
Chapter 16

Wiener Measure and

Brownian Motion

Diffusion of particles is a product of their apparently random motion. The
density u(t, x) of diffusing particles satisfies the “diffusion equation”

(16.1)
∂u

∂t
= ∆u.

If the initial condition u(0, x) = f(x) for x ∈ Rn is given, Fourier analysis,
as described in (9.69)–(9.71), can be used to provide the solution

(16.2)

u(t, x) = (2π)−n/2

∫
f̂(ξ)e−t|ξ|2eix·ξ dξ

=

∫
p(t, x, y)f(y) dy,

where f̂(ξ) is the Fourier transform of f and

(16.3) p(t, x, y) = p(t, x− y) = (4πt)−n/2 e−|x−y|2/4t.

A suggestive notation for the solution operator provided by (16.2)–(16.3) is

(16.4) u(t, x) = et∆f(x).

One property this “exponential” of the operator ∆ has in common with
the exponential of real numbers is the identity et∆es∆ = e(t+s)∆, which by
(16.2)–(16.3) is equivalent to the identity

(16.5)

∫
p(t, x− y)p(s, y) dy = p(t+ s, x).
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222 16. Wiener Measure and Brownian Motion

This identity can be verified directly, by manipulation of Gaussian integrals,

as in (9.47)–(9.48), or via the identity e−t|ξ|2e−s|ξ|2 = e−(t+s)|ξ|2 , plus the sort
of Fourier analysis behind (16.2).

Some other simple but important properties that can be deduced from
(16.3) are

(16.6) p(t, x, y) ≥ 0

and

(16.7)

∫
p(t, x, y) dy = 1.

Consequently, for each x ∈ Rn, p(t, x, y) dy defines a probability distribu-
tion, which we can interpret as giving the probability that a particle starting
at the point x at time 0 will be in a given region in Rn at time t.

We proceed to construct a probability measure, known as “Wiener mea-
sure,” on the set of paths ω : [0,∞) → Rn, undergoing a random motion,
called Brownian motion, described as follows. Given t1 < t2 and given that
ω(t1) = x1, the probability density for the location of ω(t2) is

(16.8) p(t, x− x1) = (4πt)−n/2e−|x−x1|2/4t, t = t2 − t1.

The motion of a random path for t1 ≤ t ≤ t2 is supposed to be independent
of its past history. Thus, given 0 < t1 < t2 < · · · < tk and given Borel sets
Ej ⊂ Rn, the probability that a path, starting at x = 0 at t = 0, lies in Ej

at time tj for each j ∈ [1, k] is

(16.9)

∫

E1

· · ·
∫

Ek

p(tk − tk−1, xk − xk−1) · · · p(t1, x1) dxk · · · dx1.

It is not obvious that there is a countably additive measure characterized
by these properties, and Wiener’s result was a great achievement. The
construction we give here is a slight modification of one in Appendix A of
[Nel].

Anticipating that Wiener measure is supported on the set of continuous
paths, we will take a path to be characterized by its locations at all positive
rational t. Thus, we consider the set of “paths”

(16.10) P =
∏

t∈Q+

Ṙn.

Here, Ṙn is the one-point compactification of Rn, i.e., Ṙn = Rn∪{∞}. Thus
P is a compact metrizable space. We construct Wiener measure W as a
positive Borel measure on P.
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In order to construct this measure, we will construct a certain positive
linear functional E : C(P) → R, on the space C(P) of real-valued continuous
functions on P, satisfying E(1) = 1, and a condition motivated by (16.9),
which we give in (16.12). We first define E on the subspace C# consisting
of continuous functions that depend on only finitely many of the factors in
(16.10), i.e., functions on P of the form

(16.11) ϕ(ω) = F
(
ω(t1), . . . , ω(tk)

)
, t1 < · · · < tk,

where F is continuous on
∏k

1 Ṙn and tj ∈ Q+. Motivated by (16.9), we take
(16.12)

E(ϕ) =

∫
· · ·

∫
p(t1, x1)p(t2 − t1, x2 − x1) · · · p(tk − tk−1, xk − xk−1)

×F (x1, . . . , xk) dxk · · · dx1.

