Variant of Schur's Inequality

Michael Taylor

Let A be a complex $n \times n$ matrix; we write $A \in M(n, \mathbb{C})$. A theorem of Schur implies one can write

$$
\begin{equation*}
A=D+N \tag{1}
\end{equation*}
$$

where, in some orthonormal basis, D is diagonal and N is strictly upper triangular. The diagonal entries of D are the eigenvalues λ_{k} of A, repeated according to multiplicity, so

$$
\begin{equation*}
\sum\left|\lambda_{k}\right|^{2}=\|D\|_{\mathrm{HS}}^{2}=\|A\|_{\mathrm{HS}}^{2}-\|N\|_{\mathrm{HS}}^{2} . \tag{2}
\end{equation*}
$$

Here $\|A\|_{\text {HS }}^{2}=\operatorname{Tr}\left(A^{*} A\right)$ is the square Hilbert-Schmidt norm of A. In particular, we have

$$
\begin{equation*}
\sum\left|\lambda_{k}\right|^{2} \leq\|A\|_{\mathrm{HS}}^{2}, \tag{3}
\end{equation*}
$$

a result known as Schur's inequality.
As noted in [D], this can be applied to estimate the roots λ_{k} of a monic polynomial $z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$, since these roots coincide with the eigenvalues of the companion matrix

$$
A=\left(\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \tag{4}\\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
-a_{0} & -a_{1} & \cdots & -a_{n-2} & -a_{n-1}
\end{array}\right)
$$

We obtain from (3) that

$$
\begin{equation*}
\sum\left|\lambda_{k}\right|^{2} \leq \sum_{j=0}^{n-1}\left|a_{j}\right|^{2}+(n-1) \tag{5}
\end{equation*}
$$

Note that in going from (2) to (3) you lose something, namely $\|N\|_{\text {HS }}^{2}$. Now one has $N=0$ if and only if A is normal, i.e., if and only if $A^{*} A=A A^{*}$. The matrices of the form (4) are far from normal. Our goal here is to estimate $\|N\|_{\mathrm{HS}}$ from below in terms of $\left[A^{*}, A\right]$ and improve (3). We will establish the following.

Proposition 1. If $\left\{\lambda_{k}: 1 \leq k \leq n\right\}$ are the eigenvalues of $A \in M(n, \mathbb{C})$, counted with multiplicity, then

$$
\begin{equation*}
\sum\left|\lambda_{k}\right|^{2} \leq \frac{\|A\|_{\mathrm{HS}}^{2}}{1+\varphi(\xi(A))^{2}} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi(A)=\frac{\left\|\left[A^{*}, A\right]\right\|_{\mathrm{HS}}}{2\|A\|_{\mathrm{HS}}^{2}}, \quad \varphi(x)=(1+x)^{1 / 2}-1 \tag{7}
\end{equation*}
$$

In light of the elementary estimate

$$
\begin{equation*}
\|X Y\|_{\mathrm{HS}} \leq\|X\|_{\mathrm{HS}}\|Y\|_{\mathrm{HS}}, \tag{8}
\end{equation*}
$$

we have

$$
\begin{equation*}
0 \leq \xi(A) \leq 1 \tag{9}
\end{equation*}
$$

for all nonzero $A \in M(n, \mathbb{C})$. Note that $\varphi(x)$ is smooth and monotonically increasing in $x \in[0,1]$, with

$$
\begin{equation*}
\varphi(0)=0, \quad \varphi(1)=\sqrt{2}-1 \approx 0.414 \tag{10}
\end{equation*}
$$

Wanting to estimate $\|N\|_{\text {HS }}$ from below, we proceed to estimate $\left\|\left[A^{*}, A\right]\right\|_{\text {HS }}$ from above. Note that

$$
\begin{equation*}
\left[A^{*}, A\right]=\left[N^{*}, D\right]+[\bar{D}, N]+\left[N^{*}, N\right] . \tag{11}
\end{equation*}
$$

Using (8) and the triangle inequality $\|X+Y\|_{\mathrm{HS}} \leq\|X\|_{\mathrm{HS}}+\|Y\|_{\mathrm{HS}}$, we obtain

$$
\begin{align*}
\left\|\left[A^{*}, A\right]\right\|_{\mathrm{HS}} & \leq 2\|[\bar{D}, N]\|_{\mathrm{HS}}+\left\|\left[N^{*}, N\right]\right\|_{\mathrm{HS}} \\
& \leq 4\|D\|_{\mathrm{HS}}\|N\|_{\mathrm{HS}}+2\|N\|_{\mathrm{HS}}^{2}, \tag{12}
\end{align*}
$$

so

$$
\begin{equation*}
\|N\|_{\mathrm{HS}}^{2}+2\|D\|_{\mathrm{HS}}\|N\|_{\mathrm{HS}} \geq \frac{1}{2}\left\|\left[A^{*}, A\right]\right\|_{\mathrm{HS}} . \tag{13}
\end{equation*}
$$

Completing the square on the left side of (13) gives

$$
\begin{align*}
\|N\|_{\mathrm{HS}} & \geq\left(\frac{1}{2}\left\|\left[A^{*}, A\right]\right\|_{\mathrm{HS}}+\|D\|_{\mathrm{HS}}^{2}\right)^{1 / 2}-\|D\|_{\mathrm{HS}} \\
& =\|D\|_{\mathrm{HS}}\left[\left(1+\frac{\left\|\left[A^{*}, A\right]\right\|_{\mathrm{HS}}}{2\|D\|_{\mathrm{HS}}^{2}}\right)^{1 / 2}-1\right] \tag{14}\\
& \geq\|D\|_{\mathrm{HS}} \varphi(\xi(A)),
\end{align*}
$$

with φ and $\xi(A)$ as in (7), the last inequality holding because $\|D\|_{\mathrm{HS}}^{2} \leq\|A\|_{\mathrm{HS}}^{2}$. Recalling (2), we have

$$
\begin{equation*}
\|D\|_{\mathrm{HS}}^{2} \leq\|A\|_{\mathrm{HS}}^{2}-\|D\|_{\mathrm{HS}}^{2} \varphi(\xi(A))^{2}, \tag{15}
\end{equation*}
$$

which gives the asserted estimate (6).
Remark. One loses something in passing to the last inequality in (14). If we stop before that, we obtain

$$
\begin{equation*}
\|N\|_{\mathrm{HS}} \geq\|D\|_{\mathrm{HS}} \varphi\left(\frac{K}{2\|D\|_{\mathrm{HS}}^{2}}\right), \quad K=\left\|\left[A^{*}, A\right]\right\|_{\mathrm{HS}}, \tag{16}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
\left(1+\varphi\left(\frac{K}{2\|D\|_{\mathrm{HS}}^{2}}\right)^{2}\right)\|D\|_{\mathrm{HS}}^{2} \leq\|A\|_{\mathrm{HS}}^{2} . \tag{17}
\end{equation*}
$$

As an improvement over (3), this is sharper than (6)-(7), though less explicit.

Reference

[D] E. Deutsch, Solution II to Problem \#11008, American Math. Monthly 112 (2005), p. 92.

