Sobolev Spaces

We now define spaces $H^{1,p}(\mathbb{R}^n)$, known as Sobolev spaces. For u to belong to $H^{1,p}(\mathbb{R}^n)$, we require that $u \in L^p(\mathbb{R}^n)$ and that u have weak derivatives of first order in $L^p(\mathbb{R}^n)$:

(10.1)
$$\partial_j u = f_j \in L^p(\mathbb{R}^n),$$

where (10.1) means

(10.2)
$$-\int \frac{\partial \varphi}{\partial x_j} u \, dx = \int \varphi f_j \, dx, \quad \forall \; \varphi \in C_0^\infty(\mathbb{R}^n).$$

If $u \in C_0^{\infty}(\mathbb{R}^n)$, we see that $\partial_j u = \partial u / \partial x_j$, by integrating by parts, using (7.67). We define a norm on $H^{1,p}(\mathbb{R}^n)$ by

(10.3)
$$||u||_{H^{1,p}} = ||u||_{L^p} + \sum_j ||\partial_j u||_{L^p}.$$

We claim that $H^{1,p}(\mathbb{R}^n)$ is complete, hence a Banach space. Indeed, let (u_{ν}) be a Cauchy sequence in $H^{1,p}(\mathbb{R}^n)$. Then (u_{ν}) is Cauchy in $L^p(\mathbb{R}^n)$; hence it has an L^p -norm limit $u \in L^p(\mathbb{R}^n)$. Also, for each j, $\partial_j u_{\nu} = f_{j\nu}$ is Cauchy in $L^p(\mathbb{R}^n)$, so there is a limit $f_j \in L^p(\mathbb{R}^n)$, and it is easily verified from (10.2) that $\partial_j u = f_j$.

We can consider convolutions and products of elements of $H^{1,p}(\mathbb{R}^n)$ with elements of $C_0^{\infty}(\mathbb{R}^n)$ and readily obtain identities

(10.4)
$$\partial_j(\varphi * u) = (\partial_j \varphi) * u = \varphi * (\partial_j u),$$
$$\partial_j(\psi u) = \frac{\partial \psi}{\partial x_j} u + \psi(\partial_j u),$$

and estimates

(10.5)
$$\begin{aligned} \|\varphi * u\|_{H^{1,p}} &\leq \|\varphi\|_{L^1} \|u\|_{H^{1,p}}, \\ \|\psi u\|_{H^{1,p}} &\leq \|\psi\|_{L^{\infty}} \|u\|_{H^{1,p}} + \sum \|\partial_j \psi\|_{L^{\infty}} \|u\|_{L^p}, \end{aligned}$$

for φ , $\psi \in C_0^{\infty}(\mathbb{R}^n)$, $u \in H^{1,p}(\mathbb{R}^n)$. For example, the first identity in (10.4) is equivalent to

$$-\iint \frac{\partial \psi}{\partial x_j}(x) \,\varphi(x-y) u(y) \,dy \,dx$$

=
$$\iint \psi(x) \,\frac{\partial \varphi}{\partial x_j}(x-y) \,u(y) \,dy \,dx, \quad \forall \ \psi \in C_0^\infty(\mathbb{R}^n),$$

an identity that can be established by using Fubini's Theorem (to first do the *x*-integral) and integration by parts, via (7.67).

If $p < \infty$, $u \in H^{1,p}(\mathbb{R}^n)$, and (φ_j) is an approximate identity of the form (7.64), with $\varphi_j \in C_0^{\infty}(\mathbb{R}^n)$, then we can show that

(10.6)
$$\varphi_j * u \longrightarrow u \text{ in } H^{1,p}\text{-norm},$$

using (10.4) and (7.65). Given $\varepsilon > 0$, we can take j such that

$$\|\varphi_j * u - u\|_{H^{1,p}} < \varepsilon.$$

Then we can pick $\psi \in C_0^{\infty}(\mathbb{R}^n)$ such that $\|\psi(\varphi_j * u) - \varphi_j * u\|_{H^{1,p}} < \varepsilon$. Of course, $\varphi_j * u$ is smooth, so $\psi(\varphi_j * u) \in C_0^{\infty}(\mathbb{R}^n)$. We have established

Proposition 10.1. For $p \in [1, \infty)$, the space $C_0^{\infty}(\mathbb{R}^n)$ is dense in $H^{1,p}(\mathbb{R}^n)$.

