Probability Spaces and Random Variables

We have already introduced the notion of a probability space, namely a measure space (X, \mathfrak{F}, μ) with the property that $\mu(X) = 1$. Here we look further at some basic notions and results of probability theory.

First, we give some terminology. A set $S \in \mathfrak{F}$ is called an *event*, and $\mu(S)$ is called the probability of the event, often denoted P(S). The image to have in mind is that one picks a point $x \in X$ at random, and $\mu(S)$ is the probability that $x \in S$. A measurable function $f: X \to \mathbb{R}$ is called a (real) random variable. (One also speaks of a measurable map $F: (X, \mathfrak{F}) \to (Y, \mathfrak{G})$ as a Y-valued random variable, given a measurable space (Y, \mathfrak{G}) .) If f is integrable, one sets

(15.1)
$$E(f) = \int_{X} f \, d\mu,$$

called the *expectation* of f, or the *mean* of f. One defines the *variance* of f as

(15.2)
$$\operatorname{Var}(f) = \int_{X} |f - a|^2 d\mu, \quad a = E(f).$$

The random variable f has finite variance if and only if $f \in L^2(X, \mu)$.

A random variable $f: X \to \mathbb{R}$ induces a probability measure ν_f on \mathbb{R} , called the probability distribution of f:

(15.3)
$$\nu_f(S) = \mu(f^{-1}(S)), \quad S \in \mathfrak{B}(\mathbb{R}),$$

207

where $\mathfrak{B}(\mathbb{R})$ denotes the σ -algebra of Borel sets in \mathbb{R} . It is clear that $f \in L^1(X,\mu)$ if and only if $\int |x| d\nu_f(x) < \infty$ and that

(15.4)
$$E(f) = \int_{\mathbb{R}} x \, d\nu_f(x).$$

We also have

(15.5)
$$\operatorname{Var}(f) = \int_{\mathbb{R}} (x-a)^2 \, d\nu_f(x), \quad a = E(f).$$

To illustrate some of these concepts, consider coin tosses. We start with

(15.6)
$$X = \{h, t\}, \quad \mu(\{h\}) = \mu(\{t\}) = \frac{1}{2}.$$

The event $\{h\}$ is that the coin comes up heads, and $\{t\}$ gives tails. We also form

(15.7)
$$X_k = \prod_{j=1}^k X, \quad \mu_k = \mu \times \dots \times \mu,$$

representing the set of possible outcomes of k successive coin tosses. If $H(k, \ell)$ is the event that there are exactly ℓ heads among the k coin tosses, its probability is

(15.8)
$$\mu_k(H(k,\ell)) = 2^{-k} \binom{k}{\ell}.$$

If $N_k : X_k \to \mathbb{R}$ yields the number of heads that come up in k tosses, i.e., $N_k(x)$ is the number of h's that occur in $x = (x_1, \ldots, x_k) \in X_k$, then

$$(15.9) E(N_k) = \frac{k}{2}.$$

The measure ν_{N_k} on \mathbb{R} is supported on the set $\{\ell \in \mathbb{Z}^+ : 0 \leq \ell \leq k\}$, and

(15.10)
$$\nu_{N_k}(\{\ell\}) = \mu_k(H(k,\ell)) = 2^{-k} \binom{k}{\ell}.$$

A central area of probability theory is the study of the large k behavior of events in spaces such as (X_k, μ_k) , particularly various limits as $k \to \infty$. This leads naturally to a consideration of the infinite product space

$$(15.11) Z = \prod_{j=1}^{\infty} X,$$

with σ -algebra \mathcal{Z} and product measure ν , constructed at the end of Chapter 6. In case (X, μ) is given by (15.6), one can consider $N_k : Z \to \mathbb{R}$, the number of heads that come up in the first k throws; $N_k = N_k \circ \pi_k$, where $\pi_k : Z \to X_k$ is the natural projection. It is a fundamental fact of probability theory that for almost all infinite sequences of random coin tosses (i.e., with probability 1) the fraction $k^{-1}N_k$ of them that come up heads tends to 1/2 as $k \to \infty$. This is a special case of the "law of large numbers," several versions of which will be established below.

