
Chapter 15

Probability Spaces

and Random Variables

We have already introduced the notion of a probability space, namely a
measure space (X,F, µ) with the property that µ(X) = 1. Here we look
further at some basic notions and results of probability theory.

First, we give some terminology. A set S ∈ F is called an event, and
µ(S) is called the probability of the event, often denoted P (S). The image
to have in mind is that one picks a point x ∈ X at random, and µ(S) is the
probability that x ∈ S. A measurable function f : X → R is called a (real)
random variable. (One also speaks of a measurable map F : (X,F) → (Y,G)
as a Y -valued random variable, given a measurable space (Y,G).) If f is
integrable, one sets

(15.1) E(f) =

∫

X

f dµ,

called the expectation of f , or the mean of f . One defines the variance of f
as

(15.2) Var(f) =

∫

X

|f − a|2 dµ, a = E(f).

The random variable f has finite variance if and only if f ∈ L2(X,µ).

A random variable f : X → R induces a probability measure νf on R,
called the probability distribution of f :

(15.3) νf (S) = µ(f−1(S)), S ∈ B(R),
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208 15. Probability Spaces and Random Variables

where B(R) denotes the σ-algebra of Borel sets in R. It is clear that f ∈
L1(X,µ) if and only if

∫
|x| dνf (x) <∞ and that

(15.4) E(f) =

∫

R

x dνf (x).

We also have

(15.5) Var(f) =

∫

R

(x− a)2 dνf (x), a = E(f).

To illustrate some of these concepts, consider coin tosses. We start with

(15.6) X = {h, t}, µ({h}) = µ({t}) =
1

2
.

The event {h} is that the coin comes up heads, and {t} gives tails. We also
form

(15.7) Xk =

k∏

j=1

X, µk = µ× · · · × µ,

representing the set of possible outcomes of k successive coin tosses. If
H(k, `) is the event that there are exactly ` heads among the k coin tosses,
its probability is

(15.8) µk(H(k, `)) = 2−k
(
k

`

)
.

If Nk : Xk → R yields the number of heads that come up in k tosses, i.e.,
Nk(x) is the number of h’s that occur in x = (x1, . . . , xk) ∈ Xk, then

(15.9) E(Nk) =
k

2
.

The measure νNk
on R is supported on the set {` ∈ Z

+ : 0 ≤ ` ≤ k}, and

(15.10) νNk
({`}) = µk(H(k, `)) = 2−k

(
k

`

)
.

A central area of probability theory is the study of the large k behavior
of events in spaces such as (Xk, µk), particularly various limits as k → ∞.
This leads naturally to a consideration of the infinite product space

(15.11) Z =
∞∏

j=1

X,
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with σ-algebra Z and product measure ν, constructed at the end of Chapter

6. In case (X,µ) is given by (15.6), one can consider Ñk : Z → R, the number

of heads that come up in the first k throws; Ñk = Nk◦πk, where πk : Z → Xk

is the natural projection. It is a fundamental fact of probability theory that
for almost all infinite sequences of random coin tosses (i.e., with probability

1) the fraction k−1Ñk of them that come up heads tends to 1/2 as k → ∞.
This is a special case of the “law of large numbers,” several versions of which
will be established below.

Note that k−1Ñk has the form

(15.12)
1

k

k∑

j=1

fj,

where fj : Z → R has the form

(15.13) fj(x) = f(xj), f : X → R, x = (x1, x2, x3, . . . ) ∈ Z.

The random variables fj have the important properties of being independent

and identically distributed.

We define these last two terms in general, for random variables on a
probability space (X,F, µ) that need not have a product structure. Say we
have random variables f1, . . . , fk : X → R. Extending (15.3), we have a
measure νFk

on R
k called the joint probability distribution:

(15.14) νFk
(S) = µ(F−1

k (S)), S ∈ B(Rk), Fk = (f1, . . . , fk) : X → R
k.

We say

(15.15) f1, . . . , fk are independent ⇐⇒ νFk
= νf1 × · · · × νfk

.

We also say

(15.16) fi and fj are identically distributed ⇐⇒ νfi
= νfj

.

