Smooth Operators for Principal Series Representations Microlocal Properties

Michael Taylor

1. Introduction

Suppose we have a Lie group G acting smoothly on a compact Riemannian manifold X. This gives rise to a representation of G on $L^{2}(X)$, by

$$
\begin{equation*}
U(g) f(x)=f\left(g^{-1} x\right) \tag{1.1}
\end{equation*}
$$

One might throw in a Jacobian factor to make the representation unitary, but this is not so important. We are interested in characterizing the linear operators $A \in \mathcal{L}\left(L^{2}(X)\right)$ with the property that

$$
\begin{equation*}
A(g)=U(g) A U(g)^{-1} \tag{1.2}
\end{equation*}
$$

is a C^{∞} function on G with values in $\mathcal{L}\left(L^{2}(X)\right)$. We call A a G-smooth operator, or if G is understood simply a smooth operator. We denote the space of G-smooth operators on $L^{2}(X)$ by

$$
\begin{equation*}
O P \mathcal{S}_{G}^{0}(X) \tag{1.3}
\end{equation*}
$$

It was shown in $[\mathrm{T}]$ that if

$$
\begin{equation*}
G=S O_{e}(n+1,1), \quad X=S^{n} \tag{1.4}
\end{equation*}
$$

with G acting as the group of conformal transformations on S^{n}, then the set of G-smooth operators coincides with the algebra $O P S_{1,0}^{0}(X)$ of pseudodifferential operators.

Observe that such an action yields a principal series representation of $S O_{e}(n+$ $1,1)$. It is tempting to look at other principal series representations. So we might consider more generally

$$
\begin{equation*}
X=G / M A N=K / M \tag{1.5}
\end{equation*}
$$

where G is a semisimple Lie group, with maximal compact K and Iwasawa decomposition $G=K A N$, and M is the centralizer of A in K.

For example, one can look at

$$
\begin{equation*}
G=S \ell(n, \mathbb{R}), \quad K=S O(n) \tag{1.6}
\end{equation*}
$$

Then M is the group (of order 2^{n-1}) of diagonal $n \times n$ matrices, with $\pm 1 \mathrm{~s}$ on the diagonal (and determinant 1), and MAN consists of upper triangular $n \times n$
matrices, of determinant 1. In such a case, as we will see, the set of G-smooth operators will be bigger than $O P S_{1,0}^{0}(X)$, but it will have an intriguing microlocal structure.

2. Distribution kernels of G-smooth operators

Note that if $A \in \mathcal{L}\left(L^{2}(X)\right)$ has Schwartz kernel $k_{A} \in \mathcal{D}^{\prime}(X \times X)$, and if $U(g)$ has the form (1.1), then $A(g)=U(g) A U(g)^{-1}$ has Schwartz kernel

$$
\begin{equation*}
J(g, y) k_{A}\left(g^{-1} x, g^{-1} y\right) \tag{2.1}
\end{equation*}
$$

Here $J(g, y)$ is a Jacobian factor, belonging to $C^{\infty}(G \times X)$. To proceed, let $\mathcal{L} \subset$ $\mathcal{D}^{\prime}(X \times X)$ denote the space of Schwartz kernels of bounded linear operators on $L^{2}(X)$. Then \mathcal{L} is a Banach space of distributions, with the following important property.

Lemma 2.1. The space \mathcal{L} is a module over $C^{\infty}(X \times X)$.
Proof. Given $\varphi \in C^{\infty}(X \times X)$, we can write

$$
\begin{equation*}
\varphi(x, y)=\sum_{j, \ell} a_{j \ell} \psi_{j}(x) \psi_{\ell}(y) \tag{2.2}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\|\psi_{j}\right\|_{L^{\infty}} \leq 1, \quad \sum_{j, \ell}\left|a_{j \ell}\right|<\infty . \tag{2.3}
\end{equation*}
$$

One could use eigenfunction expansions or (easier and better) localize to boxes, reduce consideration to $X=\mathbb{T}^{n}$, and use Fourier series. Note that a distribution $k \in \mathcal{D}^{\prime}(X \times X)$ belongs to \mathcal{L} if and only if

$$
\begin{equation*}
|\langle k, u(x) v(y)\rangle| \leq C\|u\|_{L^{2}}\|v\|_{L^{2}} . \tag{2.4}
\end{equation*}
$$

Given this, we have

$$
\begin{align*}
|\langle\varphi k, u(x) v(y)\rangle| & =\left|\sum_{j, \ell} a_{j \ell}\left\langle k, \psi_{j} u(x) \psi_{\ell} v(y)\right\rangle\right| \tag{2.5}\\
& \leq C\left(\sum\left|a_{j \ell}\right|\right)\|u\|_{L^{2}}\|v\|_{L^{2}} .
\end{align*}
$$

Remark. Consideration of singular integral operators shows that \mathcal{L} is not a module over $C(X \times X)$. The proof above can be extended to show that \mathcal{L} is a module over $H^{s}(X \times X)$ whenever $s>\operatorname{dim} X$.

