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1. Introduction

If H is a Hilbert space, a bounded linear operator A : H → H (A ∈ L(H)) has
an adjoint A∗ : H → H defined by

(1.1) (Au, v) = (u,A∗v), u, v ∈ H.

We say A is self-adjoint if A = A∗. We say U ∈ L(H) is unitary if U∗ = U−1. More
generally, if H is another Hilbert space, we say Φ ∈ L(H,H) is unitary provided Φ
is one-to-one and onto, and (Φu,Φv)H = (u, v)H , for all u, v ∈ H.

If dimH = n < ∞, each self-adjoint A ∈ L(H) has the property that H has an
orthonormal basis of eigenvectors of A. The same holds for each unitary U ∈ L(H).
Proofs can be found in §§11–12, Chapter 2, of [T3]. Here, we aim to prove the
following infinite dimensional variant of such a result, called the Spectral Theorem.

Theorem 1.1. If A ∈ L(H) is self-adjoint, there exists a measure space (X,F , µ),
a unitary map Φ : H → L2(X,µ), and a ∈ L∞(X,µ), such that

(1.2) ΦAΦ−1f(x) = a(x)f(x), ∀ f ∈ L2(X,µ).

Here, a is real valued, and ∥a∥L∞ = ∥A∥.

Here is the appropriate variant for unitary operators.

Theorem 1.2. If U ∈ L(H) is unitary, there exists a measure space (X,F , µ), a
unitary map Φ : H → L2(X,µ), and u ∈ L∞(X,µ), such that

(1.3) ΦUΦ−1f(x) = u(x)f(x), ∀ f ∈ L2(X,µ).

Here, |u| = 1 on X.

These results are proven in §1 of [T2]. The proof there makes use of the Fourier
transform on the space of tempered distributions. Here we prove these results,
assuming as background only §§1–5 in [T1]. We use from §5 of that appendix the
holomorphic functional calculus, which we recall here.

If V is a Banach space and T ∈ L(V ), we say ζ ∈ C belongs to the resolvent set
ρ(T ) if and only if ζ − T : V → V is invertible. We define σ(T ) = C \ ρ(T ) to be
the spectrum of T . It is shown that ρ(T ) is open and σ(T ) is closed and bounded,
hence compact. If Ω is a neighborhood of σ(T ) with smooth boundary and f is
holomorphic on a neighborhood of Ω, we set

(1.4) f(T ) =
1

2πi

∫
∂Ω

f(ζ)(ζ − T )−1 dζ.
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It is shown there that

(1.5) fk(ζ) = ζk (k ∈ Z+) =⇒ fk(T ) = T k,

and, if f and g are holomorphic on a neighborhood of Ω, then

(1.6) (fg)(T ) = f(T )g(T ).

To apply these results to self-adjoint A and unitary U in L(H), it is useful to
have the following information on their spectra.

Proposition 1.3. If A ∈ L(H) is self-adjoint, then σ(A) ⊂ R.

Proof. If λ = x+ iy, y ̸= 0, then

λ−A = y(i+B), B =
x

y
− 1

y
A = B∗,

so it suffices to show that if B = B∗, then i+ B : H → H is invertible. First note
that, given u ∈ H,

(1.7)

∥u∥ = 1 ⇒ ∥(i+B)u∥ ≥ |((i+B)u, u)|
= |((I − iB)u, u)|
≥ Re{(u, u)− i(Bu, u)}.

Now

(1.8) B = B∗ ⇒ (Bu, u) = (u,Bu) = (Bu, u) ⇒ (Bu, u) ∈ R,

so the last line of (1.7) equals ∥u∥2, and we have

(1.9) ∥(i+B)u∥ ≥ ∥u∥, when B = B∗.

Hence i + B : H → H is injective and has closed range. To see that it is onto,
assume w ∈ H is orthogonal to this range, so

(.110)
v ∈ H =⇒ ((i+B)v, w) = 0

=⇒ (v, (i−B)w) = 0.

Hence (i + B)w = 0. Then (1.9), with B replaced by −B, gives w = 0. This
establishes the asserted surjectivity, and proves Proposition 1.3.

From Proposition 1.3 it follows that, if A = A∗,

(1.11) σ(A) ⊂ [−∥A∥, ∥A∥].

Here is the unitary counterpart of Proposition 1.3.
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Proposition 1.4. If U ∈ L(H) is unitary, then

σ(U) ⊂ S1 = {ζ ∈ C : |ζ| = 1}.

Proof. If U is unitary, ∥U∥ = 1, so |ζ| > 1 ⇒ ζ ∈ ρ(U). Meanwhile,

|ζ| < 1 =⇒ ζ − U = −U(I − ζU−1),

and ∥ζU−1∥ = |ζ| ∥U∗∥ = |ζ| < 1, so again this operator is invertible.

