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Abstract. Using the methods of partial differential equatiions and functional
analysis, we investigate the electromagnetic field in the presence of a screen com-
posed of wires of radius r, spaced at distance R, spread over a surface S. In the
limit as r and R converge to zero, if (R log r)−1 → −∞ the field in the presence
of the screen converges to the field with a conducting sheet spread over S. If
(R log r)−1 → 0 the field converges to the field with no conductors.

1. Introduction

It is well known that a region enclosed by a mesh of conducting wire is shielded
from external static electric fields. In this sense the mesh acts like a solid sheet of
conductor. On the other hand, it is clear that if the wires of the mesh are sufficiently
narrow (for a fixed mesh width) then they will have a negligible effect on the electric
field. In this note we will study the problem of determining what range of physical
parameters correspond to these two types of behavior. If the screen consists of wires
of radius r whode axes are spaced at approximately distance R from each other the
critical parameter is (−R log r)−1 = γ. We consider screens spread over a surface
S, in the limit as r and R approach zero and prove that for a charge distribution
if γ → ∞ then the field in the presence of the screens converges to the field in
the presence of a sheet of conductor spread over S (Theorem 2). In the opposite
extreme case if γ → 0 then the field converges to the field without any conductors
present, that is, the screen becomes negligible.

Remark. This is a TeXed version of the paper [RT], originally produced on an
old-fashioned typewriter. Further work appears in [CHT].

2. Variational formulation of the basic boundary problem

We seek the electrostatic potential u in the exterior of a finite number of con-
ductore κ1, κ2, . . . , κj , arising from a charge distribution with density ρ(x). For
convenience we suppose that the whole system lies inside a very large but bounded
region R whose boundary is kept at potential zero and is assumed to be smooth.
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With a little extra effort the problem in unbounded regions can also be handled by
our methods. The boundary value problem for u is

∆u = −4πρ, in R \
⋃

κi,(1)

u = constant on each κi, i = 1, . . . , j,(2) ∫

∂κi

∂u

∂ν
= 0, i = 1, . . . , j,(3)

u = 0 on ∂R.(4)

From a mathematical standpoint the condition (3), which asserts that the conduc-
tors carry no charge, is the most troublesome, and we will give a weak or variational
formulation in which (3) becomes a natural boundary condition.

Let K = ∪κi, Ω = R\K, and H1(Ω) the Sobolev space of functions on Ω which
are square integrable, together with their partial derivatives of order one.

Definition 1. B is the closed subspace of H1(Ω) consisting of functions u that
vanish on ∂R and in addition are constant on each ∂κi, for i = 1, 2, . . . , j. For
u, v ∈ H1(Ω), let

a(u, v) = −
∫

Ω

∇u · ∇v.

It is not hard to show that u is a solution of (1)–(4) if and only if u ∈ B and

(5) a(u, v) = 4π

∫

Ω

ρ(x)v(x) dx, ∀ v ∈ B.

Equation (5) is just the Euler-Lagrange equation associated with Thompson’s prin-
ciple: u minimizes −a(u, u)/2 +

∫
Ω

ρu over all u ∈ B. Note that (3) is a natural
boundary condition. It is useful to notice that if u ∈ B satisfies (5) then ∆u = −4πρ
in the sense of distributions and u is constant on each ∂κi, so the regularity theo-
rems for the Dirichlet problem can be applied to show that u is smooth provided
that ρ and each ∂κi are smooth, which we will assume henceforth.

The quadratic form a on L2(Ω) with domain D(a) = B is closed, symmetric, and
nonpositive. It is well known [1] that there is a self-adjoint operator ∆, defined by
the recipe:

D(∆) = {u ∈ B : ∃f ∈ L2(Ω) such that a(u, v) = (f, v)L2(Ω)},
∆u = f for u ∈ D(∆).

With the aid of the regularity theorems mentioned above, one can show that

D(∆) =
{

u ∈ H2(Ω) : u ∈ B and
∫

∂κi

∂u

∂ν
= 0, i = 1, . . . , j

}
,

∆u =
n∑

i=1

∂2u

∂x2
i

, for u ∈ D(∆).
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The solution to the electrostatic problem (1)–(4) is therefore ∆−1(−4πρ), the in-
verse of ∆ applied to −4πρ.

3. A theorem on vanishing screens

We now pose the basic problem. For each integer n we consider the electrostatics
problem in the presence of conductors κn

1 , κn
2 , . . . , κn

in
, and we ask whether the effect

of the conductors has some limiting behavior as n → ∞. In this section we prove
a theorem which asserts that the effect of the conductors disappears as n → ∞
provided they are sufficiently small. As an application we obtain the result on
vanishing screens mentioned in the introduction.