Returning to (2.1), we have the following.

Proposition 2.2. A distribution $k \in \mathcal{D}^{\prime}(X \times X)$ is the Schwartz kernel of a G smooth operator if and only if

$$
\begin{equation*}
k\left(g^{-1} x, g^{-1} y\right) \text { is a } C^{\infty} \text { function of } g \text { with values in } \mathcal{L} . \tag{2.6}
\end{equation*}
$$

To proceed, given $Y_{j} \in \mathfrak{g}$, the Lie algebra of G, denote by Y_{j}^{b} the vector field on X given by

$$
\begin{equation*}
Y_{j}^{b} f(x)=\left.\frac{d}{d t} f\left(\exp \left(-t Y_{j}\right) x\right)\right|_{t=0} \tag{2.7}
\end{equation*}
$$

and by $Y_{j}^{\#}$ the vector field on $X \times X$ given by

$$
\begin{equation*}
Y_{j}^{\#} f(x, y)=\left.\frac{d}{d t} f\left(\exp \left(-t Y_{j}\right) x, \exp \left(-t Y_{j}\right) y\right)\right|_{t=0} \tag{2.8}
\end{equation*}
$$

Also denote by \mathfrak{g}^{b} the associated Lie algebra of vector fields on X and by $\mathfrak{g}^{\#}$ the associated Lie algebra of vector fields on $X \times X$. Note that

$$
\begin{equation*}
\mathfrak{g}^{\#}=\left\{L_{x}+L_{y}: L \in \mathfrak{g}^{b}\right\} . \tag{2.9}
\end{equation*}
$$

The smoothness condition (2.6) is equivalent to

$$
\begin{equation*}
Y_{j}^{\#} \in \mathfrak{g}^{\#}, m \in \mathbb{Z}^{+} \Longrightarrow Y_{m}^{\#} \cdots Y_{1}^{\#} k \in \mathcal{L} \tag{2.10}
\end{equation*}
$$

We are hence motivated to study the following class of spaces of distributions. Let M be a compact smooth manifold, and let

$$
\begin{equation*}
E \subset \mathcal{D}^{\prime}(M) \tag{2.11}
\end{equation*}
$$

be a Banach space of distributions. Assume

$$
\begin{equation*}
E \text { is a module over } C^{\infty}(M) \tag{2.12}
\end{equation*}
$$

Let V be a set of smooth vector fields on M. We set

$$
\begin{equation*}
\mathcal{I}_{E}(M, V)=\left\{f \in E: X_{m} \cdots X_{1} f \in E, \forall X_{j} \in V, m \in \mathbb{Z}^{+}\right\} \tag{2.13}
\end{equation*}
$$

The following is easily established.
Proposition 2.3. Let \mathcal{V} be the Lie algebra over $C^{\infty}(M)$ generated by V. If (2.12) holds,

$$
\begin{equation*}
\mathcal{I}_{E}(M, V)=\mathcal{I}_{E}(M, \mathcal{V}) . \tag{2.14}
\end{equation*}
$$

Returning to the case $M=X \times X, E=\mathcal{L}$, we can phrase the Beals-Cordes characterization of $O P S_{1,0}^{0}(X)$ as follows. Let $\Psi^{0}(X)$ denote the space of Schwartz kernels of operators in $O P S_{1,0}^{0}(X)$. Let $\mathfrak{X}(X)$ denote the space of smooth vector fields on X, and consider the set

$$
\begin{equation*}
\mathfrak{X}^{\#}=\left\{L_{x}+L_{y}: L \in \mathfrak{X}(X)\right\} \tag{2.15}
\end{equation*}
$$

of vector fields on $X \times X$. Then

$$
\begin{equation*}
\Psi^{0}(X)=\mathcal{I}_{\mathcal{L}}\left(X \times X, \mathfrak{X}^{\#}\right) \tag{2.16}
\end{equation*}
$$

