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Abstract. We establish a Riemann localization result for a class of distributions
larger than L1(T1), which we denote V(T1), and compare this with a localization
result going back to Riemann, as presented in [Z]. We explore related results on
V(T1), in particular taking advantage of distribution theory to provide short proofs
of generalizations of a number of results on trigonometric series presented in [Z].
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1. Introduction

Basic texts in Fourier analysis typically state the Riemann localization principle
as follows. Suppose f is integrable on T1 = R/(2πZ), i.e., f ∈ L1(T1). Assume
f = g on an open set O ⊂ T1, and that g ∈ C(T1) has a Fourier series that
converges uniformly on T1. Then the Fourier series of f converges to f uniformly
on compact subsets of O.

An example of a series to which the principle as just stated does not apply is

(1.1)
∞∑

n=2

1

log n
sinnθ.

This appears in [L] as an example of a trigonometric series that converges pointwise,
for each θ ∈ T1, but is not the Fourier series of an L1 function. This convergence
can be demonstrated using the Dirichlet test for convergence of an infinite series
(cf. [WW], §2.31). As for the sum, it can be shown to be

(1.2) − 1

θ log |θ|
+O

( 1

|θ|(log |θ|)2
)

near θ = 0 (see §5). In the terminology of the time of [L], (1.1) was said not to be
a Fourier series, a conclusion repeated in [WW] (§9.12) and in [Z]. In these works,
series like (1.1) fell under the more general rubric of “trigonometric series.”
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Of course, post L. Schwartz, we say (1.1) is the Fourier series of a distribution,
call it uL, and we can say quite a bit about this distribution. Having in hand the
Schwartz theory of Fourier analysis on the space D′(T1) of distributions on T1, we
can readily compute the Fourier series of (1− eiθ)uL and see that

(1.3) (1− eiθ)uL ∈ A(T1),

where

(1.4) A(T1) =
{
f ∈ D′(T1) :

∞∑
n=−∞

|f̂(n)| <∞
}

(so A(T1) ⊂ C(T1)). See Proposition 3.1 for a general version of this phenomenon.
Since convergence of (1.1) at θ = 0 is trivial, one could retrieve the convergence of
(1.1) everywhere, given an appropriate extension of the localization principle stated
in the first paragraph.

In fact, such localization extends to a class of distributions larger than L1(T1),
to which uL belongs, namely

(1.5) V(T1) = {u ∈ D′(T1) : lim
|n|→∞

û(n) = 0}.

Under u 7→ û this space is isomorphic (as a Banach space) to the sequence space
c0(Z), while A(T1) is isomorphic to ℓ1(Z), with norms

(1.6) ∥f∥A =

∞∑
n=−∞

|f̂(n)|, ∥u∥V = sup
n

|û(n)|.

The Parseval identity leads to the duality

(1.7) V(T1)′ = A(T1).

Given u ∈ V(T1), the sequence of partial sums

(1.8) SNu(θ) =
N∑

n=−N

û(n)einθ

converges, as N → ∞, to u in V-norm, and hence in the L2-Sobolev space Hs(T1),
for each s < −1/2. We have the following localization result.

Theorem 1.1. Let u ∈ V(T1) and let O ⊂ T1 be open. Assume there exists
f ∈ C(T1) such that SNf → f uniformly on T1 and u = f on O. Then, for each
compact K ⊂ O,

(1.9) SNu(θ) −→ u(θ), uniformly for θ ∈ K.

We will prove Theorem 1.1 in §2. Given that we work in the framework of
distribution theory, the proof is fairly short and simple. The following result will
be useful.
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Proposition 1.2. Given f ∈ A(T1) and u ∈ V(T1), we have fu ∈ V(T1).

Proof. To start, given f ∈ C∞(T1) and u ∈ D′(T1), we have fu ∈ D′(T1) and

(1.10) f̂u(n) =

∞∑
k=−∞

f̂(k)û(n− k),

the sum being absolutely convergent since f̂ is rapidly decreasing on Z and û is
polynomially bounded. If in fact u ∈ V(T1), then (1.10) implies that (for f ∈
C∞(T1))

(1.11) |f̂u(n)| ≤ ∥f̂∥ℓ1∥û∥ℓ∞ = ∥f∥A∥u∥V .

Now clearly fu ∈ V(T1) for f, u ∈ C∞(T1). Since C∞(T1) is dense in A(T1) (in
A-norm) and in V(T1) (in V-norm), the conclusion that the product (f, u) 7→ fu
extends uniquely by continuity from

C∞(T1)× C∞(T1) → V(T1) to A(T1)× V(T1) → V(T1)

follows.

Remark. Use of (1.10) also yields the well known result that

f, u ∈ A(T1) =⇒ fu ∈ A(T1) and ∥fu∥A ≤ ∥f∥A∥u∥A,

so A(T1) is a Banach algebra, and the content of Proposition 1.2 is that V(T1) is a
module over A(T1).

Now an object closely related to V(T1) has been studied for a long time, namely
infinite series of the form

(1.12)
∞∑

n=−∞
ane

inθ, given lim
|n|→∞

|an| = 0.

This study goes back to Riemann himself, and a number of results can be found in
[Z], particularly in Chapters 5 and 9, where the study is called the Riemann theory
of trigonometic series. Objects of the form (1.12) are not treated as distributions in
[Z], but various results given there can be seen as precursors to distribution theory.

In §3 we prove a number of results involving the space V(T1), and draw com-
parisons with results in Chapter 5 of [Z]. Proposition 3.1 generalizes (1.3), and
Corollary 3.2 applies Theorem 1.1 to elements of V(T1) covered by Proposition 3.1.
A special case is that the series (1.1) converges locally uniformly on T1 \0. Another
is that so does the series

(1.13)
∞∑

n=2

1

log n
cosnθ,

though of course this series diverges at θ = 0. Proposition 3.3 and Corollary 3.4
give conditions on an element u ∈ V(T1) that guarantee u ∈ L1(T1), with Fourier
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series converging locally uniformly on T1 \ 0. A special case is that (1.13) defines
an element of L1(T1) (as opposed to (1.1)). Proposition 3.6 has as a special case
that one can go from (1.2) to

(1.14) uL + PV
1

θ log |θ|
∈ L1

([
−1

2
,
1

2

])
.

As we have mentioned, results of §3 are seen to generalize various results in Chapter
5 of [Z]. However, the proofs here, making use of distribution theory, are different,
and shorter.

In §4 we discuss a localization result from Chapter 9 of [Z], which goes back to
Riemann. The statement of the result, given in Theorem 4.1, is less direct than
Theorem 1.1, but we show that it is equivalent to Theorem 1.1, given the theory of
distributions. We also present a distributional approach to the proof of Riemann
localization given in Chapter 9 of [Z], which is different from our proof in §2.

Section 5 is devoted to a closer study of uL, defined by (1.1). We complement
(1.3) with a proof that

(1.15) uL ∈ C∞(T1 \ 0).

We also prove (1.2). In addition we give a proof that uL /∈ L1(T1) that does not
use (1.2).

In §6 we reverse course from specifying a Fourier series (as in (1.1)) and deriving
consequences. Instead, we look at distributions on T1 of the form

(1.16) u = PV
f(θ)

θ
,

with

(1.17) f ∈ C([−π, π]), even.

We show that, in such cases,

(1.18) f ∈ A(T1), f(0) = 0 =⇒ u ∈ V(T1).

Methods of [T2] imply that if

(1.19) f ∈ C∞(T1 \ 0) and f(θ) =
1

log |θ|
for |θ| ≤ 1

2
,

then

(1.20) f̂(n) ∼ C

|n|(log |n|)2
, as |n| → ∞,

so this result provides a class of elements of V(T1) that includes (1.1) as a special
case.

In §7 we discuss the space Mb(T1) of finite Borel measures on T1 that belong
to V(T1). In particular, we consider certain measures naturally associated with
various Cantor sets in T1 and show that some of them belong to V(T1) and some
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do not, giving a sample of results explored more systematically in classical work of
R. Salem.

In §8 we discuss the Riemann summation of the Fourier series of an element of
V(T1). Results obained here will be valuable for work in §9.

Section 9 contains some results on sets of uniqueness, or U-sets, in T1. We say
Σ ⊂ T1 is a U-set provided that, for each u ∈ V(T1),

(1.21) lim
N→∞

SNu(θ) = 0, ∀ θ ∈ T1 \ Σ =⇒ u = 0.

Otherwise, we say Σ is an M-set. We establish that a closed set K ⊂ T1 is an M-set
if and only if there is a nonzero

(1.22) u ∈ V(T1) such that suppu ⊂ K.

This is a distributional variant of Theorem 6.8 in Chapter 9 of [Z]. From this result
it is easy to deduce that if K ⊂ T1 is a closed M-set, then K contains a perfect
set that is an M-set. We discuss how some of the Cantor sets introduced in §7 are
U-sets and others are M-sets.

In §10 we establish the following variant of a theorem of A. Rajchman. We
consider

(1.23) u ∈ C−2(T1) = {u = v′′ + c : v ∈ C(T1), c ∈ C},

and show that if

(1.24) lim
r↗1

A(r)u(θ) = 0

for all θ ∈ T1, then u = 0. Here, for r ∈ (0, 1),

(1.25) A(r)u(θ) =
∑
k

û(k)r|k|eikθ.

We also discuss localizations of this result. We introduce the notion of (U,A,X)
sets and (M,A,X) sets in T1, respectively sets of uniqueness and of non-uniqueness
for Abel summability, for elements of a linear subspace X of C−2(T1). Notable
examples include X = C−1(T1) and X = W(T1), where a distribution u belongs to
W(T1) if and only if

(1.26) lim
N→∞

1

N

∑
|k|≤N

|û(k)|2 = 0.

We also look at Besov spaces X = B
(γ−1)/2
2,∞ (T1), which arise as spaces to which

Cantor measures from §7 belong, and also the L2-Sobolev space X = H−1/2(T1).
We see that a compact K ⊂ T1 is a (U,A,H−1/2(T1))-set if and only if

(1.27) Cap1/2(K) = 0.

Remark. More than enough background in distribution theory for our needs here
can be found in each of the following references: [S], Chapter 7 of [H], Chapter 6
of [Y], or Chapter 3 of [T1].
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2. Proof of Theorem 1.1

To prove Theorem 1.1, it suffices to work with the case f = 0, and show that
SNu(θ) → 0 uniformly on K. Given u ∈ D′(T1), we have

(2.1) SNu(θ) =
1

2π
⟨uθ, DN ⟩,

where u 7→ uθ is the extension to D′(T1) of f 7→ fθ, given by fθ(φ) = f(θ−φ), and

(2.2)

DN (φ) =

N∑
n=−N

einφ

=
sin(N + 1/2)φ

sinφ/2

=
(
cot

φ

2

)
sinNφ+ cosNφ.

It follows that

(2.3) SNu(θ) =
1

2π

⟨
uθ,

(
cot

φ

2

)
sinNφ

⟩
+

1

2π

⟨
uθ, cosNφ

⟩
.

To analyze the right side of (2.3), note that

(2.4)
u ∈ V(T1) =⇒ θ 7→ uθ is continuous from T1 to V(T1)

=⇒ ⟨uθ, cosNφ⟩ → 0, uniformly in θ ∈ T1, as N → ∞,

the second implication as a consequence of the readily established fact that

(2.5)
K ⊂ V(T1) compact =⇒

⟨v, eiNφ⟩ → 0 as |N | → ∞, uniformly for v ∈ K.

