Wiener Measure and Brownian Motion

Diffusion of particles is a product of their apparently random motion. The density $u(t, x)$ of diffusing particles satisfies the "diffusion equation"

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\Delta u \tag{16.1}
\end{equation*}
$$

If the initial condition $u(0, x)=f(x)$ for $x \in \mathbb{R}^{n}$ is given, Fourier analysis, as described in (9.69)-(9.71), can be used to provide the solution

$$
\begin{align*}
u(t, x) & =(2 \pi)^{-n / 2} \int \hat{f}(\xi) e^{-t|\xi|^{2}} e^{i x \cdot \xi} d \xi \\
& =\int p(t, x, y) f(y) d y \tag{16.2}
\end{align*}
$$

where $\hat{f}(\xi)$ is the Fourier transform of f and

$$
\begin{equation*}
p(t, x, y)=p(t, x-y)=(4 \pi t)^{-n / 2} e^{-|x-y|^{2} / 4 t} \tag{16.3}
\end{equation*}
$$

A suggestive notation for the solution operator provided by $(16.2)-(16.3)$ is

$$
\begin{equation*}
u(t, x)=e^{t \Delta} f(x) \tag{16.4}
\end{equation*}
$$

One property this "exponential" of the operator Δ has in common with the exponential of real numbers is the identity $e^{t \Delta} e^{s \Delta}=e^{(t+s) \Delta}$, which by (16.2)-(16.3) is equivalent to the identity

$$
\begin{equation*}
\int p(t, x-y) p(s, y) d y=p(t+s, x) \tag{16.5}
\end{equation*}
$$

This identity can be verified directly, by manipulation of Gaussian integrals, as in (9.47)-(9.48), or via the identity $e^{-t|\xi|^{2}} e^{-s|\xi|^{2}}=e^{-(t+s)|\xi|^{2}}$, plus the sort of Fourier analysis behind (16.2).

Some other simple but important properties that can be deduced from (16.3) are

$$
\begin{equation*}
p(t, x, y) \geq 0 \tag{16.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int p(t, x, y) d y=1 \tag{16.7}
\end{equation*}
$$

Consequently, for each $x \in \mathbb{R}^{n}, p(t, x, y) d y$ defines a probability distribution, which we can interpret as giving the probability that a particle starting at the point x at time 0 will be in a given region in \mathbb{R}^{n} at time t.

We proceed to construct a probability measure, known as "Wiener measure," on the set of paths $\omega:[0, \infty) \rightarrow \mathbb{R}^{n}$, undergoing a random motion, called Brownian motion, described as follows. Given $t_{1}<t_{2}$ and given that $\omega\left(t_{1}\right)=x_{1}$, the probability density for the location of $\omega\left(t_{2}\right)$ is

$$
\begin{equation*}
p\left(t, x-x_{1}\right)=(4 \pi t)^{-n / 2} e^{-\left|x-x_{1}\right|^{2} / 4 t}, \quad t=t_{2}-t_{1} \tag{16.8}
\end{equation*}
$$

The motion of a random path for $t_{1} \leq t \leq t_{2}$ is supposed to be independent of its past history. Thus, given $0<t_{1}<t_{2}<\cdots<t_{k}$ and given Borel sets $E_{j} \subset \mathbb{R}^{n}$, the probability that a path, starting at $x=0$ at $t=0$, lies in E_{j} at time t_{j} for each $j \in[1, k]$ is

$$
\begin{equation*}
\int_{E_{1}} \cdots \int_{E_{k}} p\left(t_{k}-t_{k-1}, x_{k}-x_{k-1}\right) \cdots p\left(t_{1}, x_{1}\right) d x_{k} \cdots d x_{1} . \tag{16.9}
\end{equation*}
$$

It is not obvious that there is a countably additive measure characterized by these properties, and Wiener's result was a great achievement. The construction we give here is a slight modification of one in Appendix A of [Nel].

Anticipating that Wiener measure is supported on the set of continuous paths, we will take a path to be characterized by its locations at all positive rational t. Thus, we consider the set of "paths"

$$
\begin{equation*}
\mathfrak{P}=\prod_{t \in \mathbb{Q}^{+}} \dot{\mathbb{R}}^{n} \tag{16.10}
\end{equation*}
$$

Here, $\dot{\mathbb{R}}^{n}$ is the one-point compactification of \mathbb{R}^{n}, i.e., $\dot{\mathbb{R}}^{n}=\mathbb{R}^{n} \cup\{\infty\}$. Thus \mathfrak{P} is a compact metrizable space. We construct Wiener measure W as a positive Borel measure on \mathfrak{P}.

