Stirling's Formula and the Schrödinger Equation

Michael Taylor

Contents

1. Introduction
2. Asymptotic behavior on $\operatorname{Re} z \geq 0$ via the Schrödinger equation
3. Classical approach via the Laplace transform
4. Asymptotic behavior on $\operatorname{Re} z \leq 0$

1. Introduction

Our goal is to derive Stirling's formula for the asymptotic behavior of $\Gamma(z)$ as $|z| \rightarrow \infty$. We will first do this for $\operatorname{Re} z \geq 0$, using a strong form of the Laplace asymptotic method. Then we treat $\operatorname{Re} z \leq 0$, using a functional equation.

We recall that $\Gamma(z)$ can be defined for $\operatorname{Re} z>0$ by the integral

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t \tag{1.1}
\end{equation*}
$$

More convenient for us is

$$
\begin{align*}
\Gamma(z+1) & =\int_{0}^{\infty} e^{-t} t^{z} d t \\
& =\int_{0}^{\infty} e^{-t+z \log t} d t \tag{1.2}\\
& =z \int_{0}^{\infty} e^{-z s+z(\log s+\log z)} d s
\end{align*}
$$

the last line via the substitution $t=z s$. Together with $\Gamma(z+1)=z \Gamma(z)$, this yields the identity

$$
\begin{align*}
\Gamma(z) & =e^{z \log z} \int_{0}^{\infty} e^{-z(s-\log s)} d s \\
& =e^{z \log z-z} \int_{-1}^{\infty} e^{-z(\tau-\log (1+\tau))} d \tau \tag{1.3}
\end{align*}
$$

valid for $\operatorname{Re} z>0$.
In $\S 2$ we will deduce from (1.3) that

$$
\begin{equation*}
\Gamma(z)=\left(\frac{z}{e}\right)^{z} \sqrt{\frac{2 \pi}{z}} V_{0}\left(\frac{1}{4 z}\right), \quad \operatorname{Re} z \geq 0, z \neq 0 \tag{1.4}
\end{equation*}
$$

where
(1.5) $\quad V_{0}(\zeta)$ is holomorphic on $\operatorname{Re} \zeta>0, C^{\infty}$ on $\operatorname{Re} \zeta \geq 0, \quad V_{0}(0)=1$.

In fact, we obtain V_{0} in the form $V_{0}(\zeta)=\sqrt{2} V(\zeta, 0)$, where $V(\zeta, u)$ solves a Schrödinger equation in $\{\operatorname{Re} \zeta \geq 0\}$, with a certain initial condition $V(0, u)=F(u)$.

The approach used in $\S 2$ follows [W] to some extent, except for our making a connection with the Schrödinger equation. In $\S 3$ we discuss an alternative approach, taken in [WW] and also in [Leb]. We follow [Leb] more closely than [WW], and supply a few additional arguments.

In $\S 4$ (also following [Leb]) we examine the asymptotic behavior of $\Gamma(z)$ on $\operatorname{Re} z \leq 0$, via the identity

$$
\begin{equation*}
\Gamma(-z) \sin \pi z=-\frac{\pi}{z \Gamma(z)} \tag{1.6}
\end{equation*}
$$

2. Asymptotic behavior on $\operatorname{Re} z \geq 0$ via the Schrödinger equation

From (1.3) we have

$$
\begin{equation*}
\Gamma(z)=e^{z \log z-z} \int_{-1}^{\infty} e^{-z \psi(\tau)} d \tau \tag{2.1}
\end{equation*}
$$

for $\operatorname{Re} z>0$, with

$$
\begin{equation*}
\psi(\tau)=\tau-\log (1+\tau), \quad-1<\tau<\infty \tag{2.2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\psi^{\prime}(\tau)=1-\frac{1}{1+\tau}, \quad \psi^{\prime \prime}(\tau)=\left(\frac{1}{1+\tau}\right)^{2} \tag{2.3}
\end{equation*}
$$

