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1. Introduction

Let M be a compact Riemannian manifold, with Laplace-Beltrami operator ∆,
and set Λ =

√
−∆. If A is a bounded linear map on L2(M) (we write A ∈

L(L2(M))), and T ∈ (0,∞), we set

(1.1) AT =
1

2T

∫ T

−T

e−itΛAeitΛ dt.

Our goal is to study the behavior of AT as T → ∞ and relate this study to classical
ergodic theory.

To get started, we recall the abstract mean ergodic theorem of von Neumann.
Let U t be a strongly continuous unitary group on a Hilbert space H, and set

(1.2) AT f =
1

2T

∫ T

−T

U tf dt, f ∈ H.

Then U t = eitB , where B is a self-adjoint operator on H, and the spectral theorem
yields

(1.3)
AT f =

1

2T

∫ T

−T

eitBf dt

=
sinTB

TB
f,

and hence, for each f ∈ H,

(1.4) AT f −→ P0f in H-norm, as T → ∞,
1
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where

(1.5)
P0 = orthogonal projection of H onto KerB,

KerB = {f ∈ H : U tf = f, ∀ t ∈ R}.

In other words, AT converges to P0 in the strong operator topology of L(H).
To relate this to (1.1), we look at

(1.6) W t : L(L2(M)) −→ L(L2(M)), W t(A) = e−itΛAeitΛ.

Clearly {W t} is a group of isometries of L(L2(M)), and, for each A ∈ L(L2(M)),
W t(A) is continuous in t with values in L(L2(M)), provided with the strong op-
erator topology. On the other hand, clearly W t(A) is continuous from t ∈ R to
L(L2(M)), with the norm topology, if A has finite rank, and hence if A is compact.
We also have

(1.7) W t(A)⟨Λ⟩−κ = W t(A⟨Λ⟩−κ),

where ⟨Λ⟩ =
√
1−∆. Now L(L2(M)) is not a Hilbert space, so it is convenient to

focus on the Hilbert space

(1.8) H = HS(L2(M)),

of Hilbert-Schmidt operators on L2(M), a Hilbert space with inner product

(1.9) (A,B)HS = TrB∗A.

The restriction U t = W t|HS(L2(M)) is a strongly continuous group of unitary oper-

ators on HS(L2(M)):

(1.10) U t(A) = eit adΛ(A).

Consequently, for A ∈ HS(L2(M)),

(1.11) AT =
sinT adΛ

T adΛ
A.

We have the following result.

Proposition 1.1. If A ∈ HS(L2(M)), then, for AT as in (1.1),

(1.12) AT −→ Π0(A) in HS-norm,

where

(1.13)
Π0 = orthogonal projection of HS(L2(M)) onto

K0 = {A ∈ HS(L2(M)) : e−itΛAeitΛ = A, ∀ t ∈ R}.
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Remark. Under the natural isomorphism HS(L2(M)) ≈ L2(M ×M), we have

(1.14) adΛ = Λx − Λy.

Using (1.7), we see that, whenever κ > n/2, with n = dimM (so ⟨Λ⟩−κ is
Hilbert-Schmidt),

(1.15)
A ∈ L(L2(M)) =⇒ AT ⟨Λ⟩−κ =

(
A⟨Λ⟩−κ

)
T

→ Π0(A⟨Λ⟩−κ),

in HS-norm, and a fortiori in operator norm in L(L2(M)). Consequently, for all
A ∈ L(L2(M)),

(1.16)
AT −→ Π(A) = Π0(A⟨Λ⟩−κ)⟨Λ⟩κ

in operator norm in L(Hκ(M), L2(M)),

for each κ > n/2, where Hκ(M) = D(⟨Λ⟩κ) is an L2-Sobolev space. Here the
identity

(1.17) Π(A) = Π0(A⟨Λ⟩−κ)⟨Λ⟩κ, κ >
n

2
,

defines

(1.18) Π : L(L2(M)) −→ L(Hκ(M), L2(M)).

The action of Π is independent of κ > n/2. In addition, the uniform operator norm
bounds ∥AT ∥L(L2) ≤ ∥A∥L(L2), plus denseness of H

κ(M) in L2(M), yield

(1.19) Π : L(L2(M)) −→ L(L2(M)), ∥Π(A)∥L(L2(M)) ≤ ∥A∥L(L2(M)).