If ϕ(ω) in (16.11) actually depends only on ω(tν) for some proper subset {tν}
of {t1, . . . , tk}, there arises a formula for E(ϕ) with a different appearance
from (16.12). The fact that these two expressions are equal follows from the
identity (16.5). From this it follows that E : C# → R is well defined. It is
also a positive linear functional, satisfying E(1) = 1.

Now, by the Stone-Weierstrass Theorem, C# is dense in C(P). Since
E : C# → R is a positive linear functional and E(1) = 1, it follows that
E has a unique continuous extension to C(P), possessing these properties.
Theorem 13.5 associates to E the desired probability measure W . Therefore
we have

Theorem 16.1. There is a unique probability measure W on P such that
(16.12) is given by

(16.13) E(ϕ) =

∫

P

ϕ(ω) dW (ω),

for each ϕ(ω) of the form (16.11) with F continuous on
∏k

1 Ṙn.

This is the Wiener measure. We note that (16.12) then holds for any
bounded Borel function F , and also for any positive Borel function F , on∏k

1 Ṙn.

Remark. It is common to define Wiener measure slightly differently, taking
p(t, x) to be the integral kernel of et∆/2 rather than et∆. The path space
{b} so produced is related to the path space {ω} constructed here by ω(t) =
b(2t).
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Some basic examples of calculations of (16.13) include the following.
Define functions Xt on P, taking values in Rn, by

(16.14) Xt(ω) = ω(t).

Then

(16.15) E(|Xt|2) =

∫
p(t, x)|x|2 dx = 2nt,

and, if 0 < s < t,

(16.16)

E(|Xt −Xs|2) =

∫∫
p(s, x1)p(t− s, x2 − x1)|x2 − x1|2 dx1 dx2

=

∫
p(t− s, y)|y|2 dy

= 2n(t− s),

a result that works for all s, t ≥ 0, if (t− s) is replaced by |t− s|. Another
way to put (16.15)–(16.16) is

(16.17) ‖Xt‖L2(P) =
√

2nt, ‖Xt −Xs‖L2(P) =
√

2n |t− s|1/2.

Note that the latter result implies t 7→ Xt is uniformly continuous from Q+

to L2(P,W ) and hence has a unique continuous extension to R+ = [0,∞):

(16.18) X : R+ −→ L2(P,W ),

such that X(t) = Xt, given by (16.14) for t ∈ Q+, and then (16.15)–(16.16)
are valid for all real s, t ≥ 0. This is evidence in favor of the assertion made
above that W -almost every ω ∈ P extends continuously from t ∈ Q+ to
t ∈ R+, though it does not prove it. Before we tackle that proof, we make
some more observations.

Let us take t > s > 0 and calculate

(16.19)

(Xs, Xt)L2(P) = E(Xs ·Xt)

=

∫
p(s, x1)p(t− s, x2 − x1)x1 · x2 dx1 dx2

=

∫
p(s, x1)p(t− s, y)x1 · (y + x1) dx1 dy.

Now x1 · (y + x1) = x1 · y + |x1|2. The latter contribution is evaluated as
in (16.15), and the former contribution is the dot product A(s) · A(t − s),
where

(16.20) A(s) =

∫
p(s, x1)x1 dx1 = 0.
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So (16.19) is equal to 2ns if t > s > 0. Hence, by symmetry,

(16.21) (Xs, Xt)L2(P) = 2n min(s, t).

One can also obtain this by noting |Xt − Xs|2 = |Xt|2 + |Xs|2 − 2Xs · Xt

and comparing (16.15) and (16.16). Furthermore, comparing (16.21) and
(16.15), we see that

(16.22) t > s ≥ 0 =⇒ (Xt −Xs, Xs)L2(P) = 0.

This result is a special case of the following, whose content can be phrased
as the statement that if t > s ≥ 0, then Xt −Xs is independent of Xσ for
σ ≤ s, and also that Xt −Xs has the same statistical behavior as Xt−s. For
more on this independence, see the exercises at the end of this chapter and
Chapter 17.

