
Chapter 14

Ergodic Theory

Throughout this chapter we assume (X,F, µ) is a probability space, i.e., a
measure space with µ(X) = 1. Ergodic theory studies properties of measure-
preserving mappings ϕ : X → X. That is, we assume

(14.1) S ∈ F =⇒ ϕ−1(S) ∈ F and µ(ϕ−1(S)) = µ(S).

The map ϕ defines a linear map T on functions:

(14.2) Tf(x) = f(ϕ(x)).

If (14.1) holds, then, given f ∈ L1(X,µ),

(14.3)

∫

X

f(ϕ(x)) dµ =

∫

X

f(x) dµ.

Hence T : Lp(X,µ) → Lp(X,µ) is an isometry for each p ∈ [1,∞]. A central
object of study in ergodic theory is the sequence of means:

(14.4) Amf(x) =
1

m

m−1∑

k=0

T kf(x).

In particular, one considers whether Amf tends to a limit, as m→ ∞, and
whether that limit is a constant, namely c =

∫
X
f dµ.

The first basic result of this nature, due to J. von Neumann, deals with
f ∈ L2(X,µ). Actually it has a Hilbert space setting. Recall that if a linear
operator T : H → H on a Hilbert space H is an isometry, then T ∗T = I.
The abstract result uses the following simple lemma.
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Lemma 14.1. If T : H → H is a linear isometry on a Hilbert space H,

then there is an orthogonal direct sum

(14.5) H = K ⊕R,

where

(14.6) K = Ker (I − T ∗) = Ker (I − T ), R = Range (I − T ),

and R is the closure of R.

Proof. First, note that

R⊥ = {v ∈ H : (v, (I − T )w) = 0, ∀w ∈ H}

= {v ∈ H : ((I − T ∗)v, w) = 0, ∀w ∈ H}

= Ker (I − T ∗).

Now (14.5) follows by (4.29)–(4.30) and the rest of the paragraph there,
which implies R = K⊥, with K = Ker (I − T ∗).

It remains to show that Ker (I − T ∗) = Ker (I − T ). Since T ∗T =
I, I − T ∗ = −T ∗(I − T ), so clearly Ker (I − T ) ⊂ Ker (I − T ∗). For the
reverse inclusion, note that T ∗T = I ⇒ (TT ∗)2 = TT ∗, so Q = TT ∗ is the
orthogonal projection of H onto the range of T . (Cf. Exercises 16–17 of
Chapter 9.) Now T ∗u = u ⇒ Qu = Tu, but then ‖Qu‖ = ‖Tu‖ = ‖u‖, so
Qu = u and hence Tu = u, giving the converse.

Here is the abstract Mean Ergodic Theorem.

Proposition 14.2. In the setting of Lemma 14.1, for each f ∈ H,

(14.7) Amf =
1

m

m−1∑

k=0

T kf −→ Pf,

in H-norm, where P is the orthogonal projection of H onto K.

Proof. Clearly Amf ≡ f if f ∈ K. If f = (I − T )v ∈ R, then

(14.8)
1

m

m−1∑

k=0

T kf =
1

m
(v − Tmv) → 0, as m→ ∞,

and since the operator norm ‖Am‖ ≤ 1 for each m, this convergence holds
on R. Now (14.7) follows from (14.5).

Proposition 14.2 immediately applies to (14.4) when f ∈ L2(X,µ). We
next establish a more general result.
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Proposition 14.3. Let P denote the orthogonal projection of L2(X,µ) onto

Ker (I − T ). Then, for p ∈ [1, 2], P extends to a continuous projection on

Lp(X,µ), and

(14.9) f ∈ Lp(X,µ) =⇒ Amf → Pf

in Lp-norm, as m→ ∞.

Proof. Note that the Lp-operator norm ‖Am‖L(Lp) ≤ 1 for each m, and
since ‖g‖Lp ≤ ‖g‖L2 for p ∈ [1, 2], we have (14.9) in Lp-norm for each f in
the dense subspace L2(X,µ) of Lp(X,µ). Now, given f ∈ Lp(X,µ), ε > 0,
pick g ∈ L2(X,µ) such that ‖f − g‖Lp < ε. Then

(14.10) ‖Anf−Amf‖Lp ≤ ‖Ang−Amg‖L2 +‖An(f−g)‖Lp +‖Am(f−g)‖Lp .

