Smooth Operators for Principal Series Representations Microlocal Properties

MICHAEL TAYLOR

1. Introduction

Suppose we have a Lie group G acting smoothly on a compact Riemannian manifold X. This gives rise to a representation of G on $L^2(X)$, by

(1.1)
$$U(g)f(x) = f(g^{-1}x).$$

One might throw in a Jacobian factor to make the representation unitary, but this is not so important. We are interested in characterizing the linear operators $A \in \mathcal{L}(L^2(X))$ with the property that

(1.2)
$$A(g) = U(g)AU(g)^{-1}$$

is a C^{∞} function on G with values in $\mathcal{L}(L^2(X))$. We call A a G-smooth operator, or if G is understood simply a smooth operator. We denote the space of G-smooth operators on $L^2(X)$ by

(1.3)
$$OP\mathcal{S}^0_G(X)$$

It was shown in [T] that if

(1.4)
$$G = SO_e(n+1,1), \quad X = S^n,$$

with G acting as the group of conformal transformations on S^n , then the set of G-smooth operators coincides with the algebra $OPS_{1,0}^0(X)$ of pseudodifferential operators.

Observe that such an action yields a principal series representation of $SO_e(n + 1, 1)$. It is tempting to look at other principal series representations. So we might consider more generally

(1.5)
$$X = G/MAN = K/M,$$

where G is a semisimple Lie group, with maximal compact K and Iwasawa decomposition G = KAN, and M is the centralizer of A in K.

For example, one can look at

(1.6)
$$G = S\ell(n, \mathbb{R}), \quad K = SO(n).$$

Then M is the group (of order 2^{n-1}) of diagonal $n \times n$ matrices, with ± 1 s on the diagonal (and determinant 1), and MAN consists of upper triangular $n \times n$

matrices, of determinant 1. In such a case, as we will see, the set of G-smooth operators will be bigger than $OPS_{1,0}^0(X)$, but it will have an intriguing microlocal structure.

2. Distribution kernels of G-smooth operators

Note that if $A \in \mathcal{L}(L^2(X))$ has Schwartz kernel $k_A \in \mathcal{D}'(X \times X)$, and if U(g) has the form (1.1), then $A(g) = U(g)AU(g)^{-1}$ has Schwartz kernel

(2.1)
$$J(g,y) k_A(g^{-1}x,g^{-1}y)$$

Here J(g, y) is a Jacobian factor, belonging to $C^{\infty}(G \times X)$. To proceed, let $\mathcal{L} \subset \mathcal{D}'(X \times X)$ denote the space of Schwartz kernels of bounded linear operators on $L^2(X)$. Then \mathcal{L} is a Banach space of distributions, with the following important property.

Lemma 2.1. The space \mathcal{L} is a module over $C^{\infty}(X \times X)$.

Proof. Given $\varphi \in C^{\infty}(X \times X)$, we can write

(2.2)
$$\varphi(x,y) = \sum_{j,\ell} a_{j\ell} \psi_j(x) \psi_\ell(y),$$

with

(2.3)
$$\|\psi_j\|_{L^{\infty}} \le 1, \quad \sum_{j,\ell} |a_{j\ell}| < \infty.$$

One could use eigenfunction expansions or (easier and better) localize to boxes, reduce consideration to $X = \mathbb{T}^n$, and use Fourier series. Note that a distribution $k \in \mathcal{D}'(X \times X)$ belongs to \mathcal{L} if and only if

(2.4)
$$|\langle k, u(x)v(y)\rangle| \leq C ||u||_{L^2} ||v||_{L^2}.$$

Given this, we have

(2.5)
$$\begin{aligned} \left| \langle \varphi k, u(x)v(y) \rangle \right| &= \left| \sum_{j,\ell} a_{j\ell} \langle k, \psi_j u(x)\psi_\ell v(y) \rangle \right| \\ &\leq C \Big(\sum |a_{j\ell}| \Big) \|u\|_{L^2} \|v\|_{L^2}. \end{aligned}$$

REMARK. Consideration of singular integral operators shows that \mathcal{L} is *not* a module over $C(X \times X)$. The proof above can be extended to show that \mathcal{L} is a module over $H^s(X \times X)$ whenever $s > \dim X$.

Returning to (2.1), we have the following.

Proposition 2.2. A distribution $k \in \mathcal{D}'(X \times X)$ is the Schwartz kernel of a G-smooth operator if and only if

(2.6)
$$k(g^{-1}x, g^{-1}y)$$
 is a C^{∞} function of g with values in \mathcal{L} .