Going further, using this denseness and uniform bounds on AT , we have:

Proposition 1.2. For A ∈ L(L2(M)), AT as in (1.2),

(1.20) AT −→ Π(A) in the strong operator topology of L(L2(M)).

There is another formula for Π(A), which will prove useful. To state it let

(1.21)
Pλ = orthogonal projection of L2(M) onto Eigen(Λ, λ),

ΣN = {λ ∈ SpecΛ : λ ≤ N},
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and set

(1.22) SN (A) =
∑

λ∈ΣN

PλAPλ.

We see that ∥SN (A)∥L(L2) ≤ ∥A∥L(L2), that SN (A⟨Λ⟩−κ) = SN (A)⟨Λ⟩−κ, and that

(1.23) SN (A) −→ Π(A) in HS-norm, if A ∈ HS(L2(M)).

It follows that

(1.24) SN (A) −→ Π(A), in the strong operator topology , ∀A ∈ L(L2(M)).

In other words,

(1.25) Π(A) =
∑

λ∈SpecΛ

PλAPλ.

Compare (2.24) of [Z1], and also the material in [Su].
Our main goal here will be to prove the following (cf. Proposition 3.5).

Theorem A. If a, Pa ∈ C(S∗M), and A = opF (a), then

(1.26) lim
N→∞

1

dN
∥[Π(A)−Π(opF (Pa))]QN∥2HS = 0.

Here, S∗M is the cosphere bundle of M , P : L2(S∗M) → L2(S∗M) is the
orthogonal projection onto the space of functions on S∗M invariant under the
geodesic flow,

(1.27) QN =
∑
λ≤N

Pλ, dN = TrQN ,

and opF : C(S∗M) → L(L2(M)) is a quantization operator, discussed in §2. A
particular case of (1.26) is

(1.28) a ∈ C(S∗M), Pa = a ⇒ lim
N→∞

1

dN
∥[Π(A)− aI]QN∥2HS = 0,

where a is the mean value of a over S∗M . The hypothesis Pa = a for all a ∈
C(S∗M) holds provided the geodesic flow on S∗M is ergodic. In the ergodic case,
(1.28) is due to [Su] (see also [Z1]). Our extension beyond the case of an ergodic
geodesic flow is done in the spirit of [ST] and [T1]. In this connection, we mention
the following result (cf. Proposition 3.6).
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Corollary B. Let U ⊂ S∗M be open and assume the geodesic flow Gt : U → U
and that the action on U is ergodic. Let a, b ∈ C(S∗M) be supported in a compact
subset of U , A = opF (a), B = opF (b). Then

(1.29)

∫
S∗M

a dS =

∫
S∗M

b dS

=⇒ lim
N→∞

1

dN
∥[Π(A)−Π(B)]QN∥2HS = 0.

As indicated above, these results are established in §3 of this paper. In §2 we
set up tools needed to accomplish this, including a discussion of the quantization
a 7→ opF (a) (part of pseudodifferential operator calculus on M), and of the Weyl
law and Egorov’s theorem. A key ingredient in the proof of Theorem A is that,
given a, Pa ∈ C(S∗M),

(1.30) lim
N→∞

1

N

N∑
k=1

|(Aφk, φk)− (opF (Pa)φk, φk)|2 = 0,

where {φk} is an orthonormal basis of L2(M) satisfying Λφk = λkφk, λk ↗ ∞.
Cf. (3.18). If the geodesic flow on S∗M is ergodic, then Pa = a, and (1.30) is a
standard version of quantum ergodicity (cf. [CdV]).

In §§4–5 we discuss eigenfunction concentration effects in some cases where the
geodesic flow is not ergodic, due to the existence of a nontrivial Killing field on M .
Section 4 treats spherical harmonics on the standard sphere Sn, and §5 treats much
more general cases.

Remark. While the conjugate e−itΛAeitΛ is natural to work with due to its con-
nection to Egorov’s theorem, it is also quite natural to consider

(1.31) eit∆Ae−it∆,

in view of its quantum mechanical significance, and to replace (1.1) by

(1.32) A#
T =

1

2T

∫ T

−T

eit∆Ae−it∆ dt.

