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Abstract

We show that operators of layer potential type on surfaces that are locally graphs of Lipschitz
functions with gradients in vmo are equal, modulo compacts, to pseudodifferential operators
(with rough symbols), for which a symbol calculus is available. We build further on the calculus
of operators whose symbols have coefficients in L∞ ∩ vmo, and apply these results to elliptic
boundary problems on domains with such boundaries, which in turn we identify with the class of
Lipschitz domains with normals in vmo. This work simultaneously extends and refines classical
work of Fabes, Jodeit, and Rivière, and also work of Lewis, Salvaggi, and Sisto, in the context
of C 1 surfaces.
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1 Introduction

We produce a symbol calculus for a class of operators of layer potential type, of the form

Kf(x) = PV
∫

∂Ω

k(x, x− y)f(y) dσ(y), x ∈ ∂Ω, (1.0.1)

in the following setting. First,
k ∈ C∞(Rn+1 × (Rn+1 \ 0)), (1.0.2)

with k(x, z) homogeneous of degree −n in z and k(x,−z) = −k(x, z). Next, Ω ⊂ Rn+1 is a bounded
Lipschitz domain, with a little extra regularity. Namely, Ω is locally the upper-graph of a function
ϕ0 : Rn → R satisfying

∇ϕ0 ∈ L∞(Rn) ∩ vmo(Rn). (1.0.3)

We say Ω is a Lip ∩ vmo1 domain.
Since we will be dealing with a number of variants of BMO, we recall some definitions. First,

BMO(Rn) :=
{
f ∈ L1

loc(Rn) : f# ∈ L∞(Rn)
}
, (1.0.4)

where
f#(x) := sup

B∈B(x)

1
V (B)

∫

B

|f(y)− fB| dy, (1.0.5)

with B(x) := {Br(x) : 0 < r < ∞}, Br(x) being the ball centered at x of radius r, and fB the
mean value of f on B. There are variants, giving the same space. For example, one could use cubes
containing x instead of balls centered at x, and one could replace fB in (1.0.5) by cB, chosen to
minimize the integral. We set

‖f‖BMO := ‖f#‖L∞ . (1.0.6)

This is not a norm, since ‖c‖BMO = 0 if c is a constant; it is a seminorm. The space bmo(Rn) is
defined by

bmo(Rn) :=
{
f ∈ L1

loc(Rn) : #f ∈ L∞(Rn)
}
, (1.0.7)

where
#f(x) := sup

B∈B1(x)

1
V (B)

∫

B

|f(y)− fB| dy +
1

V (B1(x))

∫

B1(x)

|f(y)| dy, (1.0.8)

with B1(x) := {Br(x) : 0 < r ≤ 1}. We set

‖f‖bmo := ‖#f‖L∞ . (1.0.9)

This is a norm, and bmo(Rn) has good localization properties.
Now, VMO(Rn) is the closure in BMO(Rn) of UC(Rn)∩BMO(Rn), where UC(Rn) is the space of

uniformly continuous functions on Rn, and vmo(Rn) is the closure in bmo(Rn) of UC(Rn)∩bmo(Rn).
One can use local coordinates and partitions of unity to define bmo(M) and vmo(M) on a class
of Riemannian manifolds M (cf. [37]). See also Appendix A.3 of this paper for a discussion of
BMO(M) and VMO(M) on spaces M of homogeneous type. We mention that if M is compact,
BMO(M) coincides with bmo(M) and VMO(M) coincides with vmo(M).

With this in mind, we mention that Ω could be an open set in a compact (n + 1)-dimensional
Riemannian manifold M , whose boundary, in local coordinates on M , is locally a graph as in
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(1.0.3), and k(x, x − y) in (1.0.1) could be the integral kernel of a pseudodifferential operator on
M of order −1, with odd symbol.

The analysis of operators of the form (1.0.1) as bounded operators on Lp(∂Ω) for p ∈ (1,∞),
together with nontangential maximal function estimates for

Kf(x) =
∫

∂Ω

k(x, x− y)f(y) dσ(y), x ∈ Rn+1 \ ∂Ω, (1.0.10)

and nontangential convergence, was done for general Lipschitz domains in [5], carrying through the
breakthrough initiated in [2], at least for k = k(x− y).

In between [2] and [5] was another key paper, [9], which treated (1.0.1) (again with k = k(x−y))
when Ω has a C 1 boundary, and gave some applications to PDE. These applications involved looking
at double layer potentials

Kdf(x) = PV
∫

∂Ω

ν(x) · (x− y)E(x− y)f(y) dσ(y), x ∈ ∂Ω, (1.0.11)

where ν(x) is the unit normal to ∂Ω, and E(z) = cn|z|−(n+1). Such an operator is of the form
Kdf(x) = ν(x) · Kf(x), where K is as in (1.0.1), with k(z) = zE(z) vector valued. In [9] it
was shown that Kd is compact when Ω is a bounded domain of class C 1. (See §3.4 of this paper
for a proof that Kd is compact more generally when Ω is a bounded Lip ∩ vmo1 domain.) This
compactness was applied to the Dirichlet problem for the Laplace operator on bounded C 1 domains.
In fact, if

Kdf(x) =
∫

∂Ω

ν(x) · (x− y)E(x− y)f(y) dσ(y), x ∈ Ω, (1.0.12)

one has
Kdf

∣∣
∂Ω

= (1
2I + Kd)f, (1.0.13)

so solving the Dirichlet problem ∆u = 0 on Ω, u
∣∣
∂Ω

= g, as u = Kdf leads to solving

(1
2I + Kd)f = g, (1.0.14)

and the compactness of Kd implies 1
2I + Kd is Fredholm, of index 0.

For a general bounded Lipschitz domain Ω ⊂ Rn+1, one continues to have (1.0.12)–(1.0.14),
but Kd is typically not compact. However, it was shown in [38] that 1

2I + Kd is still Fredholm,
of index 0, using Rellich identities as a tool. This led to much work on other elliptic boundary
problems, including boundary problems for the Stokes system, linear elasticity systems, and the
Hodge Laplacian. In [26] a program was initiated that extended the study of (1.0.1) from k =
k(x− y) to k = k(x, x− y), a development that enabled the authors to work on Lipschitz domains
in Riemannian manifolds. This led to a series of papers, including [27], and [22]. In these papers,
variants of Rellich identities also played major roles.

Meanwhile, [12] established compactness of Kd in (1.0.11) when Ω ⊂ Rn+1 is a bounded VMO1

domain, i.e., its boundary is locally a graph of a function ϕ0 satisfying

∇ϕ0 ∈ VMO(Rn), (1.0.15)

which is weaker than (1.0.3). This led [14] to establish compactness of a somewhat broader class
of operators, not just on VMO1 domains, but more generally on a class of domains, introduced by
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[31] and [17], called chord-arc domains with vanishing constant by those authors, but called regular
SKT domains in [14]. This was applied in [14] to the Dirichlet boundary problem for the Laplace
operator, on regular SKT domains in Riemannian manifolds, and also to a variety of boundary
problems for other second order elliptic systems.

In these works on various elliptic boundary problems, both on Lipschitz domains and on regular
SKT domains, each elliptic system seemed to need a separate treatment. This is in striking contrast
to the now standard theory of regular elliptic boundary problems on smoothly bounded domains,
for operators with smooth coefficients. Such cases yield operators of the form (1.0.1) that are
pseudodifferential operators on ∂Ω, for which a symbol calculus is effective to power the analysis.
One can, for example, see the treatment of regular elliptic boundary problems in [34, Chapter 7,
§12].

Our goal here is to develop a symbol calculus for operators of the form (1.0.1) in Lip ∩ vmo1

domains, and to apply this symbol calculus to the analysis of some elliptic boundary problems.
We work in local graph coordinates, in which (1.0.1) takes the form

Kf(x) = PV
∫

Rn

k(ϕ(x), ϕ(x)− ϕ(y))f(y)Σ(y) dy, x ∈ Rn, (1.0.16)

where ϕ(x) = (x, ϕ0(x)), with ϕ0 : Rn → R as in (1.0.3). In fact, we allow ϕ0 : Rn → R`. The
surface area element dσ(y) = Σ(y) dy. Our first major result is that, with K# given by

K#f(x) = PV
∫

Rn

k(ϕ(x), Dϕ(x)(x− y))f(y)Σ(y) dy, x ∈ Rn, (1.0.17)

we have
K −K# compact on Lp(B), (1.0.18)

for p ∈ (1,∞), for any ball B ⊂ Rn. Then, as we show, K#f = p(x,D)(Σf), with

p(x,D) ∈ OP(L∞ ∩ vmo)S0
cl(Rn), (1.0.19)

a class of pseudodifferential operators studied in [36] and shown to have a viable symbol calculus.
Definitions and basic results are given in Appendix A.3 of this paper. The proof of (1.0.18), given
in §2, makes essential use of results of [12] and further material in [14].

Since (1.0.16) and (1.0.17) are given in local graph coordinates, it is important to record how
operators are related when represented in two different such coordinates, and how a symbol can be
associated to such an operator, independent of the coordinate representation. These matters are
handled in §3.

In connection with this, we mention the work [18], providing such an analysis on C 1 manifolds.
In particular, (1.0.18) (for ϕ ∈ C 1) plays a central role there. In [18], the function k(x, z) is required
to be analytic in z ∈ Rn+1 \ {0}. The need for such analyticity arises from technical issues, which
we can overcome here, thanks to the advances in [12] and [14]. One desirable effect of not requiring
such analyticity is that our results readily allow for microlocalization. Though we do not pursue
microlocal analysis on boundaries of Lip ∩ vmo1 domains here, we are pleased to advertise the
potential to pursue such analysis.

The structure of the rest of this paper is as follows. Section 2 is devoted to a proof of the
basic result (1.0.18). Section 3 builds on this to produce a symbol calculus, making essential use of
results on operators of the form (1.0.19), recalled in an appendix. Section 4 applies these results to
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some boundary problems for elliptic systems on Lip ∩ vmo1 domains. These include the Dirichlet
problem for a general class of second order, strongly elliptic systems, and a class of oblique derivative
problems. We also produce a general result on regular boundary problems for first order elliptic
systems, and show how this plays out for the Hodge-Dirac operator d + δ, acting on differential
forms.

A set of appendices deals with auxiliary results. The first gives material used in §2.1. The second
gives a detailed analysis of just how a principal value integral like (1.0.1) works for such domains as
we consider here. The third reviews material on the class of pseudodifferential operators (1.0.19).
The fourth reviews matters related to BMO(M) and VMO(M) when M is a space of homogeneous
type. The fifth proves that a bounded domain Ω ⊂ Rn+1 is locally the upper-graph of a function
satisfying (1.0.3) if and only if its outward unit normal belongs to VMO(∂Ω).

2 From layer potential operators to pseudodifferential operators

The primary goal of this section is to establish the compactness of the difference between a singular
integral operator K of layer potential type, as in (1.0.1) and a related operator K#, which belongs
to the class of pseudodifferential operators OP(L∞ ∩ vmo)S0

cl, a class that is reviewed in Appendix
A.3. We proceed in stages.

2.1 General local compactness results

Below, the principal value integrals PV
∫

are understood in the sense of removing small balls
centered at the singularity and passing to the limit, by letting their radii approach zero; for a more
flexible view on this topic see the discussion in §A.2. We begin by recalling the following local
compactness result.

Theorem 2.1. Assume ϕ : Rn → R and ψ : Rn → Rm are two locally integrable functions satisfying

∇ϕ ∈ vmo(Rn), Dψ ∈ bmo(Rn), (2.1.1)

and set
Γ(x, y) := ϕ(x)− ϕ(y)−∇ϕ(x)(x− y), x, y ∈ Rn. (2.1.2)

Given F : Rm → R smooth (of a sufficiently large order M = M(m,n) ∈ N), even on Rm, and
such that

|F (w)| ≤ C(1 + |w|)−1 for every w ∈ Rm, (2.1.3)

and ∂αF ∈ L1(Rm) whenever |α| ≤ M, (2.1.4)

consider the principal value integral operator

Tf(x) := PV
∫

Rn

|x− y|−(n+1)F
(ψ(x)− ψ(y)

|x− y|
)
Γ(x, y)f(y) dy, x ∈ Rn, (2.1.5)

and the associated maximal operator

T∗f(x) := sup
ε>0

∣∣∣∣∣
∫

y∈Rn

|x−y|>ε

|x− y|−(n+1)F
(ψ(x)− ψ(y)

|x− y|
)
Γ(x, y)f(y) dy

∣∣∣∣∣, x ∈ Rn. (2.1.6)
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Then for each p ∈ (1,∞) there exists Cn,p ∈ (0,∞) such that

‖T∗f‖Lp(Rn) ≤ Cn,p

( ∑

|α|≤M

‖∂αF‖L1(Rm) + sup
w∈Rm

[
(1 + |w|)|F (w)| ]

)
×

× ‖∇ϕ‖BMO(Rn)

(
1 + ‖Dψ‖BMO(Rn)

)N
‖f‖Lp(Rn), (2.1.7)

for every f ∈ Lp(Rn). Also, with BR abbreviating B(0, R) := {x ∈ Rn : |x| < R}, it follows that
for each R ∈ (0,∞) and p ∈ (1,∞) the operator

T : Lp(BR) −→ Lp(BR) is compact. (2.1.8)

This result is given in [14, Theorem 4.34, p. 2725, §4.4] and [14, Theorem 4.35, p. 2726, §4.4]. As
noted there, the analysis behind it is from [12]. Of course, there is a natural analogue of Theorem 2.1
when the function ϕ is vector-valued (implied by the scalar case, by working componentwise). Here,
the the goal is to prove the following version of Theorem 2.1.

Theorem 2.2. Suppose ϕ : Rn → R and ψ : Rn → Rm are two locally integrable functions satisfying

∇ϕ ∈ vmo(Rn), Dψ ∈ L∞(Rn), (2.1.9)

and let the symbol Γ(x, y) retain the same significance as in (2.1.2). Given an even real-valued
function F ∈ C M (Rk) (for a sufficiently large M ∈ N), along with some matrix-valued function

A : Rn −→ Rk×m, A ∈ L∞(Rn), (2.1.10)

consider the principal value singular integral operator

TAf(x) := PV
∫

Rn

|x− y|−(n+1)F
(
A(x)

ψ(x)− ψ(y)
|x− y|

)
Γ(x, y)f(y) dy, x ∈ Rn. (2.1.11)

Then for each R ∈ (0,∞) and p ∈ (1,∞) the operator

TA : Lp(BR) −→ Lp(BR) is compact. (2.1.12)

Once again, there is a natural analogue of Theorem 2.2 when the function ϕ is vector-valued
(implied by the scalar case, by working componentwise).

Proof of Theorem 2.2. Fix a finite number

R∗ > ‖Dψ‖L∞(Rn) (2.1.13)

and abbreviate B∗ := {w ∈ Rm : |w| < R∗}. Also, select a real-valued function χ satisfying

χ ∈ C∞(Rm), χ even in Rm, suppχ ⊆ B∗,

χ(z) = 1 whenever |z| ≤ ‖Dψ‖L∞(Rn).
(2.1.14)

To proceed, let {ϑj}j∈N ⊂ L2(B∗) denote an orthonormal basis of L2(B∗) consisting of real-valued
eigenfunctions of the Dirichlet Laplacian in B∗ (as discussed in Appendix §A.1). For x ∈ Rn, we
can write in L2(B∗) and a.e. z ∈ B∗

F (A(x)z) =
∑

j∈N
bj(x)ϑj(z) (2.1.15)
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where, for each j ∈ N, we have set

bj(x) :=
∫

B∗
F (A(x)z)ϑj(z) dz, x ∈ Rn. (2.1.16)

To estimate the bj ’s, fix j ∈ N, x ∈ Rn, and observe that for each N ∈ N we may write

λN
j

∣∣bj(x)
∣∣ =

∣∣∣
∫

B∗
F (A(x)z)

(
(−∆)Nϑj

)
(z) dz

∣∣∣

=
∣∣∣
∫

B∗
(−∆z)N

[
F (A(x)z)

]
ϑj(z) dz

∣∣∣

≤ CN‖A‖2N
L∞(Rn)

{
sup

|w|≤R∗‖A‖L∞(Rn)

|α|=2N

|(∂αF )(w)|
}
‖ϑj‖L∞(B∗)

≤ CA,F,R∗,Nj1/2+2/n, (2.1.17)

by (A.1.9). In light of (A.1.8) this ultimately shows that for each N ∈ N there exists a constant
CN ∈ (0,∞) such that

‖bj‖L∞(Rn) ≤ CNj−N , ∀ j ∈ N. (2.1.18)

Moving on, we note that combining (2.1.15) with its version written for −z in place of z, and
keeping in mind that F is even, yields

F
(
A(x)z

)
=

∑

j∈N
bj(x)ϑ̃j(z) (2.1.19)

where, for each j ∈ N, we have set

ϑ̃j(z) :=
ϑj(z) + ϑj(−z)

2
, z ∈ B∗. (2.1.20)

In particular, for each j ∈ N,

ϑ̃j ∈ C∞
loc(B∗) is even, vanishes on ∂B∗,

and satisfies −∆ϑ̃j = λjϑ̃j in B∗.
(2.1.21)

Multiplying both sides of (2.1.19) with the cut-off function χ from (2.1.14) then finally yields

χ(z)F (A(x)z) =
∑

j∈N
bj(x)Fj(z), x ∈ Rn, z ∈ Rm, (2.1.22)

where, for each j ∈ N, we have set

Fj(z) := χ(z)ϑ̃j(z), z ∈ Rm, (2.1.23)

naturally viewed as zero outside B∗. Hence, for each j ∈ N,

Fj ∈ C∞(Rm) is an even function supported in B∗, (2.1.24)
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and (A.1.11) implies that for every multi-index α ∈ Nm
0 there exists a constant Cm,α ∈ (0,∞) such

that
‖∂αFj‖L∞(Rm) ≤ Cm,α j1/2+2/n. (2.1.25)

Since
z =

ψ(x)− ψ(y)
|x− y| =⇒ |z| ≤ ‖Dψ‖L∞(Rm) =⇒ χ(z) = 1, (2.1.26)

we deduce from (2.1.22) that
TAf(x) =

∑

j∈N
bj(x)Tjf(x), (2.1.27)

where for each j ∈ N we have set

Tjf(x) := PV
∫

Rn

|x− y|−(n+1)Fj

(ψ(x)− ψ(y)
|x− y|

)
Γ(x, y)f(y) dy, x ∈ Rn. (2.1.28)

At this stage, Theorem 2.1 applies to each operator Tj . In concert, estimates (2.1.7) and (2.1.25)
yield a polynomial bound in j ∈ N on the operator norms of Tj on Lp(Rn). Then, in the context
of the expansion (2.1.27), the rapid decrease (2.1.18) implies the desired compactness on Lp(BR)
for TA, for each R ∈ (0,∞) and p ∈ (1,∞).

It is possible to prove Theorem 2.2 using the Fourier transform in place of spectral methods,
based on Dirichlet eigenfunction decompositions. We shall do so below and, in the process, derive
further information about the family of truncated operators (indexed by ε > 0)

TA,εf(x) :=
∫

{y∈Rn: |x−y|>ε}
|x− y|−(n+1)F

(
A(x)

ψ(x)− ψ(y)
|x− y|

)
Γ(x, y)f(y) dy, (2.1.29)

where x ∈ Rn, including the pointwise a.e. existence of the associated principal value singular
integral operator.

Theorem 2.3. For each ε > 0 let TA,ε be as in (2.1.29), where Γ(x, y) is defined as in (2.1.2) for
a function ϕ : Rn → R satisfying ∇ϕ ∈ BMO(Rn), A ∈ L∞(Rn) is a k×m matrix-valued function,
ψ : Rn → Rm is Lipschitz, and F ∈ C M (Rk) is even.

Then, if M = M(m, n) ∈ N is large enough, there is a positive M0 < ∞ such that for 1 < p < ∞,

sup
ε>0

‖TA,εf‖Lp(Rn) ≤
∥∥∥ sup

ε>0

∣∣TA,εf
∣∣
∥∥∥

Lp(Rn)

≤ C0

(
1 + ‖∇ψ‖L∞(Rn)

)M0 ‖∇ϕ‖BMO(Rn) ‖f‖Lp(Rn), (2.1.30)

where the constant C0 depends on ‖A‖∞, p, n, m, k, and ‖F‖C M (B(0,‖A‖∞R∗)) with

R∗ := 2(‖∇ψ‖∞ + 1). (2.1.31)

Moreover,

∇ϕ ∈ VMO(Rn) =⇒ lim
ε→0+

TA,εf(x) exists for a.e. x ∈ Rn, ∀ f ∈ Lp(Rn). (2.1.32)

In fact, a more general result of this nature holds. Specifically, if B : Rn → Rm′
is a bi-Lipschitz

function and if for each ε > 0 we set

TA,B,εf(x) :=
∫

{y∈Rn: |B(x)−B(y)|>ε}
|x− y|−(n+1)F

(
A(x)

ψ(x)− ψ(y)
|x− y|

)
Γ(x, y)f(y) dy, (2.1.33)

9



where x ∈ Rn, then

∇ϕ ∈ VMO(Rn) =⇒ lim
ε→0+

TA,B,εf(x) exists for a.e. x ∈ Rn, ∀ f ∈ Lp(Rn). (2.1.34)

We shall prove estimate (2.1.30) by reducing it to the scalar valued case k = m = 1, with
A ≡ 1, which is Theorem 1.10 in [12]. Note that given (2.1.30), for ϕ ∈ vmo(Rn) one then gets
local compactness (as in the statement of Theorem 2.2; cf. (2.1.12)) of the associated principal
value operator, by the usual methods.