The appropriate measure of smallness turns out to be electrostatic capacity.
Recall that for reasonable subsets Λ of R3, cap(Λ) is defined as follows. Let v be
the solution of the boundary value problem

∆v = 0 on R3 \ Λ,

v = O(|x|−1) as |x| → ∞,

v = 1 on ∂Λ.

Then − ∫
|x|=L

∂v/∂r is independent of L for L large and is the total charge on a
conductor occupying the region Λ and raised to potential one. This quantity is
cap(Λ), the capacity of Λ.

Notations. Let ∆n, an, Bn be the operator, form, and form domain on Ωn =
R \ ∪jn

i=1κ
n
i , as defined in §2. In addition, for v ∈ L2(R), let Pnv ∈ L2(Ωn) be the

restriction of v to Ωn. Any element of L2(Ωn) is considered as an element of L2(R)
by extending it to vanish on the union of the κn

i . Let K(n) = ∪iκ
n
i denote this

union. We suppose all K(n) are contained in some compact set Γ ⊂ R.

The main tool we use to show that K(n) vanishes is Theorem 3.1 of [2]. This
asserts that f(∆n)Pnu → f(∆)u in L2(R) for all u ∈ L2(R) and any f bounded
and continuous on (−∞, 0] provided that Ωn satisfy mild regularity conditions, that
the quadratic form a(u, u) satisfies the coerciveness hypothesis

−a(u, u) ≥
∫

Ωn

|∇u|2, ∀u ∈ Bn,

and the following two special assumptions:

(A) There exist extension operators En : Bn → B (the domain of the form a(u, v)
on R without conductors) with the properties
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(i) Enu = u on Ωn for all u ∈ Bn.

(ii) There is a constant M such that for all n and u ∈ Bn,

‖Enu‖H1(R) ≤ M‖u‖H1(Ωn).

Next, either

(B) Meas(K(n)) → 0, and, if u ∈ B, there exist uj → u in B such that uj |Ωj
∈ Bj ,

or

(B′) cap(K(n)) → 0 as n →∞.

That (A) and (B′) imply operator convergence is stated in Theorem 4.2 of [2].
Alternatively, condition (B′) implies condition (B).

Theorem 1. Suppose there is a compact set Γ ⊂ R with K(n) ⊂ Γ for all n and
that cap(K(n)) → 0 as n → ∞. Then for any continuous function f on (−∞, 0)
bounded at −∞ and any u ∈ L2(R), we have

f(∆n)Pnu −→ f(∆)u in L2(R),

where ∆ is the operator on R without any conductors.

As a particular example for ρ ∈ L2(R) with ρ supported in the exterior of all
conductors we can take f(x) = 1/x to get ∆−1

n ρ → ∆−1ρ in L2(R). Thus the
solutions of the electrostatics problem converge to the solution to the problem with
no conductors at all.

Proof. Note that the spectra σ(∆) and σ(∆n) are all contained in (−∞, δ) for
some δ < 0, so f can be altered to be bounded and continuous on (−∞, 0] without
changing f(∆n) or f(∆). To complete the proof, it is only necessary to verify
hypothesis (A).

To describe En, notice that if u ∈ Bn then u is constant on ∂κn
i , i = 1, 2, . . . , jn,

say u = ci on ∂κn
i . Define Enu = ci on κn

i . It is clear that
∫
R |∇Enu|2 =

∫
Ωn
|∇u|2.

Furthermore, since Enu = 0 on ∂R, we have
∫

R

|Enu|2 ≤ 1
λ

∫

R

|∇Enu|2,

where −λ is the largest eigenvalue of the Laplacian on R with the Dirichlet bound-
ary condition on ∂R. Thus (ii) is satisfied with M = 1 + λ−1, and the proof is
complete.
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It is easy to apply this result to screens. The basic fact that is needed is that
the capacity of a solid circular cylinder of length L and radius r is proportional to
−L/ log r. Similarly a not excessively curved piece of wire of length L and radius r
has capacity ≈ −L/ log r. In addition, capacity is a subadditive set function, that
is, cap(∪Ai) ≤

∑
i cap(Ai) for any countable union of sets. Thus the capacity of a

curved screen of fixed area with wires of radius r and spacing R between axes of
wires is O(−1/R log r). Thus if K(n) is a screen as above with r and R approaching
zero as n → ∞ in such a way that 1/R log r → 0, then the effect of the screen is
negligible for n large.

