Variant of Schur's Inequality

MICHAEL TAYLOR

Let A be a complex $n \times n$ matrix; we write $A \in M(n, \mathbb{C})$. A theorem of Schur implies one can write

$$(1) A = D + N,$$

where, in some orthonormal basis, D is diagonal and N is strictly upper triangular. The diagonal entries of D are the eigenvalues λ_k of A, repeated according to multiplicity, so

(2)
$$\sum |\lambda_k|^2 = \|D\|_{\rm HS}^2 = \|A\|_{\rm HS}^2 - \|N\|_{\rm HS}^2.$$

Here $||A||_{\text{HS}}^2 = \text{Tr}(A^*A)$ is the square Hilbert-Schmidt norm of A. In particular, we have

(3)
$$\sum |\lambda_k|^2 \le ||A||_{\mathrm{HS}}^2,$$

a result known as Schur's inequality.

As noted in [D], this can be applied to estimate the roots λ_k of a monic polynomial $z^n + a_{n-1}z^{n-1} + \cdots + a_0$, since these roots coincide with the eigenvalues of the companion matrix

(4)
$$A = \begin{pmatrix} 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-2} & -a_{n-1} \end{pmatrix}.$$

We obtain from (3) that

(5)
$$\sum |\lambda_k|^2 \le \sum_{j=0}^{n-1} |a_j|^2 + (n-1).$$

Note that in going from (2) to (3) you lose something, namely $||N||_{\text{HS}}^2$. Now one has N = 0 if and only if A is normal, i.e., if and only if $A^*A = AA^*$. The matrices of the form (4) are far from normal. Our goal here is to estimate $||N||_{\text{HS}}$ from below in terms of $[A^*, A]$ and improve (3). We will establish the following.

Proposition 1. If $\{\lambda_k : 1 \leq k \leq n\}$ are the eigenvalues of $A \in M(n, \mathbb{C})$, counted with multiplicity, then

(6)
$$\sum |\lambda_k|^2 \le \frac{\|A\|_{\text{HS}}^2}{1 + \varphi(\xi(A))^2},$$

where

(7)
$$\xi(A) = \frac{\|[A^*, A]\|_{\text{HS}}}{2\|A\|_{\text{HS}}^2}, \quad \varphi(x) = (1+x)^{1/2} - 1$$

In light of the elementary estimate

(8)
$$||XY||_{\rm HS} \le ||X||_{\rm HS} ||Y||_{\rm HS},$$

we have

$$(9) 0 \le \xi(A) \le 1$$

for all nonzero $A \in M(n, \mathbb{C})$. Note that $\varphi(x)$ is smooth and monotonically increasing in $x \in [0, 1]$, with

(10)
$$\varphi(0) = 0, \quad \varphi(1) = \sqrt{2} - 1 \approx 0.414.$$

Wanting to estimate $||N||_{\text{HS}}$ from below, we proceed to estimate $||[A^*, A]||_{\text{HS}}$ from above. Note that

(11)
$$[A^*, A] = [N^*, D] + [\overline{D}, N] + [N^*, N].$$

Using (8) and the triangle inequality $||X + Y||_{\text{HS}} \le ||X||_{\text{HS}} + ||Y||_{\text{HS}}$, we obtain

(12)
$$\|[A^*, A]\|_{\mathrm{HS}} \leq 2\|[\overline{D}, N]\|_{\mathrm{HS}} + \|[N^*, N]\|_{\mathrm{HS}} \\ \leq 4\|D\|_{\mathrm{HS}}\|N\|_{\mathrm{HS}} + 2\|N\|_{\mathrm{HS}}^2,$$

so

(13)
$$\|N\|_{\rm HS}^2 + 2\|D\|_{\rm HS}\|N\|_{\rm HS} \ge \frac{1}{2}\|[A^*, A]\|_{\rm HS}.$$

Completing the square on the left side of (13) gives

(14)
$$\|N\|_{\mathrm{HS}} \geq \left(\frac{1}{2}\|[A^*, A]\|_{\mathrm{HS}} + \|D\|_{\mathrm{HS}}^2\right)^{1/2} - \|D\|_{\mathrm{HS}}$$
$$= \|D\|_{\mathrm{HS}} \left[\left(1 + \frac{\|[A^*, A]\|_{\mathrm{HS}}}{2\|D\|_{\mathrm{HS}}^2}\right)^{1/2} - 1 \right]$$
$$\geq \|D\|_{\mathrm{HS}} \varphi(\xi(A)),$$

with φ and $\xi(A)$ as in (7), the last inequality holding because $||D||_{\text{HS}}^2 \leq ||A||_{\text{HS}}^2$. Recalling (2), we have

(15)
$$||D||_{\rm HS}^2 \le ||A||_{\rm HS}^2 - ||D||_{\rm HS}^2 \,\varphi(\xi(A))^2,$$

which gives the asserted estimate (6).

REMARK. One loses something in passing to the last inequality in (14). If we stop before that, we obtain

(16)
$$||N||_{\mathrm{HS}} \ge ||D||_{\mathrm{HS}} \varphi \left(\frac{K}{2||D||_{\mathrm{HS}}^2}\right), \quad K = ||[A^*, A]||_{\mathrm{HS}},$$

which leads to

(17)
$$\left(1+\varphi\left(\frac{K}{2\|D\|_{\rm HS}^2}\right)^2\right)\|D\|_{\rm HS}^2 \le \|A\|_{\rm HS}^2.$$

As an improvement over (3), this is sharper than (6)-(7), though less explicit.

Reference

[D] E. Deutsch, Solution II to Problem #11008, American Math. Monthly 112 (2005), p. 92.