Arguments parallel to those leading to Proposition 1.2 also yield

(1.33) A#
T −→ Π(A),

in the strong operator topology, for each A ∈ L(L2(M)). The limit here is the same
as in (1.20), as one verifies that it satisfies (1.25).
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2. Quantization of X = S∗M

With M as in §1, let X = S∗M . A quantization of X is a continuous linear map

(2.1) op : C∞(X) −→ OPS0
1,0(M),

with the property that for each a ∈ C∞(X), the principal symbol of op(A) is a.
We also require op(1) = I. Examples include the Kohn-Nirenberg quantization
opKN and the Weyl quantization opW . We will focus on another, the Friedrichs
quantization,

(2.2) opF : C∞(X) −→ OPS0
1,0(M),

which has the special property that, for each a ∈ C∞(X),

(2.3) a ≥ 0 =⇒ opF (a) ≥ 0.

It also satisfies

(2.4) opF (a)− opKN (a) ∈ OPS−1
1,0(M),

for all a ∈ C∞(X). Thanks to (2.2)–(2.3), there is a unique continuous linear
extension

(2.5) opF : C(X) −→ L(L2(M)),

and it also satisfies (2.3). Furthermore, as shown in [T2], there is a unique extension
to

(2.6) opF : L∞(X) −→ L(L2(M)),

having the property that

(2.7)
aν ∈ L∞(X), aν → a weak∗ in L∞(X)

=⇒ opF (aν) → opF (a) in the weak operator topology of L(L2(M)).

The positivity condition (2.3) continues to hold. Furthermore, for a ∈ L∞(X),

(2.8) ∥ opF (a)∥L(L2(M)) ≤ ∥a∥L∞(X).

We mention that a special case of (2.6) is

(2.9) opF : R(X) −→ L(L2(M)),

where R(X) denotes the space of bounded functions on X that are Riemann inte-
grable.

We next describe some results that are useful for the analysis of AT , defined
as in (1.1), when A = opF (a). First is the Weyl law. To state it, let {φk} be an
orthonormal basis of L2(M) consisting of eigenfunctions of ∆:

(2.10) ∆φk = −λ2
kφk, 0 ≤ λk ↗ +∞.
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Proposition 2.1. We have

(2.11) lim
N→∞

1

N

N∑
k=1

(Bφk, φk)L2 =

∫
X

b dS,

for B = opF (b), b ∈ C∞(X), where dS is the Liouville measure on X, normalized
so that

∫
X
dS = 1. More generally, (2.11) holds for all b ∈ R(X).

Proposition 2.1 is classical for b ∈ C∞(X). It is extended to b ∈ R(X) in §3 of
[T2].

We can rewrite (2.11) as follows. Let

(2.12) QN = orthogonal projection of L2(M) onto Span{φk : 1 ≤ k ≤ N}.

Then (2.11) says

(2.13) lim
N→∞

1

N
TrBQN =

∫
X

b dS.

The next result is a Weyl/Szegö type result.

Proposition 2.2. We have

(2.14) lim
N→∞

1

N

N∑
k=1

∥Bφk∥2L2 =

∫
X

|b|2 dS,

for B = opF (b), b ∈ C∞(X). More generally, (2.14) holds for b ∈ C(X).

Proof. The left side of (2.14) is equal to

(2.15)
lim

N→∞

1

N
∥BQN∥2HS = lim

N→∞

1

N
TrQNB∗BQN

= lim
N→∞

1

N
TrB∗BQN .

If b ∈ C∞(X), then

(2.16) B∗B = opF (|b|2), mod OPS−1
1,0(M),

and the result follows from Proposition 2.1, with b replaced by |b|2 ∈ C∞(X). The
extension of (2.14) to b ∈ C(X) follows from the denseness of C∞(X) in C(X) and
the estimate (2.8).

Remark. Unlike Proposition 2.1, I have not extended Proposition 2.2 to work for
b ∈ R(X).
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Another important tool is Egorov’s theorm, which implies

(2.17) e−itΛ opF (a)e
itΛ − opF (a ◦ Gt) compact on L2(M), ∀ t ∈ R,

for all a ∈ C(X), where

(2.18) Gt is the geodesic flow on X = S∗M,

generated by the Hamiltonian vector field associated to the principal symbol of Λ,
a smooth flow on X that preserves the Liouville measure. For a ∈ C∞(X), this
difference belongs to OPS−1

1,0(M) for all t. Extension of (2.17) to a ∈ C(X) follows

readily from the denseness of C∞(X) in C(X) and (2.8). As a corollary, we have
the following.

Proposition 2.3. Let a ∈ C(X), and, for T ∈ (0,∞), set

(2.19) aT =
1

2T

∫ T

−T

a ◦ Gt dt,

and

(2.20) AT =
1

2T

∫ T

−T

e−itΛAeitΛ dt, A = opF (a).

