
Rayleigh Waves in Linear Elasticity as a Propagation of
Singularities Phenomenon

Michael E. Taylor

Abstract. We examine the propagation of surface waves known as Rayleigh waves
from the perspective of microlocal analysis. This paper is a TeXed version of Taylor
(1979).

1. Introduction

We consider here the propagation of elastic waves in a bounded medium. We
assume our medium is isotropic, and that the displacement u satisfies the equation
of linear elasticity

(1.1)
∂2u

∂t2
= (λ + µ) grad div u + µ∆u,

where λ and µ are certain scalar quantities called the “Lamé constants.” We assume
λ and µ are positive. Then, as is well known, there are two sound speeds,

√
µ and√

λ + 2µ, associated respectively with shear waves (s-waves) and pressure waves (p-
waves). Now, it has long been observed that a discontinuous pulse on the surface ∂K
of the body K gives rise to a third singular wave, traveling along the boundary at
a third, slower speed. This wave is called a Rayleigh wave, and it is of considerable
importance in seismology. For example, if the impulse is caused by a sudden break
near the surface of the earth, giving rise to an earthquake, the p-waves and s-waves
disperse rapidly, having amplitudes that vary inversely as the square of the distance
of the epicenter, while the Rayleigh waves only go down like one over the distance.

In the case ∂K is flat, the propagation of Rayleigh waves has been analyzed in
some detail. See Landau and Lifschitz (1970), Love (1944), and Rayleigh (1885).
The purpose of this paper is to give a rigorous treatment of the singularity that
travels along ∂K, at Rayleigh sound speed, in the case when ∂K is curved. For
simplicity in exposition, we carry out the calculations in two space dimensions, but
a similar approach will work in three space dimensions. In such a case, we can
evidently have a phenomenon which would not occur in the case of a flat boundary.
Namely, a point source on ∂K can give rise to caustics, on which the Rayleigh wave
would have fairly large amplitude.

We use the method of geometrical optics and the calculus of Fourier integral
operators to analyze the singularities of a solution to (1.1), assumed to satisfy the
free boundary condition on ∂K, namely the normal components of the stress tensor
shall vanish:

(1.2)
∑

i

niσij = 0 on ∂K,
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where the stress tensor is

σij = λ(div u)δjk + µ
( ∂ui

∂xj
+

∂uj

∂xi

)
,

and n is the normal to ∂K. The method of geometrical optics reduces the problem
to studying a certain pseudodifferential operator P on R × ∂K, similar to cases
studied by Majda and Osher (1975) and Taylor (1975) for analyses of reflection of
singularities. Now, the results of these two papers dealt with the case when P was
elliptic, or at least hypoelliptic, and, as we will see, the operator P in the current
situation has characteristics that are simple, and near which det P is real valued.
This, together with the fact that t is monotonic on each null bicharacteristic of P ,
will allow us to construct the appropriate parametrix and analyze the singularities.
Aside from the physical interest of this problem, I think this additional case in the
analysis of propagation of singularities in a domain with boundary is very interesting
mathematically.

In Section 2, we give a brief account of the basic existence and uniqueness theory
for solutions to the Cauchy problem for (1.1)–(1.2). This will serve to acquaint the
reader who is familiar with the general theory of linear PDE with the peculiarities
of the equations of linear elesticity, and also to give a concise description of the
tools needed to justify our geometrical optics construction of Section 3. The solv-
ability and analysis of the pseudodifferential equations obtained in Section 3 can
be obtained as a special case of the work of Duistermaat and Hörmander (1972),
but, in fact, a simpler construction of global parametrices will suffice (due to the
monotonicity of t along null bicharacteristics). We will construct such parametrices
in Section 4, both in order to make this exposition more self conained and to point
out the possibility of constructing global parametrices without necessarily using
all the global machinery of Duistermaat and Hörmander (1972) and Hörmander
(1971). In Section 5, we put this phenomenon of Rayleigh waves in a general
context, complementing our work in 1975.

