
Chapter 10

Sobolev Spaces

We now define spaces H1,p(Rn), known as Sobolev spaces. For u to belong
to H1,p(Rn), we require that u ∈ Lp(Rn) and that u have weak derivatives

of first order in Lp(Rn):

(10.1) ∂ju = fj ∈ Lp(Rn),

where (10.1) means

(10.2) −
∫

∂ϕ

∂xj
u dx =

∫

ϕfj dx, ∀ ϕ ∈ C∞
0 (Rn).

If u ∈ C∞
0 (Rn), we see that ∂ju = ∂u/∂xj , by integrating by parts, using

(7.67). We define a norm on H1,p(Rn) by

(10.3) ‖u‖H1,p = ‖u‖Lp +
∑

j

‖∂ju‖Lp .

We claim that H1,p(Rn) is complete, hence a Banach space. Indeed, let (uν)
be a Cauchy sequence in H1,p(Rn). Then (uν) is Cauchy in Lp(Rn); hence it
has an Lp-norm limit u ∈ Lp(Rn). Also, for each j, ∂juν = fjν is Cauchy in
Lp(Rn), so there is a limit fj ∈ Lp(Rn), and it is easily verified from (10.2)
that ∂ju = fj.

We can consider convolutions and products of elements of H 1,p(Rn) with
elements of C∞

0 (Rn) and readily obtain identities

(10.4)

∂j(ϕ ∗ u) = (∂jϕ) ∗ u = ϕ ∗ (∂ju),

∂j(ψu) =
∂ψ

∂xj
u+ ψ(∂ju),
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and estimates

(10.5)
‖ϕ ∗ u‖H1,p ≤ ‖ϕ‖L1‖u‖H1,p ,

‖ψu‖H1,p ≤ ‖ψ‖L∞‖u‖H1,p +
∑

‖∂jψ‖L∞‖u‖Lp ,

for ϕ, ψ ∈ C∞
0 (Rn), u ∈ H1,p(Rn). For example, the first identity in (10.4)

is equivalent to

−
∫∫

∂ψ

∂xj
(x)ϕ(x − y)u(y) dy dx

=

∫∫

ψ(x)
∂ϕ

∂xj
(x− y)u(y) dy dx, ∀ ψ ∈ C∞

0 (Rn),

an identity that can be established by using Fubini’s Theorem (to first do
the x-integral) and integration by parts, via (7.67).

If p <∞, u ∈ H1,p(Rn), and (ϕj) is an approximate identity of the form
(7.64), with ϕj ∈ C∞

0 (Rn), then we can show that

(10.6) ϕj ∗ u −→ u in H1,p-norm,

using (10.4) and (7.65). Given ε > 0, we can take j such that

‖ϕj ∗ u− u‖H1,p < ε.

Then we can pick ψ ∈ C∞
0 (Rn) such that ‖ψ(ϕj ∗ u) − ϕj ∗ u‖H1,p < ε. Of

course, ϕj ∗ u is smooth, so ψ(ϕj ∗ u) ∈ C∞
0 (Rn). We have established

Proposition 10.1. For p ∈ [1,∞), the space C∞
0 (Rn) is dense in H1,p(Rn).

Sobolev spaces are very useful in analysis, particularly in the study of
partial differential equations. We will establish just a few results here, some
of which will be useful in Chapter 11. More material can be found in [EG],
[Fol], [T1], and [Yo].

The following result is known as a Sobolev Imbedding Theorem.

Proposition 10.2. If p > n or if p = n = 1, then

(10.7) H1,p(Rn) ⊂ C(Rn) ∩ L∞(Rn).

For now we concentrate on the case p ∈ (n,∞). Since C∞
0 (Rn) is then

dense in H1,p(Rn), it suffices to establish the estimate

(10.8) ‖u‖L∞ ≤ C‖u‖H1,p , for u ∈ C∞
0 (Rn).
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In turn, it suffices to establish

(10.9) |u(0)| ≤ C‖u‖H1,p , for u ∈ C∞
0 (Rn).

To get this, it suffices to show that, for a given ϕ ∈ C∞
0 (

◦
B1) with ϕ(0) = 1,

(10.10) |u(0)| ≤ C‖∇(ϕu)‖Lp ,

where ∇v = (∂1v, . . . , ∂nv) or, equivalently, that

(10.11) |u(0)| ≤ C‖∇u‖Lp , u ∈ C∞
0 (

◦
B1).

