Quantum Ergodic Theorems for $e^{-i t \Lambda} A e^{i t \Lambda}$

Michael Taylor

Contents

1. Introduction
2. Quantization of $X=S^{*} M$
3. Ergodic theorems
4. Concentration of eigenfunctions on S^{m}
5. More general concentration results

1. Introduction

Let M be a compact Riemannian manifold, with Laplace-Beltrami operator Δ, and set $\Lambda=\sqrt{-\Delta}$. If A is a bounded linear map on $L^{2}(M)$ (we write $A \in$ $\left.\mathcal{L}\left(L^{2}(M)\right)\right)$, and $T \in(0, \infty)$, we set

$$
\begin{equation*}
A_{T}=\frac{1}{2 T} \int_{-T}^{T} e^{-i t \Lambda} A e^{i t \Lambda} d t \tag{1.1}
\end{equation*}
$$

Our goal is to study the behavior of A_{T} as $T \rightarrow \infty$ and relate this study to classical ergodic theory.

To get started, we recall the abstract mean ergodic theorem of von Neumann. Let U^{t} be a strongly continuous unitary group on a Hilbert space \mathcal{H}, and set

$$
\begin{equation*}
\mathcal{A}_{T} f=\frac{1}{2 T} \int_{-T}^{T} U^{t} f d t, \quad f \in \mathcal{H} \tag{1.2}
\end{equation*}
$$

Then $U^{t}=e^{i t B}$, where B is a self-adjoint operator on \mathcal{H}, and the spectral theorem yields

$$
\begin{align*}
\mathcal{A}_{T} f & =\frac{1}{2 T} \int_{-T}^{T} e^{i t B} f d t \tag{1.3}\\
& =\frac{\sin T B}{T B} f,
\end{align*}
$$

and hence, for each $f \in \mathcal{H}$,

$$
\begin{gather*}
\mathcal{A}_{T} f \longrightarrow P_{0} f \text { in } \mathcal{H} \text {-norm, as } \quad T \rightarrow \infty, ~ \tag{1.4}\\
1
\end{gather*}
$$

where

$$
\begin{align*}
P_{0} & =\text { orthogonal projection of } \mathcal{H} \text { onto } \operatorname{Ker} B, \\
\operatorname{Ker} B & =\left\{f \in \mathcal{H}: U^{t} f=f, \forall t \in \mathbb{R}\right\} . \tag{1.5}
\end{align*}
$$

In other words, \mathcal{A}_{T} converges to P_{0} in the strong operator topology of $\mathcal{L}(\mathcal{H})$.
To relate this to (1.1), we look at

$$
\begin{equation*}
W^{t}: \mathcal{L}\left(L^{2}(M)\right) \longrightarrow \mathcal{L}\left(L^{2}(M)\right), \quad W^{t}(A)=e^{-i t \Lambda} A e^{i t \Lambda} \tag{1.6}
\end{equation*}
$$

Clearly $\left\{W^{t}\right\}$ is a group of isometries of $\mathcal{L}\left(L^{2}(M)\right)$, and, for each $A \in \mathcal{L}\left(L^{2}(M)\right)$, $W^{t}(A)$ is continuous in t with values in $\mathcal{L}\left(L^{2}(M)\right)$, provided with the strong operator topology. On the other hand, clearly $W^{t}(A)$ is continuous from $t \in \mathbb{R}$ to $\mathcal{L}\left(L^{2}(M)\right)$, with the norm topology, if A has finite rank, and hence if A is compact. We also have

$$
\begin{equation*}
W^{t}(A)\langle\Lambda\rangle^{-\kappa}=W^{t}\left(A\langle\Lambda\rangle^{-\kappa}\right), \tag{1.7}
\end{equation*}
$$

where $\langle\Lambda\rangle=\sqrt{1-\Delta}$. Now $\mathcal{L}\left(L^{2}(M)\right)$ is not a Hilbert space, so it is convenient to focus on the Hilbert space

$$
\begin{equation*}
\mathcal{H}=\operatorname{HS}\left(L^{2}(M)\right), \tag{1.8}
\end{equation*}
$$

of Hilbert-Schmidt operators on $L^{2}(M)$, a Hilbert space with inner product

$$
\begin{equation*}
(A, B)_{\mathrm{HS}}=\operatorname{Tr} B^{*} A \tag{1.9}
\end{equation*}
$$

The restriction $U^{t}=\left.W^{t}\right|_{\mathrm{HS}\left(L^{2}(M)\right)}$ is a strongly continuous group of unitary operators on $\operatorname{HS}\left(L^{2}(M)\right)$:

$$
\begin{equation*}
U^{t}(A)=e^{i t \operatorname{ad} \Lambda}(A) \tag{1.10}
\end{equation*}
$$

Consequently, for $A \in \operatorname{HS}\left(L^{2}(M)\right)$,

$$
\begin{equation*}
A_{T}=\frac{\sin T \operatorname{ad} \Lambda}{T \operatorname{ad} \Lambda} A . \tag{1.11}
\end{equation*}
$$

We have the following result.
Proposition 1.1. If $A \in \operatorname{HS}\left(L^{2}(M)\right)$, then, for A_{T} as in (1.1),

$$
\begin{equation*}
A_{T} \longrightarrow \Pi_{0}(A) \text { in HS-norm, } \tag{1.12}
\end{equation*}
$$

where

$$
\begin{align*}
& \Pi_{0}=\text { orthogonal projection of } \operatorname{HS}\left(L^{2}(M)\right) \text { onto } \tag{1.13}\\
& \mathcal{K}_{0}=\left\{A \in \operatorname{HS}\left(L^{2}(M)\right): e^{-i t \Lambda} A e^{i t \Lambda}=A, \forall t \in \mathbb{R}\right\} .
\end{align*}
$$

Remark. Under the natural isomorphism $\operatorname{HS}\left(L^{2}(M)\right) \approx L^{2}(M \times M)$, we have

$$
\begin{equation*}
\operatorname{ad} \Lambda=\Lambda_{x}-\Lambda_{y} \tag{1.14}
\end{equation*}
$$

