The Schrödinger Equation on Cones

Michael Taylor

Contents

1. Introduction
2. Estimates on $J_{\nu}(r)$
3. Estimates on $J_{A}(r)$
A. Proof of the Weber integral formula
B. Proof of the Lipschitz-Hankel integral formula
C. Some integral formulas for $J_{\nu}(r)$

1. Introduction

Here we study the solution operator $e^{i t \Delta}$ to the Schrödinger equation on a cone $C(N)$ over a compact Riemannian manifold M. As a set, $C(N)=\mathbb{R}^{+} \times N / \sim$, where $\left(0, \omega_{1}\right) \sim\left(0, \omega_{2}\right)$. The metric tensor on $C(N)$ is given by

$$
\begin{equation*}
d s^{2}=d r^{2}+r^{2} g_{N} \tag{1.1}
\end{equation*}
$$

where g_{N} is the metric tensor on N. Then the Laplace-Beltrami operator Δ on $C(N)$ has the form

$$
\begin{equation*}
\Delta=\partial_{r}^{2}+\frac{n-1}{r} \partial_{r}+\frac{1}{r^{2}} \Delta_{N}, \tag{1.2}
\end{equation*}
$$

where $n=\operatorname{dim} C(N)$ and Δ_{N} is the Laplace operator on N. The approach to functions of Δ taken in [CT] made use of the Hankel transform to write

$$
\begin{equation*}
\varphi(\sqrt{-\Delta}) g\left(r_{1}, \omega\right)=\int_{0}^{\infty} K_{\varphi}\left(r_{1}, r_{2}, A\right) g\left(r_{2}, \omega\right) r_{2}^{n-1} d r_{2} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\left(-\Delta_{N}+\gamma^{2}\right)^{1 / 2}, \quad \gamma=\frac{n-2}{2} \tag{1.4}
\end{equation*}
$$

and $K_{\varphi}\left(r_{1}, r_{2}, A\right)$ is a family of operators on $L^{2}(N)$, given by

$$
\begin{equation*}
K_{\varphi}\left(r_{1}, r_{2}, A\right)=\left(r_{1} r_{2}\right)^{-\gamma} \int_{0}^{\infty} \varphi(\lambda) J_{A}\left(\lambda r_{1}\right) J_{A}\left(\lambda r_{2}\right) \lambda d \lambda \tag{1.5}
\end{equation*}
$$

(Cf. also [T], Chapter 8, §8.) Here J_{ν} is the Bessel function, defined by

$$
\begin{equation*}
J_{\nu}(r)=\frac{1}{\Gamma(1 / 2) \Gamma(\nu+1 / 2)}\left(\frac{r}{2}\right)^{\nu} \int_{-1}^{1}\left(1-t^{2}\right)^{\nu-1 / 2} e^{i r t} d t \tag{1.6}
\end{equation*}
$$

and for each $r>0, J_{A}(r)$ is defined by the spectral theorem. Equivalently,

$$
\begin{equation*}
J_{A}(r) f(\omega)=\sum J_{\nu_{k}}(r)\left(f, u_{k}\right) u_{k}(\omega) \tag{1.7}
\end{equation*}
$$

where $\left\{u_{k}\right\}$ is an orthonormal basis of $L^{2}(N)$, consisting of eigenfunctions of A, with $A u_{k}=\nu_{k} u_{k}$. Note that each $\nu_{k} \geq \gamma$.

One useful identity exploited in [CT] is the Weber integral

$$
\begin{equation*}
\int_{0}^{\infty} e^{-t \lambda^{2}} J_{\nu}\left(r_{1} \lambda\right) J_{\nu}\left(r_{2} \lambda\right) \lambda d \lambda=\frac{1}{2 t} e^{-\left(r_{1}^{2}+r_{2}^{2}\right) / 4 t} I_{\nu}\left(\frac{r_{1} r_{2}}{2 t}\right), \tag{1.8}
\end{equation*}
$$

valid for $r_{1}, r_{2}, t>0$, where

$$
\begin{equation*}
I_{\nu}(y)=e^{-\pi i \nu / 2} J_{\nu}(i y), \quad y>0 . \tag{1.9}
\end{equation*}
$$

Applying (1.8) in (1.5) yields the following formula for the solution to the heat equation on $C(N)$:

$$
e^{t \Delta} g\left(r_{1}, \omega\right)=\int_{0}^{\infty} H_{t}\left(r_{1}, r_{2}, A\right) g\left(r_{2}, \omega\right) r_{2}^{n-1} d r_{2}
$$

where

$$
H_{t}\left(r_{1}, r_{2}, A\right)=\frac{\left(r_{1} r_{2}\right)^{-\gamma}}{2 t} e^{-\left(r_{1}^{2}+r_{2}^{2}\right) / 4 t} I_{A}\left(\frac{r_{1} r_{2}}{2 t}\right) .
$$

One can proceed via analytic continuation to obtain

$$
\begin{equation*}
e^{i t \Delta} g\left(r_{1}, \omega\right)=\int_{0}^{\infty} S_{t}\left(r_{1}, r_{2}, A\right) g\left(r_{2}, \omega\right) r_{2}^{n-1} d r_{2} \tag{1.10}
\end{equation*}
$$

with

$$
\begin{equation*}
S_{t}\left(r_{1}, r_{2}, A\right)=\frac{\left(r_{1} r_{2}\right)^{-\gamma}}{2 i t} e^{-\left(r_{1}^{2}+r_{2}^{2}\right) / 4 i t} J_{A}\left(\frac{r_{1} r_{2}}{2 t}\right) e^{-\pi i A / 2} \tag{1.11}
\end{equation*}
$$

One of our goals here is to analyze the family of operators $J_{A}(r)$ on $L^{2}(N)$. In particular, we want to understand the integral kernel $\kappa_{N}\left(r, \omega_{1}, \omega_{2}\right)$, defined by

$$
\begin{equation*}
e^{-\pi i A / 2} J_{A}(r) f\left(\omega_{1}\right)=\int_{N} \kappa_{N}\left(r, \omega_{1}, \omega_{2}\right) f\left(\omega_{2}\right) d S\left(\omega_{2}\right), \tag{1.12}
\end{equation*}
$$

where $d S$ denotes Lebesgue measure on N. Note that, with u_{k}, ν_{k} as in (1.7),

$$
\begin{equation*}
\kappa_{N}\left(r, \omega_{1}, \omega_{2}\right)=\sum_{k} e^{-\pi i \nu_{k} / 2} J_{\nu_{k}}(r) u_{k}\left(\omega_{1}\right) \overline{u_{k}\left(\omega_{2}\right)} . \tag{1.13}
\end{equation*}
$$

Analysis of (1.12) yields information on the integral kernel of $e^{i t \Delta}$, defined by

$$
\begin{align*}
e^{i t \Delta} g\left(r_{1}, \omega_{1}\right) & =\int_{C(N)} E_{t}\left(r_{1}, \omega_{1}, r_{2}, \omega_{2}\right) g\left(r_{2}, \omega_{2}\right) d V\left(r_{2}, \omega_{2}\right) \tag{1.14}\\
& =\int_{N} \int_{0}^{\infty} E_{t}\left(r_{1}, \omega_{1}, r_{2}, \omega_{2}\right) g\left(r_{2}, \omega_{2}\right) r_{2}^{n-1} d r_{2} d S\left(\omega_{2}\right),
\end{align*}
$$

where $d V(r, \omega)=r^{n-1} d r d S(\omega)$ is Lebesgue measure on $C(N)$. In fact, by (1.10)(1.11),

$$
\begin{equation*}
E_{t}\left(r_{1}, \omega_{1}, r_{2}, \omega_{2}\right)=\frac{1}{2 i t\left(r_{1} r_{2}\right)^{(n-2) / 2}} e^{-\left(r_{1}^{2}+r_{2}^{2}\right) / 4 i t} \kappa_{N}\left(\frac{r_{1} r_{2}}{2 t}, \omega_{1}, \omega_{2}\right) \tag{1.15}
\end{equation*}
$$