Proof of Theorem 2.3. For z ∈ Rm, set Fx(z) := F (A(x) z). Note that since A ∈ L∞, we have that
Fx(·) ∈ C M , with

sup
0≤j≤M

‖∇jFx(·)‖L∞(B) controlled uniformly in x, for every ball B ⊂ Rm. (2.1.35)

Moreover, as before, we may suppose that

Fx(·) is supported in the ball B(0, R∗) ⊂ Rm, for every x ∈ Rn, (2.1.36)

where R∗ is as in (2.1.31). For notational convenience, we normalize F so that

sup
0≤j≤M

‖∇jF (·)‖L∞(B(0,‖A‖∞R∗)) = 1. (2.1.37)

We may write

Fx(z) = c

∫

Rm

F̂x(ξ) cos(z · ξ) dξ, (2.1.38)

where F̂x is the Fourier transform of Fx, and we observe that by standard estimates for the Fourier
transform, and our normalization of F from (2.1.37),

ess supx∈Rn |F̂x(ξ)| ≤ C Rm
∗ (1 + |ξ|)−M . (2.1.39)

Let η ∈ C∞
0 (−2, 2) be an even function, with η ≡ 1 on [−1, 1], and for ξ ∈ Rm, t ∈ R, set

Eξ(t) := cos(t) η

(
t

(1 + |ξ|)R∗

)
. (2.1.40)

Observe that for z ∈ B(0, R∗) ⊂ Rm, we may replace cos(z · ξ) by Eξ(z · ξ) in (2.1.38). In concert
with (2.1.29) and (2.1.38), this permits us to write

TA,εf(x) =
∫

{y∈Rn: |x−y|>ε}
|x− y|−(n+1)F

(
A(x)

ψ(x)− ψ(y)
|x− y|

)
Γ(x, y)f(y) dy

= c

∫

Rm

F̂x(ξ)

{ ∫

{y∈Rn: |x−y|>ε}
|x− y|−(n+1) Eξ

(
ξ · ψ(x)− ψ(y)

|x− y|
)

Γ(x, y)f(y) dy

}
dξ

= c

∫

Rm

(1 + |ξ|)M−N F̂x(ξ)Tξ,εf(x) dξ, (2.1.41)

where

Tξ,εf(x) :=
∫

{y∈Rn: |x−y|>ε}
|x− y|−(n+1) Ẽξ

(
ξ · ψ(x)− ψ(y)

|x− y|
)

Γ(x, y)f(y) dy (2.1.42)
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and, with N a large number to be chosen later,

Ẽξ(t) := (1 + |ξ|)N−MEξ(t), ∀ t ∈ R. (2.1.43)

In turn, from (2.1.41) and (2.1.39) we deduce that
∥∥∥ sup

ε>0

∣∣TA,εf
∣∣
∥∥∥

Lp(Rn)
≤ CRm

∗

∫

Rm

(1 + |ξ|)−N
∥∥∥ sup

ε>0

∣∣Tξ,εf
∣∣
∥∥∥

Lp(Rn)
dξ, (2.1.44)

We now set
N := M − 2, (2.1.45)

and note that this choice ensures that for all non-negative integers j,
∣∣∣∣∣
(

d

dt

)j

Ẽξ(t)

∣∣∣∣∣ ≤ Cj(1 + |ξ|)−2

(
1

1 + |t|/((1 + |ξ|)R∗)
)2

≤ CjR
2
∗(1 + |t|)−2,

where the constant Cj may depend on j, but is independent of ξ. By [12, Theorem 1.10, p. 470],
applied to the scalar-valued Lipschitz function ξ · ψ, we then have that for some M1 < ∞,

∥∥∥ sup
ε>0

∣∣Tξ,εf(x)
∣∣
∥∥∥

Lp
x(Rn)

≤ CR2
∗(1 + |ξ|R∗)M1‖∇ϕ‖BMO(Rn) ‖f‖Lp(Rn). (2.1.46)

Plugging the latter estimate into (2.1.44), and finally choosing

M := M1 + m + 3, (2.1.47)

we obtain (2.1.30) thanks to (2.1.45).
Finally, there remains to consider the issue of the existence of the limits in (2.1.32) and (2.1.34).

We treat in detail the former, since the argument for the latter is similar, granted our results in
§A.2. To justify (2.1.32), make the standing assumption that

∇ϕ ∈ VMO(Rn), (2.1.48)

and recall from (2.1.41), (2.1.45) that

TA,εf(x) = c

∫

Rm

(1 + |ξ|)2F̂x(ξ)Tξ,εf(x) dξ, (2.1.49)

where Tξ,εf(x) is as in (2.1.42). To proceed, observe that for each f ∈ Lp(Rn) there holds

sup
ε>0

∣∣(1 + |ξ|)2F̂x(ξ)Tξ,εf(x)
∣∣ ∈ L1

ξ(Rm), for a.e. fixed x ∈ Rn. (2.1.50)

To see that this is the case, use Minkowski’s inequality along with (2.1.39) and (2.1.46) to estimate
{∫

Rn

(∫

Rm

sup
ε>0

∣∣(1 + |ξ|)2F̂x(ξ)Tξ,εf(x)
∣∣ dξ

)p
dx

}1/p

≤
∫

Rm

∥∥∥ sup
ε>0

∣∣(1 + |ξ|)2F̂x(ξ)Tξ,εf(x)
∣∣
∥∥∥

Lp
x(Rn)

dξ (2.1.51)

≤
∫

Rm

(1 + |ξ|)2
[
esssupx∈Rn |F̂x(ξ)|

]∥∥∥ sup
ε>0

∣∣Tξ,εf(x)
∣∣
∥∥∥

Lp
x(Rn)

dξ

≤ CRm+2
∗ ‖∇ϕ‖BMO(Rn) ‖f‖Lp(Rn)

∫

Rm

(1 + |ξ|)2−M (1 + |ξ|R∗)M1 dξ < +∞,
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thanks to (2.1.47). With (2.1.51) in hand, the claim in (2.1.50) readily follows. Next, granted
(2.1.48), we claim that for each fixed function f ∈ Lp(Rn) the following holds:

for each fixed ξ ∈ Rm, the limit lim
ε→0+

Tξ,εf(x) exists for a.e. x ∈ Rn. (2.1.52)

Given that we have already established (2.1.30), this may be justified along the lines of the proof
of Theorem 5.11, pp. 500-501 in [12], based on Proposition A.3 and keeping in mind that VMO
functions may be approximated in the BMO norm by continuous functions with compact support
which, in turn, are uniformly approximable by functions in C∞

0 .
In concert with the uniform integrability property (2.1.50), the existence of the limit in (2.1.52)

makes it possible to use Lebesgue’s Dominated Convergence Theorem in order to write that, for
a.e. x ∈ Rn,

lim
ε→0+

TA,εf(x) = c lim
ε→0+

∫

Rm

(1 + |ξ|)2F̂x(ξ)Tξ,εf(x) dξ

= c

∫

Rm

(1 + |ξ|)2F̂x(ξ) lim
ε→0+

Tξ,εf(x) dξ. (2.1.53)

This proves the claim in (2.1.32) and finishes the proof of the theorem.

2.2 The local compactness of the remainder

Let ϕ : Rn → Rn+` be a Lipschitz map, of “graph” type, i.e., assume that

ϕ(x) =
(
x, ϕ0(x)

)
, ∀x ∈ Rn, (2.2.1)

for some
ϕ0 : Rn −→ R` Lipschitz. (2.2.2)

Note that this implies
|ϕ(x)− ϕ(y)| ≥ |x− y|, ∀x, y ∈ Rn. (2.2.3)

Let
k : Rn+` \ {0} → R be a smooth function,

positive homogeneous of degree −n, and

satisfying k(−w) = −k(w) for all w ∈ Rn+` \ {0}.
(2.2.4)

Then

Kf(x) := PV
∫

Rn

k
(
ϕ(x)− ϕ(y)

)
f(y) dy

= PV
∫

Rn

|x− y|−nk
(ϕ(x)− ϕ(y)

|x− y|
)
f(y) dy, x ∈ Rn, (2.2.5)

defines a bounded operator on Lp(Rn), for each p ∈ (1,∞). We aim to establish a finer structure
when ϕ ∈ C 1(Rn) or, more generally, when the Jacobian Dϕ of ϕ satisfies

Dϕ ∈ L∞(Rn) ∩ vmo(Rn). (2.2.6)

Namely, we set
R := K −K0, (2.2.7)
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with
K0f(x) := PV

∫

Rn

k
(
Dϕ(x)(x− y)

)
f(y) dy, x ∈ Rn. (2.2.8)

Note that (2.2.3) implies |Dϕ(x)z| ≥ |z| for all z ∈ Rn. We have

ϕ ∈ C 1(Rn) =⇒ K0 ∈ OPC 0S0
cl,

Dϕ ∈ L∞(Rn) ∩ vmo(Rn) =⇒ K0 ∈ OP(L∞ ∩ vmo)S0
cl.

(2.2.9)

The latter class is studied in [36, Chapter 1, § 11] and, for reader’s convenience, useful background
material on this topic is presented in §A.3. See Theorem 2.6 for a derivation of the second part of
(2.2.9), in a more general setting. As for the “remainder” R in (2.2.7) we have

Rf(x) = PV
∫

Rn

r(x, y)f(y) dy, x ∈ Rn, (2.2.10)

where

r(x, y) := k
(
ϕ(x)− ϕ(y)

)− k
(
Dϕ(x)(x− y)

)
=

∫ 1

0
rτ (x, y) dτ, (2.2.11)

with
rτ (x, y) := (∇k)

(
ϕ(x)− ϕ(y) + τΓ(x, y)

) · Γ(x, y),

Γ(x, y) := ϕ(x)− ϕ(y)−Dϕ(x)(x− y).
(2.2.12)

The following is our first major result.

Theorem 2.4. Let ϕ be as in (2.2.1)-(2.2.2), suppose k is as in (2.2.4), and define R as in (2.2.7),
where K,K0 are as in (2.2.5) and (2.2.8), respectively. Finally, assume that (2.2.6) holds. Then
for each ball B ⊂ Rn and p ∈ (1,∞), the operator

R : Lp(B) −→ Lp(B) is compact. (2.2.13)

In the case when ϕ ∈ C 1(Rn) and Dϕ has a modulus of continuity satisfying a Dini condition,
the compactness result (2.2.13) is straightforward. See [36, Chapter 3, § 4].

Proof of Theorem 2.4. Note that

R =
∫ 1

0
Rτ dτ, (2.2.14)

interpreted as a Bochner integral, with

Rτf(x) := PV
∫

Rn

rτ (x, y)f(y) dy, x ∈ Rn, (2.2.15)

and the integral kernel rτ (x, y) as in (2.2.12). Given this, and bearing in mind that the collection
of compact operators on Lp(B) is a closed linear subspace of L(

Lp(B), Lp(B)
)
, it suffices to show

that each operator Rτ has the compactness property (2.2.13).
With this goal in mind, for each τ ∈ [0, 1] observe that the operator Rτ has the form

Rτf(x) = PV
∫

Rn

|x− y|−(n+1)F
(Dϕ(x)(x− y) + τΓ(x, y)

|x− y|
)
Γ(x, y)f(y) dy, (2.2.16)
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with Γ(x, y) as in (2.2.12) and F := ∇k. Note that the argument of F in (2.2.23) is

Dϕ(x)(x− y) + τΓ(x, y) =
(
x− y, Dϕ0(x)(x− y) + τΓ0(x, y)

)
, (2.2.17)

with ϕ0 as in (2.2.1)-(2.2.2) and Γ0(x, y) as in (2.2.12), but with ϕ replaced by ϕ0. In particular,
there exists a constant C ∈ (1,∞) such that

1 ≤ |Dϕ(x)(x− y) + τΓ(x, y)|
|x− y| ≤ C, (2.2.18)

for all x, y ∈ Rn and all τ ∈ [0, 1]. As such, we can alter the function F (w) at will off the set
{w ∈ Rn+` : 1 ≤ |w| ≤ C}, and arrange that

F ∈ C∞
0 (Rn+`), (2.2.19)

while keeping F even.
Moving on, observe that another way of looking at the argument of F in (2.2.23) is to write

Dϕ(x)(x− y) + τΓ(x, y)

= τ
(
ϕ(x)− ϕ(y)

)
+ (1− τ)Dϕ(x)(x− y)

=
[
τϕ(x) + (1− τ)Dϕ(x)x

]− [
τϕ(y) + (1− τ)Dϕ(x)y

]

= Aτ (x)
(
ψ(x)− ψ(y)

)
, (2.2.20)

with
Aτ (x) :=

(
τI (1− τ)Dϕ(x)

)
, (2.2.21)

and

ψ(x) :=

(
ϕ(x)

x

)
, ψ : Rn −→ R2n+`. (2.2.22)

The bottom line is that for each τ ∈ [0, 1] we have

Rτf(x) = PV
∫

Rn

|x− y|−(n+1)F
(
Aτ (x)

ψ(x)− ψ(y)
|x− y|

)
Γ(x, y)f(y) dy, x ∈ Rn, (2.2.23)

where Aτ , ψ are as in (2.2.21)-(2.2.22) and we can assume F is even and satisfies (2.2.19). Granted
this, Theorem 2.2 applies and yields that each Rτ has the compactness property (2.2.13).

2.3 A variable coefficient version of the local compactness theorem

Here the goal is to work out a variable coefficient version of Theorem 2.4, by treating the following
class of operators. Let k ∈ C∞(

Rn+` × (Rn+` \ 0)
)
. Suppose k(w, z) is odd in z and homogeneous

of degree −n in z. In addition, assume bounds

|Dα
wDβ

z k(w, z)| ≤ Cαβ |z|−n−|β| (2.3.1)

We take ϕ : Rn → Rn+` as in (2.2.1)-(2.2.2), (2.2.6), and consider

Kf(x) := PV
∫

Rn

k
(
ϕ(x), ϕ(x)− ϕ(y)

)
f(y) dy, x ∈ Rn. (2.3.2)
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To analyze this type of singular integral operator with variable coefficient kernel, it is convenient
to expand

k(w, z) =
∑

j

aj(w)Ωn,j(z), (2.3.3)

where, starting with orthonormal, real-valued, spherical harmonics Ωj on Sn−1, we have set

Ωn,j(z) := Ωj

( z

|z|
)
|z|−n, z ∈ Rn \ {0}, (2.3.4)

and where the coefficient functions aj are given by

aj(w) :=
∫

Sn−1

k(w, z)Ωj(z) dz. (2.3.5)

We can arrange that all the functions Ωn,j(z) in (2.3.3) are odd. There is a polynomial bound in j
on the C m norm of Ωn,j

∣∣
Sn−1 , for each m ∈ N, and the coefficients aj are rapidly decreasing in C m

norm, for each m ∈ N. We have
K =

∑

j

Kj , (2.3.6)

where, for each j,

Kjf(x) := aj(ϕ(x)) PV
∫

Rn

Ωn,j

(
ϕ(x)− ϕ(y)

)
f(y) dy, x ∈ Rn. (2.3.7)

The series (2.3.6) converges rapidly in Lp-operator norm, for each p ∈ (1,∞).
Let us compare K with K#, defined as

K#f(x) := PV
∫

Rn

k
(
ϕ(x), Dϕ(x)(x− y)

)
f(y) dy, x ∈ Rn. (2.3.8)

This time (2.3.3) yields
K# =

∑

j

K#
j , (2.3.9)

with K#
j given by

K#
j f(x) := aj(ϕ(x)) PV

∫

Rn

Ωn,j

(
Dϕ(x)(x− y)

)
f(y) dy, x ∈ Rn. (2.3.10)

We claim that the series (2.3.9) is rapidly convergent in Lp-operator norm for each p ∈ (1,∞).
Indeed, Theorem 2.4 directly implies that, for each j,

Kj −K#
j is compact on Lp(B), (2.3.11)

for each ball B ⊂ Rn, and each p ∈ (1,∞). The operator norm convergence of (2.3.6) and (2.3.9)
then yield the following variable coefficient counterpart to Theorem 2.4.

Theorem 2.5. Given K as in (2.3.3) and K# as in (2.3.8),

K −K# is compact on Lp(B). (2.3.12)
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Moving on, we propose to further analyze (2.3.8) and show that (again, see the discussion in
§A.3 for relevant definitions)

K# ∈ OP(L∞ ∩ vmo)S0
cl. (2.3.13)

To this end, it is convenient to write

k(w, Az) =
∑

j

bj(w, A)Ωn,j(z), (2.3.14)

for A : Rn → Rn+` of the form

A =
(

I

A0

)
, (2.3.15)

with
bj(w,A) :=

∫

Sn−1

k(w, Az)Ωj(z) dσ(z). (2.3.16)

Again, we can arrange that only odd functions Ωn,j arise in (2.3.14). As A0 runs over a compact
subset of L(Rn,R`), the space of linear transformations from Rn to R`. we have uniform rapid
decay of bj(w, A) and each of its derivatives. We have the following conclusion.

Theorem 2.6. The operator K# defined by (2.3.8) satisfies

K#f(x) =
∑

j

bj

(
ϕ(x), Dϕ(x)

)
PV

∫

Rn

Ωn,j(x− y)f(y) dy, x ∈ Rn, (2.3.17)

hence
K#f(x) = p(x,D)f(x), x ∈ Rn, (2.3.18)

with
p(x, ξ) :=

∑

j

bj

(
ϕ(x), Dϕ(x)

)
Ω̂n,j(ξ). (2.3.19)

Consequently,
p ∈ (L∞ ∩ vmo)S0

cl (2.3.20)

and (2.3.13) follows.

3 Symbol calculus

Our goals here are to associate symbols to the operators studied in Section 2 and to examine how
these operators behave under coordinate changes.

3.1 Principal symbols

Let Ω ⊂ Rn+1 be a bounded Lip∩ vmo1 domain, so ∂Ω is locally a graph of the form (2.2.1)-(2.2.2),
(2.2.6), with ` = 1. Let ∂∗Ω denote the subset of ∂Ω of the form ϕ(x) such that x is an Lp-Lebesgue
point of Dϕ with p > n (so in particular ϕ is differentiable at x). Then we set

Tϕ(x)∂
∗Ω :=

{
Dϕ(x)v : v ∈ Rn

}
, whenever ϕ(x) ∈ ∂∗Ω. (3.1.1)
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In this fashion, we can talk about the tangent bundle and cotangent bundle over ∂∗Ω,

T∂∗Ω, T ∗∂∗Ω, (3.1.2)

in the latter case, the fiber T ∗ϕ(x)∂
∗Ω being the dual space to (3.1.1).

Let k(w, z) be smooth on Rn+1 × (Rn+1 \ 0), odd in z, and homogeneous of degree −n in z.
Consider

Kf(x) := PV
∫

∂Ω

k(x, x− y)f(y) dσ(y), K : Lp(∂Ω) → Lp(∂Ω), p ∈ (1,∞). (3.1.3)

In a local coordinate system described above,

Kf(x) = PV
∫

O
k
(
ϕ(x), ϕ(x)− ϕ(y)

)
f(y)Σ(y) dy, (3.1.4)

with O ⊂ Rn and dσ(y) = Σ(y) dy. Note that Σ ∈ L∞ ∩ vmo. As we have seen in §2.3,

K = p(x,D) mod compact, (3.1.5)

with p(x, ξ) ∈ (L∞ ∩ vmo)S0
cl, odd and homogeneous of degree 0 in ξ. We want to associate to K

a principal symbol σK , defined on T ∗∂∗Ω. We propose

σK(ϕ(x), ξ) := p
(
x, Dϕ(x)>ξ

)
, (3.1.6)

for x ∈ O, ϕ(x) ∈ ∂∗Ω, with p as in (3.1.5). If ∂Ω is smooth, this coincides with the classical trans-
formation formula for the symbol of a pseudodifferential operator. Now K = K# mod compact,
with K# given by (2.3.8), with a factor of Σ(y) thrown in. This factor can be changed to Σ(x),
mod compact, so we can take

p(x, D)f(x) = PV
∫

k(ϕ(x), Dϕ(x)(x− y))Σ(x)f(y) dy. (3.1.7)

The standard formula connecting a pseudodifferential operator and its symbol yields

p(x, ζ) =
∫

Rn

k
(
ϕ(x), Dϕ(x)z

)
e−iz·ζΣ(x) dz, (3.1.8)

so (compare (3.2.22)–(3.2.23))

p
(
x,Dϕ(x)>ξ

)
=

∫

Rn

k
(
ϕ(x), Dϕ(x)z

)
e−iDϕ(x)z·ξΣ(x) dz

=
∫

Tϕ(x)∂
∗Ω

k
(
ϕ(x), z0

)
e−iz0·ξ dz0, (3.1.9)

since the area element of ∂Ω at w ∈ ∂∗Ω coincides with that of Tw∂∗Ω. Hence

σK(w, ξ) =
∫

Tw∂∗Ω

k(w, z0)e−iz0·ξ dz0, w ∈ ∂∗Ω. (3.1.10)
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This last formula is independent of the choice of local coordinates on ∂Ω. In case ∂Ω is smooth,
(3.1.10) is the standard formula. We note that T ∗w∂∗Ω inherits an inner product, hence a volume
form, as a linear subspace of Rn+1, and dz0 = Σ(x) dz, when w = ϕ(x).

Suppose K is an `× ` system of singular integral operators. We say K is elliptic on ∂Ω if there
exists a constant C > 0 such that

‖σK(w, ξ)v‖ ≥ C‖v‖, ∀ v ∈ C`, for σ-a.e. w ∈ ∂∗Ω. (3.1.11)

In such a case, by (3.1.6), the operator p(x,D) ∈ OP(L∞ ∩ vmo)S0
cl associated to K in a local

graph coordinate system, is elliptic, i.e., its symbol p(x, ξ) satisfies the analogue of (3.1.11). We
can hence prove the following.