Finally, let me remark that the phenomenon of Rayleigh waves is connected to
the failure of the Kreiss-Sakamoto condition for (1.1)–(1.2) in the “elliptic region.”
In Taylor (1976) we treated the diffraction problem for first order systems satisfying
the Kreiss condition (which generalizes to higher order systems with no difficulty)
and since that analysis is microlocal and the system (1.1)–(1.2) near the “char-
acteristic variety” in T ∗(R × ∂K) (over which the grazing rays pass) does satisfy
the Kreiss-Sakamoto consition, it follows that we obtain a complete analysis of the
singularities of solutions to (1.1)–(1.2), with no restriction on the wave front set of
the initial data such as we introduce in Section 4 to avoid grazing rays, provided
∂K is convex with respect to the null bicharacteristics of (1.1). Thus, much of the
scattering theory developed by Lax and Phillips (1967) for the acoustic equation,
and also much of the analysis of Majda and Taylor (1977), goes through for the
scattering of elastic waves off a convex obstacle.

Acknowledgment. I am grateful to N. Zitron for bringing the problem of scat-
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2. Basic existence and uniqueness, and smoothness of solution

In order to analyze the initial value problem, prescribing u and ∂u/∂t at t = 0,
for solutions to (1.1)–(1.2), we consider the operator

Lu = (λ + µ) grad div u + µ∆u.

The boundary condition (1.2) makes L a symmetric operator, i.e., (Lu, v) = (u, Lv)
for all smooth u and v on K, with bounded support, which satisfy the boundary
condition (1.2).

Lemma 1.2. L is elliptic and the boundary condition (1.2) coercive.

Proof. The ellipticity of L is obvious. To check the coerciveness of (1.2), we can
assume K is a half space, and check the Lopatinsky condition. Thus, if K is defined
by x1 ≥ 0 and if u(x1) is a bounded solution to

L
(1

i

∂

∂x1
, α2, α3

)
u(x1) = 0,

(obtained by replacing (1/i)(∂/∂xj) by αj for j = 2, 3 in the formula for L) such
that the boundary condition

∑

i

niσij

(1
i

∂

∂x1
, α2, α3

)
u(x1) = 0, at x1 = 0,

is satisfied, we need to show that u ≡ 0, provided (α2, α3) ∈ R2 \ 0. We may
suppose

u = Eeiα1x1 + Ẽeiα̃1x1 ,

with E, Ẽ ∈ C3. First of all,

L
(1

i

∂

∂x1
, α2, α3

)
u(x1) = 0

implies

(2.1)

[
(λ + µ)ME + µ(α2

1 + α2
2 + α2

3)E
]
eiα1x1

+
[
(λ + µ)M̃Ẽ + µ(α̃2

1 + α2
2 + α2

3)E
]
eiα̃1x1 = 0,
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where
M =

(
mij

)
=

(
αiαj

)
,

and M̃ is given by the same expression, with α1 replaced by α̃1. Thus −µ(λ +
µ)−1(α2

1 + α2
2 + α2

3) is required to be an eigenvalue of M (or E = 0), and −µ(λ +
µ)−1(α̃2

1 + α2
2 + α2

3) must be an eigenvalue of M̃ (or Ẽ = 0). It is easy to see that
the eigenvalues of M are 0, 0, and α2

1 + α2
2 + α2

3, so (2.1) yields α2
1 + α2

2 + α2
3 = 0,

and similarly α̃2
1 + α2

2 + α2
3 = 0, so

α1 = i
√

α2
2 + α2

3, α̃1 = −i
√

α2
2 + α2

3.

The boundedness hypothesis implies Ẽ = 0, so we are left with

u = Ee−ηx1 , η =
√

α2
2 + α2

3.

Now, the boundary condition σ11 = σ12 = σ13 = 0 at x1 = 0 implies

(2.2)

−(λ + 2µ)ηE1 + iλα2E2 + iλα3E3 = 0,

−ηE2 + iα2E1 = 0,

−ηE3 + iα3E1 = 0,

but, if E 6= 0, we see from (2.2) that η must satisfy the system

det



−(λ + 2µ)η iλα2 iλα3

iα2 −η 0
iα3 0 −η


 = 0,

which reduces to
(λ + 2µ)η2 + λ(α2

2 + α2
3) = 0.

But, since λ, µ > 0, this is not possible, so the Lopatinsky condition is verified.