so ψ is convex, with a unique minimum at $\tau=0$, and $\psi(0)=0$. We can hence write

$$
\begin{equation*}
u^{2}=\psi(\tau)=\tau-\log (1+\tau) \tag{2.4}
\end{equation*}
$$

where $u:(-1, \infty) \rightarrow(-\infty, \infty)$ is a diffeomorphism, satisfying

$$
\begin{gather*}
u \rightarrow-\infty \text { as } \tau \rightarrow-1, \quad u \rightarrow+\infty \text { as } \tau \rightarrow+\infty, \\
2 u d u=\frac{\tau}{1+\tau} d \tau \tag{2.5}
\end{gather*}
$$

Then (2.1) gives

$$
\begin{equation*}
\Gamma(z)=2 e^{z \log z-z} \int_{-\infty}^{\infty} e^{-z u^{2}} F(u) d u \tag{2.6}
\end{equation*}
$$

with

$$
\begin{equation*}
F(u)=\frac{u}{\tau}(1+\tau) \tag{2.7}
\end{equation*}
$$

where $\tau=\tau(u)$ is defined implicitly by (2.4). We have

$$
\begin{equation*}
F \in C^{\infty}(\mathbb{R}), \quad F(0)=\frac{1}{\sqrt{2}} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{array}{cc}
F(u) \sim u+\sum_{j \geq 1} a_{j} u^{1-j}, & u \rightarrow+\infty, \tag{2.9}\\
0, & u \rightarrow-\infty
\end{array}
$$

Also the derivatives $F^{(k)}(u)$ have asymptotic expansions as $u \rightarrow \pm \infty$ consistent with formal differentiation of (2.9), so

$$
\begin{equation*}
F \in S_{\mathrm{cl}}^{1}(\mathbb{R}) \tag{2.10}
\end{equation*}
$$

If we set

$$
\begin{equation*}
z=\frac{1}{4 \zeta}, \tag{2.11}
\end{equation*}
$$

we have

$$
\begin{align*}
\int_{-\infty}^{\infty} e^{-z u^{2}} F(u) d u & =\int_{-\infty}^{\infty} e^{-u^{2} / 4 \zeta} F(u) d u \tag{2.12}\\
& =\sqrt{4 \pi \zeta} e^{\zeta \Delta} F(0),
\end{align*}
$$

for

$$
\begin{equation*}
\operatorname{Re} \zeta \geq 0, \text { hence } \operatorname{Re} z \geq 0(z \neq 0) \tag{2.13}
\end{equation*}
$$

Here $e^{\zeta \Delta}$ is the solution operator for the evolution equation

$$
\begin{equation*}
\frac{\partial V}{\partial \zeta}=\Delta V, \quad \Delta=\frac{\partial^{2}}{\partial u^{2}} \tag{2.14}
\end{equation*}
$$

Consequently, for $\operatorname{Re} z>0$,

$$
\begin{equation*}
\Gamma(z)=\left.2\left(\frac{z}{e}\right)^{z} \sqrt{\frac{\pi}{z}} e^{\zeta \Delta} F(0)\right|_{\zeta=1 / 4 z} \tag{2.15}
\end{equation*}
$$

The following implies a version of Stirling's formula.
Proposition 2.1. For $F(u)$ given by (2.7), hence satisfying (2.8)-(2.10), the function

$$
\begin{equation*}
V(\zeta, u)=e^{\zeta \Delta} F(u) \tag{2.16}
\end{equation*}
$$

is C^{∞} on

$$
\begin{equation*}
\{\zeta \in \mathbb{C}: \operatorname{Re} \zeta \geq 0\} \times\{u \in \mathbb{R}\} \tag{2.17}
\end{equation*}
$$