Using (1.7), we see that, whenever $\kappa>n / 2$, with $n=\operatorname{dim} M$ (so $\langle\Lambda\rangle^{-\kappa}$ is Hilbert-Schmidt),

$$
\begin{align*}
A \in \mathcal{L}\left(L^{2}(M)\right) \Longrightarrow A_{T}\langle\Lambda\rangle^{-\kappa} & =\left(A\langle\Lambda\rangle^{-\kappa}\right)_{T} \\
& \rightarrow \Pi_{0}\left(A\langle\Lambda\rangle^{-\kappa}\right), \tag{1.15}
\end{align*}
$$

in HS-norm, and a fortiori in operator norm in $\mathcal{L}\left(L^{2}(M)\right)$. Consequently, for all $A \in \mathcal{L}\left(L^{2}(M)\right)$,

$$
\begin{align*}
& A_{T} \longrightarrow \Pi(A)=\Pi_{0}\left(A\langle\Lambda\rangle^{-\kappa}\right)\langle\Lambda\rangle^{\kappa} \\
& \text { in operator norm in } \mathcal{L}\left(H^{\kappa}(M), L^{2}(M)\right), \tag{1.16}
\end{align*}
$$

for each $\kappa>n / 2$, where $H^{\kappa}(M)=\mathcal{D}\left(\langle\Lambda\rangle^{\kappa}\right)$ is an L^{2}-Sobolev space. Here the identity

$$
\begin{equation*}
\Pi(A)=\Pi_{0}\left(A\langle\Lambda\rangle^{-\kappa}\right)\langle\Lambda\rangle^{\kappa}, \quad \kappa>\frac{n}{2} \tag{1.17}
\end{equation*}
$$

defines

$$
\begin{equation*}
\Pi: \mathcal{L}\left(L^{2}(M)\right) \longrightarrow \mathcal{L}\left(H^{\kappa}(M), L^{2}(M)\right) \tag{1.18}
\end{equation*}
$$

The action of Π is independent of $\kappa>n / 2$. In addition, the uniform operator norm bounds $\left\|A_{T}\right\|_{\mathcal{L}\left(L^{2}\right)} \leq\|A\|_{\mathcal{L}\left(L^{2}\right)}$, plus denseness of $H^{\kappa}(M)$ in $L^{2}(M)$, yield

$$
\begin{equation*}
\Pi: \mathcal{L}\left(L^{2}(M)\right) \longrightarrow \mathcal{L}\left(L^{2}(M)\right), \quad\|\Pi(A)\|_{\mathcal{L}\left(L^{2}(M)\right)} \leq\|A\|_{\mathcal{L}\left(L^{2}(M)\right)} . \tag{1.19}
\end{equation*}
$$

Going further, using this denseness and uniform bounds on A_{T}, we have:
Proposition 1.2. For $A \in \mathcal{L}\left(L^{2}(M)\right), A_{T}$ as in (1.2),

$$
\begin{equation*}
A_{T} \longrightarrow \Pi(A) \text { in the strong operator topology of } \mathcal{L}\left(L^{2}(M)\right) . \tag{1.20}
\end{equation*}
$$

There is another formula for $\Pi(A)$, which will prove useful. To state it let

$$
\begin{align*}
P_{\lambda} & =\text { orthogonal projection of } L^{2}(M) \text { onto } \operatorname{Eigen}(\Lambda, \lambda), \\
\Sigma_{N} & =\{\lambda \in \operatorname{Spec} \Lambda: \lambda \leq N\}, \tag{1.21}
\end{align*}
$$

and set

$$
\begin{equation*}
S_{N}(A)=\sum_{\lambda \in \Sigma_{N}} P_{\lambda} A P_{\lambda} \tag{1.22}
\end{equation*}
$$

We see that $\left\|S_{N}(A)\right\|_{\mathcal{L}\left(L^{2}\right)} \leq\|A\|_{\mathcal{L}\left(L^{2}\right)}$, that $S_{N}\left(A\langle\Lambda\rangle^{-\kappa}\right)=S_{N}(A)\langle\Lambda\rangle^{-\kappa}$, and that

$$
\begin{equation*}
S_{N}(A) \longrightarrow \Pi(A) \text { in HS-norm, if } A \in \operatorname{HS}\left(L^{2}(M)\right) \tag{1.23}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
S_{N}(A) \longrightarrow \Pi(A), \text { in the strong operator topology }, \quad \forall A \in \mathcal{L}\left(L^{2}(M)\right) \tag{1.24}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
\Pi(A)=\sum_{\lambda \in \operatorname{Spec} \Lambda} P_{\lambda} A P_{\lambda} \tag{1.25}
\end{equation*}
$$

Compare (2.24) of [Z1], and also the material in [Su].
Our main goal here will be to prove the following (cf. Proposition 3.5).
Theorem A. If $a, P a \in C\left(S^{*} M\right)$, and $A=\mathrm{op}_{F}(a)$, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{d_{N}}\left\|\left[\Pi(A)-\Pi\left(\mathrm{op}_{F}(P a)\right)\right] Q_{N}\right\|_{\mathrm{HS}}^{2}=0 \tag{1.26}
\end{equation*}
$$

Here, $S^{*} M$ is the cosphere bundle of $M, P: L^{2}\left(S^{*} M\right) \rightarrow L^{2}\left(S^{*} M\right)$ is the orthogonal projection onto the space of functions on $S^{*} M$ invariant under the geodesic flow,

$$
\begin{equation*}
Q_{N}=\sum_{\lambda \leq N} P_{\lambda}, \quad d_{N}=\operatorname{Tr} Q_{N} \tag{1.27}
\end{equation*}
$$

and $\mathrm{op}_{F}: C\left(S^{*} M\right) \rightarrow \mathcal{L}\left(L^{2}(M)\right)$ is a quantization operator, discussed in $\S 2$. A particular case of (1.26) is

$$
\begin{equation*}
a \in C\left(S^{*} M\right), P a=\bar{a} \Rightarrow \lim _{N \rightarrow \infty} \frac{1}{d_{N}}\left\|[\Pi(A)-\bar{a} I] Q_{N}\right\|_{\mathrm{HS}}^{2}=0 \tag{1.28}
\end{equation*}
$$

where \bar{a} is the mean value of a over $S^{*} M$. The hypothesis $P a=\bar{a}$ for all $a \in$ $C\left(S^{*} M\right)$ holds provided the geodesic flow on $S^{*} M$ is ergodic. In the ergodic case, (1.28) is due to [Su] (see also [Z1]). Our extension beyond the case of an ergodic geodesic flow is done in the spirit of [ST] and [T1]. In this connection, we mention the following result (cf. Proposition 3.6).