In turn, this will follow from an estimate of the form

(10.12) |u(0) − u(ω)| ≤ C‖∇u‖Lp(B1), u ∈ C∞(Rn),

given ω ∈ R
n, |ω| = 1. Thus we turn to a proof of (10.12).

Without loss of generality, we can take ω = en = (0, . . . , 0, 1). We will

work with the set Σ = {z ∈ R
n−1 : |z| ≤

√
3/2}. For z ∈ Σ, let γz be the

path from 0 to en consisting of a line segment from 0 to (z, 1/2), followed
by a line segment from (z, 1/2) to en, as illustrated in Figure 10.1. Then
(with A = Area Σ)

(10.13) u(en) − u(0) =

∫

Σ

(

∫

γz

du
) dz

A
=

∫

B1

∇u(x) · ψ(x) dx,

where the last identity applies the change of variable formula. The behavior
of the Jacobian determinant of the map (t, z) 7→ γz(t) yields

(10.14) |ψ(x)| ≤ C|x|−(n−1) + C|x− en|−(n−1).

Thus

(10.15)

∫

B1/2

|ψ(x)|q dx ≤ C

∫ 1/2

0
r−nq+qrn−1 dr.

It follows that

(10.16) ψ ∈ Lq(B1), ∀ q < n

n− 1
.

Thus

(10.17) |u(en) − u(0)| ≤ ‖∇u‖Lp(B1)‖ψ‖Lp′(B1) ≤ C‖∇u‖Lp(B1),
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0

en

Γz

Figure 10.1

as long as p′ < n/(n− 1), which is the same as p > n.

This proves (10.12) and hence Proposition 10.2, for p ∈ (n,∞). For

n = 1, (10.13) simplifies to u(1) − u(0) =
∫ 1
0 u

′(x) dx, which immediately
gives the estimate (10.12) for p = n = 1.

We can refine Proposition 10.2 to the following.

Proposition 10.3. If p ∈ (n,∞), then every u ∈ H1,p(Rn) satisfies a

Hölder condition:

(10.18) H1,p(Rn) ⊂ Cs(Rn), s = 1 − n

p
.

Proof. Applying (10.12) to v(x) = u(rx), we have, for |ω| = 1,

(10.19) |u(rω) − u(0)|p ≤ Crp

∫

B1

|∇u(rx)|p dx = Crp−n

∫

Br

|∇u(x)|p dx.

This implies

(10.20) |u(x) − u(y)| ≤ C ′|x− y|1−n/p
(

∫

Br(x)

|∇u(z)|p dz
)1/p

, r = |x− y|,

which gives (10.18).
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If u ∈ H1,∞(Rn) and if ϕ ∈ C∞
0 (Rn), then ϕu ∈ H1,p(Rn) for all p ∈

[1,∞), so Proposition 10.3 applies. We next show that in fact H 1,∞(Rn)
coincides with the space of Lipschitz functions:

(10.21) Lip(Rn) = {u ∈ L∞(Rn) : |u(x) − u(y)| ≤ K|x− y|}.

Proposition 10.4. We have the identity

(10.22) H1,∞(Rn) = Lip(Rn).

Proof. First, suppose u ∈ Lip(Rn). Thus

(10.23) h−1
[

u(x+ hej) − u(x)
]

is bounded in L∞(Rn).

Hence, by Proposition 9.4, there is a sequence hν → 0 and fj ∈ L∞(Rn)
such that

(10.24) h−1
ν

[

u(x+ hνej) − u(x)
]

→ fj weak∗ in L∞(Rn).

In particular, for all ϕ ∈ C∞
0 (Rn),

(10.25) h−1
ν

∫

ϕ(x)
[

u(x+ hνej) − u(x)
]

dx −→
∫

ϕ(x)fj(x) dx.

But the left side of (10.25) is equal to

(10.26) h−1
ν

∫

[

ϕ(x− hνej) − ϕ(x)
]

u(x) dx −→ −
∫

∂ϕ

∂xj
u(x) dx.

This shows that ∂ju = fj. Hence Lip(Rn) ⊂ H1,∞(Rn).

