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1. Introduction

Let M be a compact Riemannian manifold, Λ a positive, self-adjoint, first-order
elliptic pseudodifferential operator (Λ ∈ OPS1(M), for example, Λ =

√
−∆, where

∆ is the Laplace-Beltrami operator on M), and {φk} an orthonormal basis of
L2(M) consisting of eigenfunctions of Λ, with eigenvalues λk ↗ +∞. If X ⊂ T ∗M
denotes the set on which the principal symbol σΛ of Λ is equal to 1, then X carries
a natural Liouville measure dS, which we normalize to have total mass 1, and the
Hamiltonian flow {Gt : t ∈ R} generated by σΛ acts on X,

(1.1) Gt : X −→ X,

preserving the Liouville measure dS. In [CV] (following work of [Shn] and [Ze]) the
following classical quantum ergodic theorem was established.

Proposition 1.1. Assume the flow (1.1) is ergodic. Then there is a subset N ⊂ N,
of density 0, such that the following holds. Given A ∈ OPS0(M), with principal
symbol a ∈ C∞(X), we have

(1.2) lim
k→∞,k/∈N

(Aφk, φk)L2 =

∫
X

a dS.

The result (1.2) is a microlocalization of the local equidistribution phenomenon,
which is the special case of (1.2) when A is multiplication by a smooth function:

(1.3) lim
k→∞,k/∈N

∫
M

b(x)|φk(x)|2 dV =

∫
X

b ◦ π dS,
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for b ∈ C∞(M), π : X → M the natural projection, assuming the flow (1.1) is
ergodic. In case Λ =

√
−∆, this takes the form

(1.4) lim
k→∞,k/∈N

∫
M

b(x)|φk(x)|2 dV =
1

V (M)

∫
M

b(x) dV.

Proposition 1.1 has been extended to compact Riemannian manifolds with piece-
wise smooth boundary in [ZZ], in the setting where Λ =

√
−∆, with the Dirichlet

boundary condition.
Proposition 1.1 has also been extended to cases where the flow (1.1) is not

ergodic, in [ST] and [T2], and in [Riv] and [Gal]. Results of [T2] treat cases where
the ergodicity hypothesis on {Gt} is replaced by the hypothesis that

(1.5) Pa ∈ C(X),

where P is the orthogonal projection of L2(X) onto the subspace of Gt-invariant
elements. See Proposition 4.1 of this paper for a detailed statement. The paper
[T2] gives examples where P maps C(X) to C(X) but it does not map C∞(X) to
C∞(X), or even to the space of Hölder continuous functions. Thus one is motivated
to quantize non smooth functions in C(X). In this paper, we take this further,
quantizing elements of L∞(X), and making use of such a quantization to produce
further quantum ergodic theorems.

To give another motivation for dealing with discontinuous symbols, we mention
the following simple extension of (1.3).

Proposition 1.2. In the setting of Proposition 1.1, the limiting result (1.3) holds
whenever

(1.6) b ∈ R(M).

Here R(M) denotes the space of bounded functions on M that are Riemann
integrable. To prove Proposition 1.2, it suffices to treat the case where b is real
valued. Then, given ε > 0, we can pick b1, b2 ∈ C∞(M) such that

(1.7) b1 ≤ b ≤ b2, and

∫
M

(b2 − b1) dV < ε,

hence

(1.8)

∫
X

(b2 − b1) ◦ π dS < Cε.

We know from Proposition 1.1 that (1.3) holds with b replaced by bj . Hence the
lim inf and the lim sup of the left side of (1.3) are squeezed between

(1.9)

∫
X

b1 ◦ π dS and

∫
X

b2 ◦ π dS,
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and taking ε ↘ 0 yields (1.3) for b ∈ R(M).
We take up the quantization of discontinuous symbols in §2. We use the Friedrichs

quantization, opF : C∞(X) → OPS0
1,0(M), which enjoys the positivity property

(1.10) a ≥ 0 =⇒ opF (a) ≥ 0.

This has a unique continuous extension to opF : C(X) → L(L2(M)), and from
there to

(1.11) opF : L∞(X) −→ L(L2(M)),

still obeying (1.10). In this setting,

(1.12)
aν → a weak∗ in L∞(X)

=⇒ opF (aν) → opF (a) in the weak operator topology.

