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1. Introduction and definitions

A random field Z on n-dimensional Euclidean space Rn or the lattice Zn (also
called a random function, or a stochastic process indexed by Rn or Zn) assigns to
each x ∈ Rn (resp., Zn) a random variable Z(x) on some probability space (Ω, µ)
(where µ is a probability measure on the set Ω). For definiteness, let us say

(1.1) Z : Fn −→ L2(Ω, µ),

where L2(Ω, µ) denotes the space of square-integrable functions (random variables
with finite first and second moments) on Ω. Here and below, F denotes either R or
Z. We assume the random variables Z(x) are real valued.

We use Z to assign a probability measure ν on the set O = RFn

of all functions
from Fn to R, as follows. First, Z gives rise to a map

(1.2) F : Ω −→ O,

defined as follows. If ξ ∈ Ω, F (ξ) ∈ O is a function on Fn whose value at x ∈ Fn is
Z(x)(ξ), i.e.,

(1.3) F (ξ)(x) = Z(x)(ξ), ξ ∈ Ω, x ∈ Fn.

(Recall that Z(x) is a function on Ω, for each x ∈ Fn.) Then ν is defined by

(1.4) ν(S) = µ(F−1(S)),

when S ⊂ O is a measurable set. The probability measure ν incorporates the joint
probability distributions of the random variables Z(x), as x runs over Fn, as we
indicate below. Another way to write (1.4) is as

(1.5)
∫

O

ϕ(η) dν(η) =
∫

Ω

ϕ(F (ξ)) dµ(ξ).

Let us consider some special cases. Pick x1, x2 ∈ Fn and set

(1.6) ϕ1(η) = η(x1), ϕ2(η) = η(x1)η(x2).

Then

(1.7) ϕ1(F (ξ)) = Z(x1)(ξ), ϕ2(F (ξ)) = Z(x1)(ξ)Z(x2)(ξ),



3

so

(1.8)
∫

O

ϕ1 dν =
∫

Ω

Z(x1)(ξ) dµ(ξ) = 〈Z(x1)〉,

and

(1.9)
∫

O

ϕ2 dν =
∫

Ω

Z(x1)(ξ)Z(x2)(ξ) dµ(ξ) = 〈Z(x1)Z(x2)〉.

We see that (1.8) is the mean of the random variable Z(x1). The quantity (1.9)
together with the means of Z(x1) and of Z(x2) are ingredients in the formula for
the covariance of Z(x1) and Z(x2).

In further preparation for defining the concepts of stationarity and ergodicity,
we bring in the action of Fn on O,

(1.10) τy : O −→ O, y ∈ Fn,

defined as follows. If y ∈ Fn and η ∈ O (so η is a function, η : Fn → R), τyη ∈ O
is given by

(1.11) τyη(x) = η(x + y), x, y ∈ Fn.

Definition 1.1. The random field Z is stationary provided τy preserves the prob-
ability measure ν, for each y ∈ Fn. Equivalently, if ϕ ∈ L1(O, ν),

(1.12)
∫

O

ϕ(τyη) dν(η) =
∫

O

ϕ(η) dν(η), ∀ y ∈ Fn.

An alternative label for such a field Z is homogeneous.
If ϕ1 and ϕ2 are defined as in (1.6), then

(1.13) ϕ1(τyη) = η(x1 + y), and ϕ2(τyη) = η(x1 + y)η(x2 + y),

so, parallel to (1.8)–(1.9), we have

(1.14)

∫

O

ϕ1(τyη) dν(η) =
∫

Ω

Z(x1 + y)(ξ) dµ(ξ)

= 〈Z(x1 + y)〉,
and

(1.15)

∫

O

ϕ2(τyη) dν(η) =
∫

Ω

Z(x1 + y)(ξ)Z(x2 + y)(ξ) dµ(ξ)

= 〈Z(x1 + y)Z(x2 + y)〉,
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so stationarity implies

(1.16) 〈Z(x1)〉 = 〈Z(x1 + y)〉, 〈Z(x1)Z(x2)〉 = 〈Z(x1 + y)Z(x2 + y)〉,

for each x1, x2, y ∈ Fn.

Definition 1.2. The action {τy : y ∈ Fn} on (O, ν) is ergodic provided it preserves
the measure ν and the following holds. If ϕ ∈ L1(O, ν) and

(1.17) ϕ ◦ τy = ϕ in L1(O, ν), ∀ y ∈ Fn,

then ϕ must be constant (ν-a.e.).

Definition 1.3. Assume Z is a stationary random field. Then Z is ergodic if and
only if the action {τy : y ∈ Fn} on (O, ν) is ergodic.

It is useful to introduce the following auxiliary random field, namely

(1.18) Z : Fn −→ L2(O, ν),

given by

(1.19) Z(x)(η) = η(x), x ∈ Fn, η ∈ O.

By (1.3),

(1.20) Z(x)(F (ξ)) = Z(x)(ξ), x ∈ Fn, ξ ∈ Ω.

The process Z has the same joint distributions as Z. In fact, given x1, . . . , xk ∈ Fn

and suitable ψ : Rk → R, we have

(1.21)

∫

O

ψ(Z(x1), . . . ,Z(xk)) dν

=
∫

Ω

ψ
(Z(x1)(F (ξ)), . . . ,Z(xk)(F (ξ))

)
dµ(ξ)

=
∫

Ω

ψ(Z(x1), . . . , Z(xk)) dµ,

the first identity by (1.5) and the second by (1.20). It follows that the construction
described in the first paragraph yields again the same space (O, ν). In particular,
if Z is stationary and ergodic, so is Z.

The following sequence of identities will prove to be valuable:

(1.22) Z(x)(τyη) = (τyη)(x) = η(x + y) = Z(x + y)(η),
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valid for x, y ∈ Fn, η ∈ O.
The rest of this note is structured as follows. In §2 we relate spatial averages

and ensemble averages of quantities associated to a random field, particularly means
and covariances, when the field is ergodic. In §3 we discuss stationary Gaussian
fields, and in §4 we give a criterion, involving the behavior of the covariance, that
such fields are ergodic. We note that stationary Gaussian fields with covariances
given by (3.24), (3.25), (3.26), (3.27), or (when n > 1) by (3.33) are ergodic, while
those with covariance given by (3.32) are not ergodic.

In §5 we consider stationary random fields on Lie groups, and in §6 we consider
stationary random fields on homogeneous spaces. In §§5–6, we focus not on er-
godicity but on spectra. In §7 we consider the inverse problem of constructing a
random field on a compact homogeneous space, given spectral data.

In §8 we take a finite-dimensional vector space V and discuss V -valued random
fields, defined first on a homogeneous space X, though we specialize to X = Rn,
with special attention to V = Rn, i.e., to random vector fields. In §9 we discuss
random divergence-free vector fields on Rn.

In §10 we discuss generalized random fields on Rn, which are distributions on
Rn with values in L2(Ω, µ). We define stationary generalized random fields and
develop some of their properties.

We have three appendices. Appendix A gives background on ergodic theorems,
and Appendix B relates the criterion on the covariance function given in §4 to the
behavior of its Fourier transform. Appendix C discusses the Fourier transform of a
continuous, stationary field, first on Tn (obtaining a special case of results of §5) and
then on Rn, where we need to regard Ẑ as a vector-valued tempered distribution.
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2. Implications of the ergodic theorem

The significance of the property of ergodicity, defined in §1, arises from the
following result, known as the ergodic theorem. As before, F stands for R or Z.

Theorem 2.1. Let {τy : y ∈ Fn} consist of measure preserving maps on the prob-
ability space (O, ν), satisfying τy1+y2 = τy1τy2 , for y1, y2 ∈ Fn. Assume the action
is ergodic. Take ϕ ∈ L1(O, ν).

(A) If F = Z, then

(2.1) lim
R→∞

1
V (R)

∑

y∈Zn∩BR

ϕ(τyη) =
∫

O

ϕdν,

for ν-almost every η ∈ O.

(B) If F = R, and if the action of τy on L1(O, ν) is strongly continuous in y, then

(2.2) lim
R→∞

1
V (R)

∫

BR

ϕ(τyη) dy =
∫

O

ϕ dν,

for ν-almost every η ∈ O.

Here, BR = {y ∈ Rn : |y| ≤ R} is a ball and V (R) is its volume (which is a good
approximation to the number of points in Zn ∩ BR). The left sides of (2.1) and
(2.2) are spatial averages, and the right sides are ensemble averages.

We apply Theorem 2.1 to results discussed in §1. First, take F = Z, so Z : Zn →
L2(Ω, µ) is a random field on the discrete lattice Zn. We construct (O, ν) and
τy : O → O as in §1. If Z is stationary and ergodic, then (2.1) holds, for ν-almost
every η ∈ O. If ϕ1 and ϕ2 ∈ L1(O, ν) are defined as in (1.6), then (1.8)–(1.9) and
(1.13), in concert with (2.1), give, for each x1, x2 ∈ Zn,

(2.3) 〈Z(x1)〉 = lim
R→∞

1
V (R)

∑

y∈Zn∩BR

η(x1 + y),

and

(2.4) 〈Z(x1)Z(x2)〉 = lim
R→∞

1
V (R)

∑

y∈Zn∩BR

η(x1 + y)η(x2 + y),

for ν-almost every η ∈ O.
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In case F = R, matters are not so simple, because the requirement that ϕ ◦ τy ∈
L1(O, ν) be continuous in y for ϕ ∈ L1(O, ν) can fail to hold. If this continuity did
hold it would apply to ϕ1 and ϕ2, given by (1.6). In such a case, (2.2) would yield,
for each x1, x2 ∈ Rn,

(2.5) 〈Z(x1)〉 = lim
R→∞

1
V (R)

∫

BR

η(x1 + y) dy,

and

(2.6) 〈Z(x1)Z(x2)〉 = lim
R→∞

1
V (R)

∫

BR

η(x1 + y)η(x2 + y) dy,

for ν-almost every η ∈ O, provided the random field Z is stationary and ergodic.
Suppose for example that the random variables Z(x) are identically distributed

and independent, as x runs over Rn, and that the distribution of Z(0) is not con-
centrated at a single point. Then ν is a product measure on O, an uncountable
product measure. With ϕ1 as above, we have

(2.7) ‖ϕ1 ◦ τy − ϕ1‖L1(O,ν) =
∫

O

|η(x1 + y)− η(x1)| dν(η)

equal to 0 for y = 0, and to a nonzero constant independent of y if y 6= 0. It follows
that ϕ1 ◦ τy is an everywhere discontinuous function of y, with values in L1(O, ν).
Furthermore, we expect that, for ν-almost every η ∈ O, the function y 7→ η(y) is
not Lebesgue measurable, so the right sides of (2.5) and (2.6) are not well defined.

On the other hand, for many important random fields on Rn, matters are more
tractable.

Proposition 2.2. If Z : Rn → L2(Ω, µ) is stationary and continuous, then the
action of {τy : y ∈ Rn} on L1(O, ν) is strongly continuous.

Proof. Since {τy} is a group of isometries of L1(O, ν), it suffices to show that
y 7→ ϕ◦τy is continuous from Rn to L1(O, ν), for ϕ in a dense subspace of L1(O, ν).
We consider functions ϕ of the form

(2.8) ϕ(η) = ψ(η(x1), . . . , η(xk)),

where x1, . . . , xk ∈ Rn and ψ : Rk → R is globally Lipschitz.
We have

(2.9)

|ϕ ◦ τy(η)− ϕ(η)|
= |ψ(η(x1 + y), . . . , η(xk + y))− ψ(η(x1), . . . , η(xk))|

≤ C

k∑

j=1

|η(xj + y)− η(xj)|.
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Hence

(2.10)

‖ϕ ◦ τy − ϕ‖L1(O,ν) ≤ C
∑

j

∫

O

|η(xj + y)− η(xj)| dν(η)

= C
∑

j

∫

O

|Z(xj + y)−Z(xj)| dν

= C
∑

j

∫

Ω

|Z(xj + y)− Z(xj)| dµ,

the first identity by (1.22) and the second by (1.21). The last line is bounded by
C

∑
j ‖Z(xj + y)− Z(xj)‖L2(Ω,µ), so Proposition 2.2 is proven.