Hence

(14.11) lim sup
m,n→∞

‖Anf −Amf‖Lp ≤ 2ε, ∀ ε > 0.

This implies the sequence (Anf) is Cauchy in Lp(X,µ), for each f ∈ Lp(X,µ).
Hence it has a limit; call it Qf . Clearly Qf is linear in f , ‖Qf‖Lp ≤ ‖f‖Lp ,
and Qf = Pf for f ∈ L2(X,µ). Hence Q is the unique continuous extension
of P from L2(X,µ) to Lp(X,µ) (so we change its name to P ). Note that
P 2 = P on Lp(X,µ), since it holds on the dense linear subspace L2(X,µ).
Proposition 14.3 is proven.

Remark. Note that P = P ∗. It follows that P : Lp(X,µ) → Lp(X,µ) for
all p ∈ [1,∞]. We will show in Proposition 14.7 that (14.9) holds in Lp-norm
for p < ∞. The subject of mean ergodic theorems has been considerably
extended and abstracted by K. Yosida, S. Kakutani, W. Eberlein, and oth-
ers. An account can be found in [Kr].

Such mean ergodic theorems were complemented by pointwise conver-
gence results on Amf(x), first by G. Birkhoff. This can be done via estimates
of Yosida and Kakutani on the maximal function

(14.12) A#f(x) = sup
m≥1

Amf(x) = sup
n≥1

A#
n f(x),

where

(14.13) A#
n f(x) = sup

1≤m≤n

Amf(x).

We follow a clean route to such maximal function estimates given in [Gar].
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Lemma 14.4. With Am given by (14.2)–(14.4) and f ∈ L1(X,µ), set

(14.14) En = {x ∈ X : A#
n f(x) ≥ 0}.

Then

(14.15)

∫

En

f dµ ≥ 0.

Proof. For notational convenience, set

Skf = kAkf = f + Tf + · · · + T k−1f, Mkf = kA#
k f = sup

1≤`≤k

S`f.

For k ∈ {1, . . . , n}, (Mnf)+ ≥ Skf , and hence (because T is positivity
preserving)

f + T (Mnf)+ ≥ f + TSkf = Sk+1f.

Hence
f ≥ Skf − T (Mnf)+, for 1 ≤ k ≤ n,

this holding for k ≥ 2 by the argument above, and trivially for k = 1. Taking
the max over k ∈ {1, . . . , n} yields

(14.16) f ≥Mnf − T (Mnf)+.

Integrating (14.16) over En yields

(14.17)

∫

En

f dµ ≥

∫

En

(Mnf − T (Mnf)+) dµ

=

∫

En

((Mnf)+ − T (Mnf)+) dµ

=

∫

X

(Mnf)+ dµ−

∫

En

T (Mnf)+ dµ

≥

∫

X

(Mnf)+ dµ−

∫

X

T (Mnf)+ dµ = 0,

the first and second identities on the right because Mnf ≥ 0 precisely on En,
the last inequality because T (Mnf)+ ≥ 0, and the last identity by (14.3).
This proves the lemma.

Lemma 14.4 leads to the following maximal function estimate.
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Proposition 14.5. In the setting of Lemma 14.4, one has, for each λ > 0,

(14.18) µ({x ∈ X : A#
n f(x) ≥ λ}) ≤

1

λ
‖f‖L1 .

Proof. If we set Enλ = {x ∈ X : A#
n f(x) ≥ λ} = {x ∈ X : A#

n (f(x)− λ) ≥
0}, then Lemma 14.4 yields

(14.19)

∫

Enλ

(f − λ) dµ ≥ 0.

Thus

(14.20) ‖f‖L1 ≥

∫

Enλ

f dµ ≥ λµ(Enλ),

as asserted in (14.18).

Note that

(14.21) Enλ ↗ {x ∈ X : A#f(x) ≥ λ} = Eλ,

so we have µ(Eλ) ≤ ‖f‖L1/λ. Now we introduce the maximal function

(14.22) A#f(x) = sup
m≥1

|Amf(x)| ≤ A#|f |(x).

