Wiener Measure and Brownian Motion

Diffusion of particles is a product of their apparently random motion. The density u(t, x) of diffusing particles satisfies the "diffusion equation"

(16.1)
$$\frac{\partial u}{\partial t} = \Delta u.$$

If the initial condition u(0, x) = f(x) for $x \in \mathbb{R}^n$ is given, Fourier analysis, as described in (9.69)–(9.71), can be used to provide the solution

(16.2)
$$u(t,x) = (2\pi)^{-n/2} \int \hat{f}(\xi) e^{-t|\xi|^2} e^{ix \cdot \xi} d\xi$$
$$= \int p(t,x,y) f(y) \, dy,$$

where $\hat{f}(\xi)$ is the Fourier transform of f and

(16.3)
$$p(t,x,y) = p(t,x-y) = (4\pi t)^{-n/2} e^{-|x-y|^2/4t}.$$

A suggestive notation for the solution operator provided by (16.2)-(16.3) is

(16.4)
$$u(t,x) = e^{t\Delta} f(x).$$

One property this "exponential" of the operator Δ has in common with the exponential of real numbers is the identity $e^{t\Delta}e^{s\Delta} = e^{(t+s)\Delta}$, which by (16.2)–(16.3) is equivalent to the identity

(16.5)
$$\int p(t, x - y)p(s, y) \, dy = p(t + s, x).$$

This identity can be verified directly, by manipulation of Gaussian integrals, as in (9.47)–(9.48), or via the identity $e^{-t|\xi|^2}e^{-s|\xi|^2} = e^{-(t+s)|\xi|^2}$, plus the sort of Fourier analysis behind (16.2).

Some other simple but important properties that can be deduced from (16.3) are

$$(16.6) p(t,x,y) \ge 0$$

and

(16.7)
$$\int p(t,x,y) \, dy = 1.$$

Consequently, for each $x \in \mathbb{R}^n$, p(t, x, y) dy defines a probability distribution, which we can interpret as giving the probability that a particle starting at the point x at time 0 will be in a given region in \mathbb{R}^n at time t.

We proceed to construct a probability measure, known as "Wiener measure," on the set of paths $\omega : [0, \infty) \to \mathbb{R}^n$, undergoing a random motion, called Brownian motion, described as follows. Given $t_1 < t_2$ and given that $\omega(t_1) = x_1$, the probability density for the location of $\omega(t_2)$ is

(16.8)
$$p(t, x - x_1) = (4\pi t)^{-n/2} e^{-|x - x_1|^2/4t}, \quad t = t_2 - t_1.$$

The motion of a random path for $t_1 \leq t \leq t_2$ is supposed to be independent of its past history. Thus, given $0 < t_1 < t_2 < \cdots < t_k$ and given Borel sets $E_j \subset \mathbb{R}^n$, the probability that a path, starting at x = 0 at t = 0, lies in E_j at time t_j for each $j \in [1, k]$ is

(16.9)
$$\int_{E_1} \cdots \int_{E_k} p(t_k - t_{k-1}, x_k - x_{k-1}) \cdots p(t_1, x_1) \ dx_k \cdots dx_1$$

It is not obvious that there is a countably additive measure characterized by these properties, and Wiener's result was a great achievement. The construction we give here is a slight modification of one in Appendix A of [**Nel**].

Anticipating that Wiener measure is supported on the set of continuous paths, we will take a path to be characterized by its locations at all positive *rational t*. Thus, we consider the set of "paths"

(16.10)
$$\mathfrak{P} = \prod_{t \in \mathbb{Q}^+} \dot{\mathbb{R}}^n.$$

Here, \mathbb{R}^n is the one-point compactification of \mathbb{R}^n , i.e., $\mathbb{R}^n = \mathbb{R}^n \cup \{\infty\}$. Thus \mathfrak{P} is a compact metrizable space. We construct Wiener measure W as a positive Borel measure on \mathfrak{P} .