Note that $k^{-1}\widetilde{N}_k$ has the form

(15.12)
$$\frac{1}{k} \sum_{j=1}^{k} f_j$$

where $f_j: Z \to \mathbb{R}$ has the form

(15.13)
$$f_j(x) = f(x_j), \quad f: X \to \mathbb{R}, \quad x = (x_1, x_2, x_3, \dots) \in Z.$$

The random variables f_j have the important properties of being *independent* and *identically distributed*.

We define these last two terms in general, for random variables on a probability space (X, \mathfrak{F}, μ) that need not have a product structure. Say we have random variables $f_1, \ldots, f_k : X \to \mathbb{R}$. Extending (15.3), we have a measure ν_{F_k} on \mathbb{R}^k called the joint probability distribution:

(15.14)
$$\nu_{F_k}(S) = \mu(F_k^{-1}(S)), \quad S \in \mathfrak{B}(\mathbb{R}^k), \quad F_k = (f_1, \dots, f_k) : X \to \mathbb{R}^k.$$

We say

 f_1, \ldots, f_k are independent $\iff \nu_{F_k} = \nu_{f_1} \times \cdots \times \nu_{f_k}$. (15.15)

We also say

(15.16)
$$f_i$$
 and f_j are identically distributed $\iff \nu_{f_i} = \nu_{f_j}$

If $\{f_j : j \in \mathbb{N}\}$ is an infinite sequence of random variables on X, we say they are independent if and only if each finite subset is. Equivalently, we can form

(15.17)
$$F = (f_1, f_2, f_3, \dots) : X \to \mathbb{R}^\infty = \prod_{j \ge 1} \mathbb{R},$$

set

(15.18)
$$\nu_F(S) = \mu(F^{-1}(S)), \quad S \in \mathfrak{B}(\mathbb{R}^\infty),$$

and then independence is equivalent to

(15.19)
$$\nu_F = \prod_{j \ge 1} \nu_{f_j}$$

It is an easy exercise to show that the random variables in (15.13) are independent and identically distributed.

Here is a simple consequence of independence.

Lemma 15.1. If $f_1, f_2 \in L^2(X, \mu)$ are independent, then

(15.20)
$$E(f_1f_2) = E(f_1)E(f_2).$$

Proof. We have $x^2, y^2 \in L^1(\mathbb{R}^2, \nu_{f_1, f_2})$, and hence $xy \in L^1(\mathbb{R}^2, \nu_{f_1, f_2})$. Then

(15.21)
$$E(f_1f_2) = \int_{\mathbb{R}^2} xy \, d\nu_{f_1,f_2}(x,y)$$
$$= \int_{\mathbb{R}^2} xy \, d\nu_{f_1}(x) \, d\nu_{f_2}(y)$$
$$= E(f_1)E(f_2).$$

The following is a version of the *weak law of large numbers*. (See the exercises for a more general version.)

Proposition 15.2. Let $\{f_j : j \in \mathbb{N}\}$ be independent, identically distributed random variables on (X, \mathfrak{F}, μ) . Assume f_j have finite variance, and set $a = E(f_j)$. Then

(15.22)
$$\frac{1}{k} \sum_{j=1}^{k} f_j \longrightarrow a, \quad in \quad L^2\text{-norm},$$

and hence in measure, as $k \to \infty$.

Proof. Using Lemma 15.1, we have

(15.23)
$$\left\|\frac{1}{k}\sum_{j=1}^{k}f_{j}-a\right\|_{L^{2}}^{2}=\frac{1}{k^{2}}\sum_{j=1}^{k}\|f_{j}-a\|_{L^{2}}^{2}=\frac{b^{2}}{k},$$

since $(f_j - a, f_\ell - a)_{L^2} = E(f_j - a)E(f_\ell - a) = 0$, $j \neq \ell$, and $||f_j - a||_{L^2}^2 = b^2$ is independent of j. Clearly (15.23) implies (15.22). Convergence in measure then follows by Tchebychev's inequality.

