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1. Introduction

Here we study the solution operator eit∆ to the Schrödinger equation on a cone
C(N) over a compact Riemannian manifold M . As a set, C(N) = R+ × N/ ∼,
where (0, ω1) ∼ (0, ω2). The metric tensor on C(N) is given by

(1.1) ds2 = dr2 + r2gN ,

where gN is the metric tensor on N . Then the Laplace-Beltrami operator ∆ on
C(N) has the form

(1.2) ∆ = ∂2
r +

n− 1
r

∂r +
1
r2

∆N ,

where n = dim C(N) and ∆N is the Laplace operator on N . The approach to
functions of ∆ taken in [CT] made use of the Hankel transform to write

(1.3) ϕ(
√
−∆)g(r1, ω) =

∫ ∞

0

Kϕ(r1, r2, A)g(r2, ω)rn−1
2 dr2,

where

(1.4) A = (−∆N + γ2)1/2, γ =
n− 2

2
,

and Kϕ(r1, r2, A) is a family of operators on L2(N), given by

(1.5) Kϕ(r1, r2, A) = (r1r2)−γ

∫ ∞

0

ϕ(λ)JA(λr1)JA(λr2)λ dλ.
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(Cf. also [T], Chapter 8, §8.) Here Jν is the Bessel function, defined by

(1.6) Jν(r) =
1

Γ(1/2)Γ(ν + 1/2)

(r

2

)ν
∫ 1

−1

(1− t2)ν−1/2 eirt dt,

and for each r > 0, JA(r) is defined by the spectral theorem. Equivalently,

(1.7) JA(r)f(ω) =
∑

Jνk
(r) (f, uk)uk(ω),

where {uk} is an orthonormal basis of L2(N), consisting of eigenfunctions of A,
with Auk = νkuk. Note that each νk ≥ γ.

One useful identity exploited in [CT] is the Weber integral

(1.8)
∫ ∞

0

e−tλ2
Jν(r1λ)Jν(r2λ)λ dλ =

1
2t

e−(r2
1+r2

2)/4t Iν

(r1r2

2t

)
,

valid for r1, r2, t > 0, where

(1.9) Iν(y) = e−πiν/2 Jν(iy), y > 0.

Applying (1.8) in (1.5) yields the following formula for the solution to the heat
equation on C(N):

et∆g(r1, ω) =
∫ ∞

0

Ht(r1, r2, A)g(r2, ω)rn−1
2 dr2,

where

Ht(r1, r2, A) =
(r1r2)−γ

2t
e−(r2

1+r2
2)/4tIA

(r1r2

2t

)
.

One can proceed via analytic continuation to obtain

(1.10) eit∆g(r1, ω) =
∫ ∞

0

St(r1, r2, A) g(r2, ω)rn−1
2 dr2,

with

(1.11) St(r1, r2, A) =
(r1r2)−γ

2it
e−(r2

1+r2
2)/4itJA

(r1r2

2t

)
e−πiA/2.

One of our goals here is to analyze the family of operators JA(r) on L2(N). In
particular, we want to understand the integral kernel κN (r, ω1, ω2), defined by

(1.12) e−πiA/2JA(r)f(ω1) =
∫

N

κN (r, ω1, ω2)f(ω2) dS(ω2),
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where dS denotes Lebesgue measure on N . Note that, with uk, νk as in (1.7),

(1.13) κN (r, ω1, ω2) =
∑

k

e−πiνk/2Jνk
(r)uk(ω1)uk(ω2).

Analysis of (1.12) yields information on the integral kernel of eit∆, defined by

(1.14)

eit∆g(r1, ω1) =
∫

C(N)

Et(r1, ω1, r2, ω2)g(r2, ω2) dV (r2, ω2)

=
∫

N

∫ ∞

0

Et(r1, ω1, r2, ω2)g(r2, ω2)rn−1
2 dr2 dS(ω2),

where dV (r, ω) = rn−1 dr dS(ω) is Lebesgue measure on C(N). In fact, by (1.10)–
(1.11),

(1.15) Et(r1, ω1, r2, ω2) =
1

2it(r1r2)(n−2)/2
e−(r2

1+r2
2)/4itκN

(r1r2

2t
, ω1, ω2

)
.