Furthermore,

(2.6) cot
φ

2
∈ C∞(T1 \ 0),

so, thanks to Proposition 1.2,

(2.7)

u ∈ V(T1), u
∣∣
O = 0, θ ∈ K ⊂⊂ O

=⇒ uθ cot
φ

2
∈ V(T1), and{

uθ cot
φ

2
: θ ∈ K

}
is compact in V(T1).

This implies that the first term on the right side of (2.3) tends to 0 as N → ∞,
uniformly for θ ∈ K. Thus one has Theorem 1.1.
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3. Contact with Chapter 5 of [Z]

We aim to extend a number of results from Chapter 5 of [Z], which tie in with
localization. Theorems from [Z] cited in this section will all be from this Chapter
5. We start with a result implying some regularity on T1 \ 0.

Proposition 3.1. Take u ∈ D′(T1) with Fourier series

(3.1) u =

∞∑
n=−∞

ane
inθ.

Assume (an) has the bounded variation property

(3.2)

∞∑
n=−∞

|an − an−1| <∞.

Then u ∈ C(T1 \ 0). More precisely,

(3.3) (1− eiθ)u ∈ A(T1).

Proof. Indeed,

(3.4) (1− eiθ)u =
∑
n

(an − an−1)e
inθ.

Remark 3.1. In light of (3.4), we actually see that (3.2) and (3.3) are equivalent.

Remark 3.2. If (3.2) holds and also u ∈ V(T1), then not only is the right side of
(3.4) continuous, but it vanishes at θ = 0. Hence

(3.4A) lim
θ→0

θu(θ) = 0.

Together with Theorem 1.1, Proposition 3.1 implies the following.

Corollary 3.2. If u ∈ V(T1) satisfies (3.1)–(3.2), then

(3.5) SNu −→ u uniformly on compact sets K ⊂ T1 \ 0.

Second proof. A computation gives

(3.5A) (1− eiθ)SNu = SN (1− eiθ)u− û(N)ei(N+1)θ + û(−N − 1)e−iNθ,

which implies the following stronger version of (3.5),

(3.5B) (1− eiθ)SNu −→ (1− eiθ)u uniformly on T1,
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under the hypotheses of Corollary 3.2.

Remark. Proposition 3.1 and Corollary 3.2 apply to

(3.6)

∞∑
n=ℓ

an cosnθ, an ↘ 0,

and to

(3.7)

∞∑
n=ℓ

an sinnθ, an ↘ 0,

given ℓ ∈ Z+. This contains Theorem 1.8 and Theorem 1.15 of [Z].

The next result extends Theorem 1.5 of [Z].

Proposition 3.3. Let u ∈ V(T1) satisfy (3.1)–(3.2). Suppose in addition that the
sequence (an) is positive definite, i.e., for each sequence (ξn), nonvanishing for only
finitely many n,

(3.8)
∑
m,n

am−nξmξn ≥ 0.

Then

(3.9) u is a non-negative element of L1(T1) ∩ C(T1 \ 0),

and

(3.10) SNu −→ u uniformly on each compact K ⊂ T1 \ 0.

Proof. Bochner’s theorem (which has a short proof via distribution theory) implies
u is a finite positive measure on T1. Proposition 3.1 implies u ∈ C(T1 \ 0). Hence
f = u|T1\0 satisfies

(3.11) f ≥ 0,

∫ 2π

0

f(θ) dθ <∞.

Then

(3.12) u− f is a measure supported on {0},

and the hypothesis u ∈ V(T1) implies this measure is 0, so u = f ∈ L1(T1). Finally,
(3.10) follows from Corollary 3.2.

The actual setting of Theorem 1.5 of [Z] is captured by the following.
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Corollary 3.4. Consider u ∈ V(T1) given by

(3.13) u =
b0
2

+
∑
k≥1

bk cos kθ,

with

(3.14) bk ↘ 0, (bk) convex.

Then (3.9)–(3.10) hold.

Proof. We then have u given by (3.1), with an = b|n|/2, and (3.14) implies (3.8).

Remark 3.3. Corollary 3.4 applies to

(3.15) u =
b0
2

+ b1 cos θ +
∑
n≥2

cosnθ

log n
,

for a suitable choice of b0 > b1 > 1/ log 2. Contrast this with uL, given by (1.1),
which does not belong to L1(T1). On the other hand, as seen in (3.6)–(3.7), Propo-
sition 3.1 and Corollary 3.2 apply to both (3.15) and (1.1).

The proof of Theorem 1.5 in [Z] did not use Bochner’s theorem, but proceeded
as follows. Summing SNu by parts twice yields

(3.16) SNu(θ) =

N−2∑
k=0

(k + 1)(∆2b)kKk(θ) +N(∆b)N−1KN−1(θ) + bNDN (θ),

when u has the form (3.13), where

(3.17) (∆b)k = bk − bk+1, (∆2b)k = (∆b)k − (∆b)k+1,

DN (θ) is the Dirichlet kernel, as in (2.2), and Kk(θ) is the Fejer kernel:

(3.18)

Kk(θ) =
1

k + 1

k∑
n=0

Dn(θ)

=
2

k + 1

( sin(k + 1)θ/2

2 sin θ/2

)2

.

As [Z] notes, elementary bounds on DN (θ) and KN−1(θ) show that, as long as
bN → 0 and (∆b)N−1 → 0, the last two terms in (3.16) tend to 0 pointwise on
T1 \ 0, as N → ∞. We find it useful to make some complementary estimates.

First, clearly

(3.19) ∥bNDN∥V(T1) = |bN |,

so if we set

(3.20) S#
Nu(θ) =

N−2∑
k=0

(k + 1)(∆2b)kKk(θ) +N(∆b)N−1KN−1(θ),
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we see that, whenever u ∈ D′(T1) is given by (3.13),

(3.21) u ∈ V(T1) =⇒ S#
Nu→ u in Hs(T1), ∀ s < −1

2
.

Clearly the hypotheses of (3.14) imply

(3.22) S#
Nu(θ) ≥ 0 on T1, ∀N.

It is also clear that

(3.23)
1

2π

∫
T1

S#
Nu(θ) dθ =

1

2π

∫
T1

SNu(θ) dθ − bN = û(0)− bN ,

so {S#
Nu} is bounded in L1-norm, and hence one has that, under the hypotheses of

Corollary 3.4, u must be a finite positive measure on T1.
Note that integrating (3.20) term by term gives

(3.24)
1

2π

∫
T1

S#
Nu(θ) dθ =

N−2∑
k=0

(k + 1)(∆2b)k +N(∆b)N−1.

If (3.14) holds, this is a sum of positive terms, uniformly ≤ û(0), so in particular

(3.25) N(∆b)N−1 ≤ A <∞, ∀N.

Now we can set

(3.26) Sb
Nu(θ) =

N−2∑
k=0

(k + 1)(∆2b)kKk(θ),

and deduce that if u ∈ D′(T1) is given by (3.13), and if hypothesis (3.14) holds,
then Sb

Nu is a monotone increasing sequence of positive functions with an L1 upper
bound, and hence

(3.27) Sb
Nu −→ ub ∈ L1(T1), in L1-norm.

Meanwhile, the bound (3.25) implies

(3.28) N(∆b)N−1KN−1 is bounded in L1-norm,

and (via (3.18)) converges to 0 uniformly on compact subsets of T1 \0. Comparison
of (3.21) and (3.27) shows that, if (3.14) holds,

(3.29) u = ub + µ0,

where µ0 is a measure on T1 supported on {0}, hence equal to 0 given u ∈ V(T1).
We have:
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Proposition 3.5. In the setting of Corollary 3.4, we have in addition to (3.9)–
(3.10) that

(3.30) Sb
Nu −→ u in L1-norm.

Note that since µ0 = 0, we also have

(3.31) N(∆b)N−1 −→ 0, as N → ∞,

given (3.14). Thus, in the setting of Corollary 3.4,

(3.32) lim sup
N→∞

∥u− SNu∥L1 = lim sup
N→∞

|bN | · ∥DN∥L1 .

As is well known,

(3.33) ∥DN∥L1 ∼ 4

π
logN,

as N → ∞. Hence, with u as in Corollary 3.4,

lim
N→∞

∥u− SNu∥L1 = 0 ⇐⇒ |bN | = o(| logN |−1).

This gives Theorem 1.12 of [Z].

Remark. Having gone on about the alternative proof of Corollary 3.4 described
above, we emphasize that Proposition 3.3 is a substantially more general result.

We next derive a result complementary to Proposition 3.1, involving the following
notion of a PV distribution. Let f ∈ C(T1 \ 0) have the following properties:

(3.34) f(θ) = −f(−θ), |f(θ)| ≤ C

|θ|
,

where we identify T1 with [−π, π] (and π ∼ −π). More generally, f could be
measurable on T1 and satisfy

(3.35) f(θ) = −f(−θ),
∫ π

−π

|θf(θ)| dθ <∞.

We define PV f ∈ D′(T1) by

(3.36) ⟨PV f, g⟩ =
∫
T1

f(θ)(g(θ)− g(0)) dθ,

for g ∈ C∞(T1). The integral on the right side of (3.36) is absolutely integrable for
each g ∈ C∞(T1), in fact for all Lipschitz continuous g on T1. It follows that

(3.37)

⟨PV f, g⟩ = lim
ε↘0

∫
T1\[−ε,ε]

f(θ)(g(θ)− g(0)) dθ

= lim
ε↘0

∫
T1\[−ε,ε]

f(θ)g(θ) dθ.
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Proposition 3.6. Assume u ∈ D′(T1) satisfies the hypotheses of Proposition 3.1
and is odd with respect to θ 7→ −θ. Set f = u|T1\0 ∈ C(T1 \ 0). Then f satisfies
(3.34) and

(3.38) u = PV f.

Proof. That f ∈ C(T1 \ 0) satisfies |f(θ)| ≤ C/|θ| follows from (3.3). It is obvious
that f is odd if u is odd. Now

(3.39) u− PV f ∈ D′(T1) is supported on {0}.

More precisely, again by (3.3), we have

(3.40) (1− eiθ)(u− PV f) = 0,

so, as in (3.4), for v = u− PV f ,

(3.41) v =
∑

bne
inθ =⇒

∑
(bn − bn−1)e

inθ = 0,

which implies bn = b0 for all n, hence u− PV f = cδ for some c ∈ C. But δ is even
under θ 7→ −θ, and u and PV f are odd, so c = 0, and we have (3.38).

Proposition 3.6 applies to distributions of the form (3.7), and we have a refine-
ment of Theorem 1.15 of [Z].
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4. Riemann’s version of Theorem 1.1

Here we will compare Theorem 1.1 with Riemann’s own localization result, as
described in Chapter 9 of [Z], except that the discussion here will be presented in
the language of distribution theory.

Take u ∈ V(T1), or more generally in

(4.1) B(T1) = {u ∈ D′(T1) : sup
n

|û(n)| <∞}.

Note that under u 7→ û this space is isomorphic (as a Banach space) to the sequence
space ℓ∞(T1), and it is the dual of A(T1):

(4.2) A(T1)′ = B(T1).

With Riemann (and a little help from L. Schwartz) we define

(4.3) G : B(T1) −→ A(T1)

by

(4.4) Gu =
∑
n̸=0

n−2û(n)einθ.