In the special case when N is the standard sphere S^{n-1}, one has $C(N)=\mathbb{R}^{n}$. In such a case one has the well known integral kernel

$$
\begin{equation*}
E_{t}\left(x_{1}, x_{2}\right)=(4 \pi i t)^{-n / 2} e^{-\left|x_{1}-x_{2}\right|^{2} / 4 i t} \tag{1.16}
\end{equation*}
$$

for $e^{i t \Delta}$. It is instructive to compute $\kappa_{N}\left(r, \omega_{1}, \omega_{2}\right)$ for $N=S^{n-1}$, by comparing (1.10)-(1.11) and (1.16). We get

$$
\begin{align*}
& \frac{\left(r_{1} r_{2}\right)^{-\gamma}}{2 i t} e^{-\left(r_{1}^{2}+r_{2}^{2}\right) / 4 i t} \kappa_{S^{n-1}}\left(\frac{r_{1} r_{2}}{2 t}, \omega_{1}, \omega_{2}\right) \tag{1.17}\\
& =(4 \pi i t)^{-n / 2} e^{-\left|r_{1} \omega_{1}-r_{2} \omega_{2}\right|^{2} / 4 i t}
\end{align*}
$$

or equivalently

$$
\begin{equation*}
\kappa_{S^{n-1}}\left(r, \omega_{1}, \omega_{2}\right)=C_{n} r^{\gamma} e^{-i r \omega_{1} \cdot \omega_{2}} \tag{1.18}
\end{equation*}
$$

In particular we have $\left|\kappa_{S^{n-1}}\left(r, \omega_{1}, \omega_{2}\right)\right| \leq C r^{\gamma}$, which is seen to be equivalent to the estimate $\left|E_{t}\left(x_{1}, x_{2}\right)\right| \leq C t^{-n / 2}$ on the integral kernel given by (1.16).

Note however that, with A acting on functions of ω_{1},

$$
\begin{equation*}
\left|e^{i \sigma A} e^{-i r \omega_{1} \cdot \omega_{2}}\right|_{\omega_{1}=\omega_{2}} \mid \sim C_{\sigma} r^{(n-2) / 2}, \quad \sigma \notin \pi \mathbb{C}, \quad \text { as } \quad r \rightarrow \infty \tag{1.19}
\end{equation*}
$$

and hence, if $\kappa_{N}^{s}\left(r, \omega_{1}, \omega_{2}\right)$ denotes the integral kernel of $e^{-i s A} J_{A}(r)$, then

$$
\begin{equation*}
\sup _{\omega_{1}, \omega_{2}}\left|\kappa_{S^{n-1}}^{s}\left(r, \omega_{1}, \omega_{2}\right)\right| \sim C_{s} r^{2 \gamma}, \quad s-\frac{\pi}{2} \notin \pi \mathbb{C}, \quad \text { as } \quad r \rightarrow \infty \tag{1.20}
\end{equation*}
$$

In this note we establish the estimate

$$
\begin{array}{rr}
\left|\kappa_{N}^{s}\left(r, \omega_{1}, \omega_{2}\right)\right| \leq C r^{\gamma}, & 0<r \leq 1 \\
C r^{2 \gamma+1 / 2}, & r \geq 1 \tag{1.21}
\end{array}
$$

for a general compact Riemannian manifold N, of dimension $n-1$. This result is sharp for $r \leq 1$ and just a bit weaker than (1.20) for $r \geq 1$. In light of (1.15), this leads to estimates on $E_{t}\left(r_{1}, \omega_{1}, r_{2}\right)$. There are two regions to consider:

Region 1. Here $r_{1} r_{2} \leq 2 t$, and we get

$$
\begin{equation*}
\left|E_{t}\left(r_{1}, \omega_{1}, r_{2}, \omega_{2}\right)\right| \leq \frac{C}{t\left(r_{1} r_{2}\right)^{\gamma}}\left(\frac{r_{1} r_{2}}{2 t}\right)^{\gamma}=C t^{-n / 2} \tag{1.22}
\end{equation*}
$$

Region 2. Here $r_{1} r_{2} \geq 2 t$, and we get

$$
\begin{equation*}
\left|E_{t}\left(r_{1}, \omega_{1}, r_{2}, \omega_{2}\right)\right| \leq \frac{C}{t\left(r_{1} r_{2}\right)^{\gamma}}\left(\frac{r_{1} r_{2}}{2 t}\right)^{2 \gamma+1 / 2}=C\left(\frac{r_{1} r_{2}}{t}\right)^{(n-1) / 2} t^{-n / 2} \tag{1.23}
\end{equation*}
$$

To get (1.21) we recall in $\S 2$ various classical estimates on $J_{\nu}(r)$, which are then exploited in $\S 3$ to obtain (1.21). In $\S 3$ we also estimate the L^{2}-operator norm $\left\|J_{A}(r)\right\|_{\mathcal{L}\left(L^{2}\right)}$ and the Hilbert-Schmidt norm $\left\|J_{A}(r)\right\|_{H S}$, obtaining

$$
\begin{align*}
\left\|J_{A}(r)\right\|_{\mathcal{L}\left(L^{2}\right)} & \leq C \min \left(r^{\gamma}, r^{-1 / 3}\right), \tag{1.24}\\
\left\|J_{A}(r)\right\|_{H S} & \leq C r^{\gamma} \tag{1.25}
\end{align*}
$$

In light of (1.18), the Hilbert-Schmidt norm estimate (1.25) is seen to be sharp. We will see that (1.24) is also sharp.

We have three appendices. In Appendix A we give a proof of the Weber identity (1.8). This result is classical; [W] gives a proof and references to several other proofs, but such a central result in the theory of Bessel functions can use still more proofs. We mention that yet another approach to (1.8) is given in [Ch]; cf. Theorem 2.4.1. In Appendix B we establish the Lipschitz-Hankel identity, a variant of (1.8) in which $e^{-t \lambda^{2}}$ is replaced by $e^{-y A}$. This provides a Poisson integral formula for $e^{-y A}$, used in [CT] in concert with analytic continuation to analyze the wave equation on $C(N)$. The Lipschitz-Hankel identity is also classical, and one can find a proof (rather different from ours) in [W]. Our approach is to deduce it from (1.8) via the subordination identity. Appendix C records some consequences of the Schläfli integral representation of $J_{\nu}(r)$, of use in some estimates in $\S 2$.