In the special case when N is the standard sphere Sn−1, one has C(N) = Rn.
In such a case one has the well known integral kernel

(1.16) Et(x1, x2) = (4πit)−n/2e−|x1−x2|2/4it,

for eit∆. It is instructive to compute κN (r, ω1, ω2) for N = Sn−1, by comparing
(1.10)–(1.11) and (1.16). We get

(1.17)
(r1r2)−γ

2it
e−(r2

1+r2
2)/4itκSn−1

(r1r2

2t
, ω1, ω2

)

= (4πit)−n/2 e−|r1ω1−r2ω2|2/4it,

or equivalently

(1.18) κSn−1(r, ω1, ω2) = Cnrγe−irω1·ω2 .

In particular we have |κSn−1(r, ω1, ω2)| ≤ Crγ , which is seen to be equivalent to
the estimate |Et(x1, x2)| ≤ Ct−n/2 on the integral kernel given by (1.16).

Note however that, with A acting on functions of ω1,

(1.19)
∣∣∣eiσAe−irω1·ω2

∣∣
ω1=ω2

∣∣∣ ∼ Cσ r(n−2)/2, σ /∈ πC, as r →∞,

and hence, if κs
N (r, ω1, ω2) denotes the integral kernel of e−isAJA(r), then

(1.20) sup
ω1,ω2

|κs
Sn−1(r, ω1, ω2)| ∼ Cs r2γ , s− π

2
/∈ πC, as r →∞.
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In this note we establish the estimate

(1.21)
|κs

N (r, ω1, ω2)| ≤ C rγ , 0 < r ≤ 1,

Cr2γ+1/2, r ≥ 1,

for a general compact Riemannian manifold N , of dimension n − 1. This result is
sharp for r ≤ 1 and just a bit weaker than (1.20) for r ≥ 1. In light of (1.15), this
leads to estimates on Et(r1, ω1, r2). There are two regions to consider:

Region 1. Here r1r2 ≤ 2t, and we get

(1.22) |Et(r1, ω1, r2, ω2)| ≤ C

t(r1r2)γ

(r1r2

2t

)γ

= Ct−n/2.

Region 2. Here r1r2 ≥ 2t, and we get

(1.23) |Et(r1, ω1, r2, ω2)| ≤ C

t(r1r2)γ

(r1r2

2t

)2γ+1/2

= C
(r1r2

t

)(n−1)/2

t−n/2.

To get (1.21) we recall in §2 various classical estimates on Jν(r), which are then
exploited in §3 to obtain (1.21). In §3 we also estimate the L2-operator norm
‖JA(r)‖L(L2) and the Hilbert-Schmidt norm ‖JA(r)‖HS , obtaining

‖JA(r)‖L(L2) ≤ C min(rγ , r−1/3),(1.24)

‖JA(r)‖HS ≤ Crγ .(1.25)

In light of (1.18), the Hilbert-Schmidt norm estimate (1.25) is seen to be sharp. We
will see that (1.24) is also sharp.

We have three appendices. In Appendix A we give a proof of the Weber identity
(1.8). This result is classical; [W] gives a proof and references to several other
proofs, but such a central result in the theory of Bessel functions can use still more
proofs. We mention that yet another approach to (1.8) is given in [Ch]; cf. Theorem
2.4.1. In Appendix B we establish the Lipschitz-Hankel identity, a variant of (1.8) in
which e−tλ2

is replaced by e−yA. This provides a Poisson integral formula for e−yA,
used in [CT] in concert with analytic continuation to analyze the wave equation
on C(N). The Lipschitz-Hankel identity is also classical, and one can find a proof
(rather different from ours) in [W]. Our approach is to deduce it from (1.8) via
the subordination identity. Appendix C records some consequences of the Schläfli
integral representation of Jν(r), of use in some estimates in §2.

2. Estimates on Jν(r)



5

In this section we record various results on the behavior of Jν(r) on

(2.1) Q = {(ν, r) : ν ≥ γ, r ≥ 0}.

We will derive some of these results, though we quote other sources for the most
delicate of these. We consider separately the following subsets of Q, which together
cover Q:

(2.2)

Q1 = {(ν, r) ∈ Q : r ≤ 1},
Q2 = {(ν, r) ∈ Q : 1 ≤ r ≤ ν/2},
Q3 = {(ν, r) ∈ Q : ν ≤ 1, r ≥ 1},
Q4 = {(ν, r) ∈ Q : ν/4 ≤ r ≤ 4ν},
Q5 = {(ν, r) ∈ Q : ν ≥ 1, r ≥ 4ν}.