We have

(14.23) µ({x ∈ X : A#f(x) ≥ λ}) ≤
1

λ
‖f‖L1 .

We are now ready for Birkhoff’s Pointwise Ergodic Theorem.

Theorem 14.6. If T and Am are given by (14.2)–(14.4), where ϕ is a

measure-preserving map, then, given f ∈ L1(X,µ),

(14.24) lim
m→∞

Amf(x) = Pf(x), µ-a.e.

Proof. Given f ∈ L1(X,µ), ε > 0, let us pick f1 ∈ L2(X,µ) such that
‖f − f1‖L1 ≤ ε/2. Then use Lemma 14.1, with H = L2(X,µ), to produce

(14.25) g ∈ Ker (I − T ), h = (I − T )v, ‖f1 − (g + h)‖L2 ≤
ε

2
.
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Here v ∈ L2(X,µ). It follows that

(14.26) ‖f − (g + h)‖L1 ≤ ε,

and we have

(14.27)

Amf = Amg +Amh+Am(f − g − h)

= g +
1

m
(v − Tmv) +Am(f − g − h).

Clearly v(x)/m → 0, µ-a.e., as m→ ∞. Also

(14.28)

∫

X

∑

m≥1

∣∣∣ 1

m
Tmv(x)

∣∣∣
2
dµ = ‖v‖2

L2

∑

m≥1

1

m2
<∞,

which implies Tmv(x)/m→ 0, µ-a.e., as m→ ∞. We deduce that for each
λ > 0,
(14.29)

µ
(
{x ∈ X : lim supAmf(x) − lim inf Amf(x) > λ}

)

= µ
(
{x ∈ X : lim supAm(f − g − h) − lim inf Am(f − g − h) > λ}

)

≤ µ
({
x ∈ X : A#(f − g − h) >

λ

2

})

≤
2

λ
‖f − g − h‖L1

≤
2ε

λ
.

Since ε can be taken arbitrarily small, this implies that Amf(x) converges
as m → ∞, µ-a.e. We already know it converges to Pf(x) in L1-norm, so
(14.24) follows.

We can use the maximal function estimate (14.23) to extend Proposition
14.3, as follows. First, there is the obvious estimate

(14.30) ‖A#f‖L∞ ≤ ‖f‖L∞ .

Now the Marcinkiewicz Interpolation Theorem (see Appendix D) applied to
(14.23) and (14.30) yields

(14.31) ‖A#f‖Lp ≤ Cp‖f‖Lp , 1 < p <∞.

Using this, we prove the following.
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Proposition 14.7. In the setting of Proposition 14.3, we have, for all p ∈
[1,∞),

(14.32) f ∈ Lp(X,µ) =⇒ Amf → Pf, in Lp-norm,

as m→ ∞.

Proof. Take p ∈ (1,∞). Given f ∈ Lp(X,µ), we have

|Amf(x)| ≤ A#f(x), A#f ∈ Lp(X,µ).

Since the convergence (14.24) holds pointwise µ-a.e., (14.32) follows from
the Dominated Convergence Theorem. That just leaves p = 1, for which we
rely on Proposition 14.3.

Remark. Since P ∗ = P , it follows from Proposition 14.7 that

f ∈ Lp(X,µ) =⇒ A∗
mf → Pf,

weak∗ in Lp(X,µ), for p ∈ (1,∞]. More general ergodic theorems, such as
can be found in [Kr], imply one has convergence in Lp-norm (and µ-a.e.),
for p ∈ [1,∞). Of course if ϕ is invertible, then such a result is a simple
application of the results given above, with ϕ replaced by ϕ−1.

Having discussed the convergence of Amf , we turn to the second question
raised after (14.4), namely whether the limit must be constant. So far we
see that the set of limits coincides with Ker (I − T ), i.e., with the set of
invariant functions, where we say f ∈ Lp(X,µ) is invariant if and only if

(14.33) f(x) = f(ϕ(x)), µ-a.e.

We note that the following conditions are equivalent:

(14.34)

(a) f ∈ L1(X,µ) invariant ⇒ f constant (µ-a.e.),

(b) f ∈ L2(X,µ) invariant ⇒ f constant (µ-a.e.),

(c) S ∈ F invariant ⇒ µ(S) = 0 or µ(S) = 1.

