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1. Introduction

Our goal is to derive Stirling’s formula for the asymptotic behavior of Γ(z) as
|z| → ∞. We will first do this for Re z ≥ 0, using a strong form of the Laplace
asymptotic method. Then we treat Re z ≤ 0, using a functional equation.

We recall that Γ(z) can be defined for Re z > 0 by the integral

(1.1) Γ(z) =
∫ ∞

0

e−ttz−1 dt.

More convenient for us is

(1.2)

Γ(z + 1) =
∫ ∞

0

e−ttz dt

=
∫ ∞

0

e−t+z log t dt

= z

∫ ∞

0

e−zs+z(log s+log z) ds,

the last line via the substitution t = zs. Together with Γ(z+1) = zΓ(z), this yields
the identity

(1.3)
Γ(z) = ez log z

∫ ∞

0

e−z(s−log s) ds

= ez log z−z

∫ ∞

−1

e−z(τ−log(1+τ)) dτ,

valid for Re z > 0.
In §2 we will deduce from (1.3) that

(1.4) Γ(z) =
(z

e

)z
√

2π

z
V0

( 1
4z

)
, Re z ≥ 0, z 6= 0,
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where

(1.5) V0(ζ) is holomorphic on Re ζ > 0, C∞ on Re ζ ≥ 0, V0(0) = 1.

In fact, we obtain V0 in the form V0(ζ) =
√

2V (ζ, 0), where V (ζ, u) solves a
Schrödinger equation in {Re ζ ≥ 0}, with a certain initial condition V (0, u) = F (u).

The approach used in §2 follows [W] to some extent, except for our making a
connection with the Schrödinger equation. In §3 we discuss an alternative approach,
taken in [WW] and also in [Leb]. We follow [Leb] more closely than [WW], and
supply a few additional arguments.

In §4 (also following [Leb]) we examine the asymptotic behavior of Γ(z) on
Re z ≤ 0, via the identity

(1.6) Γ(−z) sin πz = − π

zΓ(z)
.
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2. Asymptotic behavior on Re z ≥ 0 via the Schrödinger equation

From (1.3) we have

(2.1) Γ(z) = ez log z−z

∫ ∞

−1

e−zψ(τ) dτ,

for Re z > 0, with

(2.2) ψ(τ) = τ − log(1 + τ), −1 < τ < ∞.

Note that

(2.3) ψ′(τ) = 1− 1
1 + τ

, ψ′′(τ) =
( 1

1 + τ

)2

,

so ψ is convex, with a unique minimum at τ = 0, and ψ(0) = 0. We can hence
write

(2.4) u2 = ψ(τ) = τ − log(1 + τ),

where u : (−1,∞) → (−∞,∞) is a diffeomorphism, satisfying

(2.5)
u → −∞ as τ → −1, u → +∞ as τ → +∞,

2u du =
τ

1 + τ
dτ.

Then (2.1) gives

(2.6) Γ(z) = 2ez log z−z

∫ ∞

−∞
e−zu2

F (u) du,

with

(2.7) F (u) =
u

τ
(1 + τ),

where τ = τ(u) is defined implicitly by (2.4). We have

(2.8) F ∈ C∞(R), F (0) =
1√
2
,

and

(2.9)
F (u) ∼ u+

∑

j≥1

aju
1−j , u → +∞,

0, u → −∞.
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Also the derivatives F (k)(u) have asymptotic expansions as u → ±∞ consistent
with formal differentiation of (2.9), so

(2.10) F ∈ S1
cl(R).

If we set

(2.11) z =
1
4ζ

,

we have

(2.12)

∫ ∞

−∞
e−zu2

F (u) du =
∫ ∞

−∞
e−u2/4ζF (u) du

=
√

4πζ eζ∆F (0),

for

(2.13) Re ζ ≥ 0, hence Re z ≥ 0 (z 6= 0).

Here eζ∆ is the solution operator for the evolution equation

(2.14)
∂V

∂ζ
= ∆V, ∆ =

∂2

∂u2
.

Consequently, for Re z > 0,

(2.15) Γ(z) = 2
(z

e

)z
√

π

z
eζ∆F (0)

∣∣∣
ζ=1/4z

.

The following implies a version of Stirling’s formula.

Proposition 2.1. For F (u) given by (2.7), hence satisfying (2.8)–(2.10), the func-
tion

(2.16) V (ζ, u) = eζ∆F (u)

is C∞ on

(2.17) {ζ ∈ C : Re ζ ≥ 0} × {u ∈ R}.

Thus we have (1.4) with
V0(ζ) =

√
2 V (ζ, 0).

Proof. As is well known (cf. [T], Chapter 3, Proposition 8.2) if F satisfies (2.10),
its Fourier transform F̂ ∈ S ′(R) is C∞ on R \ 0, and we can write

(2.18) F̂ = F̂0 + F̂1, F̂0 ∈ E ′(R), F̂1 ∈ S(R).



5

That is, F̂0 is a distribution with compact support and F̂1 is smooth and rapidly
decreasing (together with all its derivatives). Thus

(2.19) eζ∆F = F∗
(
e−ζ|ξ|2 F̂0

)
+ F∗

(
e−ζ|ξ|2 F̂1

)
,

where F∗ is the inverse Fourier transform, having the mapping properties

(2.20) F∗ : S(R) −→ S(R), F∗ : E ′(R) −→ C∞(R).

Note that

(2.21)
e−ζ|ξ|2 F̂0 is an entire function of ζ ∈ C

with values in E ′(R),

and

(2.22)
e−ζ|ξ|2 F̂1 is a C∞ function of ζ ∈ {Im ζ ≥ 0}

with values in S(R).