In order to construct this measure, we will construct a certain positive linear functional $E: C(\mathfrak{P}) \rightarrow \mathbb{R}$, on the space $C(\mathfrak{P})$ of real-valued continuous functions on \mathfrak{P}, satisfying $E(1)=1$, and a condition motivated by (16.9), which we give in (16.12). We first define E on the subspace $\mathcal{C}^{\#}$ consisting of continuous functions that depend on only finitely many of the factors in (16.10), i.e., functions on \mathfrak{P} of the form

$$
\begin{equation*}
\varphi(\omega)=F\left(\omega\left(t_{1}\right), \ldots, \omega\left(t_{k}\right)\right), \quad t_{1}<\cdots<t_{k} \tag{16.11}
\end{equation*}
$$

where F is continuous on $\prod_{1}^{k} \dot{\mathbb{R}}^{n}$ and $t_{j} \in \mathbb{Q}^{+}$. Motivated by (16.9), we take (16.12)

$$
\begin{aligned}
E(\varphi)=\int \cdots \int p\left(t_{1}, x_{1}\right) p\left(t_{2}-t_{1}, x_{2}-x_{1}\right) & \cdots p\left(t_{k}-t_{k-1}, x_{k}-x_{k-1}\right) \\
\times & F\left(x_{1}, \ldots, x_{k}\right) d x_{k} \cdots d x_{1} .
\end{aligned}
$$

If $\varphi(\omega)$ in (16.11) actually depends only on $\omega\left(t_{\nu}\right)$ for some proper subset $\left\{t_{\nu}\right\}$ of $\left\{t_{1}, \ldots, t_{k}\right\}$, there arises a formula for $E(\varphi)$ with a different appearance from (16.12). The fact that these two expressions are equal follows from the identity (16.5). From this it follows that $E: \mathcal{C}^{\#} \rightarrow \mathbb{R}$ is well defined. It is also a positive linear functional, satisfying $E(1)=1$.

Now, by the Stone-Weierstrass Theorem, $\mathcal{C}^{\#}$ is dense in $C(\mathfrak{P})$. Since $E: \mathcal{C}^{\#} \rightarrow \mathbb{R}$ is a positive linear functional and $E(1)=1$, it follows that E has a unique continuous extension to $C(\mathfrak{P})$, possessing these properties. Theorem 13.5 associates to E the desired probability measure W. Therefore we have

Theorem 16.1. There is a unique probability measure W on \mathfrak{P} such that (16.12) is given by

$$
\begin{equation*}
E(\varphi)=\int_{\mathfrak{P}} \varphi(\omega) d W(\omega) \tag{16.13}
\end{equation*}
$$

for each $\varphi(\omega)$ of the form (16.11) with F continuous on $\prod_{1}^{k} \dot{\mathbb{R}}^{n}$.
This is the Wiener measure. We note that (16.12) then holds for any bounded Borel function F, and also for any positive Borel function F, on $\prod_{1}^{k} \dot{\mathbb{R}}^{n}$.

Remark. It is common to define Wiener measure slightly differently, taking $p(t, x)$ to be the integral kernel of $e^{t \Delta / 2}$ rather than $e^{t \Delta}$. The path space $\{b\}$ so produced is related to the path space $\{\omega\}$ constructed here by $\omega(t)=$ $b(2 t)$.

Some basic examples of calculations of (16.13) include the following. Define functions X_{t} on \mathfrak{P}, taking values in \mathbb{R}^{n}, by

$$
\begin{equation*}
X_{t}(\omega)=\omega(t) \tag{16.14}
\end{equation*}
$$

Then

$$
\begin{equation*}
E\left(\left|X_{t}\right|^{2}\right)=\int p(t, x)|x|^{2} d x=2 n t \tag{16.15}
\end{equation*}
$$

and, if $0<s<t$,

$$
\begin{align*}
E\left(\left|X_{t}-X_{s}\right|^{2}\right) & =\iint p\left(s, x_{1}\right) p\left(t-s, x_{2}-x_{1}\right)\left|x_{2}-x_{1}\right|^{2} d x_{1} d x_{2} \\
& =\int p(t-s, y)|y|^{2} d y \tag{16.16}\\
& =2 n(t-s),
\end{align*}
$$

a result that works for all $s, t \geq 0$, if $(t-s)$ is replaced by $|t-s|$. Another way to put (16.15)-(16.16) is

$$
\begin{equation*}
\left\|X_{t}\right\|_{L^{2}(\mathfrak{P})}=\sqrt{2 n t}, \quad\left\|X_{t}-X_{s}\right\|_{L^{2}(\mathfrak{P})}=\sqrt{2 n}|t-s|^{1 / 2} \tag{16.17}
\end{equation*}
$$