Theorem 3.1. Let Ω ⊂ Rn+1 be a bounded Lip∩ vmo1 domain. If K is an `× ` elliptic system of
singular integral operators of the form (3.1.3) and satisfies the ellipticity condition (3.1.11), then

K : Lp(∂Ω) −→ Lp(∂Ω) is Fredholm, ∀ p ∈ (1,∞). (3.1.12)

Moreover, the index of K in (3.1.12) is independent of p ∈ (1,∞), and the following regularity
result holds:

if 1 < p < q < ∞ and f ∈ Lp(∂Ω), Kf ∈ Lq(∂Ω) =⇒ f ∈ Lq(∂Ω). (3.1.13)

Proof. Let {Oj}j be an open cover of ∂Ω on which we have graph coordinates. (We also identify
each Oj with an open subset of Rn.) Let {ψj}j be a Lipschitz partition of unity on ∂Ω subordinate
to this cover. Let ϕj ∈ Lip(Oj) have compact support and satisfy ϕj ≡ 1 on a neighborhood of
supp ψj . Then

K =
∑

j

KMψj =
∑

j

MϕjKMψj , mod compacts, (3.1.14)

where, generally speaking, Mψf := ψf . Now we have (cf. (3.1.5))

MϕjKMψj = Mϕjpj(x,D)Mψj , mod compacts, (3.1.15)

with pj(x, D) ∈ OP(L∞ ∩ vmo)S0
cl, elliptic. We have a parametrix ej(x, D) ∈ OP(L∞ ∩ vmo)S0

cl,
satisfying

Mϕiei(x, D)MψiMϕjKMψj = Mψiψj , mod compacts. (3.1.16)

Set
E :=

∑

i

Mϕiei(x,D)Mψi . (3.1.17)

Then

EK =
∑

i,j

Mϕiei(x,D)MψiMϕjKMψj , mod compacts

=
∑

i,j

Mψiψj , mod compacts

= I, mod compacts. (3.1.18)

Similarly, E is a right Fredholm inverse of K, and we have (3.1.12).
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Going further, for each p ∈ (1,∞) let ιp(K) denote the index of K on Lp(∂Ω). Then, if
1 < p < q < ∞ and Np denotes the null space of K on Lp(∂Ω), N ′

p that of K∗ on Lp′(∂Ω), we have

Nq ⊂ Np, N ′
p ⊂ N ′

q, hence ιp(K) ≥ ιq(K). (3.1.19)

The same type of argument applies to E, yielding ιp(E) ≥ ιq(E), hence

ιp(K) = ιq(K), (3.1.20)

as wanted. Note that, together with (3.1.19), this actually forces

Nq = Np and N ′
p = N ′

q. (3.1.21)

Finally, for (3.1.13), if f ∈ Lp(∂Ω) and Kf = g ∈ Lq(∂Ω), then g annihilates N ′
p. Since N ′

q = N ′
p,

g annihilates N ′
q, so g = Kf̃ for some f̃ ∈ Lq(∂Ω). Given p < q, we have f − f̃ ∈ Np. Hence

f − f̃ ∈ Nq, and thus f ∈ Lq(∂Ω), as asserted in (3.1.13).

3.2 Transformations of operators under coordinate changes

Let ϕ : Rn → Rn be a bi-Lipschitz map, so there exist a, b ∈ (0,∞) such that

a|x− y| ≤ |ϕ(x)− ϕ(y)| ≤ b|x− y|, ∀x, y ∈ Rn. (3.2.1)

In addition, we assume
Dϕ ∈ vmo(Rn). (3.2.2)

Given
k ∈ C∞(Rn \ 0), homogeneous of degree − n, k(−z) = −k(z), (3.2.3)

we set
Kf(x) := PV

∫

Rn

k(x− y)f(y) dy, x ∈ Rn. (3.2.4)

Let us also set

Kϕf(x) := PV
∫

Rn

k
(
ϕ(x)− ϕ(y)

)
f(y) dy, x ∈ Rn. (3.2.5)

As in the past, we let Mχ denote the operator of pointwise multiplication by χ.

Definition 3.1. Say that ϕ ∈ T(Rn) provided that (3.2.1)–(3.2.2) hold and, in addition, when-
ever (3.2.3) holds, then the singular integral operator Kϕ associated with ϕ as in (3.2.5) may be
decomposed

Kϕf(x) = PV
∫

Rn

k
(
Dϕ(x)(x− y)

)
f(y) dy + Rϕf(x), x ∈ Rn, (3.2.6)

for a remainder with the property that for each cut-off function χ ∈ C∞
0 (Rn) one has

MχRϕMχ : Lp(Rn) −→ Lp(Rn) compact, ∀ p ∈ (1,∞). (3.2.7)

By Theorem 2.6, the principal value integral on the right-hand side of (3.2.6) defines an operator

K̃ϕ ∈ OP(L∞ ∩ vmo)S0
cl, (3.2.8)

which is bounded on Lp(Rn) for each p ∈ (1,∞).
The following is a variant of Theorem 2.4, proven by the same sort of arguments.
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Theorem 3.2. Assume ϕ satisfies (3.2.1)–(3.2.2). Assume also that there exists κ > 0 such that,
for all τ ∈ [0, 1],

∣∣∣τ [ϕ(x)− ϕ(y)] + (1− τ)Dϕ(x)(x− y)
∣∣∣ ≥ κ|x− y|, ∀x, y ∈ Rn. (3.2.9)

Then ϕ ∈ T(Rn).
In fact, given a function χ ∈ C∞

0 (Rn), one has (3.2.7) provided the estimate in (3.2.9) holds
for all points x, y ∈ suppχ.

Note the similarity of (3.2.9) and (2.2.18). In this connection, if Σ ⊂ Rn+` is an n-dimensional
graph over Rn, as introduced in §2.2, and if it is also represented as a graph over a nearby n-
dimensional linear space V , then one gets a bi-Lipschitz map from Rn to V ≡ Rn, satisfying
(3.2.9). In such a way, one can represent Σ as a Lip∩vmo1 manifold, whose transition maps satisfy
the conditions of Theorem 3.2. See the next section for more on this.

We proceed to a variable coefficient version of (3.2.3)–(3.2.7). Take k measurable on Rn × Rn,
satisfying

k(x, z) homogeneous of degree −n in z, k(x,−z) = −k(x, z). (3.2.10)

Assume k(x, z) is smooth in z 6= 0, and that for each multiindex α there exists a finite constant
Cα > 0 such that

‖∂α
z k(·, z)‖L∞∩vmo ≤ Cα|z|−n−|α|, (3.2.11)

where, for f ∈ L∞(Rn),

‖f‖L∞∩vmo :=

{
‖f‖L∞ if f ∈ vmo,

∞ if f /∈ vmo.
(3.2.12)

Then we can write
k(x, z) =

∑

j≥0

kj(x)|z|−nΩj

( z

|z|
)
, (3.2.13)

where {Ωj}j is an orthonormal set of spherical harmonics on Sn−1, all odd, and for each j ∈ N we
have

‖kj‖L∞∩vmo ≤ CN 〈j〉−N , for every N ∈ N. (3.2.14)

In place of (3.2.4)–(3.2.6), we take

Kf(x) := PV
∫

Rn

k(x, x− y)f(y) dy, x ∈ Rn, (3.2.15)

Kϕf(x) := PV
∫

Rn

k
(
ϕ(x), ϕ(x)− ϕ(y)

)
f(y) dy, x ∈ Rn, (3.2.16)

and write

Kϕf(x) = PV
∫

Rn

k
(
ϕ(x), Dϕ(x)(x− y)

)
f(y) dy + Rϕf(x), x ∈ Rn. (3.2.17)

Using (3.2.13)–(3.2.14), we can write these as rapidly convergent series, and deduce that

ϕ ∈ T(Rn) =⇒ MχRϕMχ : Lp(Rn) → Lp(Rn) compact, ∀ p ∈ (1,∞), (3.2.18)

whenever χ ∈ C∞
0 (Rn). Implementing this for (3.2.16) involves using the following result.
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Lemma 3.3. The function spaces bmo(Rn) and vmo(Rn) are invariant under u 7→ u ◦ϕ, provided
ϕ : Rn → Rn is a bi-Lipschitz map.

Proof. This has the same proof as Proposition A.15 (cf. also [37, Proposition 3.3] and [1, Theorem 2,
p. 516]).

As in (3.2.8), the integral on the right side of (3.2.17) defines an operator

K̃ϕ ∈ OP(L∞ ∩ vmo)S0
cl. (3.2.19)

We use these results to analyze how an operator P = p(x,D) ∈ OP(L∞ ∩ vmo)S0
cl transforms

under a map ϕ ∈ T(Rn). In more detail, given P : Lp(Rn) → Lp(Rn), set

Pϕg(x) := Pf(ϕ(x)), f ∈ Lp(Rn), g(x) = f(ϕ(x)). (3.2.20)

Our hypothesis (3.2.1) implies ‖g‖Lp ≈ ‖f‖Lp , so Pϕ : Lp(Rn) → Lp(Rn). We claim that
Pϕ ∈ OP(L∞ ∩ vmo)S0

cl, at least modulo an operator with the compactness property (3.2.18).
Furthermore, we obtain a formula for its principal symbol.

We take p(x, ξ) to be homogeneous of degree 0 in ξ. To start, we assume

p(x, ξ) = −p(x,−ξ). (3.2.21)

Now
Pf(x) = PV

∫

Rn

k(x, x− y)f(y) dy, x ∈ Rn, (3.2.22)

with
k(x, z) = (2π)−n

∫

Rn

p(x, ξ)eiz·ξ dξ, (3.2.23)

so
p(x, ξ) =

∫

Rn

k(x, z)e−iz·ξ dz. (3.2.24)

Note that
p(x, ξ) =

∑

j≥0

pj(x)Ωj

( ξ

|ξ|
)
, (3.2.25)

with {Ωj}j as in (3.2.13) (again, all odd), and

‖pj‖L∞∩vmo ≤ CN 〈j〉−N , ∀N ∈ N. (3.2.26)

It follows that k(x, z) satisfies (3.2.10)–(3.2.11). Hence (3.2.15)–(3.2.19) apply. Consequently, with
Jϕ(y) := |det Dϕ(y)|,

Pϕg(x) = Pf(ϕ(x)) (3.2.27)

= PV
∫

Rn

k
(
ϕ(x), ϕ(x)− y′

)
f(y′) dy′ (3.2.28)

= PV
∫

Rn

k
(
ϕ(x), ϕ(x)− ϕ(y)

)
f(ϕ(y))Jϕ(y) dy (3.2.29)

= PV
∫

Rn

k
(
ϕ(x), ϕ(x)− ϕ(y)

)
g(y)Jϕ(y) dy. (3.2.30)
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Applying (3.2.15)–(3.2.18), we have

Pϕg(x) = PV
∫

Rn

k
(
ϕ(x), Dϕ(x)(x− y)

)
g(y)Jϕ(y) dy + R1ϕ, (3.2.31)

where R1ϕ has the compactness property (3.2.18). Also, Jϕ ∈ L∞ ∩ vmo, so we can use the
commutator estimate from [6] to replace Jϕ(y) by Jϕ(x) in (3.2.31), replacing R1ϕ by R2ϕ, also
satisfying (3.2.18). Consequently, we have

Pϕg(x) = (2π)−n

∫

Rn

∫

Rn

pϕ(x, ξ)ei(x−y)·ξg(y) dy dξ + R2ϕ, (3.2.32)

and
(2π)−n

∫

Rn

pϕ(x, ξ′)eiz·ξ′ dξ′ = Jϕ(x)k
(
ϕ(x), Dϕ(x)z

)
. (3.2.33)

Taking ξ′ = Dϕ(x)>ξ gives dξ′ = Jϕ(x) dξ. We have cancellation of the factors Jϕ(x), hence

(2π)−n

∫

Rn

pϕ(x,Dϕ(x)>ξ)ei∇ϕ(x)z·ξ dξ = k
(
ϕ(x), Dϕ(x)z

)
. (3.2.34)

Hence, with
σ(x, ξ) = pϕ(x,Dϕ(x)>ξ), z′ = Dϕ(x)z, (3.2.35)

we have
(2π)−n

∫

Rn

σ(x, ξ)eiz′·ξ dξ = k
(
ϕ(x), z′

)
, (3.2.36)

so
σ(x, ξ) =

∫

Rn

k
(
ϕ(x), z′

)
e−iz′·ξ dz′. (3.2.37)

Comparison with (3.2.24) yields the formula

pϕ

(
x,Dϕ(x)>ξ

)
= p(ϕ(x), ξ). (3.2.38)

This has been derived for p(x, ξ) satisfying (3.2.21). We now address the general case.

Theorem 3.4. Assume ϕ ∈ T(Rn). Given P ∈ OP(L∞ ∩ vmo)S0
cl, with principal symbol p(x, ξ),

and Pϕ defined by (3.2.20), one can decompose

Pϕ = pϕ(x,D) + Rϕ, (3.2.39)

with Rϕ satisfying (3.2.18) and pϕ(x,D) ∈ OP(L∞ ∩ vmo)S0
cl satisfying (3.2.38).

Proof. We have this when p(x, ξ) satisfies (3.2.21). It remains to treat the case p(x,−ξ) = p(x, ξ).
For this, we can write

p(x,D) =
n∑

j=1

qj(x,D)sj(x,D),

sj(x, ξ) =
ξj

|ξ| , qj(x, ξ) = p(x, ξ)
ξj

|ξ| .
(3.2.40)

The previous analysis holds for the factors qj(x,D) and sj(x,D), and our conclusion follows by
basic operator calculus for OP(L∞ ∩ vmo)S0

cl.
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3.3 Admissible coordinate changes on a Lip ∩ vmo1 surface

Let ϕ : Rn → Rn+` have the form ϕ(x) = (x, ϕ0(x)), with Dϕ0(x) ∈ L∞(Rn) ∩ vmo(Rn), as in
§2.2. Thus ϕ maps Rn onto an n-dimensional surface Σ. Let V ⊂ Rn+` be an n-dimensional linear
space. If V is not too far from Rn (depending on ‖Dϕ0‖L∞), then Σ is also a graph over V , and
we have the coordinate change map

ψ : Rn −→ V, ψ(x) = Qϕ(x), (3.3.1)

where Q : Rn+` → V is the orthogonal projection. Consequently,

ψ(x) = Q

(
x

ϕ0(x)

)
, Dψ(x)v = Q

(
v

Dϕ0(x)v

)
. (3.3.2)

Consequently,

τ [ψ(x)− ψ(y)] + (1− τ)Dψ(x)(x− y)

= Q

(
x− y

τ [ϕ0(x)− ϕ0(y)] + (1− τ)Dϕ0(x)(x− y)

)
. (3.3.3)

Recall that the condition for Theorem 3.2 to apply is that (3.3.3) has norm ≥ κ|x − y|, for some
κ > 0, for x, y ∈ Rn, τ ∈ [0, 1]. We see that the norm of (3.3.3) is

≥ ‖Q(x− y)‖ − γ(x, y), (3.3.4)

where, with Q0 denoting the orthogonal projection of Rn+` onto Rn,

γ(x, y) = ‖Q(I −Q0)(τ [ϕ0(x)− ϕ0(y)] + (1− τ)Dϕ0(x)(x− y))‖
≤ ‖Dϕ0‖L∞‖Q(I −Q0)‖ · |x− y|. (3.3.5)

Since Q(x− y) = (x− y) + (I −Q)Q0(x− y), we deduce that the norm of (3.3.3) is

≥
(
1− ‖(I −Q)Q0‖ − ‖(I −Q0)Q‖ · ‖Dϕ0‖L∞

)
|x− y|. (3.3.6)

Consequently, Theorem 3.2 applies as long as

‖(I −Q)Q0‖+ ‖(I −Q0)Q‖ · ‖Dϕ0‖L∞ < 1. (3.3.7)

This in turn holds provided
‖Q−Q0‖ < (1 + ‖Dϕ0‖L∞)−1. (3.3.8)

We have the following conclusion.

Proposition 3.5. Let ψ : Rn → V be as constructed in (3.3.1). Assume (3.3.8) holds, where Q and
Q0 are the orthogonal projections of Rn+` onto V and Rn, respectively. Take a linear isomorphism
J : V → Rn. Then J ◦ ψ belongs to T(Rn).
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3.4 Remark on double layer potentials

Assume that a kernel

E : Rn+1 \ {0} → R be a smooth function,

positive homogeneous of degree −(n + 1), and

satisfying E(−X) = E(X) for all X ∈ Rn+1 \ {0}
(3.4.1)

has been given. Also, let Ω ⊂ Rn+1 be a bounded Lip ∩ vmo1 domain, and consider the singular
integral operator of the type

Kf(X) := PV
∫

∂Ω
〈ν(X), X − Y 〉E(X − Y )f(Y ) dσ(Y ), X ∈ ∂Ω, (3.4.2)

where ν and σ are, respectively, the outward unit normal and surface measure on ∂Ω. To study
this, focus on a local version of (3.4.2) of the following sort. Let

ϕ0 : O −→ R Lipschitz, with ∇ϕ0 ∈ vmo (3.4.3)

where O ⊂ Rn is open, be such that its graph is contained in ∂Ω, and define the Lipschitz map
ϕ : O → Rn+1 by setting

ϕ(x) :=
(
x, ϕ0(x)

)
, ∀x ∈ O. (3.4.4)

Then in these local coordinates, K takes the form

Kϕf(x) = PV
∫

O

〈
(∇ϕ0(x),−1), ϕ(x)− ϕ(y)

〉
E

(
ϕ(x)− ϕ(y)

)
f(y) dy. (3.4.5)

Its “sharp” form, obtained by replacing ϕ(x)− ϕ(y) with Dϕ(x)(x− y) is then

K#
ϕ f(x) := PV

∫

O

〈
(∇ϕ0(x),−1), Dϕ(x)(x− y)

〉
E

(
Dϕ(x)(x− y)

)
f(y) dy

= PV
∫

O

〈
Dϕ(x)>(∇ϕ0(x),−1), x− y

〉
E

(
Dϕ(x)(x− y)

)
f(y) dy

= 0, (3.4.6)

since

Dϕ(x) =
(

In×n

∇ϕ0(x)

)
⇒ Dϕ(x)>(∇ϕ0(x),−1) =

(
In×n ∇ϕ0(x)

)(∇ϕ0(x)>

−1

)
= 0. (3.4.7)

In concert with our local compactness result, according to which Kϕ −K#
ϕ is compact on Lp for

each p ∈ (1,∞), this ultimately gives that

if Ω ⊂ Rn+1 is a bounded Lip ∩ vmo1 domain and E is as in (3.4.1)

then K from (3.4.2) is compact on Lp(∂Ω), for each p ∈ (1,∞).
(3.4.8)

Of course, the above result contains as a particular case the fact (which is a key result in the work
of Fabes, Jodeit, and Riviére in [9]) that the principal-value harmonic double layer operator

Kf(X) := lim
ε→0+

1
ωn

∫

Y ∈∂Ω

|X−Y |>ε

〈ν(Y ), Y −X〉
|X − Y |n+1

f(Y ) dσ(Y ), X ∈ ∂Ω, (3.4.9)

is compact on Lp(∂Ω), for each p ∈ (1,∞), if Ω ⊂ Rn+1 is a bounded C 1 domain.
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3.5 Cauchy integrals and their symbols

Given ` ∈ N, we let M(`,C) denote the collection of `× ` matrices with complex entries. Let D be
a first order elliptic `× ` system of differential operators on Rn+1,

Du(x) =
∑

j

Aj∂ju, Aj ∈ M(`,C). (3.5.1)

Thus σD(ζ) = i
∑

j Ajζj is invertible for each nonzero ζ ∈ Rn+1, and D has a fundamental solution

k(z) = (2π)−(n+1)

∫

Rn+1

E(ζ)eiz·ζ dζ, E(ζ) = σD(ζ)−1, (3.5.2)

odd and homogeneous of degree −n in z. If Ω ⊂ Rn+1 is a bounded UR (acronym for uniformly
rectifiable) domain, we can form

Bf(x) =
∫

∂Ω

k(x− y)f(y) dσ(y), x ∈ Ω, (3.5.3)

with nontangential limits (cf. (4.1.3))

(
Bf

∣∣∣
n.t.

∂Ω

)
(z) := lim

Γκ(x)3z→x
Bf(z) =

1
2i

σD(ν(x))−1f(x) + Bf(x), (3.5.4)

for σ-a.e. x ∈ ∂Ω, where Γκ(x) ⊂ Ω is a region of nontangential approach to x ∈ ∂Ω (cf. (4.1.2)),
and

Bf(x) := PV
∫

∂Ω

k(x− y)f(y) dσ(y), x ∈ ∂Ω. (3.5.5)

One is hence motivated to consider the “Cauchy integral”

CDf(x) = i

∫

∂Ω

k(x− y)σD(ν(y))f(y) dσ(y), x ∈ Ω, (3.5.6)

with nontangential limits

CDf
∣∣∣
n.t.

∂Ω
(x) = 1

2f(x) + CDf(x), (3.5.7)

for σ-a.e. x ∈ ∂Ω, where

CDf(x) := iPV
∫

∂Ω

k(x− y)σD(ν(y))f(y) dσ(y), x ∈ ∂Ω. (3.5.8)

As shown in [23], a reproducing formula yields

PD = 1
2I + CD =⇒ P 2

D = PD. (3.5.9)

This is studied in [23] in the setting of UR domains (and also for variable coefficient situations,
which for simplicity we do not take up here in detail). The operator PD is a Calderón projector.
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Here, we take Ω to be a Lip ∩ vmo1 domain and analyze the principal symbol of PD, as a
projection-valued function on T ∗∂∗Ω \ 0. To start, we recall from (3.1.10) that, for B in (3.5.5),

σB(w, ξ) =
∫

Tw∂∗Ω

k(z0)e−iz0·ξ dz0, w ∈ ∂∗Ω. (3.5.10)

Plugging in (3.5.2) and using basic Fourier analysis, we obtain

σB(w, ξ) =
1
2π

PV
∫ ∞

−∞
E

(
ξ + sν(w)

)
ds. (3.5.11)

We then have
σCD(w, ξ) =

i

2π
PV

∫ ∞

−∞
σD

(
ξ + isν(w)

)−1
σD(ν(w)) ds. (3.5.12)

Now σD
(
ξ + sν(w)

)
= σD(ξ) + sσD(ν(w)), so

σD
(
ξ + sν(w)

)−1
σD(ν(w)) =

(
M(w, ξ) + sI

)−1
, (3.5.13)

with
M(w, ξ) = σD(ν(w))−1σD(ξ). (3.5.14)

The invertibility of σD(ξ + sν(w)) and of σD(ν(w)) imply that

SpecM(w, ξ) ∩ R = ∅. (3.5.15)

We have
σCD(w, ξ) =

i

2π
PV

∫ ∞

−∞

(
sI + M(w, ξ)

)−1
ds. (3.5.16)

Lemma 3.6. Assume A ∈ M(`,C) and SpecA ∩ R = ∅. Then

1
2πi

∫ ∞

−∞
(s−A)−1eiεs ds =

{
eiεAP+(A) if ε > 0,

−eiεAP−(A) if ε < 0,
(3.5.17)

where P+(A) is the projection of C` onto the linear span of the generalized eigenvectors of A
associated to eigenvalues in SpecA with positive imaginary part, annihilating those associated to
eigenvectors with negative imaginary part, and P−(A) = I − P+(A). Hence

1
2πi

PV
∫ ∞

−∞
(s−A)−1 ds = P+(A)− 1

2I. (3.5.18)

Proof. In case ε > 0, the left-hand side of (3.5.17) is equal to

lim
R→∞

1
2πi

∫

∂D+
R

(s−A)−1 ds, (3.5.19)

where DR := {s ∈ C : |s| < R} and D+
R := DR ∩ {s ∈ C : =s > 0}. This path integral stabilizes

when R > ‖A‖, and the desired conclusion in this case follows from the Riesz functional calculus.
The treatment of the case when ε < 0 is similar. Then (3.5.18) follows readily from (3.5.17).
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We apply Lemma 3.6 to (3.5.16) with A := −M(w, ξ). Making use of the identity P+(−M) =
P−(M), we have the following conclusion.

