Special Case of Seeley's Trace Theorem via Green's Formula

MICHAEL TAYLOR

The trace theorem for L^2 Sobolev spaces states that, if $\overline{\Omega}$ is a smooth compact manifold with boundary, then the trace $u \mapsto \operatorname{Tr} u = u|_{\partial\Omega}$ yields a bounded map

(1)
$$\operatorname{Tr}: H^{s}(\Omega) \longrightarrow H^{s-1/2}(\partial\Omega), \quad \forall s > \frac{1}{2}.$$

The following extension was proven in [Se]. Let P be an mth order elliptic differential operator, say $P : C^{\infty}(\overline{\Omega}, E_0) \to C^{\infty}(\overline{\Omega}, E_1)$, where E_0 and E_1 are smooth vector bundles of the same fiber dimension. Then

(2)
$$\operatorname{Tr}: H^{s}(\Omega) \cap \operatorname{Ker} P \longrightarrow H^{s-1/2}(\partial \Omega), \quad \forall s \in \mathbb{R}.$$

Here we provide an elementary proof of a special case. Namely, let $D: C^{\infty}(\overline{\Omega}, E_0) \to C^{\infty}(\overline{\Omega}, E_1)$ be a first order elliptic differential operator. We show that

(3)
$$\operatorname{Tr}: L^2(\Omega) \cap \operatorname{Ker} D \longrightarrow H^{-1/2}(\partial \Omega).$$

In fact, we establish a slightly more general result, namely

(3A)
$$\operatorname{Tr}: \{ u \in L^2(\Omega) : Du \in L^2(\Omega) \} \longrightarrow H^{-1/2}(\partial \Omega).$$

The argument is based on Green's formula:

(4)
$$(Du, v)_{L^2(\Omega)} - (u, D^*v)_{L^2(\Omega)} = \frac{1}{i} \int_{\partial\Omega} \langle \sigma_D(x, \nu) u, v \rangle \, dS,$$

cf. [T], Chapter 2, (9.17), where it is established for $u, v \in C^{\infty}(\overline{\Omega})$. By (1), this extends in an elementary fashion to $u, v \in H^1(\Omega)$. We will extend its scope to include u as in (3A). To begin, note that the left side of (4) is well defined for

(5)
$$u \in L^2(\Omega), \quad Du \in L^2(\Omega), \quad v \in H^1(\Omega).$$

Thus we can define Tr in (3A) as follows. Pick $\varphi \in H^{1/2}(\partial\Omega)$. Then pick $v \in H^1(\Omega)$ such that $v|_{\partial\Omega} = \varphi$. (Such v exists; Tr in (1) is surjective.) Then we propose to define

(6)
$$\psi = \operatorname{Tr} u \in H^{-1/2}(\partial\Omega)$$

(7)
$$\frac{1}{i} \langle \sigma_D(x,\nu)\psi,\varphi\rangle = (Du,v)_{L^2(\Omega)} - (u,D^*v)_{L^2(\Omega)}$$

Note that $\sigma_D(x,\nu)$ is smooth and invertible (Since *D* is elliptic) so $\sigma_D(x,\nu)$: $H^{\sigma}(\partial\Omega) \to H^{\sigma}(\partial\Omega)$ is an isomorphism for all $\sigma \in \mathbb{R}$. In order for (7) to actually define ψ , we need to know that the right side of (7) is independent of the choice of $v \in H^1(\Omega)$ satisfying $v|_{\partial\Omega} = \varphi$. So take $v_1 \in H^1(\Omega)$ such that $v_1|_{\partial\Omega} = \varphi$. We need to know that, if u satisfies (5), then

(8)
$$(Du, v)_{L^2(\Omega)} - (u, D^*v)_{L^2(\Omega)} = (Du, v_1)_{L^2(\Omega)} - (u, D^*v_1)_{L^2(\Omega)}.$$

In other words, we need to know that

(9)
$$w = v - v_1 \in H^1_0(\Omega) \Longrightarrow (Du, w)_{L^2(\Omega)} = (u, D^*w)_{L^2(\Omega)},$$

as long as u satisfies (5). Indeed, the identity is clear for $w \in C_0^{\infty}(\Omega)$, and then it follows by an approximation argument, since $C_0^{\infty}(\Omega)$ is dense in $H_0^1(\Omega)$.