Good estimates for (ν, r) in Q1 and Q2 follow readily from the integral formula
(1.6), which we repeat here:

(2.3) Jν(r) =
1

Γ(1/2)Γ(ν + 1/2)

(r

2

)ν
∫ 1

−1

(1− t2)ν−1/2eirt dt.

Note that whenever ν ≥ 0 the integral is bounded in absolute value by π, so we
have

(2.4) |Jν(r)| ≤
√

π

Γ(ν + 1/2)

(r

2

)ν

.

In particular, since ν ≥ γ on Q,

(2.5) (ν, r) ∈ Q1 ⇒ |Jν(r)| ≤
√

π

Γ(ν + 1/2)2ν
rγ .

Also, Stirling’s formula gives

(2.6) Γ
(
ν +

1
2

)
=

√
2π

e

(ν + 1/2
e

)ν

A(ν), A(ν) = 1 + O(〈ν〉−1),

and hence

(2.7) (ν, r) ∈ Q2 ⇒ |Jν(r)| ≤ C
(e

4

)ν

≤ C2−r.

If γ > 1, Q3 is empty. Otherwise, we can examine the integral in (2.3) as the
Fourier transform of a function with simple singularities as t = ±1 and produce an
asymptotic expansion

(2.8) Jν(r) ∼ a(ν)r−1/2 cos r + O(r−3/2), r → +∞,
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uniformly for ν in a compact subset of [0,∞). In particular,

(2.9) (ν, r) ∈ Q3 ⇒ |Jν(r)| ≤ Cr−1/2.

The behavior of Jν(r) for (ν, r) ∈ Q4 is subtle. It is given by the following
asymptotic expansion:

(2.10)

Jν(νz) ∼ 1
ν1/3

( 4ζ

1− z2

)1/4{
Ai(ν2/3ζ)

∑

k≥0

Ak(ζ)
ν2k

+
Ai′(ν2/3ζ)

ν4/3

∑

k≥0

Bk(ζ)
ν2k

}
.

Here Ai is the Airy function and ζ = ζ(z) is given by

(2.11)
2
3
ζ3/2 = −

∫ z

1

(1− t2)
t

dt.

See [Olv], pp. 423–425 for a derivation. We mention that ζ(z) is analytic in {z :
Re z > 0} and satisfies ζ(1) = 0, ζ ′(1) < 0. The expansion (2.11) is valid as
ν → +∞, uniformly for z in any compact neighborhood of 1 in (0,∞). The Airy
function has the following asymptotic behavior as s → +∞:

(2.12) Ai(s) = O(s−∞), Ai(−s) ∼ π−1/2s−1/4 cos
(2

3
s3/2 − π

4

)
+ O(s−1/4−3/2).

In particular,

(2.13) |Ai(s)| ≤ C(1 + |s|)−1/4.

Consequently,

(2.14) (ν, r) ∈ Q4 ⇒ |Jν(r)| ≤ Cν−1/3
(
1 + ν2/3

∣∣∣1− ν

r

∣∣∣
)−1/4

.

Note in particular the behavior on the boundary ray r = 4ν:

(2.15) |Jν(4ν)| ≤ Cν−1/2.

For one estimate on Jν(r) for (ν, r) ∈ Q5, we use (2.15) and the differential
equation

(2.16)
[
∂2

r +
1
r
∂r +

(
1− ν2

r2

)]
Jν(r) = 0.
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We also need an estimate on J ′ν(r) for r = 4ν. This comes from

(2.17) J ′ν(r) = −ν

r
Jν(r) + Jν−1(r),

which with (2.14)–(2.15) yields

(2.18) |J ′ν(4ν)| ≤ Cν−1/2.

To proceed further, consider

(2.19)
[
∂2

r + r−1∂r + p(r)
]
u(r) = 0, p(r) = 1− ν2

r2
,

and set

(2.20) w(r) =
1
2
[
p(r)u(r)2 + u′(r)2

]
.

We have

(2.21) w′(r) =
1
2
p′(r)u(r)2 − 1

r
u′(r)2 ≤ ν2

r3
w(r),

when (ν, r) ∈ Q5, and hence w′ − (ν2/r3)w = e−ν2/2r2
∂r(eν2/2r2

w) ≤ 0, which
implies

(2.22) eν2/2r2
w(r) ↘,

as r increases, when (ν, r) ∈ Q5. Applying this to w(r) = Jν(r) and using (2.15)
and (2.18), we have

(2.23) (ν, r) ∈ Q5 ⇒ |Jν(r)| ≤ Cν−1/2.