Corollary B. Let $U \subset S^{*} M$ be open and assume the geodesic flow $\mathcal{G}_{t}: U \rightarrow U$ and that the action on U is ergodic. Let $a, b \in C\left(S^{*} M\right)$ be supported in a compact subset of $U, A=\mathrm{op}_{F}(a), B=\mathrm{op}_{F}(b)$. Then

$$
\begin{align*}
\int_{S^{*} M} a d S & =\int_{S^{*} M} b d S \tag{1.29}\\
& \Longrightarrow \lim _{N \rightarrow \infty} \frac{1}{d_{N}}\left\|[\Pi(A)-\Pi(B)] Q_{N}\right\|_{\mathrm{HS}}^{2}=0 .
\end{align*}
$$

As indicated above, these results are established in $\S 3$ of this paper. In $\S 2$ we set up tools needed to accomplish this, including a discussion of the quantization $a \mapsto \mathrm{op}_{F}(a)$ (part of pseudodifferential operator calculus on M), and of the Weyl law and Egorov's theorem. A key ingredient in the proof of Theorem A is that, given $a, P a \in C\left(S^{*} M\right)$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N}\left|\left(A \varphi_{k}, \varphi_{k}\right)-\left(\mathrm{op}_{F}(P a) \varphi_{k}, \varphi_{k}\right)\right|^{2}=0 \tag{1.30}
\end{equation*}
$$

where $\left\{\varphi_{k}\right\}$ is an orthonormal basis of $L^{2}(M)$ satisfying $\Lambda \varphi_{k}=\lambda_{k} \varphi_{k}, \lambda_{k} \nearrow \infty$. Cf. (3.18). If the geodesic flow on $S^{*} M$ is ergodic, then $P a=\bar{a}$, and (1.30) is a standard version of quantum ergodicity (cf. [CdV]).

In $\S \S 4-5$ we discuss eigenfunction concentration effects in some cases where the geodesic flow is not ergodic, due to the existence of a nontrivial Killing field on M. Section 4 treats spherical harmonics on the standard sphere S^{n}, and $\S 5$ treats much more general cases.

Remark. While the conjugate $e^{-i t \Lambda} A e^{i t \Lambda}$ is natural to work with due to its connection to Egorov's theorem, it is also quite natural to consider

$$
\begin{equation*}
e^{i t \Delta} A e^{-i t \Delta} \tag{1.31}
\end{equation*}
$$

in view of its quantum mechanical significance, and to replace (1.1) by

$$
\begin{equation*}
A_{T}^{\#}=\frac{1}{2 T} \int_{-T}^{T} e^{i t \Delta} A e^{-i t \Delta} d t \tag{1.32}
\end{equation*}
$$

Arguments parallel to those leading to Proposition 1.2 also yield

$$
\begin{equation*}
A_{T}^{\#} \longrightarrow \Pi(A) \tag{1.33}
\end{equation*}
$$

in the strong operator topology, for each $A \in \mathcal{L}\left(L^{2}(M)\right)$. The limit here is the same as in (1.20), as one verifies that it satisfies (1.25).

2. Quantization of $X=S^{*} M$

With M as in $\S 1$, let $X=S^{*} M$. A quantization of X is a continuous linear map

$$
\begin{equation*}
\text { op : } C^{\infty}(X) \longrightarrow O P S_{1,0}^{0}(M) \tag{2.1}
\end{equation*}
$$

with the property that for each $a \in C^{\infty}(X)$, the principal symbol of op (A) is a. We also require $\operatorname{op}(1)=I$. Examples include the Kohn-Nirenberg quantization $\mathrm{op}_{K N}$ and the Weyl quantization op_{W}. We will focus on another, the Friedrichs quantization,

$$
\begin{equation*}
\mathrm{op}_{F}: C^{\infty}(X) \longrightarrow O P S_{1,0}^{0}(M) \tag{2.2}
\end{equation*}
$$

which has the special property that, for each $a \in C^{\infty}(X)$,

$$
\begin{equation*}
a \geq 0 \Longrightarrow \mathrm{op}_{F}(a) \geq 0 \tag{2.3}
\end{equation*}
$$

It also satisfies

$$
\begin{equation*}
\mathrm{op}_{F}(a)-\mathrm{op}_{K N}(a) \in O P S_{1,0}^{-1}(M) \tag{2.4}
\end{equation*}
$$

for all $a \in C^{\infty}(X)$. Thanks to (2.2)-(2.3), there is a unique continuous linear extension

$$
\begin{equation*}
\mathrm{op}_{F}: C(X) \longrightarrow \mathcal{L}\left(L^{2}(M)\right) \tag{2.5}
\end{equation*}
$$

and it also satisfies (2.3). Furthermore, as shown in [T2], there is a unique extension to

$$
\begin{equation*}
\mathrm{op}_{F}: L^{\infty}(X) \longrightarrow \mathcal{L}\left(L^{2}(M)\right) \tag{2.6}
\end{equation*}
$$

having the property that

$$
\begin{align*}
& a_{\nu} \in L^{\infty}(X), a_{\nu} \rightarrow a \text { weak }^{*} \text { in } L^{\infty}(X) \\
& \Longrightarrow \operatorname{op}_{F}\left(a_{\nu}\right) \rightarrow \operatorname{op}_{F}(a) \text { in the weak operator topology of } \mathcal{L}\left(L^{2}(M)\right) . \tag{2.7}
\end{align*}
$$

The positivity condition (2.3) continues to hold. Furthermore, for $a \in L^{\infty}(X)$,

$$
\begin{equation*}
\left\|\mathrm{op}_{F}(a)\right\|_{\mathcal{L}\left(L^{2}(M)\right)} \leq\|a\|_{L^{\infty}(X)} \tag{2.8}
\end{equation*}
$$

We mention that a special case of (2.6) is

$$
\begin{equation*}
\mathrm{op}_{F}: \mathcal{R}(X) \longrightarrow \mathcal{L}\left(L^{2}(M)\right) \tag{2.9}
\end{equation*}
$$

where $\mathcal{R}(X)$ denotes the space of bounded functions on X that are Riemann integrable.

We next describe some results that are useful for the analysis of A_{T}, defined as in (1.1), when $A=\mathrm{op}_{F}(a)$. First is the Weyl law. To state it, let $\left\{\varphi_{k}\right\}$ be an orthonormal basis of $L^{2}(M)$ consisting of eigenfunctions of Δ :

$$
\begin{equation*}
\Delta \varphi_{k}=-\lambda_{k}^{2} \varphi_{k}, \quad 0 \leq \lambda_{k} \nearrow+\infty . \tag{2.10}
\end{equation*}
$$

Proposition 2.1. We have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N}\left(B \varphi_{k}, \varphi_{k}\right)_{L^{2}}=\int_{X} b d S, \tag{2.11}
\end{equation*}
$$

for $B=\mathrm{op}_{F}(b), b \in C^{\infty}(X)$, where $d S$ is the Liouville measure on X, normalized so that $\int_{X} d S=1$. More generally, (2.11) holds for all $b \in \mathcal{R}(X)$.

Proposition 2.1 is classical for $b \in C^{\infty}(X)$. It is extended to $b \in \mathcal{R}(X)$ in $\S 3$ of [T2].