Note that if Z : Rn → L2(Ω, µ) is stationary, then

(2.11)
‖Z(x + y)− Z(x)‖2L2 = ‖Z(x + y)‖2L2 + ‖Z(x)‖2L2 − 2〈Z(x)Z(x + y)〉

= 2‖Z(0)‖2L2 − 2〈Z(0)Z(y)〉,

so Z is continuous if and only if

(2.12) lim
y→0

〈Z(0)Z(y)〉 = ‖Z(0)‖2L2 .

When dealing with F = R, we will henceforth assume Z is continuous. However,
we note that [R] emphasizes the importance of such discontinuous examples as
described above to stochastic hydrogeology. This might point to some mathematical
problems that need further study.
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3. Stationary Gaussian fields

A random field Z : Fn → L2(Ω, µ) is said to be a Gaussian field if the following
holds. For each xj ∈ Fn, aj ∈ R, k ∈ N,

(3.1)
k∑

j=1

ajZ(xj) is a Gaussian random variable.

The following important property is special to Gaussian fields.

Proposition 3.1. If Z is a Gaussian field, then Z is stationary provided

(3.2) 〈Z(x)〉 = 〈Z(0)〉, and 〈Z(x)Z(x + y)〉 = 〈Z(0), Z(y)〉, ∀x, y,∈ Fn.

The proof uses the Gaussian property to obtain that, for each k ≥ 1,

(3.3) 〈Z(x1 + y) · · ·Z(xk + y)〉 is independent of y ∈ Fn, ∀x1, . . . , xk ∈ Fn.

This follows from the fact that the data

(3.4) {〈Z(x1)〉, 〈Z(x1)Z(x2)〉 : x1, x2 ∈ Fn}
uniquely determine the data

(3.5) {〈Z(x1) · · ·Z(xk)〉 : xj ∈ Fn, k ∈ N},
under the hypothesis (3.1). In fact, the data (3.4) determine the data

(3.6) {〈ei
∑

λjZ(xj)〉 : xj ∈ Fn, λj ∈ R},
which in turn determine (3.5). See (3.11A) below for more on (3.6).

The fact that (3.3) implies the stationarity asserted in Proposition 3.1 is a special
case of the following.

Lemma 3.2. Let Z : Fn → ∩p<∞Lp(Ω, µ). If (3.3) holds for each k ∈ N, then Z
is stationary.

Sketch of proof. For a k-tuple x = (x1, . . . , xk), define ϕx ∈ L1(O, ν) by

(3.7) ϕx(η) = η(x1) . . . η(xk).

Then, via (1.21), (3.3) implies

(3.8)
∫

O

ϕx ◦ τy dν =
∫

O

ϕx dν, ∀ y ∈ Fn.

Now one can show that, in this situation, the set of functions of the form (3.7) has
dense linear span in L1(O, ν). This implies the desired stationarity.

We next consider existence of Gaussian fields with given first and second mo-
ments. The following is proven in [D], p. 72.
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Theorem 3.3. Let M : Fn → R and R : Fn × Fn → R. Assume

(3.9) R(x, y) = R(y, x),

and, for all k ≥ 1, x1, . . . , xk ∈ Fn, and a1, . . . , ak ∈ C,

(3.10)
∑

i,j

R(xi, xj)aiaj ≥ 0.

Then there exists a Gaussian field Z : Fn → L2(Ω, µ) such that, for all x1, x2 ∈ Fn,

(3.11) 〈Z(x1)〉 = M(x1), 〈(Z(x1)−M(x1))(Z(x2)−M(x2))〉 = R(x1, x2).

We refer to [D] for the proof, but remark that one ingredient is the formula

(3.11A)
〈
ei

∑
λjZ(xj)

〉
= Exp

{
−1

2

∑

j,k

R(xj , xk)λjλk + i
∑

j

M(xj)λj

}
,

given x1, . . . , x` ∈ Fn, λ1, . . . , λ` ∈ R, and ` ≥ 1.

Remark. The conditions (3.9)–(3.10) are necessary, as well as sufficient, for the
existence of such a field Z.

In concert with Proposition 3.1, Theorem 3.3 yields the following.

Corollary 3.4. Let M ∈ R and let C : Fn → R satisfy

(3.12) C(x) = C(−x),

and, for each k ≥ 1, x1, . . . , xk ∈ Fn, and a1, . . . , ak ∈ C,

(3.13)
∑

i,j

C(xi − xj)aiaj ≥ 0.

Then there exists a stationary Gaussian field Z : Fn → L2(Ω, µ) such that, for each
x1, x2 ∈ Fn,

(3.14) 〈Z(x1)〉 = M,

and

(3.15) 〈(Z(x1)−M)(Z(x2)−M))〉 = C(x1 − x2).
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Remark. Given (3.14), the condition (3.15) is equivalent to

〈Z(x1)Z(x2)〉 −M2 = C(x1 − x2).

Also, (2.11) implies

(3.16)
1
2
‖Z(x + y)− Z(x)‖2L2 = C(0)− C(y).

One example of a function C : Rn → R satisfying (3.12)–(3.13) is

(3.17)
C(x) = 1 if x = 0,

0 if x 6= 0,

which yields a special case of the class of discontinuous random fields discussed in
the paragraph following (2.6). If C : Rn → R is continuous and satisfies (3.12)–
(3.13), then the stationary Gaussian field Z arising in Corollary 3.4 is continuous,
by (3.16).

The search for continuous functions C : Rn → R satisfying (3.12)–(3.13) is aided
by the Fourier transform, as we now discuss. (Note that, for such C, the restriction
to Zn also satisfies (3.12)–(3.13).) The Fourier transform of a function F ∈ L1(Rn)
is given by

(3.18) F̂ (x) = (2π)−n/2

∫

Rn

F (ξ)e−ix·ξ dξ.

In such a case, C = F̂ is continuous on Rn. If F is even (i.e., F (ξ) = F (−ξ)) and
real valued, so is C = F̂ , so (3.12) holds. Also,

(3.19)
∑

j,k

F̂ (xj − xk)ajak = (2π)−n/2

∫

Rn

F (ξ)B(ξ) dξ,

where

(3.20)

B(ξ) =
∑

j,k

ajake−i(xj−xk)·ξ

=
∣∣∣
∑

j

aje
−ixj ·ξ

∣∣∣
2

≥ 0,

so we have the following.
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Proposition 3.5. Let F ∈ L1(Rn) be even and real valued. If

(3.21) F (ξ) ≥ 0, ∀ ξ ∈ Rn,

then C(x) = F̂ (x) is a continuous function satisfying (3.12)–(3.13).

If C is also integrable, the Fourier inversion formula gives C̃(ξ) = F (ξ), where

(3.22) C̃(ξ) = (2π)−n/2

∫

Rn

C(x)eix·ξ dx.

If C is even, then C̃ = Ĉ, so we have the following.

Corollary 3.6. Assume C : Rn → R is even, continuous, and integrable. Then
(3.13) holds provided

(3.23) Ĉ(ξ) ≥ 0, ∀ ξ ∈ Rn.

Remark. If C is real, even, continuous, and integrable, (3.23) is known to be
necessary, as well as sufficient, for the validity of (3.13). When C satisfies all
these conditions, including (3.23), it can be shown that Ĉ ∈ L1(Rn). In fact,
‖Ĉ‖L1 = 2n/2C(0).

Here are some examples to which Corollary 3.6 applies.

C(x) = e−|x|
2/2 =⇒ Ĉ(ξ) = e−|ξ|

2/2,(3.24)

C(x) = e−|x| =⇒ Ĉ(ξ) = cn(|ξ|2 + 1)−(n+1)/2,(3.25)

where cn = 2n/2π−1/2Γ((n+1)/2). These calculations can be found in many places,
e.g., Chapter 3 of [T]. Note that applying the Fourier inversion formula to (3.25)
gives

(3.26) C(x) = (|x|2 + 1)−(n+1)/2 =⇒ Ĉ(ξ) = c−1
n e−|ξ|.

Here is an example where C(x) is not ≥ 0 everywhere. Let χB(ξ) = 1 for |ξ| ≤ 1, 0
for |ξ| > 1. Then

(3.27) F (ξ) = χB(ξ) =⇒ C(x) = F̂ (x) = cn

Jn/2(|x|)
|x|n/2

,

where cn are positive constants, and Jν is the Bessel function of order ν.
Variations on these examples can be obtained by linear changes of variables. If

bj > 0, then

(3.28) Cb(x) = C(b1x1, . . . , bnxn) =⇒ Ĉb(ξ) = (b1 · · · bn)−1Ĉ(b−1
1 ξ1, . . . , b

−1
n ξn).

More generally, if T is an n× n real matrix and detT 6= 0,

(3.29) CT (x) = C(Tx) =⇒ ĈT (ξ) = |det T |−1Ĉ(T−1ξ).

The following extension of Proposition 3.5 yields more general covariance func-
tions for stationary Gaussian fields.
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Proposition 3.7. If σ is a finite, positive measure on Rn, invariant under x 7→
−x, then

(3.30) C(x) = σ̂(x) = (2π)−n/2

∫

Rn

e−ix·ξ dσ(ξ)

is a continuous function satisfying (3.12)–(3.13).

The proof is a slight variant of that of Proposition 3.5. In place of (3.19), we
have

(3.31)
∑

j,k

C(xj − xk)ajak = (2π)−n/2

∫

Rn

B(ξ) dσ(ξ),

with B(ξ) as in (3.20).
The Bochner-Herglotz theorem implies that, conversely, if C is a continuous

function satisfying (3.12)–(3.13), then there exists a finite, positive measure σ such
that σ̂ = C.

If p ∈ Rn \ 0 and δp is the point mass concentrated at p, then

(3.32) σ = δp + δ−p =⇒ C(x) = σ̂(x) =
( 2

π

)1/2

cos(p · x).

If δ(|ξ| − 1) denotes the surface measure of the unit sphere Sn−1 = {ξ ∈ Rn : |ξ| =
1}, then

(3.33) σ = δ(|ξ| − 1) =⇒ C(x) = σ̂(x) = |x|1−n/2Jn/2−1(|x|),

where, as in (3.27), Jν is the Bessel function of order ν. The cases n = 1 and n = 3
yield

(3.34) |x|1/2J−1/2(|x|) =
( 2

π

)1/2

cos |x|, |x|−1/2J1/2(|x|) =
( 2

π

)1/2 sin |x|
|x| .

Of course, the n = 1 case agrees with (3.32), with p = 1.
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4. Ergodic Gaussian fields

Here we discuss conditions under which a stationary Gaussian field Z : Fn →
L2(Ω, µ) is ergodic, i.e., the action {τy} on (O, ν) is ergodic. The first result gives
a condition that implies this action is mixing, i.e.,

(4.1) lim
|y|→∞

〈ϕ ◦ τy ψ〉 = 〈ϕ〉 〈ψ〉, ∀ϕ,ψ ∈ L2(O, ν).

This condition implies ergodicity. Compare (4.10) below, and see Appendix A for
further discussion.

Proposition 4.1. Let Z : Fn → L2(O, ν) be a stationary Gaussian field, with
mean 〈Z(x)〉 = M and covariance

(4.2) C(y) = 〈Z(x)Z(x + y)〉 −M2.

If F = R, assume C : Fn → R is continuous. If

(4.3) lim
|y|→∞

C(y) = 0,

then this field is mixing, i.e., (4.1) holds.