We proceed in the rest of this note as follows. In §2 we take I = [−∥A∥−δ, ∥A∥+δ]
(with δ > 0 small) and show that f 7→ f(A) extends from the space O of functions
f holomorphic on a complex neighborhood of I to C(I). To do this, we show that

(1.12) f ∈ O, f ≥ 0 on I =⇒ f(A) ≥ 0,

where, given T ∈ H, we say

(1.13) T ≥ 0 ⇐⇒ T = T ∗ and (Tv, v) ≥ 0, ∀ v ∈ H.

We deduce from (1.12) that

(1.14) f ∈ O, |f | ≤ M on I =⇒ ∥f(A)∥ ≤ M.

From this, the extension of f 7→ f(A) to f ∈ C(I) will follow. We will have

(1.15) ∀ f ∈ C(I), f ≥ 0 ⇒ f(A) ≥ 0, |f | ≤ M ⇒ ∥f(A)∥ ≤ M.

We use this fact to prove Theorem 1.1 in §3.
In §4, we use arguments parallel to those in §2 to extend f 7→ f(U) from the

space O of functions holomorphic on a complex neighborhood of S1 to C(S1). We
show that

(1.16) f ∈ O, f ≥ 0 on S1 =⇒ f(U) ≥ 0,

and

(1.17) f ∈ O, |f | ≤ M on S1 =⇒ ∥f(U)∥ ≤ M,

and from there obtain the asserted extension, and an analogue of (1.15), namely

(1.18) ∀ f ∈ C(S1) f ≥ 0 ⇒ f(U) ≥ 0, |f | ≤ M ⇒ ∥f(U)∥ ≤ M.

Then, in §5, we use this extension to prove Theorem 1.2.
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One ingredient in the analysis in §4 is the identity

(1.19) f(U) =
∞∑

k=−∞

f̂(k)Uk, f̂(k) =
1

2π

∫
S1

f(eiθ) dθ,

for f ∈ O, which follows from (1.4), with Ω an annular neighborhood of S1 ⊂ C.
In §6, we take (1.19) as the definition of f(U), whenever f is a function on S1 such

that
∑

|f̂(k)| < ∞, which in particular holds for all f ∈ C∞(S1). We demonstrate
directly, without using any holomorphic functional calculus, that

(1.20) f ∈ C∞(S1), |f | ≤ M on S1 =⇒ ∥f(U)∥ ≤ M,

and, from this obtain the extension f 7→ f(U) to f ∈ C(S1), satisfying (1.18).
This again leads to a proof of Theorem 1.2, which in this setting avoids use of the
holomorphic functional calculus.

In §7, we show how to go from the Spectral Theorem for unitary operators
(Theorem 1.2) to the Spectral Theorem for self-adjoint operators (Theorem 1.1).
This, in conjunction with §6, yields a proof of Theorem 1.1 that does not require
the holomorphic functional calculus.

In Appendix A, we relate Theorems 1.1 and 1.2 to other formulations of the
Spectral Theorem, involving spectral projections. In Appendix B, we define un-
bounded self-adjoint operators and sketch an approach to the Spectral Theorem
for such operators, somewhat parallel to the derivation of Theorem 1.1 from Theo-
rem 1.2 in §7, referring to material in [T1] and [T2] for details. In Appendix C we
use Theorem 1.2 to derive von Neumann’s mean ergodic theorem.
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2. Functions of a self-adjoint operator

Let A ∈ L(H) be self-adjoint. As previewed in §1, we take δ > 0 and set

(2.1) I = [−∥A∥ − δ, ∥A∥+ δ], I0 = [−∥A∥, ∥A∥],
so σ(A) ⊂ I0 ⊂ I. Let Ω be a smoothly bounded neighborhood of I0 in C, and
assume Ω ∩ R ⊂ I. Let f be holomorphic on a neighborhoood of Ω. We have

(2.2) f(A) =
1

2πi

∫
∂Ω

f(ζ)(ζ −A)−1 dζ.

Now, given S, T ∈ L(H), we have (ST )∗ = T ∗S∗, so

(2.3) ((ζ −A)−1)∗ = (ζ −A)−1.

Hence

(2.4) f(A)∗ = − 1

2πi

∫
∂Ω

f(ζ)(ζ −A)−1 dζ.

We can assume Ω is invariant under the reflection ζ 7→ ζ, which reverses orientation
on ∂Ω. Hence

(2.5) f(A)∗ =
1

2πi

∫
∂Ω

f(ζ)(ζ −A)−1 dζ = f∗(A),

where

(2.6) f∗(ζ) = f(ζ).

In particular, if f is holomorphic on a neighborhood Ω of I0 in C,
(2.7) f real on Ω ∩ R =⇒ f(A) self-adjoint.

Here is our key positivity result.

Proposition 2.1. If f is holomorphic on a neighborhood Ω of I0 ⊂ C, then
(2.8) f ≥ 0 on Ω ∩ R =⇒ f(A) ≥ 0.