Note that the Lie algebra over $C^{\infty}(X \times X)$ generated by $\mathfrak{X} \#$ is equal to

$$
\begin{equation*}
\mathfrak{X}_{\Delta}=\{Y \in \mathfrak{X}(X \times X): Y \text { is tangent to } \Delta\}, \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\{(x, x): x \in X\} \subset X \times X \tag{2.18}
\end{equation*}
$$

is the diagonal. Hence the Beals-Cordes result is equivalent to

$$
\begin{equation*}
\Psi^{0}(X)=\mathcal{I}_{\mathcal{L}}\left(X \times X, \mathfrak{X}_{\Delta}\right) . \tag{2.19}
\end{equation*}
$$

Looking at Proposition 2.2 and (2.10), we have:
Proposition 2.4. Give a G-action on X, the set of G-smooth operators coincides with $O P S_{1,0}^{0}(X)$ provided the Lie algebra $\mathcal{G}^{\#}$ over $C^{\infty}(X \times X)$ generated by $\mathfrak{g}^{\#}$ coincides with \mathfrak{X}_{Δ}.
Proof. The analysis given above shows that the space of Schwartz kernels of G smooth operators is equal to

$$
\begin{equation*}
\mathcal{I}_{\mathcal{L}}\left(X \times X, \mathcal{G}^{\#}\right) \tag{2.20}
\end{equation*}
$$

It is clear that in general $\mathcal{G}^{\#} \subset \mathfrak{X}_{\Delta}$. We will show in $\S 3$ that $\mathcal{G}^{\#}=\mathfrak{X}_{\Delta}$ when $G=S O_{e}(n+1,1), X=S^{n}$, as in (1.4). In $\S 4$ we will see that $\mathcal{G}^{\#}$ is somewhat smaller than \mathfrak{X}_{Δ} when $G=S \ell(3, \mathbb{R}), \quad X=S O(3) / M$.

Remark. Proposition 2.4 can be compared with the basic general result of [T], which is that $O P \mathcal{S}_{G}^{0}(X)=O P S_{1,0}^{0}(X)$ provided the moment map

$$
\begin{equation*}
T^{*} X \backslash 0 \longrightarrow \mathfrak{g}^{*} \backslash 0 \tag{2.21}
\end{equation*}
$$

is an embedding.
Remark. If we replace \mathcal{L} by $L^{2}=L^{2}(X \times X)$, we see that $\mathcal{I}_{L^{2}}\left(X \times X, \mathcal{G}^{\#}\right)$ is the
space of Schwartz kernels of Hilbert-Schmidt operators A on $L^{2}(X)$ for which $A(g)$ in (1.2) is a C^{∞} function on G with values in $\operatorname{HS}\left(L^{2}(X)\right)$.

3. The case of $S O_{e}(n+1,1)$ acting on S^{n}

Here we consider $G=S O_{e}(n+1,1), X=S^{n}=G / P$. We consider the Lie algebra $\mathfrak{g}^{\#}$ of vector fields on $X \times X$ generated by the G-action

$$
\begin{equation*}
g \cdot(x, y)=(g x, g y) . \tag{3.1}
\end{equation*}
$$

We claim that $\mathcal{G}^{\#}$, the Lie algebra over $C^{\infty}(X \times X)$ generated by $\mathfrak{g}^{\#}$, is equal to \mathfrak{X}_{Δ}, the Lie algebra of C^{∞} vector fields on $X \times X$ that are tangent to the diagonal $\Delta \subset X \times X$. In particular, we claim that there are just two G-orbits in $X \times X$, namely Δ and $X \times X \backslash \Delta$.

Lemma 3.1. Given $x, y, x^{\prime}, y^{\prime} \in S^{n}$, with $x \neq y$ and $x^{\prime} \neq y^{\prime}$, there exists $g \in$ $S O_{e}(n+1,1)$ such that $g x=x^{\prime}$ and $g y=y^{\prime}$.
Proof. Since S^{n} is a homogeneous G-space, we readily reduce to the case $x=x^{\prime}$. So, given $y \neq x$ and $y^{\prime} \neq x$, we claim there exists $g \in G$, fixing x, such that $g y=y^{\prime}$. Considering rotations that fix x and conformal maps that push points in S^{n} away from x and toward its antipode makes the statement clear when neither y nor y^{\prime} is antipodal to x. The case where y (or y^{\prime}) is antipodal to x is taken care of by a simple additional argument.

