Stirling’s Formula and the Schrodinger Equation
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1. Introduction

Our goal is to derive Stirling’s formula for the asymptotic behavior of I'(z) as
|z| — oo. We will first do this for Rez > 0, using a strong form of the Laplace
asymptotic method. Then we treat Re z < 0, using a functional equation.

We recall that T'(z) can be defined for Re z > 0 by the integral

(1.1) I'(z) :/ e t*hat.
0
More convenient for us is
(z+1) = / e 't* dt

0
(1.2) = / e-trElost gy

0

— Z/ e—zs—l—z(logs—l—log z) dS,
0

the last line via the substitution ¢ = zs. Together with I'(z+1) = 2I'(z), this yields
the identity

I(2) = ¢¥loe> / e~ (51085) g
(1.3) -
:ezlogz—z/ e—z(T—lOg(l-ﬁ-T))dT7
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valid for Rez > 0.
In §2 we will deduce from (1.3) that

(1.4) I(z) = (g)\/? VO(i)’ Rez >0, 2 %0,
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where
(1.5) Vo(¢) is holomorphic on Re(¢ >0, C*° on Re( >0, Vy(0)=1.

In fact, we obtain Vp in the form V4(() = v2V(¢,0), where V(¢,u) solves a
Schrodinger equation in {Re ¢ > 0}, with a certain initial condition V' (0,u) = F(u).

The approach used in §2 follows [W] to some extent, except for our making a
connection with the Schrédinger equation. In §3 we discuss an alternative approach,
taken in [WW] and also in [Leb]. We follow [Leb] more closely than [WW], and
supply a few additional arguments.

In §4 (also following [Leb]) we examine the asymptotic behavior of T'(z) on
Re z < 0, via the identity

2I(2)

(1.6) ['(—z)sinmz = —



2. Asymptotic behavior on Rez > 0 via the Schrodinger equation

From (1.3) we have
(2.1) I'(z)=¢* logz_z/ e =) dr,
~1

for Rez > 0, with

(2.2) Y(r)=717—-log(l+71), —-1<7<o0.
Note that

/ 1 1 7 o 1 2
(2.3) W =1-—— v = (=)

so 1 is convex, with a unique minimum at 7 = 0, and (0) = 0. We can hence
write

(2.4) u? = (1) = 7 — log(1 4 7),
where u : (—1,00) — (—00,00) is a diffeomorphism, satisfying
u— —00 as 7T — —1, u— 400 as T — +o00,

(2.5) T

2udu = dr.
1

T

Then (2.1) gives

(2.6) I(z) = 2¢° 108> / " e ) du,
with
(2.7) Flu) = 2(1 1),

where 7 = 7(u) is defined implicitly by (2.4). We have
(2.8) FeC>R), F(0)=

and

F(u) ~ u+ Zajul_j, u — 400,
(2.9) j>1

0, U — —00.
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Also the derivatives F' (k)(u) have asymptotic expansions as u — =00 consistent
with formal differentiation of (2.9), so

(2.10) F € 54(R).
If we set

1
2.11 = —
(211) 2=
we have

/ e~ F(u) du = / e~ 14 P () du

(2.12) o o

= /4w eSAF(0),
for
(2.13) Re( >0, hence Rez >0 (z#0).

Here €S2 is the solution operator for the evolution equation

ov 0?

Consequently, for Re z > 0,

(2.15) T(z) = 2(2)\@ eCAF(O)‘<:1/4Z.

The following implies a version of Stirling’s formula.

Proposition 2.1. For F'(u) given by (2.7), hence satisfying (2.8)-(2.10), the func-

tion

(2.16) V(¢,u) = eSS F(u)

is C> on

(2.17) {Ce€C:Re( >0} x {ueR}.

Thus we have (1.4) with
Vo(Q) = V2V((,0).

Proof. As is well known (cf. [T], Chapter 3, Proposition 8.2) if F satisfies (2.10),
its Fourier transform F' € S'(R) is C* on R\ 0, and we can write

(2.18) F=Fy+F, Fe&R), F ecSR).
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That is, ﬁo is a distribution with compact support and ﬁl is smooth and rapidly
decreasing (together with all its derivatives). Thus

(2.19) AF = (W By ) + 7 (PR,

where F* is the inverse Fourier transform, having the mapping properties

(2.20) F*:S(R) — S(R), F*:&(R) — C(R).
Note that
(2.21) ef<|§|2ﬁ0 is an entire function of ( € C
. with values in &'(R),
and
(2.22) e P is a C™ function of ¢ € {Im ¢ > 0}

with values in S(R).

