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Preliminary Notes

1. Introduction

Let B ⊂ Cn be the open unit ball, and let

(1.1) C : L2(∂B) −→ H2(B)

be the Cauchy integral, so if f ∈ L2(∂B), then Cf is holomorphic on B. In [AC],
an examination is made of Cf in case

(1.2) f = χΩg.

The authors took Ω ⊂ ∂B to be a domain with C2 boundary ∂Ω. Let

(1.3) E(∂Ω) ⊂ ∂Ω

denote the set of points where the contact line bundle L ⊂ T ∗∂B is normal to ∂Ω.
It is shown in [AC] that, for f as in (1.2),

(1.4) g ∈ C1(∂B) =⇒ Cf is continuous on B \ E(∂Ω).

We desire to establish a number of related results in the following more general
setting.

Let O ⊂ Cn be a bounded, strongly pseudoconvex domain, with C∞ boundary
∂O, and let

(1.5) C : L2(∂O) −→ H2(O)

be given by

(1.6) Cf = PI(Sf),

where S : L2(∂O) → L2(∂O) is the Szegö projector, i.e., the orthogonal projection
of L2(∂O) onto the space of L2 boundary values of holomorphic functions on O, and
PIϕ gives the harmonic function on O with boundary value ϕ. The first variant of
(1.4) we establish is the following.
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Proposition 1.1. Let Ω ⊂ ∂O have C∞ boundary, and let f have the form (1.2).
Then

(1.7) g ∈ C∞(∂O) =⇒ Cf ∈ C∞(O \ E(∂Ω)).

We recall some known results on the Szegö projector. For example,

(1.8) S ∈ OPS0
1/2,1/2(∂O).

Its microlocal properties include

(1.9) WF(Sf) ⊂ WF(f) ∩ (L \ 0),

where L ⊂ T ∗∂O is the contact line bundle mentioned above. From this, it follows
that

(1.10)
g ∈ C∞(∂O), f = χΩg ⇒ WF(f) ⊂ N∗∂Ω \ 0

⇒ Sf ∈ C∞(∂O \ E(∂Ω)).

The implication that

(1.11) PI(Sf) ∈ C∞(O \ E(∂Ω))

when (1.10) holds is an elementary consequence of basic properties of PI (local
elliptic regularity for the Dirichlet problem on O). This proves Proposition 1.1.

In subsequent sections, we establish variants of Proposition 1.1, including some
results that imply (1.4). In all cases, the main task will be to establish appropriate
regularity of S(χΩg). The following further results on S will be useful. First,

(1.12) S : Lp(∂O) −→ Lp(∂O), 1 < p < ∞.

More generally, we have the Lp-Sobolev space mappings

(1.13) S : Hs,p(∂O) −→ Hs,p(∂O), 1 < p < ∞, s ∈ R.

For p = 2, (1.13) follows from (1.8), but for other p ∈ (1,∞), one needs finer results
on S. See, e.g., [T1]. Another result is the following:

(1.14)
A ∈ OPS0(∂O), σA = 1 on a conic neighborhood of L \ 0 in T ∗∂O \ 0

=⇒ SA = AS = S mod OPS−∞(∂O).

Here σA stands for the complete symbol of A, in local coordinates.
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2. Further results when ∂Ω is C∞

Here we assume Ω ⊂ ∂O has C∞ boundary. We aim to prove the following.

Proposition 2.1. Let p ∈ (1,∞) and s ≥ 1/p. Let ϕ ∈ C∞(∂O) satisfy

(2.1) ϕ = 0 on a neighborhood of E(∂Ω).

Then

(2.2) g ∈ Hs,p(∂O), f = χΩg =⇒ ϕSf ∈ Hs,p(∂O).

Remark. The conclusion (2.2) is also valid for s ∈ [0, 1/p), but in such a case we
actually have

h ∈ Hs,p(∂O), f = χΩg =⇒ f ∈ Hs,p(∂O),

which by (1.13) implies the conclusion in (2.2). Similar comments also apply to
Propositions 3.1–3.2.

Before tackling the proof, we note the following consequence.

Corollary 2.2. Assume p ∈ (1,∞) and sp > dim ∂O. Then

(2.3) g ∈ Hs,p(∂O), f = χΩg =⇒ Cf ∈ C(O \ E(∂Ω)).

Therefore

(2.4) g ∈ Cα(∂O), α > 0, f = χΩg =⇒ Cf ∈ C(O \ E(∂Ω)).