Thus we have (1.4) with

$$
V_{0}(\zeta)=\sqrt{2} V(\zeta, 0)
$$

Proof. As is well known (cf. [T], Chapter 3, Proposition 8.2) if F satisfies (2.10), its Fourier transform $\widehat{F} \in \mathcal{S}^{\prime}(\mathbb{R})$ is C^{∞} on $\mathbb{R} \backslash 0$, and we can write

$$
\begin{equation*}
\widehat{F}=\widehat{F}_{0}+\widehat{F}_{1}, \quad \widehat{F}_{0} \in \mathcal{E}^{\prime}(\mathbb{R}), \quad \widehat{F}_{1} \in \mathcal{S}(\mathbb{R}) . \tag{2.18}
\end{equation*}
$$

That is, \widehat{F}_{0} is a distribution with compact support and \widehat{F}_{1} is smooth and rapidly decreasing (together with all its derivatives). Thus

$$
\begin{equation*}
e^{\zeta \Delta} F=\mathcal{F}^{*}\left(e^{-\zeta|\xi|^{2}} \widehat{F}_{0}\right)+\mathcal{F}^{*}\left(e^{-\zeta|\xi|^{2}} \widehat{F}_{1}\right) \tag{2.19}
\end{equation*}
$$

where \mathcal{F}^{*} is the inverse Fourier transform, having the mapping properties

$$
\begin{equation*}
\mathcal{F}^{*}: \mathcal{S}(\mathbb{R}) \longrightarrow \mathcal{S}(\mathbb{R}), \quad \mathcal{F}^{*}: \mathcal{E}^{\prime}(\mathbb{R}) \longrightarrow C^{\infty}(\mathbb{R}) \tag{2.20}
\end{equation*}
$$

Note that

$$
\begin{align*}
e^{-\zeta|\xi|^{2}} \widehat{F}_{0} & \text { is an entire function of } \zeta \in \mathbb{C} \\
& \text { with values in } \mathcal{E}^{\prime}(\mathbb{R}), \tag{2.21}
\end{align*}
$$

and

$$
\begin{align*}
e^{-\zeta|\xi|^{2}} \widehat{F}_{1} & \text { is a } C^{\infty} \text { function of } \zeta \in\{\operatorname{Im} \zeta \geq 0\} \tag{2.22}\\
& \text { with values in } \mathcal{S}(\mathbb{R}) .
\end{align*}
$$

The conclusion that V is C^{∞} on (2.17) is an immediate consequence of (2.18)(2.22).

Since V is C^{∞} on (2.17), it follows that $V(\zeta, 0)$ is C^{∞} on $\{\zeta \in \mathbb{C}: \operatorname{Re} \zeta \geq 0\}$, and we have the asymptotic formula

$$
\begin{equation*}
V(\zeta, 0) \sim \sum_{k \geq 0} \frac{1}{k!} F^{(2 k)}(0) \zeta^{k}, \quad \zeta \rightarrow 0, \operatorname{Re} \zeta \geq 0 \tag{2.27}
\end{equation*}
$$

Thus (2.15) yields

$$
\begin{equation*}
\Gamma(z) \sim\left(\frac{z}{e}\right)^{z} \sqrt{\frac{2 \pi}{z}}\left(1+\sum_{k \geq 1} \frac{\sqrt{2}}{k!} F^{(2 k)}(0)\left(\frac{1}{4 z}\right)^{k}\right) \tag{2.28}
\end{equation*}
$$

as $z \rightarrow \infty, \operatorname{Re} z \geq 0$.

3. Classical approach via the Laplace transform

Another approach to Stirling's formula involves writing

$$
\begin{equation*}
\log \Gamma(z)=\left(z-\frac{1}{2}\right) \log z-z+\frac{1}{2} \log 2 \pi+\omega(z) \tag{3.1}
\end{equation*}
$$

with a convenient integral formula for $\omega(z)$. This is done in $\S 12.33$ of [WW], and, to even better effect, in $\S 1.4$ of [Leb], which obtains

$$
\begin{equation*}
\omega(z)=\int_{0}^{\infty} f(t) e^{-t z} d t \tag{3.2}
\end{equation*}
$$