The conclusion that V is C∞ on (2.17) is an immediate consequence of (2.18)–
(2.22).

Since V is C∞ on (2.17), it follows that V (ζ, 0) is C∞ on {ζ ∈ C : Re ζ ≥ 0},
and we have the asymptotic formula

(2.27) V (ζ, 0) ∼
∑

k≥0

1
k!

F (2k)(0) ζk, ζ → 0, Re ζ ≥ 0.

Thus (2.15) yields

(2.28) Γ(z) ∼
(z

e

)z
√

2π

z

(
1 +

∑

k≥1

√
2

k!
F (2k)(0)

( 1
4z

)k)
,

as z →∞, Re z ≥ 0.
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3. Classical approach via the Laplace transform

Another approach to Stirling’s formula involves writing

(3.1) log Γ(z) =
(
z − 1

2

)
log z − z +

1
2

log 2π + ω(z),

with a convenient integral formula for ω(z). This is done in §12.33 of [WW], and,
to even better effect, in §1.4 of [Leb], which obtains

(3.2) ω(z) =
∫ ∞

0

f(t)e−tz dt,

with

(3.3) f(t) =
(1

2
− 1

t
+

1
et − 1

)1
t
,

which is an entire function of t, asymptotic to 1/2t as t ↗ +∞. In [Leb] it is
observed that f ′(t) < 0 for t > 0 and deduced that

(3.4) |ω(z)| ≤ 2f(0)
|z| =

1
6|z| , for Re z ≥ 0.

Exponentiating (3.1) gives

(3.5) Γ(z) =
(z

e

)z
√

2π

z
eω(z),

and then (3.4) gives the leading term in (2.24), valid for z →∞, Re z ≥ 0. In §12.33
of [WW], the formula derived for ω(z) is

(3.6) ω(z) =
∫ ∞

0

tan−1(t/z)
e2πt − 1

dt,

with which the entire asymptotic series (2.24) is derived, in a more explicit form,
but its validity is demonstrated only for

z −→∞, |arg z| ≤ π

2
− δ, δ > 0.

The validity is established in §13.6 of [WW] in the larger domain |arg z| ≤ π − δ.
We discuss that in §4.
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The complete asymptotic expansion is mentioned in (1.4.24) of [Leb], but without
a derivation. We next point out how to derive a complete asymptotic expansion
of the Laplace transform (3.2), valid for z → ∞, Re z ≥ 0, just given that f ∈
C∞([0,∞)) and that f (j) is integrable on [0,∞) for each j ≥ 1. In fact, integration
by parts yields

∫ ∞

0

f(t)e−zt dt = −1
z

∫ ∞

0

f(t)
d

dt
e−zt dt

=
1
z

∫ ∞

0

f ′(t)e−zt dt +
f(0)

z
,

valid for Re z ≥ 1. We can iterate this argument to obtain

(3.7) ω(z) =
N∑

k=1

f (k−1)(0)
zk

+
1

zN

∫ ∞

0

f (N)(t)e−zt dt,

and

(3.8)
∣∣∣
∫ ∞

0

f (N)(t)e−zt dt
∣∣∣ ≤

∫ ∞

0

|f (N)(t)| dt < ∞, for N ≥ 1, Re z ≥ 0.

To carry on, we note that, for |t| < 2π,

(3.9)
1
2
− 1

t
+

1
et − 1

=
∞∑

k=1

(−1)k−1

(2k)!
Bkt2k−1,

where Bk are the Bernoulli numbers (cf. [T], §12, Exercises 6–8), so, for |t| < 2π,

(3.10) f(t) =
∞∑

`=0

(−1)`

(2` + 2)!
B`+1t

2`.

Thus

(3.11)
f (j)(0) = 0 j odd,

(−1)`B`+1

(2` + 1)(2` + 2)
j = 2`,

so

(3.12) ω(z) ∼
∑

`≥0

(−1)`B`+1

(2` + 1)(2` + 2)
1

z2`+1
, z →∞, Re z ≥ 0.

Thus there are Ak ∈ R such that

(3.13) eω(z) ∼ 1 +
∑

k≥1

Ak

zk
, z →∞, Re z ≥ 0,

consistent with (2.24), but arguably more straightforward to compute.
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4. Asymptotic behavior on Re z ≤ 0

Following [Leb], we use the identity

(4.1) Γ(−z) sin πz = − π

zΓ(z)

to extend (3.5), i.e.,

(4.2) Γ(z) =
(z

e

)z
√

2π

z
eω(z), for Re z ≥ 0, z 6= 0,

to the rest of C \R−. If we define zz and
√

z in the standard fashion for z ∈ (0,∞)
and to be holomorphic on C \ R−, we get

(4.3) Γ(z) =
1

1− e2πiz

(z

e

)z
√

2π

z
e−ω(−z), for Re z ≤ 0, Im z > 0,

and

(4.4) Γ(z) =
1

1− e−2πiz

(z

e

)z
√

2π

z
e−ω(−z), for Re z ≤ 0, Im z < 0.

Comparing (4.2) and (4.3) for z = iy, y > 0, we see that

(4.5) e−ω(−iy) = (1− e−2πy)eω(iy), y > 0.

That e−ω(−iy) and eω(iy) have the same asymptotic behavior as y → +∞ also
follows from the fact that only odd powers of z−1 appear in (3.12). On the other
hand, such a result is not so apparent from (2.24).

In [WW], §13.6, the validity of the asymptotic expansion arising from (4.2) was
extended to |arg z| ≤ π − δ (for each δ > 0) by a different method. Since §12.3 of
[WW] obtained (3.12) only for |arg z| ≤ π/2− δ, use of (4.1) on that result would
miss the asymptotic expansion of Γ(z) near the imaginary axis.
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