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1. Introduction

We propose a model to explain the playing of “harmonics” on stringed instru-
ments. The interesting phenomenon here is that placing a finger lightly at one of
the nodes of the low frequency harmonics seems to force the string to play a note
that sounds like a superposition of those normal modes with nodes at the location
of the finger. For example, if the finger is placed 1/4 the way down the string, the
note that is heard is two octaves above the fundamental. Pressing hard at that
place on the string would yield a note with fundamental much lower. With care,
one can play harmonics 4 or 5 octaves above the fundamental. It is very striking,
for example, to hear a fat bass string play these shrill high tones vibrating along
their entire length. A second aspect is that if the finger is lightly placed at a point
which is not a node of a low frequency normal mode, the observed sound is a rapidly
dying thud.

The problem we propose is to construct a model for the lightly placed finger
which explains these observations. It turns out that a strong frictional resistance
which is localized in a very small region has the desired properties. More precisely,
the model we propose for the string occupying the interval 0 ≤ x ≤ π and fixed at
the endpoints x = 0 and π is

utt + b(x)ut = uxx; 0 ≤ x ≤ π, t ≥ 0,(1.1)

u(t, 0) = u(t, π) = 0; t ≥ 0.(1.2)

Here the frictional resistance b(x), which models the finger friction, is assumed
to be ≥ 0 and strongly localized near a point a ∈ (0, π). Existence, uniqueness,
and qualitative behavior of solutions of the problem are developed from the law of
energy decay

d

dt

∫ π

0

(u2
t + u2

x) dx = −
∫ π

0

b(x)ut(t, x)2 dx ≤ 0.

The analysis proceeds in two steps. First, we show that for highly localized b, the
behavior of (1.1) is approximated by that of a singular equation

(1.3) utt + αδ(x− a)ut = uxx, α =
∫ π

0

b(x) dx.

This formal limit is equivalent to the wave equation for x 6= a, supplemented by a
transmission condition at x = a. The second step is a fairly precise analysis of this
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limiting equation. Among other things, we show that if a/π is irrational, then all
solutions tend to zero as t →∞, while if a/π is rational, the components of u in the
span of the nodes that vanish at x = a propagate as if there were no friction while
the components orthogonal (in the natural scalar product given by the energy) to
these decay exponentially. These results mirror the observed phenomena described
above.

In §4 we summarize our findings and bring up the phenomenon of using the
“correct touch” to produce harmonics. We also discuss the appropriateness of our
model.

Remark. This paper appeared as reference [10] in Arch. Rat., in 1982. At the
time, the manuscript was prepared on an old fashioned typewriter. Here the paper
has been typed in TeX. More recently, additional work on this phenomenon has
appeared in [11].
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2. The limiting transmission problem

To study the behavior of (1.1)–(1.2) with highly localized friction, we investigate
the limiting behavior as b(x) becomes more and more localized. It turns out that
the limiting behavior corresponds quite closely to the observations above concerning
stringed instruments. In this section, we will show that the limiting behavior is
given by solving a specific transmission problem, and an analysis of this transmission
problem is given in the next section.

First, we cast the basic problem in the framework of the theory of semigroups
of operators. Consider the pair U = (ut, u) as an element of the Hilbert space
H = L2([0, π]) ⊕ H1

0 ([0, π]), where H1
0 ([0, π]) is the completion of C∞0 ((0, π)) in

the norm
(∫ π

0
(u2 + u2

x) dx
)1/2. The mixed problem (1.1)–(1.2) is equivalent to the

evolution equation

(2.1) Ut = ΓU,

where

Γ =
(−b D2

I 0

)
, D =

∂

∂x
,

D(Γ) = H1
0 ([0, π])⊕ (

H2([0, π]) ∩H1
0 ([0, π])

)
.

It is a simple matter, using the theory of ordinary differential equations, to show
that Γ so defined is a maximal dissipative operator. We will present a similar but
slightly harder proof for the operator Gα, which occurs further on, and therefore
omit the details of the present argument. The theory of semigroups provides a
solution of the differential equation (2.1) with initial condition

(2.2) U(0) = (g, f) ∈ H,

the solution U being a continuous function of t with values in H. In addition,
if (g, f) ∈ D(Γ3), it is not hard to show that the associated function u(t, x) is a
classical solution of the mixed problem (1.1)–(1.2), with u(0, x) = f and ut(0, x) =
g. There are, of course, other ways to treat this mixed problem, using for example
the method of characteristics [1, Chap. 5], or the theory of symmetric positive
systems, [2,8]. We have chosen the present approach because it seems to yield
the strongest results when we consider the limiting behavior as b becomes more
localized.

For future use, we record one more fact about Γ. The equation (I − Γ)U = F
for U = (u, v) and F = (F1, F2) in H is equivalent to the following equations:

(2.3) w − v = F2,
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and

(2.4)
∫ π

0

(wϕ + bvϕ + wxϕx) dx =
∫ π

0

F1ϕ dx, ∀ϕ ∈ H1
0 ([0, π]).

This weak formulation is ideally suited to our needs. We consider a sequence of
non-negative friction coefficients bn ∈ C∞([0, π]) with the property that

(2.5) lim
n

∫ π

0

bn(x)ψ(x) dx = αψ(a), ∀ψ ∈ C([0, π]),

where 0 ≤ α < ∞. If bn satisfies (2.5) and un is the solution of the mixed problem
(1.1)–(1.2) with initial data (g, f), then, as n →∞, the functions un will be shown
to converge to the solution u of the transmission problem

utt − uxx = 0 for x ∈ [0, π] \ {a}, t ≥ 0,(2.6)

[ut] = 0 and αut = [ux] at x = a, t ≥ 0,(2.7)

u = 0 at x = 0, π,(2.8)

with (ut(0, x), u(0, x)) = (g, f). The quantity [h] at x = a is the jump h(a + 0) −
h(a− 0) in h at the point a.