In order to construct this measure, we will construct a certain positive linear functional $E: C(\mathfrak{P}) \to \mathbb{R}$, on the space $C(\mathfrak{P})$ of real-valued continuous functions on \mathfrak{P} , satisfying E(1) = 1, and a condition motivated by (16.9), which we give in (16.12). We first define E on the subspace $\mathcal{C}^{\#}$ consisting of continuous functions that depend on only finitely many of the factors in (16.10), i.e., functions on \mathfrak{P} of the form

(16.11)
$$\varphi(\omega) = F(\omega(t_1), \dots, \omega(t_k)), \quad t_1 < \dots < t_k,$$

where F is continuous on $\prod_{1}^{k} \dot{\mathbb{R}}^{n}$ and $t_{j} \in \mathbb{Q}^{+}$. Motivated by (16.9), we take (16.12)

$$E(\varphi) = \int \cdots \int p(t_1, x_1) p(t_2 - t_1, x_2 - x_1) \cdots p(t_k - t_{k-1}, x_k - x_{k-1}) \times F(x_1, \dots, x_k) \, dx_k \cdots dx_1.$$

If $\varphi(\omega)$ in (16.11) actually depends only on $\omega(t_{\nu})$ for some proper subset $\{t_{\nu}\}$ of $\{t_1, \ldots, t_k\}$, there arises a formula for $E(\varphi)$ with a different appearance from (16.12). The fact that these two expressions are equal follows from the identity (16.5). From this it follows that $E: \mathcal{C}^{\#} \to \mathbb{R}$ is well defined. It is also a positive linear functional, satisfying E(1) = 1.

Now, by the Stone-Weierstrass Theorem, $\mathcal{C}^{\#}$ is dense in $C(\mathfrak{P})$. Since $E : \mathcal{C}^{\#} \to \mathbb{R}$ is a positive linear functional and E(1) = 1, it follows that E has a unique continuous extension to $C(\mathfrak{P})$, possessing these properties. Theorem 13.5 associates to E the desired probability measure W. Therefore we have

Theorem 16.1. There is a unique probability measure W on \mathfrak{P} such that (16.12) is given by

(16.13)
$$E(\varphi) = \int_{\mathfrak{P}} \varphi(\omega) \, dW(\omega),$$

for each $\varphi(\omega)$ of the form (16.11) with F continuous on $\prod_{i=1}^{k} \dot{\mathbb{R}}^{n}$.

This is the Wiener measure. We note that (16.12) then holds for any bounded Borel function F, and also for any positive Borel function F, on $\prod_{1}^{k} \dot{\mathbb{R}}^{n}$.

REMARK. It is common to define Wiener measure slightly differently, taking p(t, x) to be the integral kernel of $e^{t\Delta/2}$ rather than $e^{t\Delta}$. The path space $\{b\}$ so produced is related to the path space $\{\omega\}$ constructed here by $\omega(t) = b(2t)$.

Some basic examples of calculations of (16.13) include the following. Define functions X_t on \mathfrak{P} , taking values in \mathbb{R}^n , by

(16.14)
$$X_t(\omega) = \omega(t)$$

Then

(16.15)
$$E(|X_t|^2) = \int p(t,x)|x|^2 \, dx = 2nt,$$

and, if 0 < s < t,

(16.16)

$$E(|X_t - X_s|^2) = \iint p(s, x_1)p(t - s, x_2 - x_1)|x_2 - x_1|^2 dx_1 dx_2$$

$$= \int p(t - s, y)|y|^2 dy$$

$$= 2n(t - s),$$

a result that works for all $s, t \ge 0$, if (t - s) is replaced by |t - s|. Another way to put (16.15)–(16.16) is

(16.17)
$$||X_t||_{L^2(\mathfrak{P})} = \sqrt{2nt}, \quad ||X_t - X_s||_{L^2(\mathfrak{P})} = \sqrt{2n} |t - s|^{1/2}.$$

Note that the latter result implies $t \mapsto X_t$ is uniformly continuous from \mathbb{Q}^+ to $L^2(\mathfrak{P}, W)$ and hence has a unique continuous extension to $\mathbb{R}^+ = [0, \infty)$:

(16.18)
$$\mathfrak{X}: \mathbb{R}^+ \longrightarrow L^2(\mathfrak{P}, W),$$

such that $\mathfrak{X}(t) = X_t$, given by (16.14) for $t \in \mathbb{Q}^+$, and then (16.15)–(16.16) are valid for all real $s, t \geq 0$. This is evidence in favor of the assertion made above that *W*-almost every $\omega \in \mathfrak{P}$ extends continuously from $t \in \mathbb{Q}^+$ to $t \in \mathbb{R}^+$, though it does not prove it. Before we tackle that proof, we make some more observations.