Proposition 3.7. The operator CD and the associated Calderón projector, derived from the Cauchy
integral (3.5.6) via (3.5.7)–(3.5.9), have symbols given by

σCD(w, ξ) = −
(
P−(M(w, ξ))− 1

2I
)

= 1
2I − P−(M(w, ξ)), (3.5.20)

and
σPD(w, ξ) = P+(M(w, ξ)), (3.5.21)

respectively, with M(w, ξ) as in (3.5.14) and P+(A) as described in Lemma 3.6.

Remark 3.1. Extensions of the results in this section to variable coefficient operators (acting be-
tween vector bundles) and to domains on manifolds can be worked out using the formalism developed
in [23], [24].

4 Applications to elliptic boundary problems

Here we apply the results of Sections 2–3 to several classes of elliptic boundary problems, includ-
ing the Dirichlet problem for general strongly elliptic, second order systems and general regular
boundary problems for first order elliptic systems of differential operators.

4.1 Single layers and boundary problems for elliptic systems

Let M be a smooth, compact, (n + 1)-dimensional manifold, equipped with a Riemannian metric
tensor

g =
∑

j,k

gjk dxj ⊗ dxk, with gjk ∈ C 2. (4.1.1)

Also, consider a Lip ∩ vmo1 domain Ω ⊂ M (cf. the discussion in the last part of §A.5). Having
some fixed κ ∈ (0,∞), for each x ∈ ∂Ω, define the nontangential approach region with vertex at x
by setting

Γκ(x) :=
{
y ∈ Ω : dist(x, y) < (1 + κ) dist (y, ∂Ω)

}
. (4.1.2)

Next, given an arbitrary u : Ω → C, define its nontangential maximal function and its pointwise
nontangential boundary trace at x ∈ ∂Ω, respectively, as

(Nκu
)
(x) := sup

{|u(y)| : y ∈ Γκ(x)
}
,

(
u
∣∣n.t.

∂Ω

)
(x) := lim

Γκ(x)3y→x
u(y), (4.1.3)

whenever the limit exists. The parameter κ plays a somewhat secondary role in the proceedings,
since for any κ1, κ2 ∈ (0,∞) and p ∈ (0,∞) there exists C = C(κ1, κ2, p) ∈ (1,∞) with the property
that

C−1
∥∥Nκ1u

∥∥
Lp(∂Ω)

≤ ∥∥Nκ2u
∥∥

Lp(∂Ω)
≤ C

∥∥Nκ1u
∥∥

Lp(∂Ω)
, (4.1.4)

for each u : Ω → C. Given this, we will simplify notation and write N in place of Nκ.
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Moving on, let L be a second-order, strongly elliptic, k × k system of differential operators on
M . Assume that, locally,

Lu =
∑

i,j

∂jA
ij(x)∂ju +

∑

j

Bj(x)∂ju + V (x)u, (4.1.5)

where
Aij ∈ C 2, Bj ∈ C 1, V ∈ L∞. (4.1.6)

Also, suppose

L : H1,p(M) −→ H−1,p(M) is an isomorphism, for 1 < p < ∞. (4.1.7)

We want to solve the Dirichlet boundary problem

Lu = 0 on Ω, u
∣∣n.t.

∂Ω
= f ∈ Lp(∂Ω), Nu ∈ Lp(∂Ω), (4.1.8)

via the layer potential method. To this end, let E denote the Schwartz kernel of L−1, so that

L−1v(x) =
∫

M
E(x, y)v(y) dVol(y), x ∈ M, (4.1.9)

where dVol stands for the volume element on M . Then, with σ denoting the surface measure on
∂Ω, define the single layer potential operator and its boundary version by

Sg(x) :=
∫

∂Ω
E(x, y)g(y) dσ(y), x ∈ M \ ∂Ω,

and Sg := Sg
∣∣n.t.

∂Ω
on ∂Ω.

(4.1.10)

We want to solve (4.1.8) in the form

u = Sg, where g is chosen so that Sg = f. (4.1.11)

As such, if Hs,p(∂Ω), with 1 < p < ∞ and −1 ≤ s ≤ 1, denotes the Lp-based scale of Sobolev
spaces of fractional order s on ∂Ω, we would like to show

S : H−1,p(∂Ω) −→ Lp(∂Ω) is Fredholm, of index 0. (4.1.12)

Since the adjoint of S is the single layer associated with L∗ (which continues to be a second-order,
strongly elliptic, k×k system of differential operators on M), this is further equivalent (with q := p′

the Hölder conjugate exponent of p) to the condition that

S : Lq(∂Ω) −→ H1,q(∂Ω) is Fredholm, of index 0. (4.1.13)

Such a result was established, for q close to 2, when Ω is a Lipschitz domain, in Chapter 3 of [22].
The argument made use of a Rellich type identity. In the scalar case the result was established (in
the setting of regular SKT domains) in [14, Section 6.4], and applied in §7.1 of that paper to the
Dirichlet problem. In case ∂Ω is smooth, it is standard that S ∈ OPS−1(∂Ω) and it is strongly
elliptic, from which (4.1.12) and (4.1.13) follow. Here is what we propose.

Proposition 4.1. Let Ω be a Lip∩vmo1 domain and let L be a second-order, strongly elliptic, k×k
system of differential operators on M , as in (4.1.5)-(4.1.6), and satisfying (4.1.7). Then (4.1.12)
holds for all p ∈ (1,∞) and (4.1.13) holds for all q ∈ (1,∞).
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Proof. We start with the proof of (4.1.13). Pick L∞ ∩ vmo vector fields Xj , 1 ≤ j ≤ N , tangent to
∂Ω, such that

N∑

j=1

|Xj(x)| ≥ A > 0 for a.e. x ∈ ∂Ω. (4.1.14)

Then set ∇T f := {Xjf : 1 ≤ j ≤ N}. We have ∇T S : Lq(∂Ω) → Lq(∂Ω) for all q ∈ (1,∞).
Theorem 2.4 (or rather its standard “variable coefficient” extension) implies

∇T S = k0(x,D) + R, k0(x, D) ∈ OP(L∞ ∩ vmo)S0
cl, (4.1.15)

with R compact on Lq(∂Ω). At this point we make the following

Claim. We have the (overdetermined) ellipticity property

‖k0(x, ξ)v‖ ≥ A0‖v‖, A0 > 0. (4.1.16)

Assuming for now this claim (whose proof will be provided later), we obtain that

k∗0(x,D)k0(x, D) ∈ OP(L∞ ∩ vmo)S0
cl (mod compacts) (4.1.17)

is a (determined) elliptic operator, so it has a parametrix Q ∈ OP(L∞∩vmo)S0
cl (cf. §A.3). Hence,

Qk∗0(x,D)∇T S = I + R1, with R1 compact on Lq(∂Ω). (4.1.18)

This implies that
S : Lq(∂Ω) −→ H−1,q(∂Ω) is semi-Fredholm, (4.1.19)

namely, it has closed range and finite dimensional null-space.
To complete the argument, we take a continuous family Lτ of second order, strongly elliptic

operators on M , τ ∈ [0, 1], such that L1 = L and L0 is scalar. This gives a norm continuous family

Sτ : Lq(∂Ω) −→ H1,q(∂Ω), all semi-Fredholm. (4.1.20)

We know that S0 is Fredholm of index 0. Hence so are all the operators Sτ in (4.1.20). This gives
(4.1.13) which, by duality, also yields (4.1.12).

Now we return to the proof of the claim made in (4.1.16). That is, we shall establish the
(overdetermined) ellipticity of k0(x,D) ∈ OP(L∞ ∩ vmo)S0

cl, arising in (4.1.15) (which is equal
modulo a compact operator to ∇T S). To begin, we discuss the smooth case. If ∂Ω is smooth, and
L is strongly elliptic of second order with smooth coefficients, then actually S ∈ OPS−1(∂Ω), and
this operator is strongly elliptic. In fact, given (x, ξ) ∈ T ∗∂Ω \ 0, and with ν ∈ T ∗x∂Ω the outward
unit conormal to ∂Ω, we have

σS(x, ξ) = Cn

∫ +∞

−∞
σE(x, ξ + tν) dt = Cn

∫ +∞

−∞
σL(x, ξ + tν)−1 dt. (4.1.21)

This is seen as in [34, (11.11)-(11.12) in Chapter 7, Vol. 2], where we take m = −2, xn = 0. Strong
ellipticity of S then follows from (4.1.21), keeping in mind the strong ellipticity of L. Specifically,
note that σS(x, ξ) is positive homogeneous of degree −1 in ξ and the integrals in (4.1.21) are
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absolutely convergent since |σL(x, ξ + tν(x))−1| ≤ C(|ξ|2 + t2)−1. Keeping this in mind, for any
section η and any 0 6= ξ ∈ T ∗x∂Ω ⊂ T ∗xM , we may estimate

〈− σS(x, ξ)η, η
〉
x

= Cn

∫ +∞

−∞

〈− σL(x, ξ + tν(x))−1η, η
〉
dt

≥ C|η|2
∫ +∞

−∞
(|ξ|2 + t2)−1 dt

≥ C|η|2|ξ|−1, (4.1.22)

for some C > 0. This yields the strong ellipticity of S. Next, since σXjS = σXjσS , the ellipticity of
∇T S is an immediate consequence of what we have just proved and (4.1.14).

To tackle the case when Ω is a Lip ∩ vmo1 domain, we take local graph coordinates ϕ(x) =
(x, ϕ0(x)), and arrange that the vector fields {Xj}1≤j≤N include those associated with coordinate
differentiation. The integral kernel E(x, y) has the form

E(x, y) = E0(x, x− y) + r(x, y), (4.1.23)

where E0(x, z) is smooth on {z 6= 0} and homogeneous of degree −(n − 1) in z (note that dim
∂Ω = n), and r(x, y) has lower order. See the analysis in [22]. Locally, the operator S has the form

Sg(x) =
∫

Rn

E0

(
ϕ(x), ϕ(x)− ϕ(y)

)
g(y)Σ(y) dy + Rg(x), x ∈ Rn, (4.1.24)

where dσ(y) = Σ(y) dy and R denotes the integral operator with kernel r(x, y). Hence, for each
j ∈ {1, ..., n},

∂jSg(x) = PV
∫

Rn

∂jϕ(x) · ∇2E0

(
ϕ(x), ϕ(x)− ϕ(y)

)
g(y)Σ(y) dy + Rjg(x), x ∈ Rn, (4.1.25)

where here and below Rj will denote (perhaps different) operators that are compact on Lp, for
1 < p < ∞. Theorem 2.4 (or rather its natural “variable coefficient” extension from §2.3) gives

∂jSg(x) = PV
∫

Rn

∂jϕ(x) · ∇2E0

(
ϕ(x), Dϕ(x)(x− y)

)
g(y)Σ(y) dy + Rjg(x), x ∈ Rn, (4.1.26)

i.e.,
∂jSg(x) = Tj(x,D)(Σg)(x) + Rjg(x), x ∈ Rn, (4.1.27)

where Tj(x,D)(Σg)(x) is given by the principal value integral in (4.1.26). We therefore have
Tj(x,D) ∈ OP(L∞ ∩ vmo)S0

cl, with symbol

Tj(x, ξ) =
∫

Rn

e−iz·ξ ∂jϕ(x) · ∇2E0

(
ϕ(x), Dϕ(x)z

)
dz. (4.1.28)

Given that L is a k × k system, Tj(x, ξ) is a k × k matrix, i.e., Tj(x, ξ) ∈ M(k,C), for ξ 6= 0, and
a.e. x. We need to show that there exists C > 0 such that, for all ξ 6= 0 and v ∈ Ck,

∑

j

‖Tj(x, ξ)v‖ ≥ C‖v‖, for a.e. x. (4.1.29)
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Recall that ϕ has the form (1.1), so Dϕ(x) : Rn → Rn+1 has the form

Dϕ(x) =
(

I

Dϕ0(x)

)
, Dϕ0(x) : Rn → R, (4.1.30)

for a.e. x ∈ Rn. Freezing coefficients at a point where ϕ is differentiable, we can rephrase our task as
follows. Let L0(ζ) be a matrix in M(k,C) whose entries are polynomials in ζ ∈ Rn+1, homogeneous
of degree 2, and which is positive definite for each ζ 6= 0. For ζ 6= 0 set E0(ζ) := L0(ζ)−1. In
addition, consider a linear mapping A : Rn → Rn+1 of the form

A =
(

I

A0

)
, A0 : Rn → R. (4.1.31)

Let A0 run over a compact set in L(Rn,R). Also let L0 and E0 = L−1
0 run over compact sets of

symbols. Take

Tj(ξ) :=
∫

Rn

e−iz·ξ Aej · ∇E0(Az) dz, (4.1.32)

where {ej}1≤j≤n denotes the standard orthonormal basis of Rn. We need to prove that there exists
a finite constant C > 0 such that, for all v ∈ Ck and ξ 6= 0,

∑

j

‖Tj(ξ)v‖ ≥ C‖v‖, (4.1.33)

uniformly in A0, L0, E0. Note that this is equivalent to the ellipticity of ∇T S in case ϕ(x) = Ax,
so ∂Ω is a hyperplane in Rn+1. In this case, the previous analysis applies, since S ∈ OPS−1(∂Ω) is
strongly elliptic, and (4.1.33) follows.

This finishes the proof of the claim made in (4.1.16) which, in turn, completes the proof of
Proposition 4.1.

We next note a regularity result, under the assumption that Ω is a Lip ∩ vmo1 domain. Let us
temporarily denote

Ss,p = S : Hs,p(∂Ω) −→ Hs+1,p(∂Ω), s ∈ {0, −1}, (4.1.34)

with adjoint
S∗s,p = S∗ : H−1−s,q(∂Ω) −→ H−s,q(∂Ω), q = p′. (4.1.35)

Clearly the null-spaces Ker(Ss,p) and Ker(S∗s,p) of these operators satisfy

Ker(S0,p) ⊂ Ker(S−1,p), Ker(S∗−1,p) ⊂ Ker(S∗0,p), (4.1.36)

so the vanishing index property established in Proposition 4.1 forces

Ker(S0,p) = Ker(S−1,p) and Ker(S∗−1,p) = Ker(S∗0,p). (4.1.37)

Also,
1 < p < p̃ < ∞ =⇒ Ker(S0,p̃) = Ker(S0,p), Ker(S∗0,p) = Ker(S∗0,p̃), (4.1.38)

and, again, the aforementioned vanishing index property implies

Ker(S0,p) = Ker(S0,p̃). (4.1.39)

Collectively, (4.1.37) and (4.1.39) prove the following regularity result:
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Proposition 4.2. Assume that Ω is a Lip ∩ vmo1 domain in M and suppose L is a second-order,
strongly elliptic, system of differential operators on M as in (4.1.5)-(4.1.6), and satisfying (4.1.7).
Then, given f ∈ H−1,p(∂Ω) for some p ∈ (1,∞), one has

Sf = 0 =⇒ f ∈
⋂

1<q<∞
Lq(∂Ω). (4.1.40)

Recall that standard Lipschitz theory (cf. [22]) gives

f ∈ Lp(∂Ω) with p ∈ (1,∞) and u := Sf =⇒





Lu = 0 on M \ ∂Ω,

Nu, N (∇u) ∈ Lp(∂Ω),

u
∣∣n.t.

∂Ω
= Sf,

(4.1.41)

and

f ∈ H−1,p(∂Ω) with p ∈ (1,∞) and u := Sf =⇒





Lu = 0 on M \ ∂Ω,

Nu ∈ Lp(∂Ω),

u
∣∣n.t.

∂Ω
= Sf.

(4.1.42)

In addition, we single out the following additional properties. Let Hs,p(Ω), with s ∈ R and
p ∈ (1,∞) stand for the Lp-based Sobolev space of fractional smoothness s in Ω. Also, let
Tr : H1,2(Ω) → H1/2,2(∂Ω) denote the boundary trace operator in the sense of Sobolev spaces,
and set H1,2

0 (Ω) := Ker Tr. Then

f ∈ L2(∂Ω) =⇒ u := Sf ∈ H1(Ω), Tru = u
∣∣n.t.

∂Ω
= Sf. (4.1.43)

These considerations are relevant in the context of the following well-posedness result.

Theorem 4.3. Suppose Ω ⊂ M is a Lip∩ vmo1 domain and suppose L is a second-order, strongly
elliptic, system of differential operators on M as in (4.1.5)-(4.1.6), and satisfying (4.1.7). Set

Ω+ := Ω, Ω− := M \ Ω, (4.1.44)

and assume that the following nondegeneracy conditions hold:

u ∈ H1,2
0 (Ω+), Lu = 0 in Ω+ =⇒ u = 0 in Ω+,

u ∈ H1,2
0 (Ω−), Lu = 0 in Ω− =⇒ u = 0 in Ω−.

(4.1.45)

Then
S : H−1,p(∂Ω) −→ Lp(∂Ω) is invertible for each p ∈ (1,∞),

S : Lp(∂Ω) −→ H1,p(∂Ω) is invertible for each p ∈ (1,∞).
(4.1.46)

In particular, the Dirichlet problem

Lu = 0 in Ω, u
∣∣n.t.

∂Ω
= f ∈ Lp(∂Ω), Nu ∈ Lp(∂Ω), (4.1.47)

is well-posed, and its unique solution is given by u = S(S−1f), where S−1f ∈ H−1,p(∂Ω).
Furthermore, the Regularity problem

Lu = 0 in Ω, u
∣∣n.t.

∂Ω
= f ∈ H1,p(∂Ω), Nu, N (∇u) ∈ Lp(∂Ω), (4.1.48)

is well-posed, and its unique solution is given by u = S(S−1f), where S−1f ∈ Lp(∂Ω).

32



It is worth pointing out that the nondegeneracy conditions in (4.1.45) hold, in particular, if
system in question is of the form

L = D∗D (4.1.49)

where
D is a first-order system with the unique continuation property, (4.1.50)

in the sense that if u ∈ H1,2(M) is such that Du = 0 on M and u vanishes on some nonempty open
subset of M then necessary u = 0 everywhere on M . As a consequence, Theorem 4.3 applies to the
Laplace-Beltrami operator on a Riemannian manifold, in which scenario the present well-posedness
results complement those in [26].

Proof of Theorem 4.3. In a first stage we shall show that

f ∈ L2(∂Ω) and Sf = 0 =⇒ f = 0. (4.1.51)

Suppose f is as in the left-hand side of (4.1.51) and set u := Sf in M \∂Ω. In light of (4.1.43), the
hypothesis (4.1.45) then yields u = 0 both in Ω+ and in Ω−. Recall that L is as in (4.1.5)-(4.1.6)
and set (with ν = (νi)i denoting the outward unit conormal to Ω)

Ξ±f :=
∑

i,j

νiA
ij(∂jSf)

∣∣∣
n.t.

∂Ω±
. (4.1.52)

Then, on the one hand, the jump-formulas from [22, Theorem 2.9, p. 21] yield

Ξ±f =
(∓ 1

2I + K∗)f, (4.1.53)

where K∗ is a principal value singular integral operator on ∂Ω and I is the identity. As such, we
have the jump relation

f = Ξ−f − Ξ+f. (4.1.54)

On the other hand, clearly u = Sf = 0 on Ω+ ∪ Ω− implies Ξ±f = 0. We conclude that f = 0,
finishing the proof of (4.1.51).

In turn, (4.1.51), Proposition 4.2, and Proposition 4.1 imply that for each p ∈ (1,∞), the
operator S is an isomorphism in (4.1.12) and (4.1.13). This proves the claims in (4.1.46). With
these in hand, the fact that the Dirichlet and Regularity boundary value problems (4.1.47)-(4.1.48)
may be solved in the form u = S(S−1f) follows from (4.1.41)-(4.1.42).

Turning to the uniqueness part, it suffices to show that any solution u of the homogeneous
version of the Dirichlet problem (4.1.47) vanishes identically in Ω. To this end, we introduce the
Green function

G(x, y) := Γ(x, y)− S [
S−1

(
E(x, ·)∣∣

∂Ω

)]
(y), (x, y) ∈ Ω× Ω \ diag, (4.1.55)

where the intervening single layer potential operators are associated with L∗. Note that for each
fixed x ∈ Ω the function E(x, ·)∣∣

∂Ω
belongs to H1,q(∂Ω) for any q ∈ (1,∞). Thus, on account of

(4.1.46) we see that G(x, y) is well-defined. To proceed, consider a sequence of Lipschitz subdo-
mains Ωj of Ω so that Ωj ↗ Ω as j → ∞ as in [26, Appendix A]; in particular, their Lipschitz
character is controlled uniformly in j. Let Gj stand for the Green function corresponding to Ωj .
By construction, Gj(x, ·)|∂Ωj = 0 and we claim that for each q ∈ (1,∞) there exists a constant
Cq ∈ (0,∞) with the property that

sup
j∈N

∥∥Nj

(∇2Gj(x, ·))∥∥
Lq(∂Ωj)

≤ Cq. (4.1.56)
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This follows from the fact that if Sj denotes the single layer constructed in relation to ∂Ωj , then
for each q ∈ (1,∞) the operator norm of S−1

j : H1,q(∂Ωj) → Lq(∂Ωj) is uniformly bounded in j.
In turn, this is seen from (4.1.18) and reasoning by contradiction.

For each j ∈ N let σj denote the surface measure on ∂Ωj . Integrations by parts against these
Green functions give that if u solves the homogeneous version of the Dirichlet problem (4.1.47) and
if x ∈ Ω is an arbitrary fixed point, then for j ∈ N sufficiently large we have

|u(x)| =
∣∣∣∣∣
∫

Ωj

〈(
L∗Gj(x, ·))(y), u(y)

〉
dVol(y)

∣∣∣∣∣

=
∫

∂Ωj

O
(|u| · |∇2Gj(x, ·)|) dσj

≤ C‖u‖Lp(∂Ωj), (4.1.57)

where the last step utilizes Hölder’s inequality and (4.1.56). Because ‖u‖Lp(∂Ωj) → 0 by Lebesgue’s
Dominated Convergence Theorem (and the manner in which Ωj ↗ Ω as j → ∞), we ultimately
obtain u(x) = 0. Given that x ∈ Ω was arbitrary, the desired uniqueness statement follows.