4. The case of $S \ell(3, \mathbb{R})$ acting on $S O(3) / M$

Here we consider $G=S \ell(3, \mathbb{R})$, acting on $X=G / M A N=S O(3) / M$, where M is the group of order 4 consisting of 3×3 diagonal matrices, with ± 1 s on the diagonal (and determinant 1). We consider the G-action on $X \times X$ given by

$$
\begin{equation*}
g \cdot(x, y)=(g x, g y) . \tag{4.1}
\end{equation*}
$$

Proposition 4.1. The G-action on $X \times X$ has five (or is it four?) orbits:
Δ, the diagonal in $X \times X$, of codimension 3,
(ii)
\mathcal{A}, \mathcal{B}, orbits of codimension 2,
\mathcal{C}, orbit of codimension 1,
\mathcal{D}, a dense orbit.
Furthermore, $\overline{\mathcal{A}}=\mathcal{A} \cup \Delta, \overline{\mathcal{B}}=\mathcal{B} \cup \Delta$, and $\overline{\mathcal{C}}=\mathcal{C} \cup \mathcal{B} \cup \mathcal{A} \cup \Delta$.

Fix $x_{0} \in X$ and for each G-orbit \mathcal{O}, let $\mathcal{O}_{x_{0}}=\left\{y \in X:\left(x_{0}, y\right) \in \mathcal{O}\right\}$. If $P_{x_{0}}$ is the subgroup of G fixing x_{0}, and if $y_{0} \in \mathcal{O}_{x_{0}}$ is some point, then

$$
\begin{equation*}
\mathcal{O}_{x_{0}}=\left\{g y_{0}: g \in P_{x_{0}}\right\} \tag{4.2}
\end{equation*}
$$

Let us take x_{0} to be the image of the identity $I \in G$ under $G \rightarrow G / P$, and look at the orbits of P acting on G / P. There are 5 such orbits:
$\Delta_{x_{0}}=\left\{x_{0}\right\}$,
$\mathcal{A}_{x_{0}}, \mathcal{B}_{x_{0}}$, orbits of dimension 1 ,
$\mathcal{C}_{x_{0}}$, orbit of dimension 2 ,
(iii)
$\mathcal{D}_{x_{0}}$, an orbit dense in X.
Furthermore, $\overline{\mathcal{A}}_{x_{0}}=\mathcal{A}_{x_{0}} \cup \Delta_{x_{0}}, \overline{\mathcal{B}}_{x_{0}}=\mathcal{B}_{x_{0}} \cup \Delta_{x_{0}}$, and $\overline{\mathcal{C}}_{x_{0}}=\mathcal{C}_{x_{0}} \cup \mathcal{B}_{x_{0}} \cup \mathcal{A}_{x_{0}} \cup \Delta_{x_{0}}$.
Here is one way to describe these orbits in $X=S O(3) / M$. The space $S O(3)$ consisting of orthogonal matrices

$$
\left(\begin{array}{lll}
u_{1} & v_{1} & w_{1} \tag{4.3}\\
u_{2} & v_{2} & w_{2} \\
u_{3} & v_{3} & w_{3}
\end{array}\right),
$$

with $w=u \times v$, is naturally identified with the unit tangent bundle $T_{1} S^{2}$ of S^{2}, with $u \in S^{2}, v \in T_{u} S^{2}$. The action of elements of M can take u to $\pm u$ and v to $\pm v$. So antipodal elements of S^{2} identified, as are unit tangent vectors pointing in opposite directions. We describe the pre-images in $S O(3)=T_{1} S^{2}$ of the P-orbits, using the same labels as for the orbits themselves. Recall that we are taking x_{0} to be the class of P in G / P. We have

$$
\begin{align*}
& \Delta_{x_{0}}=\left\{\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right)\right\}, \\
& \mathcal{A}_{x_{0}}=\left\{\left(\begin{array}{lll}
1 & * & * \\
0 & * & * \\
0 & a & *
\end{array}\right) \in S O(3): a \neq 0\right\}, \\
& \mathcal{B}_{x_{0}}=\left\{\left(\begin{array}{ccc}
* & * & * \\
a & * & * \\
0 & 0 & *
\end{array}\right) \in S O(3): a \neq 0\right\} \text {, } \tag{4.4}\\
& \mathcal{C}_{x_{0}}=\left\{\left(\begin{array}{lll}
* & * & * \\
a & * & * \\
0 & b & *
\end{array}\right) \in S O(3): a \neq 0, b \neq 0\right\} \text {, } \\
& \mathcal{D}_{x_{0}}=\left\{\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
a & * & *
\end{array}\right) \in S O(3): a \neq 0\right\} \text {. }
\end{align*}
$$

The last four sets are (pre-images of) P-orbits containing, respectively, the following points in $X=G / P$:

$$
\begin{align*}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \bmod P, \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \bmod P, \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \bmod P, \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \bmod P . \tag{4.5}
\end{align*}
$$