While the estimate (2.23) will prove adequate for our estimate in §3 of the
Hilbert-Schmidt norm of JA(r), it does not provide a sharp bound on the operator
norm. To get that, we will improve (2.23) to the estimate

(2.24) (ν, r) ∈ Q5 =⇒ |Jν(r)| ≤ Cr−1/2.

To do this we make use of the Schläfli integral representation (C.4), which we
rewrite as

(2.25) Jν(ν sec a) = F1(ν, ν sec a) + F2(ν, ν sec a),
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for 0 ≤ a < π/2, where

(2.26)
F1(ν, ν sec a) =

e−iνa

2π

∫ π

−π

e−iν(t−sin t−tan a cos t) dt

F2(ν, ν sec a) = − sin πν

π
e−iνa

∫ ∞

0

e−ν(t+sinh t+i tan a cosh t) dt.

We first estimate F1(ν, r), which we write as (2π)−1e−iνaB(ν, ρ), where

(2.27) B(ν, ρ) =
∫ π

−π

eiϕ(ν,ρ,t) dt,

with

(2.28) ϕ(ν, ρ, t) = ν(sin t− t) + ρ cos t, ρ = r sin a.

To estimate (2.27) we use the van der Corput lemma, which states that if ψ(t) is
real valued and

(2.29) F =
∫ b

a

eiψ(t) dt,

then

(2.30)
ψ′ monotone, |ψ′| ≥ R =⇒ |F | ≤ 4R−1,

|ψ′′| ≥ R =⇒ |F | ≤ 8R−1/2.

Cf. [Duo], p. 183.
Before implementing (2.30), we note that the asymptotic expansion (2.10), or

(C.6), applies to Jν(ν sec a) uniformly on a ∈ [a0, a1], given 0 < a0 < a1 < π/2, so
we merely have to estimate (2.26) for a ∈ (0, π/2) close to π/2, hence sin a ≈ 1 and
ρ ≈ r, r/ν >> 1. To proceed, implementing (2.30) for (2.27), we compute

(2.31)
∂tϕ(ν, ρ, t) = ν(cos t− 1)− ρ sin t,

∂2
t ϕ(ν, ρ, t) = −ν sin t− ρ cos t.

Note that ∂tϕ(ν, ρ, t) = 0 at t0 = 0 and at t1 = −π + δ, where ρ/ν >> 1 ⇒ δ << 1.
Also ∂2

t ϕ(ν, ρ, t) = 0 at ti = −π/2 + ε, where ρ/ν >> 1 ⇒ |ε| << 1. With these
facts in mind, we divide the interval (−π, π) into four pieces:

(2.32) I1 = (−π,−3π/4], I2 = (−3π/4, ti], I3 = (ti,−π/4], I4 = (−π/4, π).

Setting Bj(ν, ρ) =
∫

Ij
eiϕ(ν,ρ,t) dt and using (2.30), we have

(2.33)
|B1(ν, ρ)| ≤ Cρ−1/2, |B2(ν, ρ)| ≤ Cρ−1,

|B3(ν, ρ)| ≤ Cρ−1, |B4(ν, ρ)| ≤ Cρ−1/2.
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Hence

(2.34) |F1(ν, r)| ≤ Cr−1/2, (ν, r) ∈ Q5.

To estimate F2(ν, r), it remains to estimate

(2.35) G(ν, ρ) =
∫ ∞

0

e−ψ(ν,ρ,t) dt,

where

(2.36) ψ(ν, ρ, t) = ν(t + sinh t) + iρ cosh t,

and again ρ = r sin a ≈ r since we need merely check this estimate for a ≈ π/2.
Writing

(2.37) e−ψ = − 1
ψt

∂te
−ψ

and integrating by parts over [δ,∞), where δ > 0 will be specified below, we have

(2.38) |G(ν, ρ)| ≤
∣∣∣
∫ δ

0

e−ψ dt
∣∣∣ + |ψt(ν, ρ, δ)|−1 +

∫ ∞

δ

∣∣∣∂t
1
ψt

∣∣∣ e−ν(t+sinh t) dt.

Note that the first integral on the right side of (2.38) is ≤ δ. Also,

(2.39) ∂tψ(ν, ρ, t) = ν(1 + cosh t) + iρ sinh t,

so, given δ ∈ (0, 1),

(2.40) |ψ1(ν, ρ, δ)|−1 ≤ 1
ρδ

.