For the electrostatic problem, cap K(n) → 0 is by no means a necessary condition
for the K(n) to have a negligible effect. Suppose for example that K(n) consists
of n balls, of radius rn, and say their centers are spaced at a distance at least 4rn.
Defining extension operators En as in the proof of Theorem 1, it is easy to see that
hypothesis (A) is satisfied. We show that hypothesis (B) is verified, assuming vol
K(n) = (4π/3)nr3

n → 0.
Define a continuous linear map Q : H1(B2) → H1(B2), with B2 = {x : |x| ≤ 2},

such that

Qu(x) = u(x) for 3/2 ≤ |x| ≤ 2,(i)

Qu(x) is constant for |x| ≤ 1,(ii) ∫

B2

|Qu|2 ≤ C0

∫

B2

|u|2,(iii)

∫

B2

|∇Qu|2 ≤ C0

∫

B2

|∇u|2.(iv)

This is easy to arrange. Given this, you can scale B2 to B2rn(ξjn) = {x : |x−ξjn| ≤
2rn} and get maps with the same properties as (i)–(iv), with the same constant C0.
Thus you get maps Qn : Bn → B such that

Qnu(x) = u(x), x /∈
⋃

j

B2rn(ξjn),(i)

‖Qnu‖2H1(B2rn (ξjn)) ≤ C0‖u‖2H1(B2rn (ξjn)),(ii)

Qnu
∣∣
Ωn
∈ Bn.(iii)

Now with un = Qnu you get

‖un − u‖2H1(R) =
∑

j

‖un − u‖2H1(B2rn (ξjn))

≤ 4C0

∑

j

‖u‖2H1(B2rn (ξjn))

−→ 0 as n →∞,
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since meas ∪jB2rn
(ξjn) → 0. This verifies hypothesis (B).

The conclusion is that if K(n) consists of n “well spaced” balls of radius rn, then
K(n) disappears as n →∞, assuming only that vol K(n) → 0.

4. The case of electromagnetic screening

In this section we will investigate the observed phenomenon of screens behaving
like solid barriers. To be more precise, suppose that K(n) is a conducting screen,
with wires of radius r and spacing R, spread out over the surface S, and that r and
R tend to zero as n → ∞. If (−R log r)−1 → +∞ as n →∞, then for any charge
distribution ρ on R the solutions, ∆−1

n ρ, of the electrostatic problems in R \K(n)
converge to the solution, u, of the problem where S is covered by a sheet of perfect
conductor, that is,

∆u = −4πρ in R \ S,(6)

u = constant on S,(7) ∫

S

[∂u

∂ν

]
= 0 ([ ] denotes the jump on crossing S),(8)

u = 0 on ∂R.(9)

This result complements the result of §3 and confirms the idea that the parameter
(−R log r)−1 is a reasonable measure of the solidity of a screen. It is interesting to
note that the same parameter occurs in the clever special problem treated in §203
of Maxwell’s treatise [3]. In addition, as Maxwell observed, a complete screen is
not needed, just one family of parallel wires which are connected to each other in
any way at all will suffice.

We must make precise the notion of a screen spread smoothly over S, where S
is an open subset of a smooth surface in the interior of R. The intuitive idea is
to take a piece of planar screen and give a mapping of the planar region to the
surface. Precisely, if s ∈ S and O is an open neighborhood of s in R3, then a
mapping ϕ : U → O is called a δ-bending if

U is a cube |xi| < α, i = 1, 2, 3,(i)

ψ
(U ∩ {x3 = 0}) = S ∩ O,(ii)

ψ is a diffeomorphism with ‖Jψ‖ and ‖Jψ−1‖ less(iii)

than δ, where ‖J‖ is the norm of the Jacobian
matrix.

Screens are laid on S by placing a screen in the x3 = 0 plane of U and carrying it
to S by the map ψ.
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Definition 2. A patch of δ-bent screen on S consisting of wires of radius r and
spacing R is the set ψ(Σ), where ψ : U → O is δ-bending and

Σ = {x ∈ U : (x1 − jR)2 + x2
2 ≤ r2, for some j}.

In addition, we require R > 3r.

To form a picture, notice that the wires in Σ are parallel to the x2-axis. The only
interesting case of screening is when the screen has large gaps, that is, R >> r.

Definition 3. A sequence of systems of conductors will be called screens smoothly
covering S if there is a δ > 0, an α > 0, and an integer M such that (1) each system
consists of at most M patches of δ bent screen on S, (2) the sets ψ(Ui), i = 1, . . . ,M
cover S for each system, and (3) the lengths of the sides of the cubes are all greater
than α.