If {fj : j ∈ N} is an infinite sequence of random variables on X, we say
they are independent if and only if each finite subset is. Equivalently, we
can form

(15.17) F = (f1, f2, f3, . . . ) : X → R
∞ =

∏

j≥1

R,

set

(15.18) νF (S) = µ(F−1(S)), S ∈ B(R∞),

and then independence is equivalent to

(15.19) νF =
∏

j≥1

νfj
.

It is an easy exercise to show that the random variables in (15.13) are inde-
pendent and identically distributed.

Here is a simple consequence of independence.
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Lemma 15.1. If f1, f2 ∈ L2(X,µ) are independent, then

(15.20) E(f1f2) = E(f1)E(f2).

Proof. We have x2, y2 ∈ L1(R2, νf1,f2), and hence xy ∈ L1(R2, νf1,f2).
Then

(15.21)

E(f1f2) =

∫

R2

xy dνf1,f2(x, y)

=

∫

R2

xy dνf1(x) dνf2(y)

= E(f1)E(f2).

The following is a version of the weak law of large numbers. (See the
exercises for a more general version.)

Proposition 15.2. Let {fj : j ∈ N} be independent, identically distributed

random variables on (X,F, µ). Assume fj have finite variance, and set

a = E(fj). Then

(15.22)
1

k

k∑

j=1

fj −→ a, in L2-norm,

and hence in measure, as k → ∞.

Proof. Using Lemma 15.1, we have

(15.23)
∥∥∥

1

k

k∑

j=1

fj − a
∥∥∥

2

L2

=
1

k2

k∑

j=1

‖fj − a‖2
L2 =

b2

k
,

since (fj−a, f`−a)L2 = E(fj−a)E(f`−a) = 0, j 6= `, and ‖fj−a‖2
L2 = b2

is independent of j. Clearly (15.23) implies (15.22). Convergence in measure
then follows by Tchebychev’s inequality.

The strong law of large numbers produces pointwise a.e. convergence
and relaxes the L2-hypothesis made in Proposition 15.2. Before proceeding
to the general case, we first treat the product case (15.11)–(15.13).
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Proposition 15.3. Let (Z,Z, ν) be a product of a countable number of

factors of a probability space (X,F, µ), as in (15.11). Assume p ∈ [1,∞), let

f ∈ Lp(X,µ), and define fj ∈ Lp(Z, ν), as in (15.13). Set a = E(f). Then

(15.24)
1

k

k∑

j=1

fj → a, in Lp-norm and ν-a.e.,

as k → ∞.

Proof. This follows from ergodic theorems established in Chapter 14. In
fact, note that fj = T j−1f1, where Tg(x) = f(ϕ(x)), for

(15.25) ϕ : Z → Z, ϕ(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ).

By Proposition 14.11, ϕ is ergodic. We see that

(15.26)
1

k

k∑

j=1

fj =
1

k

k−1∑

j=0

T jf1 = Akf1,

as in (14.4). The convergence Akf1 → a asserted in (15.24) now follows
from Proposition 14.8.

We now establish the following strong law of large numbers.

Theorem 15.4. Let (X,F, µ) be a probability space, and let {fj : j ∈ N}
be independent, identically distributed random variables in Lp(X,µ), with

p ∈ [1,∞). Set a = E(fj). Then

(15.27)
1

k

k∑

j=1

fj → a, in Lp-norm and µ-a.e.,

as k → ∞.

Proof. Our strategy is to reduce this to Proposition 15.3. We have a map
F : X → R

∞ as in (15.17), yielding a measure νF on R
∞, as in (15.18),

which is actually a product measure, as in (15.19). We have coordinate
functions

(15.28) ξj : R
∞ −→ R, ξj(x1, x2, x3, . . . ) = xj ,

and

(15.29) fj = ξj ◦ F.
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Note that ξj ∈ Lp(R∞, νF ) and

(15.30)

∫

R∞

ξj dνF =

∫

R

xj dνfj
= a.