Note that the latter result implies $t \mapsto X_{t}$ is uniformly continuous from \mathbb{Q}^{+} to $L^{2}(\mathfrak{P}, W)$ and hence has a unique continuous extension to $\mathbb{R}^{+}=[0, \infty)$:

$$
\begin{equation*}
\mathfrak{X}: \mathbb{R}^{+} \longrightarrow L^{2}(\mathfrak{P}, W), \tag{16.18}
\end{equation*}
$$

such that $\mathfrak{X}(t)=X_{t}$, given by (16.14) for $t \in \mathbb{Q}^{+}$, and then (16.15)-(16.16) are valid for all real $s, t \geq 0$. This is evidence in favor of the assertion made above that W-almost every $\omega \in \mathfrak{P}$ extends continuously from $t \in \mathbb{Q}^{+}$to $t \in \mathbb{R}^{+}$, though it does not prove it. Before we tackle that proof, we make some more observations.

Let us take $t>s>0$ and calculate

$$
\begin{align*}
\left(X_{s}, X_{t}\right)_{L^{2}(\mathfrak{P})} & =E\left(X_{s} \cdot X_{t}\right) \\
& =\int p\left(s, x_{1}\right) p\left(t-s, x_{2}-x_{1}\right) x_{1} \cdot x_{2} d x_{1} d x_{2} \tag{16.19}\\
& =\int p\left(s, x_{1}\right) p(t-s, y) x_{1} \cdot\left(y+x_{1}\right) d x_{1} d y
\end{align*}
$$

Now $x_{1} \cdot\left(y+x_{1}\right)=x_{1} \cdot y+\left|x_{1}\right|^{2}$. The latter contribution is evaluated as in (16.15), and the former contribution is the dot product $A(s) \cdot A(t-s)$, where

$$
\begin{equation*}
A(s)=\int p\left(s, x_{1}\right) x_{1} d x_{1}=0 . \tag{16.20}
\end{equation*}
$$

So (16.19) is equal to $2 n s$ if $t>s>0$. Hence, by symmetry,

$$
\begin{equation*}
\left(X_{s}, X_{t}\right)_{L^{2}(\mathfrak{P})}=2 n \min (s, t) . \tag{16.21}
\end{equation*}
$$

One can also obtain this by noting $\left|X_{t}-X_{s}\right|^{2}=\left|X_{t}\right|^{2}+\left|X_{s}\right|^{2}-2 X_{s} \cdot X_{t}$ and comparing (16.15) and (16.16). Furthermore, comparing (16.21) and (16.15), we see that

$$
\begin{equation*}
t>s \geq 0 \Longrightarrow\left(X_{t}-X_{s}, X_{s}\right)_{L^{2}(\mathfrak{F})}=0 . \tag{16.22}
\end{equation*}
$$

This result is a special case of the following, whose content can be phrased as the statement that if $t>s \geq 0$, then $X_{t}-X_{s}$ is independent of X_{σ} for $\sigma \leq s$, and also that $X_{t}-X_{s}$ has the same statistical behavior as X_{t-s}. For more on this independence, see the exercises at the end of this chapter and Chapter 17.

Proposition 16.2. Assume $0<s_{1}<\cdots<s_{k}<s<t\left(\in \mathbb{Q}^{+}\right)$, and consider functions on \mathfrak{P} of the form

$$
\begin{equation*}
\varphi(\omega)=F\left(\omega\left(s_{1}\right), \ldots, \omega\left(s_{k}\right)\right), \quad \psi(\omega)=G(\omega(t)-\omega(s)) . \tag{16.23}
\end{equation*}
$$

Then

$$
\begin{equation*}
E(\varphi \psi)=E(\varphi) E(\psi), \tag{16.24}
\end{equation*}
$$

and

$$
\begin{equation*}
E(\psi)=E(\tilde{\psi}), \quad \tilde{\psi}(\omega)=G(\omega(t-s)) . \tag{16.25}
\end{equation*}
$$

Proof. By (16.12), we have

$$
\begin{align*}
E(\psi) & =\int p\left(s, y_{1}\right) p\left(t-s, y_{2}-y_{2}\right) G\left(y_{2}-y_{1}\right) d y_{1} d y_{2} \\
& =\int p\left(s, y_{1}\right) p(t-s, z) G(z) d y_{1} d z \tag{16.26}\\
& =\int p(t-s, z) G(z) d z
\end{align*}
$$

which establishes (16.25). Next, we have
(16.27)

$$
\begin{aligned}
E(\varphi \psi)=\int p\left(s_{1}, x_{1}\right) p\left(s_{2}-s_{1}, x_{2}-x_{1}\right) & \cdots p\left(s_{k}-s_{k-1}, x_{k}-x_{k-1}\right) \\
p\left(s-s_{k}, y_{1}-x_{k}\right) p(& \left.t-s, y_{2}-y_{1}\right) F\left(x_{1}, \ldots, x_{k}\right) \\
& \times G\left(y_{2}-y_{1}\right) d x_{1} \cdots d x_{k} d y_{1} d y_{2} .
\end{aligned}
$$

If we change variables to $x_{1}, \ldots, x_{k}, y_{1}, z=y_{2}-y_{1}$, then comparison with (16.26) shows that $E(\psi)$ factors out of (16.27). Then use of $\int p\left(s-s_{k}, y_{1}-\right.$ $\left.x_{k}\right) d y_{1}=1$ shows that the other factor is equal to $E(\varphi)$, so we have (16.24).