It is important that the electromagnetic potential be constant on the screen, not
just on the individual wires from which it is constructed (for which, see §5). There
are two ways we could arrange this. In one approach, we could suppose that a few
wires are added to the screen so that it becomes a connected set. In the second, we
just prescribe the constancy of the potential on the screen as a boundary condition.
Both methods yield the same results, and we will adapt the second, so that the
basic boundary value problem becomes (1)–(4) with j = 1 and κ1 the screen on S.

As in §2, the boundary value problem (6)–(9) can be given a variational formu-
lation in which u = −4π∆−1

∞ ρ, where ∆∞ is the operator on L2(R) defined by the
quadratic form

a∞(u, v) =
∫

R

∇u · ∇v,

D(a∞) = {u ∈ H1(R) : u = 0 on ∂R, u constant on S}.

Theorem 2. Suppose that K(n), n = 1, 2, . . . , are screens smoothly placed on S,
where K(n) consists of wires of radius rn and spacing Rn. Let ∆n be the operator
on L2(R \ K(n)) as in §2, and Pn : L2(R) → L2(R \ K(n)) be the restriction
mapping. If (−Rn log rn)−1 →∞, then for any continuous function f on (−∞, 0)
bounded at −∞,

f(∆n)Pnρ −→ f(∆∞)ρ in L2(R),

for each ρ ∈ L2(R).

Proof. We describe the modifications that are required to adopt the methods of our
paper [2] on wild perturbations to this setting. First we define uniformly bounded
extension operators En : Bn → B∞ ≡ D(A∞) by extending functions to be constant



8

inside κn
i . As in our previous work (see the proof of Theorem 1.2 in [2]) it suffices

to prove the result for f(x) = (1− x)−1. Imitating the proof of Theorem 4.4 of [2],
we notice that for g ∈ L2(R),

‖(I −∆n)−1Png‖2H1(R\K(n)) = ((I −∆n)(I −∆n)−1Png, (I −∆n)−1Png)R\K(n)

= (Png, (I −∆n)−1Png)R\K(n)

≤ ‖g‖2L2(R),

so that wn ≡ En(I −∆n)−1Png is a bounded sequence in H1(R). Using equation
(5) on Ω = R \ K(n) for the function wn, it is easy to show that if w is a limit
point of the sequence {wn} in the weak topology of H1(R), then

(10)
∫

R

(wu−∇w · ∇u) =
∫

R

gu,

for all u ∈ H1(R) such that u is constant on a neighborhood of S. Since these u are
dense in B∞ = D(a∞), (10) holds for all u ∈ B∞. To show that w = (I −∆∞)−1g,
it therefore suffices to prove that w ∈ B∞, that is, w is constant on S and w = 0 on
∂R. The latter is true since {v ∈ H1(R) : v = 0 on ∂R} is a closed linear subspace,
hence weakly closed. That w is constant on S lies considerably deeper. The crucial
step is the following.

Lemma 3. Let U , Σ, r, and R be as in Definition 2, and let UH = U ∩{|x3| ≤ H}.
Then there is a constant b, independent of H, such that for all v ∈ H1(U) with
v|Σ = 0, ∫

UH

|∇v|2
∫
UH

|v|2 ≥ b

H2 −HR log(r/R)
,

provided H > R > 3r.

We postpone the proof of this lemma to the end of this section. To proceed, let
Un

1 , . . . ,Un
jn

be cubes with ⋃

i

ψn
i (Un

i ) ⊃ S,

the screen K(n) = ∪iψ
n
i (σn

i ). Let cn = wn|screen, and apply (11) to wn ◦ ψn
i − cn.

In this case, Rn log(rn/Rn) → 0 as n → ∞, so the right side of (11) behaves like
const ·H−2 for n large. Letting Sn

H = ∪iψ
n
i (UH), we get

(12)
∫

Sn
H

|wn − cn|2 ≤ const. ·H2.
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Let SH = {x : dist(x, S) ≤ H}. Then since |cn − cm| ≤ |wn − cn| + |wn − wm| +
|wm− cm|, and since, by virtue of (wn) converging weakly in H1(R), we have norm
convergence in L2(R), it follows that, for large m and n,

∫

SH

|cn − cm|2 ≤ const. ·H2,

provided δH > Rn, Rm. Since Vol(SH) approaches zero like a multiple of H, we
get |cn − cm|2 = O(H) for H > Rn, Rm. Letting n,m tend to infinity, we see that
{cn} is a Cauchy sequence, so cn → c for some real c. Passing to the limit in (12)
yields

(13)
1
H

∫

SH

|w − c|2 = O(H),

and it follows that w = c on S, since
∫

S

|w − c|2 ≤ const. lim
H→0

1
H

∫

SH

|w − c|2.