2. Estimates on $J_{\nu}(r)$

In this section we record various results on the behavior of $J_{\nu}(r)$ on

$$
\begin{equation*}
Q=\{(\nu, r): \nu \geq \gamma, r \geq 0\} . \tag{2.1}
\end{equation*}
$$

We will derive some of these results, though we quote other sources for the most delicate of these. We consider separately the following subsets of Q, which together cover Q :

$$
\begin{align*}
& Q_{1}=\{(\nu, r) \in Q: r \leq 1\}, \\
& Q_{2}=\{(\nu, r) \in Q: 1 \leq r \leq \nu / 2\}, \\
& Q_{3}=\{(\nu, r) \in Q: \nu \leq 1, r \geq 1\}, \tag{2.2}\\
& Q_{4}=\{(\nu, r) \in Q: \nu / 4 \leq r \leq 4 \nu\}, \\
& Q_{5}=\{(\nu, r) \in Q: \nu \geq 1, r \geq 4 \nu\} .
\end{align*}
$$

Good estimates for (ν, r) in Q_{1} and Q_{2} follow readily from the integral formula (1.6), which we repeat here:

$$
\begin{equation*}
J_{\nu}(r)=\frac{1}{\Gamma(1 / 2) \Gamma(\nu+1 / 2)}\left(\frac{r}{2}\right)^{\nu} \int_{-1}^{1}\left(1-t^{2}\right)^{\nu-1 / 2} e^{i r t} d t \tag{2.3}
\end{equation*}
$$

Note that whenever $\nu \geq 0$ the integral is bounded in absolute value by π, so we have

$$
\begin{equation*}
\left|J_{\nu}(r)\right| \leq \frac{\sqrt{\pi}}{\Gamma(\nu+1 / 2)}\left(\frac{r}{2}\right)^{\nu} . \tag{2.4}
\end{equation*}
$$

In particular, since $\nu \geq \gamma$ on Q,

$$
\begin{equation*}
(\nu, r) \in Q_{1} \Rightarrow\left|J_{\nu}(r)\right| \leq \frac{\sqrt{\pi}}{\Gamma(\nu+1 / 2) 2^{\nu}} r^{\gamma} . \tag{2.5}
\end{equation*}
$$

Also, Stirling's formula gives

$$
\begin{equation*}
\Gamma\left(\nu+\frac{1}{2}\right)=\sqrt{\frac{2 \pi}{e}}\left(\frac{\nu+1 / 2}{e}\right)^{\nu} A(\nu), \quad A(\nu)=1+O\left(\langle\nu\rangle^{-1}\right) \tag{2.6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
(\nu, r) \in Q_{2} \Rightarrow\left|J_{\nu}(r)\right| \leq C\left(\frac{e}{4}\right)^{\nu} \leq C 2^{-r} \tag{2.7}
\end{equation*}
$$

If $\gamma>1, Q_{3}$ is empty. Otherwise, we can examine the integral in (2.3) as the Fourier transform of a function with simple singularities as $t= \pm 1$ and produce an asymptotic expansion

$$
\begin{equation*}
J_{\nu}(r) \sim a(\nu) r^{-1 / 2} \cos r+O\left(r^{-3 / 2}\right), \quad r \rightarrow+\infty \tag{2.8}
\end{equation*}
$$

uniformly for ν in a compact subset of $[0, \infty)$. In particular,

$$
\begin{equation*}
(\nu, r) \in Q_{3} \Rightarrow\left|J_{\nu}(r)\right| \leq C r^{-1 / 2} \tag{2.9}
\end{equation*}
$$

The behavior of $J_{\nu}(r)$ for $(\nu, r) \in Q_{4}$ is subtle. It is given by the following asymptotic expansion:

$$
\begin{align*}
J_{\nu}(\nu z) \sim \frac{1}{\nu^{1 / 3}}\left(\frac{4 \zeta}{1-z^{2}}\right)^{1 / 4}\{ & A i\left(\nu^{2 / 3} \zeta\right) \sum_{k \geq 0} \frac{A_{k}(\zeta)}{\nu^{2 k}} \\
& \left.+\frac{A i^{\prime}\left(\nu^{2 / 3} \zeta\right)}{\nu^{4 / 3}} \sum_{k \geq 0} \frac{B_{k}(\zeta)}{\nu^{2 k}}\right\} \tag{2.10}
\end{align*}
$$

Here $A i$ is the Airy function and $\zeta=\zeta(z)$ is given by

$$
\begin{equation*}
\frac{2}{3} \zeta^{3 / 2}=-\int_{1}^{z} \frac{\left(1-t^{2}\right)}{t} d t \tag{2.11}
\end{equation*}
$$

See [Olv], pp. 423-425 for a derivation. We mention that $\zeta(z)$ is analytic in $\{z$: $\operatorname{Re} z>0\}$ and satisfies $\zeta(1)=0, \zeta^{\prime}(1)<0$. The expansion (2.11) is valid as $\nu \rightarrow+\infty$, uniformly for z in any compact neighborhood of 1 in $(0, \infty)$. The Airy function has the following asymptotic behavior as $s \rightarrow+\infty$:

$$
\begin{equation*}
A i(s)=O\left(s^{-\infty}\right), \quad A i(-s) \sim \pi^{-1 / 2} s^{-1 / 4} \cos \left(\frac{2}{3} s^{3 / 2}-\frac{\pi}{4}\right)+O\left(s^{-1 / 4-3 / 2}\right) \tag{2.12}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
|A i(s)| \leq C(1+|s|)^{-1 / 4} \tag{2.13}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
(\nu, r) \in Q_{4} \Rightarrow\left|J_{\nu}(r)\right| \leq C \nu^{-1 / 3}\left(1+\nu^{2 / 3}\left|1-\frac{\nu}{r}\right|\right)^{-1 / 4} \tag{2.14}
\end{equation*}
$$

Note in particular the behavior on the boundary ray $r=4 \nu$:

$$
\begin{equation*}
\left|J_{\nu}(4 \nu)\right| \leq C \nu^{-1 / 2} . \tag{2.15}
\end{equation*}
$$

For one estimate on $J_{\nu}(r)$ for $(\nu, r) \in Q_{5}$, we use (2.15) and the differential equation

$$
\begin{equation*}
\left[\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\left(1-\frac{\nu^{2}}{r^{2}}\right)\right] J_{\nu}(r)=0 \tag{2.16}
\end{equation*}
$$

We also need an estimate on $J_{\nu}^{\prime}(r)$ for $r=4 \nu$. This comes from

$$
\begin{equation*}
J_{\nu}^{\prime}(r)=-\frac{\nu}{r} J_{\nu}(r)+J_{\nu-1}(r) \tag{2.17}
\end{equation*}
$$

which with (2.14)-(2.15) yields

$$
\begin{equation*}
\left|J_{\nu}^{\prime}(4 \nu)\right| \leq C \nu^{-1 / 2} . \tag{2.18}
\end{equation*}
$$

To proceed further, consider

$$
\begin{equation*}
\left[\partial_{r}^{2}+r^{-1} \partial_{r}+p(r)\right] u(r)=0, \quad p(r)=1-\frac{\nu^{2}}{r^{2}} \tag{2.19}
\end{equation*}
$$

and set

$$
\begin{equation*}
w(r)=\frac{1}{2}\left[p(r) u(r)^{2}+u^{\prime}(r)^{2}\right] . \tag{2.20}
\end{equation*}
$$