There is also a semigroup formulation of the problem (2.6)–(2.8). For U ∈ H we
get the equation

Ut = GαU,

where

Gα =
(

0 D2

I 0

)
for x 6= a,

and

D(Gα) =
{

(v, w) ∈ H1
0 ([0, π])⊕ (

H2([0, a]) ∩ H2([a, π])
)

: αv = [wx] at x = a
}
.

This is reasonable, since formally Γ approaches
(−αδa D2

I 0

)
, while the equation

D2w − αδav = F1 translates to D2w = F1 for x 6= a and αv = [wx] at x = a.
We show that Gα as defined above is a maximal dissipative operator. First, for

all U = (v, w) ∈ D(Gα) we have

(GU,U)H = −αv(a)2 ≤ 0,

so Gα is dissipative. To see that the range R(I − Gα) = H, suppose that F =
(F1, F2) ∈ H. Then the equation (I −Gα)U = F is equivalent to

(v, w) ∈ D(Gα), w − v = F2,

v −D2w = F1 on [0, π] \ {a}.
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Using the first equation to eliminate v from the second, we get

(2.9) −D2w + w = F1 − F2, x 6= a.

There is a two parameter family of solutions of this equation which, in addition,
satisfies w = 0 at x = 0, π. In fact, we may take w′(0), w′(π) as the parameters. In
addition to (2.9), w must satisfy

(2.10) [w] = 0 and αw − [wx] = F2 at x = a,

where the second condition comes from eliminating v from the transmission condi-
tion. To see that these restrictions uniquely determine w′(0), w′(π), we need only
show that the map

(w′(0), w′(π) 7→ ([w], αw(a+)− [wx]a)

is a nonsingular linear transformation from R2 to itself. For this, it suffices to show
that the map is injective. If (w′(0), w′(π)) 7→ (0, 0), then the associated function w
satisfies

(I −D2)w = 0 for x 6= a,

[w] = αw − [wx] = 0 at x = a,

w = 0 at x = 0, π.

Integrating by parts in the identity

∫ a

0

w(I −D2)w dx +
∫ π

a

w(I −D2)w dx = 0

then yields ∫ π

0

((Dw)2 + w2) dx + αw(a)2 = 0,

so w = 0. Thus w is uniquely determined by (2.9)–(2.10). Setting v = w−F2 gives
a pair U = (v, w) that satisfies (I − Gα)U = F , and the proof of maximality is
complete.

The next theorem asserts the convergence of the solutions of the mixed prob-
lem (1.1)–(1.2), with friction coefficients bn satisfying (2.5), to the solution of the
transmission problem defined above.

Theorem 2.1. If the non-negative friction coefficients bn satisfy (2.5), and if Γn

are the associated maximal dissipative operators, then for each t ≥ 0,

s− lim
n→∞

etΓn = etGα ,

and the convergence is uniform on compact time intervals.
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Proof. We apply the Trotter-Kato theorem [4, Chapter 9, Thm. 2.16], thereby
reducing the problem to showing that for every F ∈ H,

(I − Γn)−1F −→ (I −Gα)−1F, in H.

Let Un = (vn, wn) = (I − Γn)−1F . We first show that Un converges weakly in H
to (I −Gα)−1F . Notice that

‖Un‖H ≤ ‖(I − Γn)−1‖ · ‖F‖H ≤ ‖F‖H,

so {Un} is weakly compact in H. Let U = (v, w) be a weak limit point, and choose
a subsequence Unk

converging weakly to U . We claim that U = (I −Gα)−1F .
From (2.3), we have wnk

− vnk
= F2. Hence, passing to the limit k → ∞, we

have w − v = F2. Similarly, (2.4) holds for wnk
, vnk

provided b is replaced by bnk
.

Passing to the limit, we obtain
∫ π

0

(wϕ + Dw ·Dϕ) dx + lim
∫ π

0

bnk
vnk

ϕdx =
∫ π

0

F1ϕdx, ∀ϕ ∈ H1
0 ([0, π]).

By (2.5), if we consider bnϕ as an element of the dual of C([0, π]), the sequence
bnϕ converges weak∗ to αϕ(a)δa. However, vnk

= wnk
− F2 converges weakly to v

in H1
0 ([0, π]) and therefore uniformly. Thus the limit above is αv(a)ϕ(a), and we

have

(2.11)
∫ π

0

(wϕ + Dw ·Dϕ) dx + αv(a)ϕ(a) =
∫ π

0

F1ϕ dx,

for all ϕ ∈ H1
0 ([0, π]). With the help of the identity w − v = F2, the condition

(2.11) is easily shown to be equivalent to the equation (I−Gα)U = F . This proves
the weak convergence of Un to U .

To prove the strong convergence, we investigate the sequence ‖Un‖H. To do this,
set ϕ = wn in (2.4) to obtain

∫ π

0

(w2
n + (Dwn)2) dx =

∫ π

0

F1wn dx−
∫ π

0

bnvnwn dx.

The limit of the right hand side as n →∞ is
∫ π

0

F1w dx− αw(a)v(a),

which is precisely
∫ π

0
(w2 + (Dw)2) dx, as can be seen by choosing ϕ = w in (2.11).

This takes care of the w component; that is, wn → w in H1
0 ([0, π]). It follows

then that vn = wn − F2 converges to v in L2([0, π]). The proof of Theorem 2.1 is
complete.
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If one considers bn(x) satisfying bn ≥ 0, Theorem 2.1 shows that
∫ π

0
bn dx is an

appropriate measure of the strength of the frictional force, since if
∫

bn dx → α ≥ 0,
the limiting behavior is given by (2.6)–(2.8). We now turn our attention to the case
of extremly large friction. Suppose bn ≥ 0 and

(2.12)

∫ π

0

bn(x) dx = βn ↗∞, as n →∞,

lim sup
x∈K,n∈Z+

bn(x) = 0, ∀ compact K ⊂ [0, π] \ {a}.

The second hypothesis asserts that, away from the point a, the functions bn con-
centrate near a, as n →∞.