Note that

(4.5)
d2

dθ2
Gu = −u+ û(0).

The following is essentially Theorem 4.3 in Chapter 9 of [Z].

Theorem 4.1. Let u ∈ V(T1). Let (a, b) be an interval in T1, and assume

(4.6) Gu is linear on (a, b).

Then SNu→ u uniformly on each compact subset K of (a, b).

We show that Theorem 1.1 implies Theorem 4.1. In fact, by (4.5), we know that
(4.6) implies u = û(0) on (a, b), so indeed the conclusion of Theorem 4.1 follows
from (1.9).

Conversely, Theorem 4.1 implies Theorem 1.1. To get this, it suffices to treat the
case û(0) = 0. Also, as noted in §2, it suffices to prove Theorem 1.1 when u|O = 0.
If (a, b) is some connected component of O, then, by (4.5), Gu must be linear on
(a, b), and we are done.

Remark. Clearly we could replace the hypothesis (4.6) by

(4.7)
Gu = h on (a, b), h ∈ C2(T1), and

h′′ has a uniformly convergent Fourier series on T1.

We discuss the proof of Riemann localization given in Chapter 9 of [Z], translated
into the distributional setting, and applied directly to Theorem 1.1, rather than
going through Theorem 4.1. We start with a variant of Theorem 4.9 in Chapter 9
of [Z], due to (Zygmund’s teacher) A. Rajchman.
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Proposition 4.2. If u ∈ V(T1) and f ′ ∈ A(T1), then

(4.8) lim
N→∞

∥SN (fu)− fSNu∥L∞ = 0.

Proof. A computation parallel to (3.5A) gives

(4.9)

SN (eikθu)− eikθSNu =
−N−1∑

ℓ=−N−k

û(ℓ)ei(ℓ+k)θ

−
N∑

ℓ=N−k+1

û(ℓ)ei(ℓ+k)θ.

Thus, if

(4.10) f(θ) =

∞∑
k=−∞

bke
ikθ,

then

(4.11)

SN (fu)− fSNu =
∑
k

bk

−N−1∑
ℓ=−N−k

û(ℓ)ei(ℓ+k)θ

−
∑
k

bk

N∑
ℓ=N−k+1

û(ℓ)ei(ℓ+k)θ.

It follows that

(4.12)

sup
T1

|SN (fu)− fSNu| ≤ IN =
∑
k

|kbk|
(

max
ℓ∈{−N−k,...,−N−1}

|û(ℓ)|
)

+
∑
k

|kbk|
(

max
ℓ∈{N−k+1,...,N}

|û(ℓ)|
)
.

The discrete version of the dominated convergence theorem shows that, if
∑

|kbk| <
∞, then

(4.13) u ∈ V(T1) =⇒ lim
N→∞

IN = 0,

and we have (4.8).

Let us note that (4.11)–(4.12) hold for f ′ ∈ A(T1) and u ∈ B(T1), and this yields
the following.

Proposition 4.3. If u ∈ B(T1) and f ′ ∈ A(T1), then, for each N ,

(4.14) ∥SN (fu)− fSNu∥L∞ ≤ 2∥f ′∥A∥u∥B.

We now derive Theorem 1.1 from Proposition 4.2. As before, it suffices to treat
the case where u = 0 on an open set O and deduce (1.8) for compact K ⊂ O. So
take g ∈ C∞

0 (O) such that g = 1 on K. By Proposition 4.2, SN (gu) − gSNu → 0
uniformly on T1 as N → ∞. But gu = 0, so this yields gSNu → 0 uniformly on
T1, and hence SNu→ 0 uniformly on K, as desired.

The proof of Theorem 4.1 occupies pages 330–334 of [Z], much of which is devoted
to the development of material needed in the absence of an existing theory of
distributions.
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5. More on uL

To explore uL in more detail, we find it convenient to work with Fourier integrals
instead of Fourier series, so take

(5.1)
a ∈ C∞(R), a(ξ) = −a(−ξ), a(ξ) =

1

log ξ
for ξ ≥ 2,

a(ξ) = 0 for |ξ| ≤ 1,

and consider

(5.2) UL(x) =

∫ ∞

0

a(ξ) sinxξ dξ,

i.e.,

(5.3) UL(x) =
1

2i

∫ ∞

−∞
a(ξ)eixξ dξ.

This integral is not absolutely convergent, but it exists as an oscillatory integral.
In more detail, the function a(ξ) in (5.1) is a tempered distribution, i.e., a ∈ S ′(R),
and the Fourier transform maps S ′(R) to itself, so (5.3) defines UL ∈ S ′(R). Further
structure follows from the fact that

(5.4) |a(k)(ξ)| ≤ Ck(1 + |ξ|)−k,

and

(5.5) xkUL(x) =
ik

2i

∫ ∞

−∞
a(k)(ξ)eixξ dξ,

and more generally

(5.6)
( d

dx

)ℓ

xkUL(x) =
ik+ℓ

2i

∫ ∞

−∞
ξℓa(k)(ξ)eixξ dξ,

so

(5.7) k ≥ ℓ+ 2 =⇒
∣∣∣( d

dx

)ℓ

xkUL(x)
∣∣∣ ≤ Ckℓ <∞.

It follows that UL is C∞ on R \ 0 and rapidly decreasing, with all its derivatives,
as |x| → ∞.

With these estimates in hand, we can use the Poisson summation formula to
write

(5.8) uL(θ) =

∞∑
k=−∞

UL(θ + 2πk),
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and see that (1.15) holds and that the singularity of uL at θ = 0 coincides with
that of UL. In particular, (1.2) is equivalent to

(5.9) UL(x) = − 1

x log |x|
+O

( 1

|x|(log |x|)2
)
,

as x→ 0.
We now provide a proof of (5.9). The argument we use is parallel to that used

for the proof of Theorem 2.17 in Chapter 5 of [Z], except that we deal with Fourier
integrals, rather than Fourier series, which allows for some simplifications of the
details. We first note that (5.9) is equivalent to the result

(5.10) S0(x) = − 1

x log |x|
+O

( 1

|x|(log |x|)2
)
,

as x→ 0, where

(5.11) S0(x) =

∫ ∞

2

1

log ξ
sinxξ dξ.

Since S0(x) is odd, it suffices to treat it for x > 0. Note that

(5.12)

xS0(x) = −
∫ ∞

2

1

log ξ

d

dξ
cosxξ dξ

= −
∫ ∞

2

1

ξ(log ξ)2
cosxξ dξ +

cos 2x

log 2
,

the latter identity by integration by parts. Now, for u > 1,

(5.13)

∫ ∞

u

dξ

ξ(log ξ)2
= −

∫ ∞

u

d

dξ

1

log ξ
dξ =

1

log u
,

so (5.12) yields

(5.14) xS0(x) =

∫ ∞

2

1

ξ(log ξ)2
(1− cosxξ) dξ − 1− cos 2x

log 2
.

Assuming 0 < x < 1/2, we break this integral into an integral over [2, 1/x] and an
integral over [1/x,∞), and we separate out the terms in the integrand of the latter
integral, obtaining

(5.15)

xS0(x) +
1− cos 2x

log 2

=

∫ 1/x

2

1

ξ(log ξ)2
(1− cosxξ) dξ

+

∫ ∞

1/x

1

ξ(log ξ)2
dξ

−
∫ ∞

1/x

1

ξ(log ξ)2
cosxξ dξ

= r1(x) + v(x)− r2(x).
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By (5.13), for 0 < x < 1,

(5.16) v(x) =
1

log 1/x
.

Next, since

(5.17) |1− cosxξ| ≤ x2ξ2 for |xξ| ≤ 1,

we have

(5.18)

|r1(x)| ≤ x2
∫ 1/x

2

ξ

(log ξ)2
dξ

≤ Cx2 · 1
x
· 1/x

(log 1/x)2

=
C

(log 1/x)2
,

the second inequality because the integrand is monotonically increasing for large ξ.
It remains to treat

(5.19)

r2(x) =
1

x

∫ ∞

1/x

1

ξ(log ξ)2
d

dξ
sinxξ dξ

= − 1

x

∫ ∞

1/x

d

dξ

1

ξ(log ξ)2
sinxξ dξ +

sin 1

(log 1/x)2
,

the latter identity by integration by parts. A computation gives

(5.20)
∣∣∣ d
dξ

1

ξ(log ξ)2

∣∣∣ ≤ C

ξ2(log ξ)2
,

which readily yields

(5.21) |r2(x)| ≤
C

(log 1/x)2
.

This proves (5.10), so we have (1.2).
We now provide an alternative proof that uL does not belong to L1(T1), which

avoids the asymptotic evaluation established above. To begin, we note that uL is
the distributional derivative of

(5.22) fL(θ) = −
∞∑

n=2

1

n log n
cosnθ.

If uL were in L1(T1), then fL would be absolutely continuous. More generally, if
uL were a finite measure on T1, then fL would have bounded variation. Now the
analysis behind the Gibbs phenomenon shows that

(5.23) f ∈ BV (T1) =⇒ sup
N,θ

|SNf(θ)| <∞.
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In more detail, say f ′ = µ is a finite measure on T1, and define ψ ∈ BV(T1) by

(5.23A) ψ(θ) =
1

2π
(π − θ), 0 < θ < 2π.

Then

(5.23B) f(θ) = µ ∗ ψ(θ) + f̂(0),

so

(5.23C) SNf(θ) = f̂(0) + µ ∗ SNψ(θ).

The analysis of the Gibbs phenomenon yields A <∞ such that

(5.23D) sup
θ

|SNψ(θ)| ≤ A, ∀N,

and this establishes (5.23). In contrast to (5.23), we have

(5.24) SNfL(0) = −
N∑

n=2

1

n log n
→ −∞ as N → ∞.

Hence uL /∈ L1(T1).
To be sure, (1.2) gives a more precise picture of how uL fails to be integrable. A

related result is

(5.25) fL(θ) = − log log
1

|θ|
+O(1),

as θ → 0, which follows from (1.2) by integrating.
We refer to [T2] for a derivation of much more precise asymptotics on uL, fL

and related distributions, including results in higher dimensions.
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6. PV distributions and other distributions in V(T1)

We will construct elements of V(T1) that are products of the form fv, with

(6.1) v =
∞∑

n=1

sinnθ ∈ B(T1),

where B(T1) is as in (4.1). Note that

(6.2) v =
1

2i

∞∑
n=1

einθ − 1

2i

∞∑
n=1

e−inθ.

Multiplying by eiθ and by e−iθ and subtracting, we obtain

(6.3) (sin θ)v =
1

2
(1 + cos θ).

We claim that

(6.4) v =
1

2
PV

1 + cos θ

sin θ
=

1

2
PV cot

θ

2
,

the PV distribution defined as in (3.34)–(3.37). In fact, denoting the right side of
(6.4) by v1, we see that also v1 satisfies (6.3), so (sin θ)(v − v1) = 0, hence the
Fourier coefficients of w = v − v1 satisfy ŵ(n) = ŵ(n + 2). This implies that w is
even, but v − v1 is odd, so w = 0. We see from (6.4) that v ∈ C∞(T1 \ 0) and

(6.5) v − PV
1

θ
∈ C∞([−π, π]).

We will establish the following.

Proposition 6.1. Given v as in (6.1),

(6.6) f ∈ A(T1), f(0) = 0 =⇒ fv ∈ V(T1).