Here we say S ∈ F is invariant if and only if

(14.35) µ(ϕ−1(S)4S) = 0,

where A4B = (A \ B) ∪ (B \ A). Note that if S ∈ F satisfies (14.35), then

(14.36) S̃ =
⋂

j≥0

⋃

k≥j

ϕ−k(S) =⇒ ϕ−1(S̃) = S̃ and µ(S̃4S) = 0.

To see the equivalence in (14.34), note that if f ∈ L1(X,µ) is invariant, then
all the sets Sλ = {x ∈ X : f(x) > λ} are invariant, so (c)⇒(a). Meanwhile
clearly (a)⇒(b)⇒(c). A measure-preserving map ϕ : X → X satisfying
(14.34) is said to be ergodic.

Theorem 14.6 and Proposition 14.7 have the following corollary.
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Proposition 14.8. If ϕ : X → X is ergodic and f ∈ Lp(X,µ), p ∈ [1,∞),
then

(14.37) Amf −→

∫

X

f dµ, in Lp-norm and µ-a.e.

We now consider some examples of ergodic maps. First take the unit
circle, X = S1 ≈ R/(2πZ), with measure dµ = dθ/2π. Take eiα ∈ S1 and
define

(14.38) Rα : S1 −→ S1, Rα(eiθ) = ei(θ+α).

Proposition 14.9. The map Rα is ergodic if and only if α/2π is irrational.

Proof. We compare the Fourier coefficients f̂(k) =
∫
f(θ)e−ikθ dµ = (f, ek)

with those of Tf . We have

T̂ f(k) = (Tf, ek) = (f, T−1ek) = eikαf̂(k).

Thus

(14.39) Tf = f, f̂(k) 6= 0 =⇒ eikα = 1.

But eikα = 1 for some nonzero k ∈ Z if and only if α/2π is rational.

In the next example, let (X,F, µ) be a probability space, and form the
two-sided infinite product

(14.40) Ω =

∞∏

k=−∞

X,

which comes equipped with a σ-algebra O and a product measure ω, via the
construction given at the end of Chapter 6. There is a map on Ω called the
two-sided shift:

(14.41) Σ : Ω → Ω, Σ(x)k = xk+1, x = (. . . , x−1, x0, x1, . . . ).

Proposition 14.10. The two-sided shift (14.41) is ergodic.

Proof. We make use of the following orthonormal set. Let {uj : j ∈ Z
+} be

an orthonormal basis of L2(X,µ), with u0 = 1. Let A be the set of elements
of

∏∞
k=−∞ Z

+ of the form α = (. . . , α−1, α0, α1, . . . ) such that αk 6= 0 for
only finitely many k. Set

(14.42) vα(x) =

∞∏

k=−∞

uαk
(xk), α ∈ A,
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and note that for each α ∈ A only finitely many factors in this product are
not ≡ 1. We have the following:

(14.43) {vα : α ∈ A} is an orthonormal basis of L2(Ω, ω).

(Cf. Exercise 13 of Chapter 6.) Note that if Tf(x) = f(Σ(x)),

(14.44) Tvα = vσ(α), σ(α)k = αk−1.

Now assume f ∈ L2(Ω, ω) is invariant. Then

(14.45) f̂(α) = (f, vα) = (Tf, Tvα) = f̂(σ(α)),

for each α ∈ A. Iterating this gives f̂(α) = f̂(σ`(α)) for each ` ∈ Z
+. Since

(14.46) ‖f‖2
L2 =

∑

α∈A

|f̂(α)|2 <∞,

and {σ`(α) : ` ∈ Z
+} is an infinite set except for α = 0 = (. . . , 0, 0, 0, . . . ),

we deduce that f̂(α) = 0 for nonzero α ∈ A, and hence f must be constant.

A variant of the construction above yields the one-sided shift, on

(14.47) Ω0 =

∞∏

k=0

X,

with σ-algebra O0 and product measure ω0 constructed in the same fashion.
As in (14.41), one sets

(14.48) Σ0 : Ω0 → Ω0, Σ0(x)k = xk+1, x = (x0, x1, x2, . . . ).