with

$$
\begin{equation*}
f(t)=\left(\frac{1}{2}-\frac{1}{t}+\frac{1}{e^{t}-1}\right) \frac{1}{t} \tag{3.3}
\end{equation*}
$$

which is an entire function of t, asymptotic to $1 / 2 t$ as $t \nearrow+\infty$. In [Leb] it is observed that $f^{\prime}(t)<0$ for $t>0$ and deduced that

$$
\begin{equation*}
|\omega(z)| \leq \frac{2 f(0)}{|z|}=\frac{1}{6|z|}, \quad \text { for } \quad \operatorname{Re} z \geq 0 \tag{3.4}
\end{equation*}
$$

Exponentiating (3.1) gives

$$
\begin{equation*}
\Gamma(z)=\left(\frac{z}{e}\right)^{z} \sqrt{\frac{2 \pi}{z}} e^{\omega(z)} \tag{3.5}
\end{equation*}
$$

and then (3.4) gives the leading term in (2.24), valid for $z \rightarrow \infty, \operatorname{Re} z \geq 0$. In $\S 12.33$ of [WW], the formula derived for $\omega(z)$ is

$$
\begin{equation*}
\omega(z)=\int_{0}^{\infty} \frac{\tan ^{-1}(t / z)}{e^{2 \pi t}-1} d t \tag{3.6}
\end{equation*}
$$

with which the entire asymptotic series (2.24) is derived, in a more explicit form, but its validity is demonstrated only for

$$
z \longrightarrow \infty, \quad|\arg z| \leq \frac{\pi}{2}-\delta, \quad \delta>0
$$

The validity is established in $\S 13.6$ of $[\mathrm{WW}]$ in the larger domain $|\arg z| \leq \pi-\delta$. We discuss that in $\S 4$.

The complete asymptotic expansion is mentioned in (1.4.24) of [Leb], but without a derivation. We next point out how to derive a complete asymptotic expansion of the Laplace transform (3.2), valid for $z \rightarrow \infty$, $\operatorname{Re} z \geq 0$, just given that $f \in$ $C^{\infty}([0, \infty))$ and that $f^{(j)}$ is integrable on $[0, \infty)$ for each $j \geq 1$. In fact, integration by parts yields

$$
\begin{aligned}
\int_{0}^{\infty} f(t) e^{-z t} d t & =-\frac{1}{z} \int_{0}^{\infty} f(t) \frac{d}{d t} e^{-z t} d t \\
& =\frac{1}{z} \int_{0}^{\infty} f^{\prime}(t) e^{-z t} d t+\frac{f(0)}{z}
\end{aligned}
$$

valid for $\operatorname{Re} z \geq 1$. We can iterate this argument to obtain

$$
\begin{equation*}
\omega(z)=\sum_{k=1}^{N} \frac{f^{(k-1)}(0)}{z^{k}}+\frac{1}{z^{N}} \int_{0}^{\infty} f^{(N)}(t) e^{-z t} d t \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int_{0}^{\infty} f^{(N)}(t) e^{-z t} d t\right| \leq \int_{0}^{\infty}\left|f^{(N)}(t)\right| d t<\infty, \text { for } \quad N \geq 1, \operatorname{Re} z \geq 0 \tag{3.8}
\end{equation*}
$$

To carry on, we note that, for $|t|<2 \pi$,

$$
\begin{equation*}
\frac{1}{2}-\frac{1}{t}+\frac{1}{e^{t}-1}=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2 k)!} B_{k} t^{2 k-1} \tag{3.9}
\end{equation*}
$$

where B_{k} are the Bernoulli numbers (cf. [T], $\S 12$, Exercises 6-8), so, for $|t|<2 \pi$,

$$
\begin{equation*}
f(t)=\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{(2 \ell+2)!} B_{\ell+1} t^{2 \ell} \tag{3.10}
\end{equation*}
$$