The strong law of large numbers produces pointwise a.e. convergence and relaxes the L^2 -hypothesis made in Proposition 15.2. Before proceeding to the general case, we first treat the product case (15.11)–(15.13). **Proposition 15.3.** Let (Z, Z, ν) be a product of a countable number of factors of a probability space (X, \mathfrak{F}, μ) , as in (15.11). Assume $p \in [1, \infty)$, let $f \in L^p(X, \mu)$, and define $f_j \in L^p(Z, \nu)$, as in (15.13). Set a = E(f). Then

(15.24)
$$\frac{1}{k} \sum_{j=1}^{k} f_j \to a, \quad in \ L^p \text{-norm and } \nu \text{-a.e.},$$

as $k \to \infty$.

Proof. This follows from ergodic theorems established in Chapter 14. In fact, note that $f_j = T^{j-1}f_1$, where $Tg(x) = f(\varphi(x))$, for

(15.25)
$$\varphi: Z \to Z, \quad \varphi(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots).$$

By Proposition 14.11, φ is ergodic. We see that

(15.26)
$$\frac{1}{k}\sum_{j=1}^{k}f_{j} = \frac{1}{k}\sum_{j=0}^{k-1}T^{j}f_{1} = A_{k}f_{1},$$

as in (14.4). The convergence $A_k f_1 \rightarrow a$ asserted in (15.24) now follows from Proposition 14.8.

We now establish the following strong law of large numbers.

Theorem 15.4. Let (X, \mathfrak{F}, μ) be a probability space, and let $\{f_j : j \in \mathbb{N}\}$ be independent, identically distributed random variables in $L^p(X, \mu)$, with $p \in [1, \infty)$. Set $a = E(f_j)$. Then

(15.27)
$$\frac{1}{k} \sum_{j=1}^{k} f_j \to a, \quad in \ L^p \text{-norm and} \ \mu\text{-a.e.},$$

as $k \to \infty$.

Proof. Our strategy is to reduce this to Proposition 15.3. We have a map $F: X \to \mathbb{R}^{\infty}$ as in (15.17), yielding a measure ν_F on \mathbb{R}^{∞} , as in (15.18), which is actually a product measure, as in (15.19). We have coordinate functions

(15.28)
$$\xi_j : \mathbb{R}^\infty \longrightarrow \mathbb{R}, \quad \xi_j(x_1, x_2, x_3, \dots) = x_j,$$

and

$$(15.29) f_j = \xi_j \circ F.$$

Note that $\xi_j \in L^p(\mathbb{R}^\infty, \nu_F)$ and

(15.30)
$$\int_{\mathbb{R}^{\infty}} \xi_j \, d\nu_F = \int_{\mathbb{R}} x_j \, d\nu_{f_j} = a.$$

Now Proposition 15.3 implies

(15.31)
$$\frac{1}{k} \sum_{j=1}^{k} \xi_j \to a, \quad \text{in } L^p\text{-norm and } \nu_F\text{-a.e.},$$

on $(\mathbb{R}^{\infty}, \nu_F)$, as $k \to \infty$. Since (15.29) holds and F is measure-preserving, (15.27) follows.

Note that if f_j are independent random variables on X and $F_k = (f_1, \ldots, f_k) : X \to \mathbb{R}^k$, then

(15.32)
$$\int_{X} G(f_{1}, \dots, f_{k}) d\mu = \int_{\mathbb{R}^{k}} G(x_{1}, \dots, x_{k}) d\nu_{F_{k}}$$
$$= \int_{\mathbb{R}^{k}} G(x_{1}, \dots, x_{k}) d\nu_{f_{1}}(x_{1}) \cdots d\nu_{f_{k}}(x_{k}).$$

In particular, we have for the sum

(15.33)
$$S_k = \sum_{j=1}^k f_k$$

and a Borel set $B \subset \mathbb{R}$ that

(15.34)
$$\nu_{S_k}(B) = \int_X \chi_B(f_1 + \dots + f_k) \, d\mu$$
$$= \int_{\mathbb{R}^k} \chi_B(x_1 + \dots + x_k) \, d\nu_{f_1}(x_1) \cdots d\nu_{f_k}(x_k).$$