Here is the promised result on path continuity.

Proposition 16.3. The set \mathfrak{P}_{0} of paths from \mathbb{Q}^{+}to \mathbb{R}^{n} that are uniformly continuous on bounded subsets of \mathbb{Q}^{+}(and that hence extend uniquely to continuous paths from $[0, \infty)$ to \mathbb{R}^{n}) is a Borel subset of \mathfrak{P} with Wiener measure 1.

For a set S, let $\operatorname{osc}_{S}(\omega)$ denote $\sup _{s, t \in S}|\omega(s)-\omega(t)|$. Set

$$
\begin{equation*}
E(a, b, \varepsilon)=\left\{\omega \in \mathfrak{P}: \operatorname{osc}_{[a, b]}(\omega)>2 \varepsilon\right\} ; \tag{16.28}
\end{equation*}
$$

here $[a, b]$ denotes $\left\{s \in \mathbb{Q}^{+}: a \leq s \leq b\right\}$. The complement is

$$
\begin{equation*}
E^{c}(a, b, \varepsilon)=\bigcap_{t, s \in[a, b]}\{\omega \in \mathfrak{P}:|\omega(s)-\omega(t)| \leq 2 \varepsilon\}, \tag{16.29}
\end{equation*}
$$

which is closed in \mathfrak{P}. Below we will demonstrate the following estimate on the Wiener measure of $E(a, b, \varepsilon)$:

$$
\begin{equation*}
W(E(a, b, \varepsilon)) \leq 2 \rho\left(\frac{\varepsilon}{2},|b-a|\right) \tag{16.30}
\end{equation*}
$$

where

$$
\begin{align*}
\rho(\varepsilon, \delta) & =\sup _{t \leq \delta} \int_{|x|>\varepsilon} p(t, x) d x \\
& =\sup _{t \leq \delta} \int_{|y|>\varepsilon / \sqrt{t}} p(1, y) d y, \tag{16.31}
\end{align*}
$$

with $p(t, x)$ as in (16.3). Clearly the sup is assumed at $t=\delta$, so

$$
\begin{equation*}
\rho(\varepsilon, \delta)=\int_{|y|>\varepsilon / \sqrt{\delta}} p(1, y) d y=\psi_{n}\left(\frac{\varepsilon}{\sqrt{\delta}}\right) \tag{16.32}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{n}(r)=(4 \pi)^{-n / 2} \int_{|y|>r} e^{-|y|^{2} / 4} d y \leq \alpha_{n} r^{n} e^{-r^{2} / 4} \tag{16.33}
\end{equation*}
$$

as $r \rightarrow \infty$.
The relevance of the analysis of $E(a, b, \varepsilon)$ is that, if we set (16.34)

$$
F(k, \varepsilon, \delta)=\left\{\omega \in \mathfrak{P}: \operatorname{osc}_{J}(\omega)>4 \varepsilon, \text { for some } J \subset[0, k] \cap \mathbb{Q}^{+}, \ell(J) \leq \frac{\delta}{2}\right\}
$$

where $\ell(J)$ is the length of the interval J, then

$$
\begin{equation*}
F(k, \varepsilon, \delta)=\bigcup\left\{E(a, b, 2 \varepsilon):[a, b] \subset[0, k],|b-a| \leq \frac{\delta}{2}\right\} \tag{16.35}
\end{equation*}
$$

is an open set, and, via (16.30), we have

$$
\begin{equation*}
W(F(k, \varepsilon, \delta)) \leq 2 k \frac{\rho(\varepsilon, \delta)}{\delta} . \tag{16.36}
\end{equation*}
$$