Proof. For ε > 0, set fε(ζ) = f(ζ) + ε. Then we have a well defined holomorphic
function

(2.9) gε(ζ) = fε(ζ)
1/2,

on a sufficiently small neighborhood Ω of I0 ⊂ C, with gε ≥ 0 on Ω ∩ R. Hence
gε(A) is self-adjoint, and

(2.10)

f(A) + ε = fε(A) = gε(A)2

=⇒ f(A) + εI ≥ 0, ∀ ε > 0

=⇒ f(A) ≥ 0.

This leads to the following key bound.
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Proposition 2.2. If f is holomorphic on a neighborhood Ω of I ⊂ C, then

(2.11) |f | ≤ M on I =⇒ ∥f(A)∥ ≤ M.

Proof. Set g(ζ) = f∗(ζ)f(ζ), so g = |f |2 on Ω ∩ R. Hence

(2.12) M2 − g ≥ 0 on I,

so, by Proposition 2.1 (plus the fact that g(A) = f(A)∗f(A)),

(2.13) M2 − f(A)∗f(A) ≥ 0.

Hence, for v ∈ H,

(2.14) ∥f(A)v∥2 = (f∗(A)f(A)v, v) ≤ (M2v, v) = M2∥v∥2,

and we have (2.11).

We now extend the functional calculus.

Proposition 2.3. If A ∈ L(H) is self-adjoint, the correspondence f 7→ f(A) has
a unique extension from the space O of functions holomorphic in a neighborhood of
I ⊂ C to C(I). Given f, g ∈ C(I), we have

(2.15)
∥f(A)∥ ≤ sup

I
|f |, f ≥ 0 ⇒ f(A) ≥ 0,

f(A)∗ = f(A), (fg)(A) = f(A)g(A).

Proof. The extension is straightforward, via Proposition 2.2 and the denseness of
O in C(I) (which follows from the Weierstrass approximation theorem). If f ∈
C(I), fk ∈ O, fk → f uniformly on I, then

(2.16) ∥fj(A)− fk(A)∥ ≤ sup
I

|fj − fk|,

yielding convergence of fk(A) in operator norm, to a limit we denote f(A). The
results in (2.15) follow from their counterparts for elements of O by the obvious
limiting arguments.
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3. Spectral theorem for bounded self-adjoint operators

Given a self-adjoint A ∈ L(H) and interval I as in (2.1), take a nonzero v ∈ H
and set

(3.1) µ(f) = µA,v(f) = (f(A)v, v), f ∈ C(I).

We have from Proposition 2.3 that f ≥ 0 ⇒ f(A) ≥ 0, hence µ(f) ≥ 0. Thus µ
gives a positive Radon measure on I:

(3.2) (f(A)v, v) =

∫
I

f dµ.

Now we define

(3.3) W = WA,v : C(I) −→ H

by

(3.4) W (f) = f(A)v.

Note that, if also g ∈ C(I),

(3.5)

(W (f),W (g))H = (f(A)v, g(A)v)

= (g(A)f(A)v, v)

=

∫
I

fg dµ

= (f, g)L2(I,µ).

Consequently W has a unique continuous extension to

(3.6) W : L2(I, µ) −→ H, an isometry.

Note that the range of W in (3.6) is the closure in H of

(3.7) C(A, v) = Span{v,Av,A2v, . . . }.

We call C(A, v) ⊂ H the cyclic subspace of H generated by A and v. If C(A, v) = H,
we say v is a cyclic vector for A. The following is a special case of Theorem 1.1.
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Proposition 3.1. If A ∈ L(H) is self-adjoint and has a cyclic vector v, then

(3.8) W : L2(I, µ) −→ H

is unitary, and

(3.9) W−1AWf(x) = xf(x), ∀ f ∈ L2(I, µ).

Proof. The unitarity follows from (3.6)–(3.7). To get (3.9), note that

(3.10) W (xf) = Af(A)v = AW (f),

the first identity by (3.4), with f replaced by xf , plus, from (2.15), the fact that
(xf)(A) = Af(A). The identity (3.10) holds first for f ∈ C(I), hence, by continuity,
for all f ∈ L2(I, µ).

In general, we cannot say that a given self-adjoint A ∈ L(H) has a cyclic vector,
but we have the following. For simplicity, we assume H is separable.

Proposition 3.2. If H is separable and A ∈ L(H) is self-adjoint, then there exist

vj ∈ H such that C(A, vj) are mutually orthogonal subspaces of H, with span dense
in H.

Proof. Let {wj : j ∈ N} be a dense subset of H, all wj ̸= 0. Take v1 = w1, and

construct C(A, v1) = H1, as above. Note that A : H1 → H1.
If H1 = H, we are done. If not, we proceed as follows. We claim that, whenever

H1 ⊂ H is a linear subspace,

(3.11) A : H1 → H1 =⇒ A : H⊥
1 → H⊥

1 .