We wish to note that for the proof of uniqueness we could have avoided using the approximating
family Ωj ↗ Ω and, instead, worked directly with the Green function for L∗, constructed as in
(4.1.55), by reasoning as in the proof of [14, Theorem 7.2, p. 2831] as carried out in Step 3 on
pp. 2832–2837 of [14].

In the last part of this section we discuss the Poisson problem for strongly elliptic systems with
data in Sobolev-Besov spaces in Lipschitz domains with normal in vmo. Throughout, retain the
setting of Theorem 4.3. For starters, from (4.1.46) and complex interpolation we deduce, with the
help of [10, Lemma 8.4], that

S : Hs−1,p(∂Ω) −→ Hs,p(∂Ω) is invertible for each p ∈ (1,∞) and s ∈ [0, 1]. (4.1.58)

With Bp,q
s (∂Ω), for p, q ∈ (0,∞] and 0 6= s ∈ (−1, 1), denoting the scale of Besov spaces on ∂Ω,

real interpolation then also gives that

S : Bp,q
s−1(∂Ω) −→ Bp,q

s (∂Ω) is invertible for p ∈ (1,∞), q ∈ (0,∞], and s ∈ (0, 1). (4.1.59)

Furthermore, the action of the single layer potential operator S on Sobolev-Besov spaces on Lip-
schitz domains has been studied in [27]. The emphasis in [27] is on the Hodge-Laplacian but the
approach there (which utilizes size estimates for the integral kernel and its derivatives) is general
enough to work in the present setting. Indeed, the mapping properties from [27, Lemmas 7.27.3]
are directly applicable here. They imply that if Bp,q

s (Ω), for p, q ∈ (0,∞] and s ∈ R, stands for
the scale of Besov spaces in Ω, the single layer operator induces well-defined and bounded linear
mappings in the following contexts:

S : Bp,p
−s (∂Ω) −→ Bp,p

1+ 1
p
−s

(Ω), for 1 ≤ p ≤ ∞ and 0 < s < 1, (4.1.60)

S : Bp,p
−s (∂Ω) −→ H

1+ 1
p
−s,p(Ω), for 1 < p < ∞ and 0 < s < 1. (4.1.61)

S : H−s,p(∂Ω) −→ B
p,max{p,2}
1−s+1/p (Ω), for 1 < p < ∞, 0 ≤ s ≤ 1. (4.1.62)
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Theorem 4.4. Suppose Ω ⊂ M is a Lip∩ vmo1 domain and suppose L is a second-order, strongly
elliptic, system of differential operators on M as in (4.1.5)-(4.1.6), and satisfying (4.1.7) and
(4.1.45). In addition assume that L∗, the adjoint of L, also satisfies the nondegeneracy conditions
in (4.1.45).

Then for any p ∈ (1,∞) and any s ∈ (0, 1) the Poisson problem with a Dirichlet boundary
condition 




Lu = f ∈ H
s+ 1

p
−2,p(Ω),

Tru = g ∈ Bp,p
s (∂Ω),

u ∈ H
s+ 1

p
,p(Ω),

(4.1.63)

has a unique solution.

Proof. Extend the given f ∈ H
s+ 1

p
−2,p(Ω) to some f̃ ∈ H

s+ 1
p
−2,p(M) then consider

v :=
(
L−1f̃

)∣∣
Ω
∈ H

s+ 1
p
,p(Ω). (4.1.64)

In particular, h := Tr v ∈ Bp,p
s (∂Ω) and a solution u of the boundary value problem (4.1.63) is

given by
u := v − S(

S−1(h− g)
)

in Ω, (4.1.65)

with S−1 the inverse of the operator in (4.1.59) (with q = p), and S considered as in (4.1.61).
There remains to prove uniqueness. The existence result just established may be interpreted

(taking g = 0) as the statement that

L : H
s+ 1

p
,p

0 (Ω) −→ H
s+ 1

p
−2,p(Ω) is surjective, for each p ∈ (1,∞) and s ∈ (0, 1), (4.1.66)

in the class of operators L described in the statement. Since the class in question is stable under
taking adjoints, writing (4.1.66) for L∗ then taking adjoints yields (after adjusting notation) that

L : H
s+ 1

p
,p

0 (Ω) −→ H
s+ 1

p
−2,p(Ω) is injective, for each p ∈ (1,∞) and s ∈ (0, 1). (4.1.67)

With this in hand, the fact that any null-solution of (4.1.63) necessarily vanishes identically in Ω
readily follows. This completes the proof of the theorem.

4.2 Oblique derivative problems

To start, let Ω ⊂ Rn be a bounded, regular SKT domain, so its unit normal field ν belongs to
vmo(∂Ω). We have tangential vector fields

∂τjk
= νk∂j − νj∂k, 1 ≤ j, k ≤ n (4.2.1)

(see [14, Section 3.6]).
Let ξjk, 1 ≤ j, k ≤ n, be real-valued functions on ∂Ω, and define the tangential vector field

X :=
n∑

j,k=1

ξjk∂τjk
. (4.2.2)

Assume that for each j, k ∈ {1, ..., n} we have

ξjkνj , ξjkνk ∈ vmo(∂Ω) ∩ L∞(∂Ω). (4.2.3)
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Given p ∈ (1,∞), the goal here is to study the oblique derivative problem

∆u = 0 on Ω, (∂ν + X)u = f on ∂Ω, Nu, N (∇u) ∈ Lp(∂Ω), (4.2.4)

where f ∈ Lp(∂Ω) is given. Above, ∂νu and Xu are understood, respectively, as

∂νu :=
n∑

j=1

νj

(
(∂ju)

∣∣n.t.

∂Ω

)
and Xu :=

n∑

j,k=1

ξjk∂τjk

(
u
∣∣n.t.

∂Ω

)
. (4.2.5)

We look for a solution of (4.2.4) in the form

u := Sg in Ω, (4.2.6)

where g ∈ Lp(∂Ω) is yet to be determined and S is the harmonic single layer potential operator
associated with Ω. That is,

Sg(x) :=
∫

∂Ω
E(x− y)g(y) dσ(y), x ∈ Ω, (4.2.7)

with E denoting the standard fundamental solution for the Laplacian in Rn, i.e.,

E(x) :=





1
ωn−1(2− n)

|x|2−n, if n ≥ 3,

1
2π

ln |x|, if n = 2,

∀x ∈ Rn\{0}, (4.2.8)

where ωn−1 is the surface measure of the unit sphere Sn−1 in Rn. As shown in [14, Section 4],

∂νSg
∣∣∣
n.t.

∂Ω
=

(− 1
2I + K∗)g, (4.2.9)

where
K∗ : Lp(∂Ω) → Lp(∂Ω) is compact for every p ∈ (1,∞). (4.2.10)

Meanwhile,
X(Sg) = Cg :=

∑

j,k

(Ajkg −Bjkg) on ∂Ω, (4.2.11)

where
Ajkg(x) := PV

∫

∂Ω
ajk(x)∂jE(x− y)g(y) dσ(y), x ∈ ∂Ω, (4.2.12)

and
Bjkg(x) := PV

∫

∂Ω
bjk(x)∂kE(x− y)g(y) dσ(y), x ∈ ∂Ω, (4.2.13)

with
ajk(x) := ξjk(x)νk(x), bjk(x) := ξjk(x)νj(x). (4.2.14)

The following provides a key to the study of (4.2.4).

Lemma 4.5. If Ω ⊂ Rn is a bounded regular SKT domain and (4.2.3) holds, then

Ajk + A∗jk and Bjk + B∗
jk are compact on Lp(∂Ω), ∀ p ∈ (1,∞). (4.2.15)
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Proof. For each j ∈ {1, ..., n},

Fjg(x) := PV
∫

∂Ω
∂jE(x− y)g(y) dσ(y), x ∈ ∂Ω, (4.2.16)

defines an operator of Calderón-Zygmund type that is bounded on Lp(∂Ω) for all p ∈ (1,∞), since
Ω is a UR domain. Then

Ajk + A∗jk = [ajk, Fj ], Bjk + B∗
jk = [bjk, Fk], (4.2.17)

so (4.2.15) follows from a general commutator estimate of Coifman-Rochberg-Weiss type (cf. [14,
Section 2.4]), since ajk, bjk ∈ vmo(∂Ω).

In light of (4.2.9) and (4.2.11), solving the oblique derivative boundary value problem (4.2.4)
via the single layer representation (4.2.6) is equivalent to finding a function g ∈ Lp(∂Ω) satisfying

(− 1
2I + C + K∗)g = f. (4.2.18)

In this regard, the following Fredholmness result is particularly relevant.

Proposition 4.6. If Ω is bounded regular SKT domain in Rn and if (4.2.3) holds, then

−1
2I + C + K∗ : L2(∂Ω) → L2(∂Ω) is Fredholm, of index 0. (4.2.19)

Proof. By Lemma 4.5, we can write

C + K∗ = C̃ + K2 where C̃∗ := −C̃ and

K2 is a compact operator on Lp(∂Ω), ∀ p ∈ (1,∞)
(4.2.20)

Then, for g ∈ L2(∂Ω),
Re

((− 1
2I + C̃

)
g , g

)
= −1

2‖g‖2
L2(∂Ω) (4.2.21)

which, in turn, shows that
−1

2I + C̃ is invertible on L2(∂Ω). (4.2.22)

Since the operator in (4.2.19) is a compact perturbation of this, the desired conclusion follows.

Corollary 4.7. In the setting of Proposition 4.6, there exists ε > 0 such that

−1
2I + C + K∗ : Lp(∂Ω) → Lp(∂Ω) is Fredholm, of index 0 (4.2.23)

whenever |p− 2| < ε.

Proof. That
−1

2I + C̃ : Lp(∂Ω) → Lp(∂Ω) is invertible (4.2.24)

for p close to 2 follows from (4.2.22) and the stability results in [33] (cf. also [15]). Meanwhile, the
operator in (4.2.23) is a compact perturbation of that in (4.2.24) for all p ∈ (1,∞).

In the context of Corollary 4.7, one wonders whether (4.2.23) holds for all p ∈ (1,∞). We show
that it does hold if Ω is a bounded Lip ∩ vmo1 domain in Rn.

Proposition 4.8. If Ω is a bounded Lip ∩ vmo1 domain in Rn and if (4.2.3) holds, then the
Fredholmness result (4.2.23) is true for all p ∈ (1,∞).
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Proof. For starters, we note that since (4.2.3) and (4.2.14) imply that ajk, bjk ∈ vmo(∂Ω), it
follows from Lemma A.16 that ajk ◦ φ, bjk ◦ φ ∈ vmo(U), whenever φ : U → ∂Ω is a coordinate
chart for ∂Ω (in the sense of Definition A.1). Keeping this in mind it follows that, in the present
setting, the operator C defined by (4.2.11) belongs to OP(L∞ ∩ vmo)S0

cl, and (4.2.20) implies that
its principal symbol is purely imaginary. Hence, for each s ∈ R, Fs := −1

2I + sC is an elliptic
operator in OP(L∞ ∩ vmo)S0

cl. Thus, these operators Fs are all Fredholm on Lp(∂Ω), and all have
index independent of s. Clearly, F0 has index zero, hence so does F1, and the desired conclusion
follows.

We are now ready to state of main Fredholm solvability result for the oblique derivative problem.
This builds on the earlier work of Calderón [3]. Other extensions in the Euclidean setting are in
[16], [28]; cf. also [24] for some recent refinements in the two dimensional setting. For Lipschitz
domains on manifolds see [26].

Theorem 4.9. Let Ω is a bounded Lip∩vmo1 domain in Rn with outward unit normal ν. Assume
that (4.2.3) holds and defined the tangential vector field X as in (4.2.2). Finally, fix p ∈ (1,∞)
arbitrary.

Then for any boundary datum f ∈ Lp(∂Ω) satisfying finitely many (necessary) linear conditions
the oblique derivative problem (4.2.4) has a solution. Moreover, such a solution is unique modulo a
finite-dimensional linear space, whose dimension coincides with the number of linearly independent
constraints required for the boundary data.

Hence, the oblique derivative problem (4.2.4) is Fredholm solvable, with index zero.

Proof. Fatou results in Lipschitz domains give that

∆u = 0 on Ω and Nu, N (∇u) ∈ Lp(∂Ω)

imply that u
∣∣∣
n.t.

∂Ω
exists and belongs to H1,p(∂Ω).

(4.2.25)

Going further, from (4.2.25) and the well-posedness of the Lp Regularity problem for the Laplacian
in bounded Lip ∩ vmo1 domains established in Theorem 4.3 it follows that

any function u satisfying ∆u = 0 on Ω and Nu, N (∇u) ∈ Lp(∂Ω)

is of the form u = Sg in Ω, for some (unique) function g ∈ Lp(∂Ω).
(4.2.26)

In turn, from (4.2.26) we deduce that if the boundary datum f ∈ Lp(∂Ω) is such that the oblique
derivative problem (4.2.4) has a solution u, then there exists a (unique) function g ∈ Lp(∂Ω) with
the property that

f = (∂ν + X)u = (∂ν + X)(Sg) =
(− 1

2I + C + K∗)g. (4.2.27)

This analysis shows that the oblique derivative problem (4.2.4) is solvable precisely for boundary
data f belonging to the image of the operator −1

2I + C + K∗ on Lp(∂Ω). By Proposition 4.8,
this is a closed subspace of Lp(∂Ω), of finite codimension. The above analysis also shows that the
space of null-solutions for the oblique derivative problem (4.2.4) is isomorphic to the kernel of the
operator −1

2I +C +K∗ on Lp(∂Ω). Again, by Proposition 4.8, this is a finite dimensional subspace
of Lp(∂Ω). Moreover, since the operator in question has index zero, we conclude that number of the
(necessary) linear conditions which the boundary data must satisfy coincide with dimension of the
space of null-solutions. Hence, the problem in question is Fredholm solvable, with index zero.
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4.3 Regular boundary problems for first order elliptic systems

Suppose Ω ⊂ M a Lip∩vmo1 domain, and let D be a first order elliptic differential operator on M .
It is permissible that D acts on sections of a vector bundle E → M . In local coordinates, assume
that

Du(x) =
∑

j

Aj(x)∂ju(x) + B(x)u(x), where Aj ∈ C 2, B ∈ C 1. (4.3.1)

As in §3.5 (cf. especially Remark 3.1), we associate to D a Cauchy integral CD and a projection
PD, which is an element of OP(L∞ ∩ vmo)S0

cl in local graph coordinates.
When Ω is smooth, there is a well-established theory of regular boundary problems associated

to D (though sometimes regular boundary conditions do not exist). We want to investigate the
situation where Ω ⊂ M is a Lip ∩ vmo1 domain.

Let F → ∂∗Ω be an L∞ ∩ vmo vector bundle, of rank k, so F is locally trivializable, to Ck ×O,
with transition matrices in L∞ ∩ vmo. Let

B : Lp(∂Ω, E) −→ Lp(∂Ω, F ) (4.3.2)

be an operator that, in local graph coordinates and local trivializations of E and F , satisfies

B ∈ OP(L∞ ∩ vmo)S0
cl. (4.3.3)

We can use analogues of (3.1.6)–(3.1.10) to define

σB(x, ξ) : Ex −→ Fx, (4.3.4)

for almost all (x, ξ) ∈ T ∗∂∗Ω \ 0. Extending the setup used when ∂Ω is smooth, we propose the
following criterion for regularity:

σB(x, ξ) : σPD(x, ξ)Ex −→ Fx, isomorphism, for a.e. (x, ξ) ∈ T ∗∂∗Ω \ 0, (4.3.5)

and there exists C > 0 such that, for almost all (x, ξ) ∈ T ∗∂∗Ω \ 0,

v ∈ Ex, σPDv = v =⇒ ‖σB(x, ξ)v‖ ≥ C‖v‖. (4.3.6)

Note that (4.3.5)–(4.3.6) is equivalent to (4.3.6) alone plus

dimσPD(x, ξ)Ex = dimFx. (4.3.7)

Also, σPD(x,−ξ) = I−σPD(x, ξ), so if dim ∂Ω ≥ 2, the left side of (4.3.7) is equal to (1/2) dim Ex.
Here is our basic Fredholm result.

Proposition 4.10. Assume Ω ⊂ M is a Lip ∩ vmo1 domain, and suppose D : E → E is a first
order elliptic differential operator, as in (4.3.1). Under the hypotheses (4.3.5)–(4.3.6), the operator

B : PDLp(∂Ω, E) −→ Lp(∂Ω, F ) is Fredholm, (4.3.8)

for each p ∈ (1,∞).
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Proof. The hypotheses imply that σBPD(x, ξ) : Ex → Fx is surjective for almost every (x, ξ), and
furthermore

BPDP ∗
DB∗ ∈ OP(L∞ ∩ vmo)S0

cl is elliptic. (4.3.9)

Hence B has a right Fredholm inverse, so B in (4.3.8) has closed range, of finite codimension. Also,

f ∈ PDLp(∂Ω, E), Bf = 0 (4.3.10)

is equivalent to (
B

I − PD

)
f = 0, f ∈ Lp(∂Ω, E), (4.3.11)

and the operator on the left side of (4.3.11) (call it Q) is an element of OP(L∞ ∩ vmo)S0
cl (mod

compacts) with symbol σQ(x, ξ) injective, and furthermore

Q∗Q ∈ OP(L∞ ∩ vmo)S0
cl is elliptic. (4.3.12)

Thus Q has a left Fredholm inverse, so its null space in Lp(∂Ω, E) is finite dimensional. This proves
(4.3.8).

Theorem 4.11. Under the hypotheses of Proposition 4.10, the boundary problem




Du = 0 on Ω,

Nu ∈ Lp(∂Ω),

Bu = f ∈ Lp(∂Ω, F ),

(4.3.13)

is Fredholm solvable, for each p ∈ (1,∞).

Proof. To restate the result, consider

Hp(Ω,D) :=
{
u ∈ C 1(Ω, E) : Du = 0on Ω, Nu ∈ Lp(∂Ω)

}
. (4.3.14)

In [24], a Fatou type lemma is established showing that each u ∈ Hp(Ω,D) has a boundary trace,
provided Ω is a regular SKT domain. From there, results in [23, §3.1] (see also [24]) imply that the
boundary trace yields an isomorphism

τ : Hp(Ω,D) ≈−→ PDLp(∂Ω, E), (4.3.15)

for p ∈ (1,∞). The assertion of Theorem 4.11 is that if B satisfies the hypotheses of Proposi-
tion 4.10, then

B ◦ τ : Hp(Ω,D) −→ Lp(∂Ω, F ) is Fredholm. (4.3.16)

In light of (4.3.15), the result (4.3.16) is equivalent to (4.3.8).

As we have mentioned, sometimes D has no boundary conditions of the form (4.3.2)–(4.3.4)
satisfying the regularity condition (4.3.5)–(4.3.6). In §4.4 we shall give important examples (well-
known for smooth boundaries) of regular boundary conditions for D = d+d∗, acting on differential
forms. Here, we record a simple example (also well known) of a first order elliptic operator with
no such regular boundary condition. Namely, we take a bounded Ω ⊂ R2 (possibly with smooth
boundary) and set

D =
∂

∂x1
+ i

∂

∂x2
, (4.3.17)
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acting on complex valued u, so Ex = C. In this case, σD(x, ξ)u = i(ξ1 + iξ2)u, or, if we identify
ξ = (ξ1, ξ2) ∈ R2 with ξ1 + iξ2 ∈ C, σD(x, ξ)u = iξu, hence

M(x, ξ) = ν−1ξ. (4.3.18)

Now ξ runs over the orthogonal complement of ν, i.e., over real multiples of iν. We have

M(x, iν) = i, M(x,−iν) = −i, (4.3.19)

so
P+

(
M(x, iν)

)
= I, P+

(
M(x,−iν)

)
= 0. (4.3.20)

Since the ranges have different dimensions, there is no way to achieve (4.3.5) both for ξ = iν and
for ξ = −iν.

Returning to the setting of Proposition 4.10 and Theorem 4.11, we see from (4.3.9) that the
operator B in (4.3.8) has a right Fredholm inverse that is an element of OP(L∞ ∩ vmo)S0

cl, and
that this operator is independent of p ∈ (1,∞). Since B in (4.3.8) is Fredholm, this right Fredholm
inverse is also a left Fredholm inverse, for each p ∈ (1,∞). Call it

H : Lp(∂Ω, F ) −→ PDLp(∂Ω, E). (4.3.21)

Using this observation, we can prove the following.

Proposition 4.12. Under the hypotheses of Proposition 4.10, the index of B in (4.3.8), hence the
index of B ◦ τ in (4.3.11), is independent of p.

Proof. Setting Vp = PDLp(∂Ω, E) and Wp = Lp(∂Ω, F ), our setup is

B : Vp → Wp, H : Wp → Vp, Fredholm inverses, (4.3.22)

for p ∈ (1,∞). Setting

Kerp B :=
{
f ∈ Vp : Bf = 0

}
, Cokerp B :=

{
ϕ ∈ W ′

p : B∗ϕ = 0
}
, (4.3.23)

we have

1 < p < q < ∞ =⇒ Kerq B ⊂ Kerp B, Cokerp B ⊂ Cokerq B

=⇒ indexq B ≤ indexp B. (4.3.24)

The same argument gives

1 < p < q < ∞ =⇒ indexq H ≤ indexp H, (4.3.25)

and since indexp B = −indexp H, we have

1 < p, q < ∞ =⇒ indexp B = indexq B, (4.3.26)

as desired.
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The results (4.3.24)–(4.3.26) also imply that

1 < p, q < ∞ =⇒ Kerp B = Kerq B. (4.3.27)

Let us set
Hp

B(Ω) :=
{
u ∈ Hp(Ω,D) : Bu = 0 on ∂Ω

}
. (4.3.28)

Then the isomorphism (4.3.15) gives

τ : Hp
B(Ω) ≈−→ PDLp(∂Ω, E) ∩KerB = Kerp B. (4.3.29)

Thus (4.3.27) yields the following.

Corollary 4.13. Under the hypotheses of Proposition 4.10, the space Hp
B(Ω) defined in (4.3.28) is

independent of p ∈ (1,∞).