For the proof, there is no loss of generality to assume M = 0 (and it simplifies
some formulas). Also, it suffices to show that (4.1) holds for ϕ,ψ in some dense
subspace of L2(O, ν). We prove it for ϕ and ψ of the form

(4.3A) ϕ(η) = f(η(x1), . . . , η(x`)), ψ(η) = g(η(x1), . . . , η(x`)),

where ` ∈ N, x1, . . . , x` ∈ Fn, and f, g ∈ S(R`). Applying the Fourier inversion
formula to f and g, we get

(4.4) ϕ ◦ τy(η) =
∫

f̂(v)ei
∑

η(xj+y)vj dv,

and a similar formula for ψ(η), hence

(4.5) 〈ϕ ◦ τy ψ〉 =
∫∫

f̂(v)ĝ(w)
〈
ei

∑
η(xj+y)vj ei

∑
η(xj)wj

〉
dv dw.

Now (3.11A), with R(xj , xk) = C(xj − xk) amd M(xj) ≡ 0, yields

(4.6)
〈
ei

∑
η(xj)λj

〉
= Exp

{
−1

2

∑

j,k

C(xj − xk)λjλk

}
,
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hence

(4.7)

〈
ei

∑
η(xj+y)vj ei

∑
η(xj)wj

〉

= e−
∑

C(xj−xk)vjwk/2e−
∑

C(xj−xk)wjwk/2

× e−
∑

C(xj+y−xk)vjwk .

In this setting, x1, . . . , x` ∈ Fn are fixed. The hypothesis (4.3) implies that, as
|y| → ∞, the last factor on the right side of (4.7) tends to 1, so

(4.8)

〈
ei

∑
η(xj+y)vj ei

∑
η(xj)wj

〉

−→
〈
ei

∑
η(xj)vj

〉〈
ei

∑
η(xj)wj

〉
,

pointwise in v, w ∈ R`. These quantities are ≤ 1 in absolute value, so the dominated
convergence theorem applies to (4.5), giving

(4.9)

lim
|y|→∞

〈ϕ ◦ τy ψ〉

=
∫∫

f̂(v)ĝ(w)
〈
ei

∑
η(xj)vj

〉〈
ei

∑
η(xj)wj

〉
dv dw

= 〈ϕ〉 〈ψ〉,
completing the proof of Proposition 4.1.

We move on to more general conditions on C that imply ergodicity. We will
work with F = R. The action of {τy} on (O, ν) is ergodic provided

(4.10) lim
R→∞

1
V (R)

∫

|y|≤R

〈ϕ ◦ τy ψ〉 dy = 〈ϕ〉 〈ψ〉, ∀ϕ,ψ ∈ L2(O, ν).

See Appendix A. Note that (4.1) implies (4.10). To establish (4.10), it suffices to
check it for ϕ,ψ in a dense subspace of L2(O, ν), such as functions of the form
(4.3A). Via (4.5) and the dominated convergence theorem, we see that (4.10) holds
for such functions provided

(4.11)

lim
R→∞

1
V (R)

∫

|y|≤R

〈
ei

∑
η(xj+y)vj)ei

∑
η(xj)wj

〉
dy

=
〈
ei

∑
η(xj)vj

〉〈
ei

∑
η(xj)wj

〉
,

for each x1, . . . , x` ∈ Rn, v, w ∈ R`, ` ∈ N. In turn, by (4.6)–(4.7), we see that
(4.11) holds provided

(4.12) lim
R→∞

1
V (R)

∫

|y|≤R

e−
∑

C(xj+y−xk)vjwk dy = 1,
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for all such xj , v, w. This holds provided

(4.13) lim
R→∞

1
V (R)

∫

|y|≤R

Exp
{
−

∑̀

j=1

λjC(xj + y)
}

dy = 1,

for each ` ∈ N, x1, . . . , x` ∈ Rn, λ1, . . . , λ` ∈ R. Note that

(4.14) |C(xj + y)| ≤ C(0), ∀xj , y ∈ Rn.

so the integrand in (4.13) is bounded by eC(0)
∑

|λj |. Now, for s ∈ R,

(4.15) es = 1 + ρ(s),

with ρ(0) = 0, ρ′(s) = es, hence

(4.16) |s| ≤ C(0)L =⇒ |ρ(s)| ≤ |s|eC(0)L.

We have the following.

Proposition 4.2. Let Z : Rn → L2(Ω, µ) be a stationary Gaussian field, with
continuous covariance. If

(4.17) lim
R→∞

1
V (R)

∫

|y|≤R

|C(y)| dy = 0,

then (4.10) holds, and Z is ergodic.

We remark that (4.17) is equivalent to

(4.18) lim
R→∞

1
V (R)

∫

|y|≤R

|C(y)|2 dy = 0,

one implication by Cauchy’s inequality and the other by the bound (4.14). In turn,
(4.18) is equivalent to the assertion that the measure σ = Ĉ has no atoms. See
Appendix B. In such a case, we say Z has continuous spectrum. Thus we have that
Z is ergodic provided it has continuous spectrum. The converse is also true. A
stationary Gaussian field on Rn with continuous covariance is ergodic if and only
if it has continuous spectrum. This was proved in [M] and [G] when n = 1 and in
[BE] when n > 1.

In light of these results, we see that stationary Gaussian fields with covariances
given by (3.24), (3.25), (3.26), (3.27), or (when n > 1) by (3.33) are ergodic (in
fact, mixing), while those with covariance given by (3.32) are not ergodic.

There is a straightforward analogue of Proposition 4.2 for F = Z.



17

5. Stationary random fields on Lie groups

We consider a random field on a Lie group G,

(5.1) Z : G −→ L2(Ω, µ),

where (Ω, µ) is a probability space. We assume that the random variables Z(x) are
real-valued, and that Z is continuous. Parallel to (1.2), we have

(5.2) F : Ω −→ O = RG,

given by

(5.3) F (ξ)(x) = Z(x)(ξ), ξ ∈ Ω, x ∈ G.

Then we get a probability measure ν on O:

(5.4) ν(S) = µ(F−1(S)),

so

(5.5)
∫

O

ϕ(η) dν(η) =
∫

Ω

ϕ(F (ξ)) dµ(ξ).

Formulas parallel to (1.6)–(1.9) hold. Parallel to (1.10)–(1.11), we have a g-action
on O:

(5.6) τg : O → O, τgη(x) = η(gx), x, g ∈ G.

We say Z is stationary if this G-action preserves ν, i.e.,

(5.7)
∫

O

ϕ(τgη) dν(η) =
∫

O

ϕ(η) dν(η), ∀ϕ ∈ L1(O, ν), g ∈ G.

Parallel to (1.16), we see that stationarity implies

(5.8) 〈Z(gx1)〉 = 〈Z(x1)〉, 〈Z(gx1)Z(gx2)〉 = 〈Z(x1)Z(x2)〉,

for all g, x1, x2 ∈ G. Consequently

(5.9) 〈Z(x)〉 = M
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is independent of x ∈ G and the covariance, given by

(5.10) R(x, y) = 〈Z(x)Z(y)〉 −M2,

satisfies

(5.11) R(x, y) = R(y, x), R(gx, gy) = R(x, y),

hence there exists C : G → R such that

(5.12) R(x, y) = C(x−1y), C(x) = C(x−1), x, y ∈ G.

There is a positivity condition parallel to (3.10), which translates, for stationary
fields, to

(5.13)
∑

i,j

C(x−1
i xj)aiaj ≥ 0.

Note that if e ∈ G is the identity element,

(5.14)
‖Z(x)− Z(y)‖2L2 = ‖Z(e)− Z(x−1y)‖2L2

= 2C(e)− 2C(x−1y),

so the continuity of a stationary field Z : G → L2(Ω, µ) is equivalent to the con-
tinuity of C : G → R at e (and implies the continuity of C on G). As mentioned
above, we work under this continuity hypothesis.

Given such continuity, the condition (5.13) is equivalent to

(5.15)
∫

G

∫

G

C(x−1y)f(x)f(y) dx dy ≥ 0,

for all f ∈ C∞0 (G), where dx denotes Haar measure on G. We henceforth assume

(5.16) G is unimodular,

so left Haar measure and right Haar measure coincide. Note that, by (5.12), we
can replace C(x−1y) by C(y−1x) in (5.15). Now the convolution is defined by

(5.17) f ∗ C(x) =
∫

G

f(y)C(y−1x) dy,

so the condition (5.15) is equivalent to

(5.18) (f, f ∗ C)L2 ≥ 0,
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for all f ∈ C∞0 (G).
From here on in this section we will assume G is compact, which of course implies

unimodularity. The Peter-Weyl theorem yields a unitary isomorphism

(5.19) F : L2(G) −→
⊕

π∈Ĝ

End(V π),

where Ĝ consists of (equivalence classes of) the irreducible unitary representations
of G. This is given by

(5.20) F(f)(π) = π(f) =
∫

G

f(x)π(x) dx,

with Plancherel formula

(5.21) (f, g)L2 =
∑

π∈Ĝ

dπ Tr(π(f)π(g)∗),

and inversion formula

(5.22) f(x) =
∑

π∈Ĝ

dπ Tr(π(f)π(x)∗).

Since π(f ∗ g) = π(f)π(g), we get

(5.23) (f, f ∗ C)L2 =
∑

π∈Ĝ

dπ Tr(π(f)π(C)∗π(f)∗),

and the condition (5.18) on C ∈ C(G) becomes

(5.24) Tr(Aπ(C)∗A∗) ≥ 0, ∀π ∈ Ĝ, A ∈ End(V π).

Note that if A is an orthogonal projection, Av = (v, w)w, ‖w‖ = 1, then Aπ(C)∗A∗v
= (v, w)Aπ(C)∗w = (v, w)(π(C)∗w, w)w, so Tr(Aπ(X)∗A∗) = (π(C)∗w,w). Thus
(5.24) implies

(5.25) π(C) ≥ 0, ∀π ∈ Ĝ.

The reverse implication is also readily established.
For compact G, a stationary random field Z : G → L2(Ω, µ) yields random

variables

(5.26) Zπ
ij =

∫

G

Z(x)πij(x) dx ∈ L2(Ω, µ),
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where πij(x) are the matrix entries of π(x), with respect to some given orthonormal
basis of V π. These entries fit together to produce

(5.27) Zπ =
∫

G

Z(x)π(x) dx ∈ L2(Ω, µ, End(V π)).

Let us assume

(5.28) 〈Z(x)〉 ≡ M = 0.

Then

(5.29)

〈Zπ
ijZ

π

k`〉 =
∫

G

∫

G

C(y−1x)πij(x)πk`(y) dx dy

=
∫

G

∫

G

C(z)πij(yz)πk`(y) dz dy

=
∑
m

∫

G

∫

G

C(z)πim(y)πmj(z)πk`(y) dz dy

=
1
dπ

∑
m

δikδm`

∫

G

C(z)πmj(z) dz

=
1
dπ

δik

∫

G

C(z)π`j(z) dz

=
1
dπ

δik

(
π(C)

)
`j

.

If π and λ are distinct elements of Ĝ,

(5.30) 〈Zπ
ijZ

λ

k`〉 ≡ 0.

The Peter-Weyl theorem gives

(5.31) Z(x) =
∑

π∈Ĝ

Zπ(x),

with

(5.32) Zπ(x) = dπ

∑

i,j

Zπ
ijπij(x) = dπ Tr(Zππ(x)∗).
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We have

(5.33)

〈Zπ(x)Z
π
(y)〉 = d2

π

∑

i,j

∑

k,`

〈Zπ
ijZ

π

k`〉πij(x)πk`(y)

= dπ

∑

i,j

∑

k,`

δik

(
π(C)

)
`j

πij(x)πk`(y)

= dπ

∑

j,k,`

(
π(C)

)
`j

πkj(x)πk`(y)

= dπ

∑

j,k

(
π(y)π(C)

)
kj

πkj(x)

= dπ Tr
(
π(x)∗π(y)π(C)

)

= dπ Tr
(
π(x−1y)π(C)

)
,

and 〈Zπ(x)Z
λ
(y)〉 ≡ 0 if π and λ are distinct elements of Ĝ.

Note that, since Z(x) is real valued, Z
π

= Zπ, so

(5.34)
〈Zπ

ijZ
π
k`〉 = 〈Zπ

ijZ
π

k`〉 if π = π,

0 if π 6= π.