Now Proposition 15.3 implies

(15.31)
1

k

k∑

j=1

ξj → a, in Lp-norm and νF -a.e.,

on (R∞, νF ), as k → ∞. Since (15.29) holds and F is measure-preserving,
(15.27) follows.

Note that if fj are independent random variables on X and Fk =

(f1, . . . , fk) : X → R
k, then

(15.32)

∫

X

G(f1, . . . , fk) dµ =

∫

Rk

G(x1, . . . , xk) dνFk

=

∫

Rk

G(x1, . . . , xk) dνf1(x1) · · · dνfk
(xk).

In particular, we have for the sum

(15.33) Sk =
k∑

j=1

fk

and a Borel set B ⊂ R that

(15.34)

νSk
(B) =

∫

X

χB(f1 + · · · + fk) dµ

=

∫

Rk

χB(x1 + · · · + xk) dνf1(x1) · · · dνfk
(xk).

Recalling the definition (9.60) of convolution of measures, we see that

(15.35) νSk
= νf1 ∗ · · · ∗ νfk

.

Given a random variable f : X → R, the function

(15.36) χf (ξ) = E(e−iξf ) =

∫

R

e−ixξ dνf (x) =
√

2π ν̂f (ξ)
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is called the characteristic function of f (not to be confused with the char-
acteristic function of a set). Combining (15.35) and (9.64), we see that if
{fj} are independent and Sk is given by (15.33), then

(15.37) χSk
(ξ) = χf1(ξ) · · ·χfk

(ξ).

There is a special class of probability distributions on R called Gaussian.
They have the form

(15.38) dγσa (x) =
1√
2πσ

e−(x−a)2/2σ dx.

That this is a probability distribution follows from Exercise 1 of Chapter 7.
One computes

(15.39)

∫
x dγσa = a,

∫
(x− a)2dγσa = σ.

The distribution (15.38) is also called normal, with mean a and variance σ.
(Frequently one sees σ2 in place of σ in these formulas.) A random variable
f on (X,F, µ) is said to be Gaussian if νf is Gaussian. The computation
(9.43)–(9.48) shows that

(15.40)
√

2π γ̂σa (ξ) = e−σξ
2/2−iaξ.

Hence f : X → R is Gaussian with mean a and variance σ if and only if

(15.41) χf (ξ) = e−σξ
2/2−iaξ.

We also see that

(15.42) γσa ∗ γτb = γσ+τ
a+b

and that if fj are independent Gaussian random variables on X, the sum
Sk = f1 + · · · + fk is also Gaussian.

Gaussian distributions are often approximated by distributions of the
sum of a large number of independent randon variables, suitably rescaled.
Theorems to this effect are called Central Limit Theorems. We present one
here.

Let {fj : j ∈ N} be independent, identically distributed random vari-
ables on a probability space (X,F, µ), with

(15.43) E(fj) = a, E((fj − a)2) = σ <∞.
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The appropriate rescaling of f1 + · · · + fk is suggested by the computation
(15.23). We have

(15.44) gk =
1√
k

k∑

j=1

(fj − a) =⇒ ‖gk‖2
L2 ≡ σ.

Note that if ν1 is the probability distribution of fj − a, then for any Borel
set B ⊂ R,

(15.45) νgk
(B) = νk(

√
kB), νk = ν1 ∗ · · · ∗ ν1 (k factors).

We have

(15.46)

∫
x2 dν1 = σ,

∫
x dν1 = 0.

We are prepared to prove the following version of the Central Limit Theorem.

Proposition 15.5. If {fj : j ∈ N} are independent, identically distributed

random variables on (X,F, µ), satisfying (15.43), and gk is given by (15.44),
then

(15.47) νgk
→ γσ0 , weak∗ in M(R) = C∗(R)′.

Proof. By (15.45) we have

(15.48) χgk
(ξ) = χ(k−1/2ξ)k,

where χ(ξ) = χf1−a(ξ) =
√

2πν̂1(ξ). By (15.46) we have χ ∈ C2(R), χ′(0) =
0, and χ′′(0) = −σ. Hence

(15.49) χ(ξ) = 1 − σ

2
ξ2 + r(ξ), r(ξ) = o(ξ2) as ξ → 0.