In light of the results (1.12)–(1.14), Proposition 2.1 is a consequence of the
following.

Proposition 2.3. Let p ∈ (1,∞) and s ≥ 0. Take P ∈ OPS0(∂O), and assume
its complete symbol σP satisfies

(2.5) σP = 0 on a conic neighborhood of N∗∂Ω \ 0 in T ∗∂O \ 0.

Then

(2.6) g ∈ Hs,p(∂O), f = χΩg =⇒ Pf ∈ Hs,p(∂O).

Another statement of Proposition 2.3 is that if Γ ⊂ T ∗∂O \ 0 is an open conic
set and

(2.7) Γ ∩N∗∂Ω = ∅,
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then

(2.8) g ∈ Hs,p(∂O), f = χΩg =⇒ f ∈ Hs,p
mcl(Γ),

provided s ≥ 0. See [T2], §3.1. Another formulation is that, for s ≥ 0, p ∈ (1,∞),

(2.8A) g ∈ Hs,p(∂O) =⇒ WFHs,p(χΩg) ⊂ N∗∂Ω.

Proof of Proposition 2.3. We set

(2.9) Tg = P (χΩg),

and desire to show that

(2.10) T : Hs,p(∂O) −→ Hs,p(∂O), ∀ p ∈ (1,∞), s ≥ 0.

Clearly this works for s = 0. If we show that

(2.11) T : H1,p(∂O) −→ H1,p(∂O), 1 < p < ∞,

then (2.10) follows for all s ∈ [0, 1], by interpolation. Now, if

(2.12) X is a smooth vector field on ∂O, tangent to ∂Ω,

then

(2.13) g ∈ H1,p(∂O) =⇒ X(χΩg) ∈ Lp(∂O).

Microlocal elliptic regularity for the differential operator X yields

(2.14) Γ ∩ charX = ∅, f, Xf ∈ Lp(∂O) =⇒ f ∈ H1,p
mcl(Γ).

This gives (2.11). A similar argument, applied to the observation

(2.15) g ∈ Hk,p(∂O) =⇒ X1 · · ·Xk(χΩg) ∈ Lp(∂O)

for all smooth vector fields Xν tangent to ∂Ω, gives

(2.16) T : Hk,p(∂O) −→ Hk,p(∂O), 1 < p < ∞, k ∈ N,

yielding (2.10), by interpolation.
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3. Results for ∂Ω smoother than C2

Here we assume Ω ⊂ ∂O has boundary smooth of class C2+σ, σ > 0. We aim
to prove the following.

Proposition 3.1. Let p ∈ (1,∞) and s ∈ [1/p, 1]. Let ϕ ∈ C∞(∂O) satisfy (2.1).
Then

(3.1) g ∈ Hs,p(∂O), f = χΩg =⇒ ϕSf ∈ Hs,p(∂O).

If, in addition, sp > dim ∂O (which now requires p > dim ∂O), then

(3.2) g ∈ Hs,p(∂O), f = χΩg =⇒ Cf ∈ C(O \ E(∂Ω)).

Consequently, the implication (2.4) is valid in this setting.

As in §2, Proposition 3.1 is a consequence of the following.

Proposition 3.2. Let p ∈ (1,∞) and s ∈ [1/p, 1]. If Γ ⊂ T ∗∂O \ 0 is an open
conic set satisfying (2.7), then

(3.3) g ∈ Hs,p(∂O), f = χΩg =⇒ f ∈ Hs,p
mcl(Γ).

Also, parallel to §2, it suffices to show that if P ∈ OPS0(∂O) satisfies (2.5), and

(3.4) Tg = P (χΩg),

then

(3.5) T : Hs,p(∂O) −→ Hs,p(∂O), 1 < p < ∞, 0 ≤ s ≤ 1,

and it suffices to show that this holds for s = 1. The proof of this also parallels the
argument in §2, but with an extra complication in the current setting.

In more detail, given that ∂Ω is smooth of class C2+σ, we have vector fields on
∂O,

(3.6) X, smooth of class Cr, tangent to ∂Ω, r = 1 + σ > 1,

and, for any such vector field,

(3.7) g ∈ H1,p(∂O) =⇒ X(χΩg) ∈ Lp(∂O).