Before giving the proof, we make some comments about B(T1), which is a Banach
space, with norm

(6.7) ∥u∥B = sup
n

|û(n)|.

Under u 7→ û this space is isomorphic to ℓ∞(Z), and, parallel to (1.7), we have the
duality (noted already in (4.2))

(6.8) A(T1)′ = B(T1).
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Also, parallel to Proposition 1.2, we have

(6.9)

f ∈ A(T1), u ∈ B(T1) =⇒ fu ∈ B(T1), and

f̂u(n) =

∞∑
k=−∞

f̂(k)û(n− k).

In this case, we can use (6.8) to characterize fu ∈ B(T1) by

(6.16) ⟨fu, g⟩ = ⟨u, fg⟩, ∀ g ∈ A(T1),

using the standard fact thatA(T1) is a Banach algebra under the pointwise product.
We are ready to prove Proposition 6.1. Given v as in (6.1) and f ∈ A(T1), (6.9)

implies fv ∈ B(T1) and

(6.11) f̂v(n) =
∞∑

k=−∞

f̂(k)v̂(n− k).

If also f(0) = 0, we have

(6.12) f̂ ∈ ℓ1(Z),
∞∑

k=−∞

f̂(k) = 0.

Now v̂ is constant on {1, 2, 3, . . . } and on {−1,−2,−3, . . . }, so (6.12) readily yields

(6.17) f̂v(n) −→ 0, as |n| → ∞,

and we have (6.6).
If in the setting of Proposition 6.1 one also has that f is even, it is readily verified

that fv in (6.6) coincides with

(6.18) PV fv,

as defined in (3.34)–(3.37). As noted in (1.19)–(1.20), one has such behavior for

(6.19) f ∈ C∞(T1 \ 0), f(θ) =
1

log |θ|
for |θ| ≤ 1

2
.

In such a case,

(6.20) fv ∈ V(T1), but fv /∈ L1(T1).

One can also find odd f ∈ A(T1) such that (6.20) holds. We describe how to
obtain such f . First, Theorem 1.9 (Chapter 5) of [Z] provides examples of

(6.21) w0 =
∑
n≥0

an cosnθ, an ↘ 0, w0 /∈ L1(T1),

while of course w0 ∈ V(T1). By Proposition 3.1,

(6.22) f0 = (1− eiθ)w0 ∈ A(T1),
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so w0 is continuous on T1 \ 0. To produce an odd f , we multiply (6.22) by

(6.23) 2i
1 + cos θ

1 + eiθ
,

which belongs to C∞(T1) since the zero at θ = π in the numerator cancels the zero
in the denominator. Thus

(6.24) f = 2i
1 + cos θ

1 + eiθ
f0 ∈ A(T1),

and we have

(6.25)
f = 2i(1 + cos θ)

1− eiθ

1 + eiθ
w0

= 2(1 + cos θ)
(
tan

θ

2

)
w0,

which implies that f is odd. We can write

(6.26) f = 2
(
tan

θ

2

)
w, w = (1 + cos θ)w0.

Comparison with (6.4) gives

(6.27) fv = w,

and by (6.21) plus the observation that the nonintegrable singularity of w0 occurs
at θ = 0, we see that w /∈ L1(T1) (though w ∈ V(T1)).

We make additional contact with §3.

Proposition 6.2. In the setting of Proposition 6.1, u = fv satisfies the hypotheses
of Corollary 3.2. Hence, as N → ∞,

(6.28) (1− eiθ)SN (fv) −→ (1− eiθ)fv, uniformly on T1.

Proof. By (6.4) we have (1− eiθ)v ∈ C∞(T1), hence

(6.29) (1− eiθ)fv ∈ A(T1).

By Remark 3.1, this implies that fv satisfies the hypotheses of Proposition 3.1.
Also, by (6.6), fv ∈ V(T1), so fv satisfies the hypotheses of Corollary 3.2. The
convergence (6.28) then follows by the second proof of Corollary 3.2.
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7. Measures in V(T1)

Let M(T1) denote the space of finite (complex) Borel measures on T1, and set

(7.1) Mb(T1) = V(T1) ∩M(T1).

In view of the estimate

(7.2) |µ̂(k)| ≤ ∥µ∥TV,

we have the following simple but useful result.

Proposition 7.1. The space Mb(T1) is a linear subspace of M(T1) that is closed
in the TV-norm topology.

Recall that, for u ∈ V(T1), f ∈ A(T1), we have fu ∈ V(T1). Since A(T1) is
dense in C(T1), it follows readily from Proposition 7.1 that

(7.3) f ∈ C(T1), µ ∈ Mb(T1) =⇒ fµ ∈ Mb(T1).

We will take this much further. Let |µ| denote the total variation measure associated
to µ. By the Radon-Nikodym theorem,

(7.4) µ = φ|µ|, |φ| = 1, |µ|-a.e. on T1.

The following result is a version of Theorem 10.2 in Chapter 12 of [Z].

Proposition 7.2. If µ ∈ Mb(T1), then |µ| ∈ Mb(T1).

Proof. Since |φ−1| = 1, |µ|-a.e., we can take fν ∈ C(T1) such that

(7.5) fν → φ−1 in L1(T1, |µ|), and sup
θ

|fν(θ)| ≤ 1.

Passing to a subsequence, which we continue to denote (fν), we have

(7.6) fν → φ−1, |µ|-a.e. on T1, so fνφ→ 1, |µ|-a.e.,

and boundedly, so the Lebesgue dominated convergence theorem then yields

(7.7) fνφ −→ 1 in L1(T, |µ|)-norm,

hence

(7.8) fνµ = fνφ|µ| −→ |µ| in TV-norm.

Since each fνµ belongs to Mb(T1), the conclusion follows from Propsition 7.1.

The next result is equivalent to Theorem 10.9 in Chapter 12 of [Z].
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Corollary 7.3. In the setting of Proposition 7.2,

(7.9) g ∈ L1(T1, |µ|) =⇒ g|µ| ∈ Mb(T1).

Proof. Given such g, there exist gν ∈ C(T1) such that gν → g in L1(T1, |µ|)-norm.
Hence gν |µ| → g|µ| in TV-norm. Now, by Proposition 7.2, (7.3) applies to |µ|, so
each gν |µ| ∈ Mb(T1), and the conclusion follows from Proposition 7.1.

We now construct some Cantor-like measures on T1 (more precisely, on [0, 2π]),
some of which belong to V(T1) and some of which do not. Let

(7.10) X =
∏
ℓ≥1

{0, 1}

be endowed with the product probability measure λ, whose factor measures on each
copy of {0, 1} assign measure 1/2 to each point in such a factor. Let

(7.11) φ : X −→ [0, 2π]

be a continuous map. Then the push-forward µφ = φ∗(λ) is a probability measure
on [0, 2π] defined by

(7.12)

∫ 2π

0

f dµφ =

∫
X

f(φ(x)) dλ(x), f ∈ C([0, 2π]).

Particular examples include

(7.13) φ((a1, a2, a3, . . . )) =
∑
ℓ≥1

aℓbℓ, bℓ > 0,
∑
ℓ

bℓ = A ≤ 2π.

Note that such φ is one-to-one provided

(7.14)
∑

ℓ≥m+1

bℓ < bm, ∀m ∈ N.

In such a case, φ is a homeomorphism of X onto its image Kφ, which is then a
compact, totally disconnected subset of [0, 2π], with no isolated points. In such a
case, µφ has no atoms.

A special case of (7.13) is φb : X → [0, 2π], given by

(7.15) φb((a1, a2, a3, . . . )) =
∑
ℓ≥1

aℓb
ℓ, 0 < b <

1

2
,

which then satisfies (7.14), yielding a Cantor set Kb and a non-atomic probability
measure µb supported on Kb. (The limiting case φ1/2 maps X onto [0, 1].) For
each b ∈ (0, 1/2), Kb can be seen to have Lebesgue measure 0. The set K1/3 is, up
to a dilation, the standard Cantor middle third set.
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In (7.16)–(7.19), we reproduce some calculations from Chapter 5, §3, of [Z]. First,
for φ of the form (7.13), we have

(7.16)

2πµ̂φ(ξ) =

∫
e−itξ dµφ(t)

=

∫
X

e−iφ(x)ξ dλ(x)

=

∞∏
ℓ=1

(1
2

∑
aℓ∈{0,1}

e−iaℓbℓξ
)
.

Using

(7.17)
1

2

(
1 + e−ibℓξ

)
= e−ibℓξ/2 cos

bℓξ

2
,

we obtain

(7.18) 2πµ̂φ(2ξ) = e−iAξ
∞∏
ℓ=1

cos(bℓξ).

In case bℓ = bℓ, b ∈ (0, 1/2), we get

(7.19) 2πµ̂b(2ξ) = e−iAξΦb(ξ), Φb(ξ) =

∞∏
ℓ=1

cos(bℓξ).

Note that the infinite product for Φb(ξ) is absolutely convergent, defining Φb as
a bounded, continuous function on [0,∞), satisfying Φb(0) = 1. We have the
following.

Proposition 7.4. For the measure µb defined above, b ∈ (0, 1/2),

(7.20) µb ∈ V(T1) ⇐⇒ lim
|ξ|→∞

∞∏
ℓ=1

cos(bℓξ) = 0.

Proof. The proof of ⇐ is immediate from (7.19). For ⇒, we bring in the following.

Lemma 7.5. Let u ∈ D′(T1) and assume suppu ⊂ [0, γ), γ < 2π. Then u
naturally gives rise to v ∈ D′(R) such that supp v ⊂ [0, γ), and

(7.21) u ∈ V(T1) ⇐⇒ lim
|ξ|→∞

|v̂(ξ)| = 0.

Again the only part that needs an argument is⇒, and we leave this as an exercise
for the reader, with the hint that Proposition 1.2 should be useful.

To study further when Φb(ξ) → ∞ as |ξ| → ∞, we set

(7.22) β =
1

b
∈ (2,∞).
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Then, for all ξ ∈ R,

(7.23)

Φ1/β(β
mξ) =

∞∏
ℓ=1

cos(βm−ℓξ)

= Φ1/β(ξ)
m−1∏
k=0

cos(βkξ).

It follows from (7.19) that

(7.24) Φ1/β(ξ) ̸= 0, for 0 ≤ ξ <
π

2
β,

hence Φ1/β(ξ) ̸= 0 for 1 ≤ ξ ≤ β. We deduce the following from Proposition 7.4

Proposition 7.6. For β ∈ (2,∞),

(7.25) µ1/β ∈ V(T1) ⇐⇒ lim
m→∞

m−1∏
k=0

cos(βkξ) = 0, ∀ ξ ∈ [1, β].

Proof. It follows directly from the analysis above that the left side of (7.25) holds
if and only if the right side converges uniformly to 0, for ξ ∈ [1, β]. However, Dini’s
theorem, applied to the absolute value of the product, which is monotone in m,
yields that pointwise convergence for ξ ∈ [1, β] implies uniform convergence.

Note that

(7.26)
β ∈ N ⇒ cos(βkπ) = (−1)β , ∀ k ∈ N

⇒ Φ1/β(β
mπ) = ±Φ1/β(π), ∀m ∈ N.

By (7.24), Φ1/β(π) ̸= 0 if β > 2, so we deduce that

(7.27)
1

b
∈ {3, 4, 5, . . . } =⇒ µb /∈ V(T1).