4.4 Absolute and relative boundary conditions for the Hodge-Dirac operator

Let Ω be a Lip ∩ vmo1 domain in a smooth Riemannian manifold M . Let d denote the exterior
derivative on M , denote by δ = d∗ its adjoint, then define the Hodge-Dirac operator

D := d + δ, (4.4.1)

acting on sections of
E := Λ∗CM. (4.4.2)

We take F := Λ∗C∂∗Ω and
Bu := j∗u, (4.4.3)

the pull-back associated to j : ∂∗Ω ↪→ M . We claim that (D, B), given by (4.4.1) and (4.4.3),
satisfy the regularity conditions (4.3.5)–(4.3.6), i.e.,

σB(x, ξ) : P+(M(x, ξ))Ex −→ Fx, isomorphically, (4.4.4)

for almost every (x, ξ) ∈ T ∗∂∗Ω \ 0, with a uniform lower bound, of the form

v ∈ Fx, P+(M(x, ξ))v = v =⇒ ‖σB(x, ξ)v‖ ≥ C‖v‖. (4.4.5)

Recall that P+(M(x, ξ)) is the projection of Ex onto the span of the generalized eigenvectors of
M(x, ξ) associated with eigenvalues with positive imaginary part, annihilating those associated
with eigenvalues with negative imaginary part, where

M(x, ξ) = σD(x, ν)−1σD(x, ξ). (4.4.6)

Checking (4.4.4)–(4.4.5) is a purely algebraic problem, and to do this algebra, it suffices to take
the case

M := Rn+1, Ω :=
{
x ∈ Rn+1 : xn+1 < 0

}
. (4.4.7)

Let ∧ and ∨ denote, respectively, the exterior and interior product of forms. The following calcu-
lation shows that we have symbols independent of x:

σD(ξ)u = iξ ∧ u− iξ ∨ u, σB(ξ)u = j∗u = ν ∨ (ν ∧ u). (4.4.8)
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In addition, σD(ξ)2 = |ξ|2I and, more generally, the anti-commutator identity holds:

σD(ξ)σD(η) + σD(η)σD(ξ) = 2〈ξ, η〉I. (4.4.9)

Consequently σD(ν)−1 = σD(ν) and, for ξ ∈ T ∗∂Ω \ 0,

M(ξ) = σD(ν)σD(ξ) = −σD(ξ)σD(ν), (4.4.10)

hence
M(ξ)2 = −|ξ|2I, (4.4.11)

so
SpecM(ξ) = {i|ξ|,−i|ξ|}. (4.4.12)

Note that if ξ, η belong to T ∗∂Ω = Rn and have the same length, then M(ξ) and M(η) are
conjugate, if n ≥ 2, since then one can pass from ξ to η by an element of SO(n). On the other
hand, M(−ξ) = −M(ξ). It follows that

dimP+(M(ξ)) = 1
2 dimEx = dimFx, (4.4.13)

for all ξ 6= 0. For n = 1, this can be checked by a simple direct calculation.
Having this, all we need to show to establish (4.4.4)–(4.4.5) is that

v ∈ Λ∗CRn+1, ξ ∈ Rn, |ξ| = 1, M(ξ)v = iv, j∗v = 0 (4.4.14)

implies
v = 0. (4.4.15)

Indeed, (4.4.14) implies
σD(ξ)v = iσD(ν)v = −ν ∧ v + ν ∨ v, (4.4.16)

hence, since j∗v = 0 forces ν ∧ v = 0, we obtain

σD(ξ)v = ν ∨ v. (4.4.17)

Now the right-hand side of (4.4.17) belongs to Λ∗CRn. But if ν ∧ v = 0 and ξ ∈ Rn \ 0, the left-hand
side of (4.4.17) cannot belong to Λ∗CRn, unless it is zero. This implies σD(ξ)v = 0, and hence
(4.4.15) follows.

A similar argument applies if we replace B in (4.4.3) by

Bu = ν ∨ u
∣∣∣
n.t.

∂Ω
. (4.4.18)

Then we need to show that

v ∈ Λ∗CRn+1, ξ ∈ Rn, |ξ| = 1, M(ξ)v = iv, ν ∨ v = 0 (4.4.19)

implies (4.4.15). Indeed, (4.4.19) implies

σD(ξ)v = −ν ∧ v. (4.4.20)

If ν ∨ v = 0 and ξ ∈ Rn \ 0, one cannot factor out a ν on the left side of (4.4.20) unless this term
vanishes, so again we get (4.4.15).

The boundary condition (4.4.3) is called the relative boundary condition for d + δ, and (4.4.18)
is called the absolute boundary condition for d + δ. The arguments above establish the following.
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Proposition 4.14. The absolute boundary condition (4.4.18) and the relative boundary condition
(4.4.3) are each regular boundary conditions for the elliptic operator d+δ. Consequently, specializing
(4.3.28), the spaces

HA(Ω) :=
{

u ∈ Hp(Ω, d + δ) : ν ∨ u
∣∣n.t.

∂Ω
= 0

}
,

HR(Ω) :=
{

u ∈ Hp(Ω, d + δ) : ν ∧ u
∣∣n.t.

∂Ω
= 0

}
,

(4.4.21)

where p ∈ (1,∞) and, as in (4.3.14),

Hp(Ω, d + δ) :=
{
u ∈ C 1(Ω, Λ∗C) : (d + δ)u = 0 in Ω, Nu ∈ Lp(∂Ω)

}
, (4.4.22)

are finite dimensional. Furthermore, by Corollary 4.13, the spaces in (4.4.21) are independent of
p ∈ (1,∞).

Here, Λ∗C := ⊕n
`=0Λ

`
C, where n := dim Ω. We also set

Λo
C :=

⊕

` odd

Λ`
C, Λe

C :=
⊕

` even

Λ`
C, (4.4.23)

Hp
σ(Ω, d + δ) := Hp(Ω, d + δ) ∩ C 0(Ω, Λσ

C), σ = o or e, (4.4.24)

Hσ
b (Ω) := Hb(Ω) ∩ C 0(Ω,Λσ

C), b = A or R, σ = o or e. (4.4.25)

Note that
d + δ : C 1(Ω, Λo

C) −→ C 0(Ω, Λe
C),

d + δ : C 1(Ω, Λe
C) −→ C 0(Ω, Λo

C),
(4.4.26)

so

Hp(Ω, d + δ) = Hp
e(Ω, d + δ)⊕Hp

o(Ω, d + δ), (4.4.27)

Hb(Ω) = He
b(Ω)⊕Ho

b(Ω), b = A or R. (4.4.28)

In this vein, we wish to note that if we also consider

H̃A(Ω) :=
{

u ∈ Hp(Ω, d⊕ δ) : ν ∨ u
∣∣n.t.

∂Ω
= 0

}
, (4.4.29)

H̃R(Ω) :=
{

u ∈ Hp(Ω, d⊕ δ) : ν ∧ u
∣∣n.t.

∂Ω
= 0

}
, (4.4.30)

where
Hp(Ω, d⊕ δ) :=

{
u ∈ C 1(Ω, Λ∗C) : du = δu = 0 on Ω, Nu ∈ Lp(∂Ω)

}
, (4.4.31)

then from [25, Theorem 6.1] it follows that

H̃A(Ω) = HA(Ω) and H̃R(Ω) = HR(Ω). (4.4.32)

In more detail, (4.4.32) was demonstrated for p close to 2 in [25], in the setting of a general Lipschitz
domain. However, the independence of HA(Ω) and HR(Ω) from p, plus the obvious inclusions
H̃A(Ω) ⊂ HA(Ω) and H̃R(Ω) ⊂ HR(Ω), imply that H̃A(Ω) and H̃R(Ω) are also independent of p.
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A Auxiliary results

In this appendix, consisting of several subsections, we collect a number of auxiliary results that are
useful in the body of the paper.

A.1 Spectral theory for the Dirichlet Laplacian

Specifically, fix an arbitrary bounded open set O ⊆ Rn and, for any given p ∈ (1,∞) and k ∈ Z,
denote by W k,p(O) the standard Lp-based Sobolev space of smoothness order k. Also, let W̊ k,p(O)
be the closure of C∞

0 (O) in W k,p(O).
Let ∆D be the realization of the Laplacian with (homogeneous) Dirichlet boundary condition

as an unbounded linear operator in the context of the Hilbert space L2(O), with domain

Dom (∆D) := {u ∈ W̊ 1,2(O) : ∆u ∈ L2(O)}. (A.1.1)

Then −∆D is a nonnegative self-adjoint operator mapping Dom (∆D) isomorphically onto L2(O),
and its inverse

GD := (−∆D)−1 : L2(O) −→ L2(O) (A.1.2)

is self-adjoint, nonnegative, and compact. In particular, −∆D has a pure point spectrum

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ λj+1 ≤ · · · (A.1.3)

listed according to their (finite) multiplicities. See, e.g., [8, p. 82].
Let us temporarily write λj(O) in place of λj in order to emphasize the dependence on the un-

derlying domain O. The classical Rayleigh-Ritz min-max principle asserts (cf., e.g., [8, Theorem 10,
p. 102]) that for each j ∈ N,

λj(O) = min
Vj⊆W̊ 1,2(O)

dim Vj=j

max
u∈Vj\{0}

∫
O |∇u|2∫
O |u|2

. (A.1.4)

Assume now that Õ is a bounded open subset of Rn such that O ⊆ Õ. Given that extension by
zero is a well-defined norm-preserving mapping from W̊ 1,2(O) into W̊ 1,2(Õ), it readily follows from
(A.1.4) that the following domain monotonicity property holds:

λj(O) ≥ λj(Õ), ∀ j ∈ N. (A.1.5)

In this vein, let us also mention that each λj(O) is invariant with respect to translations and
rotations of O, and one has the scaling property

λj(cO) = c−2λj(O), ∀ c ∈ (0,∞), ∀ j ∈ N. (A.1.6)

Finally, pick a complete set of normalized eigenfunctions {ϑj}j∈N ⊂ L2(O) for −∆D. Thus,

ϑj ∈ W̊ 1,2(O), ‖ϑj‖L2(O) = 1, and −∆ϑj = λjϑj , for each j ∈ N. (A.1.7)

Lemma A.1. Let O be a bounded open subset of Rn.
Then there exist c1, c2 ∈ (0,∞) depending only on n and O such that

c1j
2/n ≤ λj ≤ c2j

2/n for each j ∈ N. (A.1.8)
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Also, there exists CO,n ∈ (0,∞) with the property that

‖ϑj‖L∞(O) ≤ CO,n j1/2+2/n for each j ∈ N. (A.1.9)

Moreover, for each j ∈ N one has
ϑj ∈ C∞

loc(O) (A.1.10)

and for every compact subset K of O and every multi-index α ∈ Nn
0 there exists a constant CO,K,α ∈

(0,∞) with the property that

‖∂αϑj‖L∞(K) ≤ CO,K,α j1/2+2/n. (A.1.11)

Proof. When O is the cube (0, 1)n in Rn, the pure point spectrum of the Dirichlet Laplacian is
given by

{λj

(
(0, 1)n

)}j∈N =
{
4π2(k2

1 + · · ·+ k2
n) : ki ∈ N, 1 ≤ i ≤ n

}
, (A.1.12)

an identification that takes into account multiplicities. From this one can deduce Weyl’s asymptotic
formula

λj

(
(0, 1)n

) ≈ 4π2j2/n

πn/2Γ(n/2 + 1)
, (A.1.13)

valid for large values of j ∈ N, and the estimates in (A.1.8) follow in this scenario from (A.1.13).
The general situation when O is an arbitrary bounded open set in Rn may be then handled based
on the special case just treated and the comments in (A.1.5)-(A.1.6).

The operator GD in (A.1.2) is an integral operator whose kernel is minus the Green function
for O, i.e.,

GDu(x) = −
∫

O
G(x, y)u(y) dy, x ∈ O, (A.1.14)

for each u ∈ L2(O). Since (cf. [11]) we have

|G(x, y)| ≤ Cn

|x− y|n−2
, x, y ∈ O, (A.1.15)

(assuming n > 2; the case n = 2, when a logarithm is involved, is treated analogously), it follows
that GD behaves like a fractional integral operator of order 2, hence (cf. [32])

GD : Lp(O) −→ Lq(O) linearly and boundedly

if either q < ∞ and 1/q ≥ 1/p− 2/n, or q = ∞ and p > n/2.
(A.1.16)

Iterating, it follows that

(GD)k : L2(O) −→ L∞(O) boundedly if k > n/4. (A.1.17)

On the other hand, for each fixed j ∈ N, from (A.1.7) we have ϑj = λjGDϑj which, inductively,
implies ϑj = λk

j (GD)kϑj for each k ∈ N. Consequently, if k :=
[
n/4

]
+ 1 then k ∈ N satisfies

k ∈ (
n/4, n/4 + 1

]
, hence we may estimate

‖ϑj‖L∞(O) = ‖λk
j (GD)kϑj‖L∞(O)

≤ ‖(GD)k‖L(L2(O),L∞(O))λ
k
j ‖ϑj‖L2(O)

≤ CO,n j2k/n ≤ CO,n j1/2+2/n, (A.1.18)

by (A.1.17), (A.1.7), and (A.1.8). This proves (A.1.9).
Finally, (A.1.10)-(A.1.11) follow from (A.1.7), (A.1.9), and elliptic regularity.
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A.2 Truncating singular integrals

If U ⊆ Rn, call Φ : U → Rm bi-Lipschitz if there exist 0 < M1 ≤ M2 < ∞ such that

M1|x− y| ≤ |Φ(x)− Φ(y)| ≤ M2|x− y|, ∀x, y ∈ U. (A.2.1)

When U is an open set, it is known (cf. [29]) that necessarily m ≥ n, Φ is an open mapping, the
Jacobian matrix DΦ = (∂kΦj)1≤j≤m, 1≤k≤n exists a.e. in U and

rankDΦ(x) = n for a.e. x ∈ U. (A.2.2)

Lemma A.2. Let A : Rn → Rm and B : Rn → Rm′
be functions satisfying

|A(x)−A(y)| ≤ M |x− y| and (A.2.3)

M−1|x− y| ≤ |B(x)−B(y)| ≤ M |x− y|, ∀x, y ∈ Rn, (A.2.4)

for some positive constant M . Also let F : Rm → R be an odd function of class C 1. Finally, fix a
point x ∈ Rn where both DA(x), DB(x) exist, rankDB(x) = n, and for each ε > 0 consider

U(ε) := {y ∈ Rn : 1 > |x− y| > ε},
V (ε) := {y ∈ Rn : |DB(x)(x− y)| > ε, |x− y| < 1}, (A.2.5)

W (ε) := {y ∈ Rn : |B(x)−B(y)| > ε, |x− y| < 1}.
Then whenever any of the following three limits exists (in R)

lim
ε↓0

∫

U(ε)

1
|x− y|n F

(A(x)−A(y)
|x− y|

)
dy, (A.2.6)

lim
ε↓0

∫

V (ε)

1
|x− y|n F

(A(x)−A(y)
|x− y|

)
dy, (A.2.7)

lim
ε↓0

∫

W (ε)

1
|x− y|n F

(A(x)−A(y)
|x− y|

)
dy, (A.2.8)

it follows that all exist and are equal.

Proof. Without loss of generality we can take x = 0 and assume that A(0) = 0, B(0) = 0. Note
that as a consequence of this normalization and (A.2.3) we have

|A(y)|
|y| ≤ M, ∀ y ∈ Rn \ {0}. (A.2.9)

The fact that DA(0), DB(0) exist implies that we can find a function η : (0,∞) → [0,∞) with the
property that η(t) ↓ 0 as t ↓ 0 and

|B(y)−DB(0)y|+ |A(y)−DA(0)y| ≤ |y| η(|y|), ∀ y ∈ Rn. (A.2.10)

In particular,

|A(y) + A(−y)| = ∣∣(A(y)−DA(0)y) + (A(−y)−DA(0)(−y))
∣∣

≤ |A(y)−DA(0)y|+ |A(−y)−DA(0)(−y)|
≤ 2|y| η(|y|), ∀ y ∈ Rn. (A.2.11)
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Recall that the matrix DB(0) is assumed to have rank n. Hence, ‖DB(0)‖ > 0 and if for each
ε > 0 we now define

∆(ε) :=
{
y ∈ Rn : ε ≥ |y| ≥ ε/‖DB(0)‖} (A.2.12)

then
V (ε) \ U(ε) ⊆ ∆(ε), ∀ ε > 0. (A.2.13)

Observing that U(ε) and V (ε) are symmetric with respect to the origin, employing the properties
of F and η, and keeping in mind (A.2.10), (A.2.13), (A.2.11), and (A.2.9), we may use the mean
value theorem in order to estimate the absolute value of the difference of the limits in (A.2.6) and
(A.2.7) by

lim
ε↓0

∣∣∣∣∣
∫

V (ε)\U(ε)

1
|y|n F

(A(y)
|y|

)
dy

∣∣∣∣∣ (A.2.14)

= lim
ε↓0

1
2

∣∣∣∣∣
∫

V (ε)\U(ε)

1
|y|n

[
F

(A(y)
|y|

)
+ F

(A(−y)
|y|

)]
dy

∣∣∣∣∣

= lim
ε↓0

1
2

∣∣∣∣∣
∫

V (ε)\U(ε)

1
|y|n

[
F

(A(y)
|y|

)
− F

(
−A(−y)

|y|
)]

dy

∣∣∣∣∣

≤
[

sup
|ξ|≤M

|∇F (ξ)|
]
lim
ε↓0

∫

∆(ε)
η(|y|)|y|−n dy

≤ C lim
ε↓0

η(ε) = 0. (A.2.15)

This proves that the limits in (A.2.6) and (A.2.7) exist simultaneously and are equal.
In order to prove the simultaneous existence and coincidence of the limits in (A.2.7) and (A.2.8),

observe that for each y ∈ V (ε)\W (ε) we have M−1|y| ≤ |B(y)| ≤ ε, hence |y| ≤ εM . That is,

y ∈ V (ε)\W (ε) =⇒ |y| ≤ εM. (A.2.16)

In turn, this forces

|(DB)(0)y| ≤ |(DB)(0)y −B(y)|+ |B(y)| ≤ εM η(εM) + ε (A.2.17)

and, further,
y ∈ V (ε)\W (ε) =⇒ ε < |(DB)(0)y| ≤ εM η(εM) + ε. (A.2.18)

From (A.2.16) and (A.2.18) we may therefore conclude that

V (ε)\W (ε) ⊆ Z
[
ε;Mη(εM)

]
(A.2.19)

where, in general, we define

Z[ε; a] := {y ∈ Rn : ε < |DB(0)y| ≤ εa + ε}, ∀ ε > 0, ∀ a > 0. (A.2.20)

Let Hk
N be the k-dimensional Hausdorff measure in RN . To estimate the n-dimensional Lebesgue

measure of Z[ε; a], note first that for each a > 0 fixed,

Z[ε; a] = εZ[1; a], ∀ ε > 0. (A.2.21)
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On the other hand, if we set Hn := {DB(0)y : y ∈ Rn} ⊆ Rm′
then, since DB(0) is a rank n

matrix, it follows that Hn is an n-dimensional plane in Rm′
and DB(0) : Rn → Hn is a linear

isomorphism. As such, we obtain

Hn
n

(
Z[1; a]

)
= Hn

n

({y ∈ Rn : 1 < |DB(0)y| ≤ a + 1})

≤ CHn
m′

({z ∈ Hn : 1 < |z| ≤ a + 1}). (A.2.22)

A moment’s reflection shows that

lim
a→0+

Hn
m′

({z ∈ Hn : 1 < |z| ≤ a + 1}) = 0. (A.2.23)

From this, (A.2.21), (A.2.19), and the fact that η(εM) → 0 as ε → 0+, we may finally conclude
that

lim
ε→0+

Hn
n

(
V (ε)\W (ε)

)

εn
= 0. (A.2.24)

Since the expression 1
|y|n F

(
A(y)
|y|

)
restricted to V (ε)\W (ε) is pointwise of the order ε−n in a uniform

fashion, we deduce from (A.2.24) that

lim
ε→0+

∫

V (ε)\W (ε)

1
|y|n F

(A(y)
|y|

)
dy = 0, (A.2.25)

as desired.
Finally, an argument analogous to (A.2.18) gives that

ε− εMη(εM) < |(DB)(0)y| ≤ ε, ∀ y ∈ W (ε)\V (ε). (A.2.26)

Thus, for reasons similar to those discussed above, we also have

lim
ε→0+

∫

W (ε)\V (ε)

1
|y|n F

(A(y)
|y|

)
dy = 0, (A.2.27)

which completes the proof of the lemma.

The main result in this subsection, pertaining to the manner in which singular integrals are
truncated, reads as follows.

Proposition A.3. Let A : Rn → Rm be a Lipschitz function and assume that F : Rm → R is an odd
function of class C N for some sufficiently large integer N = N(m). Also, suppose B : Rn → Rm′

is a bi-Lipschitz function, and pick p ∈ (1,∞). Then for each fixed f ∈ Lp(Rn) the limit

lim
ε↓0

∫

{y∈Rn: |B(x)−B(y)|>ε}

1
|x− y|n F

(A(x)−A(y)
|x− y|

)
f(y) dy, (A.2.28)

exists at a.e. point x ∈ Rn. Moreover, this limit is independent of the choice of the function B, in
the sense that for each given f ∈ Lp(Rn) the limit (A.2.28) is equal to

lim
ε↓0

∫

{y∈Rn: |x−y|>ε}

1
|x− y|n F

(A(x)−A(y)
|x− y|

)
f(y) dy (A.2.29)

for a.e. x ∈ Rn.
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As a preamble, we deal with a simple technical result. In the sequel, we agree to let M stand
for the usual Hardy-Littlewood maximal operator.

Lemma A.4. Assume that

C1|x− y| ≤ ρ(x, y) ≤ C2|x− y|, ∀x, y ∈ Rn, (A.2.30)

and
|k(x, y)| ≤ C0

|x− y|n , ∀x, y ∈ Rn, (A.2.31)

for some finite positive constants C0, C1, C2. Then

∆(x) :=

∣∣∣∣∣∣∣∣∣

∫

|x−y|>ε

y∈Rn

k(x, y)f(y)dy −
∫

ρ(x−y)>ε

y∈Rn

k(x, y)f(y)dy

∣∣∣∣∣∣∣∣∣

≤ C0(C−n
1 + Cn

2 )Mf(x), (A.2.32)

for all x ∈ Rn.

Proof. A direct size estimate gives

∆(x) ≤
∫

|x−y|>ε, ρ(x,y)<ε

y∈Rn

C0

|x− y|n |f(y)| dy +
∫

|x−y|<ε, ρ(x,y)>ε

y∈Rn

C0

|x− y|n |f(y)| dy

:= I + II, (A.2.33)

where the last equality defines I, II. We have:

I ≤ C0

εn

∫

C1|x−y|<ε
|f(y)| dy ≤ C0

Cn
1

Mf(x), (A.2.34)

and
II ≤ C0C

n
2

εn

∫

|x−y|<ε
|f(y)| dy ≤ C0C

n
2Mf(x). (A.2.35)

The desired conclusion follows.