We have

$$
\begin{equation*}
w^{\prime}(r)=\frac{1}{2} p^{\prime}(r) u(r)^{2}-\frac{1}{r} u^{\prime}(r)^{2} \leq \frac{\nu^{2}}{r^{3}} w(r), \tag{2.21}
\end{equation*}
$$

when $(\nu, r) \in Q_{5}$, and hence $w^{\prime}-\left(\nu^{2} / r^{3}\right) w=e^{-\nu^{2} / 2 r^{2}} \partial_{r}\left(e^{\nu^{2} / 2 r^{2}} w\right) \leq 0$, which implies

$$
\begin{equation*}
e^{\nu^{2} / 2 r^{2}} w(r) \searrow \tag{2.22}
\end{equation*}
$$

as r increases, when $(\nu, r) \in Q_{5}$. Applying this to $w(r)=J_{\nu}(r)$ and using (2.15) and (2.18), we have

$$
\begin{equation*}
(\nu, r) \in Q_{5} \Rightarrow\left|J_{\nu}(r)\right| \leq C \nu^{-1 / 2} \tag{2.23}
\end{equation*}
$$

While the estimate (2.23) will prove adequate for our estimate in $\S 3$ of the Hilbert-Schmidt norm of $J_{A}(r)$, it does not provide a sharp bound on the operator norm. To get that, we will improve (2.23) to the estimate

$$
\begin{equation*}
(\nu, r) \in Q_{5} \Longrightarrow\left|J_{\nu}(r)\right| \leq C r^{-1 / 2} \tag{2.24}
\end{equation*}
$$

To do this we make use of the Schläfli integral representation (C.4), which we rewrite as

$$
\begin{equation*}
J_{\nu}(\nu \sec a)=F_{1}(\nu, \nu \sec a)+F_{2}(\nu, \nu \sec a), \tag{2.25}
\end{equation*}
$$

for $0 \leq a<\pi / 2$, where

$$
\begin{align*}
& F_{1}(\nu, \nu \sec a)=\frac{e^{-i \nu a}}{2 \pi} \int_{-\pi}^{\pi} e^{-i \nu(t-\sin t-\tan a \cos t)} d t \\
& F_{2}(\nu, \nu \sec a)=-\frac{\sin \pi \nu}{\pi} e^{-i \nu a} \int_{0}^{\infty} e^{-\nu(t+\sinh t+i \tan a \cosh t)} d t \tag{2.26}
\end{align*}
$$

We first estimate $F_{1}(\nu, r)$, which we write as $(2 \pi)^{-1} e^{-i \nu a} B(\nu, \rho)$, where

$$
\begin{equation*}
B(\nu, \rho)=\int_{-\pi}^{\pi} e^{i \varphi(\nu, \rho, t)} d t \tag{2.27}
\end{equation*}
$$

with

$$
\begin{equation*}
\varphi(\nu, \rho, t)=\nu(\sin t-t)+\rho \cos t, \quad \rho=r \sin a \tag{2.28}
\end{equation*}
$$

To estimate (2.27) we use the van der Corput lemma, which states that if $\psi(t)$ is real valued and

$$
\begin{equation*}
F=\int_{a}^{b} e^{i \psi(t)} d t \tag{2.29}
\end{equation*}
$$

then

$$
\begin{align*}
\psi^{\prime} \text { monotone, }\left|\psi^{\prime}\right| & \geq R \Longrightarrow|F|
\end{align*}
$$

Cf. [Duo], p. 183.
Before implementing (2.30), we note that the asymptotic expansion (2.10), or (C.6), applies to $J_{\nu}(\nu \sec a)$ uniformly on $a \in\left[a_{0}, a_{1}\right]$, given $0<a_{0}<a_{1}<\pi / 2$, so we merely have to estimate (2.26) for $a \in(0, \pi / 2)$ close to $\pi / 2$, hence $\sin a \approx 1$ and $\rho \approx r, r / \nu \gg 1$. To proceed, implementing (2.30) for (2.27), we compute

$$
\begin{align*}
\partial_{t} \varphi(\nu, \rho, t) & =\nu(\cos t-1)-\rho \sin t \\
\partial_{t}^{2} \varphi(\nu, \rho, t) & =-\nu \sin t-\rho \cos t \tag{2.31}
\end{align*}
$$

Note that $\partial_{t} \varphi(\nu, \rho, t)=0$ at $t_{0}=0$ and at $t_{1}=-\pi+\delta$, where $\rho / \nu \gg 1 \Rightarrow \delta \ll 1$. Also $\partial_{t}^{2} \varphi(\nu, \rho, t)=0$ at $t_{i}=-\pi / 2+\varepsilon$, where $\rho / \nu \gg 1 \Rightarrow|\varepsilon| \ll 1$. With these facts in mind, we divide the interval $(-\pi, \pi)$ into four pieces:

$$
\begin{equation*}
I_{1}=(-\pi,-3 \pi / 4], \quad I_{2}=\left(-3 \pi / 4, t_{i}\right], \quad I_{3}=\left(t_{i},-\pi / 4\right], \quad I_{4}=(-\pi / 4, \pi) \tag{2.32}
\end{equation*}
$$

Setting $B_{j}(\nu, \rho)=\int_{I_{j}} e^{i \varphi(\nu, \rho, t)} d t$ and using (2.30), we have

$$
\begin{gather*}
\left|B_{1}(\nu, \rho)\right| \leq C \rho^{-1 / 2}, \quad\left|B_{2}(\nu, \rho)\right| \leq C \rho^{-1} \\
\left|B_{3}(\nu, \rho)\right| \leq C \rho^{-1}, \quad\left|B_{4}(\nu, \rho)\right| \leq C \rho^{-1 / 2} . \tag{2.33}
\end{gather*}
$$

Hence

$$
\begin{equation*}
\left|F_{1}(\nu, r)\right| \leq C r^{-1 / 2}, \quad(\nu, r) \in Q_{5} . \tag{2.34}
\end{equation*}
$$

To estimate $F_{2}(\nu, r)$, it remains to estimate

$$
\begin{equation*}
G(\nu, \rho)=\int_{0}^{\infty} e^{-\psi(\nu, \rho, t)} d t, \tag{2.35}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(\nu, \rho, t)=\nu(t+\sinh t)+i \rho \cosh t \tag{2.36}
\end{equation*}
$$

and again $\rho=r \sin a \approx r$ since we need merely check this estimate for $a \approx \pi / 2$. Writing

$$
\begin{equation*}
e^{-\psi}=-\frac{1}{\psi_{t}} \partial_{t} e^{-\psi} \tag{2.37}
\end{equation*}
$$

and integrating by parts over $[\delta, \infty)$, where $\delta>0$ will be specified below, we have

$$
\begin{equation*}
|G(\nu, \rho)| \leq\left|\int_{0}^{\delta} e^{-\psi} d t\right|+\left|\psi_{t}(\nu, \rho, \delta)\right|^{-1}+\int_{\delta}^{\infty}\left|\partial_{t} \frac{1}{\psi_{t}}\right| e^{-\nu(t+\sinh t)} d t \tag{2.38}
\end{equation*}
$$

Note that the first integral on the right side of (2.38) is $\leq \delta$. Also,

$$
\begin{equation*}
\partial_{t} \psi(\nu, \rho, t)=\nu(1+\cosh t)+i \rho \sinh t \tag{2.39}
\end{equation*}
$$

so, given $\delta \in(0,1)$,

$$
\begin{equation*}
\left|\psi_{1}(\nu, \rho, \delta)\right|^{-1} \leq \frac{1}{\rho \delta} \tag{2.40}
\end{equation*}
$$

Next, if $t>0,1 \leq \nu \leq \rho / 2$,

$$
\begin{align*}
\left|\partial_{t} \frac{1}{\psi_{t}(\nu, \rho, t)}\right| & =\left|\frac{\nu \sinh t+i \rho \cosh t}{(\nu(1+\cosh t)+i \rho \sinh t)^{2}}\right| \tag{2.41}\\
& \leq \frac{\nu}{\rho^{2} \sinh t}+\frac{\cosh t}{\rho \sinh ^{2} t} .
\end{align*}
$$