For example, the standard measure µ1/3 associated to the Cantor middle third set

does not belong to V(T1). See §9 for results that imply that, for b as in (7.27), Kb

supports no nonzero elements of V(T1).
On the other hand, for most β > 2, one does have µ1/β ∈ V(T1). In fact, suppose

there exists ξ ∈ [1, β] such that

(7.28)

m−1∏
k=0

∣∣cos(βkξ)
∣∣ ≥ A > 0, ∀m ∈ N.

Then, for all k ∈ N, we must have

(7.29) βkξ = νkπ + δk, νk ∈ N, δk → 0 as k → ∞.

Comparison with

(7.30) βk+1ξ = νk+1π + δk+1

gives

(7.31) βνk = νk+1 + εk, εk =
1

π
(δk+1 − βδk) → 0 as k → ∞.

(In fact, if (7.28) holds, then
∑

k δ
2
k < ∞, hence

∑
k ε

2
k < ∞.) The result (7.31)

has the following simple consequence.
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Proposition 7.7. If β > 2 is a rational numner but is not an integer, then µ1/β ∈
V(T1).

Proof. Suppose β = a/b, with a, b ∈ N, a > b > 1, and a and b have no common
factors. Then, given νk, νk+1 ∈ N,

(7.32)
βνk = νk+1 + εk, |εk| <

1

b

⇒ εk = 0 ⇒ a

b
νk = νk+1 ⇒ b|νk.

If p is a prime factor of b and the prime factorization of νk contains exactly α
factors of p, then that of νk+1 must contain fewer than α factors of p. By the
same reasoning, if also |εk+1| < 1/b, we also have b|νk+1, and hence νk+2 contains
still fewer factors of p. Iterating this through b|νk+j for sufficiently large j yields a
contradiction.

Proposition 7.7 is a special case of a more thorough analysis of the right side of
(7.20), due to [Sal]. The result is that, if 0 < b < 1/2,

(7.33) lim
|ξ|→∞

∞∏
ℓ=1

cos(bℓξ) = 0 ⇐⇒ β =
1

b
is not a Pisot number,

where a Pisot number is an algebraic integer β > 1 all of whose conjugates (of
which there are none if β is an integer) have absolute value < 1. See Chapter 12,
§11 of [Z] for a treatment.
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8. Riemann summation of trigonometric series

Given u ∈ V(T1), ε > 0, we set

(8.1) R(ε)u(θ) =

∞∑
k=−∞

û(k)
( sin kε

kε

)2

eikθ,

where (sin kε)/(kε) is set equal to 1 at k = 0. Note that

(8.2) R(ε) : V(T1) −→ A(T1), ∀ ε > 0,

and

(8.3) u ∈ V(T1) =⇒ R(ε)u→ u in V(T1)-norm, as ε↘ 0.

Now (8.1) is a special case of the following construction. Take

(8.4)
φ : R −→ R, continuous at 0, φ(0) = 1, φ(−s) = φ(s),

|φ(s)| ≤ C(1 + |s|)−γ , γ > 1,

and set

(8.5) Sφεu(θ) =

∞∑
k=−∞

û(k)φε(k)e
ikθ, φε(k) = φ(εk).

Then we have analogues of (8.2)–(8.3). Note that

(8.6) R(ε) = Sφε
with φ(s) =

( sin s
s

)2

.

A crucial ingredient in Riemann’s investigation of R(ε) is that, for each u ∈
V(T1), θ0 ∈ T1,

(8.7) lim
N→∞

SNu(θ0) = L0 =⇒ lim
ε↘0

R(ε)u(θ0) = L0.

This is a special case of the following result.

Proposition 8.1. Let φ satisfy (8.4) and assume also that

(8.8) φ′ ∈ L1(R), or more generally, φ ∈ BV(R).

Then, for each u ∈ V(T1) and θ0 ∈ T1,

(8.9) lim
N→∞

SNu(θ0) = L0 =⇒ lim
ε↘0

Sφε
u(θ0) = L0.
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In fact, this is just a result about infinite series, so let us take a = (ak) ∈ c0(Z)
(i.e., |ak| → 0 as |k| → ∞) and define

(8.10) SNa =
∑

|k|≤N

ak, Sφε
a =

∑
k

akφ(εk).

The claim is that

(8.11) lim
N→∞

SNa = L0 =⇒ lim
ε↘0

Sφεa = L0,

as long as (8.4) and (8.8) hold. To get this, set

(8.12) S(0) = 0, S(x) = SNa for N < x ≤ N + 1.

Then, with the first integral denoting a Stieltjes integral, we have

(8.13)

Sφεa =

∫ ∞

0

φε(x) dS(x)

= −
∫ ∞

0

S(x)φ′
ε(x) dx

= L0 +

∫ ∞

0

(L0 − S(x))φ′
ε(x) dx

= L0 +

∫ ∞

0

(
L0 − S

(x
ε

))
φ′(x) dx.

In case φ ∈ BV(R), replace φ′(x) dx by dφ(x). Now the hypothesis SNa → L0

yields

(8.14) L0 − S
(x
ε

)
−→ 0, boundedly, ∀x ∈ (0,∞),

as ε ↘ 0, so the convergence of (8.13) to L0 follows from (8.8) and the dominated
convergence theorem.

Other examples besides R(ε) to which Proposition 8.1 applies include

(8.15)

φ(s) = (1− |s|)+,
(1− s2)α+, α > 0,

e−|s|,

and many others. The following calculations spotlight a singular property of R(ε).
Given u ∈ V(T1), set

(8.16) F (θ) = Gu(θ) =
∑
k ̸=0

û(k)

k2
eikθ,

with G : V(T1) → A(T1) as in (4.4). Then

(8.17) F (θ ± ε) =
∑
k ̸=0

û(k)

k2
e±ikεeikθ,
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so, with

(8.18) ∆2
εF (θ) = ε−2

[
F (θ + ε)− 2F (θ) + F (θ − ε)

]
,

we have

(8.19)

∆2
2εF (θ) =

∑
k ̸=0

û(k)
2 cos 2kε− 2

(2kε)2
eikθ

= −
∑
k ̸=0

û(k)
( sin kε

kε

)2

eikθ,

since 1− cos 2β = 2 sin2 β. Consequently,

(8.20) R(ε)(u− û(0)) = −∆2
2εF (θ).

The results (8.7) and (8.20) play key roles in the proof of the Riemann uniqueness
theorem, discussed in §9.

For reasons related to getting rid of the term û(0) in (8.20), we bring in the
following “zero-mode elimination trick.” Namely, given u ∈ V(T1), we set

(8.21) v =

∞∑
k=−∞

û(k)e(2k+1)iθ,

which also belongs to V(T1), and satisfies v̂(0) = 0. Note that, given θ0 ∈ T1,

(8.22) lim
N→∞

SNu(2θ0) = L0 ⇐⇒ lim
N→∞

SNv(θ0) = eiθ0L0.

We return to the setting of Sφε
, with the goal of proving the following extension

of Proposition 4.2, which will be useful for certain localization results in §9.

Proposition 8.2. Let φ satisfy (8.4) and (8.8), and let f ∈ C(T1) satisfy f ′ ∈
A(T1). Then

(8.23) u ∈ V(T1) =⇒ lim
ε↘0

∥Sφε
(fu)− fSφε

u∥A = 0.

Proof. A calculation gives

(8.24)

Sφε
(eiℓθu) =

∑
k

û(k)φε(k + ℓ)ei(k+ℓ)θ,

eiℓθSφεu =
∑
k

û(k)φε(k)e
i(k+ℓ)θ.

It follows that

(8.25) [Sφε
, f ]u =

∑
k,ℓ

û(k)
[
φε(k + ℓ)− φε(k)

]
f̂(ℓ)ei(k+ℓ)θ.
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Therefore

(8.26)

∥[Sφε , f ]u∥A ≤
∑
k,ℓ

|û(k)| · |φε(k + ℓ)− φε(k)| · |f̂(ℓ)|

≤ ∥u∥B
∑
k,ℓ

|φε(k + ℓ)− φε(k)| · |f̂(ℓ)|.

Now

(8.27)

∑
k

|φε(k + ℓ)− φε(k)| ≤
∑
k

∫ k+ℓ

k

|φ′
ε(t)| dt

≤ |ℓ|
∫ ∞

−∞
|φ′

ε(t)| dt

= |ℓ|
∫ ∞

−∞
|φ′(t)| dt,

the latter integral interpreted as ∥φ′∥TV if one uses the latter hypothesis in (8.8).

Since
∑

ℓ |ℓf̂(ℓ)| = ∥f ′∥A, we have the following extension of (4.14):

(8.28) ∥[Sφε , f ]u∥A ≤ ∥φ′∥TV∥f ′∥A∥u∥B.

This is a uniform estimate, independent of ε > 0.
In view of the uniform bound in (8.28), since the space of finite linear combina-

tions of {eikθ : k ∈ Z} is dense in V(T1), it suffices to verify (8.23) for u = eikθ. In
such a case, (8.25) gives

(8.29) ∥[Sφε
, f ]eikθ∥A ≤

∑
ℓ

|φε(k + ℓ)− φε(k)| · |f̂(ℓ)|.

Now it follows from (8.4) that, for each k, ℓ ∈ Z,

(8.30) |φε(k + ℓ)− φε(k)| ≤ 2C,

and, as ε↘ 0,

(8.31) |φε(k + ℓ)− φε(k)| ≤ |1− φ(εk + εℓ)|+ |1− φ(εk)| → 0,

so, by the discrete version of the dominated convergence theorem,

(8.32) f ∈ A(T1) =⇒ lim
ε↘0

∑
ℓ

|φε(k + ℓ)− φε(k)| · |f̂(ℓ)| = 0.

This finishes the proof of Proposition 8.2.

Given that R(ε) is going to play an important role in the next section, we want
to supplement Proposition 8.1 with a study of when

(8.33) lim
ε↘0

R(ε)u(θ0) = L0 =⇒ lim
ε↘0

Sφε
u(θ0) = L0,
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given u ∈ V(T1), θ0 ∈ T1, or equivalently, when

(8.33A) lim
ε↘0

R(ε)a = L0 =⇒ lim
ε↘0

Sφεa = L0,

given a ∈ c0(Z), with Sφεa =
∑

k akφ(εk) and R(ε)a similarly defined, with φ(εk)
replaced by ρε(k) = (sin εk/εk)2. We claim a sufficient condition is that

(8.34)

φ(s) =

∫ ∞

0

ρt(s)α(t) dt

=
1

2s2

∫ ∞

0

1− cos 2st

t2
α(t) dt,

with

(8.35) α ∈ L1(R+),

∫ ∞

0

α(t) dt = 1.

In such a case,

(8.36) Sφε
a =

∫ ∞

0

R(εt)aα(t) dt.

Now R(t) : c0(Z) → C satisfies ∥R(t)∥ ≤ Ct−2, and hence

(8.37) lim
t↘0

R(t)a = L0 =⇒ sup
t

|R(t)a| ≤ C <∞.

Thus if a ∈ c0(Z) satisfies the hypotheses of (8.33A),

(8.38) R(εt)a −→ L0, boundedly ∀ t ∈ (0,∞), as ε↘ 0,

so the dominated convergence theorem gives

(8.39) lim
ε↘0

Sφε
a =

∫ ∞

0

L0α(t) dt = L0,

provided (8.35) holds. Thus our task is to see for which φ (satisfying (8.4) and
(8.8)) we have (8.34)–(8.35). We will try for α(t) in the form

(8.40) α(t) = t2β′(t), β, β′ ∈ L1(R+), β(0) = β(∞) = 0.