Furthermore, with $F^{c}(k, \varepsilon, \delta)=\mathfrak{P} \backslash F(k, \varepsilon, \delta)$,

$$
\begin{align*}
\mathfrak{P}_{0} & =\left\{\omega: \forall k<\infty, \forall \varepsilon>0, \exists \delta>0 \text { such that } \omega \in F^{c}(k, \varepsilon, \delta)\right\} \\
& =\bigcap_{k} \bigcap_{\varepsilon=1 / \nu} \bigcup_{\delta=1 / \mu} F^{c}(k, \varepsilon, \delta) \tag{16.37}
\end{align*}
$$

is a Borel set (in fact, an $\mathcal{F}_{\sigma \delta}$ set, i.e., a countable intersection of \mathcal{F}_{σ} sets), and we can conclude that $W\left(\mathfrak{P}_{0}\right)=1$ from (16.36), given the observation that, for any $\varepsilon>0$,

$$
\begin{equation*}
\frac{\rho(\varepsilon, \delta)}{\delta} \longrightarrow 0, \text { as } \delta \rightarrow 0 \tag{16.38}
\end{equation*}
$$

which follows immediately from (16.32)-(16.33). Thus, to complete the proof of Proposition 16.3, it remains to establish the estimate (16.30). The next lemma goes most of the way towards that goal.

Lemma 16.4. Given $\varepsilon, \delta>0$, take ν numbers $t_{j} \in \mathbb{Q}^{+}, 0 \leq t_{1}<\cdots<t_{\nu}$, such that $t_{\nu}-t_{1} \leq \delta$. Let

$$
\begin{equation*}
A=\left\{\omega \in \mathfrak{P}:\left|\omega\left(t_{1}\right)-\omega\left(t_{j}\right)\right|>\varepsilon, \text { for some } j=1, \ldots, \nu\right\} . \tag{16.39}
\end{equation*}
$$

Then

$$
\begin{equation*}
W(A) \leq 2 \rho\left(\frac{\varepsilon}{2}, \delta\right) . \tag{16.40}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
B= & \left\{\omega:\left|\omega\left(t_{1}\right)-\omega\left(t_{\nu}\right)\right|>\varepsilon / 2\right\}, \\
C_{j}= & \left\{\omega:\left|\omega\left(t_{j}\right)-\omega\left(t_{\nu}\right)\right|>\varepsilon / 2\right\}, \\
D_{j}= & \left\{\omega:\left|\omega\left(t_{1}\right)-\omega\left(t_{j}\right)\right|>\varepsilon\right. \text { and } \tag{16.41}\\
& \left.\left|\omega\left(t_{1}\right)-\omega\left(t_{k}\right)\right| \leq \varepsilon, \text { for all } k \leq j-1\right\} .
\end{align*}
$$

Then $A \subset B \cup \bigcup_{j=1}^{\nu}\left(C_{j} \cap D_{j}\right)$, so

$$
\begin{equation*}
W(A) \leq W(B)+\sum_{j=1}^{\nu} W\left(C_{j} \cap D_{j}\right) \tag{16.42}
\end{equation*}
$$

Clearly $W(B) \leq \rho(\varepsilon / 2, \delta)$. Furthermore, we have

$$
\begin{equation*}
W\left(C_{j} \cap D_{j}\right)=W\left(C_{j}\right) W\left(D_{j}\right) \leq \rho\left(\frac{\varepsilon}{2}, \delta\right) W\left(D_{j}\right), \tag{16.43}
\end{equation*}
$$

the first identity by Proposition 16.2 (i.e., the independence of C_{j} and D_{j}) and the subsequent inequality by the easy estimate $W\left(C_{j}\right) \leq \rho(\varepsilon / 2, \delta)$. Hence

$$
\begin{equation*}
\sum_{j} W\left(C_{j} \cap D_{j}\right) \leq \rho\left(\frac{\varepsilon}{2}, \delta\right), \tag{16.44}
\end{equation*}
$$

since the D_{j} are mutually disjoint. This proves (16.40). Note that this estimate is independent of ν.

We now finish the demonstration of (16.30). Given such t_{j} as in the statement of Lemma 16.4, if we set

$$
\begin{equation*}
E=\left\{\omega:\left|\omega\left(t_{j}\right)-\omega\left(t_{k}\right)\right|>2 \varepsilon, \text { for some } j, k \in[1, \nu]\right\}, \tag{16.45}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
W(E) \leq 2 \rho\left(\frac{\varepsilon}{2}, \delta\right), \tag{16.46}
\end{equation*}
$$

since E is a subset of A, given by (16.39). Now, $E(a, b, \varepsilon)$, given by (16.28), is a countable increasing union of sets of the form (16.45), obtained, e.g., by letting $\left\{t_{1}, \ldots, t_{\nu}\right\}$ consist of all $t \in[a, b]$ that are rational with denominator $\leq K$ and taking $K \nearrow+\infty$. Thus we have (16.30), and the proof of Proposition 16.3 is complete.