In fact, if v ∈ H1, w ∈ H⊥
1 , then

(3.12) (v,Aw) = (Av,w) = 0 (given Av ∈ H1, w ∈ H⊥
1 ),

so (3.11) follows.
To continue, consider the first j ≥ 2 such that wj /∈ H1, and let v2 denote the

orthogonal projection of wj onto H⊥
1 . Then set H2 = C(A, v2) ⊂ H⊥

1 . Clearly
H1 ⊕ H2 contains Span{wk : 1 ≤ k ≤ j}. If H1 ⊕ H2 = H, we are done. If not,
A : (H1 ⊕ H2)

⊥ → (H1 ⊕ H2)
⊥. Take the first j3 > j such that wj3 /∈ H1 ⊕ H2,

and let v3 denote the orthogonal projection of wj3 onto (H1 ⊕ H2)
⊥. Then set

H3 = C(A, v3) ⊂ (H1 ⊕H2)
⊥.

Continue. If, for some K, H1 ⊕ · · · ⊕ HK = H, we are done. If not, we get
a countable sequence of mutually orthogonal spaces Hk = C(A, vk), whose span
contains wj for all j ∈ N, so is dense in H. Hence we have Proposition 3.2.
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We can now prove Theorem 1.1, when H is separable. Write

(3.13) H =
⊕
j≥1

Hj , Hj = C(A, vj),

and

(3.14) Wj = WA,vj
: C(I) → Hj , Wj(f) = f(A)vj ,

extending to unitary maps

(3.15) Wj : L
2(I, µj) → Hj , µj(f) = (f(A)vj , vj),

satisfying

(3.16) W−1
j AWjf = xf, f ∈ L2(I, µj).

Then we can define the measure space (X,µ) as the disjoint union

(3.17) (X,µ) =
∪
j≥1

(Ij , µj), Ij = I,

so

(3.18) L2(X,µ) =
⊕
j≥1

L2(I, µj),

and the Wj in (3.15) fit together to give the unitary map

(3.19) W : L2(X,µ) −→ H,

satisfying

(3.20) W−1AWf = a(x)f, a(x) = x on Ij .

If H is not separable, one can find a suitable replacement for Proposition 3.2,
using Zorn’s lemma. We omit details.
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4. Functions of unitary operators

Let U ∈ L(H) be unitary. We have σ(U) ⊂ S1 = {ζ ∈ C : |ζ| = 1}. If Ω is a
neighborhood of S1 in C, containing {ζ ∈ C : 1 − ε ≤ |ζ| ≤ 1 + ε}, we have, for f
holomorphic on Ω,

(4.1)

f(U) =
1

2πi

∫
∂Ω

f(ζ)(ζ − U)−1 dζ

=
1

2πi

[ ∫
|ζ|=1+ε

f(ζ)ζ−1
∞∑
k=0

ζ−kUk dζ

−
∫

|ζ|=1−ε

f(ζ)(−U)
∞∑
ℓ=0

ζℓU−ℓ dζ
]
.

We can pass to the limit ε ↘ 0. With ζ = eiθ, we have

(4.2)

1

2πi
ζ−k−1 dζ =

1

2π
e−ikθ dθ,

1

2πi
ζℓ dζ =

1

2π
ei(ℓ+1)θ dθ,

hence

(4.3) f(U) =

∞∑
k=−∞

f̂(k)Uk,

where

(4.4) f̂(k) =
1

2π

∫ 2π

0

f(eiθ)e−ikθ dθ

are the coefficients in the Fourier series for f . It follows that f 7→ f(U) etends
uniquely from the space O of functions holomorphic in a neighborhood of S1 ⊂ C
to larger spaces, such as A(S1) = {f :

∑
|f̂(k)| < ∞}, or the space C∞(S1):

(4.5) f ∈ C∞(S1) yields f(U), given by (4.3).

The result (1.6) extends by continuity to

(4.6) f, g ∈ C∞(S1) =⇒ (fg)(U) = f(U)g(U),
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a result that can also be deduced directly from (4.3) and a formula for (fg)̂ (k) in

terms of f̂ and ĝ (cf. §6). We also have

(4.7) g = f =⇒ ĝ(k) = f̂(−k),

and hence

(4.8) f(U)∗ = f(U), ∀ f ∈ C∞(S1).

In particular, if f : S1 → R, then f(U) is self-adjoint. Here is an analogue of
Proposition 2.1.

Proposition 4,1. If f ∈ C∞(S1), then

(4.9) f ≥ 0 on S1 =⇒ f(U) ≥ 0.

Proof. For ε > 0, set fε(ζ) = f(ζ) + ε, ζ ∈ S1. Then we have

(4.10) gε(ζ) = fε(ζ)
1/2, gε ∈ C∞(S1), gε > 0 on S1.

Hence gε(U) is self-adjoint, and

(4.11)

f(U) + ε = fε(U) = gε(U)2

=⇒ f(U) + εI ≥ 0, ∀ ε > 0

=⇒ f(U) ≥ 0.

This leads to the following analogue of Proposition 2.2.