Then (8.34) becomes

(8.41)

φ(s) =
1

2s2

∫ ∞

0

(1− cos 2st)β′(t) dt

=
1

s

∫ ∞

0

(sin 2st)β(t) dt,

or

(8.42) sφ(s) =
1

2

∫ ∞

0

(sin st)β
( t
2

)
dt.

The Fourier inversion formula gives

(8.43) β
( t
2

)
= − 4

π

∫ ∞

0

sφ(s)(sin st) ds.

We thus have the following.
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Proposition 8.3. Let φ satisfy (8.4) and (8.8). Assume in addition that sφ(s) ∈
L1(R+) and that β, given by (8.43), satisfies

(8.44) β, β′, t2β′ ∈ L1(R+).

Then, for u ∈ V(T1), θ0 ∈ T1,

(8.45) lim
ε↘0

R(ε)u(θ0) = L0 =⇒ lim
ε↘0

Sφε
u(θ0) = L0.

Remark. If, in the setting of Proposition 8.3, we add the hypotheses

(8.46) s2φ,
( d

ds

)2

(s2φ) ∈ L1(R),

then we have

(8.47)

β′(t) = − 4

π

∫ ∞

−∞
s2φ(s) cos 2st ds,

t2β′(t) =
1

π

∫ ∞

−∞

( d

ds

)2

(s2φ(s)) cos 2st ds.

If one furthermore strengthens (8.46) to

(8.48) sφ, s2φ,
( d

ds

)2

(s2φ) ∈ A(R) = {g ∈ L1(R) : ĝ ∈ L1(R)},

then (8.44) holds.

Corollary 8.4. The implication (8.45) holds in the following cases:

(8.49)
φ(s) = e−|s|,

φ(s) = (1− s2)α+, α > 2.
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9. Localization and sets of uniqueness

We begin by recalling Riemann’s global uniqueness theorem.

Theorem 9.1. Given u ∈ V(T1), if

(9.1) SNu(θ) → 0 as N → ∞ for each θ ∈ T1,

then each û(k) = 0, so u = 0.

Proof. Using the zero-mode elimination trick from §8, it suffices to prove the result
for u ∈ V(T1) satisfying û(0) = 0. By Proposition 8.1, the hypothesis (9.1) implies

(9.2) R(ε)u(θ) −→ 0 as ε↘ 0, ∀ θ ∈ T1,

with R(ε)u defined as in (8.1). As also seen in §8, for each θ ∈ T1,

(9.3) R(ε)u(θ) = −∆2
2εF (θ),

where F = Gu ∈ A(T1), and

(9.4) ∆2
εF (θ) = ε−2

[
F (θ + ε)− 2F (θ) + F (θ − ε)

]
.

Given (9.2), we have

(9.5) lim
ε↘0

∆2
εF (θ) = D2F (θ) = 0, ∀ θ ∈ T1.

The next lemma will imply that F is constant on T1, and since by construction

F̂ (0) = 0, the constant must be 0. But clearly

(9.6) F = 0 in A(T1) =⇒ u = 0 in V(T1),

so we have Theorem 9.1, modulo the following classical elementary result.

Lemma 9.2. Given an interval [a, b] ⊂ R and F ∈ C([a, b]), if

(9.7) lim
ε↘0

∆2
εF (θ) = 0 ∀ θ ∈ (a, b),

then F is linear on [a, b].

Proof. It suffices to treat the case where F is real. By a simple change of variable,
we can reduce to the case [a, b] = [−1, 1]. Also by adding a linear term, which does
not affect (9.7), we can arrange that

(9.8) F (−1) = F (1) = 0.

Then we want to show that (9.7) implies F ≡ 0 on [−1, 1]. It suffices to show that

Fδ(θ) = F (θ) + δ(1− θ2) =⇒(9.9)

Fδ(θ) ≥ 0, ∀ δ > 0, θ ∈ [−1, 1], and(9.10)

Fδ(θ) ≤ 0, ∀ δ < 0, θ ∈ [−1, 1].(9.11)

Note that limε↘0 ∆2
εFδ(θ) = −2δ, and Fδ(−1) = Fδ(1) = 0. If (9.10) fails, then

there must be θ0 ∈ (−1, 1) such that Fδ(θ0) < 0 and Fδ(θ0) is minimal. But it is
clear from the defining formula that, at such θ0,

(9.12) ∆2
εFδ(θ0) ≥ 0, ∀ small ε > 0,

contradicting the identity D2Fδ(θ0) = −2δ < 0. A similar argument gives (9.11),
and we have the lemma.

Now that we have Theorem 9.1, the result localizes as follows.
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Proposition 9.3. Let O ⊂ T1 be open, with complement K. Let u ∈ V(T1) and
assume

(9.13) SNu(θ) → 0 for each θ ∈ O.

Then

(9.14) suppu ⊂ K,

and consequently

(9.15) SNu→ 0 uniformly on compact subsets of O.

Proof. Pick f such that f ′ ∈ A(T1) and supp f ⊂ O, for example f ∈ C2
0 (O). Then

(9.13) implies fSNu→ 0 pointwise on T1, so Proposition 4.2 implies

(9.16) SN (fu)(θ) → 0 for each θ ∈ T1.

Now fu ∈ V(T1), so Theorem 9.1 implies fu = 0. This gives (9.14), and then (9.15)
follows from Theorem 1.1.

Generally, a set Σ ⊂ T1 is called an M-set if there is a nonzero u such that

(9.17) u ∈ V(T1), SNu(θ) → 0, ∀ θ ∈ T1 \ Σ,

and Σ is called a U-set otherwise, i.e., when (9.17) implies u = 0. The following
result is a distributional version of Theorem 6.8 in Chapter 9 of [Z].

Proposition 9.4. Let K ⊂ T1 be closed. Then K is an M-set if and only if

(9.18) there exists a nonzero u ∈ V(T1) such that suppu ⊂ K.

Proof. First, if there is a u as in (9.18), Theorem 1.1 implies that (9.17) holds, with
Σ = K.

For the converse, if there is a nonzero u ∈ V(T1) such that (9.17) holds, with
Σ = K, then Proposition 9.3 yields suppu ⊂ K.

Now, given u ∈ D′(T1), suppu is uniquely characterized as the minimal closed
subset of T1 off which u vanishes. In light of this, we have the following.

Proposition 9.5. If u ∈ V(T1), then suppu contains no isolated points.

Proof. If p is such an isolated point, we can write suppu = K0∪{p}, a disjoint union,
and, using a smooth cutoff, write u = u0 + u1, with uj ∈ V(T1), suppu0 ⊂ K0,
and suppu1 ⊂ {p}. But if u1 ∈ D′(T1) is supported at p, it must be a finite linear
combination of derivatives of δp, so it cannot belong to V(T1) unless it vanishes.
This requires u = u0, leading to the contradiction that suppu ⊂ suppu \ {p}.

A compact subset of T1 with no isolated points is equal to its limit set, that is,
it is a perfect set. Thus Propositions 9.4 and 9.5 yield the following.
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Proposition 9.6. Let K ⊂ T1 be closed. If K is an M-set, then there exists
K0 ⊂ K such that

(9.19) K0 is a perfect set and an M-set.

We return to the global uniqueness issue, and bring in the following concept.

Definition. Let φ : R → R satisfy (8.4) and (8.8). We say φ is a Rajchman
multiplier provided

(9.20) u ∈ V(T1), lim
ε↘0

Sφε
u(θ) ≡ 0 =⇒ u = 0.

The content of Theorem 9.1 is that χ[0,1](s) is a Rajchman multiplier. In fact,

the proof goes through the result that u = 0 whenever u ∈ V(T1) and (9.2) holds,
so in fact

(9.21) ρ(s) =
( sin s

s

)2

is a Rajchman multiplier. It was shown by M. Riesz that if

(9.22) φ(s) = (1− |s|)+,

then (9.20) holds. These works preceeded that of [R], who demonstrated the much
stronger result that if

(9.23) φ(s) = e−|s|,

then (9.20) holds. We will take this up in §10. Our current goal is to extend
Proposition 9.3, as follows.

Proposition 9.7. Let O ⊂ T1 be open, with complement K, let φ be a Rajchman
multiplier, and let u ∈ V(T1). Then

(9.24) Sφε
u(θ) → 0 for each θ ∈ O =⇒ suppu ⊂ K.

Proof. As in the proof of Proposition 9.3, pick f such that f ′ ∈ A(T1) and supp f ⊂
O. Then the hypothesis in (9.24) implies fSφε

u→ 0 pointwise on T1, so Proposition
8.2 implies

(9.25) Sφε(fu)(θ) −→ 0 for each θ ∈ T1,

and hence fu = 0. This yields the conclusion of (9.24).

In parallel to (9.17), it is natural to make the following:

Definition. Let φ : R → R satisfy (8.4) and (8.8). We say a set Σ ⊂ T1 is an
(M,φ)-set if there is a nonzero u such that

(9.26) u ∈ V(T1), Sφε
u(θ) → 0, ∀ θ ∈ T1 \ Σ,

and we say Σ is a (U,φ)-set otherwise, i.e., when (9.26) implies u = 0.

The following result extends Proposition 9.4.
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Proposition 9.8. Let φ be a Rajchman multiplier, and let K ⊂ T1 be closed. Then
K is an (M,φ)-set if and only if

(9.27) there is a nonzero u ∈ V(T1) such that suppu ⊂ K.

Proof. First, if there is a u as in (9.27), Theorem 1.1 inplies that (9.17) holds, with
Σ = K, and then Proposition 8.1 implies (9.26) holds.

For the converse, if there is a nonzero u ∈ V(T1) such that (9.26) holds, with
Σ = K, then Proposition 9.7 yields suppu ⊂ K.

Corollary 9.9. If φ is a Rajchman multiplier and K ⊂ T1 is closed, then K is an
(M,φ)-set if and only if K is an M-set.

Returning to the setting of Proposition 9.4, we have the following, which is a
variant of Theorem 6.1 in Chapter 9 of [Z].

Proposition 9.10. Let K ⊂ T1 be compact. Assume that there exist fk ∈ A(T1)
satisfying

{fk} bounded in A(T1),(9.28)

fk −→ 1 in D′(T1), and(9.29)

supp fk ⊂ O = T1 \K.(9.30)

Then K is a U-set.

Proof. Take u ∈ V(T1), φ ∈ C∞(T1). Note that (9.28)–(9.29) imply fk → 1 weak∗

in A(T1) = V(T1)′. Now, as k → ∞,

(9.31) ⟨fku, φ⟩ = ⟨φu, fk⟩ → ⟨φu, 1⟩ = ⟨u, φ⟩,

so

(9.32) u ∈ V(T1) =⇒ fku→ u in D′(T1).

It then follows from (9.30) that

(9.33) u ∈ V(T1), suppu ⊂ K =⇒ u = lim
k→∞

fku = 0,

and the conclusion that K is a U-set follows from Proposition 9.4.

The following variant is actually closer to the Theorem 6.1 of [Z] cited above.

Proposition 9.11. In the setting of Proposition 9.10, replace the hypothesis (9.30)
by

(9.34) f ′k ∈ A(T1), fk = 0 on K.

Then the conclusion that K is a U-set still holds.

