} and piecewise smooth, with
a simple jump across {s = 0}. Finite propagation speed assures that for s ≥ 0, x ∈ Ω,

V (s, x) = 0 for ϕ(x) > s, (B.27)

where
ϕ(x) = dist (x, ∂Ω). (B.28)

Let us pick a > 0 so small that

C = {x ∈ Ω : ϕ(x) ≤ 2a} =⇒ ϕ ∈ C∞(C), (B.29)

and use this value of a to pick ψ1 and ψ2 in (B.19). Then, for s ∈ [0, 2a], V (s, x) is given by a
progressing wave expansion of the form

V (s, x) ∼
∑

j≥0

aj(s, x)(s − ϕ(x))j
+, (B.30)

with coefficients aj ∈ C∞([0, 2a]×Ω), determined by certain transport equations. See [9], Chapter
6, §6. The meaning of (B.30) is that for each N ∈ N,

V (s, x) =

N∑

j=0

aj(s, x)(s − ϕ(x))j
+ + RN (s, x), (B.31)

where
RN (s, x) = 0 for ϕ(x) > s, RN ∈ CN ([0, 2a] × Ω). (B.32)

Writing
a0(s, x) = a0(ϕ(x), x) + ã1(s, x)(s − ϕ(x)), (B.33)

31



we can shift the latter term onto the j = 1 term in (B.31). Continuing this process, we have

V (s, x) =
N∑

j=0

bj(x)(s − ϕ(x))j
+ + RN (s, x), (B.34)

(with slightly altered RN , still satisfying (B.32)), valid on [0, 2a] × Ω, with bj ∈ C∞(Ω). Inserting
this into the formula for U1(t, x) given by (B.19), we have

U1(t, x) =
N∑

j=0

bj(x)√
πt

∫ ∞

0
e−s2/4t(s − ϕ(x))j

+ψ1(s) ds

+

∫ ∞

0
e−s2/4tRN (s, x)ψ1(s) ds.

(B.35)

Recall the partition of unity 1 = ψ1(s) + ψ2(s), specified below (B.18). Elementary estimates show
that ∫ ∞

0
e−s2/4t(s − ϕ(x))j

+ψ2(s) ds (B.36)

is rapidly decreasing as t ց 0, together with all x-derivatives, so the sum over 0 ≤ j ≤ N in (B.35)
has the identical asymptotic behavior as t ց 0 as does

N∑

j=0

bj(x)Wj(t, x),

Wj(t, x) =
1√
πt

∫ ∞

0
e−s2/4t(s − ϕ(x))j

+ ds.

(B.37)

A change of variable gives

Wj(t, x) = 2(4t)j/2Ej

(ϕ(x)√
4t

)
, (B.38)

where

Ej(y) =
1√
π

∫ ∞

y
e−s2

(s − y)j ds

=
e−y2

√
π

∫ ∞

0
e−s2−2sysj ds.

(B.39)

Using (B.32), one easily bounds the last integral in (B.35) by CWN (t, x). Consequently

U1(t, x) =
N∑

j=0

2bj(x)(4t)j/2Ej

(ϕ(x)√
4t

)
+ R̃N (t, x), (B.40)

with
‖R̃N (t, ·)‖C0(Ω) ≤ CtN/2. (B.41)

Similar arguments give estimates ‖R̃N (t, ·)‖Ck(Ω) ≤ CtM/2, for each k, M ∈ N, if N is large enough.

Putting together (B.6), (B.9), (B.18), (B.19), (B.26), and (B.40), we obtain our main result:
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Proposition B.1 Given f ∈ C∞(Ω),

et∆f(x) = f(x) +

N∑

k=1

tk

k!
∆kf(x)

−
2N∑

j=0

2bj(x)(4t)j/2Ej

(ϕ(x)√
4t

)
+ R̂N (t, x),

(B.42)

where bj ∈ C∞(Ω) are as in (B.34), and, for each M, k ∈ N, there exists N such that

‖R̂N (t, ·)‖Ck(Ω) ≤ CM,kt
M , t ∈ (0, 1]. (B.43)

Remark. It follows readily from (B.15) and (B.34) that bj |∂Ω = 0 when j is odd. Also b0|∂Ω = f |∂Ω,
and E0(0) = 1/2.