Recalling the definition (9.60) of convolution of measures, we see that

(15.35)
$$\nu_{S_k} = \nu_{f_1} * \dots * \nu_{f_k}.$$

Given a random variable $f: X \to \mathbb{R}$, the function

(15.36)
$$\chi_f(\xi) = E(e^{-i\xi f}) = \int_{\mathbb{R}} e^{-ix\xi} \, d\nu_f(x) = \sqrt{2\pi} \, \hat{\nu}_f(\xi)$$

is called the *characteristic function* of f (not to be confused with the characteristic function of a set). Combining (15.35) and (9.64), we see that if $\{f_i\}$ are independent and S_k is given by (15.33), then

(15.37)
$$\chi_{S_k}(\xi) = \chi_{f_1}(\xi) \cdots \chi_{f_k}(\xi).$$

There is a special class of probability distributions on $\mathbb R$ called *Gaussian*. They have the form

(15.38)
$$d\gamma_a^{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-a)^2/2\sigma} \, dx.$$

That this is a probability distribution follows from Exercise 1 of Chapter 7. One computes

(15.39)
$$\int x \, d\gamma_a^{\sigma} = a, \quad \int (x-a)^2 d\gamma_a^{\sigma} = \sigma.$$

The distribution (15.38) is also called *normal*, with mean *a* and variance σ . (Frequently one sees σ^2 in place of σ in these formulas.) A random variable *f* on (X, \mathfrak{F}, μ) is said to be Gaussian if ν_f is Gaussian. The computation (9.43)–(9.48) shows that

(15.40)
$$\sqrt{2\pi}\,\hat{\gamma}_a^\sigma(\xi) = e^{-\sigma\xi^2/2 - ia\xi},$$

Hence $f: X \to \mathbb{R}$ is Gaussian with mean *a* and variance σ if and only if

(15.41)
$$\chi_f(\xi) = e^{-\sigma\xi^2/2 - ia\xi}.$$

We also see that

(15.42)
$$\gamma_a^{\sigma} * \gamma_b^{\tau} = \gamma_{a+b}^{\sigma+\tau}$$

and that if f_j are independent Gaussian random variables on X, the sum $S_k = f_1 + \cdots + f_k$ is also Gaussian.

Gaussian distributions are often approximated by distributions of the sum of a large number of independent randon variables, suitably rescaled. Theorems to this effect are called Central Limit Theorems. We present one here.

Let $\{f_j : j \in \mathbb{N}\}$ be independent, identically distributed random variables on a probability space (X, \mathfrak{F}, μ) , with

(15.43)
$$E(f_j) = a, \quad E((f_j - a)^2) = \sigma < \infty.$$

The appropriate rescaling of $f_1 + \cdots + f_k$ is suggested by the computation (15.23). We have

(15.44)
$$g_k = \frac{1}{\sqrt{k}} \sum_{j=1}^k (f_j - a) \Longrightarrow ||g_k||_{L^2}^2 \equiv \sigma.$$

Note that if ν_1 is the probability distribution of $f_j - a$, then for any Borel set $B \subset \mathbb{R}$,

(15.45)
$$\nu_{g_k}(B) = \nu_k(\sqrt{k}B), \quad \nu_k = \nu_1 * \cdots * \nu_1 \quad (k \text{ factors}).$$

We have

(15.46)
$$\int x^2 d\nu_1 = \sigma, \quad \int x d\nu_1 = 0.$$

We are prepared to prove the following version of the Central Limit Theorem.

Proposition 15.5. If $\{f_j : j \in \mathbb{N}\}$ are independent, identically distributed random variables on (X, \mathfrak{F}, μ) , satisfying (15.43), and g_k is given by (15.44), then

(15.47)
$$\nu_{g_k} \to \gamma_0^{\sigma}, \quad weak^* \quad in \ \mathfrak{M}(\mathbb{R}) = C_*(\mathbb{R})'.$$

