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1. Introduction

Let Ω be a 2D Riemannian manifold (possibly with boundary). Assume Ω is
oriented, with J denoting counterclockwise rotation by 90◦. As is well known, we
can take a real-valued function (a stream function) ψ : Ω → R (assume ψ is constant
on each component γj of ∂Ω) and then

(1.1) v = J ∇ψ

is a vector field on Ω (tangent to ∂Ω, if this is nonempty), defining a stationary
solution to the Euler equation for incompressible (inviscid) fluid flow, provided ψ
has the property

(1.2) ∇(∆ψ)(z) ‖ ∇ψ(z), ∀ z ∈ Ω.

In particular, this holds provided ψ satisfies any nonlinear PDE of the form

(1.3) ∆ψ = Φ(ψ)

on Ω, with ψ = cj on γj . Constructing such solutions provides many stationary
inviscid 2D fluid flows. (Remark: sometimes one sees the statement that (1.2) and
(1.3) are equivalent, but actually (1.2) is more general than (1.3).)

An example of (1.3) with particular geometrical import is

(1.4) ∆ψ = −K e2ψ,

with K a constant (typically K = ±1). The contact with geometry arises as follows.
Suppose Ω has a flat metric (e.g., Ω could be a planar domain, or covered by a
planar domain). Then multiplying its metric tensor by the factor e2ψ produces a
metric of Gauss curvature K if and only if (1.4) holds. We will use this observation
and conformal mapping techniques to construct solutions to (1.4), which then yield
interesting stationary solutions to the Euler equation, via (1.1). We note that the
vorticity of such a flow is given by

(1.5) ω = ∆ψ,

so our solutions will typically have nontrivial vorticity. Thus the use made here of
conformal mapping contrasts with the well known use of conformal mappings to
produce irrotational stationary planar flows.
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2. Cat’s eye flows

Our first example takes Ω = C/Γ, where Γ = {2πik : k ∈ Z}. We produce a
2-parameter family of stationary flows on Ω, containing the 1-parameter family of
“Kelvin-Stuart cat’s-eye flows” given on p. 53 of [MB], following [S]. These solutions
arise from (1.4) with K = 1. We take the conformal diffeomorphism

(2.1) E : Ω −→ C \ {0}, E(z) = ez,

and pull back to Ω a metric of curvature 1 on C \ {0}. In fact, we take a family
of metrics on C (conformally equivalent to the standard flat metric) of curvature
1, coming from conformal equivalence of C ∪ {∞} with S2, the unit sphere in R3,
with its standard metric (of curvature 1).

A conformal transformation of C ∪ {∞} to S2 is given by

(2.2) F : C −→ S2

where z = x + iy ∈ C is mapped to (u, v, t) ∈ S2 ⊂ R3 (u2 + v2 + t2 = 1), via

(2.3) u =
2x

x2 + y2 + 1
, v =

2y

x2 + y2 + 1
, t =

x2 + y2 − 1
x2 + y2 + 1

.

Under this map, du2 + dv2 + dt2 pulls back to

(2.4) 4
dx2 + dy2

(x2 + y2 + 1)2
= 4

|dz|2
(|z|2 + 1)2

.

If we pull back the metric (2.4) to Ω via (2.1) we get a conformal multiple e2ψ

of the standard metric, yielding a stream function. We get a more general class of
stream functions by making the following construction. Given

(2.5) A =
(

a b
c d

)
∈ Gl(2,C),

the map

(2.6) TA(w) =
aw + b

cw + d
= z

defines a conformal automorphism of C ∪ {∞}. The metric (2.4) pulls back to

(2.7)
4|ad− bc|2

(|aw + b|2 + |cw + d|2)2 |dw|2.
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Via (2.1), this pulls back to the following metric on Ω:

(2.8)

4|ad− bc|2|ez|2
(|aez + b|2 + |cez + d|2)2 |dz|2

=
4|ad− bc|2

(|aez/2 + be−z/2|2 + |cez/2 + de−z/2|2)2 |dz|2.

With z = x + iy, note that

(2.9) |aez/2 + be−z/2|2 = |a|2ex + |b|2e−x + 2 Re(ab eiy).

Thus we can write the metric (2.8) on Ω as

(2.10)
4|ad− bc|2

(|α|2ex + |β|2e−x + 2 Re(α, β)eiy)2
(dx2 + dy2),

where

(2.11) α =
(

a
c

)
, β =

(
b
d

)
∈ C2,

and

(2.12) |α|2 = |a|2 + |c|2, |β|2 = |b|2 + |d|2, (α, β) = ab + cd.