The following corollary, which follows by inspection of (B.42), is relevant for vorticity concen-
tration.

Corollary B.2 Given f ∈ C∞(Ω), we have

‖∇et∆f‖L1(Ω) ≤ Cf , ∀ t ∈ (0,∞). (B.44)

Remark. Such a uniform bound does not hold in any Lp-space with p > 1, unless f |∂Ω = 0.

C Poiseuille flow in a circular pipe

Given α ∈ R \ 0, the velocity field

u0(x, z) = α(0, 1 − |x|2) (C.1)

is a well known example of a steady solution to the Navier-Stokes system

∂uν

∂t
+ ∇uνuν + ∇pν = ν∆uν + F ν , div uν = 0,

uν
∣∣
R+×∂D

= 0, uν(0, x, z) = u0(x, z),
(C.2)

on the infinite circular pipe

Ω = D × R, D = {x ∈ R
2 : |x| < 1}, (C.3)

an example of Poiseuille flow in a circular pipe (cf. [3], §3.1). In such a case, ∂tu
ν = 0 and

∇uνuν = 0. It is common to say that this flow is driven along the pipe by a uniform pressure
gradient.

There are two ways to complete the description of how uν ≡ u0 solves (C.2). One is to set

pν(t, x, z) = −4ναz, F ν(t, x, z) = 0. (C.4)

The other is to set
pν(t, x, z) = 0, F ν(t, x, z) = (0, 4να). (C.5)
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Here we point out that this flow fits into the framework of our paper, in the setting of (C.5),
but not in the setting of (C.4). Indeed, our analysis imposed the condition of periodicity in z
on all quantities, and hence passed to the quotient D × (R/LZ), consequently obtaining solutions
independent of z. However, pν(t, x, z) = −4ναz is not periodic in z, and (C.4) is not well defined
on ΩL, while (C.5) is well defined. Physically, it is appropriate to understand this flow, “driven
by a uniform pressure gradient,” as driven by an external force. This favors the use of (C.5) over
(C.4).

In fact, if we set F ν ≡ 0 in (C.2) and solve this, with initial data given by (C.1), as per the
set-up in §1, we get, not a steady solution, but a solution uν(t, x, z) that decays to 0 as t ր ∞.
This is physically reasonable, since the energy dissipation due to ν∆uν is not offset by energy input
from an external force. We record what solution does arise.

The unique solution to (C.1)–(C.2) on R
+ × ΩL, with F ν ≡ 0, has the form

uν(t, x, z) = (0, wν(t, x)), (C.6)

where wν solves (1.14) with vν ≡ 0 and fν ≡ 0, i.e.,

∂wν

∂t
= ν∆wν , on R

+ × D. (C.7)

The initial and boundary conditions are

wν(0, x) = w0(x) = α(1 − |x|2), wν
∣∣
R+×∂D

= 0. (C.8)

In other words,
wν(t, x) = eνt∆w0(x). (C.9)

D Analysis of a model layer potential

Recall the layer potential D0
ν introduced in (5.36), and tied to the analysis of R1 in (4.46). To

illustrate how applying D0
ν manifests a boundary layer, we do some explicit calculations with a toy

model D̃ν , in which g(s, y) ≡ 1, G(s, t, x) ≡ I, dSs(y) ≡ dy1, and the disk D is replaced by the
upper half space U = {(x1, x2) : x2 ≥ 0}, so ∂D is replaced by ∂U = R. We have ∂/∂ns,y = −∂/∂y2,
and hence

2D̃νW0(t, x1, x2)

=
2ν

π

∫ t

0

∫ ∞

−∞
W0(y1)

2x2

(4ν)2(t − s)2
e−[(x1−y1)2+x2

2
]/4ν(t−s) dy1 ds.