Proof. By (15.45) we have

(15.48)
$$\chi_{g_k}(\xi) = \chi(k^{-1/2}\xi)^k,$$

where $\chi(\xi) = \chi_{f_1-a}(\xi) = \sqrt{2\pi}\hat{\nu}_1(\xi)$. By (15.46) we have $\chi \in C^2(\mathbb{R}), \ \chi'(0) = 0$, and $\chi''(0) = -\sigma$. Hence

(15.49)
$$\chi(\xi) = 1 - \frac{\sigma}{2}\xi^2 + r(\xi), \quad r(\xi) = o(\xi^2) \text{ as } \xi \to 0$$

Equivalently,

(15.50)
$$\chi(\xi) = e^{-\sigma\xi^2/2 + \rho(\xi)}, \quad \rho(\xi) = o(\xi^2).$$

Hence

(15.51)
$$\chi_{g_k}(\xi) = e^{-\sigma\xi^2/2 + \rho_k(\xi)},$$

where

(15.52)
$$\rho_k(\xi) = k\rho(k^{-1/2}\xi) \to 0 \text{ as } k \to \infty, \quad \forall \xi \in \mathbb{R}.$$

In other words,

(15.53)
$$\lim_{k \to \infty} \hat{\nu}_{g_k}(\xi) = \hat{\gamma}_0^{\sigma}(\xi), \quad \forall \xi \in \mathbb{R}.$$

Note that the functions in (15.53) are uniformly bounded by $\sqrt{2\pi}$. Making use of (15.53), the Fourier transform identity (9.58), and the Dominated Convergence Theorem, we obtain, for each $v \in \mathcal{S}(\mathbb{R})$,

(15.54)
$$\int v \, d\nu_{g_k} = \int \tilde{v}(\xi) \hat{\nu}_{g_k}(\xi) \, d\xi$$
$$\rightarrow \int \tilde{v}(\xi) \hat{\gamma}_0^{\sigma}(\xi) \, d\xi$$
$$= \int v \, d\gamma_0^{\sigma}.$$

Since $\mathcal{S}(\mathbb{R})$ is dense in $C_*(\mathbb{R})$ and all these measures are probability measures, this implies the asserted weak^{*} convergence in (15.47).

Chapter 16 is devoted to the construction and study of a very important probability measure, known as Wiener measure, on the space of continuous paths in \mathbb{R}^n . There are many naturally occurring Gaussian random variables on this space.

We return to the strong law of large numbers and generalize Theorem 15.4 to a setting in which the f_j need not be independent. A sequence $\{f_j : j \in \mathbb{N}\}$ of real-valued random variables on (X, \mathfrak{F}, μ) , giving a map $F : X \to \mathbb{R}^{\infty}$ as in (15.17), is called a *stationary process* provided the probability measure ν_F on \mathbb{R}^{∞} given by (15.18) is invariant under the shift map

(15.55)
$$\theta : \mathbb{R}^{\infty} \longrightarrow \mathbb{R}^{\infty}, \quad \theta(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots).$$

An equivalent condition is that for each $k, n \in \mathbb{N}$, the *n*-tuples $\{f_1, \ldots, f_n\}$ and $\{f_k, \ldots, f_{k+n-1}\}$ are identically distributed \mathbb{R}^n -valued random variables. Clearly a sequence of independent, identically distributed random variables is stationary, but there are many other stationary processes. (See the exercises.)

To see what happens to the averages $k^{-1} \sum_{j=1}^{k} f_j$ when one has a stationary process, we can follow the proof of Theorem 15.4. This time, an application of Theorem 14.6 and Proposition 14.7 to the action of θ on $(\mathbb{R}^{\infty}, \nu_F)$ gives

(15.56)
$$\frac{1}{k} \sum_{j=1}^{k} \xi_j \to P\xi_1, \quad \nu_F\text{-a.e. and in } L^p\text{-norm},$$

provided

(15.57) $\xi_1 \in L^p(\mathbb{R}^\infty, \nu_F), \text{ i.e., } f_1 \in L^p(X, \mu), \quad p \in [1, \infty).$

Here the map $P: L^2(\mathbb{R}^\infty, \nu_F) \to L^2(\mathbb{R}^\infty, \nu_F)$ is the orthogonal projection of $L^2(\mathbb{R}^\infty, \nu_F)$ onto the subspace consisting of θ -invariant functions, which, by Proposition 14.3, extends uniquely to a continuous projection on $L^p(\mathbb{R}^\infty, \nu_F)$ for each $p \in [1, \infty]$. Since $F: (X, \mathfrak{F}, \mu) \to (\mathbb{R}^\infty, \mathfrak{B}(\mathbb{R}^\infty), \nu_F)$ is measure preserving, the result (15.56) yields the following.