We can rewrite (2.11) as follows. Let
(2.12) $\quad Q_{N}=$ orthogonal projection of $L^{2}(M)$ onto $\operatorname{Span}\left\{\varphi_{k}: 1 \leq k \leq N\right\}$.

Then (2.11) says

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{Tr} B Q_{N}=\int_{X} b d S \tag{2.13}
\end{equation*}
$$

The next result is a Weyl/Szegö type result.
Proposition 2.2. We have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N}\left\|B \varphi_{k}\right\|_{L^{2}}^{2}=\int_{X}|b|^{2} d S \tag{2.14}
\end{equation*}
$$

for $B=\mathrm{op}_{F}(b), b \in C^{\infty}(X)$. More generally, (2.14) holds for $b \in C(X)$.
Proof. The left side of (2.14) is equal to

$$
\begin{align*}
\lim _{N \rightarrow \infty} \frac{1}{N}\left\|B Q_{N}\right\|_{\mathrm{HS}}^{2} & =\lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{Tr} Q_{N} B^{*} B Q_{N} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{Tr} B^{*} B Q_{N} \tag{2.15}
\end{align*}
$$

If $b \in C^{\infty}(X)$, then

$$
\begin{equation*}
B^{*} B=\mathrm{op}_{F}\left(|b|^{2}\right), \quad \bmod O P S_{1,0}^{-1}(M), \tag{2.16}
\end{equation*}
$$

and the result follows from Proposition 2.1, with b replaced by $|b|^{2} \in C^{\infty}(X)$. The extension of (2.14) to $b \in C(X)$ follows from the denseness of $C^{\infty}(X)$ in $C(X)$ and the estimate (2.8).

Remark. Unlike Proposition 2.1, I have not extended Proposition 2.2 to work for $b \in \mathcal{R}(X)$.

Another important tool is Egorov's theorm, which implies

$$
\begin{equation*}
e^{-i t \Lambda} \mathrm{op}_{F}(a) e^{i t \Lambda}-\mathrm{op}_{F}\left(a \circ \mathcal{G}_{t}\right) \text { compact on } L^{2}(M), \quad \forall t \in \mathbb{R}, \tag{2.17}
\end{equation*}
$$

for all $a \in C(X)$, where

$$
\begin{equation*}
\mathcal{G}_{t} \text { is the geodesic flow on } X=S^{*} M \tag{2.18}
\end{equation*}
$$

generated by the Hamiltonian vector field associated to the principal symbol of Λ, a smooth flow on X that preserves the Liouville measure. For $a \in C^{\infty}(X)$, this difference belongs to $O P S_{1,0}^{-1}(M)$ for all t. Extension of (2.17) to $a \in C(X)$ follows readily from the denseness of $C^{\infty}(X)$ in $C(X)$ and (2.8). As a corollary, we have the following.

Proposition 2.3. Let $a \in C(X)$, and, for $T \in(0, \infty)$, set

$$
\begin{equation*}
a_{T}=\frac{1}{2 T} \int_{-T}^{T} a \circ \mathcal{G}_{t} d t \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{T}=\frac{1}{2 T} \int_{-T}^{T} e^{-i t \Lambda} A e^{i t \Lambda} d t, \quad A=\operatorname{op}_{F}(a) \tag{2.20}
\end{equation*}
$$

Then, for each such T,

$$
\begin{equation*}
A_{T}-\mathrm{op}_{F}\left(a_{T}\right) \text { is compact on } L^{2}(M) \tag{2.21}
\end{equation*}
$$

Corollary 2.4. In the setting of Proposition 2.3,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N}\left\|\left[A_{T}-\mathrm{op}_{F}\left(a_{T}\right)\right] \varphi_{k}\right\|_{L^{2}}^{2}=0, \quad \forall T<\infty \tag{2.22}
\end{equation*}
$$

Proof. Given $\left\{\varphi_{k}\right\}$ is an orthonormal set in $L^{2}(M)$, then $\varphi_{k} \rightarrow 0$ weakly, as $k \rightarrow \infty$, so $\left\|K \varphi_{k}\right\|_{L^{2}} \rightarrow 0$ as $k \rightarrow \infty$ for each compact operator on $L^{2}(M)$. Hence, for each $T<\infty$,

$$
\begin{equation*}
\left\|\left[A_{T}-\mathrm{op}_{F}\left(a_{T}\right)\right] \varphi_{k}\right\|_{L^{2}} \longrightarrow 0 \quad \text { as } \quad k \rightarrow \infty \tag{2.23}
\end{equation*}
$$

and (2.22) follows.

3. Ergodic theorems

Before discussing quantum ergodic theorems, we recall some classical ergodic theorems, as applied to the group $\mathcal{G}_{t}: X \rightarrow X$ of measure preserving homeomorphisms of X. Von Neumann's mean ergodic theorem yields for a_{T} in (2.19)

$$
\begin{equation*}
a_{T} \longrightarrow P a, \quad \text { in } L^{2}(X) \text {-norm }, \tag{3.1}
\end{equation*}
$$

as $T \rightarrow \infty$, for all $a \in L^{2}(X)$, where
(3.2) $P=$ orthogonal projection of $L^{2}(X)$ onto $\left\{a \in L^{2}(X): a \circ \mathcal{G}_{t}=a, \forall t \in \mathbb{R}\right\}$.

Birkhoff's ergodic theorem then yields

$$
\begin{equation*}
a_{T} \longrightarrow P a, \quad \text { a.e. on } X, \tag{3.3}
\end{equation*}
$$

for all $a \in L^{1}(X)$. We also have

$$
\begin{equation*}
P: L^{p}(X) \longrightarrow L^{p}(X), \quad \forall p \in[1, \infty], \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{T} \longrightarrow P a \text { in } L^{p} \text {-norm, for } a \in L^{p}(X), \quad 1 \leq p<\infty, \tag{3.5}
\end{equation*}
$$

while

$$
\begin{align*}
a \in L^{\infty}(X) & \Longrightarrow a_{T} \rightarrow P a \text { pointwise a.e. and boundedly } \\
& \Longrightarrow a_{T} \rightarrow P a \text { weak }^{*} \text { in } L^{\infty}(X), \tag{3.6}
\end{align*}
$$

as $T \rightarrow \infty$. In light of (2.7), we deduce from (3.6) that
(3.7) $\quad \mathrm{op}_{F}\left(a_{T}\right) \longrightarrow \mathrm{op}_{F}(P a)$ in the weak operator topology of $\mathcal{L}\left(L^{2}(M)\right)$,
as $T \rightarrow \infty$, given $a \in L^{\infty}(X)$.
The relevance of (3.1) in particular arises from applying Proposition 2.2 to

$$
\begin{equation*}
b=a_{T}-P a . \tag{3.8}
\end{equation*}
$$

We have

Proposition 3.1. If $a \in C(X)$, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N}\left\|\mathrm{op}_{F}\left(a_{T}-P a\right) \varphi_{k}\right\|_{L^{2}(M)}^{2}=\int_{X}\left|a_{T}-P a\right|^{2} d S, \tag{3.9}
\end{equation*}
$$

provided that also

$$
\begin{equation*}
P a \in C(X) \tag{3.10}
\end{equation*}
$$

We can use this, in combination with Corollary 2.4, to establish the following.
Proposition 3.2. If $a, P a \in C(X), A=\mathrm{op}_{F}(a)$, and A_{T} is as in (2.20), then