Suppose that un is the solution of (1.1)–(1.2) with Cauchy data ∂tun(0) =
ψ, un(0) = ϕ, and energy at time t given by

‖Un(t)‖2H =
∫ π

0

(ut(t, x)2 + ux(t, x)2) dx, Un = (∂tun, un).

The formula for energy decay is

‖Un(T )‖2H = ‖Un(0)‖2H −
∫ T

0

∫ π

0

bn

(∂un

∂t

)2

dx dt.

In particular, for all n,
∫ T

0

∫ π

0

bn

(∂un

∂t

)2

dx dt ≤
∫ π

0

(ψ(x)2 + ϕ′(x)2) dx.

This implies that if we consider ∂tun(·, x) ∈ L2([0, T ]) for each x, the weighted
averages satisfy

(2.13)
1
βn

∫ π

0

bn(x)‖∂tun(·, x)‖2L2([0,T ]) dx −→ 0, as n →∞.

Now {un} is bounded in H1((0, T )× (0, π)), and

H1((0, T )× (0, π)) ↪→ C([0, π], L2((0, T )) compactly.

Thus {∂tun} lies in a compact subset of C([0, π],H−1((0, T ))). Since (2.13) implies
that

1
βn

∫ π

0

bn(x)‖∂tun(·, x)‖2H−1((0,T )) dx −→ 0 as n →∞,

it follows that

(2.14)
∂un

∂t
(·, a) −→ 0 in H−1((0, T )), as n →∞.
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It is therefore reasonable to expect that un tends in the limit to the unique
solution u ∈ H1((0, T )× (0, π)) of the mixed problem

utt − uxx = 0 in (0, T )× ((0, π) \ {a}),(2.15)

u(·, 0) = u(·, π) on (0, T ),(2.16)
∂u

∂t
(·, a) = 0 on (0, T ),(2.17)

u(0, ·) = ϕ on (0, π),(2.18)
∂u

∂t
(0, ·) = ψ on (0, π).(2.19)

Note that this limiting problem is energy conserving. Here is our next result.

Theorem 2.2. If (2.12) holds and the Cauchy data (ψ,ϕ) is in H, then, for each
t ≥ 0,

(∂tun(t), un(t)) −→ (∂tu(t), u(t)) in H as n →∞,

where u ∈ C([0, T ],H) is the solution of the mixed problem (2.15)–(2.19).

Proof. Because the energy is a decreasing function of time for each Un, it suffices
to prove the theorem for a set of Cauchy data that is dense in H. Thus we may
assume there is an η > 0 and C ∈ R such that

ψ = 0 on [a− η, a + η],

and
ϕ = C on [a− η, a + η].

It follows from finite propagation speed that, for all n,

(2.20) un = C on {(t, x) : |t|+ |x− a| < η}.

To proceed, we begin by showing that un → u weakly in H1((0, T )× (0, π)). To
do tis, we show that every subsequence of (un) has a further subsequence converging
weakly to u. The crucial observations are

(2.21) {un} is bounded in C([0, T ],H1
0 ([0, π]))

and

(2.22)
{∂un

∂t

}
is bounded in C([0, T ], L2([0, π])),

both consequences of energy decay. From (1.1) and (2.12), we see that, for any
compact interval K in [0, π] \ {a},

{∂2un

∂t2

}
is bounded in C([0, T ],H−1(K)).
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It follows that, given any subsequence of (un), we may choose a further subsequence
(unj

) such that in the weak∗ topologies,

unj
→ w in L∞((0, T ),H1

0 (0, π)),(2.23)
∂unj

∂t
→ ∂w

∂t
in L∞((0, T ), L2([0, π]),(2.24)

∂2unj

∂t2
→ ∂2w

∂t2
in L∞((0, T ),H−1

loc ((0, π) \ {a})).(2.25)

It follows immediately that

w ∈ H1((0, T )× (0, π)),

wtt − wxx = 0 in (0, T )× ((0, π) \ {a}),
w = 0 in (0, T )× {0} and (0, T )× {π},

w = ϕ on {0} × (0, π).

From (2.14) we see that, as an element of H−1([0, T ]),

∂w

∂t
= 0 on (0, T )× {a}.

From (2.20) we get ∂tw = 0 on (0, η)× {a}, and therefore

(2.26)
∂w

∂t
= 0 on (0, T )× {a}.

We claim that wt(0) = ψ. From (2.23)–(2.25), it follows that

∂tunj (0) → ∂tw(0) weakly in L2
loc((0, π) \ {a}),

so that

(2.27)
∂w

∂t

∣∣
t=0

= ψ on (0, π) \ {a}.

However, from (2.21),

ψ =
∂w

∂t
= 0 on {0} × (a− η, a + η),

which together with (2.27) yields the desired result.
At this point, we have proved that un → u weakly in H1((0, T ) × (0, π)). The

functions un and u lie in the closed subspace of H consisting of functions vanishing
at (0, T )× {0}. On this subspace the quantity

‖u‖2E =
∫ T

0

∫ π

0

(u2
t + u2

x) dx dt
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furnishes a norm equivalent to that of H1((0, T )× (0, π)). Clearly

(2.28) ‖un‖2E ≤ T‖(ψ,ϕ)‖2H = ‖u‖2E .

This norm inequality together with weak convergence implies that un → u strongly
in H1((0, T )× (0, π)).

It remains to show that, for each t ∈ [0, T ],

(∂tun(t), un(t)) −→ (∂tu(t), u(t)) in H.

From the laws of energy decrease, we know that {un(t)} is bounded in H1((0, π))
and from the convergence in H1((0, T ) × (0, π)) we know that un(t) → u(t) in
L2([0, π]). It follows that un(t) → u(t) weakly in H1((0, π)). Similarly, {∂tun(t)}
is bounded in L2([0, π]), and (2.23) and (2.25) imply that

∂un

∂t
(t) −→ ∂u

∂t
(t) weakly in L2

loc((0, π) \ {a}).

Consequently
∂un

∂t
(t) −→ ∂u

∂t
(t) weakly in L2([0, π]).