Let us take t > s > 0 and calculate

(16.19)

$$(X_s, X_t)_{L^2(\mathfrak{P})} = E(X_s \cdot X_t)$$

$$= \int p(s, x_1) p(t - s, x_2 - x_1) x_1 \cdot x_2 \, dx_1 \, dx_2$$

$$= \int p(s, x_1) p(t - s, y) \, x_1 \cdot (y + x_1) \, dx_1 \, dy.$$

Now $x_1 \cdot (y + x_1) = x_1 \cdot y + |x_1|^2$. The latter contribution is evaluated as in (16.15), and the former contribution is the dot product $A(s) \cdot A(t - s)$, where

(16.20)
$$A(s) = \int p(s, x_1) x_1 \, dx_1 = 0.$$

So (16.19) is equal to 2ns if t > s > 0. Hence, by symmetry,

(16.21)
$$(X_s, X_t)_{L^2(\mathfrak{P})} = 2n \min(s, t).$$

One can also obtain this by noting $|X_t - X_s|^2 = |X_t|^2 + |X_s|^2 - 2X_s \cdot X_t$ and comparing (16.15) and (16.16). Furthermore, comparing (16.21) and (16.15), we see that

(16.22)
$$t > s \ge 0 \Longrightarrow (X_t - X_s, X_s)_{L^2(\mathfrak{P})} = 0$$

This result is a special case of the following, whose content can be phrased as the statement that if $t > s \ge 0$, then $X_t - X_s$ is independent of X_{σ} for $\sigma \le s$, and also that $X_t - X_s$ has the same statistical behavior as X_{t-s} . For more on this independence, see the exercises at the end of this chapter and Chapter 17.

Proposition 16.2. Assume $0 < s_1 < \cdots < s_k < s < t \ (\in \mathbb{Q}^+)$, and consider functions on \mathfrak{P} of the form

(16.23)
$$\varphi(\omega) = F(\omega(s_1), \dots, \omega(s_k)), \quad \psi(\omega) = G(\omega(t) - \omega(s)).$$

Then

(16.24)
$$E(\varphi\psi) = E(\varphi)E(\psi),$$

and

(16.25)
$$E(\psi) = E(\tilde{\psi}), \quad \tilde{\psi}(\omega) = G(\omega(t-s)).$$

Proof. By (16.12), we have

(16.26)

$$E(\psi) = \int p(s, y_1) p(t - s, y_2 - y_2) G(y_2 - y_1) \, dy_1 \, dy_2$$

$$= \int p(s, y_1) p(t - s, z) G(z) \, dy_1 \, dz$$

$$= \int p(t - s, z) G(z) \, dz,$$

which establishes (16.25). Next, we have (16.27)

$$E(\varphi\psi) = \int p(s_1, x_1) p(s_2 - s_1, x_2 - x_1) \cdots p(s_k - s_{k-1}, x_k - x_{k-1})$$
$$p(s - s_k, y_1 - x_k) p(t - s, y_2 - y_1) F(x_1, \dots, x_k)$$
$$\times G(y_2 - y_1) dx_1 \cdots dx_k dy_1 dy_2.$$

If we change variables to $x_1, \ldots, x_k, y_1, z = y_2 - y_1$, then comparison with (16.26) shows that $E(\psi)$ factors out of (16.27). Then use of $\int p(s - s_k, y_1 - x_k) dy_1 = 1$ shows that the other factor is equal to $E(\varphi)$, so we have (16.24).

Here is the promised result on path continuity.

Proposition 16.3. The set \mathfrak{P}_0 of paths from \mathbb{Q}^+ to \mathbb{R}^n that are uniformly continuous on bounded subsets of \mathbb{Q}^+ (and that hence extend uniquely to continuous paths from $[0,\infty)$ to \mathbb{R}^n) is a Borel subset of \mathfrak{P} with Wiener measure 1.