If we assume K is a bounded domain, with smooth boundary, it follows from stan-
dard elliptic theory that Ls, defined on those u ∈ C∞(K) satisfying the boundary
condition (1.2), has a unique positive self adjoint extension, which we will denote L,
and then the unique solvability of the cauchy problem, given u(0) ∈ D(L), ut(0) ∈
L2(K) for (1.1)–(1.2) is an exercise in spectral theory.

Having existence, we now want to show that a function u that solves such a
mixed problem, with a smooth error, must differ from the exact solution by a
smooth function. This is a standard consequence of the coerciveness of L, and we
sketch the argument briefly.

It suffices to show that, if u = 0 for t < 0, and

∂2u

∂t2
− Lu = f, on R×K,(2.3)

∑
niσij = g, on R× ∂K,(2.4)
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where f ∈ C∞(R×K), g ∈ C∞(R×∂K), then u ∈ C∞(R×K). First, since R×∂K
is noncharacteristic for ∂2/∂t2 − L, we may use the formal Cauchy-Kowalevsky
process and Borel’s theorem to solve (2.3) to infinite order at R × ∂K, with (2.4)
satisfied (and you could specify both u and ∂u/∂ν on R× ∂K). Thus, it suffices to
show that solutions to (2.3)–(2.4) with u = 0 for t < 0 are smooth, assuming that
g = 0 and that f vanishes to infinite order on R× ∂K. In such a case, write down
u using Duhamel’s formula:

(2.5) u(t) =
∫ t

0

sin((t− s)
√−L)√−L

f(s) ds.

Here, L is the self adjoint operator on L2(K) with domain D(L) specified by the
boundary condition (1.2). The operator in the integrand is defined by the spectral
theorem and is a bounded family of operators on L2(K), and also on each Hilbert
space D(Lk), k = 1, 2, 3, . . . . Now, since f ∈ C∞(R×K) and vanishes on R× ∂K
to infinite order, it follows that

f(s) ∈
⋂

k≥1

D(Lk),

as do all its derivatives. Hence, by (2.5), we see that u(t) is a smooth function of t
taking values in D(Lk) for each k. Since the boundary condition (1.2) is coercive,
it follows that D(Lk) ⊂ H2k(K). Thus u is C∞ on R×K, as desired.

3. Construction of parametrices

We construct an approximation to (1.1) satisfying the inhomogeneous boundary
condition

(3.1)
∑

niσij = fj on R× ∂K,

where fj ∈ E ′(R × ∂K) vanish for t < 0. We assume K ⊂ R2 for convenience in
calculation. We look for the unique outgoing solution, i.e., we require that u = 0
for t < 0. We assume that WF(fj) is contained in a small conic neighborhood of a
point (x0, t0, ξ0, τ0) ∈ T ∗(R× ∂K) \ 0. We look for an approximate solution of the
form
(3.2)

u =
∫

a(t, x1, x2, ζ)eiϕ(t,x1,x2,ζ)F̂ (ζ) dζ +
∫

b(t, x1, x2, ζ)eiψ(t,x1,x2,ζ)Ĝ(ζ) dζ,

where ζ ∈ R2, F and G are scalar valued distributions to be determined by the
boundary condition (3.1), a and b are vector valued amplitudes, and ϕ and ψ are
certain phase functions, satisfying the eikonal equations of geometrical optics,

ϕ2
t = (λ + 2µ)∇xϕ · ∇xϕ,(3.3)

ψ2
t = µ∇xψ · ∇xψ.(3.4)
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Away from the characteristic variety in T ∗(R × ∂K), the boundary R × ∂K is
noncharacteristic for each of these eikonal equations. We would like to specify that
both ϕ and ψ equal some given function γ(t, x, ξ) on R×∂K. There are three cases:

(i) Over ((t, x),∇tanγ(t, x, ξ)) ∈ T ∗(R× ∂K) pass four rays. This is the hyperbolic
region. The eikonal equations (3.3) and (3.4) can both be solved exactly here.

(ii) Over ((t, x),∇tanγ(t, x, ξ)) ∈ T ∗(R × ∂K) pass two rays. This is the “mixed”
region. Here, (3.4) can be solved exactly, but (3.3) cannot. However, one can solve
(3.3) to infinite order on R × ∂K, which will suffice for the construction of the
parametrix. We demand that Im ϕ ≥ 0.