We make the natural identification of paths $\omega \in \mathfrak{P}_{0}$ with continuous paths $\omega:[0, \infty) \rightarrow \mathbb{R}^{n}$. Note that a function φ on \mathfrak{P}_{0} of the form (16.11), with $t_{j} \in \mathbb{R}^{+}$, not necessarily rational, is a pointwise limit on \mathfrak{P}_{0} of functions in $\mathcal{C}^{\#}$, as long as F is continuous on $\prod_{1}^{k} \dot{\mathbb{R}}^{n}$, and consequently such φ is measurable. Furthermore, (16.12) continues to hold, by the Dominated Convergence Theorem.

An alternative approach to the construction of W would be to replace (16.10) by $\widetilde{\mathfrak{P}}=\Pi\left\{\dot{\mathbb{R}}^{n}: t \in \mathbb{R}^{+}\right\}$. With the product topology, this is compact but not metrizable. The set of continuous paths is a Borel subset of $\widetilde{\mathfrak{P}}$, but not a Baire set, so some extra measure-theoretic considerations arise if one takes this route, which was taken in $[\mathbf{N e l}]$.

Looking more closely at the estimate (16.36) of the measure of the set $F(k, \varepsilon, \delta)$, defined by (16.34), we note that we can take $\varepsilon=K \sqrt{\delta \log (1 / \delta)}$, in which case

$$
\begin{equation*}
\rho\left(\frac{\varepsilon}{2}, \delta\right)=\psi_{n}\left(\frac{K}{2} \sqrt{\log 1 / \delta}\right) \leq C_{n, K}\left(\log \frac{1}{\delta}\right)^{n / 2} \delta^{K^{2} / 16} \tag{16.47}
\end{equation*}
$$

Then we obtain the following refinement of Proposition 16.3.

Proposition 16.5. For almost all $\omega \in \mathfrak{P}_{0}$, we have, for each $T<\infty$,

$$
\begin{equation*}
\limsup _{|s-t|=\delta \rightarrow 0}\left(|\omega(s)-\omega(t)|-8 \sqrt{\delta \log \frac{1}{\delta}}\right) \leq 0, \quad s, t \in[0, T] \tag{16.48}
\end{equation*}
$$

Consequently, given $T<\infty$,

$$
\begin{equation*}
|\omega(s)-\omega(t)| \leq C(\omega, T) \sqrt{\delta \log \frac{1}{\delta}}, \quad s, t \in[0, T] \tag{16.49}
\end{equation*}
$$

with $C(\omega, T)<\infty$ for almost all $\omega \in \mathfrak{P}_{0}$.
In fact, (16.47) gives $W\left(S_{k}\right)=1$ where S_{k} is the set of paths satisfying (16.48), with 8 replaced by $8+1 / k$, since then (16.47) applies with $K>4$, so (16.38) holds. Then $\bigcap_{k} S_{k}$ is precisely the set of paths satisfying (16.48).

The estimate (16.48) is not quite sharp; P. Lévy showed that for almost all $\omega \in \mathfrak{P}$, with $\mu(\delta)=2 \sqrt{\delta \log 1 / \delta}$,

$$
\begin{equation*}
\limsup _{|s-t| \rightarrow 0} \frac{|\omega(s)-\omega(t)|}{\mu(|s-t|)}=1 \tag{16.50}
\end{equation*}
$$

See $[\mathbf{M c K}]$ for a proof.
Wiener proved that almost all Brownian paths are nowhere differentiable. We refer to $[\mathbf{M c K}]$ for a proof of this. The following result specifies another respect in which Brownian paths are highly irregular.

Proposition 16.6. Assume $n \geq 2$, and pick $T \in(0, \infty)$. Then, for almost all $\omega \in \mathfrak{P}_{0}$,
(16.51) $\omega([0, T])=\{\omega(t): 0 \leq t \leq T\} \subset \mathbb{R}^{n}$ has Hausdorff dimension 2 .

Proof. The fact that $\operatorname{Hdim} \omega([0, T]) \leq 2$ for W-a.e. ω follows from the modulus of continuity estimate (16.48), which implies that for each $\delta>0, \omega$ is Hölder continuous of order $1 /(2+\delta)$. This implies by Exercise 9 of Chapter 12 that $\mathcal{H}^{r}(\omega([0, T]))<\infty$ for $r=2+\delta$. (Of course this upper bound is trivial in the case $n=2$.)

