The Riemann zeta function

Michael Taylor

Abstract. This material is excerpted from Section 19 of [T].

The Riemann zeta function is defined by

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}, \quad \operatorname{Re} s>1 \tag{19.1}
\end{equation*}
$$

Some special cases of this arose in $\S 13$, namely

$$
\begin{equation*}
\zeta(2)=\frac{\pi^{2}}{6}, \quad \zeta(4)=\frac{\pi^{4}}{90} . \tag{19.2}
\end{equation*}
$$

This function is of great interest in number theory, due to the following result.
Proposition 19.1. Let $\left\{p_{j}: j \geq 1\right\}=\{2,3,5,7,11, \ldots\}$ denote the set of prime numbers in \mathbb{N}. Then, for $\operatorname{Re} s>1$,

$$
\begin{equation*}
\zeta(s)=\prod_{j=1}^{\infty}\left(1-p_{j}^{-s}\right)^{-1} \tag{19.3}
\end{equation*}
$$

Proof. Write the right side of (19.3) as

$$
\begin{align*}
& \prod_{j=1}^{\infty}\left(1+p_{j}^{-s}+p_{j}^{-2 s}+p_{j}^{-3 s}+\cdots\right) \tag{19.4}\\
& =1+\sum_{j} p_{j}^{-s}+\sum_{j_{1} \leq j_{2}}\left(p_{j_{1}} p_{j_{2}}\right)^{-s}+\sum_{j_{1} \leq j_{2} \leq j_{3}}\left(p_{j_{1}} p_{j_{2}} p_{j_{3}}\right)^{-s}+\cdots
\end{align*}
$$

That this is identical to the right side of (19.1) follows from the fundamental theorem of arithmetic, which says that each integer $n \geq 2$ has a unique factorization into a product of primes.

From (19.1) we see that

$$
\begin{equation*}
s \searrow 1 \Longrightarrow \zeta(s) \nearrow+\infty . \tag{19.5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\prod_{j=1}^{\infty}\left(1-p_{j}^{-1}\right)=0 . \tag{19.6}
\end{equation*}
$$

Applying (18.59), we deduce that

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{1}{p_{j}}=\infty \tag{19.7}
\end{equation*}
$$

which is a quantitative strengthening of the result that there are infinitely many primes. Of course, comparison with $\sum_{n \geq 1} n^{-s}$ implies

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{1}{\left|p_{j}^{s}\right|}<\infty, \quad \text { for } \quad \operatorname{Re} s>1 \tag{19.8}
\end{equation*}
$$

Another application of (18.59) gives

$$
\begin{equation*}
\zeta(s) \neq 0, \quad \text { for } \quad \operatorname{Re} s>1 \tag{19.9}
\end{equation*}
$$

Our next goal is to establish the following.
Proposition 19.2. The function $\zeta(s)$ extends to a meromorphic function on \mathbb{C}, with one simple pole, at $s=1$.

To start the demonstration, we relate the Riemann zeta function to the function

$$
\begin{equation*}
g(t)=\sum_{n=1}^{\infty} e^{-n^{2} \pi t} \tag{19.10}
\end{equation*}
$$

Indeed, we have

$$
\begin{align*}
\int_{0}^{\infty} g(t) t^{s-1} d t & =\sum_{n=1}^{\infty} n^{-2 s} \pi^{-s} \int_{0}^{\infty} e^{-t} t^{s-1} d t \tag{19.11}\\
& =\zeta(2 s) \pi^{-s} \Gamma(s)
\end{align*}
$$

This gives rise to further useful identities, via the Jacobi identity (14.43), i.e.,

$$
\begin{equation*}
\sum_{\ell=-\infty}^{\infty} e^{-\pi \ell^{2} t}=\sqrt{\frac{1}{t}} \sum_{k=-\infty}^{\infty} e^{-\pi k^{2} / t} \tag{19.12}
\end{equation*}
$$

which implies

$$
\begin{equation*}
g(t)=-\frac{1}{2}+\frac{1}{2} t^{-1 / 2}+t^{-1 / 2} g\left(\frac{1}{t}\right) . \tag{19.13}
\end{equation*}
$$

To use this, we first note from (19.11) that, for $\operatorname{Re} s>1$,

$$
\begin{align*}
\Gamma\left(\frac{s}{2}\right) \pi^{-s / 2} \zeta(s) & =\int_{0}^{\infty} g(t) t^{s / 2-1} d t \\
& =\int_{0}^{1} g(t) t^{s / 2-1} d t+\int_{1}^{\infty} g(t) t^{s / 2-1} d t \tag{19.14}
\end{align*}
$$

Into the integral over $[0,1]$ we substitute the right side of (19.13) for $g(t)$, to obtain

$$
\begin{align*}
\Gamma\left(\frac{s}{2}\right) \pi^{-s / 2} \zeta(s)= & \int_{0}^{1}\left(-\frac{1}{2}+\frac{1}{2} t^{-1 / 2}\right) t^{s / 2-1} d t \tag{19.15}\\
& +\int_{0}^{1} g\left(t^{-1}\right) t^{s / 2-3 / 2} d t+\int_{1}^{\infty} g(t) t^{s / 2-1} d t
\end{align*}
$$

We evaluate the first integral on the right, and replace t by $1 / t$ in the second integral, to obtain, for $\operatorname{Re} s>1$,

$$
\begin{equation*}
\Gamma\left(\frac{s}{2}\right) \pi^{-s / 2} \zeta(s)=\frac{1}{s-1}-\frac{1}{s}+\int_{1}^{\infty}\left[t^{s / 2}+t^{(1-s) / 2}\right] g(t) t^{-1} d t . \tag{19.16}
\end{equation*}
$$

Note that $g(t) \leq C e^{-\pi t}$ for $t \in[1, \infty)$, so the integral on the right side of (19.16) defines an entire function of s. Since $1 / \Gamma(s / 2)$ is entire, with simple zeros at $s=$ $0,-2,-4, \ldots$, as seen in $\S 18$, this implies that $\zeta(s)$ is continued as a meromorphic function on \mathbb{C}, with one simple pole, at $s=1$. This finishes the proof of Proposition 19.2.