Next, suppose u ∈ H1,∞(Rn). Let ϕj(x) = jnϕ(jx) be an approximate
identity as in (10.6), with ϕ ∈ C∞

0 (Rn). We do not get ϕj ∗ u→ u in H1,∞-
norm, but we do have uj = ϕj ∗ u bounded in H1,∞(Rn); in fact, each uj is
C∞, and we have

(10.27) ‖uj‖L∞ ≤ K1, ‖∇uj‖L∞ ≤ K2.

Also uj → u locally uniformly. The second estimate in (10.27) implies

(10.28) |uj(x) − uj(y)| ≤ K2|x− y|,

since uj(x) − uj(y) =
∫ 1
0 (x − y) · ∇u(tx + (1 − t)y) dt. Thus in the limit

j → ∞, we get also |u(x) − u(y)| ≤ K2|x− y|. This completes the proof.

We next show that, when p ∈ [1, n), H1,p(Rn) is contained in Lq(Rn)
for some q > p. One technical tool which is useful for our estimates is the
following generalized Hölder inequality.
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Lemma 10.5. If pj ∈ [1,∞],
∑

p−1
j = 1, then

(10.29)

∫

M
|u1 · · · um| dx ≤ ‖u1‖Lp1 (M) · · · ‖um‖Lpm (M).

The proof follows by induction from the case m = 2, which is the usual
Hölder inequality.

Proposition 10.6. For p ∈ [1, n),

(10.30) H1,p(Rn) ⊂ Lnp/(n−p)(Rn).

In fact, there is an estimate

(10.31) ‖u‖Lnp/(n−p) ≤ C‖∇u‖Lp

for u ∈ H1,p(Rn), with C = C(p, n).

Proof. It suffices to establish (10.31) for u ∈ C∞
0 (Rn). Clearly

(10.32) |u(x)| ≤
∫ ∞

−∞
|∂ju| dyj ,

where the integrand, written more fully, is |∂ju(x1, . . . , yj , . . . , xn)|. (Note
that the right side of (10.32) is independent of xj.) Hence

(10.33) |u(x)|n/(n−1) ≤
n

∏

j=1

(

∫ ∞

−∞
|∂ju| dyj

)1/(n−1)
.

We can integrate (10.33) successively over each variable xj, j = 1, . . . , n,
and apply the generalized Hölder inequality (10.29) with m = p1 = · · · =
pm = n− 1 after each integration. We get

(10.34) ‖u‖Ln/(n−1) ≤
{

n
∏

j=1

∫

Rn

|∂ju| dx
}1/n

≤ C‖∇u‖L1 .

This establishes (10.31) in the case p = 1. We can apply this to v = |u|γ , γ >
1, obtaining

(10.35)
∥

∥|u|γ
∥

∥

Ln/(n−1) ≤ C
∥

∥|u|γ−1|∇u|
∥

∥

L1 ≤ C
∥

∥|u|γ−1
∥

∥

Lp′

∥

∥∇u
∥

∥

Lp .

For p < n, pick γ = (n − 1)p/(n − p). Then (10.35) gives (10.31) and the
proposition is proved.
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There are also Sobolev spaces Hk,p(Rn), for each k ∈ Z
+. By definition

u ∈ Hk,p(Rn) provided

(10.36) ∂αu = fα ∈ Lp(Rn), ∀ |α| ≤ k,

where ∂α = ∂α1
1 · · · ∂αn

n , |α| = α1 + · · ·+αn, and, as in (10.2), (10.36) means

(10.37) (−1)|α|
∫

∂αϕ

∂xα
u dx =

∫

ϕfα dx, ∀ ϕ ∈ C∞
0 (Rn).

Given u ∈ Hk,p(Rn), we can apply Proposition 10.6 to estimate the

Lnp/(n−p)-norm of ∂k−1u in terms of ‖∂ku‖Lp , where we use the notation

(10.38) ∂ku = {∂αu : |α| = k}, ‖∂ku‖Lp =
∑

|α|=k

‖∂αu‖Lp ,

and proceed inductively, obtaining the following corollary.

Proposition 10.7. For kp < n,

(10.39) Hk,p(Rn) ⊂ Lnp/(n−kp)(Rn).

The next result provides a generalization of Proposition 10.2.

Proposition 10.8. We have

(10.40) Hk,p(Rn) ⊂ C(Rn) ∩ L∞(Rn) for kp > n.