Next, if t > 0, 1 ≤ ν ≤ ρ/2,

(2.41)

∣∣∣∂t
1

ψt(ν, ρ, t)

∣∣∣ =
∣∣∣ ν sinh t + iρ cosh t

(ν(1 + cosh t) + iρ sinh t)2

∣∣∣

≤ ν

ρ2 sinh t
+

cosh t

ρ sinh2t
.

Hence (as long as ν ≤ ρ)

(2.42)

∣∣∣∂t
1
ψt

∣∣∣ ≤ C

ρt2
, 0 < t < 1,

C

ρet
, 1 ≤ t < ∞.
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Thus (as long as ν ≥ 1),

(2.43)
∫ ∞

δ

∣∣∣∂t
1
ψt

∣∣∣ e−ν(t+sinh t) dt ≤ C

ρ

∫ 1

δ

1
t2

dt +
C

ρ

∫ ∞

1

e−t dt ≤ C

ρδ
.

Thus we pick

(2.44) δ = ρ−1/2

and get |G(ν, ρ)| ≤ Cρ−1/2, hence

(2.45) |F2(ν, r)| ≤ Cr−1/2, (ν, r) ∈ Q5.

In concert with (2.34), this proves the asserted estimate (2.24).

3. Estimates on JA(r)

Here we make use of the estimates on the Bessel function Jν(r) from §2 to
investigate properties of the operators JA(r) and e−πiA/2JA(r), acting on functions
on N . First we estimate the L2-operator norm, given by the spectral theorem as

(3.1) ‖JA(r)‖L(L2) = sup
ν∈Spec A

|Jν(r)| ≤ sup
ν≥0

|Jν(r)|.

If we set

(3.2) q`(r) = sup
{ν:(ν,r)∈Q`}

|Jν(r)|,

we see from §2 that

(3.3)
q1(r) ≤ Crγ , q2(r) ≤ C2−r, q3(r) ≤ Cr−1/2,

q4(r) ≤ Cr−1/3, q5(r) ≤ Cr−1/2.

Hence

(3.4) ‖JA(r)‖L(L2) ≤ C min(rγ , r−1/3).

We next estimate the Hilbert-Schmidt norm ‖JA(r)‖HS , defined by

(3.5) ‖JA(r)‖2HS =
∑

νk∈Spec A

|Jνk
(r)|2.
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To estimate (3.5), it is convenient to set

(3.6) σ`(r) = {ν ∈ Spec A : (ν, r) ∈ Q`}.

We also have from [Ho] the following estimate on Spec A:

(3.7) #{νk ∈ Spec A : ν ≤ νk ≤ ν + 1} ≤ Cνn−2,

given that n− 1 = dim N .
The estimate on (3.5) is easy if r ≤ 1. Applying (3.7) and (2.5) yields

(3.8) 0 ≤ r ≤ 1 ⇒ ‖JA(r)‖2HS ≤ Cr2γ .

When r ≥ 1, we consider the sum of |Jνk
(r)|2 over νk ∈ σ`(r), for 2 ≤ ` ≤ 5. By

(3.7) and (2.7),

(3.9)
∑

νk∈σ2(r)

|Jνk
(r)|2 ≤ CK

∫ ∞

r

ν−Kνn−2 dν ≤ C ′Kr−K+n−1,

for each K < ∞. By (2.9),

(3.10)
∑

νk∈σ3(r)

|Jνk
(r)|2 ≤ Cr−1.

By (2.14),

(3.11)

∑

νk∈σ4(r)

|Jνk
(r)|2 ≤ C

∫ 4r

r/4

ν−2/3
(
1 + ν2/3

∣∣∣1− ν

r

∣∣∣
)−1/2

νn−2 dν

≤ Crn−2.

By (2.23),

(3.12)
∑

νk∈σ5(r)

|Jνk
(r)|2 ≤ C

∫ r

1

ν−1νn−2 dν ≤ Crn−2.

Summing (3.9)–(3.12) yields

(3.13) r ≥ 1 ⇒ ‖JA(r)‖2HS ≤ Cr2γ .

Comparison with (3.6) then gives

(3.14) ‖JA(r)‖HS ≤ Crγ , r ∈ [0,∞).
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In view of the computation (1.18) for the example N = Sn−1, we see that such an
estimate is sharp.

We now turn to an estimate of κN (r, ω1, ω2), the integral kernel of e−πiA/2JA(r).
From (1.13) we have

(3.15) |κN (r, ω1, ω2)| ≤
∑

|Jνk
(r)| · |uk(ω1)uk(ω2)|.