Hence

(5.35)
〈Zπ(x)Zπ(y)〉 = 〈Zπ(x)Z

π
(y)〉 if π = π,

0 if π 6= π.

Furthermore, 〈Zπ(x)Zλ(y)〉 ≡ 0 if π and λ are distinct elements of Ĝ.

Remark. The condition (5.8) is the condition that the field Z is “2-weakly station-
ary.” This condition is weaker than stationarity, but it suffices for all the results in
(5.9)–(5.35).

We now give a result that follows from stationarity but not from 2-weak sta-
tionarity. First, some notation. Let Y σ and Ỹ σ denote two families of elements of
L1(Ω, µ), indexed by σ ∈ Σ. We write

(5.36) Y σ ↔σ Ỹ σ

provided that, for arbitrary σ1, . . . , σN ∈ Σ, N ∈ N, the random variables

(5.37) {Y σ1 , . . . , Y σN } and {Ỹ σ1 , . . . , Ỹ σN }

have the same joint distribution. Note that a field Z : G → L2(Ω, µ) is stationary
if and only if

(5.38) Z(gx) ↔g Z(x), ∀x ∈ X.
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Now if Zπ is defined by (5.27), then

(5.39)

π(g)Zπ =
∫

G

Z(x)π(gx) dx

=
∫

G

Z(g−1y)π(y) dy,

so (5.38) gives

(5.40) π(g)Zπ ↔π Zπ, ∀ g ∈ G,

provided Z is stationary. This result does not follow from 2-weak stationarity.
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6. Stationary random fields on homogeneous spaces

Let X be a Riemannian manifold with a transitive group G of isometries. If
K ⊂ G is the subgroup fixing a point p0 ∈ X, then K is compact and X ≈ G/K.
We have

(6.1) γ : G −→ X, γ(g) = g · p0.

Given a continuous random field

(6.2) Y : X −→ L2(Ω, µ),

we have

(6.3) Z = Y ◦ γ : G −→ L2(X, µ).

We say Y is stationary if Z is stationary. Note that a field Z : G → L2(Ω, µ) has
the form (6.3) if and only if

(6.4) Z(xk) = Z(x), ∀x ∈ G, k ∈ K.

In such a case, R(x, y) = 〈Z(x)Z(y)〉 −M2 satisfies

(6.5) R(xk1, yk2) = R(x, y), ∀ kj ∈ K, x, y ∈ G,

so, given stationarity, with R(x, y) = C(x−1y), we have

(6.6) C((xk1)−1yk2) = C(x−1y), ∀x, y,∈ G, kj ∈ K,

or equivalently

(6.7) C(k2xk1) = C(x), ∀x ∈ G, kj ∈ K.

In particular, we have a function

(6.8) C : X −→ R, C = C ◦ γ,

and

(6.9) C(kp) = C(p), ∀ k ∈ K, p ∈ X.

Conversely, given a continuous C : X → R satisfying (6.9), C = C ◦ γ satisfies (6.7).
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A Riemannian manifold X might have more than one group of isometries acting
transitively, so one might use the phrase “G-stationary” to be more precise (though
we will not). For example, if X = Rn, one has G = Rn acting by translations, and
also the larger group G = E(n) of rigid motions, a semidirect product of Rn and
SO(n). For an Rn-stationary field on X = Rn to be E(n)-stationary ([MP] prefers
the term “isotropic”), one needs C : Rn → R to be radial. (And this condition
would suffice for Gaussian fields.) For another example, if X = Sn−1 is the unit
sphere in Rn, one has SO(n) acting transitively as a group of isometries, and if
n = 2k, one has the subgroups U(k) and SU(k) also acting transitively.

For the rest of this section, we assume X is compact, hence G is compact. As
shown in [Z], p. 80, the regular representation R of G on L2(X),

(6.10) R(g)f(p) = f(g−1p),

decomposes into a family of finite-dimensional representations,

(6.11) L2(X) =
⊕

π∈Ĝ0

L2
π(X).

Here Ĝ0 ⊂ Ĝ is defined by

(6.12) π ∈ Ĝ0 ⇔ V π
0 = {ϕ ∈ V π : π(k)ϕ = ϕ, ∀ k ∈ K} 6= 0,

and we have isomorphisms

(6.13)
Ψπ : V π

0 ⊗ V π −→ L2
π(X),

Ψπ(ϕ⊗ ψ)(g · p0) = (π(g)ϕ,ψ).

Note that, given h ∈ G, ϕ ∈ V π
0 , ψ ∈ V π,

(6.14)

R(h)Ψπ(ϕ⊗ ψ)(g · p0) = (π(h−1g)ϕ,ψ)

= (π(g)ϕ, π(h)ψ)

= Ψπ(ϕ⊗ π(h)ψ)(g · p0).

In other words, for each ϕ ∈ V π
0 , we have

(6.15) Φϕ : V π → L2(X), Φϕ(ψ)(g · p0) = (π(g)ϕ,ψ),

and

(6.16) R(h)Φϕ(ψ) = Φϕ(π(h)ψ).

The case X = S2, G = SO(3) was emphasized in [MP]. Then (6.11) becomes

(6.17) L2(S2) =
⊕

j≥0

Vj ,
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where Vj is an eigenspace of the Laplace-Beltrami operator on S2, of dimension
2j + 1, and SO(3) acts on Vj by the representation denoted Dj . Elements of Vj

are called spherical harmonics. In this case, Vj,0 is one dimensional, spanned by
the zonal harmonic in Vj . It is desired to understand the behavior of the spherical
harmonic expansion of the continuous function C : S2 → R arising from a stationary
field Y : S2 → L2(Ω, µ), via (6.2)–(6.8).

More generally, for a compact homogeneous space X = G/K, we want to un-
derstand the behavior of π(C), as π runs over Ĝ0. Results of §5 apply, of course,
particularly (5.25). Further structure arises from (6.7), which implies

(6.18) π(C) = π(k1)π(C)π(k2), ∀ kj ∈ K, π ∈ Ĝ.

Note that

(6.19) P0 =
∫

K

π(k) dk =⇒ P0 : V π → V π
0 , orthogonal projection.

Integrating (6.18) yields

(6.20) π(C) = P0π(C)P0.

Conversely, (6.20) ⇒ (6.18). Note that if (6.18) holds, then

(6.21) C(x) =
∑

π∈Ĝ

dπ Tr
(
π(C)π(x)∗

)

satisfies

(6.22) C(k2xk1) =
∑

π∈Ĝ

dπ Tr
(
π(C)π(k1)∗π(x)∗π(k2)∗

)
= C(x), ∀ kj ∈ K.

We also have

(6.23)

C(x−1) =
∑

π∈Ĝ

dπ Tr
(
π(C)π(x)

)

=
∑

π

dπ Tr
(
π(x)∗π(C)∗

)

= C(x),

given that C is real valued and that π(C), as a consequence of (5.25), is self-adjoint.
As we have mentioned, if X = S2, G = SO(3), then

(6.24) dimV π
0 = 1,
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for all π ∈ Ĝ0. This holds more generally for X = Sn−1, G = SO(n), but it does
not hold for X = S3, G = SU(2). When (6.24) holds, we can write (6.20) as

(6.25) π(C) = τπ(C)P0,

with

(6.26) τπ(C) = Trπ(C) =
∫

G

C(x)χπ(x) dx,

where χπ(x) = Trπ(x) is the character of the representation π. The positivity
condition (5.25) becomes

(6.26A) τπ(C) ≥ 0, ∀π ∈ Ĝ0.

Recall from (5.27) the construction of

(6.27) Zπ =
∫

G

Z(x)π(x) dx ∈ L2(Ω, µ, End(V π)).

If (6.4) holds, then

(6.28) Zπ = Zππ(k), ∀ k ∈ K,

and integration over k ∈ K gives

(6.29) Zπ = ZπP0,

with P0 as in (6.19). Conversely, (6.29) ⇒ (6.28), which in turn implies that

(6.30) Z(x) =
∑

π∈Ĝ

dπ Tr
(
Zππ(x)∗

)

(note that the sum is actually over π ∈ Ĝ0) satisfies

(6.31) Z(xk) =
∑

π

dπ Tr
(
Zππ(k)∗π(x)∗

)
= Z(x), ∀ k ∈ K.

If (6.24) holds and M = 0, we deduce from (5.29) and (6.25) that

(6.32) 〈Zπ
ijZ

π

k`〉 =
τπ(C)

dπ
δik(P0)`j (if dim V π

0 = 1).
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It would be typical to pick an orthonormal basis of V π such that (P0)`j = δ`0δj0,
so

(6.33) 〈Zπ
ijZ

π

k`〉 =
τπ(C)

dπ
δ`0δj0δik.

We also have from (5.33) and (6.25) that

(6.34)
〈Zπ(x)Z

π
(y)〉 = dπτπ(C) Tr(π(x−1y)P0)

= dπτπ(C) Tr(P0π(x−1y)P0).

Note that (5.34)–(5.35) apply to 〈Zπ
ijZ

π
k`〉 and 〈Zπ(x)Zπ(y)〉. We mention that,

for X = S2, G = SO(3) (more generally, for X = Sn−1, G = SO(n)) all the
representations π ∈ Ĝ0 are real, and Zπ(x) = Z

π
(x), for all x.

Remark. Parallel to the remark following (5.35), we mention that the results
(6.5)–(6.34) hold for Z as in (6.3), whenever Z is 2-weakly stationary (we then say
Y is 2-weakly stationary). This condition is weaker than the assumption that Y is
stationary. See the remarks at the end of §7 for more on this.
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7. The inverse problem: constructing Z(x) from spectral data

As in the latter part of §6, X will be a compact Riemannian manifold, G a
transitive group of isometries of X, K ⊂ G the subgroup fixing a given point
p0 ∈ X. We are given data

(7.1) Cπ ∈ End(V π), Zπ ∈ L2(Ω, µ, End(V π)),

for π ∈ Ĝ0, defined in (6.12). We want to specify the conditions on this data that
guarantee the existence of a continuous, real valued, Y : X → L2(Ω, µ) such that,
with Z = Y ◦ γ, as in (6.3), we have

(7.2)
Zπ =

∫

G

Z(x)π(x) dx, π(C) = Cπ,

〈Z(x)〉 = 0, 〈Z(x)Z(y)〉 = C(x−1y).

Necessary conditions follow from results of §§5–6. Here we want to show they are
sufficient. We start out in the general setting described above, but later on we
will make some simplifying assumptions, which are satisfied when X = Sn−1, G =
SO(n), n ≥ 3.

We begin by seeing what condition on {Cπ} gives rise to a continuous, positive-
definite function C on G satisfying

(7.3) C(k2xk1) = C(x), ∀x ∈ G, kj ∈ K.

As seen in §§5–6, a necessary condition is

(7.4) Cπ = P0C
πP0 ≥ 0, ∀π ∈ Ĝ0,

where P0 : V π → V π
0 is the orthogonal projection. (For notational simplicity, we

do not record the dependence of P0 on π.) We now show that (7.4) is sufficient for
the existence of the desired function C (given appropriate decay of Cπ as π →∞).
In fact, taking a cue from (5.22), we set

(7.5) C(x) =
∑

π∈Ĝ0

dπ Tr(Cππ(x)∗).

Given sufficient decay (cf. (7.34) below), this converges to C ∈ C(G), and

(7.6) π(C) = Cπ,
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for all π. Furthermore, given kj ∈ K,

(7.7)

C(k2xk1) =
∑

π

dπ Tr(Cππ(k2)∗π(x)∗π(k1)∗)

=
∑

π

dπ Tr(π(k−1
1 )Cππ(k−1

2 )π(x)∗),

and (7.4) implies

(7.8) π(k−1
1 )Cππ(k−1

2 ) = Cπ, ∀ kj ∈ K,

so (7.3) holds. By (7.6) and the argument around (5.25), the function C in (7.5) is
positive definite. Let us also note that if C(x) is given by (7.5), then

(7.9)

C(x−1) =
∑

π

dπ Tr(Cππ(x))

=
∑

π

dπ Tr(π(x)∗Cπ)

= C(x),

where we have used self-adjointness of Cπ. We want C(x) to be real valued, so we
will impose the following restriction:

(7.10) Each representation π ∈ Ĝ0 is real,

with respect to some orthonormal basis of V π. As mentioned in §6, this holds when
X = Sn−1, G = SO(n), n ≥ 3. We also complement (7.4) with the condition that

(7.11) Cπ is real,

with respect to such a basis of V π.
We move on to Zπ, with matrix entries Zπ

ij ∈ L2(Ω, µ). We set

(7.12) Z(x) =
∑

π

dπ Tr(Zππ(x)∗),

which yields a continuous function Z : G → L2(Ω, µ), given appropriate decay of
{Zπ} as π →∞, and we have

(7.13) Zπ =
∫

G

Z(x)π(x) dx.