Sobolev spaces are very useful in analysis, particularly in the study of partial differential equations. We will establish just a few results here, some of which will be useful in Chapter 11. More material can be found in [EG], [Fol], [T1], and [Yo].

The following result is known as a Sobolev Imbedding Theorem.

Proposition 10.2. If p > n or if p = n = 1, then

(10.7)
$$H^{1,p}(\mathbb{R}^n) \subset C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n).$$

For now we concentrate on the case $p \in (n, \infty)$. Since $C_0^{\infty}(\mathbb{R}^n)$ is then dense in $H^{1,p}(\mathbb{R}^n)$, it suffices to establish the estimate

(10.8)
$$||u||_{L^{\infty}} \leq C ||u||_{H^{1,p}}, \text{ for } u \in C_0^{\infty}(\mathbb{R}^n).$$

In turn, it suffices to establish

(10.9)
$$|u(0)| \le C ||u||_{H^{1,p}}, \text{ for } u \in C_0^{\infty}(\mathbb{R}^n).$$

To get this, it suffices to show that, for a given $\varphi \in C_0^{\infty}(\overset{\circ}{B}_1)$ with $\varphi(0) = 1$,

$$(10.10) |u(0)| \le C \|\nabla(\varphi u)\|_{L^p},$$

where $\nabla v = (\partial_1 v, \dots, \partial_n v)$ or, equivalently, that

(10.11)
$$|u(0)| \le C \|\nabla u\|_{L^p}, \quad u \in C_0^{\infty}(\mathring{B}_1).$$

In turn, this will follow from an estimate of the form

(10.12)
$$|u(0) - u(\omega)| \le C \|\nabla u\|_{L^p(B_1)}, \quad u \in C^{\infty}(\mathbb{R}^n),$$

given $\omega \in \mathbb{R}^n$, $|\omega| = 1$. Thus we turn to a proof of (10.12).

Without loss of generality, we can take $\omega = e_n = (0, \ldots, 0, 1)$. We will work with the set $\Sigma = \{z \in \mathbb{R}^{n-1} : |z| \le \sqrt{3}/2\}$. For $z \in \Sigma$, let γ_z be the path from 0 to e_n consisting of a line segment from 0 to (z, 1/2), followed by a line segment from (z, 1/2) to e_n , as illustrated in Figure 10.1. Then (with $A = \text{Area } \Sigma$)

(10.13)
$$u(e_n) - u(0) = \int_{\Sigma} \left(\int_{\gamma_z} du \right) \frac{dz}{A} = \int_{B_1} \nabla u(x) \cdot \psi(x) \, dx,$$

where the last identity applies the change of variable formula. The behavior of the Jacobian determinant of the map $(t, z) \mapsto \gamma_z(t)$ yields

(10.14)
$$|\psi(x)| \le C|x|^{-(n-1)} + C|x - e_n|^{-(n-1)}$$

Thus

(10.15)
$$\int_{B_{1/2}} |\psi(x)|^q \, dx \le C \int_0^{1/2} r^{-nq+q} r^{n-1} \, dr.$$

It follows that

(10.16)
$$\psi \in L^q(B_1), \quad \forall q < \frac{n}{n-1}.$$

Thus

(10.17)
$$|u(e_n) - u(0)| \le \|\nabla u\|_{L^p(B_1)} \|\psi\|_{L^{p'}(B_1)} \le C \|\nabla u\|_{L^p(B_1)},$$

Figure 10.1

as long as p' < n/(n-1), which is the same as p > n.

This proves (10.12) and hence Proposition 10.2, for $p \in (n, \infty)$. For n = 1, (10.13) simplifies to $u(1) - u(0) = \int_0^1 u'(x) dx$, which immediately gives the estimate (10.12) for p = n = 1.

We can refine Proposition 10.2 to the following.

Proposition 10.3. If $p \in (n, \infty)$, then every $u \in H^{1,p}(\mathbb{R}^n)$ satisfies a Hölder condition:

(10.18)
$$H^{1,p}(\mathbb{R}^n) \subset C^s(\mathbb{R}^n), \quad s = 1 - \frac{n}{p}.$$

Proof. Applying (10.12) to v(x) = u(rx), we have, for $|\omega| = 1$,

(10.19)
$$|u(r\omega) - u(0)|^p \le Cr^p \int_{B_1} |\nabla u(rx)|^p \, dx = Cr^{p-n} \int_{B_r} |\nabla u(x)|^p \, dx.$$

This implies

(10.20)
$$|u(x) - u(y)| \le C' |x - y|^{1 - n/p} \Big(\int_{B_r(x)} |\nabla u(z)|^p \, dz \Big)^{1/p}, \quad r = |x - y|,$$

which gives (10.18).