Then, for each such T ,

(2.21) AT − opF (aT ) is compact on L2(M).

Corollary 2.4. In the setting of Proposition 2.3,

(2.22) lim
N→∞

1

N

N∑
k=1

∥[AT − opF (aT )]φk∥2L2 = 0, ∀T < ∞.

Proof. Given {φk} is an orthonormal set in L2(M), then φk → 0 weakly, as k → ∞,
so ∥Kφk∥L2 → 0 as k → ∞ for each compact operator on L2(M). Hence, for each
T < ∞,

(2.23) ∥[AT − opF (aT )]φk∥L2 −→ 0 as k → ∞,

and (2.22) follows.
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3. Ergodic theorems

Before discussing quantum ergodic theorems, we recall some classical ergodic the-
orems, as applied to the group Gt : X → X of measure preserving homeomorphisms
of X. Von Neumann’s mean ergodic theorem yields for aT in (2.19)

(3.1) aT −→ Pa, in L2(X)-norm,

as T → ∞, for all a ∈ L2(X), where

(3.2) P = orthogonal projection of L2(X) onto {a ∈ L2(X) : a◦Gt = a, ∀ t ∈ R}.

Birkhoff’s ergodic theorem then yields

(3.3) aT −→ Pa, a.e. on X,

for all a ∈ L1(X). We also have

(3.4) P : Lp(X) −→ Lp(X), ∀ p ∈ [1,∞],

and

(3.5) aT −→ Pa in Lp-norm, for a ∈ Lp(X), 1 ≤ p < ∞,

while

(3.6)
a ∈ L∞(X) =⇒ aT → Pa pointwise a.e. and boundedly

=⇒ aT → Pa weak∗ in L∞(X),

as T → ∞. In light of (2.7), we deduce from (3.6) that

(3.7) opF (aT ) −→ opF (Pa) in the weak operator topology of L(L2(M)),

as T → ∞, given a ∈ L∞(X).

The relevance of (3.1) in particular arises from applying Proposition 2.2 to

(3.8) b = aT − Pa.

We have
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Proposition 3.1. If a ∈ C(X), then

(3.9) lim
N→∞

1

N

N∑
k=1

∥ opF (aT − Pa)φk∥2L2(M) =

∫
X

|aT − Pa|2 dS,

provided that also

(3.10) Pa ∈ C(X).

We can use this, in combination with Corollary 2.4, to establish the following.

Proposition 3.2. If a, Pa ∈ C(X), A = opF (a), and AT is as in (2.20), then

(3.11) lim sup
N→∞

1

N

N∑
k=1

∥[AT − opF (Pa)]φk∥2L2(M) ≤ 2

∫
X

|aT − Pa|2 dS,

for each T < ∞.

Proof. Write

(3.12) AT − opF (Pa) = [AT − opF (aT )] + [opF (aT )− opF (Pa)],

and use (α+ β)2 ≤ 2α2 + 2β2 for α, β ≥ 0, to dominate the left side of (3.11) by

(3.13)

lim sup
N→∞

2

N

N∑
k=1

∥[AT − opF (aT )]φk∥2L2

+ lim sup
N→∞

2

N

N∑
k=1

∥ opF (aT − Pa)φk∥2L2 .

Apply (2.22) to the first limsup in (3.13). Then apply Proposition 2.2 with b =
aT − Pa to get

(3.14) lim
N→∞

1

N

N∑
k=1

∥ opF (aT − Pa)φk∥2L2 =

∫
X

|aT − Pa|2 dS.

Then we have (3.11).

As we have seen,

(3.15) AT −→ Π(A) in the strong operator topology,

as T → ∞, for each A ∈ L(L2(M)), and in particular for A = opF (a), a ∈ L∞(X).
This leads to the following.
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Problem 1. Given a, Pa ∈ C(X), compare

(3.16) Π(opF (a)) and opF (Pa).

The result (3.11) looks relevant to this task, but I have not seen how to use it to
solve the problem. See [Su] and [Z1] for related results, particularly when {Gt} acts
ergodically on X.