Now

(7.14) 〈Z(x)〉 =
∑

π

dπ Tr(〈Zπ〉π(x)∗) = 0,
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provided

(7.15) 〈Zπ
ij〉 = 0, ∀ i, j, π.

As seen in §6, a necessary condition on Zπ is

(7.16) Zπ = ZπP0.

This implies Zπ = Zππ(k) for all k ∈ K, hence

(7.17) Z(xk) =
∑

π

dπ Tr(Zππ(k)∗π(x)∗) = Z(x),

for all x ∈ G, k ∈ K.
At this point we bring in the following simplifying assumption.

(7.18) dim V π
0 = 1, ∀π ∈ Ĝ0.

As mentioned in in §6, this holds for X = Sn−1, G = SO(n), n ≥ 3. Given (7.18),
(7.4) becomes

(7.19) Cπ = τπP0, τπ ∈ [0,∞).

It is common to take an orthonormal basis {vj} of V π for which (7.10) holds and
V π

0 = Span(v0), so (P0)ij = δi0δj0. Then Zπ
ij = 0 unless j = 0, so

(7.20) Zπ
ij = ζπ

i δj0, ζπ
i ∈ L2(Ω, µ) (real valued).

Finally, we need to make an appropriate hypothesis on ζπ
i . The condition (7.15)

gives

(7.21) 〈ζπ
i 〉 = 0, ∀ i, π,

and the formula (6.33) (plus (5.30)) yields the necessary condition

(7.22) 〈ζπ
i ζλ

k 〉 =
τπ

dπ
δikδπλ, π, λ ∈ Ĝ0.

It remains to check the covariance identity in (7.2). To break this down, we write
(7.12) as

(7.23) Z(x) =
∑

π

Zπ(x),
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with

(7.24)

Zπ(z) = dπ Tr(Zππ(x)∗)

= dπ

∑

i,j

Zπ
ijπij(x)

= dπ

∑

i

ζπ
i πi0(x),

the last identity by (7.20). From here, we get the following. (We keep the bar, but
recall that in this setting Z

π
(y) = Zπ(y).)

(7.25)

〈Zπ(x)Z
π
(y)〉 = d2

π

∑

i,k

〈ζπ
i ζ

π

k 〉πi0(x)πk0(y)

= dπτπ

∑

i

πi0(x)πi0(y)

= dπτππ(x−1y)00.

Hence (celebrating reality and dropping the bars),

(7.26)

〈Z(x)Z(y)〉 =
∑

π,λ

〈Zπ(x)Zλ(y)〉

=
∑

π

〈Zπ(x)Zπ(y)〉

=
∑

π

dπτππ(x−1y)00,

the second identity by (7.22). Meanwhile,

(7.27)

C(x) =
∑

π

dπ Tr(Cππ(x)∗)

=
∑

π

dπτπ Tr(P0π(x)∗)

=
∑

π

dπτπ Tr(P0π(x)P0)

=
∑

π

dπτππ(x)00,

so

(7.28) 〈Z(x)Z(y)〉 = C(x−1y).

We formulate our result.
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Proposition 7.1. Assume on Ĝ0 that (7.10) and (7.18) hold. Take τπ ∈ [0,∞),
decreasing sufficiently rapidly as π → ∞, and define Cπ by (7.19). Let ζπ

j ∈
L2(Ω, µ) satisfy (7.21)–(7.22), and define Z(x) by (7.23)–(7.24) and C(x) by (7.5).
Then

(7.29) C : G → R, Z : G → L2(Ω, µ)

are continuous, Z(xk) = Z(k) for all x ∈ G, k ∈ K, and the identities in (7.2)
hold.

Let us record just what decay is required on {τπ : π ∈ Ĝ0}. We have

(7.30) Z(x) =
∑

π∈Ĝ0

dπ

∑

i

ζπ
i πi0(x),

and {ζπ
i } consists of mutually orthogonal elements of L2(Ω, µ), with square norm

τπ/dπ. Hence

(7.31)

‖Z(x)‖2L2(Ω) =
∑

π

d2
π

∑

i

τπ

dπ
|πi0(x)|2

=
∑

π

dπτπ,

since, by unitarity,

(7.32)
∑

i

|πi0(x)|2 ≡ 1.

Hence, as long as

(7.33)
∑

π∈Ĝ0

dπτπ < ∞,

the infinite series (7.30) converges uniformly on G to a continuous function with
values in L2(Ω, µ).

Remark. The random field Z : G → L2(Ω, µ) constructed in Proposition 7.1
satisfies

(7.34) 〈Z(x)〉 = 0, 〈Z(gx)Z(gy)〉 = 〈Z(x)Z(y)〉, ∀x, y, g ∈ G.

As mentioned in §5, one says such a random field is “2-weakly stationary.” If {ζπ
j }

are mutually independent Gaussian random variables satisfying (7.22), then Z is a
Gaussian field, and arguments mentioned in §3 show that (7.34) implies stationarity.
In the non-Gaussian case, 2-weak stationarity does not imply stationarity.
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Here is a result that follows from stationarity but not from 2-weak stationarity.
Namely, with respect to the orthonormal basis of V π mentioned below (7.19), the
elements ζπ

i ∈ L2(Ω, µ) introduced in (7.20) are the components of

(7.35) ζπ ∈ L2(Ω, µ, V π).

Then (5.40) implies

(7.36) π(g)ζπ ↔π ζπ, ∀ g ∈ G,

provided G is stationary. (See (5.36)–(5.37) for the notation used in (7.36).) It
follows from (7.36) that

(7.37) Sπ1···πN
= 〈ζπ1 ⊗ · · · ⊗ ζπN 〉 ∈ V π1 ⊗ · · · ⊗ V πN

satisfies

(7.38) π1(g)⊗ · · · ⊗ πN (g)Sπ1···πN
= Sπ1···πN

, ∀ g ∈ G.

Let us note, parenthetically, that (7.20) is equivalent to

(7.39) Zπ = ζπ ⊗ vπ
0 , V π

0 = Span (vπ
0 ), ‖vπ

0 ‖ = 1,

that is,

(7.40) Zπv = (v, vπ
0 )ζπ, v ∈ V π.

In Chapter 6 of [MP] the following result is established, in the case X = S2, G =
SO(3). Assume Y : S2 → L2(X, µ) is stationary. Take π ∈ Ĝ and assume the
elements ζπ

i ∈ L2(Ω, µ) (known to be mutually orthogonal, as i varies, by (7.22)) are
actually independent. Then these random variables must be Gaussian. The proof
makes use of (7.36). This analysis is extended to general compact homogeneous
spaces X = G/K in [BMV].

Now we can find non-Gaussian ζπ
i , that are mutually independent and satisfy

the hypotheses of Proposition 7.1. Then this proposition yields a continuous field
Z : G → L2(Ω, µ) that is 2-weakly stationary, but (by the result of [MP] stated
above) not stationary.

Non-Gaussian stationary fields Z : G → L2(Ω, µ) can be obtained from a Gauss-
ian stationary field ZG by taking

(7.41) Z(x) = F (ZG(x)),

where F : R → R is continuous and satisfies moderate bounds. Such a class
of stationary fields, called Gaussian-subordinated stationary fields, are studied in
[MP] (with X = S2, G = SO(3)).
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8. V -valued random fields

To start, let X be a Riemannian manifold with a transitive group G of isometries.
Let V be a finite dimensional inner product space (over R) and π an orthogonal
representation of G on V . We take a continuous function

(8.1) Z : X −→ L2(Ω, µ),

where (Ω, µ) is a probability space. We induce a measure ν on O = V X as follows.
We have a map

(8.2) F : Ω −→ O, F (ξ)(x) = Z(x)(ξ), ξ ∈ Ω, x ∈ X,

giving rise to

(8.3) ν(S) = µ(F−1(S)).

Parallel to (1.10)–(1.11) and to (5.6), we have a G-action on O:

(8.4) τg : O −→ O, (τgη)(x) = π(g)−1η(gx), x ∈ X, g ∈ G, η ∈ O.

With this convention, τgh = τhτg. We say that Z is stationary (G-stationary, for
clarity, when needed) provided the action {τg} preserves ν. We say Z is ergodic if
in addition this action is ergodic on (O, ν).

We now specialize to X = Rn, and consider two cases of G:

(8.5) Rn, E(n) = SO(n)×ϕ Rn.

The group operation on E(n) is given by

(8.6) (g, x) · (h, y) = (x + ϕ(g)y, gh), x, y ∈ Rn, g, h ∈ SO(n),

where ϕ is the standard action of SO(n) on Rn, i.e, ϕ(g)y = gy. In case G = Rn, we
take the trivial representation on V . In case G = E(n), we consider representations
of the form

(8.7) λ(g, x)v = π(g)v,

where π is a unitary representation of SO(n) on V . The resulting actions on
O = V R

n

are

(8.8) τyη(x) = η(x + y), τ(g,y)η(x) = π(g)−1η(ϕ(g)x + y).
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Given a continuous Z : Rn → L2(Ω, µ, V ), in case G = Rn and Z is G-stationary,
we say Z is a homogeneous random field. In case G = E(n) and Z is G-stationary,
we say Z is an isotropic random field. A case of central importance is

(8.9) V = Rn, π = ϕ,

the standard action of SO(n) on Rn. Then we say Z is a random vector field. For
G = Rn or E(n), respectively, we say a G-stationary Z is a homogeneous random
vector field or, respectively, an isotropic random vector field.

Let us return to the general setting (8.1) and note that we have expectations
and correlations,

(8.10) 〈Z(x)〉 ∈ V, 〈Z(x)⊗ Z(y)〉 = R(x, y) ∈ V ⊗ V, x, y ∈ X.

G-stationarity implies, in the language of (5.36)–(5.37),

(8.11) Z(gx) ↔g π(g)Z(x), ∀x ∈ X.

Hence G-stationarity implies

(8.12)
〈Z(gx)〉 = π(g)〈Z(x)〉,

R(gx, gy) = (π(g)⊗ π(g))R(x, y),

for all x, y ∈ X, g ∈ G.
The inner product on V gives rise to an isomorphism,

(8.13) j : V ⊗ V
≈−→ End(V ), j(v ⊗ w)u = (u,w)v.

We can also write j(v ⊗ w) = vwt, with wt(u) = (u,w). We then have

(8.14) R(x, y) = jR(x, y) ∈ End(V ),

for x, y ∈ X. A useful alternative notation is

(8.14A) R(x, y) = 〈Z(x)Z(y)t〉.

Note that, for A ∈ End(V ),

(8.15) j(π(g)⊗ π(h))j−1A = π(g)Aπ(h)−1.

Hence (8.12) implies

(8.16) R(gx, gy) = π(g)R(x, y)π(g)−1, ∀x, y ∈ X, g ∈ G.
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Specializing to X = Rn, G = Rn, we have, for G-stationary Z,

(8.17)
〈Z(x)〉 = 〈Z(y)〉, ∀x, y ∈ Rn,

R(x, y) = C(x− y), C : Rn → End(V ).

If G = E(n), we also have (8.17), and in addition

(8.18)
〈Z(gx)〉 = π(g)〈Z(x)〉, hence π(g)〈Z(x)〉 = 〈Z(x)〉,

C(gx) = π(g)C(x)π(g)−1, ∀x ∈ Rn, g ∈ SO(n).