The formula (19.16) does more than establish the meromorphic continuation of the zeta function. Note that the right side of (19.16) is invariant under replacing s by $1-s$. Thus we have an identity known as Riemann's functional equation:

$$
\begin{equation*}
\Gamma\left(\frac{s}{2}\right) \pi^{-s / 2} \zeta(s)=\Gamma\left(\frac{1-s}{2}\right) \pi^{-(1-s) / 2} \zeta(1-s) . \tag{19.17}
\end{equation*}
$$

The meromorphic continuation of $\zeta(s)$ can be used to obtain facts about the set of primes deeper than (19.7). It is possible to strengthen (19.9) to

$$
\begin{equation*}
\zeta(s) \neq 0 \quad \text { for } \quad \operatorname{Re} s \geq 1 . \tag{19.18}
\end{equation*}
$$

This plays a role in the following result, known as the

Prime number theorem.

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{p_{j}}{j \log j}=1 \tag{19.19}
\end{equation*}
$$

A proof can be found in [BN], and in [Ed]. Of course, (19.19) is much more precise than (19.7).

There has been a great deal of work on determining where $\zeta(s)$ can vanish. By (19.16), it must vanish at all the poles of $\Gamma(s / 2)$, other than $s=0$, i.e.,

$$
\begin{equation*}
\zeta(s)=0 \text { on }\{-2,-4,-6, \ldots\} . \tag{19.20}
\end{equation*}
$$

These are known as the "trivial zeros" of $\zeta(s)$. It follows from (19.18) and the functional equation (19.16) that all the other zeros of $\zeta(s)$ are contained in the "critical strip"

$$
\begin{equation*}
\Omega=\{s \in \mathbb{C}: 0<\operatorname{Re} s<1\} . \tag{19.21}
\end{equation*}
$$

Concerning where in Ω these zeros can be, there is the following famous conjecture.

The Riemann hypothesis. All zeros in Ω of $\zeta(s)$ lie on the critical line

$$
\begin{equation*}
\left\{\frac{1}{2}+i \sigma: \sigma \in \mathbb{R}\right\} \tag{19.22}
\end{equation*}
$$

Many zeros of $\zeta(s)$ have been computed and shown to lie on this line, but after over a century, a proof (or refutation) of the Riemann hypothesis eludes the mathematics community. The reader can consult [Ed] for more on the zeta function.

Exercises

1. Use the functional equation (19.17) together with (18.6) and the Legendre duplication formula (18.47) to show that

$$
\zeta(1-s)=2^{1-s} \pi^{-s}\left(\cos \frac{\pi s}{2}\right) \Gamma(s) \zeta(s)
$$

2. Sum the identity

$$
\Gamma(s) n^{-s}=\int_{0}^{\infty} e^{-n t} t^{s-1} d t
$$

over $n \in \mathbb{Z}^{+}$to show that

$$
\Gamma(s) \zeta(s)=\int_{0}^{\infty} \frac{t^{s-1}}{e^{t}-1} d t=\int_{0}^{1} \frac{t^{s-1}}{e^{t}-1} d t+\int_{1}^{\infty} \frac{t^{s-1}}{e^{t}-1} d t=A(s)+B(s)
$$

Show that $B(s)$ continues as an entire function. Use a Laurent series

$$
\frac{1}{e^{t}-1}=\frac{1}{t}+a_{0}+a_{1} t+a_{2} t^{2}+\cdots
$$

to show that

$$
\int_{0}^{1} \frac{t^{s-1}}{e^{t}-1} d t=\frac{1}{s-1}+\frac{a_{0}}{s}+\frac{a_{1}}{s+1}+\cdots
$$

provides a meromorphic continuation of $A(s)$, with poles at $\{1,0,-1, \ldots\}$. Use this to give a second proof that $\zeta(s)$ has a meromorphic continuation with one simple pole, at $s=1$.
3. Show that, for Re $s>1$, the following identities hold:
(a)

$$
\zeta(s)^{2}=\sum_{n=1}^{\infty} \frac{d(n)}{n^{s}}
$$

(b)

$$
\zeta(s) \zeta(s-1)=\sum_{n=1}^{\infty} \frac{\sigma(n)}{n^{s}},
$$

(c)

$$
\frac{\zeta(s-1)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\varphi(n)}{n^{s}}
$$

(d)

$$
\frac{1}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}
$$

(e)

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=-\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{s}}
$$

where

$$
\begin{aligned}
& d(n)=\# \text { divisors of } n, \\
& \sigma(n)=\text { sum of divisors of } n, \\
& \varphi(n)=\# \text { positive integers } \leq n, \text { relatively prime to } n, \\
& \mu(n)=(-1)^{\# \text { prime factors }}, \text { if } n \text { is square-free, } 0 \text { otherwise, } \\
& \Lambda(n)=\log p \text { if } n=p^{m} \text { for some prime } p, 0 \text { otherwise. }
\end{aligned}
$$

Reference

[BN] J. Bak and D. J. Newman, Complex Analysis, Springer-Verlag, New York 1982.
[Ed] H. Edwards, Riemann's Zeta Function, Dover, New York, 2001.
[T] M. Taylor, Introduction to Complex Analysis. Notes, available this website.