We pursue consequences of Proposition 3.2. Since ∥Bφk∥2L2 ≥ |(Bφk, φk)|2 and
(ATφk, φk) = (Aφk, φk), for φk as in (2.10), we deduce from (3.11) that

(3.17) lim sup
N→∞

1

N

N∑
k=1

|([A− opF (Pa)]φk, φk)|2 ≤ 2

∫
X

|aT − Pa|2 dS,

for each T < ∞. Taking T → ∞, we have

Corollary 3.3. In the setting of Proposition 3.2,

(3.18) lim
N→∞

1

N

N∑
k=1

|(Aφk, φk)− (opF (Pa)φk, φk)|2 = 0.

This is essentially the “standard” quantum ergodic theorem, in the formulation
given in [T1].

To proceed with consequences of (3.11), let us rewrite it as

(3.19) lim sup
N→∞

1

dN

∑
λ∈ΣN

∥[AT − opF (Pa)]Pλ∥2HS ≤ 2

∫
X

|aT − Pa|2 dS,

where, as in §1, Pλ is the orthogonal projection of L2(M) onto Eigen(Λ, λ), and

(3.20) dN =
∑
λ≤N

dimEigen(Λ, λ) = Tr
∑
λ≤N

Pλ.

Now

(3.21) Pλe
−itΛAeitΛPλ = PλAPλ, ∀ t ∈ R,

hence

(3.22) PλATPλ = PλAPλ.
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Hence, for all T < ∞,

(3.23)
∥PλAPλ∥2HS = ∥PλATPλ∥2HS

≤ ∥ATPλ∥2HS.

Consequently, by (3.19),

(3.24)

Pa = 0 =⇒ lim sup
N→∞

1

dN

∑
λ∈ΣN

∥PλAPλ∥2HS

≤ inf
T<∞

∫
X

|aT − Pa|2 dS

= 0.

We hence have the following.

Proposition 3.4. In the setting of Proposition 3.2, if also Pa = 0, then

(3.25) lim
N→∞

1

dN

∑
λ∈ΣN

∥PλAPλ∥2HS = 0.

If we apply this result with a replaced by a− Pa, we have the following.

Proposition 3.5. If a, Pa ∈ C(X), A = opF (a), then

(3.26) lim
N→∞

1

dN

∑
λ∈ΣN

∥Pλ[A− opF (Pa)]Pλ∥2HS = 0.

That is,

(3.27) lim
N→∞

1

dN
∥[Π(A)−Π(opF (Pa))]QN∥2HS = 0,

where

(3.28) QN =
∑
λ≤N

Pλ.

This brings us back to Problem 1, which we can restate as

Problem 2. Assume b ∈ C(X) and Pb = b. Then estimate

(3.29) B −Π(B), B = opF (b).

Note that

(3.30) Pa = a ⇒ opF (Pa) = aI ⇒ Π(opF (Pa)) = aI.

This always holds when {Gt} is ergodic. In such a case, the conclusion of Proposition
3.5 is contained in Theorem 2 of [Z1].

The following result (potentially) addresses cases where {Gt} is not ergodic. It
refines Proposition 4.4 of [T2].
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Proposition 3.6. Let U ⊂ X be open and assume Gt : U → U , and that the
action on U is ergodic. Let a, b ∈ C(X) be supported on a compact subset of U ,
A = opF (a), B = opF (b). Then

(3.31)

∫
X

a dS =

∫
X

b dS

=⇒ lim
N→∞

1

dN
∥[Π(A)−Π(B)]QN∥2HS = 0.

Proof. Under these hypotheses, P (a− b) = 0, so (3.27) applies to A−B.

Remark. We have not established a corresponding refinement of Proposition 4.5
of [T2], which allows a, b ∈ R(X).
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4. Concentration of eigenfunctions on Sn

Here we work on Sn, the unit sphere in Rn+1, with its standard metric. Then
the geodesic flow {Gt} is periodic of period 2π. It is convenient to take

(4.1) Λ =

√
−∆+

(n− 1

2

)2

− n− 1

2
,

so eitΛ is also periodic of period 2π (cf. (4.8) below). Then, given A ∈ L(L2(Sn)),

(4.2) Π(A) =
1

2π

∫ 2π

0

e−itΛAeitΛ dt.

In case a ∈ C∞(S∗Sn), we have

(4.3) Pa(x, ξ) =
1

2π

∫ 2π

0

a(Gt(x, ξ)) dt,

and it is a straightforward consequence of Egorov’s theorem that, if A = opF (a),

(4.4) Π(A)− opF (Pa) ∈ OPS−1(Sn).