Equivalently,

(15.50) χ(ξ) = e−σξ
2/2+ρ(ξ), ρ(ξ) = o(ξ2).

Hence

(15.51) χgk
(ξ) = e−σξ

2/2+ρk(ξ),

where

(15.52) ρk(ξ) = kρ(k−1/2ξ) → 0 as k → ∞, ∀ ξ ∈ R.
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In other words,

(15.53) lim
k→∞

ν̂gk
(ξ) = γ̂σ0 (ξ), ∀ ξ ∈ R.

Note that the functions in (15.53) are uniformly bounded by
√

2π. Making
use of (15.53), the Fourier transform identity (9.58), and the Dominated
Convergence Theorem, we obtain, for each v ∈ S(R),

(15.54)

∫
v dνgk

=

∫
ṽ(ξ)ν̂gk

(ξ) dξ

→
∫
ṽ(ξ)γ̂σ0 (ξ) dξ

=

∫
v dγσ0 .

Since S(R) is dense in C∗(R) and all these measures are probability mea-
sures, this implies the asserted weak∗ convergence in (15.47).

Chapter 16 is devoted to the construction and study of a very important
probability measure, known as Wiener measure, on the space of continuous
paths in R

n. There are many naturally occurring Gaussian random variables
on this space.

We return to the strong law of large numbers and generalize Theorem
15.4 to a setting in which the fj need not be independent. A sequence
{fj : j ∈ N} of real-valued random variables on (X,F, µ), giving a map
F : X → R∞ as in (15.17), is called a stationary process provided the
probability measure νF on R

∞ given by (15.18) is invariant under the shift
map

(15.55) θ : R
∞ −→ R

∞, θ(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ).

An equivalent condition is that for each k, n ∈ N, the n-tuples {f1, . . . , fn}
and {fk, . . . , fk+n−1} are identically distributed R

n-valued random variables.
Clearly a sequence of independent, identically distributed random variables
is stationary, but there are many other stationary processes. (See the exer-
cises.)

To see what happens to the averages k−1
∑k

j=1 fj when one has a sta-
tionary process, we can follow the proof of Theorem 15.4. This time, an
application of Theorem 14.6 and Proposition 14.7 to the action of θ on
(R∞, νF ) gives

(15.56)
1

k

k∑

j=1

ξj → Pξ1, νF -a.e. and in Lp-norm,
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provided

(15.57) ξ1 ∈ Lp(R∞, νF ), i.e., f1 ∈ Lp(X,µ), p ∈ [1,∞).

Here the map P : L2(R∞, νF ) → L2(R∞, νF ) is the orthogonal projection of
L2(R∞, νF ) onto the subspace consisting of θ-invariant functions, which, by
Proposition 14.3, extends uniquely to a continuous projection on Lp(R∞, νF )
for each p ∈ [1,∞]. Since F : (X,F, µ) → (R∞,B(R∞), νF ) is measure
preserving, the result (15.56) yields the following.

Proposition 15.6. Let {fj : j ∈ N} be a stationary process, consisting of

fj ∈ Lp(X,µ), with p ∈ [1,∞). Then

(15.58)
1

k

k∑

j=1

fj → (Pξ1) ◦ F, µ-a.e. and in Lp-norm.

The right side of (15.58) can be written as a conditional expectation. See
Exercise 12 in Chapter 17.

Exercises

1. The second computation in (15.39) is equivalent to the identity
∫ ∞

−∞
x2e−x

2

dx =

√
π

2
.

Verify this identity.
Hint. Differentiate the identity

∫ ∞

−∞
e−sx

2

dx =
√
πs−1/2.

2. Given a probability space (X,F, µ) and Aj ∈ F, we say the sets Aj, 1 ≤
j ≤ K, are independent if and only if their characteristic functions χAj

are independent, as defined in (15.15). Show that such a collection of
sets is independent if and only if, for any distinct i1, . . . , ij in {1, . . . ,K},

(15.59) µ(Ai1 ∩ · · · ∩Aij ) = µ(Ai1) · · ·µ(Aij ).