The coefficient of dx2 + dy2 in (2.10) defines e2ψ. An alternative formulation is

(2.13)
e−ψ =

1
2
|det A|−1

∣∣∣A
(

ez/2

e−z/2

)∣∣∣
2

=
|α|2ex + |β|2e−x + 2 Re (α, β)eiy

2| det(α, β)| .

This class of metrics is parametrized by A =
(

a b
c d

)
∈ Gl(2,C), but in fact

by reducing the numerator and denominator in (2.6) we can take A ∈ Sl(2,C).
Furthermore, multiplication of A on the left by a unitary matrix has a trivial effect,
so the set of metrics in (2.10) (or stream functions (2.13)) is effectively parametrized
by SU(2)\Sl(2,C), equivalent to 3D hyperbolic space.

To pick out the 1-parameter family of Kelvin-Stuart flows from (2.13), we spe-
cialize to

(2.14) α =
(

a
c

)
, β =

(
b
d

)
∈ R2, |α|2 = |β|2.
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Then (2.13) specializes to

(2.15) e−ψ =
|α|2 cosh x + (α · β) cos y

|α× β| .

If we set

(2.16) γ =
|α|2
|α× β| , σ =

α · β
|α× β| ,

then, given (2.14), we have

(2.17) γ ≥ 1, σ = ±
√

γ2 − 1.

This recovers the Kelvin-Stuart stream function:

(2.18) ψ(z) = − log(γ cosh x +
√

γ2 − 1 cos y), γ ≥ 1.

Back to the more general case (2.13), we can take

(2.19) A =
(

1 b
0 d

)
, b ∈ C, d > 0.

Then (2.13) becomes (with b = b1 + ib2)

(2.20) e−ψ =
ex + (b2

1 + b2
2 + d2)e−x

2d
+

b1 cos y + b2 sin y

d
,

which reduces to (2.15) when b2 = 0 and b2
1 + d2 = 1 (with γ = 1/d). Note that if

b = |b|eiθ then Re beiy = |b| cos(y − θ), so another way to write (2.20) is as

(2.21) e−ψ =
ex + (|b|2 + d2)e−x

2d
+
|b|
d

cos(y − θ).

The phase θ is not physically significant, so we see we have a 2-parameter family
of stream functions. We can just take b ≥ 0 in (2.19). We get

(2.22) ψ = − log
(γ

2
ex +

σ2 + 1
2γ

e−x + σ cos y
)
,

where γ = 1/d and σ = b/d are independent positive numbers. The special case
σ =

√
γ2 − 1 (γ ≥ 1) is (2.18).
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Note that the argument of the logarithm in (2.22) has the form f(x) + σ cos y.
We see that f is convex, f(±∞) = +∞, and

(2.23) f ′(x) = 0 ⇔ e2x =
σ2 + 1

γ2
, fmin =

√
σ2 + 1.

Thus ψ(x, y) has local maxima where (2.23) holds and y = 2kπ, k ∈ Z, and saddle
points where (2.23) holds and y = 2kπ + π, k ∈ Z. The qualitative behavior of
such stream functions and their associated flows are much the same as those of the
special cases given by (2.18).

3. The case K = −1

Solutions to (1.4) with K = −1 are also stream functions, yielding steady solu-
tions to the Euler equations on domains Ω ⊂ R2. In particular, if R2 \ Ω has at
least two points, Ω has a canonical Poincaré metric, of the form e2ψ(dx2 + dy2), ψ
satisfying (1.4) with K = −1. Examples include

(3.1) e2ψ =
4

(1− |z|2)2 , on D1 = {z ∈ R2 : |z| < 1},

and

(3.2) e2ψ =
(
|z| log

1
|z|

)−2

, on D1 \ {0},

which is a limiting case of

(3.3) e2ψ =
( b

|z| sin
(
b log 1

|z|
)
)2

, on {z : e−π/b < |z| < 1},

given b > 0. The formulas (3.2) and (3.3) can be derived from (3.1) via various
conformal covering maps. (See, e.g., the introduction to [MT].)

These radial stream functions are not particularly interesting from the point
of view of studying fluid flows, but one can pull back Poincaré metrics to other
domains, via conformal mappings, and thereby obtain explicit formulas for other
stream functions. In these cases, ψ blows up at ∂Ω, but one can restrict to Ωa =
{z ∈ Ω : ψ(z) < a} to obtain smooth steady flows.