(iii) Over ((t, x),∇tanγ(t, x, ξ)) ∈ T ∗(R × ∂K) pass no rays. This is the “elliptic
region.” Here, (3.3) and (3.4) can both be solved to infinite order on R× ∂K, with
Im ϕ ≥ 0 and Im ψ ≥ 0 everywhere.

In each case, there are also the associated transport equations for the amplitudes
a and b, which are treated similarly.

It follows that (3.2) satisfies (1.1) up to a smooth error. We can prescribe
a(t, x, ζ) and b(t, x, ζ) for x ∈ ∂K as long as they are respectively in the (λ +
2µ)|ξ|2 and µ|ξ|2 eigenspaces of the symbol −L(t, x, τ, ξ) of −(λ+2µ) grad div−µ∆
evaluated respectively at (τ, ξ) = (ϕt, ϕx) and (τ, ξ) = (ψt, ψx). Naturally, we
require that these vectors be nonzero on ∂K, so they span R2 there. Satisfying
the boundary condition (3.1) leads to a pseudodifferential equation on R× ∂K for
(F,G) in terms of (f1, f2), which we derive as follows. The left side of (3.1) is

λ(div u)nj + µ
∑

i

ni

(∂uj

∂xi
+

∂ui

∂xj

)
.

Thus, the vector
∑

i niσij |R×∂K is given by

(3.5) T

(
F

G

)
=

∫ [
A(t, x, ζ)F̂ (ζ) + B(t, x, ζ)Ĝ(ζ)

]
eiγ(t,x,ζ) dζ,

with A and B vector valued symbols of order 1. Their principal parts, homogeneous
of degree 1 in ζ, are given by

A1(t, x, ζ) = iλ(∇xϕ · a0)n + iµ
(
(∇xϕ · n)a0 + (a0 · n)∇xϕ

)
(3.6)

B1(t, x, ζ) = iλ(∇xψ · b0)n + iµ
(
(∇xψ · n)b0 + (b0 · n)∇xψ

)
.(3.7)

We now consider solving the system

(3.8) T

(
F

G

)
=

(
f1

f2

)
mod C∞,

given fj ∈ E ′(R× ∂K), supported in t > 0, where we demand that F and G vanish
for t < 0. If coordinates z = (t, x) are chosen on R × ∂K such that γ(t, x, ζ) =
z · ζ = x · ξ + τt, then (3.8) is a pseudodifferential equation for (F,G) in erms of
(f1, f2). We will show that T has the following behavior.
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Lemma 3.1. In the hyperbolic and mixed regions, T is elliptic. In the elliptic
region, the real valued symbol detσT has a simple zero on a hypersurface in T ∗(R×
∂K) \ 0. On this surface

∂

∂τ
detσT 6= 0.

As we will see in Section 4, this leads to the following.

Lemma 3.2. The system (3.8) has a unique solution, mod C∞, which vanishes for
t < 0, given fj supported in {t > 0}. Then WF(F ) and WF(G) are contained in
the set Σ: the union of S = WF(f1) ∪WF(f2) and the set of null bicharacteristics
for detσT passing over S, traveling in the positive t direction.

Plugging this result into (3.2), we immediately obtain our main result on prop-
agation of singularities for solutions to (1.1) and (3.1).

Theorem 3.3. Let u be the unique solution to (1.1) and (3.1), vanishing for t < 0,
given fj ∈ E ′(R×∂K) vanishing for t < 0. Assume WF(fj) avoids the characteristic
variety. Then, in R×K, WF(u) is contained in the set of null bicharacteristics of
L passing over WF(f1)∪WF(f2), going in the positive t direction, as long as these
bicharacteristics do not pass over R × ∂K again. The solution u is smooth up to
∂K except at the singular supports of f1, f2 and at the image in R× ∂K of the set
Σ described in Lemma 3.2. If we consider u|R×∂K and ∂νu|R×∂K , the wave front
sets of these distributions are contained in Σ.

It is the set Σ that forms the wave front set of the Rayleigh wave produced by u.
If the null bicharacteristics mentioned in Theorem 3.3 do pass over R× ∂K again,
propagation and reflection of singularities results continue to hold, as described in
Taylor (1975), as long as they do not pass over the characteristic variety. Note
that such rays cannot pass over the elliptic region, so no further Rayleigh waves
are produced.