For a set S, let $\operatorname{osc}_{S}(\omega)$ denote $\sup_{s,t\in S} |\omega(s) - \omega(t)|$. Set

(16.28)
$$E(a,b,\varepsilon) = \left\{ \omega \in \mathfrak{P} : \operatorname{osc}_{[a,b]}(\omega) > 2\varepsilon \right\};$$

here [a, b] denotes $\{s \in \mathbb{Q}^+ : a \leq s \leq b\}$. The complement is

(16.29)
$$E^{c}(a,b,\varepsilon) = \bigcap_{t,s\in[a,b]} \left\{ \omega \in \mathfrak{P} : |\omega(s) - \omega(t)| \le 2\varepsilon \right\},$$

which is closed in \mathfrak{P} . Below we will demonstrate the following estimate on the Wiener measure of $E(a, b, \varepsilon)$:

(16.30)
$$W(E(a,b,\varepsilon)) \le 2\rho\left(\frac{\varepsilon}{2}, |b-a|\right),$$

where

(16.31)

$$\rho(\varepsilon, \delta) = \sup_{t \le \delta} \int_{|x| > \varepsilon} p(t, x) \, dx$$

$$= \sup_{t \le \delta} \int_{|y| > \varepsilon/\sqrt{t}} p(1, y) \, dy,$$

with p(t, x) as in (16.3). Clearly the sup is assumed at $t = \delta$, so

(16.32)
$$\rho(\varepsilon,\delta) = \int_{|y| > \varepsilon/\sqrt{\delta}} p(1,y) \, dy = \psi_n\left(\frac{\varepsilon}{\sqrt{\delta}}\right),$$

where

(16.33)
$$\psi_n(r) = (4\pi)^{-n/2} \int_{|y|>r} e^{-|y|^2/4} dy \le \alpha_n r^n e^{-r^2/4},$$

as $r \to \infty$.

The relevance of the analysis of $E(a, b, \varepsilon)$ is that, if we set (16.34)

$$F(k,\varepsilon,\delta) = \left\{ \omega \in \mathfrak{P} : \operatorname{osc}_J(\omega) > 4\varepsilon, \text{ for some } J \subset [0,k] \cap \mathbb{Q}^+, \ell(J) \le \frac{\delta}{2} \right\},\$$

where $\ell(J)$ is the length of the interval J, then

(16.35)
$$F(k,\varepsilon,\delta) = \bigcup \left\{ E(a,b,2\varepsilon) : [a,b] \subset [0,k], |b-a| \le \frac{\delta}{2} \right\}$$

is an open set, and, via (16.30), we have

(16.36)
$$W(F(k,\varepsilon,\delta)) \le 2k \frac{\rho(\varepsilon,\delta)}{\delta}.$$

Furthermore, with $F^c(k,\varepsilon,\delta) = \mathfrak{P} \setminus F(k,\varepsilon,\delta)$,

(16.37)
$$\mathfrak{P}_{0} = \left\{ \omega : \forall k < \infty, \forall \varepsilon > 0, \exists \delta > 0 \text{ such that } \omega \in F^{c}(k, \varepsilon, \delta) \right\}$$
$$= \bigcap_{k} \bigcap_{\varepsilon = 1/\nu} \bigcup_{\delta = 1/\mu} F^{c}(k, \varepsilon, \delta)$$

is a Borel set (in fact, an $\mathcal{F}_{\sigma\delta}$ set, i.e., a countable intersection of \mathcal{F}_{σ} sets), and we can conclude that $W(\mathfrak{P}_0) = 1$ from (16.36), given the observation that, for any $\varepsilon > 0$,

(16.38)
$$\frac{\rho(\varepsilon,\delta)}{\delta} \longrightarrow 0, \text{ as } \delta \to 0,$$

which follows immediately from (16.32)-(16.33). Thus, to complete the proof of Proposition 16.3, it remains to establish the estimate (16.30). The next lemma goes most of the way towards that goal.

Lemma 16.4. Given $\varepsilon, \delta > 0$, take ν numbers $t_j \in \mathbb{Q}^+$, $0 \le t_1 < \cdots < t_{\nu}$, such that $t_{\nu} - t_1 \le \delta$. Let

(16.39)
$$A = \{ \omega \in \mathfrak{P} : |\omega(t_1) - \omega(t_j)| > \varepsilon, \text{ for some } j = 1, \dots, \nu \}.$$

Then

(16.40)
$$W(A) \le 2\rho\left(\frac{\varepsilon}{2}, \delta\right).$$

Proof. Let

(16.41)
$$B = \{ \omega : |\omega(t_1) - \omega(t_{\nu})| > \varepsilon/2 \},$$
$$C_j = \{ \omega : |\omega(t_j) - \omega(t_{\nu})| > \varepsilon/2 \},$$
$$D_j = \{ \omega : |\omega(t_1) - \omega(t_j)| > \varepsilon \text{ and}$$
$$|\omega(t_1) - \omega(t_k)| \le \varepsilon, \text{ for all } k \le j - 1 \}.$$