If $u \in H^{1,\infty}(\mathbb{R}^n)$ and if $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, then $\varphi u \in H^{1,p}(\mathbb{R}^n)$ for all $p \in [1,\infty)$, so Proposition 10.3 applies. We next show that in fact $H^{1,\infty}(\mathbb{R}^n)$ coincides with the space of Lipschitz functions:

(10.21)
$$\operatorname{Lip}(\mathbb{R}^n) = \{ u \in L^{\infty}(\mathbb{R}^n) : |u(x) - u(y)| \le K |x - y| \}.$$

Proposition 10.4. We have the identity

(10.22)
$$H^{1,\infty}(\mathbb{R}^n) = \operatorname{Lip}(\mathbb{R}^n).$$

Proof. First, suppose $u \in \operatorname{Lip}(\mathbb{R}^n)$. Thus

(10.23)
$$h^{-1}[u(x+he_j)-u(x)] \text{ is bounded in } L^{\infty}(\mathbb{R}^n).$$

Hence, by Proposition 9.4, there is a sequence $h_{\nu} \to 0$ and $f_j \in L^{\infty}(\mathbb{R}^n)$ such that

(10.24)
$$h_{\nu}^{-1} \left[u(x+h_{\nu}e_j) - u(x) \right] \to f_j \text{ weak}^* \text{ in } L^{\infty}(\mathbb{R}^n).$$

In particular, for all $\varphi \in C_0^{\infty}(\mathbb{R}^n)$,

(10.25)
$$h_{\nu}^{-1} \int \varphi(x) \left[u(x+h_{\nu}e_j) - u(x) \right] dx \longrightarrow \int \varphi(x) f_j(x) dx.$$

But the left side of (10.25) is equal to

(10.26)
$$h_{\nu}^{-1} \int \left[\varphi(x - h_{\nu} e_j) - \varphi(x) \right] u(x) \ dx \longrightarrow -\int \frac{\partial \varphi}{\partial x_j} u(x) \ dx.$$

This shows that $\partial_j u = f_j$. Hence $\operatorname{Lip}(\mathbb{R}^n) \subset H^{1,\infty}(\mathbb{R}^n)$.

Next, suppose $u \in H^{1,\infty}(\mathbb{R}^n)$. Let $\varphi_j(x) = j^n \varphi(jx)$ be an approximate identity as in (10.6), with $\varphi \in C_0^{\infty}(\mathbb{R}^n)$. We do not get $\varphi_j * u \to u$ in $H^{1,\infty}$ -norm, but we do have $u_j = \varphi_j * u$ bounded in $H^{1,\infty}(\mathbb{R}^n)$; in fact, each u_j is C^{∞} , and we have

(10.27)
$$||u_j||_{L^{\infty}} \leq K_1, \quad ||\nabla u_j||_{L^{\infty}} \leq K_2.$$

Also $u_j \rightarrow u$ locally uniformly. The second estimate in (10.27) implies

(10.28)
$$|u_j(x) - u_j(y)| \le K_2 |x - y|$$

since $u_j(x) - u_j(y) = \int_0^1 (x - y) \cdot \nabla u(tx + (1 - t)y) dt$. Thus in the limit $j \to \infty$, we get also $|u(x) - u(y)| \le K_2 |x - y|$. This completes the proof.

We next show that, when $p \in [1, n)$, $H^{1,p}(\mathbb{R}^n)$ is contained in $L^q(\mathbb{R}^n)$ for some q > p. One technical tool which is useful for our estimates is the following generalized Hölder inequality.

Lemma 10.5. If $p_j \in [1, \infty]$, $\sum p_j^{-1} = 1$, then

(10.29)
$$\int_{M} |u_1 \cdots u_m| \ dx \le ||u_1||_{L^{p_1}(M)} \cdots ||u_m||_{L^{p_m}(M)}.$$

The proof follows by induction from the case m = 2, which is the usual Hölder inequality.

Proposition 10.6. For $p \in [1, n)$,

(10.30)
$$H^{1,p}(\mathbb{R}^n) \subset L^{np/(n-p)}(\mathbb{R}^n).$$

In fact, there is an estimate

(10.31)
$$||u||_{L^{np/(n-p)}} \le C ||\nabla u||_{L^p}$$

for $u \in H^{1,p}(\mathbb{R}^n)$, with C = C(p, n).