Thus

$$
f^{(j)}(0)=\begin{array}{cl}
0 & j \text { odd }, \\
\frac{(-1)^{\ell} B_{\ell+1}}{(2 \ell+1)(2 \ell+2)} & j=2 \ell, \tag{3.11}
\end{array}
$$

so

$$
\begin{equation*}
\omega(z) \sim \sum_{\ell \geq 0} \frac{(-1)^{\ell} B_{\ell+1}}{(2 \ell+1)(2 \ell+2)} \frac{1}{z^{2 \ell+1}}, \quad z \rightarrow \infty, \operatorname{Re} z \geq 0 \tag{3.12}
\end{equation*}
$$

Thus there are $A_{k} \in \mathbb{R}$ such that

$$
\begin{equation*}
e^{\omega(z)} \sim 1+\sum_{k \geq 1} \frac{A_{k}}{z^{k}}, \quad z \rightarrow \infty, \operatorname{Re} z \geq 0 \tag{3.13}
\end{equation*}
$$

consistent with (2.24), but arguably more straightforward to compute.

4. Asymptotic behavior on $\operatorname{Re} z \leq 0$

Following [Leb], we use the identity

$$
\begin{equation*}
\Gamma(-z) \sin \pi z=-\frac{\pi}{z \Gamma(z)} \tag{4.1}
\end{equation*}
$$

to extend (3.5), i.e.,

$$
\begin{equation*}
\Gamma(z)=\left(\frac{z}{e}\right)^{z} \sqrt{\frac{2 \pi}{z}} e^{\omega(z)}, \quad \text { for } \quad \operatorname{Re} z \geq 0, z \neq 0 \tag{4.2}
\end{equation*}
$$

to the rest of $\mathbb{C} \backslash \mathbb{R}^{-}$. If we define z^{z} and \sqrt{z} in the standard fashion for $z \in(0, \infty)$ and to be holomorphic on $\mathbb{C} \backslash \mathbb{R}^{-}$, we get

$$
\begin{equation*}
\Gamma(z)=\frac{1}{1-e^{2 \pi i z}}\left(\frac{z}{e}\right)^{z} \sqrt{\frac{2 \pi}{z}} e^{-\omega(-z)}, \quad \text { for } \quad \operatorname{Re} z \leq 0, \operatorname{Im} z>0 \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma(z)=\frac{1}{1-e^{-2 \pi i z}}\left(\frac{z}{e}\right)^{z} \sqrt{\frac{2 \pi}{z}} e^{-\omega(-z)}, \quad \text { for } \quad \operatorname{Re} z \leq 0, \operatorname{Im} z<0 \tag{4.4}
\end{equation*}
$$

Comparing (4.2) and (4.3) for $z=i y, y>0$, we see that

$$
\begin{equation*}
e^{-\omega(-i y)}=\left(1-e^{-2 \pi y}\right) e^{\omega(i y)}, \quad y>0 \tag{4.5}
\end{equation*}
$$

That $e^{-\omega(-i y)}$ and $e^{\omega(i y)}$ have the same asymptotic behavior as $y \rightarrow+\infty$ also follows from the fact that only odd powers of z^{-1} appear in (3.12). On the other hand, such a result is not so apparent from (2.24).

In [WW], $\S 13.6$, the validity of the asymptotic expansion arising from (4.2) was extended to $|\arg z| \leq \pi-\delta$ (for each $\delta>0$) by a different method. Since $\S 12.3$ of [WW] obtained (3.12) only for $|\arg z| \leq \pi / 2-\delta$, use of (4.1) on that result would miss the asymptotic expansion of $\Gamma(z)$ near the imaginary axis.

References

[Leb] N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972.
[T] M. Taylor, Introduction to Complex Analysis, Lecture Notes, available at http://www.unc.edu/math/Faculty/met/complex.html
[W] G. Watson, An expansion related to Stirling's formula, derived by the method of steepest descents, Quart. J. Pure Appl. Math. 48 (1920).
[WW] E. Whittaker and G. Watson, Modern Analysis, 4th ed., Cambridge Univ. Press, Cambridge, 1927.