Proposition 4.2. If f ∈ C∞(S1), then

(4.12) |f | ≤ M on S1 =⇒ ∥f(U)∥ ≤ M.

Proof. Set g = |f |2 = f f ∈ C∞(S1). Then M2 − g ≥ 0 on S1, so, by Proposition
4.1 (plus (4.6) and (4.8))

(4.13) M2 − f∗(U)f(U) ≥ 0.

The desired estimate follows as in (2.14).

We then have the following analogue of Proposition 2.3.

Proposition 4.3. If U ∈ L(H) is unitary, the correspondence f 7→ f(U) has a
unique continuous extension from C∞(S1) to C(S1). Given f, g ∈ C(S1), we have

(4.14)
∥f(U)∥ ≤ sup

S1

|f |, f ≥ 0 ⇒ f(U) ≥ 0,

f(U)∗ = f(U), (fg)(U) = f(U)g(U).

Proof. Straightforward variant of the proof of Proposition 2.3.
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5. Spectral theorem for unitary operators

Given a unitary operator U ∈ L(H), take a nonzero v ∈ H and set

(5.1) µ(f) = µU,v(f) = (f(U)v, v), f ∈ C(S1).

We have from Proposition 4.3 that f ≥ 0 ⇒ f(U) ≥ 0, hence µ(f) ≥ 0. Thus, as
in §3, µ gives a Radon measure on S1:

(5.2) (f(U)v, v) =

∫
S1

f dµ.

Now we can define

(5.3) W = WU,v : C(S1) −→ H

by

(5.4) W (f) = f(U)v.

Parallel to (3.5), if also g ∈ C(S1),

(5.5)

(W (f),W (g))H = (f(U)v, g(U)v)

= (g(U)f(U)v, v)

=

∫
S1

fg dµ

= (f, g)L2(S1,µ).

Consequently, W has a unique continuous extension to

(5.6) W : L2(S1, µ) −→ H, an isometry.

The range of W in (5.6) is the closure in H of

(5.7) C(U, v) = Span{Ukv : k ∈ Z}.

We call C(U, v) the cyclic subspace of H generated by U and v. If C(U, v) = H, we
say v is a cyclic vector for U . The following is parallel to Proposition 3.1.
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Proposition 5.1. If U ∈ L(H) is unitary and has a cyclic vector v, then

(5.8) W : L2(S1, µ) −→ H

is unitary, and

(5.9) W−1UWf(ζ) = ζf(ζ), ∀ f ∈ L2(S1, µ).

(Note that in (3.9), x ranges over I ⊂ R, while in (5.9), ζ ranges over S1 ⊂ C.)

Proof. The unitarity of W in (5.8) follows from (5.6)–(5.7). To get (5.9), note that

(5.10) W (ζf) = Uf(U) = UW (f),

the first identity via (5.4), with f(ζ) replaced by ζf(ζ), plus, from (4.14), (ζf)(U) =
Uf(U).

Passing from Proposition 5.1 to Theorem 1.2 is done via a straightforward ana-
logue of Proposition 3.2. We omit the details.
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6. Alternative approach

Here we provide an alternative approach to the functional calculus f 7→ f(U)
when U ∈ L(H) is unitary. As a definition, we take

(6.1) f(U) =
∞∑

k=−∞

f̂(k)Uk, f̂(k) =
1

2π

∫ 2π

0

f(eiθ)e−ikθ dθ,

whenever
∑

|f̂(k)| < ∞ (we say f ∈ A(S1)). In fact, to begin we typically take f ∈
C∞(S1). Our goal is to extend f 7→ f(U) to f ∈ C(S1). Note that (6.1) coincides
with (4.3)–(4.4). The difference is that here we make no use of the holomorphic
functional calculus, used in §§1–4. Thus we derive basic identities from scratch,
from the definition (6.1).

To begin,

(6.2) eℓ(ζ) = ζℓ ⇒ êℓ(k) = δkℓ ⇒ eℓ(U) = U ℓ, ∀ ℓ ∈ Z.

Note that φ(ζ) = f(ζ) ⇒ f̂(k) = φ̂(−k), so, since U∗ = U−1,

(6.3) f(U)∗ =
∞∑

k=−∞

f̂(k)U−k = f(U).

To proceed with an analysis of (fg)(U) (given f, g ∈ A(S1)), first note that

(6.4) gℓ(ζ) = ζℓg(ζ) = eℓ(ζ)g(ζ) ⇒ ĝℓ(k) = ĝ(k − ℓ),

so

(6.5) gℓ(U) =
∑

ĝℓ(k)U
k =

∑
ĝ(k)Uk+ℓ = U ℓg(U).