We now specialize to the case where A is a multiplication operator,

(4.5) Au(x) = a(x)u(x), a ∈ C∞(Sn),

and, to keep things simple, assume that

(4.6) n = 2, and a(x) is invariant under R(t),

where R(t) is the group of rotations about the x3-axis. Then A commutes with the
associated unitary group R(t) on L2(S2), which we write as

(4.7) R(t) = eitX ,

where iX = Y is the real vector field on S2 generating the rotation. This group is
also periodic, of period 2π. We note that

(4.8) SpecΛ = {k ∈ Z : k ≥ 0},

and if Vk denotes the k-eigenspace of Λ, then

(4.9) dimVk = 2k + 1,
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and

(4.10) SpecX
∣∣
Vk

= {ℓ ∈ Z : −k ≤ ℓ ≤ k}.

Let us note that Λ and X commute, and that the pair {Λ, X} has simple spectrum.
Also, under the hypothesis (4.5)–(4.6), Π(A) commutes with X as well as with Λ.
Hence Π(A) is a function of (Λ, X),

(4.11) Π(A) = F (Λ, X).

Also, given a ∈ C∞(S∗S2), we have

(4.12) Π(A) ∈ OPS0(S2),

with principal symbol given by (4.3).
Given these facts, we can use results of Chapter 12 of [T0] to analyze F in (4.11).

These results yield

(4.13) F ∈ S0(R2) =⇒ F (Λ, X) = B ∈ OPS0(S2),

with principal symbol

(4.14) b(x, ξ) = F (|ξ|, ⟨Y, ξ⟩).

Recall that Y = iX is a real vector field. Note that it suffices to specify F on
{(λ1, λ2) : λ1 ≥ 0, |λ2| ≤ λ1}, in light of (4.8)–(4.10), and also taking into account
that |Y | ≤ 1 on S2. We want the principal part of (4.14) to match up with (4.3)
on S∗S2.

Thus, we want to define F0(λ1, λ2), homogeneous of degree 0 in (λ1, λ2), so that

(4.15) F0(1, ⟨Y, ξ⟩) = Pa(x, ξ), for (x, ξ) ∈ S∗S2.

Now F0(1, λ2) is a function of λ2 ∈ [−1, 1], while Pa is a function on S∗S2, which
has dimension 3. However, Pa is invariant under the flows Gt and R(t), and in fact
it is uniquely specified by its behavior on S∗

x0
S2, where x0 is an arbitrarily chosen

point on the equator of S2. At x0, Y is a unit vector parallel to the equator, and
(4.15) becomes

(4.16) F0(1, λ2) = Pa
(
x0, (λ2,

√
1− λ2

2)
)
.

At first glance, this looks non-smooth at λ2 = ±1, but in fact we have

(4.17) Pa(x0, (ξ1, ξ2)) = Pa(x0, (ξ1,−ξ2)).
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Such an identity is clear if a(x) is even under x3 7→ −x3. On the other hand, if a(x)
is odd under this transformation its invariance under R(t) guarantees that (4.3)
vanishes, so we have (4.17) for general R(t)-invariant a ∈ C∞(S2). From (4.17) we
have that (4.16) defines a smooth function of λ2 ∈ [−1, 1]. Then

(4.18)
F0(Λ, X) ∈ OPS0(S2), and

Π(A)− F0(Λ, X) ∈ OPS−1(S2).

Note that

(4.19) F0(Λ, X) = g(Λ−1X),

where g(λ) = F0(1, λ), i.e.,

(4.20) g(λ) = Pa(x0, (λ,
√

1− λ2)).

Results just described have implications for concentration of spherical harmonics.
In fact, we can take an orthonormal basis

(4.21) {φkℓ : k, ℓ ∈ Z, k ≥ 0, |ℓ| ≤ k}

of L2(S2), satisfying

(4.21A) Λφkℓ = kφkℓ, Xφkℓ = ℓφkℓ.

Then

(4.22)

∫
S2

a(x)|φkℓ(x)|2 dS(x) = (Aφkℓ, φkℓ)L2

= (Π(A)φkℓ, φkℓ)L2

= (F0(Λ, X)φkℓ, φkℓ)L2 +Rkℓ,

where

(4.25) Rkℓ −→ 0, as k → ∞.

Hence

(4.24)

∫
S2

a(x)|φkℓ(x)|2 dS(x) = g
( ℓ

k

)
+Rkℓ,

with g(λ) given by (4.20).
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Let us pick β ∈ (0, 1) and take a ∈ C∞(S2), invariant under R(t), and satisfying

(4.25) a(x) = 0, for |x3| ≤ β.