Proposition 16.2. Assume 0 < s1 < · · · < sk < s < t (∈ Q+), and
consider functions on P of the form

(16.23) ϕ(ω) = F (ω(s1), . . . , ω(sk)), ψ(ω) = G(ω(t) − ω(s)).

Then

(16.24) E(ϕψ) = E(ϕ)E(ψ),

and

(16.25) E(ψ) = E(ψ̃), ψ̃(ω) = G(ω(t− s)).

Proof. By (16.12), we have

(16.26)

E(ψ) =

∫
p(s, y1)p(t− s, y2 − y2)G(y2 − y1) dy1 dy2

=

∫
p(s, y1)p(t− s, z)G(z) dy1 dz

=

∫
p(t− s, z)G(z) dz,

which establishes (16.25). Next, we have
(16.27)

E(ϕψ) =

∫
p(s1, x1)p(s2 − s1, x2 − x1) · · · p(sk − sk−1, xk − xk−1)

p(s− sk, y1 − xk)p(t− s, y2 − y1)F (x1, . . . , xk)

×G(y2 − y1) dx1 · · · dxk dy1 dy2.

If we change variables to x1, . . . , xk, y1, z = y2 − y1, then comparison with
(16.26) shows that E(ψ) factors out of (16.27). Then use of

∫
p(s− sk, y1 −

xk) dy1 = 1 shows that the other factor is equal to E(ϕ), so we have (16.24).

Here is the promised result on path continuity.
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Proposition 16.3. The set P0 of paths from Q+ to Rn that are uniformly
continuous on bounded subsets of Q+ (and that hence extend uniquely to
continuous paths from [0,∞) to Rn) is a Borel subset of P with Wiener
measure 1.

For a set S, let oscS(ω) denote sup
s,t∈S

|ω(s) − ω(t)|. Set

(16.28) E(a, b, ε) =
{
ω ∈ P : osc[a,b](ω) > 2ε

}
;

here [a, b] denotes {s ∈ Q+ : a ≤ s ≤ b}. The complement is

(16.29) Ec(a, b, ε) =
⋂

t,s∈[a,b]

{
ω ∈ P : |ω(s) − ω(t)| ≤ 2ε

}
,

which is closed in P. Below we will demonstrate the following estimate on
the Wiener measure of E(a, b, ε):

(16.30) W
(
E(a, b, ε)

)
≤ 2ρ

( ε
2
, |b− a|

)
,

where

(16.31)

ρ(ε, δ) = sup
t≤δ

∫

|x|>ε

p(t, x) dx

= sup
t≤δ

∫

|y|>ε/
√

t

p(1, y) dy,

with p(t, x) as in (16.3). Clearly the sup is assumed at t = δ, so

(16.32) ρ(ε, δ) =

∫

|y|>ε/
√

δ

p(1, y) dy = ψn

( ε√
δ

)
,

where

(16.33) ψn(r) = (4π)−n/2

∫

|y|>r

e−|y|2/4 dy ≤ αnr
ne−r2/4,

as r → ∞.

The relevance of the analysis of E(a, b, ε) is that, if we set
(16.34)

F (k, ε, δ) =
{
ω ∈ P : oscJ(ω) > 4ε, for some J ⊂ [0, k] ∩ Q+, `(J) ≤ δ

2

}
,
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where `(J) is the length of the interval J, then

(16.35) F (k, ε, δ) =
⋃{

E(a, b, 2ε) : [a, b] ⊂ [0, k], |b − a| ≤ δ

2

}

is an open set, and, via (16.30), we have

(16.36) W
(
F (k, ε, δ)

)
≤ 2k

ρ(ε, δ)

δ
.

Furthermore, with F c(k, ε, δ) = P \ F (k, ε, δ),

(16.37)

P0 =
{
ω : ∀ k <∞,∀ ε > 0,∃ δ > 0 such that ω ∈ F c(k, ε, δ)

}

=
⋂

k

⋂

ε=1/ν

⋃

δ=1/µ

F c(k, ε, δ)

is a Borel set (in fact, an Fσδ set, i.e., a countable intersection of Fσ sets),
and we can conclude that W (P0) = 1 from (16.36), given the observation
that, for any ε > 0,

(16.38)
ρ(ε, δ)

δ
−→ 0, as δ → 0,

which follows immediately from (16.32)–(16.33). Thus, to complete the
proof of Proposition 16.3, it remains to establish the estimate (16.30). The
next lemma goes most of the way towards that goal.