(D.1)

We can integrate out ds, using

∫ t

0

1

(t − s)2
e−A/(t−s) ds =

∫ t

0

1

s2
e−A/s ds

=

∫ ∞

1/t
e−Aτ dτ

=
e−A/t

A
.

(D.2)

We get

2D̃νW0(t, x1, x2) =
1

π

∫ ∞

−∞
W0(y1)

x2

(x1 − y1)2 + x2
2

e−[(x1−y1)2+x2
2
]/4νt dy1. (D.3)
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It is clear that, if for example W0 ∈ C∞
0 (R),

2D̃νW0(t, x1, x2) −→ W (x1), as x2 ց 0, (D.4)

uniformly in x1, for each t, ν > 0, in fact uniformly for νt in a compact subset of (0,∞). On the
other hand,

2D̃νW0(t, x1, x2) −→ 0, as ν ց 0, (D.5)

uniformly in x1, for each t, x2 > 0, and more generally as long as

x2
2

νt
−→ ∞. (D.6)

For further insight into the behavior of D̃ν , we rewrite (D.3) in Fourier integral form:

2D̃νW0(t, x1, x2) =
1√
2π

e−x2
2
/4νt

∫ ∞

−∞
eix1·ξŴ0(ξ)Ax2

∗ Bνt(ξ) dξ, (D.7)

where

Ax2
(ξ) = e−x2|ξ|, Bνt(ξ) =

√
νt

π
e−νtξ2

, (D.8)

and Ax2
∗ Bνt(ξ) is the convolution. We introduce the variable

µ =
x2

2

4νt
, (D.9)

and write this convolution as follows:

Ax2
∗ Bνt(ξ) =

√
νt

π

∫ ∞

−∞
e−x2|ξ−ζ|e−νtζ2

dζ

=
x2√
4πµ

∫ ∞

−∞
e−x2|ξ−ζ|e−x2

2
ζ2/4µ dζ

=
1√
4πµ

∫ ∞

−∞
e−|x2ξ−τ |e−τ2/4µ dτ.

(D.10)

Hence
Ax2

∗ Bνt(ξ) =
(
eµ∂2

τ Ω
)
(x2ξ), Ω(τ) = e−|τ |. (D.11)

The behavior of D0
νW0(t, x) is similar to that of the model just described, though the formulas

are a bit more complicated.
We next use (D.7) to derive some L1-gradient bounds on D̃νW0. To start, note that

sup
ξ

|Ax2
(ξ)| = 1,

∫
|Bνt(ξ)| dξ = 1, (D.12)

so clearly if
D̃ν(t)W0(x1, x2) = D̃νW0(t, x1, x2), (D.13)

we have
D̃ν(t) : L2(R) −→ L∞

x2
(R+, L2

x1
(R)), (D.14)

with operator norm ≤ 1, a bound that is independent of t ∈ [0,∞), ν ∈ (0, 1]. Our goal here is to
show that, given T0 ∈ (0,∞),

∇D̃ν(t) : H1,2(R) −→ L1
x2

([0, 1], L2
x1

(R)), (D.15)
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with operator norm bounded independent of t ∈ [0, T0], ν ∈ (0, 1]. We mention that L1
x2

cannot be
replaced by Lp

x2
for any p > 1. We expect that (D.15) extends to more general estimates, such as,

for D0
ν(t)h(x) = D0

νh(t, x), as in (4.41),

∇D0
ν(t) : H1,2(∂D) −→ L1(D), (D.16)

with operator norm bound independent of ν ∈ (0, 1], t ∈ [0, T0], and that similar estimates hold
for ∇Dν , with Dν as in (4.30).