Thus
(∂tun(t), un(t)) −→ (∂tu(t), u(t)) weakly in H.

In addition,

‖(∂tun(t), un(t))‖H ≤ ‖(ψ, ϕ)‖H = ‖∂tu(t), u(t)‖H,

and the strong convergence in H follows.
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3. Analysis of the transmission problem

In this section we make a qualitative analysis of the transmission problems as-
sociated with localized friction. A crucial role is played by the position a of the
friction and in particular the rationality or irrationality of a/π. The main results
describe the spectrum of Gα and the asymptotic behavior of etGα as t → +∞.
First, we present some results that do not depend on the value of a.

In §2, we tacitly assumed elements of H had real valued components. Here, it is
convenient to take the complexification.

Theorem 3.1. The family Gα is holomorphic in α ∈ C. The operators Gα have
compact resolvents and the eigenvalues of Gα are simple. The eigenvalues and
eigenprojections are analytic functions of a ∈ (0, π). For α ≥ 0, the spectrum of
Gα is contained in {z ∈ C : Re z ≤ 0}.
Proof. That Gα is holomorphic in α follows from Theorem VII.1.14 of [4], by pre-
cisely the argument in Example 1.15, which follows the proof of that theorem. The
details are omitted.

That Gα has a nonempty resolvent set follows from the observation that for
Re α ≥ 0, Gα is maximal dissipative and for Re α ≤ 0, −Gα is maximal dissipative.
All the Gα are restrictions of order one (dim D(T )/D(Gα) = 1) of the operator T ,
defined by

D(T ) = H1
0 ([0, π])⊕

(
H1

0 ([0, π]) ∩H2([0, a]) ∩H2([a, π])
)
,

T =
(

0 D2

I 0

)
, for x 6= a.

By Corollary III.6.14 of [4], it follows that Gα has compact resolvent either for all
values of α or for none. For α = 0, G0 is skew-adjoint with a complete system of
eigenvectors

(±in sin nx, sin nx), n = 1, 2, . . . ,

with eigenvalues ±in. Thus G−1
0 is compact and Gα has compact resolvent for all

α.
To prove the simplicity of the eigenvalues, notice that the equation GαU = iλU

for U = (v, w) is equivalent to

D2w = iλv, x 6= a,

v = iλw,

[w] = 0, αv = [Dw] at x = a.
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Eliminating v yields

D2w + λ2w = 0 for x 6= a,(3.1)

iλαw = [Dw], [w] = 0 at x = a.(3.2)

Given two eigenvectors with the eigenvalue iλ, we may form a linear combination
(v, w) such that w′(0) = 0. Then, since w(0) = 0, the differential equation (3.1)
implies w ≡ 0 on [0, a]. The transmission conditions (3.2) then show that Dw(a+) =
w(a+) = 0, and equation (3.1) yields w ≡ 0 on [a, π]. Hence w = 0 and therefore
v = iλw = 0. Thus (v, w) = 0. This shows that any two eigenvectors with the same
eigenvalue are linearly dependent.
Remark. The argument above shows that the eigenvalues of Gα have geometric
multiplicity one. The paper [11] treats the issue of their having algebraic multiplicity
one.

The analytic dependence on α is now a consequence of the fact that Gα is
holomorphic in α (cf. [4, Th. VII.1.7]).

The analyticity in a is a little harder since the location of the transmission
condition is changing. Fortunately, a standard method takes care of this. Let

ya(x) =
π

2a
x, if 0 ≤ x ≤ a,

π

2(π − a)
(x− π) + π, if a ≤ x ≤ π.

The map x 7→ ya(x) is a homeomorphism of [0, π] onto itself which takes a to π/2.
Denote the inverse mapping by xa(y), and define maps

Sa : H −→ H

by
(SaU)(y) = U(xa(y)).

The mapping Sa is invertible, and G̃α = S−1
a GαSa is the operator given by the

following procedure.

D(G̃α) =
{

(v, w) ∈ H1
0 ([0, π])⊕

(
H1

0 ([0, π]) ∩H2([0, a]) ∩H2([a, π])
)

:

at x = a, αv =
π

2(π − a)
Dw

(π

2
+

)
− π

2a
Dw

(π

2
−

)}
,

G̃α =
(

0 (π/2a)2D2

I 0

)
, 0 < y <

π

2
,

(
0 (π/2(a− π))2D2

I 0

)
,

π

2
< y < π.
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The operator G̃α has coefficients depending analytically on a, and the transmission
condition at y = π/2 depends analytically on a. Thus the family G̃α is analytic in
a (in the sense of [4, Chap. III, §1]). Consequently the eigenvalaues of G̃α depend
analytically on a, and these coincide with the eigenvalues of Gα.

For Re α ≥ 0, Gα is dissipative. Accordingly, its spectrum is in the half plane
{z ∈ C : Re z ≤ 0}, and the proof of Theorem 3.1 is complete.

Theorem 3.2. If a/π is irrational and α > 0, then the spectrum of Gα is contained
in the open half plane {z ∈ C : Re z < 0}. All solutions of the transmission problem
Ut = GαU decay to zero as t → +∞. More precisely,

s− lim
t→+∞

etGα = 0.

However, Gα has eigenvalues with arbitrarily small real part, so ‖etGα‖ = 1 for all
t ≥ 0.

Proof. We analyze more closely the conditions (3.1)–(3.2) that must be satisfied
by solutions of GαU = iλU . In the proof of the simplicity of the eigenvalues we
showed that w′(0) 6= 0 if w 6= 0. Thus the differential equation (3.1) and Dirichlet
conditions at x = 0, π imply that up to a scalar multiple w must be given by

(3.3)
w(x) = sin λx, 0 ≤ x ≤ a,

b sinλ(x− π), a ≤ x ≤ π.

Since [w] = 0 at x = a, we must have

(3.4) sin λa = b sin λ(a− π),

and the transmission condition iλαw = [Dw] at x = a yields

(3.5) −iα sinλa = cos λa− b cosλ(a− π).