We turn now to the proof of Lemma 3.1. In order to compute det σT = det(A1 B1),
where (A1 B1) is the 2 × 2 matrix whose columns are A1 and B1, at a point
(t0, x0, τ, ξ), we may as well assume Euclidean coordinates are chosen so that x0 = 0
and the plane {x1 = 0} is tangent to ∂K at x0, with n(x0) pointing in the positive
x1 direction. At x0, the eikonal equations solved by ϕ and ψ can be rewritten, with
z = (x2, t), as

ϕx1 = λ1(x1, z,∇zϕ), ψx1 = µ1(x1, z,∇zψ),
where, if we write E(t, x, τ, ξ) for the principal symbol of ∂2

t −L, λ1 and λ2 are the
roots of det E(t, x, τ, λ1, ξ2) = 0. Then, the vectors a0 and b0 are picked so that

E(t, x, τ, λ1, ξ2)a0 = 0, E(t, x, τ, µ1, ξ2)b0 = 0.

A straightforward computation yields the following formulas:

λ2
1 =

1
µ

τ2 − ξ2
2 , µ2

1 =
1

λ + 2µ
τ2 − ξ2

2 ,(3.9)

a0 =
(

ξ2

−λ1

)
, b0 =

(
µ1

ξ1

)
,(3.10)
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and combining these formulas with (3.6) and (3.7) yields

(
A1 B1

)
= C

(
λ1ξ2

(
1− λ

λ+2µ

)
µ2

1 + λ
λ+2µξ2

2

ξ2
2 − λ2

1 2µ1ξ2

)
,

where C is a nonvanishing scalar. Thus det σT is a nonvanishing multiple of

(3.11) 2µλ1ξ
2
2 + µ

(
2ξ2

2 −
1
µ

τ2
)2

= p(ξ2, τ).

Note that (ξ2, τ) is the fibre variable of T ∗(R × ∂K), which is divided into three
regions (excluding the characteristic variety).

I. |τ | > (λ + 2µ)1/2|ξ2| (hyperbolic region). Here λ2
1 and µ2

1 are positive, so the
roots λ1 and µ1 are real. Representing outgoing waves, they must have the same
sign.

II. µ1/2|ξ2| < |τ | < (λ + 2µ)1/2|ξ2| (mixed region). Here λ2
1 > 0, but µ2

1 < 0, so λ1

is real but µ1 is purely imaginary.

III. |τ | < µ1/2|ξ2| (elliptic region). Here both λ2
1 and µ2

1 are negative, so all roots
are purely imaginary.

The assertion of Lemma 3.1 is that p(ξ2, τ) is nonvanishing in regions I and II, and
in region III has a simple zero, at which (∂/∂τ)p 6= 0.

The behavior of p(ξ2, τ) in regions I and II is easy to investigate. In region I,
we have p(ξ2, τ) > 0. In region II, the term 4µλ1µ1ξ

2
2 is imaginary and the term

µ(2ξ2
2 − τ2/µ)2 is real, and again p(ξ2, τ) 6= 0.

In region III, p(ξ2, τ) is also real valued. To simplify the analysis of p(ξ2, τ)
there, let ξ2 = 1 and t = τ2. Since p(ξ2, τ) = 0 in region III is equivalent to
16λ2

1µ
2
1ξ

4
2 = (2ξ2

2 − τ2/µ)4, this condition becomes

16
( 1

µ
t− 1

)( 1
λ + 2µ

t− 1
)

=
( 1

µ
t− 2

)4

.

Multiplying this out and replacing t by s = t/µ yields

s4 − 8s3 +
(
24− 16

µ

λ + 2µ

)
s2 − 16

(
1− µ

λ + 2µ

)
s = 0,

which, upon division by s, reduces to the cubic equation

q(s) = s3 − 8s2 +
(
24− 16

µ

λ + 2µ

)
s− 16

(
1− µ

λ + 2µ

)
= 0.
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This is the equation that occurs in the analysis of Raleigh waves in the half space
(see Love, 1944), and the location of its zeros is easy. Our assertion boils down to
showing that, for 0 < s < 1, q(s) has exactly one zero, where q′(s) 6= 0. (Outside
this interval, q(s) may have other zeros, but these do not correspond to zeros of
p(ξ2, τ), due to our having squared the equation 4µλ1µ1ξ

2
2 = −µ(2ξ2

2 − τ2/µ).) In
fact, we readily see that

q(0) = −16
(
1− µ

λ + 2µ

)
< 0, q(1) = 1 > 0,

so q(s) has at least one zero in this interval. Meanwhile one verifies that q′(s) > 0
for 0 ≤ s ≤ 1. This completes the proof of Lemma 3.1.