3. Let f1, f2 be random variables on (X,F, µ). Show that f1 and f2 are
independent if and only if

(15.60) E(e−i(ξ1f1+ξ2f2)) = E(e−iξ1f1)E(e−iξ2f2), ∀ ξj ∈ R.



15. Probability Spaces and Random Variables 217

Extend this to a criterion for independence of f1, . . . , fk.
Hint. Write the left side of (15.60) as

∫∫
e−i(ξ1x1+ξ2x2) dνf1,f2(x1, x2)

and the right side as a similar Fourier transform, using dνf1 × dνf2 .

4. Demonstrate the following partial converse to Lemma 15.1.

Lemma 15.7. Let f1 and f2 be random variables on (X,µ) such that

ξ1f1 + ξ2f2 is Gaussian, of mean zero, for each (ξ1, ξ2) ∈ R
2. Then

E(f1f2) = 0 =⇒ f1 and f2 are independent.

More generally, if
∑k

1 ξjfj are all Gaussian and if f1, . . . , fk are mutu-

ally orthogonal in L2(X,µ), then f1, . . . , fk are independent.

Hint. Use
E(e−i(ξ1f1+ξ2f2)) = e−‖ξ1f1+ξ2f2‖2/2,

which follows from (15.41).

Exercises 5–6 deal with results known as the Borel-Cantelli Lemmas. If
(X,F, µ) is a probability space and Ak ∈ F, we set

A = lim sup
k→∞

Ak =
∞⋂

`=1

∞⋃

k=`

Ak,

the set of points x ∈ X contained in infinitely many of the sets Ak.
Equivalently,

χA = lim supχAk
.

5. (First Borel-Cantelli Lemma) Show that
∑

k≥1

µ(Ak) <∞ =⇒ µ(A) = 0.

Hint. µ(A) ≤ µ
(⋃

k≥`Ak
)
≤ ∑

k≥` µ(Ak).

6. (Second Borel-Cantelli Lemma) Assume {Ak : k ≥ 1} are independent
events. Show that

∑

k≥1

µ(Ak) = ∞ =⇒ µ(A) = 1.
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Hint. X \ A =
⋃
`≥1

⋂
k≥`A

c
k, so to prove µ(A) = 1, we need to show

µ
(⋂

k≥`A
c
k

)
= 0, for each `. Now independence implies

µ
( L⋂

k=`

Ack

)
=

L∏

k=`

(
1 − µ(Ak)

)
,

which tends to 0 as L→ ∞ provided
∑
µ(Ak) = ∞.

7. If x and y are chosen at random on [0, 1] (with Lebesgue measure),
compute the probability distribution of x− y and of (x − y)2. Equiva-
lently, compute the probability distribution of f and f 2, where Q =
[0, 1] × [0, 1], with Lebesgue measure, and f : Q → R is given by
f(x, y) = x− y.

8. As in Exercise 7, set Q = [0, 1] × [0, 1]. If x = (x1, x2) and y = (y1, y2)
are chosen at random on Q, compute the probability distribution of
|x− y|2 and of |x− y|.
Hint. The random variables (x1 − y1)

2 and (x2 − y2)
2 are independent.

9. Suppose {fj : j ∈ N} are independent random variables on (X,F, µ),
satisfying E(fj) = a and

(15.61) ‖fj − a‖2
L2 = σj , lim

k→∞

1

k2

k∑

j=1

σj = 0.

Show that the conclusion (15.22) of Proposition 15.2 holds.

10. Suppose {fj : j ∈ N} is a stationary process on (X,F, µ). Let G : R
∞ →

R be B(R∞)-measurable, and set

gj = G(fj, fj+1, fj+2, . . . ).

Show that {gj : j ∈ N} is a stationary process on (X,F, µ).