Hence (as long as $\nu \leq \rho$)

$$
\begin{align*}
\left|\partial_{t} \frac{1}{\psi_{t}}\right| \leq \frac{C}{\rho t^{2}}, & 0<t<1 \\
\frac{C}{\rho e^{t}}, & 1 \leq t<\infty \tag{2.42}
\end{align*}
$$

Thus (as long as $\nu \geq 1$),

$$
\begin{equation*}
\int_{\delta}^{\infty}\left|\partial_{t} \frac{1}{\psi_{t}}\right| e^{-\nu(t+\sinh t)} d t \leq \frac{C}{\rho} \int_{\delta}^{1} \frac{1}{t^{2}} d t+\frac{C}{\rho} \int_{1}^{\infty} e^{-t} d t \leq \frac{C}{\rho \delta} \tag{2.43}
\end{equation*}
$$

Thus we pick

$$
\begin{equation*}
\delta=\rho^{-1 / 2} \tag{2.44}
\end{equation*}
$$

and get $|G(\nu, \rho)| \leq C \rho^{-1 / 2}$, hence

$$
\begin{equation*}
\left|F_{2}(\nu, r)\right| \leq C r^{-1 / 2}, \quad(\nu, r) \in Q_{5} . \tag{2.45}
\end{equation*}
$$

In concert with (2.34), this proves the asserted estimate (2.24).

3. Estimates on $J_{A}(r)$

Here we make use of the estimates on the Bessel function $J_{\nu}(r)$ from $\S 2$ to investigate properties of the operators $J_{A}(r)$ and $e^{-\pi i A / 2} J_{A}(r)$, acting on functions on N. First we estimate the L^{2}-operator norm, given by the spectral theorem as

$$
\begin{equation*}
\left\|J_{A}(r)\right\|_{\mathcal{L}\left(L^{2}\right)}=\sup _{\nu \in \operatorname{Spec} A}\left|J_{\nu}(r)\right| \leq \sup _{\nu \geq 0}\left|J_{\nu}(r)\right| . \tag{3.1}
\end{equation*}
$$

If we set

$$
\begin{equation*}
q_{\ell}(r)=\sup _{\left\{\nu:(\nu, r) \in Q_{\ell}\right\}}\left|J_{\nu}(r)\right|, \tag{3.2}
\end{equation*}
$$

we see from $\S 2$ that

$$
\begin{gather*}
q_{1}(r) \leq C r^{\gamma}, \quad q_{2}(r) \leq C 2^{-r}, \quad q_{3}(r) \leq C r^{-1 / 2}, \\
q_{4}(r) \leq C r^{-1 / 3}, \quad q_{5}(r) \leq C r^{-1 / 2} . \tag{3.3}
\end{gather*}
$$

Hence

$$
\begin{equation*}
\left\|J_{A}(r)\right\|_{\mathcal{L}\left(L^{2}\right)} \leq C \min \left(r^{\gamma}, r^{-1 / 3}\right) \tag{3.4}
\end{equation*}
$$

We next estimate the Hilbert-Schmidt norm $\left\|J_{A}(r)\right\|_{H S}$, defined by

$$
\begin{equation*}
\left\|J_{A}(r)\right\|_{H S}^{2}=\sum_{\nu_{k} \in \operatorname{Spec} A}\left|J_{\nu_{k}}(r)\right|^{2} \tag{3.5}
\end{equation*}
$$

To estimate (3.5), it is convenient to set

$$
\begin{equation*}
\sigma_{\ell}(r)=\left\{\nu \in \operatorname{Spec} A:(\nu, r) \in Q_{\ell}\right\} . \tag{3.6}
\end{equation*}
$$

We also have from [Ho] the following estimate on Spec A :

$$
\begin{equation*}
\#\left\{\nu_{k} \in \operatorname{Spec} A: \nu \leq \nu_{k} \leq \nu+1\right\} \leq C \nu^{n-2}, \tag{3.7}
\end{equation*}
$$

given that $n-1=\operatorname{dim} N$.
The estimate on (3.5) is easy if $r \leq 1$. Applying (3.7) and (2.5) yields

$$
\begin{equation*}
0 \leq r \leq 1 \Rightarrow\left\|J_{A}(r)\right\|_{H S}^{2} \leq C r^{2 \gamma} \tag{3.8}
\end{equation*}
$$

When $r \geq 1$, we consider the sum of $\left|J_{\nu_{k}}(r)\right|^{2}$ over $\nu_{k} \in \sigma_{\ell}(r)$, for $2 \leq \ell \leq 5$. By (3.7) and (2.7),

$$
\begin{equation*}
\sum_{\nu_{k} \in \sigma_{2}(r)}\left|J_{\nu_{k}}(r)\right|^{2} \leq C_{K} \int_{r}^{\infty} \nu^{-K} \nu^{n-2} d \nu \leq C_{K}^{\prime} r^{-K+n-1} \tag{3.9}
\end{equation*}
$$

for each $K<\infty$. By (2.9),

$$
\begin{equation*}
\sum_{\nu_{k} \in \sigma_{3}(r)}\left|J_{\nu_{k}}(r)\right|^{2} \leq C r^{-1} . \tag{3.10}
\end{equation*}
$$

By (2.14),

$$
\begin{align*}
\sum_{\nu_{k} \in \sigma_{4}(r)}\left|J_{\nu_{k}}(r)\right|^{2} & \leq C \int_{r / 4}^{4 r} \nu^{-2 / 3}\left(1+\nu^{2 / 3}\left|1-\frac{\nu}{r}\right|\right)^{-1 / 2} \nu^{n-2} d \nu \tag{3.11}\\
& \leq C r^{n-2} .
\end{align*}
$$

By (2.23),

$$
\begin{equation*}
\sum_{\nu_{k} \in \sigma_{5}(r)}\left|J_{\nu_{k}}(r)\right|^{2} \leq C \int_{1}^{r} \nu^{-1} \nu^{n-2} d \nu \leq C r^{n-2} \tag{3.12}
\end{equation*}
$$

Summing (3.9)-(3.12) yields

$$
\begin{equation*}
r \geq 1 \Rightarrow\left\|J_{A}(r)\right\|_{H S}^{2} \leq C r^{2 \gamma} \tag{3.13}
\end{equation*}
$$

Comparison with (3.6) then gives

$$
\begin{equation*}
\left\|J_{A}(r)\right\|_{H S} \leq C r^{\gamma}, \quad r \in[0, \infty) \tag{3.14}
\end{equation*}
$$

In view of the computation (1.18) for the example $N=S^{n-1}$, we see that such an estimate is sharp.