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N}\left\|\left[A_{T}-\mathrm{op}_{F}(P a)\right] \varphi_{k}\right\|_{L^{2}(M)}^{2} \leq 2 \int_{X}\left|a_{T}-P a\right|^{2} d S, \tag{3.11}
\end{equation*}
$$

for each $T<\infty$.
Proof. Write

$$
\begin{equation*}
A_{T}-\mathrm{op}_{F}(P a)=\left[A_{T}-\mathrm{op}_{F}\left(a_{T}\right)\right]+\left[\mathrm{op}_{F}\left(a_{T}\right)-\mathrm{op}_{F}(P a)\right] \tag{3.12}
\end{equation*}
$$

and use $(\alpha+\beta)^{2} \leq 2 \alpha^{2}+2 \beta^{2}$ for $\alpha, \beta \geq 0$, to dominate the left side of (3.11) by

$$
\begin{align*}
& \limsup _{N \rightarrow \infty} \frac{2}{N} \sum_{k=1}^{N}\left\|\left[A_{T}-\mathrm{op}_{F}\left(a_{T}\right)\right] \varphi_{k}\right\|_{L^{2}}^{2} \tag{3.13}\\
& +\limsup _{N \rightarrow \infty} \frac{2}{N} \sum_{k=1}^{N}\left\|\mathrm{op}_{F}\left(a_{T}-P a\right) \varphi_{k}\right\|_{L^{2}}^{2} .
\end{align*}
$$

Apply (2.22) to the first limsup in (3.13). Then apply Proposition 2.2 with $b=$ $a_{T}-P a$ to get

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N}\left\|\mathrm{op}_{F}\left(a_{T}-P a\right) \varphi_{k}\right\|_{L^{2}}^{2}=\int_{X}\left|a_{T}-P a\right|^{2} d S \tag{3.14}
\end{equation*}
$$

Then we have (3.11).
As we have seen,

$$
\begin{equation*}
A_{T} \longrightarrow \Pi(A) \text { in the strong operator topology, } \tag{3.15}
\end{equation*}
$$

as $T \rightarrow \infty$, for each $A \in \mathcal{L}\left(L^{2}(M)\right)$, and in particular for $A=\mathrm{op}_{F}(a), a \in L^{\infty}(X)$. This leads to the following.

Problem 1. Given $a, P a \in C(X)$, compare

$$
\begin{equation*}
\Pi\left(\mathrm{op}_{F}(a)\right) \text { and } \mathrm{op}_{F}(P a) . \tag{3.16}
\end{equation*}
$$

The result (3.11) looks relevant to this task, but I have not seen how to use it to solve the problem. See $[\mathrm{Su}]$ and $[\mathrm{Z} 1]$ for related results, particularly when $\left\{\mathcal{G}_{t}\right\}$ acts ergodically on X.

We pursue consequences of Proposition 3.2. Since $\left\|B \varphi_{k}\right\|_{L^{2}}^{2} \geq\left|\left(B \varphi_{k}, \varphi_{k}\right)\right|^{2}$ and $\left(A_{T} \varphi_{k}, \varphi_{k}\right)=\left(A \varphi_{k}, \varphi_{k}\right)$, for φ_{k} as in (2.10), we deduce from (3.11) that

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N}\left|\left(\left[A-\mathrm{op}_{F}(P a)\right] \varphi_{k}, \varphi_{k}\right)\right|^{2} \leq 2 \int_{X}\left|a_{T}-P a\right|^{2} d S, \tag{3.17}
\end{equation*}
$$

for each $T<\infty$. Taking $T \rightarrow \infty$, we have
Corollary 3.3. In the setting of Proposition 3.2,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N}\left|\left(A \varphi_{k}, \varphi_{k}\right)-\left(\mathrm{op}_{F}(P a) \varphi_{k}, \varphi_{k}\right)\right|^{2}=0 \tag{3.18}
\end{equation*}
$$

This is essentially the "standard" quantum ergodic theorem, in the formulation given in [T1].

To proceed with consequences of (3.11), let us rewrite it as

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \frac{1}{d_{N}} \sum_{\lambda \in \Sigma_{N}}\left\|\left[A_{T}-\mathrm{op}_{F}(P a)\right] P_{\lambda}\right\|_{\mathrm{HS}}^{2} \leq 2 \int_{X}\left|a_{T}-P a\right|^{2} d S, \tag{3.19}
\end{equation*}
$$

where, as in $\S 1, P_{\lambda}$ is the orthogonal projection of $L^{2}(M)$ onto $\operatorname{Eigen}(\Lambda, \lambda)$, and

$$
\begin{equation*}
d_{N}=\sum_{\lambda \leq N} \operatorname{dim} \operatorname{Eigen}(\Lambda, \lambda)=\operatorname{Tr} \sum_{\lambda \leq N} P_{\lambda} . \tag{3.20}
\end{equation*}
$$

Now

$$
\begin{equation*}
P_{\lambda} e^{-i t \Lambda} A e^{i t \Lambda} P_{\lambda}=P_{\lambda} A P_{\lambda}, \quad \forall t \in \mathbb{R} \tag{3.21}
\end{equation*}
$$

hence

$$
\begin{equation*}
P_{\lambda} A_{T} P_{\lambda}=P_{\lambda} A P_{\lambda} . \tag{3.22}
\end{equation*}
$$

Hence, for all $T<\infty$,

$$
\begin{align*}
\left\|P_{\lambda} A P_{\lambda}\right\|_{\mathrm{HS}}^{2} & =\left\|P_{\lambda} A_{T} P_{\lambda}\right\|_{\mathrm{HS}}^{2} \\
& \leq\left\|A_{T} P_{\lambda}\right\|_{\mathrm{HS}}^{2} . \tag{3.23}
\end{align*}
$$

Consequently, by (3.19),

$$
\begin{align*}
P a=0 \Longrightarrow & \limsup _{N \rightarrow \infty} \frac{1}{d_{N}} \sum_{\lambda \in \Sigma_{N}}\left\|P_{\lambda} A P_{\lambda}\right\|_{\mathrm{HS}}^{2} \\
& \leq \inf _{T<\infty} \int_{X}\left|a_{T}-P a\right|^{2} d S \tag{3.24}\\
& =0 .
\end{align*}
$$