Proposition 15.6. Let $\{f_j : j \in \mathbb{N}\}$ be a stationary process, consisting of $f_j \in L^p(X,\mu)$, with $p \in [1,\infty)$. Then

(15.58)
$$\frac{1}{k}\sum_{j=1}^{k}f_{j} \to (P\xi_{1})\circ F, \quad \mu\text{-a.e. and in } L^{p}\text{-norm.}$$

The right side of (15.58) can be written as a *conditional expectation*. See Exercise 12 in Chapter 17.

Exercises

1. The second computation in (15.39) is equivalent to the identity

$$\int_{-\infty}^{\infty} x^2 e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}.$$

Verify this identity.

Hint. Differentiate the identity

$$\int_{-\infty}^{\infty} e^{-sx^2} dx = \sqrt{\pi}s^{-1/2}.$$

2. Given a probability space (X, \mathfrak{F}, μ) and $A_j \in \mathfrak{F}$, we say the sets A_j , $1 \leq j \leq K$, are independent if and only if their characteristic functions χ_{A_j} are independent, as defined in (15.15). Show that such a collection of sets is independent if and only if, for any distinct i_1, \ldots, i_j in $\{1, \ldots, K\}$,

(15.59)
$$\mu(A_{i_1} \cap \dots \cap A_{i_j}) = \mu(A_{i_1}) \cdots \mu(A_{i_j}).$$

3. Let f_1, f_2 be random variables on (X, \mathfrak{F}, μ) . Show that f_1 and f_2 are independent if and only if

(15.60)
$$E(e^{-i(\xi_1 f_1 + \xi_2 f_2)}) = E(e^{-i\xi_1 f_1})E(e^{-i\xi_2 f_2}), \quad \forall \ \xi_j \in \mathbb{R}.$$

Extend this to a criterion for independence of f_1, \ldots, f_k . *Hint.* Write the left side of (15.60) as

$$\iint e^{-i(\xi_1 x_1 + \xi_2 x_2)} \, d\nu_{f_1, f_2}(x_1, x_2)$$

and the right side as a similar Fourier transform, using $d\nu_{f_1} \times d\nu_{f_2}$.

4. Demonstrate the following partial converse to Lemma 15.1.

Lemma 15.7. Let f_1 and f_2 be random variables on (X, μ) such that $\xi_1 f_1 + \xi_2 f_2$ is Gaussian, of mean zero, for each $(\xi_1, \xi_2) \in \mathbb{R}^2$. Then

 $E(f_1f_2) = 0 \Longrightarrow f_1$ and f_2 are independent.

More generally, if $\sum_{j=1}^{k} \xi_j f_j$ are all Gaussian and if f_1, \ldots, f_k are mutually orthogonal in $L^2(X, \mu)$, then f_1, \ldots, f_k are independent.

Hint. Use

$$E(e^{-i(\xi_1 f_1 + \xi_2 f_2)}) = e^{-\|\xi_1 f_1 + \xi_2 f_2\|^2/2},$$

which follows from (15.41).

Exercises 5–6 deal with results known as the Borel-Cantelli Lemmas. If (X, \mathfrak{F}, μ) is a probability space and $A_k \in \mathfrak{F}$, we set

$$A = \limsup_{k \to \infty} A_k = \bigcap_{\ell=1}^{\infty} \bigcup_{k=\ell}^{\infty} A_k,$$

the set of points $x \in X$ contained in infinitely many of the sets A_k . Equivalently,