We now turn to an estimate of $\kappa_{N}\left(r, \omega_{1}, \omega_{2}\right)$, the integral kernel of $e^{-\pi i A / 2} J_{A}(r)$. From (1.13) we have

$$
\begin{equation*}
\left|\kappa_{N}\left(r, \omega_{1}, \omega_{2}\right)\right| \leq \sum\left|J_{\nu_{k}}(r)\right| \cdot\left|u_{k}\left(\omega_{1}\right) u_{k}\left(\omega_{2}\right)\right| . \tag{3.15}
\end{equation*}
$$

To estimate this, we replace (3.7) by the estimate

$$
\begin{equation*}
\sum_{\nu_{k} \in \operatorname{Spec} A, \nu \leq \nu_{k} \leq \nu+1}\left|u_{k}(\omega)\right|^{2} \leq C \nu^{n-2}, \tag{3.16}
\end{equation*}
$$

also due to [Ho]. Again for $r \in[0,1]$ we get an optimal estimate on $\kappa_{N}\left(r, \omega_{1}, \omega_{2}\right)$ by applying (3.16) and (2.5):

$$
\begin{equation*}
0 \leq r \leq 1 \Rightarrow\left|\kappa_{N}\left(r, \omega_{1}, \omega_{2}\right)\right| \leq C r^{\gamma} \tag{3.17}
\end{equation*}
$$

For $r \geq 1$, we do not meet with such neat success, but we proceed. We estimate the sum of the right side of (3.15) over ν_{k} in $\sigma_{\ell}(r)$, for $2 \leq \ell \leq 5$. By (3.16) and (2.7),

$$
\begin{equation*}
\sum_{\nu_{k} \in \sigma_{2}(r)}\left|J_{\nu_{k}}(r)\right| \cdot\left|u_{k}(\omega)\right|^{2} \leq C_{K} r^{-K} \tag{3.18}
\end{equation*}
$$

as in (3.9). By (2.9) we have, parallel to (3.10),

$$
\begin{equation*}
\sum_{\nu_{k} \in \sigma_{3}(r)}\left|J_{\nu_{k}}(r)\right| \cdot\left|u_{k}(\omega)\right|^{2} \leq C r^{-1 / 2} \tag{3.19}
\end{equation*}
$$

By (2.14),

$$
\begin{align*}
\sum_{\nu_{k} \in \sigma_{4}(r)}\left|J_{\nu_{k}}(r)\right| \cdot\left|u_{k}(\omega)\right|^{2} & \leq C \int_{r / 4}^{4 r} \nu^{-1 / 3}\left(1+\nu^{2 / 3}\left|1-\frac{\nu}{r}\right|\right)^{-1 / 4} \nu^{n-2} d \nu \tag{3.20}\\
& \leq C r^{n-3 / 2}
\end{align*}
$$

By (2.23),

$$
\begin{equation*}
\sum_{\nu_{k} \in \sigma_{5}(r)}\left|J_{\nu_{k}}(r)\right| \cdot\left|u_{k}(\omega)\right|^{2} \leq C \int_{1}^{r} \nu^{-1 / 2} \nu^{n-2} d \nu \leq C r^{n-3 / 2} \tag{3.21}
\end{equation*}
$$

The same estimate also follows from (2.24). In summary, we have established

$$
\begin{equation*}
r \geq 1 \Rightarrow\left|\kappa_{N}\left(r, \omega_{1}, \omega_{2}\right)\right| \leq C r^{n-3 / 2}=C r^{2 \gamma+1 / 2} \tag{3.22}
\end{equation*}
$$

Note that this is far from the estimate $\left|\kappa_{N}\left(r, \omega_{1}, \omega_{2}\right)\right| \leq C r^{\gamma}$, which holds for $N=S^{n-1}$ by (1.18). On the other hand, it is only slightly weaker than the estimate (1.20) on $\left|\kappa_{S^{n-1}}^{s}\left(r, \omega_{1}, \omega_{2}\right)\right|$.

A. Proof of the Weber integral formula

We desire to prove the identity

$$
\begin{equation*}
\int_{0}^{\infty} e^{-t \lambda^{2}} J_{\nu}\left(r_{1} \lambda\right) J_{\nu}\left(r_{2} \lambda\right) \lambda d \lambda=\frac{1}{2 t} e^{-\left(r_{1}^{2}+r_{2}^{2}\right) / 4 t} I_{\nu}\left(\frac{r_{1} r_{2}}{2 t}\right), \tag{A.1}
\end{equation*}
$$

for $t, r_{1}, r_{2}>0$, where $J_{\nu}(z)$ is the standard Bessel function and $I_{\nu}(y)=e^{-\pi i \nu / 2} J_{\nu}(i y), y>$ 0 , so

$$
\begin{equation*}
I_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{1}{k!\Gamma(\nu+k+1)}\left(\frac{z}{2}\right)^{2 k} \tag{A.2}
\end{equation*}
$$

To begin, one can expand $J_{\nu}\left(r_{j} \lambda\right)$ in power series (similar to (A.2)) and integrate term by term, to see that the left side of (A.1) is equal to

$$
\begin{equation*}
\frac{1}{2 t}\left(\frac{r_{1} r_{2}}{4 t}\right)^{\nu} \sum_{j, k \geq 0} \frac{\Gamma(\nu+j+k+1)}{\Gamma(\nu+j+1) \Gamma(\nu+k+1)} \frac{1}{j!k!}\left(-\frac{r_{1}^{2}}{4 t}\right)^{j}\left(-\frac{r_{2}^{2}}{4 t}\right)^{k} . \tag{A.3}
\end{equation*}
$$

Meanwhile, by (A.2), the right side of (A.1) is equal to

$$
\begin{equation*}
\sum_{\ell, m \geq 0} \frac{1}{\ell!m!}\left(-\frac{r_{1}^{2}}{4 t}\right)^{\ell}\left(-\frac{r_{2}^{2}}{4 t}\right)^{m} \sum_{n=0}^{\infty} \frac{1}{n!\Gamma(\nu+n+1)}\left(\frac{r_{1} r_{2}}{4 t}\right)^{2 n} \tag{A.4}
\end{equation*}
$$

If we set $y_{j}=-r_{j}^{2} / 4 t$, we see that the asserted identity (A.1) is equivalent to the identity

$$
\begin{align*}
\sum_{j, k \geq 0} & \frac{\Gamma(\nu+j+k+1)}{\Gamma(\nu+j+1) \Gamma(\nu+k+1)} \frac{1}{j!k!} y_{1}^{j} y_{2}^{k} \tag{A.5}\\
& =\sum_{\ell, m, n \geq 0} \frac{1}{\ell!m!} \frac{1}{n!\Gamma(\nu+n+1)} y_{1}^{\ell+n} y_{2}^{m+n}
\end{align*}
$$

This approach was taken in $\S 8$, Chapter 8 of $[\mathrm{T}]$, but no explicit proof of (A.5) was given. We fill in the details here.

We compare coefficients of $y_{1}^{j} y_{2}^{k}$ in (A.5). Since both sides of (A.5) are symmetric in $\left(y_{1}, y_{2}\right)$, it suffices to treat the case

$$
\begin{equation*}
j \leq k \tag{A.6}
\end{equation*}
$$

which we assume henceforth. Then we take $\ell+n=j, m+n=k$ and sum over $n \in\{0, \ldots, j\}$, to see that (A.5) is equivalent to the validity of

$$
\begin{equation*}
\sum_{n=0}^{j} \frac{1}{(j-n)!(k-n)!n!\Gamma(\nu+n+1)}=\frac{\Gamma(\nu+j+k+1)}{\Gamma(\nu+j+1) \Gamma(\nu+k+1)} \frac{1}{j!k!}, \tag{A.7}
\end{equation*}
$$

whenever $0 \leq j \leq k$. Using the identity

$$
\Gamma(\nu+j+1)=(\nu+j) \cdots(\nu+n+1) \Gamma(\nu+n+1)
$$

and its analogues for the other Γ-factors in (A.7), we see that (A.7) is equivalent to the validity of
(A.8) $\quad \sum_{n=0}^{j} \frac{j!k!}{(j-n)!(k-n)!n!}(\nu+j) \cdots(\nu+n+1)=(\nu+j+k) \cdots(\nu+k+1)$,
for $0 \leq j \leq k$. Note that the right side of (A.8) is a polynomial of degree j in ν, and the general term on the left side of (A.8) is a polynomial of degree $j-n$ in ν.