Proof. It suffices to establish (10.31) for $u \in C_0^{\infty}(\mathbb{R}^n)$. Clearly

(10.32)
$$|u(x)| \le \int_{-\infty}^{\infty} |\partial_j u| \, dy_j,$$

where the integrand, written more fully, is $|\partial_j u(x_1, \ldots, y_j, \ldots, x_n)|$. (Note that the right of (10.32) is independent of x_j .) Hence

(10.33)
$$|u(x)|^{n/(n-1)} \leq \prod_{j=1}^{n} \left(\int_{-\infty}^{\infty} |\partial_{j}u| \, dy_{j} \right)^{1/(n-1)}.$$

We can integrate (10.33) successively over each variable x_j , j = 1, ..., n, and apply the generalized Hölder inequality (10.29) with $m = p_1 = \cdots = p_m = n - 1$ after each integration. We get

(10.34)
$$\|u\|_{L^{n/(n-1)}} \leq \left\{\prod_{j=1}^{n} \int_{\mathbb{R}^n} |\partial_j u| \, dx\right\}^{1/n} \leq C \|\nabla u\|_{L^1}.$$

This establishes (10.31) in the case p = 1. We can apply this to $v = |u|^{\gamma}, \gamma > 1$, obtaining

(10.35)
$$|||u|^{\gamma}||_{L^{n/(n-1)}} \leq C |||u|^{\gamma-1} |\nabla u|||_{L^{1}} \leq C |||u|^{\gamma-1}||_{L^{p'}} ||\nabla u||_{L^{p}}.$$

For p < n, pick $\gamma = (n-1)p/(n-p)$. Then (10.35) gives (10.31) and the proposition is proved.

There are also Sobolev spaces $H^{k,p}(\mathbb{R}^n)$, for each $k \in \mathbb{Z}^+$. By definition $u \in H^{k,p}(\mathbb{R}^n)$ provided

(10.36)
$$\partial^{\alpha} u = f_{\alpha} \in L^{p}(\mathbb{R}^{n}), \quad \forall \ |\alpha| \le k,$$

where $\partial^{\alpha} = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$, and, as in (10.2), (10.36) means

(10.37)
$$(-1)^{|\alpha|} \int \frac{\partial^{\alpha} \varphi}{\partial x^{\alpha}} u \, dx = \int \varphi f_{\alpha} \, dx, \quad \forall \ \varphi \in C_0^{\infty}(\mathbb{R}^n).$$

Given $u \in H^{k,p}(\mathbb{R}^n)$, we can apply Proposition 10.6 to estimate the $L^{np/(n-p)}$ -norm of $\partial^{k-1}u$ in terms of $\|\partial^k u\|_{L^p}$, where we use the notation

(10.38)
$$\partial^k u = \{\partial^\alpha u : |\alpha| = k\}, \quad \|\partial^k u\|_{L^p} = \sum_{|\alpha|=k} \|\partial^\alpha u\|_{L^p},$$

and proceed inductively, obtaining the following corollary.

Proposition 10.7. For kp < n,

(10.39)
$$H^{k,p}(\mathbb{R}^n) \subset L^{np/(n-kp)}(\mathbb{R}^n).$$

The next result provides a generalization of Proposition 10.2.

Proposition 10.8. We have

(10.40)
$$H^{k,p}(\mathbb{R}^n) \subset C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n) \text{ for } kp > n.$$

Proof. If p > n, we can apply Proposition 10.2. If p = n and $k \ge 2$, since it suffices to obtain an L^{∞} bound for $u \in H^{k,p}(\mathbb{R}^n)$ with support in the unit ball, just use $u \in H^{2,n-\varepsilon}(\mathbb{R}^n)$ and proceed to the next step of the argument.

If $p \in [1, n)$, it follows from Proposition 10.6 that

(10.41)
$$H^{k,p}(\mathbb{R}^n) \subset H^{k-1,p_1}(\mathbb{R}^n), \quad p_1 = \frac{np}{n-p}.$$

Thus the hypothesis kp > n implies $(k-1)p_1 > kp > n$. Iterating this argument, we obtain $H^{k,p}(\mathbb{R}^n) \subset H^{\ell,q}(\mathbb{R}^n)$, for some $\ell \ge 1$ and q > n, and again we can apply Proposition 10.2.