To estimate this, we replace (3.7) by the estimate

(3.16)
∑

νk∈Spec A,ν≤νk≤ν+1

|uk(ω)|2 ≤ Cνn−2,

also due to [Ho]. Again for r ∈ [0, 1] we get an optimal estimate on κN (r, ω1, ω2)
by applying (3.16) and (2.5):

(3.17) 0 ≤ r ≤ 1 ⇒ |κN (r, ω1, ω2)| ≤ Crγ .

For r ≥ 1, we do not meet with such neat success, but we proceed. We estimate
the sum of the right side of (3.15) over νk in σ`(r), for 2 ≤ ` ≤ 5. By (3.16) and
(2.7),

(3.18)
∑

νk∈σ2(r)

|Jνk
(r)| · |uk(ω)|2 ≤ CKr−K ,

as in (3.9). By (2.9) we have, parallel to (3.10),

(3.19)
∑

νk∈σ3(r)

|Jνk
(r)| · |uk(ω)|2 ≤ Cr−1/2.

By (2.14),

(3.20)

∑

νk∈σ4(r)

|Jνk
(r)| · |uk(ω)|2 ≤ C

∫ 4r

r/4

ν−1/3
(
1 + ν2/3

∣∣∣1− ν

r

∣∣∣
)−1/4

νn−2 dν

≤ Crn−3/2.

By (2.23),

(3.21)
∑

νk∈σ5(r)

|Jνk
(r)| · |uk(ω)|2 ≤ C

∫ r

1

ν−1/2νn−2 dν ≤ Crn−3/2.

The same estimate also follows from (2.24). In summary, we have established

(3.22) r ≥ 1 ⇒ |κN (r, ω1, ω2)| ≤ Crn−3/2 = Cr2γ+1/2.
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Note that this is far from the estimate |κN (r, ω1, ω2)| ≤ Crγ , which holds for
N = Sn−1 by (1.18). On the other hand, it is only slightly weaker than the
estimate (1.20) on |κs

Sn−1(r, ω1, ω2)|.

A. Proof of the Weber integral formula

We desire to prove the identity

(A.1)
∫ ∞

0

e−tλ2
Jν(r1λ)Jν(r2λ)λ dλ =

1
2t

e−(r2
1+r2

2)/4tIν

(r1r2

2t

)
,

for t, r1, r2 > 0, where Jν(z) is the standard Bessel function and Iν(y) = e−πiν/2Jν(iy), y >
0, so

(A.2) Iν(z) =
(z

2

)ν ∞∑

k=0

1
k!Γ(ν + k + 1)

(z

2

)2k

.

To begin, one can expand Jν(rjλ) in power series (similar to (A.2)) and integrate
term by term, to see that the left side of (A.1) is equal to

(A.3)
1
2t

(r1r2

4t

)ν ∑

j,k≥0

Γ(ν + j + k + 1)
Γ(ν + j + 1)Γ(ν + k + 1)

1
j!k!

(
−r2

1

4t

)j(
−r2

2

4t

)k

.

Meanwhile, by (A.2), the right side of (A.1) is equal to

(A.4)
∑

`,m≥0

1
`!m!

(
−r2

1

4t

)`(
−r2

2

4t

)m ∞∑
n=0

1
n!Γ(ν + n + 1)

(r1r2

4t

)2n

.

If we set yj = −r2
j /4t, we see that the asserted identity (A.1) is equivalent to the

identity

(A.5)

∑

j,k≥0

Γ(ν + j + k + 1)
Γ(ν + j + 1)Γ(ν + k + 1)

1
j!k!

yj
1y

k
2

=
∑

`,m,n≥0

1
`!m!

1
n!Γ(ν + n + 1)

y`+n
1 ym+n

2 .

This approach was taken in §8, Chapter 8 of [T], but no explicit proof of (A.5) was
given. We fill in the details here.

