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1. Introduction

Suppose we have a Lie group G acting smoothly on a compact Riemannian
manifold X. This gives rise to a representation of G on L2(X), by

(1.1) U(g)f(x) = f(g−1x).

One might throw in a Jacobian factor to make the representation unitary, but
this is not so important. We are interested in characterizing the linear operators
A ∈ L(L2(X)) with the property that

(1.2) A(g) = U(g)AU(g)−1

is a C∞ function on G with values in L(L2(X)). We call A a G-smooth operator,
or if G is understood simply a smooth operator. We denote the space of G-smooth
operators on L2(X) by

(1.3) OPS0
G(X).

It was shown in [T] that if

(1.4) G = SOe(n + 1, 1), X = Sn,

with G acting as the group of conformal transformations on Sn, then the set of
G-smooth operators coincides with the algebra OPS0

1,0(X) of pseudodifferential
operators.

Observe that such an action yields a principal series representation of SOe(n +
1, 1). It is tempting to look at other principal series representations. So we might
consider more generally

(1.5) X = G/MAN = K/M,

where G is a semisimple Lie group, with maximal compact K and Iwasawa decom-
position G = KAN , and M is the centralizer of A in K.

For example, one can look at

(1.6) G = S`(n,R), K = SO(n).

Then M is the group (of order 2n−1) of diagonal n × n matrices, with ±1s on
the diagonal (and determinant 1), and MAN consists of upper triangular n × n
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matrices, of determinant 1. In such a case, as we will see, the set of G-smooth
operators will be bigger than OPS0

1,0(X), but it will have an intriguing microlocal
structure.

2. Distribution kernels of G-smooth operators

Note that if A ∈ L(L2(X)) has Schwartz kernel kA ∈ D′(X × X), and if U(g)
has the form (1.1), then A(g) = U(g)AU(g)−1 has Schwartz kernel

(2.1) J(g, y) kA(g−1x, g−1y).

Here J(g, y) is a Jacobian factor, belonging to C∞(G × X). To proceed, let L ⊂
D′(X × X) denote the space of Schwartz kernels of bounded linear operators on
L2(X). Then L is a Banach space of distributions, with the following important
property.

Lemma 2.1. The space L is a module over C∞(X ×X).

Proof. Given ϕ ∈ C∞(X ×X), we can write

(2.2) ϕ(x, y) =
∑

j,`

aj` ψj(x)ψ`(y),

with

(2.3) ‖ψj‖L∞ ≤ 1,
∑

j,`

|aj`| < ∞.

One could use eigenfunction expansions or (easier and better) localize to boxes,
reduce consideration to X = Tn, and use Fourier series. Note that a distribution
k ∈ D′(X ×X) belongs to L if and only if

(2.4)
∣∣〈k, u(x)v(y)〉

∣∣ ≤ C‖u‖L2‖v‖L2 .

Given this, we have

(2.5)

∣∣〈ϕk, u(x)v(y)〉
∣∣ =

∣∣∣
∑

j,`

aj` 〈k, ψju(x)ψ`v(y)〉
∣∣∣

≤ C
(∑

|aj`|
)
‖u‖L2‖v‖L2 .

Remark. Consideration of singular integral operators shows that L is not a module
over C(X ×X). The proof above can be extended to show that L is a module over
Hs(X ×X) whenever s > dim X.

Returning to (2.1), we have the following.
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Proposition 2.2. A distribution k ∈ D′(X × X) is the Schwartz kernel of a G-
smooth operator if and only if

(2.6) k(g−1x, g−1y) is a C∞ function of g with values in L.

To proceed, given Yj ∈ g, the Lie algebra of G, denote by Y b
j the vector field on

X given by

(2.7) Y b
j f(x) =

d

dt
f
(
exp(−tYj)x

)∣∣
t=0

,

and by Y #
j the vector field on X ×X given by

(2.8) Y #
j f(x, y) =

d

dt
f
(
exp(−tYj)x, exp(−tYj)y

)∣∣
t=0

.

Also denote by gb the associated Lie algebra of vector fields on X and by g# the
associated Lie algebra of vector fields on X ×X. Note that

(2.9) g# = {Lx + Ly : L ∈ gb}.

The smoothness condition (2.6) is equivalent to

(2.10) Y #
j ∈ g#, m ∈ Z+ =⇒ Y #

m · · ·Y #
1 k ∈ L.

We are hence motivated to study the following class of spaces of distributions.
Let M be a compact smooth manifold, and let

(2.11) E ⊂ D′(M)

be a Banach space of distributions. Assume

(2.12) E is a module over C∞(M).