The following result has essentially the same proof as Proposition 14.10.

Proposition 14.11. The one-sided shift (14.48) is ergodic.

Another proof of Proposition 14.11 goes as follows. Suppose that f ∈
L2(Ω0, ω0) is invariant, so f(x1, x2, x3, . . . ) = f(xk+1, xk+2, xk+3, . . . ). Mul-
tiplying both sides by g(x1, . . . , xk) and integrating, we have

(f, g)L2 = (f, 1)L2(1, g)L2

for each g ∈ L2(Ω0, ω0) of the form g = g(x1, . . . , xk), for any k < ∞.
Since the set of such g is dense in L2(Ω0, ω0), we have this identity for all
g ∈ L2(Ω0, ω0), and this implies that f is constant.
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The concept of ergodicity defined above extends to a semigroup of meas-
ure-preserving transformations, i.e., a collection S of maps on X satisfying
(14.1) for each ϕ ∈ S and such that

(14.49) ϕ,ψ ∈ S =⇒ ϕ ◦ ψ ∈ S.

In such a case, one says a function f ∈ Lp(X,µ) is invariant provided (14.33)
holds for each ϕ ∈ S, one says S ∈ F is invariant provided (14.35) holds for
all ϕ ∈ S, and one says the action of S on (X,F, µ) is ergodic provided the
(equivalent) conditions in (14.34) hold. The study so far in this chapter has
dealt with S = {ϕk : k ∈ Z

+}. Now we will consider one example of the
action of a semigroup (actually a group) not isomorphic to Z

+ (nor to Z).
This will lead to a result complementary to Proposition 14.10.

Let S∞ denote the group of bijective maps σ : Z → Z with the property
that σ(k) = k for all but finitely many k. Let (X,F, µ) be a probability
space and let Ω =

∏∞
k=−∞X, as in (14.40), with the product measure ω.

The group S∞ acts on Ω by

(14.50) ϕσ : Ω −→ Ω, ϕσ(x)k = xσ(k),

where x = (. . . , x−1, x0, x1, . . . ) ∈ Ω, σ ∈ S∞. The following result is called
the Hewitt-Savage 01 Law.

Proposition 14.12. The action of S∞ on Ω defined by (14.50) is ergodic.

Proof. Let {vα : α ∈ A} be the orthonormal basis of L2(Ω, ω) given by
(14.42)–(14.43). Note that if Tσf(x) = f(ϕσ(x)), then

(14.51) Tσvα = vσ#α, (σ#α)k = ασ−1(k).

Now if f ∈ L2(Ω, ω) is invariant under the action of S∞, then, parallel to
(14.45), we have

(14.52) f̂(α) = (f, vα) = (Tσf, Tσvα) = f̂(σ#α), ∀ α ∈ A, σ ∈ S∞.

Since ‖f‖2
L2 =

∑
α |f̂(α)|2 < ∞ and {σ#α : σ ∈ S∞} is an infinite set, for

each nonzero α ∈ A, it follows that f̂(α) = 0 for nonzero α ∈ A, and hence
f must be constant.

The same proof establishes the following result, which contains both
Proposition 14.10 and Proposition 14.12. As above, A is the set defined in
the beginning of the proof of Proposition 14.10.
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Proposition 14.13. Let G be a group of bijective maps on Z with the prop-

erty that

(14.53) {σ#α : σ ∈ G} is an infinite set, for each nonzero α ∈ A,

where σ#α is given by (14.51). Then the action of G on Ω, given by (14.50),
is ergodic.

See Exercises 10–14 for a Mean Ergodic Theorem that applies in the set-
ting of Proposition 14.12. Other ergodic theorems that apply to semigroups
of transformations can be found in [Kr].

Exercises

1. Let T
n = S1 × · · · × S1 ⊂ C

n, where S1 = {z ∈ C : |z| = 1}. Given
(e−α1 , . . . , eiαn) ∈ T

n, define

Rα : T
n → T

n, Rα(eiθ1 , . . . , eiθn) = (ei(θ1+α1), . . . , ei(θn+αn)).

Give necessary and sufficient conditions that Rα be ergodic.
Hint. Adapt the argument used to prove Proposition 14.9.