We compare coefficients of yj
1y

k
2 in (A.5). Since both sides of (A.5) are symmetric

in (y1, y2), it suffices to treat the case

(A.6) j ≤ k,
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which we assume henceforth. Then we take ` + n = j, m + n = k and sum over
n ∈ {0, . . . , j}, to see that (A.5) is equivalent to the validity of

(A.7)
j∑

n=0

1
(j − n)!(k − n)!n!Γ(ν + n + 1)

=
Γ(ν + j + k + 1)

Γ(ν + j + 1)Γ(ν + k + 1)
1

j!k!
,

whenever 0 ≤ j ≤ k. Using the identity

Γ(ν + j + 1) = (ν + j) · · · (ν + n + 1)Γ(ν + n + 1)

and its analogues for the other Γ-factors in (A.7), we see that (A.7) is equivalent
to the validity of

(A.8)
j∑

n=0

j!k!
(j − n)!(k − n)!n!

(ν + j) · · · (ν + n + 1) = (ν + j + k) · · · (ν + k + 1),

for 0 ≤ j ≤ k. Note that the right side of (A.8) is a polynomial of degree j in ν,
and the general term on the left side of (A.8) is a polynomial of degree j − n in ν.

In order to establish (A.8), it is convenient to set

(A.9) µ = ν + j

and consider the associated polynomial identity in µ. With
(A.10)
p0(µ) = 1, p1(µ) = µ, p2(µ) = µ(µ−1), . . . , pj(µ) = µ(µ−1) · · · (µ−j +1),

we see that {p0, p1, . . . , pj} is a basis of the space Pj of polynomials of degree j in
µ, and our task is to write

(A.11) pj(µ + k) = (µ + k)(µ + k − 1) · · · (µ + k − j + 1)

as a linear combination of p0, . . . , pj . To this end, define

(A.12) T : Pj −→ Pj , Tp(µ) = p(µ + 1).

By explicit calculation,

(A.13)
p1(µ + 1) = p1(µ) + p0(µ),

p2(µ + 1) = (µ + 1)µ = µ(µ− 1) + 2µ = p2(µ) + 2p1(µ),

and an inductive argument gives

(A.14) Tpi = pi + ipi−1.
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By convention we set pi = 0 for i < 0. Our goal is to compute T kpj . Note that

(A.15) T = I + N, Npi = ipi−1,

and

(A.16) T k =
j∑

n=0

(
k

n

)
Nn,

if j ≤ k. By (A.15),

(A.17) Nnpi = i(i− 1) · · · (i− n + 1)pi−n,

so we have

(A.18)

T kpj =
j∑

n=0

(
k

n

)
j(j − 1) · · · (j − n + 1)pj−n

=
j∑

n=0

k!
(k − n)!n!

j!
(j − n)!

pj−n.

This verifies (A.8) and completes the proof of (A.1).

B. Proof of the Lipschitz-Hankel integral formula

We desire to prove the identity

(B.1)
∫ ∞

0

e−yλJν(r1λ)Jν(r2λ) dλ =
1
π

(r1r2)−1/2 Qν−1/2

(r2
1 + r2

2 + y2

2r1r2

)
,

due to Lipschitz and Hankel, of great use for analysis on cones (cf. [CT]). We derive
(B.1) from the identity

(B.2)
∫ ∞

0

e−tλ2
Jν(r1λ)Jν(r2λ)λ dλ =

1
2t

e−(r2
1+r2

2)/4t Iν

(r1r2

2t

)
,

whose proof was just given in Appendix A. Here, as in (A.1),

(B.3) Iν(y) = e−πiν/2 Jν(iy), y > 0.

To work on (B.2), we use the subordination identity

(B.4) λ−1e−yλ = π−1/2

∫ ∞

0

e−y2/4te−tλ2
t−1/2 dt;
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cf. [T], Chapter 3, (5.31) for a proof. Plugging this into the left side of (B.1), and
using (B.2), we have

(B.5) LHS(B.1) =
1

2
√

π

∫ ∞

0

e−(r2
1+r2

2+y2)/4t Iν

(r1r2

2t

)
t−3/2 dt.

The change of variable s = r1r2/2t gives

(B.6) LHS(B.1) =

√
1
2π

(r1r2)−1/2

∫ ∞

0

e−s(r2
1+r2

2+y2)/2r1r2 Iν(s)s−1/2 ds.

Thus the asserted identity (B.1) follows from the identity

(B.7)
∫ ∞

0

e−szIν(s)s−1/2 ds =

√
2
π

Qν−1/2(z), z > 0.

As for the validity of (B.7), we mention two identities. First, we have

(B.8)

∫ ∞

0

e−szJν(λs)sµ−1 ds

=
(λ

2

)ν

z−µ−ν Γ(µ + ν)
Γ(ν + 1) 2F1

(µ

2
+

ν

2
+

1
2
,
µ

2
+

ν

2
; ν + 1;−λ2

z2

)
.