Note. Our definition of C(x− y) as 〈Z(x)Z(y)〉 differs slightly from that in (4.2)
and (5.10), but the definitions coincide when 〈Z(x)〉 ≡ 0, which is the typical
situation.

Another symmetry property is the following. By (8.14A), R(y, x) = R(x, y)t

(the adjoint in End(V )), hence

(8.19) C(−x) = C(x)t, ∀x ∈ Rn.

We have a positivity property parallel to (3.10). Let k ≥ 1, x1, . . . , xk ∈ Rn, and
a1, . . . , ak ∈ C. Then

(8.20)

∑

i,j

R(xi, xj)aiaj = 〈WW ∗〉 ≥ 0 in End(V ),

W =
∑

i

aiZ(xi) ∈ L2(Ω, µ, V ).

Hence, in the setting of (8.17),

(8.21)
∑

i,j

C(xi − xj)aiaj ≥ 0 in End(V ).

Given that C : Rn → End(V ) is continuous, (8.21) is equivalent to

(8.22)
∫∫

C(x− y)f(x)f(y) dx dy ≥ 0, ∀ f ∈ S(Rn),

and also, via Bochner-Herglotz, to

(8.23) Ĉ is a (finite) positive End(VC)-valued measure on Rn,

given (8.19), which implies

(8.24) Ĉ∗ = Ĉ in S ′(Rn,End(VC)).
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Also (8.19) implies

(8.25) Ĉ(−ξ) = Ĉ(ξ)t.

(Given A ∈ End(VC), A∗ = A
t
.) Note that the Fourier transform of Cg(x) = C(gx)

is

(8.26) Ĉg(ξ) = (2π)−n/2

∫
C(gx)e−ix·ξ dx = Ĉ(gξ),

so (8.18) implies

(8.27) Ĉ(gξ) = π(g)Ĉ(ξ)π(g)−1.

It follows from (8.18) that if Z : Rn → L2(Ω, µ, V ) is isotropic, then the hypoth-
esis

(8.28) π does not contain a trivial representation of SO(n)

implies

(8.29) 〈Z(x)〉 ≡ 0,

and the hypothesis

(8.30) π acts irreducibly on VC

implies

(8.31) C(0) = αI, α ∈ R+.

Also, if Ĉ is continuous in a neighborhood of 0 ∈ Rn, (8.30) implies

(8.32) Ĉ(0) = βI, β ∈ R+

(inclusion in R+ by (8.23)).
If π is the standard representation of SO(n) on Rn, then (8.28) holds whenever

n ≥ 2, and (8.30) holds whenever n ≥ 3. The hypothesis (8.30) fails for n = 2, but
nevertheless (8.31) continues to hold. In fact, if n = 2, (8.18) implies C(0) must
be a scalar multiple of a rotation on R2. Since also C(0) = 〈Z(0)Z(0)t〉 ≥ 0 in
End(R2), (8.31) follows. A similar argument applies to (8.32).

We continue to take X = Rn, G = E(n), V = Rn, and π the standard rep-
resentation of SO(n) on Rn. The result (8.18) on C implies that it is uniquely
specified by C(ren), r ∈ [0,∞), where {e1, . . . , en} is the standard basis of Rn.
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If SO(n − 1) acts on Rn, fixing en and taking the standard SO(n − 1) action on
Span(e1, . . . , en−1) = Rn−1, then C is well defined on Rn \ 0 if and only if

(8.33) π(g)C(ren)π(g)−1 = C(ren), ∀ g ∈ SO(n− 1),

the case of C(0) having been discussed above. Now Cn splits into two factors,
Cen and C-Span(e1, . . . , en−1), on each of which SO(n− 1) acts irreducibly. Hence
(8.33) is equivalent to

(8.34) C(ren) = A(r)Pen + B(r)(I − Pen),

where, for x ∈ Rn,

(8.34A) Px = orthogonal projection of Rn onto Span(x),

and A and B are scalar. Now,

(8.35) g ∈ SO(n) =⇒ π(g)Penπ(g)−1 = Pgen ,

so we get

(8.36) C(x) = A(|x|)Px + B(|x|)(I − Px).

From (8.31), we have A(0) = B(0) = α. In view of (8.27), a similar analysis holds
for Ĉ. Assuming Ĉ is continuous on Rn \ 0, we have

(8.37) Ĉ(ξ) = A#(|ξ|)Pξ + B#(|ξ|)(I − Pξ),

with A# and B# scalar. If in addition Ĉ is continuous in a neighborhood of 0, we
have A#(0) = B#(0) = β. To celebrate the positivity result (8.23), we also write

(8.38) Ĉ = A#Pξ + B#(I − Pξ),

where

(8.39) A# and B# are finite, positive (scalar) radial measures on Rn.

Since Pξ is not continuous at ξ = 0, we elaborate on (8.38). We have

(8.40) Ĉ = AbPξ + Bb(I − Pξ) + γIδ,

where Ab and Bb are finite, positive, scalar, rotationally invariant measures on Rn

with no atom at 0, and γ ≥ 0.
Note that (8.38)–(8.40) imply a reality condition, sharpening (8.24) to

(8.41) Ĉ∗ = Ĉt = Ĉ in S ′(Rn, End(Rn)),

in the isotropic case, and converting (8.25) to

(8.42) Ĉ(−ξ) = Ĉ(ξ).
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9. Random divergence-free vector fields

We take the setting of §8, with X = Rn, G = Rn or E(n), and V = Rn. As
usual, (Ω, µ) is a probability space. A continuous function

(9.1) Z : Rn −→ L2(Ω, µ)

is divergence-free provided div Z = 0, i.e., with Z = (Z1, . . . , Zn)t,

(9.2)
∑

j

∂jZj = 0,

considered as an element of S ′(Rn, L2(Ω, µ)). Equivalently,

(9.3)
∫

Rn

Z(x) · ∇f(x) = 0, ∀ f ∈ C∞0 (Rn).

Recall that if Z is homogeneous (i.e., Rn-stationary) and 〈Z(x)〉 ≡ 0, we have

(9.4) C(x) = 〈Z(x)Z(0)t〉 ∈ End(Rn), i.e., Cij(x) = 〈Zi(x)Zj(0)〉.

Then (9.2) implies

(9.5)
∑

i

∂iCij = 0, hence
∑

j

∂jCij = 0,

the latter identity following since Cji(x) = Cij(−x).
Applying the Fourier transform (cf. Appendix C) to (9.2) gives

(9.6)
∑

j

ξjẐj = 0 in S ′(Rn, L2(Ω, µ)),

and, in case Z is homogeneous, applying the Fourier transform to (9.5) gives

(9.7)
∑

i

ξiĈij(ξ) = 0,
∑

j

ξjĈij(ξ) = 0.

If Z is isotropic, then (8.40), i.e.,

(9.8) Ĉ = AbPξ + Bb(I − Pξ) + γIδ,
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plus (9.7) gives

(9.9) Ĉ = Bb(I − Pξ) + γIδ,

where Bb is a finite, positive (scalar), rotationally invariant measure on Rn, with
no atom at 0 (hence no atoms at all), and γ ≥ 0. As shown in Appendix C, mild
decay conditions on C(x) as |x| → ∞ imply no atoms for Ĉ, hence γ = 0.

We next discuss the existence of nontrivial homogeneous (or isotropic) divergence-
free vector fields. Take a continuous C : Rn → End(Rn) satisfying C(x) = C(−x)t

and Ĉ positive, e.g., Ĉ as in (9.8). Parallel to Theorem 3.3 and Corollary 3.4, there
is (no doubt) an existence result for a Gaussian random field Y : Rn → L2(Ω, µ,Rn)
such that

(9.10) 〈Y (x)〉 ≡ 0, 〈Y (x)Y (y)t〉 = CY (x− y),

and such a Gaussian field will be homogeneous (Rn-stationary). If CY (x) satis-
fies (8.18), e.g., if ĈY is given by (9.8), then (no doubt) such a Gaussian field Y
will be isotropic (E(n)-stationary). (Justifying this would involve establishing a
generalization of Proposition 3.1.)

To get a random field satisfying (9.2), we might need to alter Y . Consider

(9.11) Z(x) = f ∗ Y (x) =
∫

f(x− y)Y (y) dy,

with

(9.12) f ∈ L1(Rn, End(Rn)).

Note that

(9.12A) Ẑ = f̂ Ŷ .

It easily follows from (9.11) that Z is homogeneous if Y is; compare similar results
in Appendix C. We next investigate when Z can be said to be isotropic, given that
Y is isotropic, i.e., Y is homogeneous, and, in the terminology of (5.36)–(5.37), with
g running over SO(n) and π the standard action of SO(n) on Rn,

(9.13) Y (gx) ↔g π(g)Y (x), ∀x ∈ Rn.

Note that

(9.14)

Z(gx) =
∫

f(gx− y)Y (y) dy

=
∫

f(g(x− y))Y (gy) dy

↔g

∫
f(g(x− y))π(g)Y (y) dy.



41

Thus, to achieve

(9.19) Z(gx) ↔g π(g)Z(x), ∀x ∈ Rn,

we need f to satisfy

(9.16) f(gx) = π(g)f(x)π(g)−1,

or equivalently

(9.17) f̂(gξ) = π(g)f̂(ξ)π(g)−1.

Note that

(9.18) Pgξ = π(g)Pξπ(g)−1, ∀ g ∈ SO(n), ξ ∈ Rn \ 0.

Hence, we take f ∈ L1(Rn, End(Rn)) such that

(9.19) f̂(ξ) = a(ξ)(I − Pξ),

with a : Rn → R radial, and sufficiently regular, and vanishing sufficiently as ξ → 0
and as |ξ| → ∞ to ensure that f is integrable. With such a choice of f , Z, defined
by (9.11), will be divergence free. It will be homogeneous if Y is, and it will be
isotropic if Y is.

We remark that if Y and Z are related by (9.11), then 〈Y (x)〉 ≡ 0 ⇒ 〈Z(x)〉 ≡ 0
and, with CY (x− y) as in (9.10) and

(9.20) CZ(x− y) = 〈Z(x)Z(y)t〉,

a calculation gives

(9.21) CZ = f ∗ CY ∗ f#, f#(x) = f(−x)t,

hence

(9.22)
ĈZ = (2π)nf̂(ξ)ĈY f̂(−ξ)t

= (2π)nf̂(ξ)ĈY f̂(ξ)∗.

If f̂ is given by (9.19), we obtain

(9.23) ĈZ = (2π)na(ξ)(I − Pξ)ĈY (I − Pξ)a(ξ).

Recall from (8.31)–(8.32) that if Z is an isotropic random vector field on Rn and
〈Z(x)〉 ≡ 0 and C = CZ is given by (9.20), then C(0) is a scalar multiple of the
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identity. If Ĉ is continuous on a neighborhood of 0, Ĉ(0) is also a scalar multiple
of the identity. We note that if Z is also divergence free, then

(9.24) Ĉ(ξ)ξ = 0 =⇒ Ĉ(0) = 0,

given such continuity. Indeed, fixing ω ∈ Sn−1 ⊂ Rn, we have Ĉ(rω)ω = 0, for all
r > 0, and letting r → 0 yields Ĉ(0)ω = 0, for all ω ∈ Sn−1. (In fact, this argument
applies more generally to homogeneous, divergence-free random vector fields.)

On the other hand, there exist isotropic, divergence-free random fields on Rn for
which Ĉ is continuous on Rn \ 0 and does not tend to 0 at the origin. Examples
can be obtained as follows. Set

(9.25) ĈY (ξ) = |ξ|−ae−|ξ|I, a ∈ (0, n),

which is positive and integrable. Then there exists a homogeneous Gaussian random
vector field Y such that 〈Y (x)〉 ≡ 0 and (9.10) holds. Then form Z as in (9.11),
with

(9.26) f̂(ξ) = |ξ|a/2e−|ξ|(I − Pξ).