We will obtain the estimate $\operatorname{Hdim} \omega([0, T]) \geq 2$ for a.e. ω as an application of Proposition 12.19. To get this, we start with the following generalization of (16.16): for $0<s<t$,

$$
\begin{align*}
E\left(\varphi\left(X_{t}-X_{s}\right)\right) & =\iint p\left(s, x_{1}\right) p\left(t-s, x_{2}-x_{1}\right) \varphi\left(x_{2}-x_{1}\right) d x_{1} d x_{2} \\
& =\int p(t-s, y) \varphi(y) d y \tag{16.52}\\
& =(4 \pi(t-s))^{-n / 2} \int e^{-|y|^{2} / 4|t-s|} \varphi(y) d y .
\end{align*}
$$

We now assume φ is radial. We switch to spherical polar coordinates. We also allow $t<s$ and obtain

$$
\begin{equation*}
E\left(\varphi\left(X_{t}-X_{s}\right)\right)=\frac{A_{n-1}}{(4 \pi|t-s|)^{n / 2}} \int_{0}^{\infty} e^{-r^{2} / 4|t-s|} \varphi(r) r^{n-1} d r, \tag{16.53}
\end{equation*}
$$

where $A_{n-1}=\operatorname{Area}\left(S^{n-1}\right)$. We apply this to $\varphi(r)=r^{-a}$ to get

$$
\begin{align*}
E\left(\left|X_{t}-X_{s}\right|^{-a}\right) & =C_{n}|t-s|^{-n / 2} \int_{0}^{\infty} e^{-r^{2} / 4|t-s|} r^{n-1-a} d r \tag{16.54}\\
& =C_{n, a}|t-s|^{-a / 2}
\end{align*}
$$

where $C_{n, a}<\infty$ provided $a<n$. We deduce that

$$
\begin{align*}
& \int_{\mathfrak{P}} \int_{0}^{T} \int_{0}^{T} \frac{d s d t}{|\omega(t)-\omega(s)|^{a}} d W(\omega) \tag{16.55}\\
& =C_{n, a} \int_{0}^{T} \int_{0}^{T} \frac{d s d t}{|t-s|^{a / 2}}=C_{n, a}^{\prime}<\infty, \quad \text { if } a<2 .
\end{align*}
$$

Consequently, as long as $a<2 \leq n$,

$$
\begin{equation*}
\int_{0}^{T} \int_{0}^{T} \frac{d s d t}{|\omega(t)-\omega(s)|^{a}}<\infty, \quad \text { for } W \text {-a.e. } \omega . \tag{16.56}
\end{equation*}
$$

We can rewrite this as

$$
\begin{equation*}
\int_{\omega([0, T])} \int_{\omega([0, T])} \frac{d \mu^{\omega}(x) d \mu^{\omega}(y)}{|x-y|^{a}}<\infty, \quad \text { for } W \text {-a.e. } \omega \tag{16.57}
\end{equation*}
$$

where μ^{ω} is the measure on $\omega([0, T])$ given by

$$
\begin{equation*}
\mu^{\omega}(S)=m(\{t \in[0, T]: \omega(t) \in S\}), \tag{16.58}
\end{equation*}
$$

m denoting Lebesgue measure on \mathbb{R}. The existence of a nonzero positive Borel measure on $\omega([0, T])$ satisfying (16.57) implies $\operatorname{Hdim} \omega([0, T]) \geq 2$, by Proposition 12.19, so Proposition 16.6 is proven.

So far we have considered Brownian paths starting at the origin in \mathbb{R}^{n}. Via a simple translation of coordinates, we have a similar construction for the set of Brownian paths ω starting at a general point $x \in \mathbb{R}^{n}$, yielding the positive functional $E_{x}: C(\mathfrak{P}) \rightarrow \mathbb{R}$, and Wiener measure W_{x}, such that

$$
\begin{equation*}
E_{x}(\varphi)=\int_{\mathfrak{P}} \varphi(\omega) d W_{x}(\omega) \tag{16.59}
\end{equation*}
$$

When $\varphi(\omega)$ is given by (16.11), $E_{x}(\varphi)$ has the form (16.12), with the function $p\left(t_{1}, x_{1}\right)$ replaced by $p\left(t_{1}, x_{1}-x\right)$. To put it another way, $E_{x}(\varphi)$ has the form (16.12) with $F\left(x_{1}, \ldots, x_{k}\right)$ replaced by $F\left(x_{1}+x, \ldots, x_{k}+x\right)$. One often uses such notation as $E_{x}(f(\omega(t)))$ instead of $\int_{\mathfrak{P}} f\left(X_{t}(\omega)\right) d W_{x}(\omega)$ or $E_{x}\left(f\left(X_{t}(\omega)\right)\right)$.

The following simple observation is useful.

Proposition 16.7. If $\varphi \in C(\mathfrak{P})$, then $E_{x}(\varphi)$ is continuous in x.
Proof. Continuity for $\varphi \in \mathcal{C}^{\#}$, the set of functions of the form (16.11), is clear from (16.12), and its extension to $x \neq 0$ discussed above. Since $\mathcal{C}^{\#}$ is dense in $C(\mathfrak{P})$, the result follows easily.

In Chapter 17 we discuss further results on Brownian motion, arising from the study of martingales. For other reading on the topic, we mention the books [Dur], $[\mathbf{M c K}]$, and $[\mathbf{S i}]$ and also Chapter 11 of $[\mathbf{T 1}]$.