In §3 we establish the Weyl law

(1.13) lim
N→∞

1

N

N∑
k=1

(Bφk, φk)L2 =

∫
X

b dS,

given

(1.14) b ∈ R(X), B = opF (b),

which is useful for the analysis in §4.
In §4 we establish quantum ergodic theorems. One result, Proposition 4.2, is

that there is a subset N ⊂ N, of density 0, such that if

(1.15) a ∈ C(X), Pa ∈ R(X),

then

(1.16) lim
k→∞,k/∈N

(Aφk, φk)L2 − (Apφk, φk)L2 = 0,

where A = opF (a), Ap = opF (Pa). Another, Proposition 4.3, is the following
extension of Proposition 1.2: under the hypothesis that (1.1) is ergodic, (1.2) holds
for A = opF (a) whenever a ∈ R(X). A further extension, Proposition 4.5, assumes
{Gt} acts ergodically on an open set U ⊂ X. In such a case, if

(1.17) a, b ∈ R(X) are supported on a compact subset of U,

then

(1.18)

∫
X

a dS =

∫
X

b dS

=⇒ lim
k→∞,k/∈N

(Aφk, φk)L2 − (Bφk, φk)L2 = 0,

for A = opF (a), B = opF (b).
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2. Quantization of discontinuous symbols

Let M be a compact Riemannian manifold, X ⊂ T ∗M as in §1. A quantization
of C∞(X) is a continuous linear map

(2.1) op : C∞(X) −→ OPS0
1,0(M),

with the property that, given a ∈ C∞(X), A = op(a) has principal symbol a (mod
S−1
1,0(M)). We insist that op(1) = I, the identity map. The existence of quantiza-

tions follows via local coordinate charts and partitions of unity from the calculus of
pseudodifferential operators on Euclidean space. There are many different quanti-
zations. Each one gives rise to a family of elements

(2.2) µu,v ∈ D′(X), ∀u, v ∈ L2(M),

defined by

(2.3) ⟨a, µu,v⟩ = (op(a)u, v)L2 .

Basic examples are “Kohn-Nirenberg” quantizations and “Weyl” quantizations:

(2.4) opKN , opW : C∞(X) −→ OPS0(M) ⊂ OPS0
1,0(M).

Another family, of particular interest to us here, is the family of “Friedrichs quan-
tizations,”

(2.5) opF : C∞(X) −→ OPS0
1,0(M),

which has the property

(2.6) a ≥ 0 =⇒ opF (a) ≥ 0.

This is constructed on the Euclidean space level from opKN via Friedrichs sym-
metrization. See [T1], Chapter 7. It has the property that

(2.7) a ∈ C∞(X) =⇒ opF (a)− opKN (a) ∈ OPS−1
1,0(M),

which plays an important role in the Friedrichs approach to the proof of the sharp
Garding inequality. From (2.6) it follows that

(2.8) ∥ opF (a)∥L(L2) ≤ sup
X

|a|,
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and hence (2.5) has a unique continuous linear extension to

(2.9) opF : C(X) −→ L(L2(M)).

The image of C(X) in (2.9) is contained in the C∗-algebra of operators on L2(M)
generated by OPS0(M), which we denote Ψ(M). If we compose the map

(2.10) opF : C(X) −→ Ψ(M)

with taking the quotient by K(L2(M)), the space of compact operators on L2(M),
we get an isomorphism of C∗-algebras:

(2.11) C(X)
≈−→ Ψ(M)/K(L2(M)).

We see from (2.6) that, for u ∈ L2(M), the distribution µu = µu,u ∈ D′(X)
given by (2.3), with u = v, has the property that

(2.12) a ≥ 0 =⇒ ⟨a, µu⟩ ≥ 0.

Also ⟨1, µu⟩ = (u, u)L2 = ∥u∥2L2 . Consequently, for each u ∈ L2(M),

(2.13) µu is a positive measure on X, of mass ∥u∥2L2 .

Going further, we have from Cauchy’s inequality that, for u, v ∈ L2(M),

(2.14)
|⟨a, µu,v⟩| = |(opF (a)u, v)L2 |

≤
(
sup
X

|a|
)
∥u∥L2∥v∥L2 ,

so

(2.15)
µu,v is a complex measure on X,

of total mass ≤ ∥u∥L2∥v∥L2 .

Thus we can extend opF from (2.9) to

(2.16) opF : B(X) −→ L(L2(M)),

where

(2.17) B(X) = space of bounded Borel functions a : X → C,

by

(2.18) (opF (a)u, v) =

∫
X

a dµu,v.