Below, we shall also make use of the following standard result.

Lemma A.5. Let {Tε}ε>0 be a family of operators with the following properties:

(1) There exists a dense subset V of Lp(Rn) such that for any f ∈ V the limit lim
ε→0+

Tεf(x) exists

for almost every x ∈ Rn.

(2) The maximal operator T∗f(x) := sup
{|Tεf(x)| : ε > 0

}
is bounded on Lp(Rn).

Then, the limit lim
ε→0+

Tεf(x) exists for any f ∈ Lp(Rn) at almost any x ∈ Rn, and the operator

Tf(x) := lim
ε→0+

Tεf(x) (A.2.36)

is bounded on Lp(Rn).
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Proof. The boundedness of the operator T is an immediate consequence of (2), once we prove the
existence of the limit in (A.2.36). In this regard, having fixed f ∈ Lp(Rn), we aim to show that

∣∣{x ∈ Rn : lim sup
ε→0+

Tεf(x) 6= lim inf
ε→0+

Tεf(x)}∣∣ = 0. (A.2.37)

Fix θ > 0 and consider

S :=
{

x ∈ Rn :
∣∣ lim sup

ε→0+

Tεf(x)− lim inf
ε→0+

Tεf(x)
∣∣ > θ

}
. (A.2.38)

Also, fix δ > 0 and select h ∈ V such that ‖f − h‖Lp(Rn) < δ. Then

S ⊂ S1 ∪ S2 (A.2.39)

where
S1 :=

{
x ∈ Rn :

∣∣ lim sup
ε→0+

Tεf(x)− lim
ε→0+

Tεh(x)
∣∣ > θ/2

}
,

S2 :=
{

x ∈ Rn :
∣∣ lim inf

ε→0+
Tεf(x)− lim

ε→0+
Tεh(x)

∣∣ > θ/2
}

.
(A.2.40)

Then the measure of the set S1 can be estimated by

|S1| ≤
∣∣{x ∈ Rn : T∗(f − h)(x) > θ/2

}∣∣ ≤
(

2
θ

)p ∫

Rn

|T∗(f − h)(x)|p dx

≤C

(
2
θ

)p

‖f − h‖p
Lp(Rn) ≤ C

(
2
θ

)p

δp. (A.2.41)

Since δ > 0 was arbitrary, this proves that |S1| = 0. The same consideration works for the set S2,
hence also |S| = 0 by (A.2.39). This concludes the proof of Lemma A.5.

We are now ready to present the

Proof of Proposition A.3. For each bi-Lipschitz function B defined in Rn, consider the truncated
singular integral operator

TB,εf(x) :=
∫

{y∈Rn: |B(x)−B(y)|>ε}

1
|x− y|n F

(A(x)−A(y)
|x− y|

)
f(y) dy, x ∈ Rn, (A.2.42)

where ε > 0. The maximal operator associated with the family
{
TB,ε

}
ε>0

is defined as

TB,∗f(x) := sup
ε>0

∣∣TB,εf(x)
∣∣, x ∈ Rn. (A.2.43)

In particular, corresponding to the case when B = I, the identity on Rn, we have

TI,εf(x) =
∫

{y∈Rn: |x−y|>ε}

1
|x− y|n F

(A(x)−A(y)
|x− y|

)
f(y) dy, x ∈ Rn, (A.2.44)

and
TI,∗f(x) = sup

ε>0

∣∣TI,εf(x)
∣∣, x ∈ Rn. (A.2.45)

We proceed is a number of steps.
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Step 1: Given p ∈ (1,∞) there exists a constant C ∈ (0,∞) with the property that for each
Lipschitz function A : R→ R and for each ε > 0 the truncated Cauchy integral operator

CA,εf(x) :=
∫

{y∈R: |x−y|>ε}

f(y)
x− y + i(A(x)−A(y))

dy, x ∈ R, (A.2.46)

satisfies
‖CA,εf‖Lp(R) ≤ C

(
1 + ‖A′‖L∞(R)

)‖f‖Lp(R). (A.2.47)

This is the Coifman, McIntosh, Meyer theorem (cf. [5]). An elegant proof is given by M. Melnikov
and J. Verdera in [20].

Step 2: Given p ∈ (1,∞) there exists a constant C ∈ (0,∞) with the property that if β ∈ (1,∞)
and if B : R→ R is a Lipschitz function satisfying β−1 < B′(x) < β for a.e. x ∈ R, then for each
ε > 0 and each η ∈ [−1, 1] the operator

C̃B,η,εf(x) :=
∫

{y∈R: |x−y|>ε}

f(y)
η(x− y)i + B(x)−B(y)

dy, x ∈ R, (A.2.48)

satisfies ∥∥C̃B,η,εf
∥∥

Lp(R)
≤ Cβ4‖f‖Lp(R). (A.2.49)

To prove (A.2.49), changing variables s := B(x) and t := B(y) allows us to write

(C̃B,η,εf)
(
B−1(s)

)
=

∫

|B−1(s)−B−1(t)|>ε

f(B−1(t))[B′(B−1(t))]−1

s− t + iη(B−1(s)−B−1(t))
dt. (A.2.50)

Based on this and Lemma A.4 we then obtain the pointwise estimate
∣∣(C̃B,η,εf)

(
B−1(s)

)∣∣ ≤ ∣∣CηB−1,ε

(
(f/B′) ◦B−1

)
(s)

∣∣ + Cβ3Mf
(
B−1(s)

)
, (A.2.51)

for all s ∈ R. Then (A.2.49) follows from (A.2.51) with the help of (A.2.47).

Step 3: Suppose F (z) is an analytic function in the open strip {z ∈ C : |Im z| < 2}. Let A : R→ R
be a Lipschitz function with ‖A′‖L∞(R) ≤ M . Then for each p ∈ (1,∞) there exists a constant
C = Cp ∈ (0,∞) such that, for each ε > 0, the operator

KA,F,εf(x) :=
∫

|x−y|>ε

1
x− y

F
(A(x)−A(y)

x− y

)
f(y) dy, x ∈ R, (A.2.52)

satisfies

‖KA,F,εf‖Lp(R) ≤ C(1 + M4) sup
{|F (z)| : z ∈ C, |Im z| < 2

}‖f‖Lp(R). (A.2.53)

To justify (A.2.53), let γ1± := {ζ = u ± i : |u| ≤ 2M}, γ2± := {ζ = ±2M + iv : |v| ≤ 1}, and
set γ := γ1

+ ∪ γ2
+ ∪ γ1− ∪ γ2−. Since F is analytic for z ∈ C with |Im z| < 2, Cauchy’s reproducing

formula yields

F (s) =
1

2π i

∫

γ

F (ζ)
ζ − s

dζ =
1

2π i

∫

γ1
+∪γ1

−

F (ζ)
ζ − s

dζ +
1

2π i

∫

γ2
+∪γ2

−

F (ζ)
ζ − s

dζ. (A.2.54)
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Accordingly,

KA,F,εf(x) =
1

2π i

∫

γ1
+∪γ1

−
F (ζ)

∫

|x−y|>ε

1
x− y

f(y)

ζ − A(x)−A(y)
x−y

dy dζ

+
1

2π i

∫

γ2
+∪γ2

−
F (ζ)

∫

|x−y|>ε

1
x− y

f(y)

ζ − A(x)−A(y)
x−y

dy dζ

= I+ + I− + II+ + II−, (A.2.55)

where
I± := ∓ 1

2π

∫

γ1
±

F (ζ)
∫

|x−y|>ε

f(y)
x− y + i[A±ζ (x)−A±ζ (y)]

dy dζ (A.2.56)

with A±ζ (x) := ∓[A(x)− (Re ζ)x], and

II± :=
1

2π i

∫

γ2
±

F (ζ)
∫

|x−y|>ε

f(y)
(Im ζ)(x− y)i + [B±(x)−B±(y)]

dy dζ (A.2.57)

with B±(x) := −[A(x) ∓ 2Mx]. At this point, the proof of (A.2.53) is concluded by invoking the
results from Steps 1-2.

Step 4: Suppose F ∈ C N (R), N ≥ 6 and assume that A : R → R is a Lipschitz function with
‖A′‖L∞(R) ≤ M . Then for each p ∈ (1,∞) there exists a constant C = Cp ∈ (0,∞) such that the
operator (A.2.52) satisfies, for each ε > 0,

‖KA,F,εf‖Lp(R) ≤ C(1 + M4) sup
{|F (k)(x)| : |x| ≤ M + 1, 0 ≤ k ≤ 6

}‖f‖Lp(R). (A.2.58)

In dealing with (A.2.58) there is no loss of generality in assuming that F is supported in the
interval [−M − 1,M + 1]. With ‘hat’ denoting the Fourier transform we have

KA,F,εf(x) =
∫

R
F̂ (ξ)

(∫

{y∈R: |x−y|>ε}

1
x− y

e
iξ

A(x)−A(y)
x−y f(y) dy

)
dξ. (A.2.59)

Note that the inner integral above is precisely the truncated Cauchy operator (A.2.46) correspond-
ing to the choice F (z) := exp(iz) and with A replaced by ξA. Consequently, (A.2.58) follows from
(A.2.59) with the help of (A.2.53).

Step 5: Suppose F ∈ C N (Rm), N ≥ m + 5, F is odd, and assume that A : Rn → Rm is a
Lipschitz function with ‖DA‖L∞(Rn,Rm) ≤ M . Then for each p ∈ (1,∞) there exists a constant
C = Cp ∈ (0,∞) such that for each ε > 0 the operator

KA,F,εf(x) :=
∫

|x−y|>ε

1
|x− y|n F

(A(x)−A(y)
|x− y|

)
f(y) dy, x ∈ Rn, (A.2.60)

satisfies
∥∥KA,F,εf

∥∥
Lp(Rn)

≤ C(1 + M4) sup
{|∂αF (x)| : |x| ≤ M + 1, |α| ≤ m + 5

}‖f‖Lp(Rn). (A.2.61)

In the case n = 1, since F is odd we may write

1
|x− y|F

(A(x)−A(y)
|x− y|

)
=

1
x− y

F
(A(x)−A(y)

x− y

)
(A.2.62)
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so (A.2.61) follows from an argument similar to the one used in the treatment of Step 4, based on
writing

KA,F,εf(x) =
∫

Rm

F̂ (ξ)
(∫

{y∈R: |x−y|>ε}

1
x− y

e
i
〈
ξ,

A(x)−A(y)
x−y

〉
f(y) dy

)
dξ (A.2.63)

and invoking the result established in Step 3. For n > 1 we can reduce the problem to the one-
dimensional case by the classical method of rotation.

Step 6: Retain the same assumptions as in Step 5. Then there is a constant C such that

∣∣{x ∈ Rn : |KA,F,εf(x)| > λ
}∣∣ ≤ C

λ
‖f‖L1(Rn) (A.2.64)

for every function f ∈ L1(Rn)∩L2(Rn) and every positive number λ. In particular, KA,F,ε extends
to a bounded operator from L1(Rn) into L1,∞(Rn) (where L1,∞(Rn) stands for the weak-L1 space
in Rn).

This follows from Step 5 (with p = 2) and the classical Calderón-Zygmund lemma.

Step 7: Retain the same assumptions as in Step 5. There exists a finite constant C > 0 depending
only on the dimension with the property that for each fixed ε0 > 0 the following Cotlar-type estimate
holds

K
(ε)
A,F,∗f(x) ≤ CMf(x) + 2M(

KA,F,ε0f
)
(x), ∀ ε > ε0, (A.2.65)

for each f ∈ Lipcomp(Rn) and each x ∈ Rn, where

K
(ε)
A,F,∗f(x) := sup

ε′>ε

∣∣KA,F,ε′f(x)
∣∣. (A.2.66)

Without loss of generality, it suffices to prove (A.2.65) for x = 0, in which case we focus on
showing that ∣∣KA,F,εf(0)

∣∣ ≤ CMf(0) + 2M(KA,F,ε0)f(0), ∀ ε > ε0. (A.2.67)

Then (A.2.67) implies (A.2.65) by suitably taking the supremum.
The first step is to observe that for all x ∈ Rn and for all ε > 0,

∣∣KA,F,εf(x′)−KA,F,εf(x)
∣∣ ≤ CMf(0), provided |x− x′| ≤ ε/2. (A.2.68)

To see that this is the case, abbreviate k(x, y) := 1
|x−y|n F

(
A(x)−A(y)
|x−y|

)
, then write

∣∣∣KA,F,εf(x′)−KA,F,εf(x)
∣∣∣ ≤

∣∣∣
∫

|x−y|≥ε

(
k(x′, y)− k(x, y)

)
f(y) dy

∣∣∣

+
∣∣∣
∫

|x′−y|≥ε
k(x′, y)f(y) dy −

∫

|x−y|≥ε
k(x′, y)f(y) dy

∣∣∣

=: I + II. (A.2.69)

The term II can be bounded by a multiple of Mf(0) using the argument similar to that in
Lemma A.4. The estimate for I follows from the Mean Vale Theorem, the nature of the kernel
k(x, y), and the standard inequality

ε

∫

|y|≥ε
|y|−n−1|f(y)| dy ≤ CMf(0), ∀ε > 0. (A.2.70)
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Turning to the proof of (A.2.67) in earnest, fix ε > ε0 > 0 then introduce f1 := fχB(0,ε) and
set f2 := f − f1. In particular, this entails

KA,F,εf(0) = KA,F,ε0f2(0). (A.2.71)

Then for each x ∈ B(0, ε/2), by (A.2.68) we have
∣∣KA,F,ε0f2(x)−KA,F,ε0f2(0)

∣∣ ≤ CMf(0), (A.2.72)

therefore,

|KA,F,ε0f2(0)| ≤ |KA,F,ε0f(x)|+ |KA,F,ε0f1(x)|+ CMf(0) for a.e. x ∈ B(0, ε/2). (A.2.73)

We finish the proof by analyzing the weak-L1 norms of the above functions. To this end, define

N(f) := sup
λ>0

[
λµ({x ∈ B : |f(x)| > λ})], (A.2.74)

where B := B(0, ε/2), and µ stands for the n-dimensional Lebesgue measure restricted to the ball
B of constant density |B|−1. Observe that f(x) = α on B implies N(f) = α for any constant α,
and that N(f1 + f2 + f3) ≤ 2N(f1) + 4N(f2) + 4N(f3) for every functions f1, f2 and f3. Then the
estimate

|KA,F,εf(0)| = |KA,F,ε0f2(0)| ≤ 2N
(
KA,F,ε0f

)
+ 4N

(
KA,F,ε0f1

)
+ 4CMf(0) (A.2.75)

follows from (A.2.71), these observations, and (A.2.73). At this stage, there remains to note
that the right-hand side above can be further bounded using Chebyshev’s inequality, which yields
N(KA,F,ε0f) ≤ CM(KA,F,ε0f)(0), and the weak-L1 boundedness result from Step 6, which even-
tually gives N(KA,F,ε0f1) ≤ CMf(0). From these, (A.2.67) follows.

Step 7: Retain the same assumptions as in Step 5, and consider the maximal operator

KA,F,∗f(x) := sup
ε>0

∣∣KA,F,εf(x)
∣∣, x ∈ Rn. (A.2.76)

Then for each p ∈ (1,∞) there exists a constant C = C(F, A, m, n, p) ∈ (0,∞) with the property
that ∥∥KA,F,∗f

∥∥
Lp(Rn)

≤ C‖f‖Lp(Rn), ∀ f ∈ Lp(Rn). (A.2.77)

To see this, fix an arbitrary f ∈ Lp(Rn) and first observe from (A.2.66) that for each x ∈ Rn

we have
K

(ε)
A,F,∗f(x) ↗ KA,F,∗f(x) as ε ↘ 0. (A.2.78)

Based on this, Lebesgue’s Monotone Convergence Theorem, (A.2.65), (A.2.61), and the bounded-
ness of the Hardy-Littlewood maximal function, we obtain

∥∥KA,F,∗f
∥∥

Lp(Rn)
= lim

ε→0+

∥∥K
(ε)
A,F,∗f

∥∥
Lp(Rn)

≤ C lim
ε→0+

(
‖Mf‖Lp(Rn) +

∥∥M(
KA,F,ε/2f

)∥∥
Lp(Rn)

)
≤ C‖f‖Lp(Rn), (A.2.79)

completing the proof of (A.2.77).
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In terms of the maximal operator TI,∗ from (A.2.45), estimate (A.2.77) yields
∥∥TI,∗f

∥∥
Lp(Rn)

≤ C‖f‖Lp(Rn), ∀ f ∈ Lp(Rn). (A.2.80)

In order to show the existence of the pointwise limit in (A.2.29), the strategy is to return to the
various particular operators discussed in Steps 1-5 and show that, in each case, such a pointwise
convergence holds for such operators, acting on functions in Lp, almost everywhere in Rn. In all
cases, we shall make use of the abstract scheme described in Lemma A.5.

Step 8: Pointwise convergence for the Cauchy operator from (A.2.46). Let V := (1+iA′)Lipcomp(R),
which is a dense subclass of Lp(R), 1 < p < ∞, since A is real-valued and Lipschitz. We claim that

for any h ∈ V the limit lim
ε→0+

CA,εh(x) exists for a.e. x ∈ R. (A.2.81)

Indeed, if h = (1 + iA′)f with f ∈ Lipcomp(R), then we can write

CA,εh(x) =
∫

1>|x−y|>ε

1 + iA′(y)
x− y + i(A(x)−A(y))

(f(y)− f(x)) dy

− f(x)
∫

1>|x−y|>ε

−(1 + iA′(y))
x− y + i(A(x)−A(y))

dy

+
∫

|x−y|>1

1 + iA′(y)
x− y + i(A(x)−A(y))

f(y) dy

=: I + II + III. (A.2.82)

Using the fact that f is a compactly supported Lipschitz function, it is immediate that lim
ε→0+

I and

lim
ε→0+

III exist at every x ∈ R. Furthermore, the Fundamental Theorem of Calculus gives

II = −f(x) ln

(
−1 + iA(x)−A(x+ε)

ε

1 + iA(x)−A(x−ε)
ε

)
(A.2.83)

and the limit as ε → 0+ of the right-hand side exists for almost every x ∈ R since, by Rademacher’s
theorem, the Lipschitz function A is a.e. differentiable. This concludes the proof of (A.2.81).

Finally, a combination of (A.2.81), Lemma A.5, and (a suitable version of) the maximal in-
equality (A.2.80) gives that for f ∈ Lp(R) the limit lim

ε→0+
CA,εf(x) exists for almost every x ∈ R.

Step 9: Pointwise convergence for the Cauchy operator (A.2.48). Using Step 8, (A.2.50), and
Lemma A.2 it follows that, for each function f ∈ Lp(R), the limit lim

ε→0+
C̃B,η,εf(x) exists for almost

every x ∈ R.

Step 10: Pointwise convergence for the operator (A.2.52). Specifically, we claim that if f ∈ Lp(R),
the limit lim

ε→0
KA,F,εf(x) exists for almost every x ∈ R.

In order to prove this claim, fix f ∈ Lp(R) and recall I±, II± as defined in (A.2.55). The goal
is to first show that lim

ε→0
I+ exists for almost every x ∈ R. To this end, for x, ζ ∈ R set

F ζ,x
ε := F (ζ)

∫

|x−y|>ε

f(y)
x− y + i[A±ζ (x)−A±ζ (y)]

dy. (A.2.84)
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Then employing Step 9 it follows that for each ζ ∈ γ1
+ the limit

lim
ε→0+

F ζ,x
ε (A.2.85)

exists for almost every x ∈ R. Next we want to prove that supε>0 |F ζ,x
ε | ∈ L1

ζ(γ
1
+) for almost every

x ∈ R. To see the latter we write
∫

R

∣∣∣∣∣
∫

γ1
+

sup
ε>0

|F ζ,x
ε | dζ

∣∣∣∣∣
2

dx ≤
∫

γ1
+

∫

R

(
sup
ε>0

|F ζ,x
ε |)2

dx dζ ≤ C‖f‖L2(R). (A.2.86)

The first inequality in (A.2.86) is standard, while for the second one we have used (a suitable version
of) the maximal inequality (A.2.80). The above analysis provides all the ingredients necessary for
invoking Lebesgue’s Dominated Convergence Theorem which, in turn, allows us to conclude that

lim
ε→0+

I+ = lim
ε→0+

{
− 1

2π

∫

γ1
+

F ζ,x
ε dζ

}

exists at almost every point x ∈ R.

(A.2.87)

Similarly, one shows that lim
ε→0+

I−, lim
ε→0+

II± exist for almost every x ∈ R, and thus the earlier claim

is proved.

Step 11: Pointwise convergence for the operator (A.2.58). The fact that for f ∈ Lp(R), the limit
lim

ε→0+
KA,F,εf(x) exists for almost every x ∈ R follows by a reasoning similar to the one in Step 10.

This time the identity (A.2.59) replaces the expressions in (A.2.55) and the decay properties of the
Fourier transform F̂ (ξ) in are used when applying Lebesgue’s Dominated Convergence Theorem.

Step 12: For each given f ∈ Lp(Rn), the limit (A.2.29) exists for a.e. x ∈ Rn. Indeed, the case
n = 1 has been treated in Step 11. Finally, in the case n > 1, the existence of the limit in question
for f ∈ C∞

0 (Rn) follows via the rotation method from the one-dimensional result (and Lebesgue’s
Dominated Convergence Theorem). Granted this, we may invoke Lemma A.5 and the maximal
inequality (A.2.80) in order to finish, keeping in mind that C∞

0 (Rn) is dense in Lp(Rn).

In summary, at this point we know that

for each f ∈ Lp(Rn), the limit lim
ε→0+

TI,εf(x) exists for a.e. x ∈ Rn. (A.2.88)

In turn, this readily yields that

lim
ε↓0

∫

{y∈Rn: 1>|x−y|>ε}

1
|x− y|n F

(A(x)−A(y)
|x− y|

)
dy exists for a.e. x ∈ Rn. (A.2.89)

With this in hand and relying on Lemma A.2 we deduce that for each bi-Lipschitz function B

lim
ε↓0

∫

{y∈Rn: |B(x)−B(y)|>ε, |x−y|<1}

1
|x− y|n F

(A(x)−A(y)
|x− y|

)
dy

exists for almost every point x ∈ Rn and is equal to (A.2.89).