Lemma 16.4. Given ε, δ > 0, take ν numbers tj ∈ Q+, 0 ≤ t1 < · · · < tν ,
such that tν − t1 ≤ δ. Let

(16.39) A =
{
ω ∈ P : |ω(t1) − ω(tj)| > ε, for some j = 1, . . . , ν

}
.

Then

(16.40) W (A) ≤ 2ρ
(ε

2
, δ

)
.

Proof. Let

(16.41)

B = {ω : |ω(t1) − ω(tν)| > ε/2},
Cj = {ω : |ω(tj) − ω(tν)| > ε/2},
Dj = {ω : |ω(t1) − ω(tj)| > ε and

|ω(t1) − ω(tk)| ≤ ε, for all k ≤ j − 1}.

Then A ⊂ B ∪ ⋃ν
j=1

(
Cj ∩Dj

)
, so

(16.42) W (A) ≤W (B) +
ν∑

j=1

W
(
Cj ∩Dj

)
.
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Clearly W (B) ≤ ρ(ε/2, δ). Furthermore, we have

(16.43) W (Cj ∩Dj) = W (Cj)W (Dj) ≤ ρ
(ε

2
, δ

)
W (Dj),

the first identity by Proposition 16.2 (i.e., the independence of Cj and Dj)
and the subsequent inequality by the easy estimate W (Cj) ≤ ρ(ε/2, δ).
Hence

(16.44)
∑

j

W
(
Cj ∩Dj

)
≤ ρ

(ε
2
, δ

)
,

since the Dj are mutually disjoint. This proves (16.40). Note that this
estimate is independent of ν.

We now finish the demonstration of (16.30). Given such tj as in the
statement of Lemma 16.4, if we set

(16.45) E =
{
ω : |ω(tj) − ω(tk)| > 2ε, for some j, k ∈ [1, ν]

}
,

it follows that

(16.46) W (E) ≤ 2ρ
(ε

2
, δ

)
,

since E is a subset of A, given by (16.39). Now, E(a, b, ε), given by (16.28),
is a countable increasing union of sets of the form (16.45), obtained, e.g.,
by letting {t1, . . . , tν} consist of all t ∈ [a, b] that are rational with denom-
inator ≤ K and taking K ↗ +∞. Thus we have (16.30), and the proof of
Proposition 16.3 is complete.

We make the natural identification of paths ω ∈ P0 with continuous
paths ω : [0,∞) → Rn. Note that a function ϕ on P0 of the form (16.11),
with tj ∈ R+, not necessarily rational, is a pointwise limit on P0 of functions

in C#, as long as F is continuous on
∏k

1 Ṙn, and consequently such ϕ is
measurable. Furthermore, (16.12) continues to hold, by the Dominated
Convergence Theorem.

An alternative approach to the construction of W would be to replace

(16.10) by P̃ =
∏{

Ṙn : t ∈ R+
}
. With the product topology, this is compact

but not metrizable. The set of continuous paths is a Borel subset of P̃, but
not a Baire set, so some extra measure-theoretic considerations arise if one
takes this route, which was taken in [Nel].

Looking more closely at the estimate (16.36) of the measure of the set

F (k, ε, δ), defined by (16.34), we note that we can take ε = K
√
δ log(1/δ),

in which case

(16.47) ρ
(ε

2
, δ

)
= ψn

(K
2

√
log 1/δ

)
≤ Cn,K

(
log

1

δ

)n/2
δK2/16.

Then we obtain the following refinement of Proposition 16.3.
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Proposition 16.5. For almost all ω ∈ P0, we have, for each T <∞,

(16.48) lim sup
|s−t|=δ→0

(∣∣ω(s) − ω(t)
∣∣ − 8

√
δ log

1

δ

)
≤ 0, s, t ∈ [0, T ].