We hence have the following.
Proposition 3.4. In the setting of Proposition 3.2, if also $P a=0$, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} \sum_{\lambda \in \Sigma_{N}}\left\|P_{\lambda} A P_{\lambda}\right\|_{\mathrm{HS}}^{2}=0 \tag{3.25}
\end{equation*}
$$

If we apply this result with a replaced by $a-P a$, we have the following.
Proposition 3.5. If $a, P a \in C(X), A=\mathrm{op}_{F}(a)$, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} \sum_{\lambda \in \Sigma_{N}}\left\|P_{\lambda}\left[A-\mathrm{op}_{F}(P a)\right] P_{\lambda}\right\|_{\mathrm{HS}}^{2}=0 \tag{3.26}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{d_{N}}\left\|\left[\Pi(A)-\Pi\left(\mathrm{op}_{F}(P a)\right)\right] Q_{N}\right\|_{\mathrm{HS}}^{2}=0 \tag{3.27}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{N}=\sum_{\lambda \leq N} P_{\lambda} \tag{3.28}
\end{equation*}
$$

This brings us back to Problem 1, which we can restate as
Problem 2. Assume $b \in C(X)$ and $P b=b$. Then estimate

$$
\begin{equation*}
B-\Pi(B), \quad B=\mathrm{op}_{F}(b) \tag{3.29}
\end{equation*}
$$

Note that

$$
\begin{equation*}
P a=\bar{a} \Rightarrow \mathrm{op}_{F}(P a)=\bar{a} I \Rightarrow \Pi\left(\mathrm{op}_{F}(P a)\right)=\bar{a} I . \tag{3.30}
\end{equation*}
$$

This always holds when $\left\{\mathcal{G}_{t}\right\}$ is ergodic. In such a case, the conclusion of Proposition 3.5 is contained in Theorem 2 of [Z1].

The following result (potentially) addresses cases where $\left\{\mathcal{G}_{t}\right\}$ is not ergodic. It refines Proposition 4.4 of [T2].

Proposition 3.6. Let $U \subset X$ be open and assume $\mathcal{G}_{t}: U \rightarrow U$, and that the action on U is ergodic. Let $a, b \in C(X)$ be supported on a compact subset of U, $A=\mathrm{op}_{F}(a), B=\mathrm{op}_{F}(b)$. Then

$$
\begin{align*}
\int_{X} a d S & =\int_{X} b d S \tag{3.31}\\
& \Longrightarrow \lim _{N \rightarrow \infty} \frac{1}{d_{N}}\left\|[\Pi(A)-\Pi(B)] Q_{N}\right\|_{\mathrm{HS}}^{2}=0 .
\end{align*}
$$

Proof. Under these hypotheses, $P(a-b)=0$, so (3.27) applies to $A-B$.

Remark. We have not established a corresponding refinement of Proposition 4.5 of [T2], which allows $a, b \in \mathcal{R}(X)$.

4. Concentration of eigenfunctions on S^{n}

Here we work on S^{n}, the unit sphere in \mathbb{R}^{n+1}, with its standard metric. Then the geodesic flow $\left\{\mathcal{G}_{t}\right\}$ is periodic of period 2π. It is convenient to take

$$
\begin{equation*}
\Lambda=\sqrt{-\Delta+\left(\frac{n-1}{2}\right)^{2}}-\frac{n-1}{2} \tag{4.1}
\end{equation*}
$$

so $e^{i t \Lambda}$ is also periodic of period 2π (cf. (4.8) below). Then, given $A \in \mathcal{L}\left(L^{2}\left(S^{n}\right)\right)$,

$$
\begin{equation*}
\Pi(A)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i t \Lambda} A e^{i t \Lambda} d t \tag{4.2}
\end{equation*}
$$

In case $a \in C^{\infty}\left(S^{*} S^{n}\right)$, we have

$$
\begin{equation*}
P a(x, \xi)=\frac{1}{2 \pi} \int_{0}^{2 \pi} a\left(\mathcal{G}_{t}(x, \xi)\right) d t \tag{4.3}
\end{equation*}
$$

and it is a straightforward consequence of Egorov's theorem that, if $A=\mathrm{op}_{F}(a)$,

$$
\begin{equation*}
\Pi(A)-\mathrm{op}_{F}(P a) \in O P S^{-1}\left(S^{n}\right) \tag{4.4}
\end{equation*}
$$

We now specialize to the case where A is a multiplication operator,

$$
\begin{equation*}
A u(x)=a(x) u(x), \quad a \in C^{\infty}\left(S^{n}\right) \tag{4.5}
\end{equation*}
$$

and, to keep things simple, assume that

$$
\begin{equation*}
n=2, \text { and } a(x) \text { is invariant under } R(t), \tag{4.6}
\end{equation*}
$$

where $R(t)$ is the group of rotations about the x_{3}-axis. Then A commutes with the associated unitary group $R(t)$ on $L^{2}\left(S^{2}\right)$, which we write as

$$
\begin{equation*}
R(t)=e^{i t X} \tag{4.7}
\end{equation*}
$$

where $i X=Y$ is the real vector field on S^{2} generating the rotation. This group is also periodic, of period 2π. We note that

$$
\begin{equation*}
\operatorname{Spec} \Lambda=\{k \in \mathbb{Z}: k \geq 0\}, \tag{4.8}
\end{equation*}
$$

and if V_{k} denotes the k-eigenspace of Λ, then

$$
\begin{equation*}
\operatorname{dim} V_{k}=2 k+1, \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\operatorname{Spec} X\right|_{V_{k}}=\{\ell \in \mathbb{Z}:-k \leq \ell \leq k\} . \tag{4.10}
\end{equation*}
$$

Let us note that Λ and X commute, and that the pair $\{\Lambda, X\}$ has simple spectrum. Also, under the hypothesis (4.5)-(4.6), $\Pi(A)$ commutes with X as well as with Λ. Hence $\Pi(A)$ is a function of (Λ, X),

$$
\begin{equation*}
\Pi(A)=F(\Lambda, X) \tag{4.11}
\end{equation*}
$$

Also, given $a \in C^{\infty}\left(S^{*} S^{2}\right)$, we have

$$
\begin{equation*}
\Pi(A) \in O P S^{0}\left(S^{2}\right) \tag{4.12}
\end{equation*}
$$

with principal symbol given by (4.3).
Given these facts, we can use results of Chapter 12 of [T0] to analyze F in (4.11). These results yield

$$
\begin{equation*}
F \in S^{0}\left(\mathbb{R}^{2}\right) \Longrightarrow F(\Lambda, X)=B \in O P S^{0}\left(S^{2}\right) \tag{4.13}
\end{equation*}
$$

with principal symbol

$$
\begin{equation*}
b(x, \xi)=F(|\xi|,\langle Y, \xi\rangle) \tag{4.14}
\end{equation*}
$$

Recall that $Y=i X$ is a real vector field. Note that it suffices to specify F on $\left\{\left(\lambda_{1}, \lambda_{2}\right): \lambda_{1} \geq 0,\left|\lambda_{2}\right| \leq \lambda_{1}\right\}$, in light of (4.8)-(4.10), and also taking into account that $|Y| \leq 1$ on S^{2}. We want the principal part of (4.14) to match up with (4.3) on $S^{*} S^{2}$.