For example, if we use the transformation (2.6) to pull back the metric tensor
on D1 \ {0} given by (3.2), we obtain a metric tensor e2ψ |dz|2 with

(3.4) e2ψ =
|ad− bc|2

|az + b|2|cz + d|2
(
log

∣∣∣cz + d

az + b

∣∣∣
)−2

.
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If we take

(3.5) A =
(

1 b
b 1

)
, |b| < 1,

then (3.4) is defined on D1 \ {−b} (and also on {z : |z| > 1, z 6= −1/b}). The
attached Mathematica notebook (Figure2A.nb) shows some streamlines when we
take b = 0.2 in (3.5). As one can see, the vector field v = J ∇ψ has a critical
point of saddle type at x ≈ −0.45, y = 0, and a critical point of center type at
x ≈ 0.25, y = 0. These features are also present in the cat’s eye flows, discussed in
§2. Compare Figure 2.4 in [MB].

If we pull back this metric on D1 \ {0} to the upper half plane, minus (0, 1), via
z 7→ (z − i)/(z + i), we obtain the stream function given by

(3.6) e2ψ =
4

|z2 + 1|2
(
log

|z + i|
|z − i|

)−2

,

whose streamlines are depicted in Figure2B.nb. Note the saddle point at x = 0, y ≈
0.65.

In Figure3.nb we show streamlines of a stream function obtained as follows. Pick
b ∈ (0, 1) (here b = 0.15), take the Poincaré metric on D1 \{−b} arising from (3.4)–
(3.5), and pull it back to D1 \ {±i

√
b} via the branched covering map z 7→ z2. The

resulting metric tensor is e2ψ |dz|2 with

(3.7) e2ψ =
4(1− b2)|z|2

|z2 + b|2|bz2 + 1|2
(
log

∣∣∣bz
2 + 1

z2 + b

∣∣∣
)−2

.

This metric tensor is degenerate at z = 0. In fact we have ψ(z) → −∞ as z → 0,
while ψ(z) → +∞ as z → ±i

√
b and as |z| → 1. We can regard some closed level

curve of ψ around the origin as the boundary of an obstacle, and Figure3.nb shows
streamlines of a flow in a region that is approximately a disk, with three obstacles.

In Figure4.nb we show streamlines of a stream function obtained as follows. Take
the Poincaré metric on {z : Im z > 0, z 6= i} given by (3.6) and pull it back to the
strip {z : 0 < Im z < π}, with the point z = πi/2 deleted, via the map z 7→ ez.
The resulting metric tensor is e2ψ |dz|2 with

(3.8) e2ψ =
1

|cosh z|2
(
log

∣∣∣e
z + i

ez − i

∣∣∣
)−2

.

This models flow in a (not quite straight) pipe, with an obstacle, the flow moving
to the left at the top and to the right at the bottom.

While we have dwelt on Poincaré metrics here (with one sort of generalization
for the case of D1 \ {±i

√
b}), more general metrics of the form e2ψ |dz|2 with
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curvature −1 describe stream functions. We note that such a metric does not exist
on the space C/Γ discussed in §2. (Recall we had K = +1 there.) Indeed, C/Γ is
holomorphically covered by C, not by D1, so it does not have a Poincaré metric.
Now if we had any metric of the form e2ψ |dz|2 on C/Γ with Gauss curvature
K = −1, then this would provide a barrier function allowing the construction of a
Poincaré metric (cf. [MT], Proposition 7.1), giving a contradiction.

4. Applications to Beltrami flows

A Beltrami flow on O ⊂ R3 is a vector field v on O (tangent to the boundary, if
nonempty), satisfying

(4.1) curl v(p) ‖ v(p), ∀ p ∈ O.

Such v is a steady solution to the 3D Euler equation. If ψ is a function on Ω ⊂ R2

satisfying (1.3), then the vector field on O = Ω× R defined by

(4.2) v = (−ψy, ψx,W (ψ))

gives a Beltrami flow, provided W (ψ) satisfies

(4.3) W ′(ψ)W (ψ) = −Φ(ψ);

cf. [MB], §2.3.2. As pointed out there, if ψ satisfies (1.4) with K = +1, one can
take W (ψ) = eψ, so if ψ defines the cat’s eye flow, i.e., if ψ is given by (2.18), or
more generally if ψ is given by (2.22), then (−ψy, ψx, eψ) yields a Beltrami flow.

If ψ satisfies (1.4) with K = −1, then (4.3) becomes

(4.4) W ′(ψ)W (ψ) = −e2ψ,

which has solutions of the form

(4.5) W (ψ) =
√

A− e2ψ,

for a given constant A > 0, as long as e2ψ < A on Ω. This gives Beltrami flows on
regions Ω× R ⊂ R3 from stream functions constructed as indicated in §3.
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