We continue to have (2.6) and (2.8), now for a ∈ B(X). We investigate the action
of opF on sequences aν .
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Proposition 2.1. Let aν ∈ B(X), ν ∈ N. Assume |aν(z)| ≤ M < ∞ for all ν, z,
and that

(2.19) aν(z) −→ a(z), ∀ z ∈ X, as ν → ∞.

Then opF (aν) → opF (a) in the weak operator topology, i.e., for all u, v ∈ L2(M),

(2.20) (opF (aν)u, v)L2 −→ (opF (a)u, v)L2 , as ν → ∞.

Proof. The desired conclusion (2.20) is equivalent to

(2.21)

∫
X

aν dµu,v −→
∫
X

a dµu,v, as ν → ∞,

which follows from the Lebesgue dominated convergence theorem.

We can improve the conclusion of Proposition 2.1, given the following result on
regularity of the measures µu,v. This result follows by applying integretion by parts
arguments to oscillatory integrals that yield the Euclidean space versions of opF (a).

Proposition 2.2. If u, v ∈ C∞(M), then µu,v is a smooth multiple of Liouville
measure on X, that is, for all a ∈ C∞(X), hence for all a ∈ B(X),

(2.22)

∫
X

a dµu,v =

∫
X

aΦ(u, v) dS, given u, v ∈ C∞(M),

where

(2.23) Φ : C∞(M)× C∞(M) −→ C∞(X)

is a continuous bilinear map.

From here, we deduce that

(2.24) a ∈ B(X), a = 0 S-a.e. =⇒ (opF (a)u, v)L2 = 0,

first for all u, v ∈ C∞(M), and then for all u, v ∈ L2(M), by denseness of C∞(M)
in L2(M) and the estimate (2.8). Thus we can pass from (2.16) to

(2.25) opF : L∞(X) −→ L(L2(M)),

satisfying

(2.26) a ∈ L∞(X), a ≥ 0 S-a.e. on X =⇒ opF (a) ≥ 0,

and

(2.27) a ∈ L∞(X) =⇒ ∥ opF (a)∥L(L2) ≤ ∥a∥L∞ .

We can then extend Proposition 2.1 as follows.
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Proposition 2.3. Let aν ∈ L∞(X), ν ∈ N. Assume ∥aν∥L∞ ≤ M < ∞ for all ν,
and that

(2.28) aν −→ a, S-a.e. on X, as ν → ∞.

Then opF (aν) → opF (a) in the weak operator topology, i.e., for all u, v ∈ L2(M),
(2.20) holds.

Proof. If u, v ∈ C∞(M), then (2.20) follows from

(2.29)

∫
X

aν Φ(u, v) dS −→
∫
X

aΦ(u, v) dS, as ν → ∞,

which in turn follows from the Lebesgue dominated convergence theorem. Then
(2.20) follows for general u, v ∈ L2(M) via denseness of C∞(M) in L2(M) and the
operator bounds ∥ opF (aν)∥L(L2) ≤ M .

A similar argument yields the following.

Proposition 2.4. Let aν ∈ L∞(X) for ν ∈ N, and a ∈ L∞(X). If aν → a weak∗

in L∞(X), then opF (aν) → opF (a) in the weak operator topology.

Proof. Again, (2.29) holds for each u, v ∈ C∞(M). From here, we follow the rest
of the proof of Proposition 2.3.
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3. Weyl law

Recall that M is a compact Riemannian manifold, Λ ∈ OPS1(M) is a first-
order, positive, self-adjoint elliptic operator, and {φk : k ∈ N} is an orthonormal
basis of L2(M) consisting of eigenfunctions of Λ, with eigenvalues λj ↗ +∞. Also
X ⊂ T ∗M is the level set on which the principal symbol of Λ is equal to 1.

This section is devoted to the proof of the following.

Proposition 3.1. Given

(3.1) b ∈ R(X), B = opF (b),

we have

(3.2) lim
N→∞

1

N

N∑
k=1

(Bφk, φk)L2 =

∫
X

b dS.

Here R(X) is the space of Riemann integrable functions on X. The result (3.2)
is classical for b ∈ C∞(X). In such a case, one can obtain an asymptotic expansion
of

(3.3) TrBe−tΛ, as t ↘ 0,

and deduce (3.2) via a Tauberian theorem.
The transition from b ∈ C∞(X) to b ∈ R(X) is fairly straightforward, given the

material of §2. It suffices to treat the case where b ∈ R(X) is real valued. Then,
given ε > 0, we can pick b1, b2 ∈ C∞(X) such that

(3.4) b1 ≤ b ≤ b2,

∫
X

(b2 − b1) dS < ε.