Thus, we want to define $F_{0}\left(\lambda_{1}, \lambda_{2}\right)$, homogeneous of degree 0 in $\left(\lambda_{1}, \lambda_{2}\right)$, so that

$$
\begin{equation*}
F_{0}(1,\langle Y, \xi\rangle)=P a(x, \xi), \quad \text { for } \quad(x, \xi) \in S^{*} S^{2} \tag{4.15}
\end{equation*}
$$

Now $F_{0}\left(1, \lambda_{2}\right)$ is a function of $\lambda_{2} \in[-1,1]$, while $P a$ is a function on $S^{*} S^{2}$, which has dimension 3. However, $P a$ is invariant under the flows \mathcal{G}_{t} and $R(t)$, and in fact it is uniquely specified by its behavior on $S_{x_{0}}^{*} S^{2}$, where x_{0} is an arbitrarily chosen point on the equator of S^{2}. At x_{0}, Y is a unit vector parallel to the equator, and (4.15) becomes

$$
\begin{equation*}
F_{0}\left(1, \lambda_{2}\right)=P a\left(x_{0},\left(\lambda_{2}, \sqrt{1-\lambda_{2}^{2}}\right)\right) \tag{4.16}
\end{equation*}
$$

At first glance, this looks non-smooth at $\lambda_{2}= \pm 1$, but in fact we have

$$
\begin{equation*}
P a\left(x_{0},\left(\xi_{1}, \xi_{2}\right)\right)=P a\left(x_{0},\left(\xi_{1},-\xi_{2}\right)\right) . \tag{4.17}
\end{equation*}
$$

Such an identity is clear if $a(x)$ is even under $x_{3} \mapsto-x_{3}$. On the other hand, if $a(x)$ is odd under this transformation its invariance under $R(t)$ guarantees that (4.3) vanishes, so we have (4.17) for general $R(t)$-invariant $a \in C^{\infty}\left(S^{2}\right)$. From (4.17) we have that (4.16) defines a smooth function of $\lambda_{2} \in[-1,1]$. Then

$$
\begin{align*}
& F_{0}(\Lambda, X) \in O P S^{0}\left(S^{2}\right), \text { and } \\
& \Pi(A)-F_{0}(\Lambda, X) \in O P S^{-1}\left(S^{2}\right) \tag{4.18}
\end{align*}
$$

Note that

$$
\begin{equation*}
F_{0}(\Lambda, X)=g\left(\Lambda^{-1} X\right) \tag{4.19}
\end{equation*}
$$

where $g(\lambda)=F_{0}(1, \lambda)$, i.e.,

$$
\begin{equation*}
g(\lambda)=P a\left(x_{0},\left(\lambda, \sqrt{1-\lambda^{2}}\right)\right) . \tag{4.20}
\end{equation*}
$$

Results just described have implications for concentration of spherical harmonics. In fact, we can take an orthonormal basis

$$
\begin{equation*}
\left\{\varphi_{k \ell}: k, \ell \in \mathbb{Z}, k \geq 0,|\ell| \leq k\right\} \tag{4.21}
\end{equation*}
$$

of $L^{2}\left(S^{2}\right)$, satisfying

$$
\begin{equation*}
\Lambda \varphi_{k \ell}=k \varphi_{k \ell}, \quad X \varphi_{k \ell}=\ell \varphi_{k \ell} \tag{4.21~A}
\end{equation*}
$$

Then

$$
\begin{align*}
\int_{S^{2}} a(x)\left|\varphi_{k \ell}(x)\right|^{2} d S(x) & =\left(A \varphi_{k \ell}, \varphi_{k \ell}\right)_{L^{2}} \tag{4.22}\\
& =\left(\Pi(A) \varphi_{k \ell}, \varphi_{k \ell}\right)_{L^{2}} \\
& =\left(F_{0}(\Lambda, X) \varphi_{k \ell}, \varphi_{k \ell}\right)_{L^{2}}+R_{k \ell}
\end{align*}
$$

where

$$
\begin{equation*}
R_{k \ell} \longrightarrow 0, \quad \text { as } \quad k \rightarrow \infty \tag{4.25}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\int_{S^{2}} a(x)\left|\varphi_{k \ell}(x)\right|^{2} d S(x)=g\left(\frac{\ell}{k}\right)+R_{k \ell}, \tag{4.24}
\end{equation*}
$$

with $g(\lambda)$ given by (4.20).

Let us pick $\beta \in(0,1)$ and take $a \in C^{\infty}\left(S^{2}\right)$, invariant under $R(t)$, and satisfying

$$
\begin{equation*}
a(x)=0, \quad \text { for } \quad\left|x_{3}\right| \leq \beta \tag{4.25}
\end{equation*}
$$

It follows from (4.20) and (4.3) that

$$
\begin{equation*}
g(\lambda)=0, \quad \text { for } \quad \sqrt{1-\lambda^{2}} \leq \beta \tag{4.26}
\end{equation*}
$$

i.e., for $|\lambda| \geq \sqrt{1-\beta^{2}}$. Hence

$$
\begin{array}{r}
\int_{S^{2}} a(x)\left|\varphi_{k \ell}(x)\right|^{2} d S(x)=R_{k \ell} \rightarrow 0, \text { as } k \rightarrow 0 \tag{4.27}\\
\text { for }|\ell| / k \geq \sqrt{1-\beta^{2}}
\end{array}
$$

Conclusion. The orthonormal eigenfunctions $\varphi_{k \ell}$ concentrate on the strip $\left|x_{3}\right| \leq \beta$ as $k \rightarrow \infty$, for $|\ell| / k \geq \sqrt{1-\beta^{2}}$.