Then f ∈ C∞(Rn) and |f(x)| ≤ C(1 + |x|)−n−α/2, so f ∈ L1(Rn,End(Rn)). We
have an isotropic, divergence-free random vector field Z, and, by (9.23),

(9.27) ĈZ(ξ) = (2π)ne−3|ξ|(I − Pξ).

This is bounded, continuous on Rn \ 0, and has no limit as ξ → 0. If instead of
(9.26) we took f̂(ξ) = |ξ|b/2e−|ξ|(I−Pξ), with b ∈ (0, a), we would get an isotropic,
divergence-free random vector field Z for which ĈZ blows up at the origin.
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10. Generalized random fields

As before, we fix a probability space (Ω, µ). Let us explicitly assume that
L2(Ω, µ) is separable. A generalized random field on Rn is an L2(Ω, µ)-valued
distribution, Z ∈ D′(Rn, L2(Ω, µ)), i.e., a continuous linear map

(10.1) Z : C∞0 (Rn) −→ L2(Ω, µ).

More generally, we can take L2(Ω, µ, V ), as in §8, but for now we drop the V . Given
f ∈ C∞0 (Rn), we have the convolution

(10.2)
f ∗ Z ∈ C∞(Rn, L2(Ω, µ)),

f ∗ Z(x) = Z(f̌x), f̌x = f(x− y).

Definition. A generalized random field Z is stationary if and only if f ∗ Z is
stationary (as a continuous random field) for all f ∈ C∞0 (Rn).

If Z ∈ D′(Rn, L2(Ω, µ)) is stationary, the continuous linear map

(10.3)
KZ : C∞0 (B) −→ C∞(Rn, L2(Ω, µ)),

KZf(x) = f ∗ Z(x) = Z(f̌x),

where B = {x ∈ Rn : |x| ≤ 1}, has the property that

(10.4) KZ : C∞0 (B) −→ L∞(Rn, L2(Ω, µ)).

It follows that KZ in (10.4) is a closed linear map from a Frechet space to a Banach
space, hence continuous. Thus there exist k ∈ N and C ∈ (0,∞) (depending on Z)
such that

(10.5) sup
x
‖Z(f̌x)‖L2(Ω,µ) ≤ C‖f‖Ck , ∀ f ∈ C∞0 (B).

This estimate leads to an extension of the action of such Z, as follows. If Q = {Qα}
denotes the tiling of Rn by n-dimensional cubes with vertices in Zn, we can define

(10.6) f ∈ L1Ck(Rn) ⇔ f ∈ Ck(Rn) and ‖f‖L1Ck =
∑

Qα∈Q
‖f‖Ck(Qα) < ∞.

A partition of unity argument leads from (10.5) to

(10.7) ‖Z(f)‖L2(Ω,µ) ≤ C‖f‖L1Ck ,
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for all f ∈ C∞0 (Rn), and from there to a continuous extension

(10.8) Z : L1Ck(Rn) −→ L2(Ω, µ),

whenever Z ∈ D′(Rn, L2(Ω, µ)) is stationary. In particular,

(10.9) Z : S(Rn) −→ L2(Ω, µ),

i.e.,

(10.9A) Z ∈ S ′(Rn, L2(Ω, µ)).

Furthermore, Kz in (10.3) extends to a continuous linear map

(10.10) KZ : L1Ck(Rn) −→ L∞ ∩ C(Rn, L2(Ω, µ)).

The following “Tauberian theorem” provides a useful characterization of station-
ary generalized random fields.

Proposition 10.1. Let Z ∈ S ′(Rn, L2(Ω, µ)), and assume there exists a single
f ∈ S(Rn) such that f̂(ξ) is nowhere vanishing and

(10.11) f ∗ Z is stationary,

as a continuous random field. Then (10.11) holds for all f ∈ S(Rn), so Z is
stationary. Furthermore, given k ∈ N such that (10.7) holds, the result (10.11)
holds for all f ∈ L1Ck(Rn).

Proof. Given that Z ∈ S ′(Rn, L2(Ω, µ)), it suffices to show that (10.11) holds for
a set of functions with dense linear span in S(Rn). Thus it suffices to note that
if f ∈ S(Rn) and f̂(ξ) is nowhere vanishing, then {f̌x : x ∈ Rn} has dense linear
span in S(Rn), where f̌x(y) = f(x − y). The well known proof goes as follows. If
ω ∈ S ′(Rn) annihilates this span, then f ∗ ω = 0. This implies f̂ ω̂ = 0, which
implies ω = 0, given that f̂(ξ) never vanishes. The asserted density then follows
from the Hahn-Banach theorem.

We consider the following class of generalized random fields. Assume

(10.12) Z : Rn −→ L2(Ω, µ) is weakly continuous.

Assume Z is stationary, as an element of D′(Rn, L2(Ω, µ)). Take f1 ∈ C∞0 (Rn),
satisfying f1 ≥ 0 and

∫
f dx = 1, let fk(x) = knf(kx), and set

(10.13) Zk = fk ∗ Z ∈ C∞(Rn, L2(Ω, µ)).

which are stationary as continuous random fields. We have 〈Z(x)〉 = 〈Z(x) 1〉,
continuous in x, and

(10.14) 〈Zk〉 = fk ∗ 〈Z〉 −→ 〈Z〉, locally uniformly on Rn.

Since each 〈Zk(x)〉 = Mk is constant, so is 〈Z(x)〉 ≡ M = lim Mk. Subtracting M ,
we assume 〈Z(x)〉 ≡ 0, and then Mk ≡ 0.

Our aim is to prove the following.
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Proposition 10.2. If Z satisfies (10.12) and is statinary, as a generalized random
field, then

(10.15) Z : Rn −→ L2(Ω, µ) is norm-continuous,

and Z is stationary, as a continuous random field.

To start the proof, using the constructions above, we define Zk as in (10.13) and
reduce to the case 〈Z(x)〉 ≡ 0, so 〈Zk(x)〉 ≡ 0. We have

(10.16) 〈Zk(x) ϕ〉 −→ 〈Z(x) ϕ〉, locally uniformly in x, ∀ϕ ∈ L2(Ω, µ).

Stationarity of Zk implies

(10.17) ‖Zk(x)‖L2 ≡ Ek (independent of x).

Hence

(10.18) ‖Z(x)‖L2 ≤ lim inf
k→∞

Ek, ∀x ∈ Rn.

The Dunford-Pettis theorem implies

(10.19) Z : Rn −→ L2(Ω, µ) is strongly measurable.

Hence, for each x ∈ Rn,

(10.20) Zk(x) =
∫

fk(x− y)Z(y) dy

exists as a Bochner integral, and

(10.21) Ek ≡ ‖Zk(x)‖L2 ≤
∫

fk(x− y)‖Z(y)‖L2 dy.

Also, since y 7→ ‖Z(y)‖L2 is bounded (by (10.18)) and measurable,

(10.22)
∫

fk(x− y)‖Z(y)‖L2 dy −→ ‖Z(x)‖L2 , for a.e. x,

and hence

(10.23) lim sup
k→∞

Ek ≤ ‖Z(x)‖L2 , for a.e. x.

We are in a posiiton to establish the following.
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Lemma 10.3. There exists S ⊂ Rn such that m(Rn \ S) = 0 and

(10.24) ‖Z(x)‖L2 = E = lim
k→∞

Ek, ∀x ∈ S,

(10.25) Zk(x) −→ Z(x) in L2(Ω, µ)-norm, ∀x ∈ S,

(10.26) 〈Zk(x)Zk(y)〉 −→ 〈Z(x)Z(y)〉, ∀x ∈ S, y ∈ Rn.

(10.27) 〈Zk(x− y)Zk(0)〉 −→ 〈Z(x− y)Z(0)〉, ∀x− y ∈ S.

Proof. We get (10.24) from (10.18) and (10.23). Then (10.27) follows from (10.11)
and (10.24). Next, (10.26) follows from (10.16) and (10.25), and then (10.27) follows
from (10.26).

To proceed, we know that

(10.28) 〈Zk(x)Zk(y)〉 = Ck(x− y),

and Ck : Rn → R is continuous, for each k. Let us define

(10.29) C(x) = 〈Z(x)Z(0)〉,
so C : Rn → R is continuous, by (10.12). We want to show that

(10.30) 〈Z(x)Z(y)〉 = C(x− y), ∀x, y ∈ Rn.

Note that

(10.31) Ck(x) = 〈Zk(x)Zk(0)〉 −→ C(x), ∀x ∈ S,

by (10.26). As noted in (10.27), it follows that

(10.36) 〈Zk(x)Zk(y)〉 = 〈Zk(x− y)Zk(0)〉 → C(x− y), ∀x− y ∈ S.

Comparison with (10.26) yields

(10.33) 〈Z(x)Z(y)〉 = C(x− y), provided x, x− y ∈ S,

which is a special case of (10.30). Fixing x ∈ S and using (10.12) and the continuity
of C, we have

(10.34) 〈Z(x)Z(y)〉 = C(x− y), ∀x ∈ S, y ∈ Rn.

Then taking y ∈ Rn and applying a similar argument, we have (10.30).
From (10.30), the norm continuity (10.15) follows readily. We have

(10.35)
‖Z(x + y)− Z(y)‖2L2 = 〈(Z(x + y)− Z(y))(Z(x + y)− Z(y))〉

= 2C(0)− 2C(y),

which tends to 0 as |y| → 0.
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A. Multiparameter ergodic theory

We assume {τy : y ∈ Fn} is a family of measure preserving transformations on
the probability space (O, ν), satisfying τy1+y2 = τy1 ◦ τy2 . To be definite, we take
F = R, and we assume the induced action on Lp(O, ν),

(A.1) U(y)ϕ(η) = ϕ(τy(η)),

is strongly continuous in y, for each p ∈ [1,∞). Note that U(y) is an invertible
isometry on Lp(O, ν) (unitary on L2(O, ν)) and U(y1 + y2) = U(y1)U(y2). We aim
to discuss ergodic theorems, dealing with averages of the form

(A.2) ARϕ =
1

V (R)

∫

|y|≤R

U(y)ϕdy.

First, there is an abstract mean ergodic theorem, valid when {U(y) : y ∈ Rn} is a
strongly continuous unitary group on a Hilbert space H. It starts as follows.

Lemma A.1. We have the orthogonal direct sum H = K ⊕R, where

(A.3)
K = {ϕ ∈ H : U(y)ϕ = ϕ, ∀ y},
R =

⊕
y

Range (I − U(y)).

Proof. This follows from the observation that

(A.4) R⊥ =
⋂
y

Ker (I − U(y)∗) =
⋂
y

Ker (I − U(y)).

Here is the resulting abstract mean ergodic theorem.

Proposition A.2. For all ϕ ∈ H, ARϕ → Pϕ in H-norm, where P is the orthog-
onal projection of H onto K.

Proof. Note that ϕ ∈ K ⇒ ARϕ ≡ ϕ. Next, if ϕ = (I − U(y0))ψ, ψ ∈ H, then

(A.5)
1

V (R)

∫

|y|≤R

U(y)(I − U(y0))ψ dy → 0, as R →∞.

In view of Lemma A.1, this yields the asserted result.

Proposition A.2 applies to the case H = L2(O, ν), with U(y) given by (A.1). We
record the following extension.
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Proposition A.3. Let {τy : y ∈ Rn} satisfy the hypotheses given above, and take
U(y), AR as in (A.1)–(A.2). Then, for p ∈ [1, 2], P extends to a continuous
projection P : Lp(O, ν) → Lp(O, ν), and

(A.6) ARϕ −→ Pϕ in Lp-norm, ∀ϕ ∈ Lp(O, ν).

Proof. Note that ‖AR‖L(Lp) ≤ 1 and use denseness of L2(O, ν) in such Lp(O, ν).

Using other arguments, one can extend the scope of Proposition A.3 to all p ∈
[1,∞), but we omit details here.

The action of {τy} on (O, ν) is ergodic precisely when only constant functions
on O belong to K, defined in (A.3). Then, and only then,

(A.7) Pϕ =
(∫

O

ϕdν
)

1, ∀ϕ ∈ L2(O, ν).