Now, purely imaginary eigenvalues correspond to real values of λ for which the
right hand side of (3.5) is real, so we must have sin λa = 0. From (3.4) it follows
that either sin λ(a − π) = 0 or b = 0. However, if b = 0, then the right hand side
of (3.5) is cosλa = ±1 6= 0, so (3.5) cannot hold. Thus sin λa = sin λ(π − a) = 0.
Hence λa = nπ and λ(a − π) = mπ for integers m,n 6= 0 (for λ = 0, (3.3) yields
w ≡ 0), so

a

π
=

( 1
m
− 1

n

)−1 1
m

,

a rational number. Thus, since a/π is irrational, the assertion about the spectrum
of Gα lying in {z ∈ C : Re z < 0} is proved.

The decay properties now follow by applying the next result, which is implicit
in the work of §9 of [5].
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Abstract Decay Theorem. If A is a maximal dissipative operator on a Hilbert
space H such that

1. A has no purely imaginary eigenvalues, and
2. A has compact resolvent,

then
s− lim

t→+∞
etA = 0.

Taking A = Gα, we obtain the required decay condition.
To continue with Theorem 3.2, next we show that Gα has eigenvalues arbitrarily

close to the imaginary axis. For λ not real, it is clear that sin λa 6= 0 and sin λ(a−
π) 6= 0. Hence we may divide (3.5) by the product of these sines to obtain

(3.6) iα = cot λ(a− π)− cot λa.

Since a/π is irrational, we may choose ([3, Theorem 36]) fractions p/q (in lowest
terms) with q arbitrarily large such that

(3.7)
∣∣∣p
q
− a

π

∣∣∣ <
1
q2

.

The spectrum of G0 consists of the numbers ±in, n = 1, 2, . . . , with corresponding
eigenfunctions (±in sinnx, sin nx). Consider the eigenvalue iλ(α), which starts at
α = 0 from the point iq (that is, λ(0) = q). We claim that λ(α) remains close to q
even for rather large α, provided q is large enough.

To make this precise, choose p/q satisfying (3.7) and let αc > 0 be the smallest
value of α such that |λ(α)− q| = 1/q. Let

E1 = qa− pπ (so 0 < |E1| < 1/q),

and
E2 = λ(αc)− q (so |E2| = 1/q, Im E2 > 0).

If ≡ denotes equality in C/(πZ), we have

λ(αc)a = qa + E2a ≡ E1 + E2a,

λ(αc)(a− π) ≡ E1 + E2a−E2π.

The cotangent function is periodic of period π. Thus (3.6) implies that

(3.8) iαc = cot(E1 + E2a− E2π)− cot(E1 + E2a).

Since the singular part of the Laurent expansion of cot z about z = 0 is 1/z, we
conclude that there is a positive constant C such that, for |z1| < 1, |z2| < 1,

| cot z1 − cot z2| ≥
∣∣∣ 1
z1
− 1

z2

∣∣∣− C.



15

Using this estimate in (3.8) yields

|αc| ≥ |E2π|
|E1 + (a− π)E2| · |E1 + E2a| − C ≥ π

(π + 1)2
q − C.

Thus for q sufficiently large, satisfying (3.7), we have |αc| ≥ q/10. Consequently, if
α < q/10, then |λ(α)− q| < 1/q. For fixed α this shows that there are eigenvalues
iλ(α) arbitrarily close to the imaginary axis. The proof of Theorem 3.2 is complete.

Theorem 3.3. Assume α > 0, q/π is rational, and M is the closed linear span of
the eigenvectors of Gα with purely imaginary eigenvalues. Then the following hold.

1. M is precisely the closed linear span of the eigenvectors of Gα that vanish at a,
and Gα = G0 for such eigenvectors.

2. etGα = etG0 on M . In particular, etGα is unitary on M .

3. M⊥ is invariant under the semigroup etGα . Furthermore, there exist C1, C2 ∈
(0,∞), depending only on α and a, such that

‖etGαU‖H ≤ C1e
−C2t‖U‖H, ∀U ∈ M⊥, t ≥ 0.

Proof. Suppose that GαU = iλU with α > 0 and λ ∈ R. Then U = (v, w),
v = iλw, and w is given by (3.3) up to a scalar multiple, where b satisfies (3.4)–
(3.5). For λ = 0, (3.3) shows that w ≡ 0. For λ ∈ R \ 0, the imaginary part of (3.5)
yields sin λa = 0, which shows that w(a) = 0. Thus [Dw](a) = 0 and w satisfies
D2w + λ2w = 0 on the entire interval [0, π]. It follows that U = (v, w) ∈ D(G0),
G0U = iλU , and v(a) = (1/α)[Dw] = 0. Conversely, if G0U = iλU and U(a) = 0,
then U = (v, w) ∈ D(Gα) and GαU = iλU . Note here that the transmission
condition αv = [Dw] at x = a is automatically satisfied, since both sides vanish.
This establishes point (1).

That etGα = etG0 on M follows from the fact that the two semigroups agree on
finite linear combinations of the eigenvectors of G0 and that this is dense in M .
That M⊥ is invariant under etGα follows by applying the following simple lemma
to C = etGα .

Lemma 3.4. If C is a linear contraction on the Hilbert space H and M ⊂ H is a
closed invariant subspace such that C : M → M is unitary, then M⊥ is invariant
under C.

Proof. Suppose m ∈ M and n ∈ M⊥. Then for all ε ∈ R we have

‖C(m + εn)‖2 ≤ ‖m + εn‖2.
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Expanding both sides and using the relations ‖Cm‖2 = ‖m‖2 and (m,n) = 0, we
get

2ε(Cm, Cn) + ε2‖Cn‖2 ≤ ε2‖n‖2.
Thus (Cm,Cn) = 0 for all m ∈ M . Since C maps M to M , we have Cn ∈ M⊥,
proving the lemma.

Now etGα |M⊥ is a semigroup of contractions whose generator has no purely
imaginary eigenvalues. Thus the abstract decay theorem implies

s− lim
t→∞

etGα
∣∣
M⊥ = 0.