(A.2.90)

Having proved this, it follows that

for each function f ∈ C∞
0 (Rn), the limit lim

ε→0+
TB,εf(x)

exists for a.e. x ∈ Rn and is equal to lim
ε→0+

TI,εf(x).
(A.2.91)
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Let us also note that, thanks to (A.2.80) and Lemma A.4,
∥∥TB,∗f

∥∥
Lp(Rn)

≤ C‖f‖Lp(Rn), ∀ f ∈ Lp(Rn). (A.2.92)

From (A.2.91), (A.2.92), and Lemma A.5 we may finally conclude that for each fixed f ∈ Lp(Rn)
the limit (A.2.28) exists at a.e. point x ∈ Rn and is equal to (A.2.29). This finishes the proof of
Proposition A.3.

A.3 Background on OP(L∞ ∩ vmo)S0
cl

If X is a Banach space of functions on Rn, we say a function p of (x, ξ) ∈ Rn × Rn belongs to the
symbol class XSm

1,0,
p ∈ XSm

1,0, (A.3.1)

provided p(·, ξ) ∈ X for each ξ ∈ Rn, and

‖∂α
ξ p(·, ξ)‖X ≤ Cα〈ξ〉m−|α|, ∀α ∈ Nn

0 , (A.3.2)

where 〈ξ〉 := (1 + |ξ|2)1/2 and N0 := N ∪ {0}. If, in addition,

p(x, ξ) ∼
∑

j≥0

pj(x, ξ), pj(x, rξ) = rm−jpj(x, ξ) for r, |ξ| ≥ 1, (A.3.3)

in the sense that for every k ∈ N the difference p−∑k−1
j=0 pj belongs to XSm−k

1,0 , we say

p ∈ XSm
cl . (A.3.4)

The associated operator p(x,D) is given by

p(x,D)u = (2π)−n/2

∫
p(x, ξ)û(ξ)eix·ξ dξ. (A.3.5)

If (A.3.1) holds, we say p(x,D) ∈ OPXSm
1,0, and if (A.3.4) holds, we say p(x,D) ∈ OPXSm

cl .
Here we single out the spaces

L∞(Rn), bmo(Rn), vmo(Rn), L∞(Rn) ∩ vmo(Rn), (A.3.6)

to play the role of X. Here bmo is the localized variant of BMO, and vmo that of VMO. We
summarize some results about the associated pseudodifferential operators. Details can be found in
[36, Chapter 1, §11], which builds on work in [4] and in [35, §6]. A key ingredient in the proofs of
these results is the classical commutator estimate of [6],

∥∥[Mg, B]u
∥∥

Lp ≤ Cp‖g‖bmo‖u‖Lp , (A.3.7)

given B ∈ OPS0
1,0. Here Mgu := gu is the operator of multiplication by g.

The following extension appears in [36, Proposition 11.1].

Proposition A.6. If p(x, D) ∈ OP(bmo)S0
cl and B = b(x,D) ∈ OPS0

1,δ, δ < 1, with B scalar,
then

[p(x,D), B] : Lp(Rn) −→ Lp(Rn), 1 < p < ∞. (A.3.8)

If p ∈ vmoS0
cl and b ∈ S0

1,δ have compact x-support, this commutator is compact.
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This result in turn helps prove the following, which may be found in [36, Proposition 11.3].

Proposition A.7. Assume that

p ∈ L∞S0
cl, q ∈ (L∞ ∩ vmo)S0

cl, (A.3.9)

with compact x-support. Then

p(x,D)q(x, D) = a(x,D) + K, a(x, ξ) = p(x, ξ)q(x, ξ), (A.3.10)

with K compact on Lp(Rn), for 1 < p < ∞.

The following result has a proof parallel to that of Proposition A.7.

Proposition A.8. Assume q ∈ (L∞ ∩ vmo)S0
cl, with compact x-support, and set

q∗(x, ξ) = q(x, ξ)∗. (A.3.11)

Then
q(x,D)∗ = q∗(x,D) + K, (A.3.12)

with K compact on Lp(Rn) for 1 < p < ∞.

To proceed, we have the following useful result, which appears in [36, Proposition 11.4].

Proposition A.9. The space L∞ ∩ vmo is a closed subalgebra of L∞(Rn).

Putting Propositions A.7 and A.9 together yields the following.

Corollary A.10. Assume that
p, q ∈ (L∞ ∩ vmo)S0

cl, (A.3.13)

with compact x-support. Then

p(x,D)q(x,D) = a(x, D) + K, (A.3.14)

with K compact on Lp(Rn) for 1 < p < ∞, and

a = pq ∈ (L∞ ∩ vmo)S0
cl. (A.3.15)

Generally, if A is a C∗-algebra and B a closed *-subalgebra of A containing the identity element,
and if f ∈ B, then f is invertible in B if and only if it is invertible in A. To see this, consider
h = f∗f and expand H(z) = (h+1−z)−1 in a power series about z = 0. The radius of convergence
is > 1, if f is invertible in A. Clearly, H(z) ∈ B for |z| < 1, if f ∈ B, so H(1) ∈ B.

Consequently, we have

a ∈ L∞ ∩ vmo, a−1 ∈ L∞ =⇒ a−1 ∈ L∞ ∩ vmo. (A.3.16)

This holds for matrix valued a(x). Similarly, if

p ∈ (L∞ ∩ vmo)S0
cl is elliptic, (A.3.17)

so there exist Cj < ∞ such that

|p(x, ξ)−1| ≤ C1 for |ξ| ≥ C2, (A.3.18)

then
(1− ϕ(ξ))p(x, ξ)−1 ∈ (L∞ ∩ vmo)S0

cl, (A.3.19)

where ϕ ∈ C∞
0 (Rn) is equal to 1 for |ξ| ≤ C2. This allows the construction of Fredholm inverses of

elliptic operators with coefficients in L∞ ∩ vmo.
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A.4 Analysis on spaces of homogeneous type

We begin by discussing a few results of a general nature, valid in the context of spaces of homoge-
neous type. Recall that (Σ, ρ) is a quasi-metric space if Σ is a set (of cardinality at least two) and
the mapping ρ : Σ × Σ → [0,∞) is a quasi-distance, that is, there exists C ∈ [1,∞) such that for
every x, y, z ∈ Σ ρ satisfies:

ρ(x, y) = 0 ⇔ x = y, ρ(y, x) = ρ(x, y), ρ(x, y) ≤ C
(
ρ(x, z) + ρ(z, y)

)
. (A.4.1)

A space of homogeneous type in the sense of Coifman and Weiss (cf. [7]) is a triplet (Σ, ρ, µ) such
that (Σ, ρ) is a quasi-metric space and µ is a Borel measure on Σ (equipped with the topology
canonically induced by ρ) that is doubling. That is, there exists C ∈ (0,∞) such that

0 < µ
(
Bρ(x, 2r)

) ≤ Cµ
(
Bρ(x, r)

)
, ∀x ∈ Σ, ∀ r > 0, (A.4.2)

where Bρ(x, r) is the ρ-ball of center x and radius r given by {y ∈ Σ : ρ(x, y) < r}.
Then the John-Nirenberg space of functions of bounded mean oscillations, BMO(Σ, µ), consists

of functions f ∈ L1
loc(Σ, µ) for which ‖f‖BMO(Σ,µ) < +∞. As usual, we have set

‖f‖BMO(Σ,µ) :=





supR>0 M1(f ; R) if µ(Σ) = +∞,
∣∣∣
∫
Σ f dµ

∣∣∣ + supR>0 M1(f ; R) if µ(Σ) < +∞,
(A.4.3)

where, for p ∈ [1,∞), we have set

Mp(f ; R) := sup
x∈Σ

sup
r∈(0,R]

(∫
−

Bρ(x,r)

∣∣∣f −
∫−Bρ(x,r)f dµ

∣∣∣
p
dµ

)1/p
,

and
∫−Bρ(x,r)f dµ := 1

µ(Bρ(x,r))

∫
Bρ(x,r) f dµ.

(A.4.4)

Following [30], if UC(Σ, µ) stands for the space of uniformly continuous functions on X, we introduce
VMO(Σ, µ), the space of functions of vanishing mean oscillations on Σ, as

VMO(Σ, µ) := the closure of UC(Σ, µ) ∩ BMO(Σ, µ) in BMO(Σ, µ). (A.4.5)

We have the following useful equivalent characterization of VMO on compact spaces of homogeneous
type. To state it, we denote by C α(Σ, ρ) the space of real-valued Hölder functions of order α > 0
on the quasi-metric space (Σ, ρ). That is, C α(Σ, ρ) is the collection of all real-valued functions f
on Σ with the property that

‖f‖C α(Σ,ρ) := sup
x∈Σ

|f(x)|+ sup
x,y∈Σ, x6=y

|f(x)− f(y)|
ρ(x, y)α

< +∞. (A.4.6)

For further reference, let us also set

C α
0 (X, ρ) :=

{
f ∈ C α(Σ, ρ) : supp f bounded

}
. (A.4.7)

The following two propositions contain results proved in [14], [21].
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Proposition A.11. Assume that (Σ, ρ, µ) is a compact space of homogeneous type. Then

VMO(Σ, µ) is the closure of C α(Σ, ρ) ∩ BMO(Σ, µ) in BMO(Σ, µ), (A.4.8)

for every α ∈ R such that

0 < α ≤

log2

(
sup

x,y,z∈Σ
not all equal

ρ(x, y)
max{ρ(x, z), ρ(z, y)}

)


−1

. (A.4.9)

Proposition A.12. Let (Σ, ρ, µ) be a space of homogeneous type. Then for each p ∈ [1,∞),

distBMO (f, VMO(Σ, µ))

≈ lim sup
r→0+

{
sup
x∈Σ

∫
−

Bρ(x,r)

∫
−

Bρ(x,r)
|f(y)− f(z)|p dµ(y) dµ(z)

}1/p

≈ lim sup
r→0+

{
sup
x∈Σ

∫
−

Bρ(x,r)

∣∣∣f −
∫
−

Bρ(x,r)
f dµ

∣∣∣
p
dµ

}1/p

, (A.4.10)

uniformly for f ∈ BMO(Σ, µ) (i.e., the constants do not depend on f), where the distance is
measured in the BMO norm. In particular, for each p ∈ [1,∞),

distBMO (f, VMO (Σ, µ)) ≈ lim
R→0+

Mp(f ; R), uniformly for f ∈ BMO(Σ, µ), (A.4.11)

where Mp(f ; R) is defined as in (A.4.4). Moreover, for each function f ∈ BMO(Σ, µ) and each
p ∈ [1,∞),

f ∈ VMO(Σ, µ) ⇐⇒ lim
r→0+

{
sup
x∈Σ

∫
−

Bρ(x,r)

∣∣∣f −
∫
−

Bρ(x,r)
f dµ

∣∣∣
p
dµ

}1/p

= 0. (A.4.12)

For future purposes, we find it convenient to restate (A.4.11) in a slightly different form. More
specifically, in the context of Proposition A.12, given f ∈ L2

loc(Σ, µ), x ∈ Σ and R > 0, we set

‖f‖∗(Bρ(x,R)) := sup
B⊆Bρ(x,R)

(∫
−

B
|f − fB|2 dµ

)1/2
, (A.4.13)

where the supremum is taken over all ρ-balls B included in Bρ(x,R), and fB := µ(B)−1
∫
B f dµ.

It is then clear from definitions that

sup
x∈Σ

‖f‖∗(Bρ(x,R)) ≈ M2(f ; R). (A.4.14)

Consequently, (A.4.11) yields:

Corollary A.13. With the above notation and conventions,

lim
R→0+

[
sup
x∈Σ

‖f‖∗(Bρ(x,R))
]
≈ distBMO (f, VMO(Σ, µ)), (A.4.15)

uniformly for f ∈ BMO(Σ, µ).
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We continue by recoding the following useful counterpart of Proposition A.9 (formulated in the
Euclidean context) to spaces of homogeneous type.

Proposition A.14. Assume that (Σ, ρ, µ) is a space of homogeneous type. Then there exists a
constant C ∈ (0,∞) such that

distBMO

(
fg,VMO (Σ, µ)

)

≤ C‖f‖L∞(Σ,µ) distBMO

(
g,VMO (Σ, µ)

)

+ C‖g‖L∞(Σ,µ) distBMO

(
f, VMO(Σ, µ)

)
, (A.4.16)

for any f, g ∈ L∞(Σ, µ), where all distances are considered in the space BMO (Σ, µ).
Moreover,

VMO(Σ, µ) ∩ L∞(Σ, µ) is a closed C∗ subalgebra of L∞(Σ, µ), (A.4.17)

and
f ∈ VMO(Σ, µ) ∩ L∞(Σ, µ)

and 1/f ∈ L∞(Σ, µ)

}
=⇒ 1/f ∈ VMO(Σ, µ) ∩ L∞(Σ, µ). (A.4.18)

Proof. Note that (A.4.16) implies (A.4.17) and also (A.4.18), via the same type of argument used
to establish (A.3.16). As such, it suffices to prove (A.4.16). To this end, if f, g ∈ L∞(Σ, µ) then
for any x ∈ Σ and r > 0 and y, z ∈ Bρ(x, r) we have

|f(y) g(y)− f(z) g(z)| ≤ |f(y)| |g(y)− g(z)|+ |g(z)| |f(y)− f(z)|
≤ ‖f‖L∞(X,µ) |g(y)− g(z)|+ ‖g‖L∞(X,µ) |f(y)− f(z)| (A.4.19)

With this in hand, (A.4.16) follows with the help of the first equivalence in (A.4.10).

Another useful result pertains to the manner in which one can control the distance to VMO
under composition by a Lipschitz function.

Proposition A.15. Assume that (Σ, ρ, µ) is a space of homogeneous type. Let F : Rm → R be a
Lipschitz function. Then there exists a constant C ∈ (0,∞) such that for every f : Σ → Rm with
components in BMO(Σ, µ) there holds

distBMO

(
F ◦ f, VMO(Σ, µ)

) ≤ C‖∇F‖L∞(Rm) distBMO

(
f, VMO(Σ, µ)

)
. (A.4.20)

where the distances are considered in the space BMO(Σ, µ). In particular,

f ∈ VMO(Σ, µ) =⇒ F ◦ f ∈ VMO(Σ, µ). (A.4.21)

Proof. Fix x ∈ Σ and r > 0, arbitrary. Using the fact that F is Lipschitz we may then estimate for
every y, z ∈ Bρ(x, r)

|F (f(y))− F (f(z))| ≤ ‖∇F‖L∞(Rm) |f(y)− f(x)|. (A.4.22)

Then the desired conclusion readily follows from this and the first equivalence in (A.4.10).
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A.5 On the class of Lip ∩ vmo1 domains

The starting point in this subsection is the following result.

Lemma A.16. Let ϕ : Rn → R be a Lipschitz function, with graph

Σ := {(x, ϕ(x)) : x ∈ Rn} ⊂ Rn+1. (A.5.1)

Set µ := HnbΣ, where Hn is the n-dimensional Hausdorff measure in Rn+1. Then

f ∈ VMO(Σ, µ) ⇐⇒ f
(·, ϕ(·)) ∈ VMO(Rn). (A.5.2)

Proof. For each given point X = (x, ϕ(x)) ∈ Σ, with x ∈ Rn, and each given radius r > 0 set
∆(X, r) := {Y ∈ Σ : |Y − X| < r}. Fix then X0 = (x0, ϕ(x0)) ∈ Σ, for some x0 ∈ Rn, and pick
some r > 0. Consider c :=

∫−B(x0,r)f(x, ϕ(x)) dx. Then

∫
−

∆(X0,r)

∣∣∣∣∣f −
∫
−

∆(X0,r)
f dµ

∣∣∣∣∣dµ

=
∫
−

∆(X0,r)

∣∣∣∣∣(f − c)−
∫
−

∆(X0,r)
(f − c) dµ

∣∣∣∣∣dµ ≤ 2
∫
−

∆(X0,r)
|f − c| dµ

= 2
∫
−
{x∈Rn: |x−x0|2+(ϕ(x)−ϕ(x0))2<r2}

∣∣f(x, ϕ(x))− c
∣∣√

1 + |∇ϕ(x)|2 dx

≤ C

∫
−
{x∈Rn: |x−x0|<r}

∣∣f(x, ϕ(x))− c
∣∣ dx. (A.5.3)

Bearing in mind the significance of c, the left-pointing inequality in (A.5.2) follows from (A.4.12)
(with p = 1). For the opposite implication, pick c′ :=

∫−∆(X0,r)f dµ. Then for some sufficiently
large M > 0, depending on the Lipschitz constant of ϕ, we have

∫
−

B(x0,r)

∣∣∣∣∣f(x, ϕ(x))−
∫
−

B(x0,r)
f(y, ϕ(y)) dy

∣∣∣∣∣ dx ≤ 2
∫
−
{x∈Rn: |x−x0|<r}

∣∣f(x, ϕ(x))− c′
∣∣ dx

≤ C

∫
−
{x∈Rn: |x−x0|2+(ϕ(x)−ϕ(x0))2<(Mr)2}

∣∣f(x, ϕ(x))− c′
∣∣√

1 + |∇ϕ(x)|2 dx

≤ C

∫
−

∆(X0,r)

∣∣∣∣∣f −
∫
−

∆(X0,r)
f dµ

∣∣∣∣∣dµ. (A.5.4)

Based on this and (A.4.12), the right-pointing inequality in (A.5.2) now follows.

In turn, Lemma A.16 is an important ingredient in the proof of the following result.

Lemma A.17. Assume that ϕ : Rn → R is a Lipschitz function, and let Σ as in (A.5.1) denote
its graph. Set µ := HnbΣ, where Hn is the n-dimensional Hausdorff measure in Rn+1, and let
ν = (ν1, ..., νn+1) stand for the unit normal to Σ (defined ν-a.e.). Then

νj ∈ VMO(Σ, µ) for 1 ≤ j ≤ n + 1 ⇐⇒ ∂jϕ ∈ VMO(Rn) for 1 ≤ j ≤ n. (A.5.5)
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Proof. Recall that the components νj : Σ → R of the unit normal to the Lipschitz surface Σ satisfy

νj

(
x, ϕ(x)

)
=





∂jϕ(x)√
1 + |∇ϕ(x)|2 if 1 ≤ j ≤ n,

−1√
1 + |∇ϕ(x)|2 if j = n + 1,

(A.5.6)

for a.e. x ∈ Rn. As regards (A.5.5), assume first that

∂jϕ ∈ VMO(Rn) for each j ∈ {1, ..., n}, (A.5.7)

and consider the functions Fj : Rn → R, 1 ≤ j ≤ n + 1, given by

Fj(x) :=





xj√
1 + |x|2 if 1 ≤ j ≤ n,

−1√
1 + |x|2 if j = n + 1,

(A.5.8)

for each x = (x1, ..., xn) ∈ Rn. A straightforward computation gives that there exists a dimensional
constant such that for every x ∈ Rn

|∇Fj(x)| ≤





Cn√
1 + |x|2 if 1 ≤ j ≤ n,

Cn

1 + |x|2 if j = n + 1.

(A.5.9)

In particular, each function Fj : Rn → R is Lipschitz. Upon noting from (A.5.6) and (A.5.8) that
νj

(
x, ϕ(x)

)
= Fj

(∇ϕ(x)
)

for a.e. x ∈ Rn, this implies, in concert with (A.5.7) and (A.4.21), that
νj

(·, ϕ(·)) ∈ VMO(Rn) for each j ∈ {1, ..., n + 1}. Having established this, we may then conclude
that νj ∈ VMO(Σ, µ) for 1 ≤ j ≤ n + 1 by invoking Lemma A.16. This proves the left-pointing
implication in (A.5.5).

In the opposite direction, assume

νj ∈ VMO(Σ, µ) for each j ∈ {1, ..., n + 1}. (A.5.10)

Then Lemma A.16 gives

νj

(·, ϕ(·)) ∈ VMO(Rn) ∩ L∞(Rn) for each j ∈ {1, ..., n + 1}. (A.5.11)

Since from (A.5.6) and the fact that ϕ is Lipschitz we have

1
/
νn+1

(·, ϕ(·)) ∈ L∞(Rn), (A.5.12)

we deduce from (A.4.18), (A.5.11) with j = n + 1, and (A.5.12) that

1
/
νn+1

(·, ϕ(·)) ∈ VMO(Rn) ∩ L∞(Rn). (A.5.13)

Given that VMO(Rn) ∩ L∞(Rn) is an algebra (cf. (A.4.17) in Proposition A.14), it follows from
(A.5.11) and (A.5.13) that

νj

(·, ϕ(·))/νn+1

(·, ϕ(·)) ∈ VMO(Rn) ∩ L∞(Rn) for each j ∈ {1, ..., n}. (A.5.14)

In light of (A.5.6) this ultimately entails ∂jϕ ∈ VMO(Rn) for 1 ≤ j ≤ n, as wanted.
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We are now in a position to define the class of Lip ∩ vmo1 domains.

Definition A.1. Assume that C ∈ (0,∞) and let Ω be a nonempty, open subset of Rn, with
diameter ≤ C. One calls Ω a bounded Lipschitz domain, with Lipschitz character controlled by C,
if there exists r ∈ (0, C) with the property that for every x0 ∈ ∂Ω one can find a rigid transformation
T : Rn → Rn and a Lipschitz function ϕ : Rn−1 → R with ‖∇ϕ‖L∞(Rn−1) ≤ C such that

T
(
Ω ∩B(x0, r)

)
= T

(
B(x0, r)

) ∩ {
(x′, xn) ∈ Rn−1 × R : xn > ϕ(x′)

}
. (A.5.15)

Whenever this is the case, call φ(x′) := (x′, ϕ(x′)) a coordinate chart for ∂Ω.
If, in addition, ∂jϕ ∈ vmo(Rn−1) for each j ∈ {1, ..., n−1} then we shall say that Ω is a bounded

Lip ∩ vmo1 domain.

Both the class of Lipschitz domains and the class of Lip ∩ vmo1 domains may be naturally
defined in the manifold setting, by working in local coordinates, in a similar fashion as above (cf.
also the discussion in [13]).

We conclude this subsection by proving the following characterization of the class of Lip∩vmo1

domains.

Proposition A.18. Let Ω be a Lipschitz domain, with outward unit normal ν. Then

ν ∈ vmo(∂Ω) ⇐⇒ Ω is a Lip ∩ vmo1 domain. (A.5.16)

Proof. This is a consequence of Lemma A.17 and definitions.
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