The conclusion that V is C* on (2.17) is an immediate consequence of (2.18)—
(2.22).

Since V' is C* on (2.17), it follows that V({,0) is C* on {¢ € C: Re(¢ > 0},
and we have the asymptotic formula

(227 V(G0 ~ L), (0, Re¢ >0,
E>0

Thus (2.15) yields

(2.28) re)~ (2) 2 (1+3 QF(%)(O)< ! )k)

z k! 4z
E>1

as z — oo, Rez > 0.



3. Classical approach via the Laplace transform

Another approach to Stirling’s formula involves writing
1 1
(3.1) logI'(z) = <z— 5) logz—z—|—§log27r+w(z),

with a convenient integral formula for w(z). This is done in §12.33 of [WW], and,
to even better effect, in §1.4 of [Leb], which obtains

(3.2) w(z) = /000 f(t)e " dt,

with

@ 10=(5-3+7=7);

which is an entire function of ¢, asymptotic to 1/2t as t /' +oo. In [Leb] it is
observed that f/(t) < 0 for ¢ > 0 and deduced that

(3.4) w(z)| < 21O

1
=—, for Rez>0.
2] 6lz]

Exponentiating (3.1) gives

(3.5) I'(z) = (g)Z\/?ew(d7

and then (3.4) gives the leading term in (2.24), valid for z — oo, Re z > 0. In §12.33
of [WW], the formula derived for w(z) is

* tan"H(t/z
(3.6) w(z):/o wdt,

6271'75 -1

with which the entire asymptotic series (2.24) is derived, in a more explicit form,
but its validity is demonstrated only for

z — 00, |argz|§g—5, d>0.

The validity is established in §13.6 of [WW] in the larger domain |argz| < 7 — 4.
We discuss that in §4.
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The complete asymptotic expansion is mentioned in (1.4.24) of [Leb], but without
a derivation. We next point out how to derive a complete asymptotic expansion
of the Laplace transform (3.2), valid for z — oo, Rez > 0, just given that f €
C>([0,00)) and that f() is integrable on [0, c0) for each j > 1. In fact, integration

by parts yields
> 1 [> d
e *tdt = —= t) —e *t dt
| roe - [ s ge

- %/OOO fl(t)e " dt + @,

valid for Rez > 1. We can iterate this argument to obtain

(3.7) w(z) = Z f(k )0 / FM (t)e=#t dt,

k=1

and
(3.8) / FP (1) _tht‘ / F M) dt < 00, for N >1,Rez>0.

To carry on, we note that, for |t| < 2,

1

-1 k—1
e —_—

(3.9) o

_|_

&+ |
NE

DN | —

k

1

where By, are the Bernoulli numbers (cf. [T], §12, Exercises 6-8), so, for |t| < 2,

2¢
(3.10) Z % " 2 Bgﬂt .
£:O
Thus
f90 = 0 j odd,
(3.11) (=1)*Byi1 o
(20+1)(2¢+2) ’
SO
E
(3.12) Z L Bery ! z— 00, Rez > 0.

= 2£+1 )(20 + 2) 22+

Thus there are A, € R such that

A
(3.13) ew(z)Nl—i—Zz—:, z — 00, Rez >0,

k>1

consistent with (2.24), but arguably more straightforward to compute.



4. Asymptotic behavior on Rez <0

Following [Leb], we use the identity

™

2I(2)

(4.1) ['(—z)sinmz = —

to extend (3.5), i.e.,

z [2
(4.2) I'(z) = (2) \/ ; e“®) for Rez>0, z#0,

to the rest of C\ R™. If we define z* and /2 in the standard fashion for z € (0, c0)
and to be holomorphic on C\ R™, we get

1 z 2
(4.3) I'(z) = m(g) Ug e “(=*) for Rez <0, Imz >0,

and

1 z |2
(44) F(Z) = 1—_2(z> —7T e_w(_z), for Rez S 0, Imz < 0.
— e X4 e z

Comparing (4.2) and (4.3) for z = iy, y > 0, we see that
(4.5) e W) — (1 — e 2™) W) 4 > 0.

That e~ “(=%) and e“(®) have the same asymptotic behavior as y — +oo also
follows from the fact that only odd powers of =1 appear in (3.12). On the other
hand, such a result is not so apparent from (2.24).

In [WW], §13.6, the validity of the asymptotic expansion arising from (4.2) was
extended to |argz| < m — § (for each § > 0) by a different method. Since §12.3 of
[WW] obtained (3.12) only for |argz| < m/2 — §, use of (4.1) on that result would
miss the asymptotic expansion of I'(z) near the imaginary axis.
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