Let V be a set of smooth vector fields on M . We set

(2.13) IE(M,V ) = {f ∈ E : Xm · · ·X1f ∈ E, ∀Xj ∈ V, m ∈ Z+}.

The following is easily established.

Proposition 2.3. Let V be the Lie algebra over C∞(M) generated by V . If (2.12)
holds,

(2.14) IE(M,V ) = IE(M,V).
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Returning to the case M = X × X, E = L, we can phrase the Beals-Cordes
characterization of OPS0

1,0(X) as follows. Let Ψ0(X) denote the space of Schwartz
kernels of operators in OPS0

1,0(X). Let X(X) denote the space of smooth vector
fields on X, and consider the set

(2.15) X# = {Lx + Ly : L ∈ X(X)}

of vector fields on X ×X. Then

(2.16) Ψ0(X) = IL(X ×X, X#).

Note that the Lie algebra over C∞(X ×X) generated by X# is equal to

(2.17) X∆ = {Y ∈ X(X ×X) : Y is tangent to ∆},

where

(2.18) ∆ = {(x, x) : x ∈ X} ⊂ X ×X

is the diagonal. Hence the Beals-Cordes result is equivalent to

(2.19) Ψ0(X) = IL(X ×X, X∆).

Looking at Proposition 2.2 and (2.10), we have:

Proposition 2.4. Give a G-action on X, the set of G-smooth operators coincides
with OPS0

1,0(X) provided the Lie algebra G# over C∞(X × X) generated by g#

coincides with X∆.

Proof. The analysis given above shows that the space of Schwartz kernels of G-
smooth operators is equal to

(2.20) IL(X ×X,G#).

It is clear that in general G# ⊂ X∆. We will show in §3 that G# = X∆ when
G = SOe(n + 1, 1), X = Sn, as in (1.4). In §4 we will see that G# is somewhat
smaller than X∆ when G = S`(3,R), X = SO(3)/M .

Remark. Proposition 2.4 can be compared with the basic general result of [T],
which is that OPS0

G(X) = OPS0
1,0(X) provided the moment map

(2.21) T ∗X \ 0 −→ g∗ \ 0

is an embedding.

Remark. If we replace L by L2 = L2(X ×X), we see that IL2(X ×X,G#) is the
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space of Schwartz kernels of Hilbert-Schmidt operators A on L2(X) for which A(g)
in (1.2) is a C∞ function on G with values in HS(L2(X)).

3. The case of SOe(n + 1, 1) acting on Sn

Here we consider G = SOe(n + 1, 1), X = Sn = G/P . We consider the Lie
algebra g# of vector fields on X ×X generated by the G-action

(3.1) g · (x, y) = (gx, gy).

We claim that G#, the Lie algebra over C∞(X ×X) generated by g#, is equal to
X∆, the Lie algebra of C∞ vector fields on X ×X that are tangent to the diagonal
∆ ⊂ X × X. In particular, we claim that there are just two G-orbits in X × X,
namely ∆ and X ×X \∆.

Lemma 3.1. Given x, y, x′, y′ ∈ Sn, with x 6= y and x′ 6= y′, there exists g ∈
SOe(n + 1, 1) such that gx = x′ and gy = y′.

Proof. Since Sn is a homogeneous G-space, we readily reduce to the case x = x′.
So, given y 6= x and y′ 6= x, we claim there exists g ∈ G, fixing x, such that gy = y′.
Considering rotations that fix x and conformal maps that push points in Sn away
from x and toward its antipode makes the statement clear when neither y nor y′

is antipodal to x. The case where y (or y′) is antipodal to x is taken care of by a
simple additional argument.

4. The case of S`(3,R) acting on SO(3)/M

Here we consider G = S`(3,R), acting on X = G/MAN = SO(3)/M , where
M is the group of order 4 consisting of 3 × 3 diagonal matrices, with ±1s on the
diagonal (and determinant 1). We consider the G-action on X ×X given by

(4.1) g · (x, y) = (gx, gy).

Proposition 4.1. The G-action on X ×X has five (or is it four?) orbits:

∆, the diagonal in X ×X, of codimension 3,(i)

A, B, orbits of codimension 2,(ii)

C, orbit of codimension 1,(iii)

D, a dense orbit.(iv)

Furthermore, A = A ∪∆, B = B ∪∆, and C = C ∪ B ∪ A ∪∆.
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Fix x0 ∈ X and for each G-orbit O, let Ox0 = {y ∈ X : (x0, y) ∈ O}. If Px0 is
the subgroup of G fixing x0, and if y0 ∈ Ox0 is some point, then

(4.2) Ox0 = {gy0 : g ∈ Px0}.