To proceed, given $Y_j \in \mathfrak{g}$, the Lie algebra of G, denote by Y_j^b the vector field on X given by

(2.7)
$$Y_j^b f(x) = \frac{d}{dt} f\left(\exp(-tY_j)x\right)\Big|_{t=0},$$

and by $Y_i^{\#}$ the vector field on $X \times X$ given by

(2.8)
$$Y_j^{\#} f(x,y) = \frac{d}{dt} f\left(\exp(-tY_j)x, \exp(-tY_j)y\right)\Big|_{t=0}.$$

Also denote by \mathfrak{g}^b the associated Lie algebra of vector fields on X and by $\mathfrak{g}^{\#}$ the associated Lie algebra of vector fields on $X \times X$. Note that

(2.9)
$$\mathfrak{g}^{\#} = \{L_x + L_y : L \in \mathfrak{g}^b\}.$$

The smoothness condition (2.6) is equivalent to

(2.10)
$$Y_j^{\#} \in \mathfrak{g}^{\#}, \ m \in \mathbb{Z}^+ \Longrightarrow Y_m^{\#} \cdots Y_1^{\#} k \in \mathcal{L}.$$

We are hence motivated to study the following class of spaces of distributions. Let M be a compact smooth manifold, and let

$$(2.11) E \subset \mathcal{D}'(M)$$

be a Banach space of distributions. Assume

(2.12)
$$E$$
 is a module over $C^{\infty}(M)$.

Let V be a set of smooth vector fields on M. We set

(2.13)
$$\mathcal{I}_E(M,V) = \{ f \in E : X_m \cdots X_1 f \in E, \ \forall X_j \in V, \ m \in \mathbb{Z}^+ \}.$$

The following is easily established.

Proposition 2.3. Let \mathcal{V} be the Lie algebra over $C^{\infty}(M)$ generated by V. If (2.12) holds,

(2.14)
$$\mathcal{I}_E(M,V) = \mathcal{I}_E(M,\mathcal{V}).$$

Returning to the case $M = X \times X$, $E = \mathcal{L}$, we can phrase the Beals-Cordes characterization of $OPS_{1,0}^0(X)$ as follows. Let $\Psi^0(X)$ denote the space of Schwartz kernels of operators in $OPS_{1,0}^0(X)$. Let $\mathfrak{X}(X)$ denote the space of smooth vector fields on X, and consider the set

(2.15)
$$\mathfrak{X}^{\#} = \{L_x + L_y : L \in \mathfrak{X}(X)\}$$

of vector fields on $X \times X$. Then

(2.16)
$$\Psi^0(X) = \mathcal{I}_{\mathcal{L}}(X \times X, \mathfrak{X}^{\#}).$$

Note that the Lie algebra over $C^{\infty}(X \times X)$ generated by $\mathfrak{X}^{\#}$ is equal to

(2.17)
$$\mathfrak{X}_{\Delta} = \{ Y \in \mathfrak{X}(X \times X) : Y \text{ is tangent to } \Delta \},\$$

where

$$(2.18) \qquad \Delta = \{(x,x) : x \in X\} \subset X \times X$$

is the diagonal. Hence the Beals-Cordes result is equivalent to

(2.19)
$$\Psi^0(X) = \mathcal{I}_{\mathcal{L}}(X \times X, \mathfrak{X}_{\Delta}).$$

Looking at Proposition 2.2 and (2.10), we have:

Proposition 2.4. Give a G-action on X, the set of G-smooth operators coincides with $OPS_{1,0}^0(X)$ provided the Lie algebra $\mathcal{G}^{\#}$ over $C^{\infty}(X \times X)$ generated by $\mathfrak{g}^{\#}$ coincides with \mathfrak{X}_{Δ} .

Proof. The analysis given above shows that the space of Schwartz kernels of G-smooth operators is equal to

(2.20)
$$\mathcal{I}_{\mathcal{L}}(X \times X, \mathcal{G}^{\#}).$$

It is clear that in general $\mathcal{G}^{\#} \subset \mathfrak{X}_{\Delta}$. We will show in §3 that $\mathcal{G}^{\#} = \mathfrak{X}_{\Delta}$ when $G = SO_e(n+1,1), X = S^n$, as in (1.4). In §4 we will see that $\mathcal{G}^{\#}$ is somewhat smaller than \mathfrak{X}_{Δ} when $G = S\ell(3,\mathbb{R}), X = SO(3)/M$.

REMARK. Proposition 2.4 can be compared with the basic general result of [T], which is that $OPS_G^0(X) = OPS_{1,0}^0(X)$ provided the moment map

is an embedding.

REMARK. If we replace \mathcal{L} by $L^2 = L^2(X \times X)$, we see that $\mathcal{I}_{L^2}(X \times X, \mathcal{G}^{\#})$ is the

space of Schwartz kernels of Hilbert-Schmidt operators A on $L^2(X)$ for which A(g) in (1.2) is a C^{∞} function on G with values in $HS(L^2(X))$.