In order to establish (A.8), it is convenient to set

$$
\begin{equation*}
\mu=\nu+j \tag{A.9}
\end{equation*}
$$

and consider the associated polynomial identity in μ. With (A.10)
$p_{0}(\mu)=1, \quad p_{1}(\mu)=\mu, \quad p_{2}(\mu)=\mu(\mu-1), \quad \cdots \quad, p_{j}(\mu)=\mu(\mu-1) \cdots(\mu-j+1)$,
we see that $\left\{p_{0}, p_{1}, \ldots, p_{j}\right\}$ is a basis of the space \mathcal{P}_{j} of polynomials of degree j in μ, and our task is to write

$$
\begin{equation*}
p_{j}(\mu+k)=(\mu+k)(\mu+k-1) \cdots(\mu+k-j+1) \tag{A.11}
\end{equation*}
$$

as a linear combination of p_{0}, \ldots, p_{j}. To this end, define

$$
\begin{equation*}
T: \mathcal{P}_{j} \longrightarrow \mathcal{P}_{j}, \quad T p(\mu)=p(\mu+1) \tag{A.12}
\end{equation*}
$$

By explicit calculation,

$$
\begin{align*}
& p_{1}(\mu+1)=p_{1}(\mu)+p_{0}(\mu) \tag{A.13}\\
& p_{2}(\mu+1)=(\mu+1) \mu=\mu(\mu-1)+2 \mu=p_{2}(\mu)+2 p_{1}(\mu),
\end{align*}
$$

and an inductive argument gives

$$
\begin{equation*}
T p_{i}=p_{i}+i p_{i-1} \tag{A.14}
\end{equation*}
$$

By convention we set $p_{i}=0$ for $i<0$. Our goal is to compute $T^{k} p_{j}$. Note that

$$
\begin{equation*}
T=I+N, \quad N p_{i}=i p_{i-1}, \tag{A.15}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{k}=\sum_{n=0}^{j}\binom{k}{n} N^{n} \tag{A.16}
\end{equation*}
$$

if $j \leq k$. By (A.15),

$$
\begin{equation*}
N^{n} p_{i}=i(i-1) \cdots(i-n+1) p_{i-n} \tag{A.17}
\end{equation*}
$$

so we have

$$
\begin{align*}
T^{k} p_{j} & =\sum_{n=0}^{j}\binom{k}{n} j(j-1) \cdots(j-n+1) p_{j-n} \tag{A.18}\\
& =\sum_{n=0}^{j} \frac{k!}{(k-n)!n!} \frac{j!}{(j-n)!} p_{j-n} .
\end{align*}
$$

This verifies (A.8) and completes the proof of (A.1).

B. Proof of the Lipschitz-Hankel integral formula

We desire to prove the identity

$$
\begin{equation*}
\int_{0}^{\infty} e^{-y \lambda} J_{\nu}\left(r_{1} \lambda\right) J_{\nu}\left(r_{2} \lambda\right) d \lambda=\frac{1}{\pi}\left(r_{1} r_{2}\right)^{-1 / 2} Q_{\nu-1 / 2}\left(\frac{r_{1}^{2}+r_{2}^{2}+y^{2}}{2 r_{1} r_{2}}\right) \tag{B.1}
\end{equation*}
$$

due to Lipschitz and Hankel, of great use for analysis on cones (cf. [CT]). We derive (B.1) from the identity

$$
\begin{equation*}
\int_{0}^{\infty} e^{-t \lambda^{2}} J_{\nu}\left(r_{1} \lambda\right) J_{\nu}\left(r_{2} \lambda\right) \lambda d \lambda=\frac{1}{2 t} e^{-\left(r_{1}^{2}+r_{2}^{2}\right) / 4 t} I_{\nu}\left(\frac{r_{1} r_{2}}{2 t}\right) \tag{B.2}
\end{equation*}
$$

whose proof was just given in Appendix A. Here, as in (A.1),

$$
\begin{equation*}
I_{\nu}(y)=e^{-\pi i \nu / 2} J_{\nu}(i y), \quad y>0 . \tag{B.3}
\end{equation*}
$$

To work on (B.2), we use the subordination identity

$$
\begin{equation*}
\lambda^{-1} e^{-y \lambda}=\pi^{-1 / 2} \int_{0}^{\infty} e^{-y^{2} / 4 t} e^{-t \lambda^{2}} t^{-1 / 2} d t \tag{B.4}
\end{equation*}
$$

cf. [T], Chapter 3, (5.31) for a proof. Plugging this into the left side of (B.1), and using (B.2), we have

$$
\begin{equation*}
\operatorname{LHS}(B .1)=\frac{1}{2 \sqrt{\pi}} \int_{0}^{\infty} e^{-\left(r_{1}^{2}+r_{2}^{2}+y^{2}\right) / 4 t} I_{\nu}\left(\frac{r_{1} r_{2}}{2 t}\right) t^{-3 / 2} d t \tag{B.5}
\end{equation*}
$$

The change of variable $s=r_{1} r_{2} / 2 t$ gives

$$
\begin{equation*}
\operatorname{LHS}(B .1)=\sqrt{\frac{1}{2 \pi}}\left(r_{1} r_{2}\right)^{-1 / 2} \int_{0}^{\infty} e^{-s\left(r_{1}^{2}+r_{2}^{2}+y^{2}\right) / 2 r_{1} r_{2}} I_{\nu}(s) s^{-1 / 2} d s \tag{B.6}
\end{equation*}
$$

Thus the asserted identity (B.1) follows from the identity

$$
\begin{equation*}
\int_{0}^{\infty} e^{-s z} I_{\nu}(s) s^{-1 / 2} d s=\sqrt{\frac{2}{\pi}} Q_{\nu-1 / 2}(z), \quad z>0 \tag{B.7}
\end{equation*}
$$

As for the validity of (B.7), we mention two identities. First, we have

$$
\begin{align*}
& \int_{0}^{\infty} e^{-s z} J_{\nu}(\lambda s) s^{\mu-1} d s \tag{B.8}\\
& =\left(\frac{\lambda}{2}\right)^{\nu} z^{-\mu-\nu} \frac{\Gamma(\mu+\nu)}{\Gamma(\nu+1)}{ }_{2} F_{1}\left(\frac{\mu}{2}+\frac{\nu}{2}+\frac{1}{2}, \frac{\mu}{2}+\frac{\nu}{2} ; \nu+1 ;-\frac{\lambda^{2}}{z^{2}}\right) .
\end{align*}
$$

This can be proven by expanding $J_{\nu}(\lambda s)$ in a power series in λs and integrating term by term. Cf. (8.42) of [T], Chapter 8. Next, there is the classical representation of the Legendre function $Q_{\nu-1 / 2}(z)$ as a hypergeometric function:

$$
\begin{equation*}
Q_{\nu-1 / 2}(z)=\frac{\Gamma(1 / 2) \Gamma(\nu+1 / 2)}{\Gamma(\nu+1)}(2 z)^{-\nu-1 / 2}{ }_{2} F_{1}\left(\frac{\nu}{2}+\frac{3}{4}, \frac{\nu}{2}+\frac{1}{4} ; \nu+1 ; \frac{1}{z^{2}}\right) \tag{B.9}
\end{equation*}
$$

cf. [Leb], (7.3.7). If we apply (B.8) with $\lambda=i, \mu=1 / 2$, then (B.7) follows.