Note that this implies the criterion (4.10) for ergodicity.
It is of interest to extend Proposition A.2, replacing Rn by a broader class of Lie

groups. Let G be a Lie group, endowed with a right-invariant Haar measure. Let
U : G → L(H) be a strongly continuous unitary representation of G on a Hilbert
space H. Take, for R ∈ R+,

(A.8) fR ∈ L1(G), fR ≥ 0,

∫

G

fR(y) dy ≡ 1,

and set

(A.9) ARϕ =
∫

G

fR(y) U(y)ϕdy.

We seek conditions that lead to a result of the form ARϕ → Pϕ as R →∞.
To start, we note that Lemma A.1 holds in this more general setting, with y

running over G to define K and R as in (A.3). Again (A.4) provides the proof.
To proceed, clearly

(A.10) ϕ ∈ K =⇒ ARϕ ≡ ϕ.

Next, if ϕ = (I − U(y0))ψ, ψ ∈ H, then

(A.11)

ARϕ =
∫

G

fR(y)
(
U(y)− U(y)U(y0)

)
ψ dy

=
∫

G

[fR(y)− fR(yy−1
0 )]U(y)ψ dy.
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We can deduce that

(A.12) ARϕ −→ 0 as R →∞,

for all ϕ ∈ R, hence for all ϕ ∈ R, provided {fR} satisfies (A.8) and also

(A.13) lim
R→∞

∫

G

|fR(y)− fR(yy−1
0 )| dy = 0, ∀ y0 ∈ G.

We record the conclusion.

Proposition A.4. Let {fR : R ∈ R+} satisfy (A.8) and define AR : H → H by
(A.9). For all ϕ ∈ H, ARϕ → Pϕ in H-norm, where P is the orthogonal projection
of H on K, provided {fR} also satisfies (A.13).

A Lie group G for which a family {fR} satisfying (A.8) and (A.13) exists is said
to be amenable. For G = Rn, one can pick f1 ≥ 0 such that

∫
Rn f1(y) dy = 1 and

set fR(y) = R−nf(R−1y). Many non-abelian Lie groups are amenable, but not all
of them are.

So far, we have discussed mean ergodic theorems. The demonstrations given
above are straightforward variants of the classical case of the real line. (Compare
[T2], Chapter 14.) There are also pointwise a.e. results, known as Birkhoff ergodic
theorems, that are classical for Rn, having been extended from n = 1 to general n
in [W]. See [L] for treatments of some other groups.



50

B. Atoms of Ĉ

Let σ be a finite (possibly complex) measure on Rn. Its Fourier transform

(B.1) C(x) = σ̂(x) = (2π)−n/2

∫
e−ix·ξ dσ(ξ)

is a bounded, continuous function on Rn. We say σ has an atom at p ∈ Rn if
σ({p}) 6= 0. The set A(σ) of such points is countable, and we can write

(B.2) σ = σ0 +
∑

pj∈A(σ)

ajδpj ,

where σ0 has no atoms (we say σ0 is a continuous measure). Here we prove the
following result (due to N. Wiener), of interest in §4.

Proposition B.1. With σ and C as above,

(B.3) lim
R→∞

1
V (R)

∫

|y|≤R

|C(y)|2 dy = (2π)−n
∑

|aj |2.

Proof. We show that, more generally, if f ∈ L1(Rn),
∫

f(y) dy = 1, and fR(y) =
f(y/R), then

(B.4) R−n

∫
fR(y)|σ̂(y)|2 dy −→ (2π)−n

∑
|aj |2, as R →∞.

In fact, the left side of (B.4) is equal to

(B.5)
(2πR)−n

∫
fR(y)

∫
eiy·ξ dσ(ξ)

∫
e−iy·η dσ(η) dy

= (2π)−n

∫∫ {∫
f(y)eiR(ξ−η)·y dy

}
dσ(ξ) dσ(η).

Since the expression in brackets is bounded by ‖f‖L1 , we can pass to the limit
under the integral sign. Now

∫
f(y)eiR(ξ−η)·y dy tends to 0 as R →∞ if ξ 6= η, by

the Riemann-Lebesgue lemma, while the expression is 1 at ξ = η. Thus

(B.6) lim
R→∞

R−n

∫
fR(y)|σ̂(y)|2 dy = (2π)−n

∫∫

ξ=η

dσ(ξ) dσ(η) = (2π)−n
∑

|aj |2.

This completes the proof.
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C. Fourier transform of a stationary field

If we have a real-valued, continuous, stationary field on the n-torus,

(C.1) Z : Tn −→ L2(Ω, µ),

it has a representation

(C.2) Z(x) =
∑

k∈Zn

Ẑ(k)eik·x,

with

(C.3) Ẑ : Zn −→ L2(Ω, µ), Ẑ(k) = (2π)−n

∫

Tn

Z(x)e−ik·x dx.

Note that Ẑ is not stationary. However, the various random variables Ẑ(k) are
uncorrelated. In fact, in such a case,

(C.4)

〈Ẑ(k)Ẑ(`)〉 = (2π)−2n

∫∫
〈Z(x)Z(y)〉e−ik·xei`·y dx dy

= (2π)−2n

∫∫
C(x− y)e−ik·xei`·y dx dy

= (2π)−nĈ(k)
∫

ei(`−k)·y dy

= Ĉ(k)δk`.

This is a special case of (5.29). (Note also that Ẑ(`) = Ẑ(−`).)

Note. The characterization of C(x−y) as 〈Z(x)Z(y)〉 is equivalent to that in (4.2)
and (5.10) if and only if 〈Z(x)〉 ≡ 0. The same applies to (C.9).

Treating the Fourier transform of a real-valued, continuous, stationary field

(C.5) Z : Rn −→ L2(Ω, µ)

will require the use of vector-valued tempered distributions, since Z is bounded but
not integrable. We have

(C.6) Ẑ ∈ S ′(Rn, L2(Ω, µ)),
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that is, Ẑ : S(Rn) → L2(Ω, µ), defined by

(C.7) Ẑ(f) = Z(f̂) =
∫

Z(x)f̂(x) dx, f ∈ S(Rn),

where S(Rn) denotes the Schwartz space of rapidly decreasing functions (cf. [T],
Chapter 3). Formally (i.e., informally),

(C.8) Ẑ(f) =
∫

Ẑ(ξ)f(ξ) dξ.

Now, parallel to (C.4), we have

(C.9)

〈Ẑ(f), Ẑ(g)〉 = 〈Z(f̂)Z(ĝ)〉

=
∫∫

〈Z(x)Z(y)〉f̂(x)ĝ(y) dx dy

=
∫∫

C(x− y)f̂(x)ĝ(y) dx dy.

Note that

(C.10)

∫
C(x− y)f̂(x) dx = (2π)−n/2

∫∫
f(ξ)e−ix·ξC(x− y) dξ dx

=
∫

e−iy·ξĈ(ξ)f(ξ) dξ,

and

(C.11)

∫
e−iy·ξ ĝ(y) dy =

(∫
eiy·ξ ĝ(y) dy

)∗

= (2π)n/2g(ξ),

so

(C.12) 〈Ẑ(f)Ẑ(g)〉 = (2π)n/2

∫
Ĉ(ξ)f(ξ)g(ξ) dξ.

If we formally take f = δξ1 , g = δξ2 in (C.9), we get, formally,

(C.13)

〈Ẑ(ξ1)Ẑ(ξ2)〉 = (2π)−n

∫∫
C(x− y)e−ix·ξ1eiy·ξ2 dx dy

= (2π)−n/2

∫
Ĉ(ξ1)eiy·(ξ2−ξ1) dy

= Ĉ(ξ1)δ(ξ1 − ξ2),
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at least if Ĉ is continuous (which holds if C ∈ L1(Rn)). We have stated in §3 that
Ĉ is always a finite positive measure; call it σ. In this setting, we would write
(C.12) as

(C.14) 〈Ẑ(f), Ẑ(g)〉 = (2π)n/2

∫
f(ξ)g(ξ) dσ(ξ).

In such a case, the bottom line of (C.13) can be interpreted as a finite positive
measure on Rn × Rn.

We also note that, in case n = 1, we can write

(C.15) Ẑ =
d

dξ
F, (1 + |ξ|)−2F ∈ L2(R, L2(Ω, µ)),

and hence

(C.16) Z(x) = (2π)−1/2

∫
eixξ dF (ξ).

To get this, we first note that (for general n) since Z : Rn → L2(Ω, µ) is bounded
and continuous,

(C.17) g ∈ L2(Rn) =⇒ Ẑ ∗ g ∈ L2(Rn, L2(Ω, µ)).

In case n = 1, we can take

(C.18)
g(ξ) = e−ξ, ξ > 0,

0, ξ < 0,

which satisfies g′ = δ − g, and then

(C.19) W = Ẑ ∗ g =⇒ Ẑ = W ′ + W, W ∈ L2(R, L2(Ω, µ)),

so (C.15) holds with

(C.20) F (ξ) = W (ξ) +
∫ ξ

0

W (η) dη.

It follows readily from (C.14) and a limiting argument that the increments F (ξ′)−
F (ξ) are uncorrelated over non-overlapping intervals.

A representation alternative to (C.16) is

(C.21) Z(x) = (2π)−1/2(1− ix)
∫

eixξW (ξ) dξ, W ∈ L2(R, L2(Ω, µ)),
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with W as in (C.19). This has n-dimensional variants. We can take

(C.22) g(ξ) = (1−∆)−kδ(ξ), k >
n

4
,

so g ∈ L2(Rn) and (1−∆)kg = δ. Then

(C.23) W = Ẑ ∗ g =⇒ Ẑ = (1−∆)kW, W ∈ L2(Rn, L2(Ω, µ)),

and

(C.24) Z(x) = (1 + |x|2)k(2π)−n/2

∫
eix·ξW (ξ) dξ.

Returning to (C.6)–(C.7), we note that Ẑ has a more precise description than
being in S ′(Rn, L2(Ω, µ)). It is useful to introduce some notation. We fix the
probability space (Ω, µ) and associated Hilbert space L2(Ω, µ). We say

(C.25) Z ∈ Σ(Rn)

provided Z : Rn → L2(Ω, µ) is a continuous, stationary field. We then set

(C.26) FΣ(Rn) = {Ẑ : Z ∈ Σ(Rn)} ⊂ S ′(Rn, L2(Ω, µ)).

One observation is that if Z ∈ Σ(Rn), then (C.7) extends to f̂ ∈ L1(Rn), i.e., to
f ∈ FL1(Rn). More generally, given

(C.27) ν ∈M(Rn), ν̃ ∈ FM(Rn),

whereM(Rn) is the space of finite Borel measures on Rn, and ν̃(ξ) = (2π)−n/2
∫

eix·ξ dν(x)
is the inverse Fourier transform, we have

(C.28) Ẑ(ν̃) = Z(ν) =
∫

Z(x) dν(x) ∈ L2(Ω, µ),

so, extending (C.6), we have

(C.29) Ẑ : FM(Rn) −→ L2(Ω, µ),

if Z ∈ Σ(Rn).
Some related results arise as follows. First, given f ∈ L1(Rn),

(C.30) Z ∗ f(x) =
∫

Z(x− y)f(y) dy
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is well defined, and

(C.31) f ∈ L1(Rn), Z ∈ Σ(Rn) =⇒ Z ∗ f ∈ Σ(Rn).

More generally, given ν ∈M(Rn), we can set

(C.32) Z ∗ ν(x) =
∫

Z(x− y) dν(y),

and then

(C.33) ν ∈M(Rn), Z ∈ Σ(Rn) =⇒ Z ∗ ν ∈ Σ(Rn).

Furthermore,

(C.34) FΣ(Rn) is a module over FL1(Rn),

and, more generally,

(C.35) FΣ(Rn) is a module over FM(Rn),

under pointwise multiplication, and

(C.36) Ẑ ∗ f = f̂ Ẑ, Ẑ ∗ ν = ν̂ Ẑ.
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