Thus the map in (3A) can be specified as follows. Choose an extension operator

(10)
$$E: H^{1/2}(\partial\Omega) \longrightarrow H^1(\Omega),$$

so that $Tr(E\varphi) = \varphi$. Many exist. Then Tr in (3A) is given by

(11)
$$\frac{1}{i} \langle \sigma_D(x,\nu) \operatorname{Tr} u, \varphi \rangle = (Du, E\varphi)_{L^2(\Omega)} - (u, D^* E\varphi)_{L^2(\Omega)}.$$

EXAMPLE. Let Ω be a smoothly bounded domain in \mathbb{C}^n For n = 1, we take $D = \partial/\partial \overline{z}$. If n > 1, $\overline{\partial}$ is overdetermined elliptic. For (3A) to apply to holomorphic functions in $L^2(\Omega)$, when n > 1, one can take

(12)
$$D = \overline{\partial} + \overline{\partial}^*$$

acting on forms of type $(0,q), 0 \le q \le n$.

We next consider another sense in which Tr is well defined in (3A). Let X be a smooth vector field on $\overline{\Omega}$, transverse to $\partial\Omega$, and pointing into Ω on $\partial\Omega$. Let \mathcal{F}_t denote the flow it generates. Let

(13)
$$\overline{\Omega}_t = \mathcal{F}_t(\overline{\Omega}), \quad t \ge 0,$$

so, for $0 < t_1 < t_2$, $\overline{\Omega}_{t_2} \subset \overline{\Omega}_{t_1} \subset \overline{\Omega}_0 = \overline{\Omega}$. If u satisfies the hypotheses of (3A), then, by local elliptic regularity, $u \in H^1_{loc}(\Omega)$, so $u|_{\Omega_t}$ belongs to $H^1(\Omega_t)$ for each t > 0, and we have

(14)
$$(Du,v)_{L^2(\Omega_t)} - (u,D^*v)_{L^2(\Omega_t)} = \frac{1}{i} \int_{\partial\Omega_t} \langle \sigma_D(x,\nu)u,v \rangle \, dS,$$

by

for each $v \in H^1(\Omega)$. Let us set, for t > 0,

(15)
$$u_t = \mathcal{F}_t^*\left(u\big|_{\Omega_t}\right) \in H^1(\Omega), \quad \psi_t = u_t\big|_{\partial\Omega} \in H^{1/2}(\partial\Omega)$$

From (14) we deduce that

(16)
$$\|\psi_t\|_{H^{-1/2}(\partial\Omega)} \le C\big(\|u\|_{L^2(\Omega)} + \|Du\|_{L^2(\Omega)}\big),$$

with C independent of $t \in (0, 1]$. Also, as $t \searrow 0$, the left side of (14) converges to

(17)
$$(Du, v)_{L^2(\Omega)} - (u, D^*v)_{L^2(\Omega)},$$

which, by (7), is equal to

(18)
$$\frac{1}{i} \langle \sigma_D(x,\nu)\psi,\varphi\rangle, \quad \psi = \operatorname{Tr} u,$$

for each $\varphi \in H^{1/2}(\partial \Omega)$, $\varphi = v|_{\partial \Omega}$. Putting together (14), (16), and (18), we deduce that

(19)
$$\psi_t = \mathcal{F}_t^* \left(u \big|_{\partial \Omega_t} \right)$$
 converges weak^{*} in $H^{-1/2}(\partial \Omega)$ to $\operatorname{Tr} u$,

as $t \searrow 0$.

References

- [Se] R. Seeley, Singular integrals and boundary value problems, Amer. J. Math. 88 (1966), 781–809.
- [T] M. Taylor, Partial Differential Equations, Vol. 1, Springer-Verlag NY 1996 (2nd ed. 2011).