We have now shown that wn converges weakly in H1(R) to w = (I −∆∞)−1g.
Since ‖wn‖H1(R) is bounded independent of n, it follows by the Rellich compactness
theorem that {wn} is precompact in L2(R). Since wn converges weakly to w in
H1(R), it follows that wn → w in norm in L2(R), which is the desired result.

It remains to prove Lemma 3. The proof of (11) is reduced to a two dimensional
problem by considering the x2 = constant cross sections of UH . For these cross
sections X, we prove that

(14)
∫

X

[( ∂v

∂x1

)2

+
( ∂v

∂x2

)2]
dx1 dx2 ≥ const.

H2 −HR log(r/R)

∫

X

v2,

for v that vanish on Σ. This in turn can be proved by chopping the cross section X
into punctured rectangles, of the following form. The rectangles lie in the x1, x3-
plane. They are symmetric about the x3-axis, of height 2H, and width R (the
spacing between wires). Each one has the cross section of a wire (of radius r) at its
center. Thus each rectangle has height 2H, width R, and a puncture at its center
of radius r.

It suffices to prove (14) when the integration is over just one of these punctured
rectangles. The lower bound for such an integral as arises on the left side of (14) is
proved exactly as the inequality (4.1) of [2], so we do not reproduce the argument
here.

This completes the proof of Theorem 2.
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5. Screens whose wires are not connected

The phenomenon just considered in §4 has a great deal in common with the
behavior of the Dirichlet problem, although the proof in the case of the electro-
static boundary problem is a little more involved. It is interesting to note that
the electrostatic problem can exhibit behavior markedly different from that of the
Dirichlet problem. For example, suppose the wire screen described above consists
of wires that are not connected, that is, not at a common potential. If the wires
are parallel to a vector field X on the surface S, and if (−Rn log rn)−1 →∞, then
we claim that the un converge to a solution to the problem

∆u = −4πρ, on R \ S,(14)

[u] = 0, on S,(15)

Xu = 0, on S,(16) ∫

S

[∂u

∂ν

]
v = 0, ∀ v ∈ C∞(S) with Xv = 0,(17)

u = 0, on ∂R.(18)

Since this is not a straightforward application of previously stated results, we
indicate a proof. Let un = −4π∆−1

n ρ, where ∆n is defined on R with electrostatic
boundary conditions on the wires K(n), and un is extended by a constant on each
wire. As usual, {un} is bounded in H1

0 (R), so has a weak limit point u ∈ H1
0 (R).

Clearly u satisfies (14), (15), and (18) above, so we need to prove (16) and (17).
Furthermore, we need only consider those ρ that vanish in a neighborhood of S,
since these are dense in L2(R). If we prove

(19)
−

∫
∇u · ∇v = (−4πρ, v), ∀ v ∈ B, where,

B = {v ∈ H1(R) : Xv = 0 on S},

then (17) will arise as a natural boundary condition.
To prove (19), we need only observe that for each v ∈ B there exist vn ∈ B such

that vn is constant on each wire of K(n) and vn → v in B as n → ∞. Then (19)
holds for vn and we can pass to the limit. The existence of such vn is proved by
constructing operators analogous to the Qs at the end of §3.

It remains to prove that Xu = on S, i.e., that u ∈ B. Indeed, by previous
calculations,

1
H

∫

SH

|un − cn|2 ≤ b
(
H −Rn log

rn

Rn

)
.
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This time, cn is not a constant, but it is constant on each wire of K(n), and in the
direction normal to S. It merely varies from wire to wire. Thus cn ∈ L2(S) and
Xcn = 0. A trivial estimate is

1
H

∫

SH

|un − ũn|2 ≤ β(H) −→ 0, as H → 0,

where ũn = un|S , independent of the normal variable. Putting these together and
letting H → 0 yields

∫

S

|ũn − cn|2 −→ 0, as n →∞.

Since ũn ∈ H1/2(S) is bounded, passing to a subsequence yields ũn → u|S in L2(S).
Hence cn → u|S in L2(S), so Xu = 0 on S, as desired.

An even greater disparity is observed if K(n) consists of n balls of radius rn,
with centers ξjn lying on S and spaced apart a distance at least 4rn (or K(n)
could consist of disks, the intersection of S with these balls). If these obstacles are
connected, say by arbitrarily thin wires, arguments as in the proof of Theorem 2
show that K(n) behaves in the limit as a solid screen S, provided nrn → ∞. For
this proof, Lemma 4.5 of [2] is needed in place of (11). On the other hand, surely
Vol K(n) → 0, so if these balls are not connected up, then, as we have seen at the
end of §3, the obstacles disappear as n →∞.
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