3. The case of $SO_e(n+1,1)$ acting on S^n

Here we consider $G = SO_e(n+1,1)$, $X = S^n = G/P$. We consider the Lie algebra $\mathfrak{g}^{\#}$ of vector fields on $X \times X$ generated by the *G*-action

$$(3.1) g \cdot (x,y) = (gx,gy).$$

We claim that $\mathcal{G}^{\#}$, the Lie algebra over $C^{\infty}(X \times X)$ generated by $\mathfrak{g}^{\#}$, is equal to \mathfrak{X}_{Δ} , the Lie algebra of C^{∞} vector fields on $X \times X$ that are tangent to the diagonal $\Delta \subset X \times X$. In particular, we claim that there are just two *G*-orbits in $X \times X$, namely Δ and $X \times X \setminus \Delta$.

Lemma 3.1. Given $x, y, x', y' \in S^n$, with $x \neq y$ and $x' \neq y'$, there exists $g \in SO_e(n+1,1)$ such that gx = x' and gy = y'.

Proof. Since S^n is a homogeneous *G*-space, we readily reduce to the case x = x'. So, given $y \neq x$ and $y' \neq x$, we claim there exists $g \in G$, fixing x, such that gy = y'. Considering rotations that fix x and conformal maps that push points in S^n away from x and toward its antipode makes the statement clear when neither y nor y'is antipodal to x. The case where y (or y') is antipodal to x is taken care of by a simple additional argument.

4. The case of $S\ell(3,\mathbb{R})$ acting on SO(3)/M

Here we consider $G = S\ell(3,\mathbb{R})$, acting on X = G/MAN = SO(3)/M, where M is the group of order 4 consisting of 3×3 diagonal matrices, with ± 1 s on the diagonal (and determinant 1). We consider the G-action on $X \times X$ given by

(4.1)
$$g \cdot (x, y) = (gx, gy).$$

Proposition 4.1. The G-action on $X \times X$ has five (or is it four?) orbits:

- (i) Δ , the diagonal in $X \times X$, of codimension 3,
- (ii) $\mathcal{A}, \mathcal{B}, \text{ orbits of codimension } 2,$
- (iii) C, orbit of codimension 1,
- (iv) \mathcal{D} , a dense orbit.

Furthermore, $\overline{\mathcal{A}} = \mathcal{A} \cup \Delta$, $\overline{\mathcal{B}} = \mathcal{B} \cup \Delta$, and $\overline{\mathcal{C}} = \mathcal{C} \cup \mathcal{B} \cup \mathcal{A} \cup \Delta$.

Fix $x_0 \in X$ and for each *G*-orbit \mathcal{O} , let $\mathcal{O}_{x_0} = \{y \in X : (x_0, y) \in \mathcal{O}\}$. If P_{x_0} is the subgroup of *G* fixing x_0 , and if $y_0 \in \mathcal{O}_{x_0}$ is some point, then

(4.2)
$$\mathcal{O}_{x_0} = \{gy_0 : g \in P_{x_0}\}.$$

Let us take x_0 to be the image of the identity $I \in G$ under $G \to G/P$, and look at the orbits of P acting on G/P. There are 5 such orbits:

$$\Delta_{x_0} = \{x_0\},$$

(ii) $\mathcal{A}_{x_0}, \mathcal{B}_{x_0}$, orbits of dimension 1,

- (iii) \mathcal{C}_{x_0} , orbit of dimension 2,
- (iv) \mathcal{D}_{x_0} , an orbit dense in X.

Furthermore, $\overline{\mathcal{A}}_{x_0} = \mathcal{A}_{x_0} \cup \Delta_{x_0}$, $\overline{\mathcal{B}}_{x_0} = \mathcal{B}_{x_0} \cup \Delta_{x_0}$, and $\overline{\mathcal{C}}_{x_0} = \mathcal{C}_{x_0} \cup \mathcal{B}_{x_0} \cup \mathcal{A}_{x_0} \cup \Delta_{x_0}$. Here is one way to describe these orbits in X = SO(3)/M. The space SO(3) consisting of orthogonal matrices

(4.3)
$$\begin{pmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{pmatrix},$$

with $w = u \times v$, is naturally identified with the unit tangent bundle T_1S^2 of S^2 , with $u \in S^2$, $v \in T_uS^2$. The action of elements of M can take u to $\pm u$ and v to $\pm v$. So antipodal elements of S^2 identified, as are unit tangent vectors pointing in opposite directions. We describe the pre-images in $SO(3) = T_1S^2$ of the P-orbits, using the same labels as for the orbits themselves. Recall that we are taking x_0 to be the class of P in G/P. We have