Consequently, given T <∞,

(16.49) |ω(s) − ω(t)| ≤ C(ω, T )

√
δ log

1

δ
, s, t ∈ [0, T ],

with C(ω, T ) <∞ for almost all ω ∈ P0.

In fact, (16.47) gives W (Sk) = 1 where Sk is the set of paths satisfying
(16.48), with 8 replaced by 8 + 1/k, since then (16.47) applies with K > 4,
so (16.38) holds. Then

⋂
k Sk is precisely the set of paths satisfying (16.48).

The estimate (16.48) is not quite sharp; P. Lévy showed that for almost

all ω ∈ P, with µ(δ) = 2
√
δ log 1/δ,

(16.50) lim sup
|s−t|→0

|ω(s) − ω(t)|
µ(|s− t|) = 1.

See [McK] for a proof.

Wiener proved that almost all Brownian paths are nowhere differen-
tiable. We refer to [McK] for a proof of this. The following result specifies
another respect in which Brownian paths are highly irregular.

Proposition 16.6. Assume n ≥ 2, and pick T ∈ (0,∞). Then, for almost
all ω ∈ P0,

(16.51) ω([0, T ]) = {ω(t) : 0 ≤ t ≤ T} ⊂ Rn has Hausdorff dimension 2.

Proof. The fact that Hdimω([0, T ]) ≤ 2 for W -a.e. ω follows from the
modulus of continuity estimate (16.48), which implies that for each δ > 0, ω
is Hölder continuous of order 1/(2+δ). This implies by Exercise 9 of Chapter
12 that Hr(ω([0, T ])) < ∞ for r = 2 + δ. (Of course this upper bound is
trivial in the case n = 2.)

We will obtain the estimate Hdimω([0, T ]) ≥ 2 for a.e. ω as an ap-
plication of Proposition 12.19. To get this, we start with the following
generalization of (16.16): for 0 < s < t,

(16.52)

E(ϕ(Xt −Xs)) =

∫∫
p(s, x1)p(t− s, x2 − x1)ϕ(x2 − x1) dx1 dx2

=

∫
p(t− s, y)ϕ(y) dy

=
(
4π(t− s)

)−n/2
∫
e−|y|2/4|t−s| ϕ(y) dy.
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We now assume ϕ is radial. We switch to spherical polar coordinates. We
also allow t < s and obtain

(16.53) E(ϕ(Xt −Xs)) =
An−1

(4π|t− s|)n/2

∫ ∞

0
e−r2/4|t−s| ϕ(r)rn−1 dr,

where An−1 = Area(Sn−1). We apply this to ϕ(r) = r−a to get

(16.54)
E(|Xt −Xs|−a) = Cn|t− s|−n/2

∫ ∞

0
e−r2/4|t−s| rn−1−a dr

= Cn,a|t− s|−a/2,

where Cn,a <∞ provided a < n. We deduce that

(16.55)

∫

P

∫ T

0

∫ T

0

ds dt

|ω(t) − ω(s)|a dW (ω)

= Cn,a

∫ T

0

∫ T

0

ds dt

|t− s|a/2
= C ′

n,a <∞, if a < 2.

Consequently, as long as a < 2 ≤ n,

(16.56)

∫ T

0

∫ T

0

ds dt

|ω(t) − ω(s)|a <∞, for W -a.e. ω.

We can rewrite this as

(16.57)

∫

ω([0,T ])

∫

ω([0,T ])

dµω(x) dµω(y)

|x− y|a <∞, for W -a.e. ω,

where µω is the measure on ω([0, T ]) given by

(16.58) µω(S) = m({t ∈ [0, T ] : ω(t) ∈ S}),
m denoting Lebesgue measure on R. The existence of a nonzero positive
Borel measure on ω([0, T ]) satisfying (16.57) implies Hdimω([0, T ]) ≥ 2, by
Proposition 12.19, so Proposition 16.6 is proven.

So far we have considered Brownian paths starting at the origin in Rn.
Via a simple translation of coordinates, we have a similar construction for
the set of Brownian paths ω starting at a general point x ∈ Rn, yielding the
positive functional Ex : C(P) → R, and Wiener measure Wx, such that

(16.59) Ex(ϕ) =

∫

P

ϕ(ω) dWx(ω).