We have

(3.5) opF (b1) ≤ B ≤ opF (b2),

and the classical result for bj ∈ C∞(X) gives

(3.6) lim
N→∞

1

N

N∑
k=1

(opF (bj)φk, φk)L2 =

∫
X

bj dS, j = 1, 2.
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Hence

(3.7)

∫
X

b1 dS ≤ lim inf
N→∞

1

N

N∑
k=1

(Bφk, φk)L2

≤ lim sup
N→∞

1

N

N∑
k=1

(Bφk, φk)L2

≤
∫
X

b2 dS,

and (3.2) follows, upon taking ε ↘ 0.

Remark. It would be interesting to know if one can extend this result, replacing
the hypothesis b ∈ R(X) by b ∈ L∞(X).
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4. Quantum ergodic theorems

Our goal is to present various extensions of the following result, established in
[ST] and [T2].

Proposition 4.1. Given M and Λ, and φk as described in §1, there is a subset
N ⊂ N, of density 0, such that the following holds. Let a ∈ C(X), A = opF (a).
Assume

(4.1) Pa = a =

∫
X

a dS.

Then

(4.2) lim
k→∞,k/∈N

(Aφk, φk)L2 = a.

Going further, if we replace (4.1) by

(4.3) Pa ∈ C(X),

then

(4.4) lim
k→∞,k/∈N

(Aφk, φk)L2 − (opF (Pa)φk, φk)L2 = 0.

That (4.1) ⇒ (4.2), for a ∈ C∞(X), was noted in [ST], and the extension to
a ∈ C(X) was made in [T2]. The result (4.3) ⇒ (4.4) follows by applying the
first part of the proposition to B = opF (b), with b = a − Pa, for which we have
Pb = b = 0. Our first goal here is to establish the following more general result.

Proposition 4.2. There is a set N ⊂ N, of density 0, such that the following
holds. Assume

(4.5) a ∈ C(X), Pa ∈ R(X),

where R(X) is the space of Riemann integrable functions on X. Then (4.4) con-
tinues to hold.

Proof. The strategy will be to use results of §3 to extend the proof of Proposition
4.1 given in [T2] to handle the more general situation described above. We bring
in the probability measures µk on X, given by µk = µφk

= µφk,φk
. We will show

that, given (4.5),

(4.6) lim
N→∞

1

N

N∑
k=1

∣∣∣∫
X

(a− Pa) dµk

∣∣∣ = 0.
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One ingredient is the following consequence of Egorov’s theorem:

(4.7)

∫
X

(aT − a) dµk −→ 0, as k → ∞, ∀ a ∈ C(X),

locally uniformly in T ∈ [0,∞), where

(4.8) aT =
1

T

∫ T

0

a ◦Gt dt.

See (5.7) of [T2]. From (4.7), we have

(4.9)

∫
X

(aT − Pa) dµk −
∫
X

(a− Pa) dµk −→ 0, as k → ∞,

locally uniformly in T . The next ingredient is the Weyl law:

(4.10) lim
N→∞

1

N

N∑
k=1

∫
X

b dµk =

∫
X

b dS, ∀ b ∈ R(X),

established in §3, as an extension of the classical version, for b ∈ C∞(X). We apply
this to

(4.11) b = |aT − Pa|,

which belongs to R(X) if (4.5) holds, and obtain

(4.12) lim
N→∞

1

N

N∑
k=1

∫
X

|aT − Pa| dµk =

∫
X

|aT − Pa| dS.

Now the mean ergodic theorem implies that, for each ε > 0, there exists Tε < ∞
such that

(4.13)

∫
X

|aT − Pa| dS ≤ ε, ∀T ≥ Tε.

Together, (4.9), (4.12), and (4.13) yield

(4.14) lim sup
N→∞

1

N

N∑
k=1

∣∣∣∫
X

(a− Pa) dµk

∣∣∣ ≤ ε, ∀ ε > 0,

which implies (4.6).
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We deduce (4.4) from (4.6) as follows. Note that

(4.15) E(X) = {a ∈ C(X) : Pa ∈ R(X)}

is a closed linear subspace of C(X). This follows from the fact that

(4.16) sup
z

|Paν(z)− Pa(z)| ≤ sup
z

|a(z)− aν(z)|,

and that uniform limits of elements of R(X) also belong to R(X). Since C(X) is
separable, so is E(X), and we can take a countable dense subset {aν : ν ∈ N} of
E(X). It follows directly from (4.6), applied to aν , that there exist Nν ⊂ N, of
density 0, such that

(4.17) lim
k→∞,k/∈Nν

∫
X

(aν − Paν) dµk = 0.