Again we want to draw the implication (2.14), but since the coefficients of X are
not C∞, we need to examine this more carefully. We are given

(3.8) Γ ∩ charX = ∅, f, Xf ∈ Lp(∂O).
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To obtain microlocal regularity results for f , apply symbol smoothing to X (cf. [T2],
or [T3], Chapter 13, §9), as follows. We pick δ ∈ (0, 1) and write

(3.9) X = X# + Xb, X# ∈ OPS1
1,δ, Xb ∈ OPCrS1−δr

1,δ .

Furthermore, X# is microlocally elliptic on T ∗∂O\charX, so, given Γ∩charX = ∅,
there exists

(3.10) E ∈ OPS−1
1,δ , σEX# = 1 on Γ,

and

(3.11) EX#f = E(Xf)− E(Xbf).

Clearly

(3.12) Xf ∈ Lp =⇒ E(Xf) ∈ H1,p.

Furthermore, given Xb ∈ OPCrS1−δr
1,δ , we have (cf. [T3], Chapter 13, Proposition

9.10)

(3.13) f ∈ Lp =⇒ Xbf ∈ H−(1−δr),p,

provided −(1− δ)r < −(1− δr), i.e.,

(3.14) r > 1.

In such a case,

(3.15) E(Xbf) ∈ Hδr,p ⊂ H1,p,

provided δ ∈ (0, 1) is picked close enough to 1. Then we have EX#f ∈ H1,p in
(3.11), so the hypotheses (3.8) imply f ∈ Hs,p

mcl(Γ), recovering (2.14) in this setting.
This completes the proof of (3.5), hence of Proposition 3.2, hence of Proposition
3.1.
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4. Results for ∂Ω rougher than C2

Here we assume Ω ⊂ ∂O has the property

(4.1) ∂Ω is of class C1+r, 0 < r < 1.

We want to examine the action on Hs,p(∂O) of T , given by

(4.2) Tg = P (χΩg),

with P ∈ OPS0(∂O) satisfying (2.5) and s ∈ [0, 1]. Clearly

(4.3) T : Lp(∂O) −→ Lp(∂O),

so we consider g ∈ H1,p(∂O). In the current setting, we have vector fields on ∂O,

(4.4) X, smooth of class Cr, tangent to ∂Ω, r ∈ (0, 1),

and, for any such vector field,

(4.5) g ∈ H1,p(∂O), f = χΩg =⇒ Xf ∈ Lp(∂O).

We apply symbol smoothing to X as in (3.9), obtaining (3.10)–(3.12). However, we
cannot use (3.13) here, since we do not have (3.14).

To get around this, we note an improvement over the hypotheses

(4.6) f, Xf ∈ Lp(∂O),

used in §3. In fact, given f = χΩg and g ∈ H1,p(∂O), we have

(4.7) f ∈ Hσ,p(∂O), ∀σ <
1
p
.

In fact, since the spaces Hs,p are invariant under C1 diffeomorphisms for s ∈ [0, 1],
the proof of (4.7) reduces to the case Ω is a half space; see [Str] for this. Thus, in
place of (3.13), we get

(4.8) Xbf ∈ Hσ−(1−δr),p(∂O),

provided −(1− δ)r < σ − (1− δr), i.e., r > 1− σ, which can be arranged if

(4.9) r > 1− 1
p
.

Then, as in (3.15), we get

(4.10) E(Xbf) ∈ Hσ+δr,p(∂O) ⊂ H1,p(∂O),

and hence

(4.11) T : H1,p(∂O) −→ H1,p(∂O),

which can be interpolated with (4.3) to get

(4.12) T : Hs,p(∂O) −→ Hs,p(∂O), s ∈ [0, 1],

provided p ∈ (1,∞) and r satisfies (4.9). Thus, in place of Proposition 3.1, we have
the following.
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Proposition 4.1. Assume Ω ⊂ ∂O satisfies (4.1), p ∈ (1,∞), and r > 1 − 1/p.
Let s ∈ [0, 1]. Let ϕ ∈ C∞(∂O) satisfy (2.1). Then

(4.13) g ∈ Hs,p(∂O), f = χΩg =⇒ ϕSf ∈ Hs,p(∂O).

If, in addition, sp > dim ∂O, then

(4.14) g ∈ Hs,p(∂O), f = χΩg =⇒ Cf ∈ C(O \ E(∂Ω)).

This gives the following extension of (1.4).

Corollary 4.2. Given α > 0, there exists β = β(α, n) > 0 such that

(4.15) g ∈ Cα(∂O), f = χΩg =⇒ Cf ∈ C(O \ E(∂Ω)),

whenever Ω ⊂ ∂O has boundary ∂Ω, smooth of class C2−β.
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