4. Solution of the boundary equation

In this section, we give a construction for a parametrix for the pseudodifferential
equation

(4.1) Tu = f (mod C∞),

where we assume T is a k×k matrix of pseudodifferential operators, which we may
suppose to be of order zero, on a manifold R×X with coordinates (t, x), such that

(4.2) p(t, x, τ, ξ) = det σT is real,

and

(4.3)
∂

∂τ
p 6= 0 where p = 0.

We assume that f = 0 for t < 0, and demand that

(4.4) u ∈ C∞ for t < 0.

We construct a global approximate solution, under the assumption that X is com-
pact. This is a special case of a construction of Duistermaat and Hörmander (1972),
which used somewhat heavier machinery.

Let coT be the cofactor matrix of T , so coTT = P + Q, where σP = p(t, x, τ, ξ)
and Q ∈ OPS−1. Thus (4.1) implies coTTu = coTf = g, or

(P + Q)u = g.

Letting Λ ∈ OPS1 be some scalar, elliptic operator on R×X, with positive symbol,
this is equivalent to

(4.5) (q + B)u = g̃ mod C∞,
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where g̃ = Λg, q = ΛP ∈ OPS1, B = ΛQ ∈ OPS0. The hypothesis f = 0 for
t < 0 implies g̃ ∈ C∞ for t < 0.

To solve (4.5), let us proceed momentarily on a formal level. We have

(4.6)

u = (iq + iB)−1(ig̃) (formally)

= i

∫ ∞

0

eis(q+B)g̃ ds (formally)

= −i

∫ 0

−∞
eis(q+B)g̃ ds (formally).

Now, (4.6) is not well defined. However, eis(q+B)g̃ = w(s) solves the hyperbolic
equation

(4.7)
∂w

∂s
= i(q + B)w, w(0) = g̃,

and we can construct a solution (mod C∞) to this via the method of geometrical
optics, for |s| small, and then exploit the group properties to represent such an
approximate solution for arbitrary s. Let us denote such an approximate solution
to (4.7) by e

is(q+B)
GO g̃. Then, as is well known, the wave front set of e

is(q+B)
GO g̃ is

obtained from WF(g̃) by following the Hamiltonian flow generated by Hq for s units
of “time.” Since we are assuming (4.3), it follows that ṫ is bounded away from zero
on each orbit of this flow in γ(q) := {q = 0} = {p = 0}. Write

γ(q) = S+ ∪ S−, ṫ > 0 on S+, ṫ < 0 on S−.

Write the identity operator I on D′(R×X) as a sum of three operators in OPS0,

I = P+ + P− + P0,

where σP+ is supported in a small conic neighborhood Γ+ of S+, with ṫ > 0 on Γ+,
σP+ = 1 on a smaller conic neighborhood of S+; likewise σP− is supported on a
small conic neighborhood Γ− of S−, with ṫ < 0 on Γ−, and σP− = 1 on a smaller
conic neighborhood of S−. Note that q + B is elliptic on the support of P0, so if
we write g̃ = P+g̃ + P−g̃ + P0g̃, it is easy to solve

(q + B)u0 = P0g̃, mod C∞.

With these facts in mind, we construct the actual parametrix for (4.5), replacing
the formal calculation (4.6). Pick a T1 < ∞, and we desire to solve (4.5) for t < T1.
Choose a T0 < ∞ such that, for all ζ ∈ WF (g̃), if |s| > T0, the image of ζ under
C(s), the Hamiltonian flow on T ∗(R×X) generated by Hq, has t coordinate outside
the interval [0, T1]. We set ψ ∈ C∞0 (R) equal to 1 for |s| ≤ T0, and take

(4.8) u = u0 + i

∫ ∞

0

ψ(s)eis(q+B)
GO P+g̃ ds− i

∫ 0

−∞
ψ(s)eis(q+B)

GO P−g̃ ds.