Now

(6.6) (fg)(ζ) =
∑
ℓ

f̂(ℓ)ζℓg(ζ) =
∑
ℓ

f̂(ℓ)gℓ(ζ),

so

(6.7) (fg)(U) =
∑
ℓ

f̂(ℓ)gℓ(U) =
∑
ℓ

f̂(ℓ)U ℓg(U) = f(U)g(U),

given f, g ∈ A(S1) (especially, f, g ∈ C∞(S1)).
If f : S1 → R is smooth, (6.3) implies f(U) is self-adjoint. The following is key

to extending f 7→ f(U) to all continuous f .
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Proposition 6.1. If f ∈ C∞(S1) and f : S1 → [0,∞), then f(U) ≥ 0, i.e.,

(6.10) (f(U)v, v) ≥ 0, ∀ v ∈ H.

Proof. For ε > 0, set fε(ζ) = f(ζ)+ ε, so there exists smooth gε(ζ) = fε(ζ)
1/2, gε :

S1 → (0,∞). Hence

(6.11) f(U) + ε = fε(U) = gε(U)2, and gε(U) is self-adjoint.

Hence

(6.12) ((f(U) + ε)v, v) = (gε(U)2v, v) = ∥gε(U)v∥2 ≥ 0,

for all ε > 0, which yields (6.10).

Remark. Given fε : S
1 → (0,∞) and gε = f

1/2
ε , it is clear that

(6.13) fε ∈ C∞(S1) =⇒ gε ∈ C∞(S1).

The result

(6.14) fε ∈ A(S1) =⇒ gε ∈ A(S1)

is also true, but harder to prove.

From here we obtain the following crucial norm estimate. The proof is like that
of Proposition 4.2, but to make this section self-contained, we include it here.

Proposition 6.2. If f ∈ C∞(S1),

(6.15) sup
S1

|f | = M =⇒ ∥f(U)∥ ≤ M.

Proof. We have

(6.16) g = M2 − |f |2 ≥ 0, g ∈ C∞(S1),

so Proposition 6.1 implies g(U) ≥ 0. Hence, for all v ∈ H,

(6.17)

∥f(U)v∥2 = (|f |2(U)v, v)

= (M2v, v)− (g(U)v, v)

≤ M2∥v∥2,

giving (6.15).
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Corollary 6.3. Given U ∈ L(H) unitary, the map f 7→ f(U) has a unique con-
tinuous extension from {f ∈ C∞(S1)} to {f ∈ C(S1)}. We have

(6.18) f, g ∈ C(S1) =⇒ (fg)(U) = f(U)g(U), f(U) = f(U)∗,

and

(6.19) f ∈ C(S1), |f | ≤ M =⇒ ∥f(U)∥ ≤ M.

From here, the arguments of §5 give the Spectral Theorem for unitary operators.
We will not repeat these arguments here, just the result.

Theorem 6.4. If U ∈ L(H) is unitary, there exists a measure space (X,F , µ), a
unitary map

(6.20) Φ : H −→ L2(X,µ),

and u ∈ L∞(X,µ) such that |u| = 1, µ-a.e. on X, and, for all v ∈ H,

(6.21) ΦUv(x) = u(x)Φv(x).

Furthermore, for all f ∈ C(S1),

(6.22) Φf(U)v(x) = f(u(x))Φv(x).

Remark. The proof of the Spectral Theorem given here is a variant of a familiar
approach using Fourier series, but other such approaches typically use nontrivial
results from harmonic analysis, such as the Bochner-Herglotz theorem (cf. [P],
Appendix). By comparison, the proof here is fairly elementary.
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7. From Theorem 1.2 to Theorem 1.1

In §§1–5, we established the Spectral Theorems 1.1 and 1.2, for bounded self-
adjoint A ∈ L(H) and unitary U ∈ L(H), making use of the holomorphic functional
calculus. In §6, we gave an alternative proof of the Spectral Theorem 1.2 for unitary
U , using Fourier series, but not holomorphic functional calculus. Here, we show how
to obtain Theorem 1.1 from Theorem 1.2, also not using the holomorphic functional
calculus.

So take a self-adjoint A ∈ L(H). As seen in Proposition 1.3, A = A∗ ⇒ σ(A) ⊂
R, so A± i are invertible:

(7.1) (A+ i)−1, (A− i)−1 ∈ L(H).

We define U ∈ L(H) to be the “Cayley transform”:

(7.2) U = (A+ i)(A− i)−1.

Note that (A − i)(A − i)−1 = I = (A − i)−1(A − i) implies (A − i)−1 commutes
with A, hence with A+ i, so also

(7.3) U = (A− i)−1(A+ i).

We claim that U is unitary. To see this, note that (TS)∗ = S∗T ∗ yields (T ∗)−1 =
(T−1)∗ if T ∈ L(H) is invertible. Hence (7.2) yields

(7.4)
U∗ = ((A− i)−1)∗(A+ i)∗

= (A+ i)−1(A− i),

and comparison with (7.3) gives

(7.5) U∗U = UU∗ = I.

To invert the correspondence (7.2) (or (7.3)), note that (A+i) = U(A−i) = (A−i)U ,
hence

(7.6) AU −A = i(U + 1), or A(U − 1) = i(U + 1).