In Exercises 11–12, X is a compact metric space, F the σ-algebra of
Borel sets, µ a probability measure on F, and ϕ : X → X a continuous,
measure-preserving map with the property that for each p ∈ X, ϕ−1(p)
consists of exactly d points, where d ≥ 2 is some fixed integer. (An
example is X = S1, ϕ(z) = zd.) Set

Ω =
∏

k≥1

X, Z = {(xk) ∈ Ω : ϕ(xk+1) = xk}.
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Note that Z is a closed subset of Ω.

11. Show that there is a unique probability measure ν on Ω with the prop-
erty that for x = (x1, x2, x3, . . . ) ∈ Ω, A ∈ F, the probability that
x1 ∈ A is µ(A), and given x1 = p1, . . . , xk = pk, then xk+1 ∈ ϕ−1(pk),
and xk+1 has probability 1/d of being any one of these pre-image points.

More formally, construct a probability measure ν on Ω such that if
Aj ∈ F,

ν(A1 × · · · ×Ak) =

∫

A1

· · ·
∫

Ak

dγxk−1
(xk) · · · dγx1

(x2) dµ(x1),

where, given p ∈ X, we set

γp =
1

d

∑

q∈ϕ−1(p)

δq,

δq denoting the point mass concentrated at q. Equivalently, if f ∈ C(Ω)
has the form f = f(x1, . . . , xk), then

∫

Ω

f dν =

∫
· · ·

∫
f(x1, . . . , xk) dγxk−1

(xk) · · · dγx1
(x2) dµ(x1).

Such ν is supported on Z.
Hint. The construction of ν can be done in a fashion parallel to, but
simpler than, the construction of Wiener measure made at the beginning
of Chapter 16. One might read down to (16.13) and return to this
problem.

12. Define fj : Z → R by fj(x) = xj . Show that {fj : j ∈ N} is a stationary
process on (Z, ν), as constructed in Exercise 11.

13. In the course of proving Proposition 15.5, it was shown that if νk and
γ are probability measures on R and ν̂k(ξ) → γ̂(ξ) for each ξ ∈ R, then
νk → γ, weak∗ in C∗(R)′. Prove the converse:

Assertion. If νk and γ are probability measures and νk → γ weak∗ in

C∗(R)′, then ν̂k(ξ) → γ̂(ξ) for each ξ ∈ R.

Hint. Show that for each ε > 0 there exist R,N ∈ (0,∞) such that
νk(R \ [−R,R]) < ε for all k ≥ N .
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14. Produce a counterexample to the assertion in Exercise 13 when νk are
probability measures but γ is not.

15. Establish the following counterpart to Proposition 15.2 and Theorem
15.4. Let {fj : j ∈ N} be independent, identically distributed random
variables on a probability space (X,F, µ). Assume fj ≥ 0 and

∫
fj dµ =

+∞. Show that, as k → ∞,

1

k

k∑

j=1

fj −→ +∞, µ-a.e.

16. Given y ∈ R, t > 0, show that

χt,y(ξ) = e−t(1−e
−iyξ)

is the characteristic function of the probability distribution

νt,y =
∞∑

k=0

tk

k!
e−t δky.

That is, χt,y(ξ) =
∫
e−ixξ dνt,y(x). These probability distributions are

called Poisson distributions. Recalling how (9.64) leads to (15.37), show
that νs,y ∗ νt,y = νs+t,y.

17. Suppose ψ(ξ) has the property that for each t > 0, e−tψ(ξ) is the charac-
teristic function of a probability distribution νt. (One says νt is infinitely
divisible and that ψ generates a Lévy process.) Show that if ϕ(ξ) also
has this property, so does aψ(ξ) + bϕ(ξ), given a, b ∈ R

+.

18. Show that whenever µ is a positive Borel measure on R \ 0 such that∫
R
(|y2| ∧ 1) dµ <∞, then, given A ≥ 0, b ∈ R,

ψ(ξ) = Aξ2 + ibξ +

∫ (
1 − e−iyξ − iyξχI(y)

)
dµ(y)

has the property exposed in Exercise 17, i.e., ψ generates a Lévy process.
Here, χI = 1 on I = [−1, 1], 0 elsewhere.
Hint. Apply Exercise 17 and a limiting argument. For material on Lévy
processes, see [Sat].