Remark. Formulas (B.1) and (B.2) are proven in the opposite order in [W].

C. Some integral formulas for $J_{\nu}(r)$

In addition to the integral formula (2.3) for $J_{\nu}(r)$, there are some others that are useful for asymptotic expansions and estimates of $J_{\nu}(r)$ on $Q=\{(\nu, r): \nu \geq$ $\gamma, r \geq 0\}$. In particular there is the Schläfli integral

$$
\begin{equation*}
J_{\nu}(r)=\frac{1}{2 \pi i} \int_{\infty-\pi i}^{\infty+\pi i} e^{r \sinh \tau-\nu \tau} d \tau \tag{C.1}
\end{equation*}
$$

the integral being taken along a path $\tau(t)$ asymptotic to the line $\operatorname{Im} z=-\pi$ as $t \rightarrow-\infty$ and asymptotic to the $\operatorname{line~} \operatorname{Im} z=\pi$ as $t \rightarrow+\infty$. Cf. [Olv], p. 58. There is flexibility in selecting γ (by Cauchy's integral theorem). In case $r=\nu$ sech $a, a \in$ \mathbb{R}^{+}, it is convenient to take

$$
\begin{equation*}
\gamma=\partial \Omega_{a}, \quad \Omega_{a}=\{z \in \mathbb{C}:|\operatorname{Im} z| \leq \pi, \operatorname{Re} z \geq a\} \tag{C.2}
\end{equation*}
$$

This gives

$$
\begin{align*}
J_{\nu}(\nu \operatorname{sech} a)= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-\nu(a-\tanh a \cos t+i t-i \sin t)} d t \\
& -\frac{\sin \pi \nu}{\pi} e^{-\nu a} \int_{0}^{\infty} e^{-\nu(t+\sinh t+\tanh a \cosh t)} d t . \tag{C.3}
\end{align*}
$$

Noting that $\operatorname{sech} i a=\sec a$, we also have, by analytic continuation,

$$
\begin{align*}
J_{\nu}(\nu \sec a)= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i \nu(a-\tan a \cos t+t-\sin t)} d t \tag{C.4}\\
& -\frac{\sin \pi \nu}{\pi} e^{-i \nu a} \int_{0}^{\infty} e^{-\nu(t+\sinh t+i \tan a \cosh t)} d t
\end{align*}
$$

for $a \in[0, \pi / 2)$. Note that (C.3) represents $J_{\nu}(r)$ for $0<r \leq \nu$ and (C.4) represents $J_{\nu}(r)$ for $r \geq \nu>0$.

As described on p. 134 of [Olv], one has, as $\nu \rightarrow+\infty$,

$$
\begin{equation*}
J_{\nu}(\nu \operatorname{sech} a) \sim \frac{e^{-\nu(a-\tanh a)}}{\pi i} \sum_{k \geq 0} b_{k}(a) \nu^{-k-1 / 2} . \tag{C.5}
\end{equation*}
$$

This is valid uniformly for $a \in\left[a_{0}, a_{1}\right]$, given $0<a_{0}<a_{1}<\infty$. Similarly, one has

$$
\begin{equation*}
J_{\nu}(\nu \sec a) \sim\left(\frac{\pi \nu}{2} \tan a\right)^{-1 / 2} \cos \left(\nu \tan a-\nu a-\frac{\pi}{4}\right)+O\left(\nu^{-3 / 2}\right) \tag{C.6}
\end{equation*}
$$

valid uniformly for $a \in\left[a_{0}, a_{1}\right]$, given $0<a_{0}<a_{1}<\pi / 2$. The results (C.5)-(C.6) also follow from the stronger result (2.10)-(2.12).

Our purpose in recording these results here is to provide material needed to establish the estimate

$$
\begin{equation*}
\left|J_{\nu}(r)\right| \leq C r^{-1 / 2}, \quad(\nu, r) \in Q_{5} \tag{C.7}
\end{equation*}
$$

See the end of $\S 2$ for this.

References

[CT] J. Cheeger and M. Taylor, Diffraction of waves by conical singularities, Comm. Pure Appl. Math. 35 (1982), 275-331, 487-529.
[Ch] I. Cherednik, Double Affine Hecke Algebras, LNM \#319, Cambridge Univ. Press, 2005.
[Duo] J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Math. \#29, AMS, Providence, RI, 2001.
[HTW] A. Hassell, T. Tao, and J. Wunsch, A Strichartz inequality for the Schrödinger equation on non-trapping asymptotically conic manifolds, Comm. PDE 30 (2004), 157-205.
[HTW2] A. Hassell, T. Tao, and J. Wunsch, Sharp Strichartz estimates on nontrapping asymptotically conic manifolds, Preprint, 2005.
[HW] A. Hassell and J. Wunsch, The Schrödinger propagator for scattering metrics, Annals of Math., to appear.
[Ho] L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218.
[Leb] N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972.
[Olv] F. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.
[PT] M. Pinskt and M. Taylor, Pointwise Fourier inversion: a wave equation approach, J. Fourier Anal. and Appl. 3 (1997), 647-703.
[T] M. Taylor, Partial Differential Equations, Vols. 1-3, Springer-Verlag, New York, 1996.
[W] G. Watson, Bessel Functions, Cambridge Univ. Press, 1944.

1 A .

Remark. The various formulas given above for $E_{t}\left(r_{1}, \omega_{1}, r_{2}, \omega_{2}\right)$ and $S_{t}\left(r_{1}, r_{2}, A\right)$ hold for $t, r_{1}, r_{2} \in(0, \infty)$, but there is no difficulty passing to the limit $r_{1} \rightarrow 0$, using

$$
\begin{equation*}
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+\nu+1)}\left(\frac{z}{2}\right)^{2 k} \tag{1.26}
\end{equation*}
$$

Noting that $\nu \geq \gamma$ for $\nu \in \operatorname{Spec} A$, we obtain from (1.11) that

$$
\begin{equation*}
S_{t}\left(0, r_{2}, A\right)=\frac{2}{\Gamma(n / 2)} \frac{1}{(4 i t)^{n / 2}} e^{-r_{2}^{2} / 4 i t} P_{0} \tag{1.27}
\end{equation*}
$$

where P_{0} is the orthogonal projection of $L^{2}(N)$ onto $\operatorname{Ker} \Delta_{N}=\{$ constants $\}$, whose integral kernel is $\kappa_{P_{0}}\left(\omega_{1}, \omega_{2}\right)=A(N)^{-1}, A(N)$ denoting the ($n-1$)-dimensional area of N. This leads to the formula

$$
\begin{equation*}
E_{t}\left(0, \omega_{1}, r_{2}, \omega_{2}\right)=\frac{A\left(S^{n-1}\right)}{A(N)} \frac{1}{(4 \pi i t)^{n / 2}} e^{-r_{2}^{2} / 4 i t} \tag{1.28}
\end{equation*}
$$

where $A\left(S^{n-1}\right)=2 \pi^{n / 2} / \Gamma(n / 2)$ is the area of the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$. This identity can also be derived directly by separation of variables and comparison with the Euclidean case.