Lemma 7.1. If A ∈ L(H) is self-adjoint and U is given by (7.2)–(7.3), then

(7.7) 1 ∈ ρ(U).
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Proof. We can rewrite (7.2) as

(7.8)
U = (A+ i)(A+ i)(A+ i)−1(A− i)−1

= (A+ i)2(A2 + 1)−1,

since

(7.9) (A+ i)−1(A− i)−1 = ((A− i)(A+ i))−1 = (A2 + 1)−1.

Hence

(7.10) U = (A2 − 1)(A2 + 1)−1 + 2iA(A2 + 1)−1.

The operators A2 − 1, A2 + 1, and A all commute, and so do A2 − 1 and A with
(A2 + 1)−1. Hence the operators

(7.11) (A2 − 1)(A2 + 1)−1 and A(A2 + 1)−1 are self-adjoint,

and, for all v ∈ H,

(7.12)
Re(Uv, v) = ((A2 − 1)(A2 + 1)−1v, v)

= ∥v∥2 − 2((A2 + 1)−1v, v),

so

(7.13)

Re((I − U)v, v) = 2((A2 + 1)−1v, v)

= 2(w, (A2 + 1)w)

= 2∥w∥2 + 2∥Aw∥2

≥ 2∥w∥2,

where w = (A2 + 1)−1v. Now

(7.14) ∥v∥ = ∥(A2 + 1)w∥ ≤ C∥w∥,

with C = ∥A2 + 1∥ < ∞, so (7.13) gives

(7.15) Re((I − U)v, v) ≥ 2

C2
∥v∥2,

which via Cauchy’s inequality yields

(7.16) ∥(I − U)v∥ ≥ 2

C2
∥v∥.
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Hence

(7.17) I − U : H −→ H is injective, with closed range.

Now, if w ∈ H is orthogonal to the range of I − U , then, for all v ∈ H,

(7.18)

0 = ((I − U)v, w) = (v, (I − U−1)w)

= −(v, U−1(I − U)w)

= −(Uv, (I − U)w).

Since U : H → H is invertible, this implies that, for all ṽ ∈ H,

(7.19) (ṽ, (I − U)w) = 0, hence (I − U)w = 0,

and (7.17) then implies w = 0. This proves Lemma 7.1.

Having Lemma 7.1, we deduce from (7.6) that

(7.20) A = i(U + 1)(U − 1)−1.

Note that (U −1)−1 commutes with U −1, hence with U , hence with U +1, so also

(7.21) A = i(U − 1)−1(U + 1).

As a check, note that (7.20) implies

(7.22)
A∗ = −i((U − 1)−1)∗(U + 1)∗

= −i(U−1 − 1)−1(U−1 + 1),

and (U−1 − 1)−1 = (1− U)−1U , so

(7.23) A∗ = i(U − 1)−1(U + 1) = A,

as it should.
We now apply Theorem 1.2 (or equivalently, Theorem 6.4) to U . We have a

measure space (X,F , µ), a unitary map

(7.24) Φ : H −→ L2(X,µ),

and u ∈ L∞(X,µ) (|u| = 1, µ-a.e. on X), such that, for all v ∈ H,

(7.25) ΦUv(x) = u(x)Φv(x).

The result (7.7) implies 1 ∈ ρ(Mu), so there exists δ > 0 such that

(7.26) |u(x)− 1| ≥ δ, for µ-a.e. x ∈ X.

Then, as suggested by (7.20), we can set

(7.27) a(x) = i
u(x) + 1

u(x)− 1
,

obtaining a ∈ L∞(X,µ). Calculations parallel to (7.22)–(7.23) give

(7.28) a(x) = a(x), for µ-a.e. x ∈ X,

and we get, for all v ∈ H,

(7.29) ΦAv(x) = a(x)Φv(x),

proving Theorem 1.1.
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A. Spectral projections

The Spectral Theorem 1.1 says that each self-adjoint A ∈ L(H) is unitarily
equivalent to a multiplication operator on a space L2(X,µ):

(A.1) A = Φ−1MaΦ, Φ : H → L2(X,µ) unitary,

with

(A.2) Maf(x) = a(x)f(x), f ∈ L2(X,µ).

We obtain spectral projections as follows. Let Σ ⊂ R be a Borel set. Then a−1(Σ) ⊂
X is µ-measurable; take

(A.3)
χΣ(x) = 1 if a(x) ∈ Σ,

0 if a(x) /∈ Σ,

and set

(A.4) QΣf(x) = χΣ(x)f(x), f ∈ L2(X,µ).

Then each QΣ is an orthogonal projection on L2(X,µ). We have

(A.5) QΣQΓ = QΣ∩Γ,

and the assignment Σ 7→ QΣ is strongly countably additive, i.e.,

(A.6) Σ =
∪
j≥1

Σj (disjoint union), f ∈ L2(X,µ) ⇒ QΣf = lim
N→∞

N∑
j=1

QΣjf,

the limit taken in the L2-norm. This follows from the Lebesgue dominated conver-
gence theorem.