Let us take x0 to be the image of the identity I ∈ G under G → G/P , and look at
the orbits of P acting on G/P . There are 5 such orbits:

∆x0 = {x0},(i)

Ax0 , Bx0 , orbits of dimension 1,(ii)

Cx0 , orbit of dimension 2,(iii)

Dx0 , an orbit dense in X.(iv)

Furthermore, Ax0 = Ax0 ∪∆x0 , Bx0 = Bx0 ∪∆x0 , and Cx0 = Cx0 ∪Bx0 ∪Ax0 ∪∆x0 .
Here is one way to describe these orbits in X = SO(3)/M . The space SO(3)

consisting of orthogonal matrices

(4.3)




u1 v1 w1

u2 v2 w2

u3 v3 w3


 ,

with w = u × v, is naturally identified with the unit tangent bundle T1S
2 of S2,

with u ∈ S2, v ∈ TuS2. The action of elements of M can take u to ±u and v to
±v. So antipodal elements of S2 identified, as are unit tangent vectors pointing in
opposite directions. We describe the pre-images in SO(3) = T1S

2 of the P -orbits,
using the same labels as for the orbits themselves. Recall that we are taking x0 to
be the class of P in G/P . We have

(4.4)

∆x0 =








1
1

1






 ,

Ax0 =








1 ∗ ∗
0 ∗ ∗
0 a ∗


 ∈ SO(3) : a 6= 0



 ,

Bx0 =







∗ ∗ ∗
a ∗ ∗
0 0 ∗


 ∈ SO(3) : a 6= 0



 ,

Cx0 =







∗ ∗ ∗
a ∗ ∗
0 b ∗


 ∈ SO(3) : a 6= 0, b 6= 0



 ,

Dx0 =







∗ ∗ ∗
∗ ∗ ∗
a ∗ ∗


 ∈ SO(3) : a 6= 0



 .
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The last four sets are (pre-images of) P -orbits containing, respectively, the following
points in X = G/P :

(4.5)




1 0 0
0 1 0
0 1 1


 mod P,




1 0 0
1 1 0
0 0 1


 mod P,




1 0 0
1 1 0
0 1 1


 mod P,




1 0 0
0 1 0
1 0 1


 mod P.

Recall that P consists of upper triangular matrices in S`(3,R).
A way to picture these pre-images in T1S

2 is as follows. We define the equator
E ⊂ S2 to consist of {u ∈ S2 : u3 = 0}, and we set e1 = (1, 0, 0)t ∈ S2. Then

(4.6)

∆x0 consists of points in T1S
2 lying over e1, tangent to the equator E ,

Ax0 consists of points lying over e1, not tangent to E ,

Bx0 consists of points lying over E \ {e1}, tangent to E ,

Cx0 consists of points lying over E \ {e1}, not tangent to E ,

Dx0 consists of points lying over S2 \ E .

Note that some of these sets are disconnected, but once you mod out by the action
of M the resulting orbits are seen to be connected.

Remark. While there are five different orbits described in (4.6), it is conceivable
that Ax0 and Bx0 twist about as x0 varies in such a fashion that A = B. This needs
to be checked.

Assertion. G# consists of all C∞ vector fields on X × X that are tangent to
∆, A, B, and C.

Recall that the space of Schwartz kernels of G-smooth operators is equal to

(4.7) IL(X ×X,G#).

5. Further musings

As we have noted, the Beals-Cordes characterization of OPS0
1,0(X) gives

(5.1) Ψ0(X) = IL(X ×X, X∆).
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Meanwhile, according to the development of Lagrangian distributions in Chapter
25 of [H], there is a parallel result with L replaced by a Besov space:

(5.2) Ψ0(X) = IB(X ×X, X∆), B = B
−n/2
2,∞ (X ×X),

where n = dim X. Thus the right sides of (5.1) and (5.2) coincide, though certainly
L 6= B. One might wonder if there is a short demonstration of this, which does not
proceed through the demonstration that each such space is equal to Ψ0(X). One
might also wonder about the following.

Question 1. For what other Banach spaces of distributions E ⊂ D′(X ×X) can
one say

(5.3) Ψ0(X) = IE(X ×X, X∆)?

Question 2. Given a Lie algebra G# ⊂ X∆, when can one say

(5.4) IL(X ×X,G#) = IE(X ×X,G#)?
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