$$\Delta_{x_{0}} = \left\{ \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} \right\}, \\ \mathcal{A}_{x_{0}} = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & a & * \end{pmatrix} \in SO(3) : a \neq 0 \right\}, \\ (4.4) \qquad \mathcal{B}_{x_{0}} = \left\{ \begin{pmatrix} * & * & * \\ a & * & * \\ 0 & 0 & * \end{pmatrix} \in SO(3) : a \neq 0 \right\}, \\ \mathcal{C}_{x_{0}} = \left\{ \begin{pmatrix} * & * & * \\ a & * & * \\ 0 & b & * \end{pmatrix} \in SO(3) : a \neq 0, \ b \neq 0 \right\}, \\ \mathcal{D}_{x_{0}} = \left\{ \begin{pmatrix} * & * & * \\ a & * & * \\ a & * & * \\ a & * & * \end{pmatrix} \in SO(3) : a \neq 0 \right\}.$$

(4.5)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \mod P, \quad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mod P,$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mod P, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \mod P.$$

Recall that P consists of upper triangular matrices in $S\ell(3,\mathbb{R})$.

A way to picture these pre-images in T_1S^2 is as follows. We define the equator $\mathcal{E} \subset S^2$ to consist of $\{u \in S^2 : u_3 = 0\}$, and we set $e_1 = (1, 0, 0)^t \in S^2$. Then

 Δ_{x_0} consists of points in T_1S^2 lying over e_1 , tangent to the equator \mathcal{E} ,

 \mathcal{A}_{x_0} consists of points lying over e_1 , not tangent to \mathcal{E} ,

(4.6) \mathcal{B}_{x_0} consists of points lying over $\mathcal{E} \setminus \{e_1\}$, tangent to \mathcal{E} , \mathcal{C}_{x_0} consists of points lying over $\mathcal{E} \setminus \{e_1\}$, not tangent to \mathcal{E} , \mathcal{D}_{x_0} consists of points lying over $S^2 \setminus \mathcal{E}$.

Note that some of these sets are disconnected, but once you mod out by the action of M the resulting orbits are seen to be connected.

REMARK. While there are five different orbits described in (4.6), it is conceivable that \mathcal{A}_{x_0} and \mathcal{B}_{x_0} twist about as x_0 varies in such a fashion that $\mathcal{A} = \mathcal{B}$. This needs to be checked.

ASSERTION. $\mathcal{G}^{\#}$ consists of all C^{∞} vector fields on $X \times X$ that are tangent to Δ , \mathcal{A} , \mathcal{B} , and \mathcal{C} .

Recall that the space of Schwartz kernels of G-smooth operators is equal to

(4.7)
$$\mathcal{I}_{\mathcal{L}}(X \times X, \mathcal{G}^{\#}).$$

5. Further musings

As we have noted, the Beals-Cordes characterization of $OPS_{1,0}^0(X)$ gives

(5.1)
$$\Psi^0(X) = \mathcal{I}_{\mathcal{L}}(X \times X, \mathfrak{X}_{\Delta}).$$

Meanwhile, according to the development of Lagrangian distributions in Chapter 25 of [H], there is a parallel result with \mathcal{L} replaced by a Besov space:

(5.2)
$$\Psi^{0}(X) = \mathcal{I}_{\mathcal{B}}(X \times X, \mathfrak{X}_{\Delta}), \quad \mathcal{B} = B_{2,\infty}^{-n/2}(X \times X),$$

where $n = \dim X$. Thus the right sides of (5.1) and (5.2) coincide, though certainly $\mathcal{L} \neq \mathcal{B}$. One might wonder if there is a short demonstration of this, which does not proceed through the demonstration that each such space is equal to $\Psi^0(X)$. One might also wonder about the following.

QUESTION 1. For what other Banach spaces of distributions $E \subset \mathcal{D}'(X \times X)$ can one say

(5.3)
$$\Psi^0(X) = \mathcal{I}_E(X \times X, \mathfrak{X}_\Delta)?$$

QUESTION 2. Given a Lie algebra $\mathcal{G}^{\#} \subset \mathfrak{X}_{\Delta}$, when can one say

(5.4)
$$\mathcal{I}_{\mathcal{L}}(X \times X, \mathcal{G}^{\#}) = \mathcal{I}_{E}(X \times X, \mathcal{G}^{\#})?$$

References

- [B] R. Beals, Characterizations of pseudodifferential operators and applications, Duke Math. J. 44 (1977), 45–57; correction 46 (1979), 215.
- [C1] H. Cordes, On pseudodifferential operators and smoothness of special Lie group representations, Manuscripta Math. 28 (1979), 51–69.
- [C2] H. Cordes, The technique of pseudodifferential operators, LMS #202, Cambridge Univ. Press, 1995.
- [H] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 4, Springer-Verlag, New York, 1985.
- [T] M. Taylor, Beals-Cordes-type characterizations of pseudodifferential operators, Proc. AMS 125 (1997), 1711–1716.