Recall that P consists of upper triangular matrices in $S \ell(3, \mathbb{R})$.
A way to picture these pre-images in $T_{1} S^{2}$ is as follows. We define the equator $\mathcal{E} \subset S^{2}$ to consist of $\left\{u \in S^{2}: u_{3}=0\right\}$, and we set $e_{1}=(1,0,0)^{t} \in S^{2}$. Then
$\Delta_{x_{0}}$ consists of points in $T_{1} S^{2}$ lying over e_{1}, tangent to the equator \mathcal{E}, $\mathcal{A}_{x_{0}}$ consists of points lying over e_{1}, not tangent to \mathcal{E}, $\mathcal{B}_{x_{0}}$ consists of points lying over $\mathcal{E} \backslash\left\{e_{1}\right\}$, tangent to \mathcal{E}, $\mathcal{C}_{x_{0}}$ consists of points lying over $\mathcal{E} \backslash\left\{e_{1}\right\}$, not tangent to \mathcal{E}, $\mathcal{D}_{x_{0}}$ consists of points lying over $S^{2} \backslash \mathcal{E}$.

Note that some of these sets are disconnected, but once you mod out by the action of M the resulting orbits are seen to be connected.

Remark. While there are five different orbits described in (4.6), it is conceivable that $\mathcal{A}_{x_{0}}$ and $\mathcal{B}_{x_{0}}$ twist about as x_{0} varies in such a fashion that $\mathcal{A}=\mathcal{B}$. This needs to be checked.

Assertion. $\mathcal{G}^{\#}$ consists of all C^{∞} vector fields on $X \times X$ that are tangent to $\Delta, \mathcal{A}, \mathcal{B}$, and \mathcal{C}.

Recall that the space of Schwartz kernels of G-smooth operators is equal to

$$
\begin{equation*}
\mathcal{I}_{\mathcal{L}}\left(X \times X, \mathcal{G}^{\#}\right) \tag{4.7}
\end{equation*}
$$

5. Further musings

As we have noted, the Beals-Cordes characterization of $O P S_{1,0}^{0}(X)$ gives

$$
\begin{equation*}
\Psi^{0}(X)=\mathcal{I}_{\mathcal{L}}\left(X \times X, \mathfrak{X}_{\Delta}\right) . \tag{5.1}
\end{equation*}
$$

Meanwhile, according to the development of Lagrangian distributions in Chapter 25 of $[\mathrm{H}]$, there is a parallel result with \mathcal{L} replaced by a Besov space:

$$
\begin{equation*}
\Psi^{0}(X)=\mathcal{I}_{\mathcal{B}}\left(X \times X, \mathfrak{X}_{\Delta}\right), \quad \mathcal{B}=B_{2, \infty}^{-n / 2}(X \times X) \tag{5.2}
\end{equation*}
$$

where $n=\operatorname{dim} X$. Thus the right sides of (5.1) and (5.2) coincide, though certainly $\mathcal{L} \neq \mathcal{B}$. One might wonder if there is a short demonstration of this, which does not proceed through the demonstration that each such space is equal to $\Psi^{0}(X)$. One might also wonder about the following.

Question 1. For what other Banach spaces of distributions $E \subset \mathcal{D}^{\prime}(X \times X)$ can one say

$$
\begin{equation*}
\Psi^{0}(X)=\mathcal{I}_{E}\left(X \times X, \mathfrak{X}_{\Delta}\right) ? \tag{5.3}
\end{equation*}
$$

Question 2. Given a Lie algebra $\mathcal{G}^{\#} \subset \mathfrak{X}_{\Delta}$, when can one say

$$
\begin{equation*}
\mathcal{I}_{\mathcal{L}}\left(X \times X, \mathcal{G}^{\#}\right)=\mathcal{I}_{E}\left(X \times X, \mathcal{G}^{\#}\right) ? \tag{5.4}
\end{equation*}
$$

References

[B] R. Beals, Characterizations of pseudodifferential operators and applications, Duke Math. J. 44 (1977), 45-57; correction 46 (1979), 215.
[C1] H. Cordes, On pseudodifferential operators and smoothness of special Lie group representations, Manuscripta Math. 28 (1979), 51-69.
[C2] H. Cordes, The technique of pseudodifferential operators, LMS \#202, Cambridge Univ. Press, 1995.
[H] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 4, Springer-Verlag, New York, 1985.
[T] M. Taylor, Beals-Cordes-type characterizations of pseudodifferential operators, Proc. AMS 125 (1997), 1711-1716.