This can be proven by expanding Jν(λs) in a power series in λs and integrating term
by term. Cf. (8.42) of [T], Chapter 8. Next, there is the classical representation of
the Legendre function Qν−1/2(z) as a hypergeometric function:

(B.9) Qν−1/2(z) =
Γ(1/2)Γ(ν + 1/2)

Γ(ν + 1)
(2z)−ν−1/2

2F1

(ν

2
+

3
4
,
ν

2
+

1
4
; ν + 1;

1
z2

)
;

cf. [Leb], (7.3.7). If we apply (B.8) with λ = i, µ = 1/2, then (B.7) follows.

Remark. Formulas (B.1) and (B.2) are proven in the opposite order in [W].

C. Some integral formulas for Jν(r)

In addition to the integral formula (2.3) for Jν(r), there are some others that
are useful for asymptotic expansions and estimates of Jν(r) on Q = {(ν, r) : ν ≥
γ, r ≥ 0}. In particular there is the Schläfli integral

(C.1) Jν(r) =
1

2πi

∫ ∞+πi

∞−πi

er sinh τ−ντ dτ,
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the integral being taken along a path τ(t) asymptotic to the line Im z = −π as
t → −∞ and asymptotic to the line Im z = π as t → +∞. Cf. [Olv], p. 58. There is
flexibility in selecting γ (by Cauchy’s integral theorem). In case r = ν sech a, a ∈
R+, it is convenient to take

(C.2) γ = ∂Ωa, Ωa = {z ∈ C : |Im z| ≤ π, Re z ≥ a}.

This gives

(C.3)
Jν(ν sech a) =

1
2π

∫ π

−π

e−ν(a−tanh a cos t+it−i sin t) dt

− sin πν

π
e−νa

∫ ∞

0

e−ν(t+sinh t+tanh a cosh t) dt.

Noting that sech ia = sec a, we also have, by analytic continuation,

(C.4)
Jν(ν sec a) =

1
2π

∫ π

−π

e−iν(a−tan a cos t+t−sin t) dt

− sin πν

π
e−iνa

∫ ∞

0

e−ν(t+sinh t+i tan a cosh t) dt,

for a ∈ [0, π/2). Note that (C.3) represents Jν(r) for 0 < r ≤ ν and (C.4) represents
Jν(r) for r ≥ ν > 0.

As described on p. 134 of [Olv], one has, as ν → +∞,

(C.5) Jν(ν sech a) ∼ e−ν(a−tanh a)

πi

∑

k≥0

bk(a) ν−k−1/2.

This is valid uniformly for a ∈ [a0, a1], given 0 < a0 < a1 < ∞. Similarly, one has

(C.6) Jν(ν sec a) ∼
(πν

2
tan a

)−1/2

cos
(
ν tan a− νa− π

4

)
+ O(ν−3/2),

valid uniformly for a ∈ [a0, a1], given 0 < a0 < a1 < π/2. The results (C.5)–(C.6)
also follow from the stronger result (2.10)–(2.12).

Our purpose in recording these results here is to provide material needed to
establish the estimate

(C.7) |Jν(r)| ≤ Cr−1/2, (ν, r) ∈ Q5.

See the end of §2 for this.
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1A.

Remark. The various formulas given above for Et(r1, ω1, r2, ω2) and St(r1, r2, A)
hold for t, r1, r2 ∈ (0,∞), but there is no difficulty passing to the limit r1 → 0,
using

(1.26) Jν(z) =
(z

2

)ν ∞∑

k=0

(−1)k

k!Γ(k + ν + 1)

(z

2

)2k

.

Noting that ν ≥ γ for ν ∈ Spec A, we obtain from (1.11) that

(1.27) St(0, r2, A) =
2

Γ(n/2)
1

(4it)n/2
e−r2

2/4it P0,

where P0 is the orthogonal projection of L2(N) onto Ker∆N = {constants}, whose
integral kernel is κP0(ω1, ω2) = A(N)−1, A(N) denoting the (n − 1)-dimensional
area of N . This leads to the formula

(1.28) Et(0, ω1, r2, ω2) =
A(Sn−1)
A(N)

1
(4πit)n/2

e−r2
2/4it,

where A(Sn−1) = 2πn/2/Γ(n/2) is the area of the unit sphere Sn−1 ⊂ Rn. This
identity can also be derived directly by separation of variables and comparison with
the Euclidean case.