5. More general concentration results

Let M be a compact, connected Riemannian manifold, and assume M has a nonzero Killing field Y, generating a 1 -parameter family of isometries of M. We will also make the hypothesis that

$$
\begin{equation*}
A_{0}=\min _{x \in M}|Y(x)|<\max _{x \in M}|Y(x)|=A_{1} . \tag{5.1}
\end{equation*}
$$

The operator $X=i Y$ is self adjoint on $L^{2}(M)$ and commutes with $\Lambda=\sqrt{-\Delta}$. Thus there is an orthonormal basis $\left\{\varphi_{k}\right\}$ of $L^{2}(M)$ consisting of joint eigenfunctions,

$$
\begin{equation*}
\Lambda \varphi_{k}=\lambda_{k} \varphi_{k}, \quad X \varphi_{k}=\mu_{k} \varphi_{k} \tag{5.2}
\end{equation*}
$$

with $\lambda_{k} \nearrow+\infty$, as in (2.10). Note that

$$
\begin{align*}
\mu_{k}^{2} & =\left\|X \varphi_{k}\right\|_{L^{2}}^{2} \leq A_{1}^{2}\left\|\nabla \varphi_{k}\right\|_{L^{2}}^{2}=A_{1}^{2}\left(-\Delta \varphi_{k}, \varphi_{k}\right) \tag{5.3}\\
& =A_{1}^{2}\left\|\Lambda \varphi_{k}\right\|_{L^{2}}^{2}=A_{1}^{2} \lambda_{k}^{2}
\end{align*}
$$

i.e.,

$$
\begin{equation*}
\left|\mu_{k}\right| \leq A_{1} \lambda_{k} \tag{5.4}
\end{equation*}
$$

We can define a function $F(\Lambda, X)$ by

$$
\begin{equation*}
F(\Lambda, X) \varphi_{k}=F\left(\lambda_{k}, \mu_{k}\right) \varphi_{k} \tag{5.5}
\end{equation*}
$$

Then, as shown in Chapter 12 of [T0],

$$
\begin{align*}
F \in S^{0}\left(\mathbb{R}^{2}\right) \Longrightarrow & F(\Lambda, X) \in O P S^{0}(M), \text { and } \\
& \sigma_{F(\Lambda, X)}(x, \xi)=F(|\xi|,\langle Y, \xi\rangle) . \tag{5.6}
\end{align*}
$$

From here on, we assume $F \in C^{\infty}\left(\mathbb{R}^{2} \backslash 0\right)$ is homogeneous of degree 0 , and note that only its behavior on the wedge $\left\{(\lambda, \mu):|\mu| \leq A_{1} \lambda\right\}$ is significant for the behavior of $F(\Lambda, X)$. We set

$$
\begin{equation*}
\varphi(\mu)=F(1, \mu), \quad \text { so } \quad F(\Lambda, X)=\varphi\left(\Lambda^{-1} X\right) \tag{5.7}
\end{equation*}
$$

Note that only the behavior of φ on $\mu \in\left[-A_{1}, A_{1}\right]$ is significant. The Weyl law (2.11) (or (2.14)) yields

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N}\left\|F(\Lambda, X) \varphi_{k}\right\|_{L^{2}}^{2}=\int_{S^{*} M}|\varphi(\langle Y, \xi\rangle)|^{2} d S \tag{5.8}
\end{equation*}
$$

where $d S$ is the Liouville measure on $S^{*} M$, normalized so that $\int_{S^{*} M} d S=1$. This gives information on the joint spectrum of the pair (Λ, X), in connection with the classical result

$$
\begin{equation*}
\lambda_{k} \sim(C k)^{1 / n}, \quad \text { as } \quad k \rightarrow \infty \tag{5.9}
\end{equation*}
$$

where $n=\operatorname{dim} M$ and $C=\Gamma(n / 2+1)(4 \pi)^{n / 2} / \operatorname{Vol} M$. Another application of the Weyl formula is that, for $a \in C^{\infty}(M)$,

$$
\begin{gather*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} \int_{M} a(x)\left|F(\Lambda, X) \varphi_{k}\right|^{2} d V \tag{5.10}\\
=\int_{S^{*} M} a(x)|\varphi(\langle Y, \xi\rangle)|^{2} d S
\end{gather*}
$$

We are ready to obtain some general concentration results, parallel to those of $\S 4$, but valid in much greater generality. The key to this result is the observation that, if $A_{0}<B<A_{1}$,

$$
\begin{align*}
& \varphi(\mu)=0 \text { for }|\mu| \leq B \tag{5.11}\\
& \Longrightarrow \varphi(\langle Y, \xi\rangle)=0, \quad \forall(x, \xi) \in S^{*} M \text { such that } x \in M_{B}=\{x \in M:|Y(x)| \leq B\}
\end{align*}
$$

Hence we have the following conclusion.
Proposition 5.1. With $a \in C^{\infty}(M)$, set $A u(x)=a(x) u(x)$. Then

$$
\begin{align*}
\varphi(\mu)=0 & \text { for }|\mu| \leq B, \text { supp } a \subset M_{B} \\
& \Longrightarrow F(\Lambda, X)^{*} A F(\Lambda, X) \in \operatorname{OPS}^{-1}(M) \tag{5.12}
\end{align*}
$$

Hence, when these hypotheses hold,

$$
\begin{align*}
\lim _{k \rightarrow \infty} & \int_{M} a(x)\left|F(\Lambda, X) \varphi_{k}\right|^{2} d V \tag{5.13}\\
& =\lim _{k \rightarrow \infty}\left(F(\Lambda, X)^{*} A F(\Lambda, X) \varphi_{k}, \varphi_{k}\right)_{L^{2}}=0
\end{align*}
$$

Equivalently,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left|\varphi\left(\lambda_{k}^{-1} \mu_{k}\right)\right|^{2} \int_{M} a(x)\left|\varphi_{k}(x)\right|^{2} d V(x)=0 \tag{5.14}
\end{equation*}
$$

References

[CdV] Y. Colin de Verdière, Ergodicité et fonctions propres du laplacian, Comm. Math. Phys. 102 (1985), 497-502.
[ST] R. Schrader and M. Taylor, Semiclassical asymptotics, gauge fields, and quantum chaos, J. Funct. anal. 83 (1989), 258-316.
[Su] T. Sunada, Quantum ergodicity, pp. 175-196 in Progress in Inverse Spectral Geometry, Trends in Math., Birkhäuser, Basel, 1997.
[T0] M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, Pronceton NJ, 1981.
[T1] M. Taylor, Variations on quantum ergodic theorems, Potential Anal. 43 (2015), 625-651.
[T2] M. Taylor, Quantization of discontinuous symbols and quantum ergodic theorems, Preprint, 2018.
[Z1] S. Zelditch, Quantum ergodicity of C^{*} dynamical systems, Commun. Math. Phys. 177 (1996), 507-528.
[Z2] S. Zelditch, Quantum mixing, Jour. Funct. Anal. 140 (1996), 68-86.