$$\chi_A = \limsup \chi_{A_k}$$

5. (First Borel-Cantelli Lemma) Show that

$$\sum_{k\geq 1}\mu(A_k)<\infty \Longrightarrow \mu(A)=0.$$

Hint. $\mu(A) \le \mu(\bigcup_{k \ge \ell} A_k) \le \sum_{k \ge \ell} \mu(A_k).$

6. (Second Borel-Cantelli Lemma) Assume $\{A_k : k \ge 1\}$ are independent events. Show that

$$\sum_{k \ge 1} \mu(A_k) = \infty \Longrightarrow \mu(A) = 1.$$

Hint. $X \setminus A = \bigcup_{\ell \ge 1} \bigcap_{k \ge \ell} A_k^c$, so to prove $\mu(A) = 1$, we need to show $\mu(\bigcap_{k \ge \ell} A_k^c) = 0$, for each ℓ . Now independence implies

$$\mu\Big(\bigcap_{k=\ell}^{L} A_k^c\Big) = \prod_{k=\ell}^{L} \big(1 - \mu(A_k)\big),$$

which tends to 0 as $L \to \infty$ provided $\sum \mu(A_k) = \infty$.

- 7. If x and y are chosen at random on [0,1] (with Lebesgue measure), compute the probability distribution of x y and of $(x y)^2$. Equivalently, compute the probability distribution of f and f^2 , where $Q = [0,1] \times [0,1]$, with Lebesgue measure, and $f : Q \to \mathbb{R}$ is given by f(x,y) = x y.
- 8. As in Exercise 7, set $Q = [0,1] \times [0,1]$. If $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are chosen at random on Q, compute the probability distribution of $|x y|^2$ and of |x y|. Hint. The random variables $(x_1 - y_1)^2$ and $(x_2 - y_2)^2$ are independent.
- 9. Suppose $\{f_j : j \in \mathbb{N}\}$ are independent random variables on (X, \mathfrak{F}, μ) , satisfying $E(f_j) = a$ and

(15.61)
$$||f_j - a||_{L^2}^2 = \sigma_j, \quad \lim_{k \to \infty} \frac{1}{k^2} \sum_{j=1}^k \sigma_j = 0.$$

Show that the conclusion (15.22) of Proposition 15.2 holds.

10. Suppose $\{f_j : j \in \mathbb{N}\}$ is a stationary process on (X, \mathfrak{F}, μ) . Let $G : \mathbb{R}^{\infty} \to \mathbb{R}$ be $\mathfrak{B}(\mathbb{R}^{\infty})$ -measurable, and set

$$g_j = G(f_j, f_{j+1}, f_{j+2}, \dots).$$

Show that $\{g_j : j \in \mathbb{N}\}$ is a stationary process on (X, \mathfrak{F}, μ) .

In Exercises 11–12, X is a compact metric space, \mathfrak{F} the σ -algebra of Borel sets, μ a probability measure on \mathfrak{F} , and $\varphi : X \to X$ a continuous, measure-preserving map with the property that for each $p \in X$, $\varphi^{-1}(p)$ consists of exactly d points, where $d \geq 2$ is some fixed integer. (An example is $X = S^1$, $\varphi(z) = z^d$.) Set

$$\Omega = \prod_{k \ge 1} X, \quad Z = \{(x_k) \in \Omega : \varphi(x_{k+1}) = x_k\}.$$

Note that Z is a closed subset of Ω .

11. Show that there is a unique probability measure ν on Ω with the property that for $x = (x_1, x_2, x_3, ...) \in \Omega$, $A \in \mathfrak{F}$, the probability that $x_1 \in A$ is $\mu(A)$, and given $x_1 = p_1, \ldots, x_k = p_k$, then $x_{k+1} \in \varphi^{-1}(p_k)$, and x_{k+1} has probability 1/d of being any one of these pre-image points.