Now we can take a set N ⊂ N, of density 0, such that N \ Nν is finite, for each ν,
so

(4.18) lim
k→∞,k/∈N

∫
X

(aν − Paν) dµk = 0, ∀ν ∈ N.

The denseness of {aν : ν ∈ N} in E(X), together with (4.16), then implies

(4.19) lim
k→∞,k/∈N

∫
X

(a− Pa) dµk = 0, ∀ a ∈ E(X),

and this is equivalent to (4.4).

We now relax the hypothesis that the symbol a be continuous on X, first under
an ergodicity hypothesis.

Proposition 4.3. Assume {Gt : t ∈ R+} acts ergodically on X. Then there is a
set N ⊂ N, of density 0, such that

(4.20) lim
k→∞,k/∈N

(opF (a)φk, φk)L2 =

∫
X

a dS,

for all a ∈ R(X).

Proof. For a ∈ C(X), this is the classical quantum ergodic theorem (cf. [CV]). Note
that it also follows from Proposition 4.1, since ergodicity implies Pa = a. Now,
given a real valued a ∈ R(X), and given ε > 0, we can pick

(4.21) b1, b2 ∈ C(X) such that b1 ≤ a ≤ b2 and

∫
X

(b2 − b1) dS < ε.
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We know that

(4.22) lim
k→∞,k/∈N

(opF (bj)φk, φk)L2 =

∫
X

bj dS,

and that

(4.23) opF (b1) ≤ opF (a) ≤ opF (b2),

so

(4.24)

lim sup
k→∞,k/∈N

(opF (a)φk, φk)L2 ≤
∫
X

b2 dS, and

lim inf
k→∞,k/∈N

(opF (a)φk, φk)L2 ≥
∫
X

b1 dS,

and we have (4.20).

The following is a local equidistribution result, associated with ergodicity on an
open subset of X. Compare results of [Riv] and [Gal].

Proposition 4.4. Let U ⊂ X be open and assume Gt : U → U , and that the
action on U is ergodic. Let a, b ∈ C(X) be supported on a compact subset of U ,
A = opF (a), B = opF (b). Take N as above. Then

(4.25)

∫
X

a dS =

∫
X

b dS

=⇒ lim
k→∞,k/∈N

(Aφk, φk)L2 − (Bφk, φk)L2 = 0.

Proof. The hypotheses yield

(4.26) a− b ∈ C(X), P (a− b) = 0,

so the conclusion (4.25) is a corollary of Proposition 4.1.

We next extend the scope of Proposition 4.4, along the lines of Proposition 4.3.

Proposition 4.5. In the setting of Proposition 4.4, the implication (4.25) holds
for all a, b ∈ R(X) that are supported on a compact subset of U .

Proof. It suffices to show that, given

(4.27) real valued a ∈ R(X), supp a ⊂ K ⊂⊂ U,
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we have

(4.28)

∫
X

a dS = 0 =⇒ lim
k→∞,k/∈N

(Aφk, φk)L2 = 0.

To get this, let ε > 0 and take b1, b2 ∈ C(X) such that

(4.29) supp bj ⊂⊂ U, b1 ≤ a ≤ b2,

∫
X

(b2 − b1) dS < ε.

Next, take gj ∈ C(X), supp gj ⊂⊂ U , such that

(4.30) sup |gj | ≤ Cε, and

∫
X

(bj − gj) dS = 0.

Then, by Proposition 4.4,

(4.31) ((opF (bj)− opF (gj))φk, φk)L2 −→ 0, as k → ∞, k /∈ N .

Now

(4.32) opF (b1) ≤ A ≤ opF (b2),

so

(4.33) opF (b1 − g1)− CεI ≤ A ≤ opF (b2 − g2) + CεI,

hence

(4.34)

lim sup
k→∞,k/∈N

(Aφk, φk)L2 ≤ Cε, and

lim inf
k→∞,k/∈N

(Aφk, φk)L2 ≥ Cε.

This gives (4.28).
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