11

It is a simple matter to show that u verifies (4.5), mod C∞, for t < T1, and u is
smooth for t < 0.

It remains to show that such u solves (4.1), mod C∞. To see this, rewrite (4.5)
as ΛcoT (Tu− f) = 0, or, since Λ is elliptic,

coT (Tu− f) = 0 mod C∞.

Apply T to both sides of this, noting that T coT = P + Q̃, with P as before and
Q̃ ∈ OPS−1. Thus

(P + Q̃)(Tu− f) = 0, mod C∞,

while Tu − f is smooth for t < 0. Now, propagation of singularities results for
solutions to (P + Q̃)w = 0 mod C∞ yield that Tu− f is smooth for all t < T1, as
desired. Thus we have our parametrix. Furthermore, the standard propagation of
singularities results show that WF(u) is contained in the union of WF(g) with the
set of orbits of Hp that pass over WF(g), so we have Lemma 3.2.

We emphasize that the construction described here uses only the local theory of
Fourier integral operators.

5. Generalities

In this final section, we put the phenomenon, analyzed in §§2–4 for equations
of linear elasticity, into a general framework, and also mention some additional
phenomena that could occur for general systems. This section is complementary to
our work on reflection of singularities (1975).

We consider a k × k matrix of first order pseudodifferential operators G(y) =
G(y, x, Dx), acting on functions on R+×X, and consider solutions to the boundary
value problem for u = u(y) = u(y, x),

∂u

∂y
= G(y)u,(5.1)

βu(0) = f,(5.2)

where β ∈ OPS0(X). The hypothesis that all null bicharacteristics intersecting
∂(R+ ×X) do so transversally and that G has simple characteristics implies that
the principal symbol of G(y) is similar to a matrix of the form




iλ1

. . .
iλj

A
B




,
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where λν(y, x, ξ) are real valued (scalar), the spectrum of A(y, x, ξ) has negative real
part, and the spectrum of B(y, x, ξ) has positive real part. The complete decoupling
procedure described in Taylor (1975) implies that any solution u ∈ C([0, y0),D′(X))
of (5.1) can be written in the form

u(y) = U(y)




w1
...

wj

w+

w−




,

with elliptic U(y) ∈ OPS0(X), where wν solve the equation

∂wν

∂y
= iµν(y, x, Dx)wν ,

and w± solve
∂w+

∂y
= a(y, x, Dx)w+,

∂w−
∂y

= b(y, x, Dx)w−.

and, furthermore, the principal symbol of µν is λν , the principal symbol of a(y, x,Dx)
is A, and the principal symbol of b(y, x, Dx) is B. Actually, there might be global
topological obstructions to the construction of these operators, but these can be
avoided if one microlocalizes appropriately. The details are given in Taylor (1975).
The boundary condition (5.2) becomes

(5.3) βU(0)w(0) = f.

The reflection of singularities phenomenon we consider is described simply as
follows. Suppose we know that u is smooth in a conic neighborhood of the rays
γ1, . . . , γ` (0 ≤ ` ≤ j) passing over (x0, ξ0) ∈ T ∗X \ 0, where γν is a null bicharac-
teristic strip associated to ∂y − iλν . Note that this is equivalent to the microlocal
smoothness (up to the boundary y = 0) of w1, . . . , w`. More generally, suppose
we know the nature of the singularities of u near γ1, . . . , γ`, i.e., suppose we know
w1, . . . , w`, microlocally, mod C∞. We want to construct a parametrix for u which,
in particular, will tell us the nature of the singularities of w`+1, . . . , wj , and also
the nature of the boundary regularity of w+. (Note that, since w+ and w− solve
elliptic evolution equations that are forward and backward, respectively, they are
automatically C∞ inside (0, y0)×X, and w− is smooth up to the boundary y = 0.)
This goal is achieved in Taylor (1976), granted the following hypothesis. (Here, let
wν = Pνw, w+ = P+w, w− = P−w.)