More formally, construct a probability measure ν on Ω such that if $A_i \in \mathfrak{F}$,

$$\nu(A_1 \times \cdots \times A_k) = \int_{A_1} \cdots \int_{A_k} d\gamma_{x_{k-1}}(x_k) \cdots d\gamma_{x_1}(x_2) d\mu(x_1),$$

where, given $p \in X$, we set

$$\gamma_p = \frac{1}{d} \sum_{q \in \varphi^{-1}(p)} \delta_q,$$

 δ_q denoting the point mass concentrated at q. Equivalently, if $f \in C(\Omega)$ has the form $f = f(x_1, \ldots, x_k)$, then

$$\int_{\Omega} f \, d\nu = \int \cdots \int f(x_1, \dots, x_k) \, d\gamma_{x_{k-1}}(x_k) \cdots d\gamma_{x_1}(x_2) \, d\mu(x_1).$$

Such ν is supported on Z.

Hint. The construction of ν can be done in a fashion parallel to, but simpler than, the construction of Wiener measure made at the beginning of Chapter 16. One might read down to (16.13) and return to this problem.

- 12. Define $f_j : Z \to \mathbb{R}$ by $f_j(x) = x_j$. Show that $\{f_j : j \in \mathbb{N}\}$ is a stationary process on (Z, ν) , as constructed in Exercise 11.
- 13. In the course of proving Proposition 15.5, it was shown that if ν_k and γ are probability measures on \mathbb{R} and $\hat{\nu}_k(\xi) \to \hat{\gamma}(\xi)$ for each $\xi \in \mathbb{R}$, then $\nu_k \to \gamma$, weak^{*} in $C_*(\mathbb{R})'$. Prove the converse:

Assertion. If ν_k and γ are probability measures and $\nu_k \to \gamma$ weak^{*} in $C_*(\mathbb{R})'$, then $\hat{\nu}_k(\xi) \to \hat{\gamma}(\xi)$ for each $\xi \in \mathbb{R}$.

Hint. Show that for each $\varepsilon > 0$ there exist $R, N \in (0, \infty)$ such that $\nu_k(\mathbb{R} \setminus [-R, R]) < \varepsilon$ for all $k \ge N$.

- 14. Produce a counterexample to the assertion in Exercise 13 when ν_k are probability measures but γ is not.
- 15. Establish the following counterpart to Proposition 15.2 and Theorem 15.4. Let $\{f_j : j \in \mathbb{N}\}$ be independent, identically distributed random variables on a probability space (X, \mathfrak{F}, μ) . Assume $f_j \ge 0$ and $\int f_j d\mu = +\infty$. Show that, as $k \to \infty$,

$$\frac{1}{k}\sum_{j=1}^{k}f_j \longrightarrow +\infty, \quad \mu\text{-a.e.}$$

16. Given $y \in \mathbb{R}$, t > 0, show that

$$\chi_{t,y}(\xi) = e^{-t(1-e^{-iy\xi})}$$

is the characteristic function of the probability distribution

$$\nu_{t,y} = \sum_{k=0}^{\infty} \frac{t^k}{k!} e^{-t} \,\delta_{ky}.$$

That is, $\chi_{t,y}(\xi) = \int e^{-ix\xi} d\nu_{t,y}(x)$. These probability distributions are called Poisson distributions. Recalling how (9.64) leads to (15.37), show that $\nu_{s,y} * \nu_{t,y} = \nu_{s+t,y}$.

- 17. Suppose $\psi(\xi)$ has the property that for each t > 0, $e^{-t\psi(\xi)}$ is the characteristic function of a probability distribution ν_t . (One says ν_t is infinitely divisible and that ψ generates a Lévy process.) Show that if $\varphi(\xi)$ also has this property, so does $a\psi(\xi) + b\varphi(\xi)$, given $a, b \in \mathbb{R}^+$.
- 18. Show that whenever μ is a positive Borel measure on $\mathbb{R} \setminus 0$ such that $\int_{\mathbb{R}} (|y^2| \wedge 1) d\mu < \infty$, then, given $A \ge 0, b \in \mathbb{R}$,

$$\psi(\xi) = A\xi^2 + ib\xi + \int \left(1 - e^{-iy\xi} - iy\xi\chi_I(y)\right) d\mu(y)$$

has the property exposed in Exercise 17, i.e., ψ generates a Lévy process. Here, $\chi_I = 1$ on I = [-1, 1], 0 elsewhere.

Hint. Apply Exercise 17 and a limiting argument. For material on Lévy processes, see [**Sat**].