Proof. We still have (9.32). This time, if u ∈ V(T1) and suppu ⊂ K, Theorem 1.1
and Proposition 4.2 imply that, for each k,

(9.35) SN (fku)(θ) −→ 0 as N → ∞, ∀ θ ∈ T1,
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and then Theorem 9.1 implies fku = 0. Thus we again have (9.33).

Here is a way to construct a sequence (fk) to which Propositions 9.10–9.11 apply.
Start with

(9.36) f ∈ C2(T1),

∫
T1

f(θ) dθ = 1, f = 0 on K,

where K ⊂ T1 is closed. Regard f as defined on R, periodic of period 2π. Pick a
sequence nk ↗ ∞ of positive integers, and set

(9.37) fk(θ) = f(nkθ) =
∑
ℓ

f̂(ℓ)eiℓnkθ.

Then (fk) satisfies (9.28)–(9.29), and also f ′k ∈ C1(T1) ⊂ A(T1). From Proposition
9.11 we immediately have the following.

Proposition 9.12. Let (fk) be as in (9.36)–(9.37). If K ⊂ T1 is a compact set
such that fk = 0 on K for each k, then K is a U-set.

In this regard, note that

(9.38) fk
∣∣
K

= 0 ⇐= nkθ ∈ K#, ∀ θ ∈ K,

where K is as in (9.36) and

(9.39) K# = P−1(K)

is the inverse image of K under the projection P : R → R/(2πZ) = T1.

The following is essentially a restatement of Proposition 9.12.

Corollary 9.13. Let K# be a closed, proper subset of R, invariant under the
translation x 7→ x+ 2π. If nk ∈ N, nk ↗ ∞, and

(9.40) K# =
∩
k

n−1
k K#,

(which is also invariant under such a translation), then P (K#) = K ⊂ T1 is a
U-set.

Proof. It suffices to note that, if K ⊂ T1 is closed and T1 \ K ̸= ∅, then one can
find f as in (9.36).

We can apply Corollary 9.13 to certain families of fractal sets. Let K ⊂ T1 be
compact, and let n > 1 be an integer. We say K is of class F(n, 2π) provided

(9.41) K ̸= T1, and nK# ⊂ K#,

where K# = P−1(K).
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Proposition 9.14. If K ⊂ T1 is compact and of class F(n, 2π) for an integer
n ≥ 2, then K is a U-set.

Proof. Apply Corollary 9.13 with nk = nk, noting that (9.41) implies nkK# ⊂ K#,
for each k ∈ N.

Examples of sets satisfying the hypotheses of Proposition 9.14 include the fol-
lowing Cantor sets Cn, given an integer n ≥ 3. To construct Cn, remove from [0, 2π]
the central interval (2π/n, 2π(1− 1/n)), of length 2π(1− 2/n) (which is positive if
n > 2), leaving two closed intervals, each of length 2π/n. From each of these, re-
move the central open interval of length (2π/n)(1−2/n), leaving a total of 4 closed
intervals, each of length 2π/n2. Continue, obtaining a shrinking family of compact
subsets of [0, 2π], whose intersection defines Cn. The set C3 is the standard Cantor
middle third set, up to a dilation. We see that nC#

n ⊂ C#
n , where C#

n = P−1(Cn),
and deduce that

(9.42) for each integer n ≥ 3, Cn is a U-set.

Note that each Cn is a dilate of K1/n, constructed in §7, via (7.15). The calculation

there showing that the natural Cantor measure on K1/n does not belong to V(T1)
is consistent with (9.42).

The sets Cn are natural dilates of the sets K1/n. The class of compact U-sets is
invariant under translations and dilations, as is the class of compact M-sets. The
proof, with some help from Lemma 7.5, is left to the reader.

Proposition 7.7 implies that K1/β is an M-set whenever β > 2 is a rational
number that is not an integer. These are examples of perfect sets of Lebesgue
measure 0 that are M-sets. D. Mensov first produced examples of such M-sets (hence
the name “M-sets”). Extending (7.33), which implies that the natural Cantor
measure µb on Kb (for 0 < b < 1/2) belongs to V(T1) if and only if

(9.43)
1

b
is not a Pisot number,

[Sal] showed that, for 0 < b < 1/2, Kb is an M-set if and only if (9.43) holds. This
can be found in Chapter 12, §11 of [Z]. See also [KS], for further results.

There has been much work on subsets of T1 that are U-sets and are not closed.
W.H. Young showed that every countable subset of T1 is a U-set. If u ∈ V(T1),
the set of points where its Fourier series does not converge to 0 is a Borel set, and
if it is not countable it must contain a perfect set. A recent survey on the issue of
U-sets and M-sets, emphasizing modern descriptive set theory, is given in [K].
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10. Rajchman’s global uniqueness theorem and localizations

Here we establish a version of A. Rajchman’s improvement of Riemann’s global
uniqueness theorem. It concerns Abel summability,

(10.1) A(r)u(θ) =
∑
k

û(k)r|k|eikθ = Sϕy
u(θ),

with

(10.2) φ(s) = e−|s|, r = e−y ∈ (0, 1).

The result works for u in the following space, which is quite a bit larger than V(T1),

(10.3) C−2(T1) = {u ∈ D′(T1) : Gu ∈ C(T1)},

where, extenidng (4.3), we define

(10.4) G : D′(T1) −→ D′(T1), Gu =
∑
k ̸=0

k−2û(k)eikθ.

Equivalently, C−2(T1) = {u = v′′ + c : v ∈ C(T1), c ∈ C}. Here is the result.

Theorem 10.1. Let u ∈ C−2(T1) and assume

(10.5) lim
r↗1

A(r)u(θ) = 0, ∀ θ ∈ T1.

Then u = 0.

To see how close to sharp Theorem 10.1 is, note that the hypothesis (10.5)
holds for u = δ′0 ∈ D′(T1), but Gδ′0 has a jump discontinuity, so the hypothesis
u ∈ C−2(T1) barely fails. In the classical version presented in Chapter 9 of [Z], the
hypothesis on u is

(10.6) û(k) = o(k),

which is somewhat similar to our hypothesis u ∈ C−2(T1), though neither hypoth-
esis implies the other. Note that (10.6) also barely fails for u = δ′0.

Our proof of Theorem 10.1 is adapted from the treatment given in Chapter 9
of [Z], with some simplifications resulting from our use of y rather than r as the
governing variable. We start with the following variant of Lemma 7.6 in Chapter 9
of [Z].

Lemma 10.2. Let u ∈ C−2(T1) be real valued, and assume û(0) = 0. Consider

(10.7) F (θ) = −Gu(θ) + C,

where C is a constant. Set

(10.8) v(y, θ) = A(e−y)u(θ), y > 0.
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Let

(10.9)

D2F (θ) = lim inf
ε→0

∆2
εF (θ),

D2
F (θ) = lim sup

ε→0
∆2

εF (θ).

Then, for each θ ∈ T1,

(10.10)

D2F (θ) ≤ v∗(θ) = lim sup
y↘0

v(y, θ), and

D2
F (θ) ≥ v∗(θ) = lim inf

y↘0
v(y, θ).

Proof. It suffices to prove the first part of (10.10). Also, it suffices to treat θ = 0.
Since ∆2

εF (0) and v(y, 0) are unchanged if F (θ) is replaced by F (−θ), we can
furthermore just treat the case F (θ) = F (−θ). We can also assume F (0) = 0.

If our desired conclusion in (10.10) fails, there must exist m ∈ R such that
D2F (0) > m but v∗(0) < m. Replacing F (θ) by F (θ)+m cos θ and u by u+m cos θ,
we can assume m = 0, so

(10.11) D2F (0) > 0, but v∗(0) < 0.

Our task is to show that (10.11) is impossible. Let us set

(10.12) G(y, θ) = A(e−y)F (θ), g(y) = G(y, 0).

Note that

(10.13)
∂2G

∂θ2
+
∂2G

∂y2
= 0,

and, since ∂2θF = u,

(10.14)

∂2

∂θ2
G(y, θ) = A(e−y)u(θ) = v(y, θ), hence

v(y, θ) = − ∂2

∂y2
G(y, θ).

Thus, if (10.11) holds, then there exist δ > 0 and α > 0 such that

(10.15)
∆2

εF (0) ≥ δ > 0, ∀ |ε| ≤ α, and

g′′(y) ≥ δ > 0, ∀ y ∈ (0, α).

We want to show this is impossible.
Note that F (0) = 0 ⇒ g(0) = 0. It follows from the mean value theorem that,

for each y > 0,

(10.16)
g(y)

y
= g′(ρ), for some ρ ∈ (0, y),
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and, similarly, g(ρ)/ρ = g′(σ) for some σ ∈ (0, ρ), so

(10.17)
g(y)

y
− g(ρ)

ρ
= g′(ρ)− g′(σ).

Now, for y ∈ (0, α), g′′(y) ≥ δ > 0 implies g′(y) ↗, hence g′(ρ)− g′(σ) > 0. To get
the desired contradiction of (10.15), we will show that

(10.18)
d

dy

g(y)

y
≤ −ε < 0, for y > 0 small,

which will contradict the positivity of (10.17), for 0 < ρ < y sufficiently small.
If we regard F as a function on R that is periodic of period 2π, we can write

(10.19) G(y, θ) =

∫ ∞

−∞
F (φ)P (y, θ − φ) dφ,

with

(10.20) P (y, θ) =
1

π

y

y2 + θ2
,

hence

(10.21)
g(y)

y
=

1

π

∫ ∞

−∞

F (θ)

y2 + θ2
dθ,

so

(10.22)
d

dy

g(y)

y
= − 2

π

∫ ∞

−∞
F (θ)

y

(y2 + θ2)2
dθ.

We see that, for each η > 0,

(10.23) lim
y→0

∫
|y|>η

|F (θ)| y

(y2 + θ2)2
dθ = 0.

On the other hand, with η = α as in (10.15),

(10.24) 2F (θ) ≥ δθ2, for |θ| ≤ η,

so

(10.25)

∫ η

−η

F (θ)
y

(y2 + θ2)2
dθ ≥ δ

∫ η

−η

yθ2

(y2 + θ2)2
dθ

= δ

∫ η/y

−η/y

x2(1 + x2)−2 dx,

which is positive and bounded away from 0 as y ↘ 0. This establishes (10.18) and
hence completes the proof of Lemma 10.2.

The next ingredient in the proof of Theorem 10.1 is the following extension of
Lemma 9.2.
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Lemma 10.3. Given an interval [a, b] ⊂ R and real valued F ∈ C([a, b]), if

(10.26) D2F (θ) ≤ 0 ≤ D2
F (θ), ∀ θ ∈ (a, b),

then F is linear on [a, b].

Proof. As before, we can assume [a, b] = [−1, 1] and F (−1) = F (1) = 0. Then we
want to show that (10.26) implies F ≡ 0 on [−1, 1]. Again, it suffices to show that
if Fδ(θ) = F (θ) + δ(1− θ2), then (9.10) and (9.11) hold. Now (10.26) implies that,
for all θ ∈ (−1, 1),

(10.27) D2Fδ(θ) ≤ −2δ ≤ D2
Fδ(θ), and Fδ(−1) = Fδ(1) = 0.