When ϕ(ω) is given by (16.11), Ex(ϕ) has the form (16.12), with the function
p(t1, x1) replaced by p(t1, x1 − x). To put it another way, Ex(ϕ) has the
form (16.12) with F (x1, . . . , xk) replaced by F (x1 + x, . . . , xk + x). One
often uses such notation as Ex

(
f(ω(t))

)
instead of

∫
P
f
(
Xt(ω)

)
dWx(ω) or

Ex

(
f(Xt(ω))

)
.

The following simple observation is useful.
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Proposition 16.7. If ϕ ∈ C(P), then Ex(ϕ) is continuous in x.

Proof. Continuity for ϕ ∈ C#, the set of functions of the form (16.11), is
clear from (16.12), and its extension to x 6= 0 discussed above. Since C# is
dense in C(P), the result follows easily.

In Chapter 17 we discuss further results on Brownian motion, arising
from the study of martingales. For other reading on the topic, we mention
the books [Dur], [McK], and [Si] and also Chapter 11 of [T1].

The family of random variables Xt on the probability space (P,W ) is a
special case of a stochastic process, often called the Wiener process. More
general stochastic processes include Lévy processes. They have a character-
ization similar to (16.12), with p(t, x) dx replaced by probability measures
νt discussed in Exercises 17–18 of Chapter 15. Theorem 16.1 extends to the
construction of such Lévy processes. However, the paths are not a.e. con-
tinuous in the non-Gaussian case, but rather there are jumps. For material
on Lévy processes, see [Sat] and references therein.

Exercises

1. With Xt(ω) = ω(t) as in (16.14), show that for all ξ ∈ Rn

(16.60) E(eiξ·Xt) = e−t|ξ|2 .

Hence each component of Xt is a Gaussian random variable on (P0,W ),
of mean 0 and variance 2t, by (15.41).

2. More generally, if 0 < t1 < · · · < tk and ξj ∈ Rn, show that

(16.61)
E

(
eiξ1·Xt1

+iξ2·(Xt2
−Xt1

)+···+iξk ·(Xt
k
−Xt

k−1
))

= e−t1|ξ1|2−(t2−t1)|ξ2|2−···−(tk−tk−1)|ξk |2 .

Deduce that each component of ζ1 · Xt1 + · · · + ζk · Xtk is a Gaussian
random variable on (P0,W ), for each ζ1, . . . , ζk ∈ Rn.

3. Show that if 0 < t1 < · · · < tk, then Xt1 , Xt2 −Xt1 , . . . , Xtk −Xtk−1
are

independent (Rn-valued) random variables on (P0,W ).
Hint. Use (16.61) and Exercise 3 of Chapter 15. Alternatively (but less
directly), use the orthogonality (16.22), the Gaussian behavior given in
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Exercise 2, and the independence result of Exercise 4 in Chapter 15.

4. Compute E(eλ|Xt|2). Show this is finite if and only if λ < 1/4t.

5. Show that

E
(
[Xt −Xs]

2k
)

= E
(
X2k

|t−s|
)

=
(2k)!

k!
|t− s|k.

6. Show that Lp(P0,W ) is separable, for 1 ≤ p <∞.
Hint. P is a compact metric space.

7. Given a > 0, define a transformation Da : P0 → P0 by

(Daω)(t) = aω(t/a2).

Show that Da preserves the Wiener measure W. This transformation is
called Brownian scaling.

8. Let
P̃0 =

{
ω ∈ P0 : lim

s→∞
s−1ω(s) = 0

}
.

Show that W (P̃0) = 1. Define a transformation ρ : P̃0 → P0 by

(ρω)(t) = tω(1/t),

for t > 0. Show that ρ preserves the Wiener measure W.

9. Given a > 0, define a transformation Ra : P0 → P0 by

(Raω)(t) = ω(t) for 0 ≤ t ≤ a,

2ω(a) − ω(t) for t ≥ a.

Show that Ra preserves the Wiener measure W .