(5.4)

Given a knowledge of w1(0), . . . , w`(0) and of w−(0)

the system (5.3) is an elliptic system for

w`+1(0), . . . , wj(0), w+(0).
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More generally, as considered in Taylor (1975), the system was assumed to be
hypoelliptic. However, in cases we have run across (e.g., Taylor, 1976) hypoelliptic
equations seem to occur naturally for a number of grazing ray problems, but in
the nongrazing case, one has to work to contrive such a problem (omitting such
problems as the ∂ Neumann problem, where reflection of singularities is not the
issue). We are now in a position to generalize this result, as follows.

Theorem 5.1. One can construct a solution to

∂u

∂y
= Gu, mod C∞,

Bu(0) = f, mod C∞,

given f ∈ E ′(X), with the property that u is smooth along the rays γ1, . . . , γ`,
provided that, for specified w1(0), . . . , w`(0), w−(0) ∈ C∞(X), we can solve the
system

βU(0)w(0) = f, modC∞,

for w`+1(0), . . . , wj(0), w+(0).
If we can deduce that WF(wν(0)) ⊂ Γν , WF(w+(0)) ∈ Γ+, where Γν , ν = `+1, j

and Γ+ are closed conic subsets of T ∗X obtained from WF(f) by some process,
it follows that WF(u) is smooth except along those rays passing over Γν and in
γ(∂y − iλν). Furthermore, w+ is smooth up t the boundary y = 0 except at points
x ∈ X such that (x, ξ) ∈ Γ+ for some ξ.

The proof of Theorem 5.1 is the same as the proof in the special case where (5.4)
is satisfied. The context in which such a situation arises is when ∂y − G comes
from reducing a hyperbolic equation to a first order system of pseudodifferential
operators, the time variable being one of the x variables, say t = x1. In such a case,
typically the γ1, . . . γ` are the null bicharacteristics on which t is decreasing (as
they leave the boundary) and γ`+1, . . . , γj are the null bicharacteristics on which
t is increasing. Granted appropriate energy estimates, the approximate solution
constructed via Theorem 5.1 differs from the exact solution by a smooth error
(recall the argument at the end of §2), so the description of singularities given in
Theorem 5.1 will hold for the exact solution.

In such a case as the equations of linear elasticity in three space variables, we
need to allow the wν to be vector valued, though the principal symbol of µν needs
to be scalar. This does not affect the discussion above at all.

In the case of the equations of linear elasticity considered in Sections 2 and 3,
the boundary value problem (5.3) fails to be elliptic only in a region where all the
eigenvalues of G1(y, x, ξ) have nonzero real part (the “elliptic region” mentioned in
§3), so j = 0. Thus, in that example, the reflection of singularities phenomenon is
the same as described in Taylor (1975), except for the Rayleigh waves, which travel
along the boundary. No extra singularities propagate into the interior. Now, it is
easy to concoct a boundary value problem for which this additional phenomenon
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will occur. For example, for vector valued u and v, consider the system

utt − (λ + µ) grad div u− µ∆u = 0,(5.5)

c−2vtt −∆v = 0,(5.6)

with boundary conditions of the form
∑

i

niσij = f on ∂K, for u,(5.7)

v = u on ∂K.(5.8)

We assume f = 0 for t < 0 and solve, requiring u and v to vanish for t < 0. Note
that (5.5), (5.7) is precisely the boundary value problem considered in §§2–3. So
solve it. The equation for v is coupled to that for u via the boundary condition
(5.8). Having solved for u, we obtain v by solving the Dirichlet problem for the
wave equation (5.6), (5.8). If the sound speed c in (5.6) is picked to be less than
the propagation speed of the Rayleigh waves, it follows from the propagation of
singularities results for the Dirichlet problem that v picks up singularities along rays
going into K in the positive t direction passing over WF(u|∂K), which includes the
wave fronts of the Rayleigh waves. I do not know whether there is a physical process
for which (5.5)–(5.8) is a model. It would be interesting to find boundary value
problems for physical processes for which this additional propagation of singularities
phenomenon does occur.

References

Achenbach, J. Wave Propagation in Elastic Solids. North Holland Publishing Com-
pany (1973).

Duistermaat, J. Fourier Integral Operators. Courant Inst. of Math. Sci., NYU
Lecture Notes (1973).
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