If we set

(A.7) Qλ = Q(−∞,λ],

then, for all f ∈ L2(X,µ), we have the Stieltjes integral representations

(A.8) f =

∫
dQλ f, af =

∫
λ dQλ f.

Now we define a projection valued measure PΣ on H by

(A.9) PΣ = Φ−1QΣΦ.

This is strongly countably additive, we have

(A.10) PΣPΓ = PΣ∩Γ,

and, if we set Pλ = P(−∞,λ], then for all v ∈ H,

(A.11) v =

∫
dPλ v, Av =

∫
λ dPλ v.

This last formula is often given as one version of the Spectral Theorem.
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B. Unbounded self-adjoint operators

Here, we give a sketchy discussion of results that can be found in more detail in
§8 of [T1] and §1 of [T2]. Rather than a bounded operator A : H → H, we consider
a linear transformation defined on a dense linear subspace D(A) of A,

(B.1) A : D(A) −→ H.

We assume A is closed, i.e., its graph

GA = {(v,Av) ∈ H ⊕H : v ∈ D(A)}

is a closed linear subspace of H ⊕H. We say A is symmetric if

(B.2) (Av,w) = (v,Aw), ∀ v, w ∈ D(A).

We say A is self-adjoint if, furthermore, whenever v ∈ H has the property that
there exists C < ∞ such that

|(v,Aw)| ≤ C∥w∥, ∀w ∈ D(A),

then in fact v ∈ D(A) and (B.2) holds.
It is the case (cf. [T1], §8), that a closed operator A is self-adjoint if and only if

it is symmetric and

(B.3) A+ i, A− i : D(A) −→ H are both bijective.

In such a case,

(B.4) U = (A+ i)(A− i)−1

belongs to L(H) and in fact is unitary. Hence the Spectral Theorem 1.2 applies to
U . We have a unitary map

(B.5) Φ : H −→ L2(X,µ)

and u ∈ L∞(X,µ), |u| = 1, µ-a.e., such that

(B.6) ΦUΦ−1f(x) = u(x)f(x), ∀ f ∈ L2(X,µ).

We can go from there to a Spectral Theorem for the unbounded self-adjoint operator
A, by a process somewhat parallel to §7, though with some differences in detail.
We have

(B.7) ΦAΦ−1 = Ã,
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with

(B.8) Ãf(x) = a(x)f(x), a(x) = i
u(x) + 1

u(x)− 1
.

In this setting, a might not belong to L∞(X,µ), but in place of (7.26) we do have

(B.9) u(x)− 1 ̸= 0, for µ-a.e. x ∈ X.

We also have

(B.10)
Φ : D(A) −→ D(Ã) bijective,

D(Ã) = {f ∈ L2(X,µ) : af ∈ L2(X,µ)}.

For more details, see [T2], §1.
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C. Von Neumann’s mean ergodic theorem

Let U be a unitary operator on a Hilbert space H, and consider

(C.1) AN =
1

N

N−1∑
k=0

Uk,

i.e., AN = φN (U), where

(C.2) φN (ζ) =
1

N

N−1∑
k=0

ζk, ζ ∈ S1.

Note that

(C.3) φN (1) ≡ 1, φN (ζ) =
1

N

1− ζN

1− ζ
, ∀ ζ ∈ S1 \ {1}.

Hence

(C.4) |φN (ζ)| ≤ 1, lim
N→∞

φN (ζ) = 0, ∀ ζ ̸= 1.

If Φ : H → L2(X,µ) is the unitary operator given in Theorem 1.2, so (1.3) holds,
then, for all f ∈ L2(X,µ),

(C.5)
ΦANΦ−1f(x) = φN (u(x))f(x)

→ χ(x)f(x), as N → ∞,

in L2-norm, where

(C.6)
χ(x) = 1 if u(x) = 1,

0 if u(x) ̸= 1.

Convergence in L2(X,µ) follows from the Lebesgue dominated convergence the-
orem. Now Qf = χf defines Q as the orthogonal projection of L2(X,µ) onto
Ker(I −Mu). It follows that, for each v ∈ H,

(C.7) ANv −→ Pv in H-norm,

where

(C.8) P = Φ−1QΦ is the orthogonal projection of H onto Ker (I − U).

We formally state the result just derived.
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Proposition C.1. If U : H → H is unitary, then, for each v ∈ H, we have
convergence in H-norm,

(C.9)
1

N

N−1∑
k=0

Ukv −→ Pv, P = orthogonal projection of H onto Ker(I − U).

There are other proofs of this, which do not use the Spectral Theorem, and which
moreover extend the scope to include operators U : H → H that are isometries, but
are not necessarily invertible, hence not unitary. For such results, and applications
to ergodic theory, see [P], Chapter 1, or [T4], Chapter 14. The proof given above
is closer to von Neumann’s original proof.
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