To begin the proof of (D.15), we note that ∂x1
commutes with D̃ν(t), so (D.14) readily yields

∂x1
D̃ν(t) : H1,2(R) −→ L∞

x2
(R+, L2

x1
(R)), (D.17)

with operator norm bounded independent of ν ∈ (0, 1], t ∈ R
+. Thus it remains to estimate

∂x2
D̃ν(t). Let us write

2D̃ν(t)W0(x1, x2) = e−x2
2
/4νtEν(t)W0(x1, x2), (D.18)

where

Eν(t)W0(x1, x2) =
1√
2π

∫
eix1·ξŴ0(ξ)Ax2

∗ Bνt(ξ) dξ. (D.19)

We have
2∂x2

D̃ν(t)W0(x1, x2) = − x2

2νt
e−x2

2
/4νtEν(t)W0(x1, x2)

+ e−x2
2
/4νt∂x2

Eν(t)W0(x1, x2).
(D.20)

The desired estimate on the first term on the right side of (D.20) follows from the fact that, just
as in (D.14),

Eν(t) : L2(R) −→ L∞
x2

(R+, L2
x1

(R)), (D.21)

with operator norm ≤ 1, for all t ∈ R
+, ν > 0, together with the fact that (x2/2νt)e−x2

2
/4νt has

L1(R+)-norm equal to 1. Our next goal is to show that

∂x2
Eν(t) : H1,2(R) −→ L1

x2
(R+, L2

x1
(R)), (D.22)

with operator norm bound independent of ν ∈ (0, 1], t ∈ [0, T0]. Note that

∂x2
Eν(t)W0(x1, x2) =

1√
2π

∫
eix1·ξŴ0(ξ)Gνt,x2

(ξ) dξ, (D.23)

where
Gνt,x2

(ξ) = Ex2
∗ Bνt(ξ), (D.24)

with Bνt(ξ) as in (D.8) and
Ex2

(ξ) = −|ξ|e−x2|ξ|. (D.25)

We can also write

Ex2
(ξ) = − 1

x2
Fx2

(ξ), Fx2
(ξ) = x2|ξ|e−x2|ξ|, (D.26)

so

Gνt,x2
(ξ) = − 1

x2
Fx2

∗ Bνt(ξ). (D.27)

Since Gνt,x2
depends on ν and t only via νt, we may as well set t = 1 and produce estimates on

Gν,x2
= −(1/x2)Fx2

∗ Bν .
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Taking ν ∈ (0, ν0], we first estimate Gν,x2
(ξ) for 0 < x2 ≤ √

ν. An examination of (D.16)–(D.17)
yields

0 < x2 ≤
√

ν ⇒ |Gν,x2
(ξ)| ≤ C

x2

(
x2|ξ| +

x2√
ν

)

= C
(
|ξ| + 1√

ν

)
.

(D.28)

Next, for k ∈ Z
+ = {0, 1, 2, . . . }, we have

2k√ν ≤ x2 ≤ 2k+1√ν ⇒ 2k

x2
≤ 1√

ν
≤ 2k+1

x2

⇒ |Gν,x2
(ξ)| ≤ C

2kx2
.

(D.29)

From (D.28) we have

∫ √
ν

0
‖∂x2

Eν(t)W0(·, x2)‖L2(R) dx2 ≤ C‖W0‖L2(R) + C
√

ν‖W0‖H1,2(R). (D.30)

Meanwhile, (D.29) yields

∫ 2k+1
√

ν

2k
√

ν
‖∂x2

Eν(t)W0(·, x2)‖L2(R) dx2 ≤ C

2k
‖W0‖L2(R). (D.31)

Hence ∫ ∞

0
‖∂x2

Eν(t)W0(·, x2)‖L2(R) dx2 ≤ C‖W0‖L2(R) + C
√

ν‖W0‖H1,2(R). (D.32)

This implies the desired estimate on (D.22).
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