The family of random variables X_{t} on the probability space (\mathfrak{P}, W) is a special case of a stochastic process, often called the Wiener process. More general stochastic processes include Lévy processes. They have a characterization similar to (16.12), with $p(t, x) d x$ replaced by probability measures ν_{t} discussed in Exercises 17-18 of Chapter 15. Theorem 16.1 extends to the construction of such Lévy processes. However, the paths are not a.e. continuous in the non-Gaussian case, but rather there are jumps. For material on Lévy processes, see [Sat] and references therein.

Exercises

1. With $X_{t}(\omega)=\omega(t)$ as in (16.14), show that for all $\xi \in \mathbb{R}^{n}$

$$
\begin{equation*}
E\left(e^{i \xi \cdot X_{t}}\right)=e^{-t|\xi|^{2}} \tag{16.60}
\end{equation*}
$$

Hence each component of X_{t} is a Gaussian random variable on $\left(\mathfrak{P}_{0}, W\right)$, of mean 0 and variance $2 t$, by (15.41).
2. More generally, if $0<t_{1}<\cdots<t_{k}$ and $\xi_{j} \in \mathbb{R}^{n}$, show that

$$
\begin{gather*}
E\left(e^{i \xi_{1} \cdot X_{t_{1}}+i \xi_{2} \cdot\left(X_{t_{2}}-X_{t_{1}}\right)+\cdots+i \xi_{k} \cdot\left(X_{t_{k}}-X_{t_{k-1}}\right)}\right) \tag{16.61}\\
=e^{-t_{1}\left|\xi_{1}\right|^{2}-\left(t_{2}-t_{1}\right)\left|\xi_{2}\right|^{2}-\cdots-\left(t_{k}-t_{k-1}\right)\left|\xi_{k}\right|^{2}} .
\end{gather*}
$$

Deduce that each component of $\zeta_{1} \cdot X_{t_{1}}+\cdots+\zeta_{k} \cdot X_{t_{k}}$ is a Gaussian random variable on $\left(\mathfrak{P}_{0}, W\right)$, for each $\zeta_{1}, \ldots, \zeta_{k} \in \mathbb{R}^{n}$.
3. Show that if $0<t_{1}<\cdots<t_{k}$, then $X_{t_{1}}, X_{t_{2}}-X_{t_{1}}, \ldots, X_{t_{k}}-X_{t_{k-1}}$ are independent (\mathbb{R}^{n}-valued) random variables on $\left(\mathfrak{P}_{0}, W\right)$.
Hint. Use (16.61) and Exercise 3 of Chapter 15. Alternatively (but less directly), use the orthogonality (16.22), the Gaussian behavior given in

Exercise 2, and the independence result of Exercise 4 in Chapter 15.
4. Compute $E\left(e^{\lambda\left|X_{t}\right|^{2}}\right)$. Show this is finite if and only if $\lambda<1 / 4 t$.
5. Show that

$$
E\left(\left[X_{t}-X_{s}\right]^{2 k}\right)=E\left(X_{|t-s|}^{2 k}\right)=\frac{(2 k)!}{k!}|t-s|^{k} .
$$

6. Show that $L^{p}\left(\mathfrak{P}_{0}, W\right)$ is separable, for $1 \leq p<\infty$.

Hint. \mathfrak{P} is a compact metric space.
7. Given $a>0$, define a transformation $D_{a}: \mathfrak{P}_{0} \rightarrow \mathfrak{P}_{0}$ by

$$
\left(D_{a} \omega\right)(t)=a \omega\left(t / a^{2}\right) .
$$

Show that D_{a} preserves the Wiener measure W. This transformation is called Brownian scaling.
8. Let

$$
\widetilde{\mathfrak{P}}_{0}=\left\{\omega \in \mathfrak{P}_{0}: \lim _{s \rightarrow \infty} s^{-1} \omega(s)=0\right\} .
$$

Show that $W\left(\widetilde{\mathfrak{P}}_{0}\right)=1$. Define a transformation $\rho: \widetilde{\mathfrak{P}}_{0} \rightarrow \mathfrak{P}_{0}$ by

$$
(\rho \omega)(t)=t \omega(1 / t),
$$

for $t>0$. Show that ρ preserves the Wiener measure W.
9. Given $a>0$, define a transformation $R_{a}: \mathfrak{P}_{0} \rightarrow \mathfrak{P}_{0}$ by

$$
\begin{array}{rlr}
\left(R_{a} \omega\right)(t)= & \omega(t) & \text { for } 0 \leq t \leq a, \\
& 2 \omega(a)-\omega(t) & \text { for } t \geq a .
\end{array}
$$

Show that R_{a} preserves the Wiener measure W.