It follows from (4.20) and (4.3) that

(4.26) g(λ) = 0, for
√

1− λ2 ≤ β,

i.e., for |λ| ≥
√
1− β2. Hence

(4.27)

∫
S2

a(x)|φkℓ(x)|2 dS(x) = Rkℓ → 0, as k → 0,

for |ℓ|/k ≥
√

1− β2.

Conclusion. The orthonormal eigenfunctions φkℓ concentrate on the strip |x3| ≤ β

as k → ∞, for |ℓ|/k ≥
√
1− β2.
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5. More general concentration results

Let M be a compact, connected Riemannian manifold, and assume M has a
nonzero Killing field Y , generating a 1-parameter family of isometries of M . We
will also make the hypothesis that

(5.1) A0 = min
x∈M

|Y (x)| < max
x∈M

|Y (x)| = A1.

The operatorX = iY is self adjoint on L2(M) and commutes with Λ =
√
−∆. Thus

there is an orthonormal basis {φk} of L2(M) consisting of joint eigenfunctions,

(5.2) Λφk = λkφk, Xφk = µkφk,

with λk ↗ +∞, as in (2.10). Note that

(5.3)
µ2
k = ∥Xφk∥2L2 ≤ A2

1∥∇φk∥2L2 = A2
1(−∆φk, φk)

= A2
1∥Λφk∥2L2 = A2

1λ
2
k,

i.e.,

(5.4) |µk| ≤ A1λk.

We can define a function F (Λ, X) by

(5.5) F (Λ, X)φk = F (λk, µk)φk.

Then, as shown in Chapter 12 of [T0],

(5.6)
F ∈ S0(R2) =⇒ F (Λ, X) ∈ OPS0(M), and

σF (Λ,X)(x, ξ) = F (|ξ|, ⟨Y, ξ⟩).

From here on, we assume F ∈ C∞(R2 \ 0) is homogeneous of degree 0, and
note that only its behavior on the wedge {(λ, µ) : |µ| ≤ A1λ} is significant for the
behavior of F (Λ, X). We set

(5.7) φ(µ) = F (1, µ), so F (Λ, X) = φ(Λ−1X).

Note that only the behavior of φ on µ ∈ [−A1, A1] is significant. The Weyl law
(2.11) (or (2.14)) yields

(5.8) lim
N→∞

1

N

N∑
k=1

∥F (Λ, X)φk∥2L2 =

∫
S∗M

|φ(⟨Y, ξ⟩)|2 dS,
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where dS is the Liouville measure on S∗M , normalized so that
∫
S∗M

dS = 1. This
gives information on the joint spectrum of the pair (Λ, X), in connection with the
classical result

(5.9) λk ∼ (Ck)1/n, as k → ∞,

where n = dimM and C = Γ(n/2 + 1)(4π)n/2/VolM . Another application of the
Weyl formula is that, for a ∈ C∞(M),

(5.10)

lim
N→∞

1

N

N∑
k=1

∫
M

a(x)|F (Λ, X)φk|2 dV

=

∫
S∗M

a(x)|φ(⟨Y, ξ⟩)|2 dS.

We are ready to obtain some general concentration results, parallel to those of
§4, but valid in much greater generality. The key to this result is the observation
that, if A0 < B < A1,
(5.11)
φ(µ) = 0 for |µ| ≤ B

=⇒ φ(⟨Y, ξ⟩) = 0, ∀(x, ξ) ∈ S∗M such that x ∈ MB = {x ∈ M : |Y (x)| ≤ B}.

Hence we have the following conclusion.

Proposition 5.1. With a ∈ C∞(M), set Au(x) = a(x)u(x). Then

(5.12)
φ(µ) = 0 for |µ| ≤ B, supp a ⊂ MB

=⇒ F (Λ, X)∗AF (Λ, X) ∈ OPS−1(M).

Hence, when these hypotheses hold,

(5.13)

lim
k→∞

∫
M

a(x)|F (Λ, X)φk|2 dV

= lim
k→∞

(F (Λ, X)∗AF (Λ, X)φk, φk)L2 = 0.

Equivalently,

(5.14) lim
k→∞

|φ(λ−1
k µk)|2

∫
M

a(x)|φk(x)|2 dV (x) = 0.
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