The exponential decay asserted in point (3) of Theorem 3.3 lies deeper. The idea
of our demonstration is that for a/π = p/q with p and q relatively prime integers
we can find a simple and explicit formula for eq−1Gα . Let h = 1/q and suppose
that the underlying space H is the complex Hilbert space L2⊕H1

0 . The form of the
explicit solution is described in the following lemma. In the proof, the mappings Λ
and D are described explicitly.

Lemma 3.5. Let h = 1/q and let α ≥ 0. Then there are Hilbert spaces K and E,
with dim E = 4q − 1, and a unitary map

Λ : H −→ K⊕ L2((0, h/2), E),

such that

1. K and L2((0, h/2), E) are invariant under ΛehGαΛ−1,

2. ΛehGαΛ−1
∣∣
K = IdK,

3. There is a D : E → E such that

ΛehGαΛ−1
∣∣
L2((0,h/2),E)

is multiplication by D, that is,

(ΛehGαΛ−1V )(x) = DV (x), ∀V ∈ L2((0, h/2), E).

Before proving Lemma 3.5, we use it to complete the proof of Theorem 3.3.
Since ΛehGαΛ−1 is a contraction, the same must be true of D. Write E = E0 ⊕ E1,
where E0 is the span of eigenvectors of D with eigenvalues of modus one. Then D
is unitary on E0, and there are constants c > 0 and ρ ∈ (0, 1) such that

∥∥Dn
∣∣
E1

∥∥ ≤ Cρn, n = 0, 1, 2, . . . .
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Corresponding to this decomposition of E , we have

L2((0, h/2), E) = L2((0, h/2), E0)⊕ L2((0, h/2)), E1).

Define M0 ⊂ H by
ΛM0 = K ⊕ L2((0, h/2), E0).

Then M0 has the following properties:

ehGα : M0 −→ M0 is unitary,

ehGα : M⊥
0 −→ M⊥

0 ,

and

(3.9)
∥∥enhGα

∣∣
M⊥

0

∥∥ ≤ Cρn, n = 0, 1, 2, . . . .

As a consequence, we must have M0 = M . Hence (3.9) yields part (3) of Theorem
3.3.

We turn to the proof of Lemma 3.5. Introduce the characteristic coordinates

ξ =
1√
2
(t + x), η =

1√
2
(t− x),

and the characteristic derivatives

uξ =
∂u

∂ξ
=

1√
2

(∂u

∂t
+

∂u

∂x

)
,

uη =
∂u

∂η
=

1√
2

(∂u

∂t
− ∂u

∂x

)
.

The wave equation (2.6) becomes

(3.10)
∂2u

∂ξ ∂η
= 0 for x 6= a.

Equivalently, uξ is constant on the characteristics of speed −1, and uη is constant
on the characteristics of speed +1.

The operator Λ will be a product of unitary maps, the first one being the map
that passes from the variables (ut, u) to the variables(uξ, uη). More precisely, we
define Λ1 : H → H1 by

H1 =
{

(u, v) ∈ L2([0, π])2 :
∫ π

0

(v − w) dx = 0
}

,

Λ1(ϕ,ψ) =
(
ϕ +

∂ψ

∂x
, ϕ− ∂ψ

∂x

)
.
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Hence if
(ut(t), u(t)) = etGα(ϕ,ψ),

then
Λ1(ut(t), u(t)) = (uξ(t), uη(t)).

The inverse of Λ1 is given by

Λ−1
1 (v, w) =

( 1√
2
(v + w),

1√
2

∫ x

0

(v − w)(s) ds
)
.

The condition
∫ π

0
(v − w) = 0 in the definition of H1 reflects the fact that u ∈ H1

0 .
The fact that H1 is not quite all of L2([0, π])2 will cause some small problems later
on. The operator Λ1e

hGαΛ−1
1 gives the operator “evolution by h units of time in

the (uξ, uη) variables.” Because of (3.10), the evolution of (uξ, uη) is particularly
simple. To study this evolution, we decompose the interval (0, π) into q intervals
of length h, the jth interval being

((j − 1)h, jh), j = 1, 2, . . . , q.

We define uj
ξ, u

j
η to be the restrictions of uξ, uη to the jth interval, translated to

the reference position (0, h), that is, uj
ξ, u

j
η ∈ L2([0, h]),

uj
ξ(t, x) = uξ(t, (j − 1)h + x),(3.11)

uj
η(t, x) = uη(t, (j − 1)h + x),(3.12)

for 0 < x < h. Equation (3.10) yields

(3.13)
uj

ξ(t + h) = uj+1
ξ (t), j = 1, 2, . . . , p− 1, p + 1, . . . , q − 1,

uj
η(t + h) = uj−1

η (t), j = 2, 3, . . . , p, p + 2, . . . , q.

To complete the description of the evolution, we must give rules for determining

u1
η(t + h), uq

ξ((t + h), up
ξ(t + h), and up+1

η (t + h),

from uξ(t) and uη(t). The first two of these are determined with the aid of the
boundary condition

uξ + uη = 0 at x = 0, π.

One finds

(3.14) u1
η(t + h) = −Ru1

ξ(t), uq
ξ(t + h) = −Ruq

η(t),

where R : L2([0, h]) → L2([0, h]) denotes reflection about x = h/2, that is

(Rϕ)(x) = ϕ(h− x), 0 < x < h.
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The transmission condition (2.7) provides the values of up
ξ(t + h) and up+1

η (t + h).
Let

u−ξ (a, t) = lim
x↗a

uξ(x, t), u+
ξ (a, t) = lim

x↘a
uξ(x, t),

u−η (a, t) = lim
x↗a

uη(x, t), u+
η (a, t) = lim

x↘a
uη(x, t),

These quantities exist provided (ut(0), u(0)) ∈ D(Gα). In fact, the entire calculation
of Λ1e

tGαΛ−1
1 should be considered for such u and then extended by continuity to

u with (ut(0), u(0)) ∈ H. The wave equation (3.10) yields

u+
ξ (t + s, a) = uξ(t, a + s), 0 < s < h,

u−η (t + s, a) = uη(t, a− s), 0 < s < h.