If (9.10) fails, there exist δ > 0 and θ0 ∈ (−1, 1) such that Fδ(θ0) < 0 and Fδ(θ0)
is minimal. But, for such θ0, ∆

2
εFδ(θ0) ≥ 0 for all sufficiently small ε > 0, contra-

dicting D2Fδ(θ0) ≤ −2δ < 0. A similar argument gives (9.11), and we have the
lemma.

Proof of Theorem 10.1. It suffices to work with real u. If a = û(0), (10.5) implies
A(r)(u(θ) − a) → −a as r ↗ 1, for each θ ∈ T1. Then Lemma 10.2, applied to
u− a, gives

(10.28) D2F (θ) ≤ −a ≤ D2
F (θ), ∀ θ ∈ T1.

Then Lemma 10.3, applied to F (θ) + (a/2)θ2, yields

(10.29) Gu(θ) =
a

2
θ2 + bθ + c, for − 2π ≤ θ ≤ 2π,

for certain constants b and c. That Gu is continuous and periodic of period 2π
yields a = b = 0. In particular, û(0) = 0. Now the formula (10.4) implies Gu has
mean value 0, so c = 0. Hence Gu = 0, so u = 0.

We have the following localization of Theorem 10.1.

Proposition 10.4. Let O ⊂ T1 be open, with complement K. Assume u ∈
C−2(T1) and

(10.30) lim
r↗1

A(r)u(θ) = 0, ∀ θ ∈ O.

Then

(10.31) suppu ⊂ K,

and (10.30) holds locally uniformly on O.

Proof. It suffices to treat the case where u is real. Let I ⊂ O be an interval. As
in the proof of Theorem 10.1, there exists a ∈ R such that F = −Gu satisfies

D2F (θ) ≤ −a ≤ D2
F (θ), for all θ ∈ I, and hence Gu has the form (10.29) for

θ ∈ I. In particular, Gu is smooth on I, hence on O, and consequently u itself is
smooth on O. The structure of the Poisson kernel implies that, as r ↗ 1, A(r)u
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converges locally uniformly to u on O. By (10.30), this limit must be 0, and (10.31)
follows.

Expanding notions of M-sets and U-sets from §9, we make the following:

Definition. Let X be a linear subspace of C−2(T1). We say a set Σ ⊂ T1 is an
(M,A,X)-set if there is a nonzero u such that

(10.32) u ∈ X, A(r)u(θ) → 0, ∀ θ ∈ T1 \ Σ,

and we say Σ is a (U,A,X)-set otherwise, i.e., when (10.32) implies u = 0.

As the example u = δ0 shows, there are no non-empty (U,A, C−2(T1))-sets. We
do however have the following counterpart of Proposition 9.8.

Proposition 10.5. Let K ⊂ T1 be closed, and let X be a linear subspace of
C−2(T1). Then K is an (M,A,X)-set if and only if

(10.33) there is a nonzero u ∈ X such that suppu ⊂ K.

This leads to the following counterpart of Proposition 9.6.

Corollary 10.6. Let X be a linear subspace of C−2(T1) with the following property:

(10.34) if u ∈ X, then suppu contains no isolated points.

Let K ⊂ T1 be closed. If K is an (M,A,X)-set, then there exists K0 ⊂ K such that

(10.35) K0 is a perfect set and an (M,A,X)-set.

An example of a linear subspace of C−2(T1) satisfying (10.34) is C−1(T1), where,
for a positive integer k, we set

(10.36) C−k(T1) = {v(k) + c : v ∈ C(T1), c ∈ C}.

We mention that an inductive argument establishes that, for each k ∈ N,

(10.37) f ∈ Ck(T1), u ∈ C−k(T1) =⇒ fu ∈ C−k(T1).

If u ∈ C−1(T1) and if p ∈ T1 were an isolated point in suppu, then we could pick
a cut-off f ∈ C1(T1) such that supp fu = {p}. Then fu would have to be a finite
linear combination of δp and its derivatives, and such a distribution cannot belong
to C−1(T1).

Note that if µ is a finite (complex) measure on T1, then µ ∈ C−1(T1) if and only
if µ has no atoms. Hence C−1(T1)∩M(T1) is somewhat larger than V(T1)∩M(T1),
considered in §7. In connection with this, we mention the following result.

Lemma 10.7. If K0 ⊂ T1 is a perfect set, then there is a nonzero measure µ, with
no atoms, supported in K0.

This has the following application.
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Corollary 10.8. Let X be a linear subspace of C−2(T1) satisfying (10.34) and such
that

(10.38) X contains all finite measures with no atoms.

Let K ⊂ T1 be closed. Then K is a (U,A,X)-set if and only if K is countable.
In particular, this result holds for

(10.39) X = C−1(T1).

Proof. Every uncountable compact subset of T1 contains a perfect set.

Here is another perspective on the atoms of a measure µ on T1, due to N. Wiener.
We have, for N ≥ 1,

(10.40)

1

N

∑
|k|≤N

|µ̂(k)|2 =
1

4π2N

∑
|k|≤N

∫
e−iθk dµ(θ)

∫
eiφk dµ(φ)

=
1

4π2N

∫∫
DN (φ− θ) dµ(θ) dµ(φ).

As in (2.2),

(10.41)
1

N
DN (φ) =

1

N

∑
|k|≤N

eikφ =
1

N

sin(N + 1/2)φ

sinφ/2
.

This is uniformly bounded in absolute value and tends to 0 as N → ∞, for φ ̸= 0,
while tending to 2 as N → ∞ for φ = 0. Hence the dominated convergence theorem
gives

(10.42)

lim
N→∞

1

N

∑
|k|≤N

|µ̂(k)|2 =
1

2π2

∫∫
φ=θ

dµ(θ) dµ(φ)

=
1

2π2

∑
θ

|µ({θ})|2,

i.e., the limit of the left side of (10.42) is equal to the sum of the squares of the point
masses of µ (times 1/2π2). Consequently a measure µ on T1 belongs to C−1(T1) if
and only if

(10.43) lim
N→∞

1

N

∑
|k|≤N

|µ̂(k)|2 = 0.

This tempts us to define the following space of distributions, which is larger than
V(T1):

Definition. Given u ∈ D′(T1), we say u ∈ W(T1) provided

(10.44) lim
N→∞

1

N

∑
|k|≤N

|û(k)|2 = 0.
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The space W(T1) is a Banach space, with norm defined by

(10.45) ∥u∥2W = sup
N

pN (u)2, pN (u)2 =
1

N

∑
|k|≤N

|û(k)|2.

Note that, for N ≥ 1,

(10.46) pN (eiℓθu)2 ≤ N + |ℓ|
N

pN+|ℓ|(u)
2,

so

(10.47) ∥eiℓθu∥2W ≤ (|ℓ|+ 1)∥u∥2W , and |û(ℓ)| ≤ ∥eiℓθu∥W .

It follows that

(10.48) W(T1) ⊂ C−2(T1),

and

(10.49) u ∈ W(T1),
∑
ℓ

(|ℓ|+ 1)1/2|f̂(ℓ)| <∞ =⇒ fu ∈ W(T1).

From here, the same argument that established (10.34) for X = C−1(T1) gives the
following.

Proposition 10.9. If u ∈ W(T1), then suppu contains no isolated points. Con-
sequently (by Corollary 10.8) a closed K ⊂ T1 is a (U,A,W(T1))-set if and only if
K is countable.

We see that the (U,A,X)-sets assciated to X = C−1(T1) and X = W(T1) have a
simple structure, as opposed to the rich variety that occurs when X = V(T1). One
might seek more general spaces

(10.50) X ⊂ W(T1)

for which the (U,A,X)-sets have a richer structure than in Corollary 10.8 and
Proposition 10.9. A place to start would be to identify some spaces X that satisfy
(10.50) but not (10.38).

To get started, we recall the measures µ1/ℓ, supported on the Cantor sets K1/ℓ,

for ℓ ∈ N, ℓ ≥ 3, considered in (7.16)–(7.27), and shown not to belong to V(T1).
Further analysis of (7.20)–(7.27) shows that

(10.51)
1

N

∑
N≤|k|≤2N

|µ̂1/ℓ(k)|2 ≈ CN−γ(ℓ), γ(ℓ) =
log 2

log ℓ
,

in the sense that one has two-sided bounds. This leads us to bring in the Besov
spaces

(10.52) Bs
2,∞(T1) =

{
u ∈ D′(T1) :

∑
N≤|k|≤2N

|û(k)|2 ≤ CN−2s
}
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or, for short,

(10.53) Wγ(T1) = B
(γ−1)/2
2,∞ (T1),

so that

(10.54) u ∈ Wγ(T1) ⇐⇒ 1

N

∑
N≤|k|≤2N

|û(k)|2 ≤ CN−γ ,

given u ∈ D′(T1). The space W0(T1) contains W(T1), but Wγ(T1) ⊂ W(T1) for
γ > 0. Note that, for γ > 0,

(10.55) u ∈ Wγ(T1) ⇐⇒ Λγ/2u ∈ W0(T1) = B
−1/2
2,∞ (T1),

where

(10.56) Λγ/2 : D′(T1) → D′(T1), Λγ/2u =
∑
k

(1 + |k|)γ/2û(k)eikθ.

By (10.51), for ℓ ∈ N, ℓ ≥ 3,

(10.57) µ1/ℓ ∈ Wγ(T1) ⇐⇒ γ <
log 2

log ℓ
.

Thus, for γ ∈ (0, 1), there are some measures µ1/ℓ that belong to Wγ(T1) and some
that do not. By (10.57),

(10.58) γ <
log 2

log ℓ
⇒ K1/ℓ is an (M,A,Wγ(T1))-set.

On the other hand, we are tempted to make the following:

Conjecture 10.10. Given an integer ℓ ≥ 3 and γ ∈ (0, 1), the compact set K1/ℓ ⊂
T1 is a (U,A,Wγ(T1))-set provided

(10.59) γ >
log 2

log ℓ
.

In connection with (10.51)–(10.59), let us note that

(10.60) γ > 0 =⇒ B
(γ−1)/2
2,∞ (T1) ⊂ H−1/2(T1),

where Hσ(T1) denotes the L1-Sobolev space, defined by

(10.61) u ∈ Hσ(T1) ⇐⇒
∑
k

(1 + |k|)2σ|û(k)|2 <∞.

Hence, given γ > 0, each compact (M,A,Wγ(T1))-set is an (M,A,H−1/2(T1))-set,

and equivalently each compact (U,A,H−1/2(T1))-set is a (U,A,Wγ(T1))-set. By

Proposition 10.5, a compact K ⊂ T1 is a (U,A,H−1/2(T1))-set if and only if

(10.62) K supports no nontrivial elements of H−1/2(T1).
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There is a family of capacities, Capσ, associated to the operators Λ−σ, for σ ∈
(0, 1/2], and one has, for compact K ⊂ T1,

(10.63) (10.62) ⇐⇒ Cap1/2(K) = 0.

See [D], p. 311, particularly the Lemma and subsequent comments, complemented
by the Theorem on p. 305.

Using the readily established fact that Cap1/2({p}) = 0 for each point p ∈ T1,

and standard general properties of capacities, which imply that Cap1/2(Kj) → 0
when a sequence of compact sets Kj shrinks to p, and the countable subadditivity
of the set function Cap1/2, one can readily construct “ultra-thin” Cantor sets Kb

with the property that

(10.64) Cap1/2(K
b) = 0.

Note that these sets are uncountable. In view of (10.63), such sets satisfy (10.62),
and hence are (U,A,H−1/2(T1))-sets.
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