Proof. If p > n, we can apply Proposition 10.2. If p = n and k ≥ 2, since
it suffices to obtain an L∞ bound for u ∈ Hk,p(Rn) with support in the unit
ball, just use u ∈ H2,n−ε(Rn) and proceed to the next step of the argument.

If p ∈ [1, n), it follows from Proposition 10.6 that

(10.41) Hk,p(Rn) ⊂ Hk−1,p1(Rn), p1 =
np

n− p
.

Thus the hypothesis kp > n implies (k − 1)p1 > kp > n. Iterating this
argument, we obtain Hk,p(Rn) ⊂ H`,q(Rn), for some ` ≥ 1 and q > n, and
again we can apply Proposition 10.2.
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Exercises

1. Write down the details for the proof of the identities in (10.4).

2. Verify the estimates in (10.14).
Hint. Write the first integral in (10.13) as 1/A times

∫

Σ

∫ 1

0
v+(z) · ∇u(tz, 1

2 t) dt dz +

∫

Σ

∫ 1

0
v−(z) · ∇u(tz, 1 − 1

2 t) dt dz,

where v±(z) = (±z, 1/2). Then calculate an appropriate Jacobian de-
terminant to obtain the second integral in (10.13).

3. Suppose 1 < p < ∞. If τyf(x) = f(x − y), show that f belongs to
H1,p(Rn) if and only if τyf is a Lipschitz function of y with values in
Lp(Rn), i.e.,

(10.42) ‖τyf − τzf‖Lp ≤ C|y − z|.

Hint. Consider the proof of Proposition 10.4.
What happens in the case p = 1?

4. Show that Hn,1(Rn) ⊂ C(Rn) ∩ L∞(Rn).

Hint. u(x) =
∫ 0
−∞ · · ·

∫ 0
−∞ ∂1 · · · ∂nu(x+ y) dy1 · · · dyn.

5. If pj ∈ [1,∞] and uj ∈ Lpj , show that u1u2 ∈ Lr provided 1/r =
1/p1 + 1/p2 and

(10.43) ‖u1u2‖Lr ≤ ‖u1‖Lp1‖u2‖Lp2 .

Show that this implies (10.29).

6. Given u ∈ L2(Rn), show that

(10.44) u ∈ Hk,2(Rn) ⇐⇒
(

1 + |ξ|
)k
û ∈ L2(Rn).

7. Let f ∈ L1(R), and set g(x) =
∫ x
−∞ f(y) dy. Continuity of g follows

from the Dominated Convergence Theorem. Show that

(10.45) ∂1g = f.
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Hint. Given ϕ ∈ C∞
0 (R), start with

(10.46)

∫

dϕ

dx
g(x) dx =

∫ ∫ x

−∞
ϕ′(x)f(y) dy dx,

and use Fubini’s Theorem. Then use
∫ ∞
y ϕ′(x) dx = −ϕ(y).

Alternative. Write the left side of (10.46) as

lim
h→0

1

h

∫

[

ϕ(x+ h) − ϕ(x)
]

g(x) dx = − lim
h→0

∫ ∫ x+h

x
f(y)ϕ(x) dy dx,

and use (4.64).

8. If u ∈ H1,p(Rn) for some p ∈ [1,∞) and ∂ju = 0 on a connected open
set U ⊂ R

n, for 1 ≤ j ≤ n, show that u is (equal a.e. to a) constant on
U.
Hint. Approximate u by (10.6), i.e., by uν = ϕν ∗u, where ϕν ∈ C∞

0 (Rn)
has support in {|x| < 1/ν},

∫

ϕν dx = 1. Show that ∂j(ϕν ∗ u) = 0 on
Uν ⊂⊂ U, where Uν ↗ U as ν → ∞.

More generally, if ∂ju = fj ∈ C(U), 1 ≤ j ≤ n, show that u is equal
a.e. to a function in C1(U).

9. In case n = 1, deduce from Exercises 7 and 8 that, if u ∈ L1
loc(R),

(10.47) ∂1u = f ∈ L1(R) =⇒ u(x) = c+

∫ x

−∞
f(y) dy, a.e. x ∈ R,

for some constant c.

10. Let g ∈ H2,1(R), I = [a, b], and f = g
∣

∣

I
. Show that the estimate (9.75)

concerning the trapezoidal rule holds in this setting.