In terms of the uξ, uη variables, the transmission conditions (2.7) become

u+
ξ + u+

η = u−ξ + u−η , ([ut] = 0),

(u+
ξ − u+

η )− (u−ξ − u−η ) = α(u+
ξ + u+

η ), ([ux] = αut).

Solving these equations for u−ξ and u+
η yields, for α 6= −2,

u−ξ =
2

2 + α
u+

ξ −
α

2 + α
u−η , u+

η =
−α

2 + α
u+

ξ +
2

2 + α
u−η .

Using the previous expressions for u+
ξ and u−η , we find

(3.15)
up

ξ(t + h) =
2

2 + α
up+1

ξ (t)− α

2 + α
Rup

η,

up+1
η (t + h) =

−α

2 + α
Rup+1

ξ (t) +
2

2 + α
up

η(t).

The formulas (3.13)–(3.15) give a simple expression for the time evolution of (uξ, uη).
The reflections R can be removed from these formulas by splitting

U(t) = (u1
ξ , u

1
η, u2

ξ , u
2
η, . . . , uq

ξ, u
q
η) ∈ L2([0, h],C2q)

into its even and odd part,
U = Ueven + Uodd,

(Ueven(t))(x) =
1
2
[
U(t)(x) + U(t)(h− x)

]
,

(Uodd(t))(x) =
1
2
[
U(t)(x)− U(t)(h− x)

]
.

From formulas (3.13)–(3.15) we see that the even and odd parts are preserved by
the evolution, that is

(Λ1e
hGαΛ−1

1 U)even = Λ1e
hGαΛ−1

1 (Ueven),
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with a similar formula for the odd part.
Furthermore, on the even (respectively odd) parts R acts as multiplication by 1

(respectively, −1). Thus, if we let Λ2 be defined by

Λ2 : L2([0, h],C2q) −→ L2([0, h/2],C4q),

Λ2U =
1
2
(Ueven, Uodd)

∣∣
[0,h/2]

,

and let
H2 = Λ2H1 ⊂ L2([0, h/2],C4q),

then
Λ2 : H1 −→ H2 is unitary,

Λ2Λ1e
hGα(Λ2Λ1)−1 : H2 −→ H2,

and
Λ2Λ1e

hGα(Λ2Λ1)−1 = multiplication by a D1 ∈ L(C4q).

From the definition of H1 and Λ2 we find that, for

ζ = (1,−1, 1,−1, . . . , 1,−1, 0, 0, . . . , 0) ∈ C4q,

with q ones, q minus ones, and 2q zeroes,

H2 =
{

ϕ ∈ L2([0, h/2],C4q) :
∫ h/2

0

〈ϕ(x), ζ〉 dx = 0
}

.

If H2 were all of L2([0, h/2],C4q), the proof would be finished. To eliminate the
orthogonality condition, we write

C4q = Cζ ⊕ E , E = {η ∈ C4q : 〈η, ζ〉 = 0}.

Corresponding to this decomposition, there is a canonical decomposition

(3.17)
L2([0, h/2],C4q) = L2([0, h/2],Cζ)⊕ L2([0, h/2], E),

H2 ≈ K ⊕ L2([0, h/2], E),

where

K =
{

ψ ∈ L2([0, h/2],Cζ) :
∫ h/2

0

〈ψ(x), ζ〉 dx = 0
}

.

To finish the proof, we need two simple properties of the matrix D1, namely

(3.18) D1ζ = ζ, and D∗
1ζ = ζ,
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where D∗
1 is the adjoint of D1. The first of these properties is equivalent to the

easily verified fact that the evolution defined by (3.13)–(3.15) leaves invariant the
function defined by

uξ(t, x) = −uη(t, x) = 1, 0 < x < π.

The second property follows from the first. Indeed, (3.16) and the first part of
(3.18) show that

(3.19) Λ2Λ1e
hGα(Λ2Λ1)−1

∣∣
K = IdK.

Since α ≥ 0, Λ2Λ1e
hGα(Λ2Λ1)−1 is a contraction. Hence Lemma 3.4 implies that

K⊥ = L2([0, h/2], E) is invariant. Thus we may form the adjoint of equation (3.19),
to obtain

[Λ2Λ1e
hGα(Λ2Λ1)−1]∗

∣∣
K = IdK.

Because of (3.16), this is equivalent to the second identity in (3.18).
The condition D∗

1ζ = ζ implies D1(E) ⊂ E . Consequently we may define D ∈
L(E) by D = D1|E . If Λ3 : H2 → K⊕ L2 is the isomorphism in (3.17), then (3.16),
(3.17) and (3.19) show that

Λ = Λ3Λ2Λ1,

whence K and D have the properties required in Lemma 3.5.
Theorem 3.3 shows that if a/π is rational, the spectrum of Gα|M⊥ must lie in a

half plane Re z ≤ −C2, while the spectrum of Gα|M is on the imaginary axis. In
contrast, Theorem 3.2 shows that if a/π is irrational, the spectrum of Gα lies in
the half plane Re z < 0, but has points arbitrarily close to the imaginary axis.

These results all involve bounds on the spectrum, from the right. A complemen-
tary result, which is much more elementary, is the following.

Theorem 3.6. For a ∈ (0, π) fixed and α 6= −2, the spectrum of Gα is contained
in a strip Re z ≥ C(α), where the function C(α) is bounded on compact subsets of
C \ {−2}.
Proof. We need only consider eigenvalues iλ with λ /∈ R. For these, equation (3.6)
holds and the theorem follows from the observation that cot z → ±i as Im z → ±∞,
the convergence being uniform in Re z.

The exceptional value α = −2 occurs in another (not unrelated) context. For
α 6= −2, Gα is the generator of a one parameter group on H, while for α = −2 it
only generates a semigroup. It is interesting to note that the higher dimensional
analogues of our transmission problem, for example localized friction on a mem-
brane, are never reversible, that is, if Re α 6= 0 one gets a semigroup and not a
group. The proofs of these facts are omitted.