Exercises

- 1. Write down the details for the proof of the identities in (10.4).
- Verify the estimates in (10.14).
 Hint. Write the first integral in (10.13) as 1/A times

$$\int_{\Sigma} \int_0^1 v_+(z) \cdot \nabla u(tz, \frac{1}{2}t) \, dt \, dz + \int_{\Sigma} \int_0^1 v_-(z) \cdot \nabla u(tz, 1-\frac{1}{2}t) \, dt \, dz,$$

where $v_{\pm}(z) = (\pm z, 1/2)$. Then calculate an appropriate Jacobian determinant to obtain the second integral in (10.13).

3. Suppose $1 . If <math>\tau_y f(x) = f(x - y)$, show that f belongs to $H^{1,p}(\mathbb{R}^n)$ if and only if $\tau_y f$ is a Lipschitz function of y with values in $L^p(\mathbb{R}^n)$, i.e.,

(10.42)
$$\|\tau_y f - \tau_z f\|_{L^p} \le C|y - z|$$

Hint. Consider the proof of Proposition 10.4. What happens in the case p = 1?

- 4. Show that $H^{n,1}(\mathbb{R}^n) \subset C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$. Hint. $u(x) = \int_{-\infty}^0 \cdots \int_{-\infty}^0 \partial_1 \cdots \partial_n u(x+y) \, dy_1 \cdots dy_n$.
- 5. If $p_j \in [1,\infty]$ and $u_j \in L^{p_j}$, show that $u_1u_2 \in L^r$ provided $1/r = 1/p_1 + 1/p_2$ and

(10.43)
$$\|u_1 u_2\|_{L^r} \le \|u_1\|_{L^{p_1}} \|u_2\|_{L^{p_2}}.$$

Show that this implies (10.29).

6. Given $u \in L^2(\mathbb{R}^n)$, show that

(10.44)
$$u \in H^{k,2}(\mathbb{R}^n) \Longleftrightarrow \left(1+|\xi|\right)^k \hat{u} \in L^2(\mathbb{R}^n).$$

7. Let $f \in L^1(\mathbb{R})$, and set $g(x) = \int_{-\infty}^x f(y) \, dy$. Continuity of g follows from the Dominated Convergence Theorem. Show that

(10.45)
$$\partial_1 g = f.$$

Hint. Given $\varphi \in C_0^{\infty}(\mathbb{R})$, start with

(10.46)
$$\int \frac{d\varphi}{dx} g(x) \, dx = \int \int_{-\infty}^{x} \varphi'(x) f(y) \, dy \, dx,$$

and use Fubini's Theorem. Then use $\int_y^{\infty} \varphi'(x) dx = -\varphi(y)$. Alternative. Write the left side of (10.46) as

$$\lim_{h \to 0} \frac{1}{h} \int \left[\varphi(x+h) - \varphi(x)\right] g(x) \, dx = -\lim_{h \to 0} \int \int_x^{x+h} f(y)\varphi(x) \, dy \, dx,$$

and use (4.64).

8. If $u \in H^{1,p}(\mathbb{R}^n)$ for some $p \in [1,\infty)$ and $\partial_j u = 0$ on a connected open set $U \subset \mathbb{R}^n$, for $1 \leq j \leq n$, show that u is (equal a.e. to a) constant on U.

Hint. Approximate u by (10.6), i.e., by $u_{\nu} = \varphi_{\nu} * u$, where $\varphi_{\nu} \in C_0^{\infty}(\mathbb{R}^n)$ has support in $\{|x| < 1/\nu\}$, $\int \varphi_{\nu} dx = 1$. Show that $\partial_j(\varphi_{\nu} * u) = 0$ on $U_{\nu} \subset \subset U$, where $U_{\nu} \nearrow U$ as $\nu \to \infty$.

More generally, if $\partial_j u = f_j \in C(U)$, $1 \leq j \leq n$, show that u is equal a.e. to a function in $C^1(U)$.

9. In case n = 1, deduce from Exercises 7 and 8 that, if $u \in L^1_{loc}(\mathbb{R})$,

(10.47)
$$\partial_1 u = f \in L^1(\mathbb{R}) \Longrightarrow u(x) = c + \int_{-\infty}^x f(y) \, dy$$
, a.e. $x \in \mathbb{R}$,

for some constant c.

10. Let $g \in H^{2,1}(\mathbb{R})$, I = [a, b], and $f = g|_I$. Show that the estimate (9.75) concerning the trapezoidal rule holds in this setting.