2. Define ϕ : S1 → S1 by ϕ(z) = z2. Show that ϕ is ergodic.
Hint. Examine the Fourier series of an invariant function.

3. A measure-preserving map ϕ on (X,F, µ) is said to be mixing provided

(14.54) µ
(
ϕ−k(E) ∩ F

)
→ µ(E)µ(F ), as k → ∞,

for each E,F ∈ F. Show that ϕ is mixing if and only if Tf(x) = f(ϕ(x))
has the property

(14.55) (T kf, g)L2 −→ (f, 1)L2(1, g)L2 , as k → ∞,

for all f, g ∈ L2(X,µ).

4. Show that a mixing transformation is ergodic.
Hint. Show that

(14.56) (Akf, g) =
1

k

k−1∑

j=0

(T jf, g) → (f, 1)(1, g).
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Deduce that P in (14.7) is the orthogonal projection of L2(X,µ) onto
the space of constant functions. Alternatively, just apply (14.45) in case
Tf = f .

5. Show that the map ϕ : S1 → S1 in Exercise 2 is mixing.

6. Show that the two-sided and one-sided shifts Σ and Σ0, given in (14.41)
and (14.48), are mixing.
Hint. Verify (14.55) when f and g are elements of the orthonormal basis
{vα} described in (14.42). Alternatively, verify (14.55) when f and g
are functions of xj for |j| ≤M .

7. Show that the maps Rα in (14.38) and in Exercise 1 are not mixing.

8. We assert that the ergodic transformation ϕ : S1 → S1 in Exercise
2 is “equivalent” to the one-sided shift (14.48) for X = {0, 1}, with
µ({0}) = µ({1}) = 1/2. Justify this.
Hint. Regard an element of Ω0 as giving the binary expansion of a
number x ∈ [0, 1).

9. Let ϕ be an ergodic measure-preserving map on a probability space
(X,F, µ), and take T as in (14.2). Show that

f ∈ M+(X),

∫

X

f dµ = +∞ =⇒ lim
k→∞

1

k

k∑

j=1

T jf(x) = +∞, µ-a.e.

Exercises 10–14 extend the Mean Ergodic Theorem to the following
setting. Let S be a countably infinite semigroup, represented by a family
of isometries on a Hilbert space H, so we have {Tα : α ∈ S}, satisfying
Tα : H → H, T ∗

αTα = I, TαTβ = Tαβ , for α, β ∈ S. Let Mk ⊂ S be
a sequence of finite subsets of S, of cardinality #Mk. Assume that for
each fixed γ ∈ S,

(14.57) lim
k→∞

#(Mk4Mkγ)

#Mk

= 0,

where Mkγ = {αγ : α ∈Mk} and Mk4Mkγ is the symmetric difference.
Set

(14.58) Skf =
1

#Mk

∑

α∈Mk

Tαf, f ∈ H.
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10. Show that there is an orthogonal direct sum decomposition

(14.59) H = K ⊕R,

where
K = {f ∈ H : Tαf = f,∀α ∈ S},

R =
⊕

α∈S

Range (I − Tα).

Hint. Show that R⊥ =
⋂

α∈S Ker (I − T ∗
α) and that Ker (I − T ∗

α) =
Ker (I − Tα).

11. Show that f ∈ K ⇒ Skf ≡ f .

12. Show that

(14.60)

f = (I − Tγ)v ⇒ Skf =
1

#Mk

∑

α∈Mk

(Tαv − Tαγv)

=
1

#Mk

∑

α∈Mk4Mkγ

(±Tαv).

Use hypothesis (14.57) to deduce that Skf → 0 as k → ∞.

13. Now establish the following mean ergodic theorem, namely, under the
hypothesis (14.57),

(14.61) f ∈ H =⇒ Skf → Pf,

in H-norm, where P is the orthogonal projection of H onto K.

14. In case S = S∞ is the group arising in Proposition 14.12, with action
on H = L2(Ω, ω) given by (14.51), if we set

(14.62) Mk = {σ ∈ S∞ : σ(`) = ` for |`| > k},

show that hypothesis (14.57) holds, and hence the conclusion (14.61)
holds. In this case, Pf =

∫
Ω f dω, by Proposition 14.12.