In case a = π/2, eπGα can be computed without great effort. Though somewhat
special, this result will play a role in our discussion of the significance of the model.
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Theorem 3.7. If a = π/2 and α 6= −2, then

eπGα
∣∣
M⊥ =

α− 2
α + 2

IdM⊥ .

Proof. We calculate, in somewhat more detail, the explicit solution constructed in
the proof of Theorem 3.3. First of all, we observe that M consists simply of those
functions ϕ,ψ that are even with respect to reflection about x = π/2, while M⊥

consists of those functions that are odd. Thus, for time evolution it suffices to
consider functions u for which ut is even and ux is odd, that is

(uξ + uη)(t, x) = (uξ + uη)(t, π − x)

and
(uξ − uη)(t, x) = −(uξ − uη)(t, π − x).

These relations are equivalent to

R(u1
ξ + u1

η) = u2
ξ + u2

η

and
−R(u1

ξ − u1
η) = u2

ξ − u2
η,

where R and u1
ξ , u

2
ξ , . . . occur in (3.11)–(3.14); while also

u2
ξ = Ru1

η, and u2
η = Ru1

ξ .

With these equations in mind, we may write the time evolution in terms of u1
ξ , u

1
η

only. Equation (3.15) yields

u1
ξ

(
t +

π

2

)
=

2
2 + α

Ru1
η −

α

2 + α
Ru1

η =
2− α

2 + α
Ru1

η(t),

while (3.14) gives
u1

η

(
t +

π

2

)
= −Ru1

ξ(t).

Iterating, we obtain

(u1
ξ(t + π), u1

η(t + π)) =
α− 2
α + 2

(u1
ξ(t), u

1
η(t)),

which is the desired result.
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4. Discussion

It is hard to quantify how well (1.1) with a highly localized friction describes
the mechanism for the production of harmonics, since it seems hard to measure
directly the effect of a musician’s finger. We must therefore rely on qualitative
predictions of the model. Fortunately, we have obtained many such in Sections 2
and 3. The principal results assert that, given an initial configuration (determined,
for example, by plucking a string), the motion governed by (1.1) approximates
the limiting transmission problem (2.6)–(2.8), provided the friction b(x) is highly
localized. This limiting problem has the following properties:

1. If a/π is irrational, all solutions tend to zero.

2. If a/π is rational, the modes that vanish at a are unaffected by the friction,
while those in the orthogonal complement decay exponentially.

These properties coincide with the observed fact that to play harmonics one touches
the string with a finger at a point a on the string (of length L) such that a/L is
rational with a small denominator. For other placements, one only hears a short
lived thud. When playing harmonics, a musician removes his finger from the string
after a short time. In view of the fact that for a friction b(x) spread over a finite
interval all solutions tend to zero, this seems wise. Presumably what is happening
is that the rate of decay is much slower for the modes vanishing at a (in fact, this
is rigorously true in the limit b(x) dx = αδ(x − a)). Thus the musician leaves his
finger in contact with the string just long enough to damp the components in M⊥,
but not those in M . As this description indicates, the playing of harmonics is a
delicate matter, a fact that can easily be verified by anyone inexperienced in the
art.

There is an additional sensitivity to the artistry of the player, clearly indicated
in Theorem 3.7. The object of playing harmonics is to obtain as rapid decay as
possible on M⊥. For a = π/2 (here, L = π) we have

eπGα
∣∣
M⊥ =

α− 2
α + 2

I.

Clearly the desirable value of α is α = 2. The optimal strategy is to apply a friction
with b(x) dx ≈ 2δ(x−π/2) for approximately π units of time (L/c units of time for
a string of length L, with c the propagation speed of transverse vibrations). Too
much friction (α >> 2) or too little (α ≈ 0) yields a very slow damping on M⊥.

We expect that similar phenomena occur for other rational values of a/π. The
player must strive to achieve the “correct touch,” which for a = π/2 corresponds
to b(x), dx ≈ 2δ(x− π/2). The idea of correct touch leads to the following.
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Problem. Given a/π = p/q, find the value of α which, in some sense, gives the
most rapid decay for etGα |M⊥ .

Remark. Since this paper first appeared, in 1982, there has been a successful
treatment of this problem, in [11].

The descriptions above correspond to common experience with harmonics. This
is not to say that we consider (1.1) an exact model. What we believe is that
localized frictional damping is a reasonable candidate for the primary mechanism
in the playing of harmonics. To support this idea, one must know that similar
qualitative behavior occurs when other effects are included, since it is more than
likely that the finger introduces effects other than friction. For example, the finger
might exert a spring force on the spring with a strongly localized spring constant
k(x). The basic equation of motion is then

(4.1) utt + b(x)ut = uxx − k(x)u,

and the energy ∫ π

0

(
u2

t + u2
x + k

u2

2

)
dx

is a decreasing function of time. If, as before, we consider a sequence bn and kn

becoming increasingly localized, that is bn → αδa kn → βδa (perhaps β = 0), then
the solutions to (4.1) will converge to solutions to the transmission problem

utt − uxx = 0, x 6= a,

[ut] = 0, αut = [ux]− βu at x = a,

u = 0 at x = 0, π.

An analysis like that given in §3 shows that this problem behaves qualitatively like
(2.6)–(2.8) provided α > 0. For example, regardless of the value of a, the solutions
yield a contraction semigroup on H, with square-norm

(4.2) ‖(v, w)‖2 =
∫ π

0

(v2 + (Dw)2) dx + βu(a)2.

In addition, if a/π is irrational, all solutions decay, while if a/π is rational the
motion on the pace M of Theorem 3.3 is the same as the free motion. Finally, if
M⊥ is the orthogonal complement in the scalar product induced by (4.2), then M⊥

is invariant and solutions in M⊥ decay. Since the proofs are similar to those already
presented, the details are omitted. The point is that the qualitative behavior of our
model is somewhat stable under perturbation.
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