Then $A \subset B \cup \bigcup_{j=1}^{\nu} (C_j \cap D_j)$, so

(16.42)
$$W(A) \le W(B) + \sum_{j=1}^{\nu} W(C_j \cap D_j).$$

Clearly $W(B) \leq \rho(\varepsilon/2, \delta)$. Furthermore, we have

(16.43)
$$W(C_j \cap D_j) = W(C_j)W(D_j) \le \rho\left(\frac{\varepsilon}{2}, \delta\right)W(D_j),$$

the first identity by Proposition 16.2 (i.e., the independence of C_j and D_j) and the subsequent inequality by the easy estimate $W(C_j) \leq \rho(\varepsilon/2, \delta)$. Hence

(16.44)
$$\sum_{j} W(C_{j} \cap D_{j}) \leq \rho\left(\frac{\varepsilon}{2}, \delta\right),$$

since the D_j are mutually disjoint. This proves (16.40). Note that this estimate is independent of ν .

We now finish the demonstration of (16.30). Given such t_j as in the statement of Lemma 16.4, if we set

(16.45)
$$E = \left\{ \omega : |\omega(t_j) - \omega(t_k)| > 2\varepsilon, \text{ for some } j, k \in [1, \nu] \right\},\$$

it follows that

(16.46)
$$W(E) \le 2\rho\left(\frac{\varepsilon}{2}, \delta\right),$$

since E is a subset of A, given by (16.39). Now, $E(a, b, \varepsilon)$, given by (16.28), is a countable increasing union of sets of the form (16.45), obtained, e.g., by letting $\{t_1, \ldots, t_{\nu}\}$ consist of all $t \in [a, b]$ that are rational with denominator $\leq K$ and taking $K \nearrow +\infty$. Thus we have (16.30), and the proof of Proposition 16.3 is complete.

We make the natural identification of paths $\omega \in \mathfrak{P}_0$ with continuous paths $\omega : [0, \infty) \to \mathbb{R}^n$. Note that a function φ on \mathfrak{P}_0 of the form (16.11), with $t_j \in \mathbb{R}^+$, not necessarily rational, is a pointwise limit on \mathfrak{P}_0 of functions in $\mathcal{C}^{\#}$, as long as F is continuous on $\prod_{1}^k \mathbb{R}^n$, and consequently such φ is measurable. Furthermore, (16.12) continues to hold, by the Dominated Convergence Theorem.

An alternative approach to the construction of W would be to replace (16.10) by $\widetilde{\mathfrak{P}} = \prod \{ \dot{\mathbb{R}}^n : t \in \mathbb{R}^+ \}$. With the product topology, this is compact but not metrizable. The set of continuous paths is a Borel subset of $\widetilde{\mathfrak{P}}$, but not a Baire set, so some extra measure-theoretic considerations arise if one takes this route, which was taken in [Nel].

Looking more closely at the estimate (16.36) of the measure of the set $F(k, \varepsilon, \delta)$, defined by (16.34), we note that we can take $\varepsilon = K\sqrt{\delta \log(1/\delta)}$, in which case

(16.47)
$$\rho\left(\frac{\varepsilon}{2},\delta\right) = \psi_n\left(\frac{K}{2}\sqrt{\log 1/\delta}\right) \le C_{n,K}\left(\log\frac{1}{\delta}\right)^{n/2}\delta^{K^2/16}.$$

Then we obtain the following refinement of Proposition 16.3.

Proposition 16.5. For almost all $\omega \in \mathfrak{P}_0$, we have, for each $T < \infty$,

(16.48)
$$\lim_{|s-t|=\delta\to 0} \left(\left| \omega(s) - \omega(t) \right| - 8\sqrt{\delta \log \frac{1}{\delta}} \right) \le 0, \quad s, t \in [0, T]$$

Consequently, given $T < \infty$,

(16.49)
$$|\omega(s) - \omega(t)| \le C(\omega, T) \sqrt{\delta \log \frac{1}{\delta}}, \quad s, t \in [0, T],$$

with $C(\omega, T) < \infty$ for almost all $\omega \in \mathfrak{P}_0$.

In fact, (16.47) gives $W(S_k) = 1$ where S_k is the set of paths satisfying (16.48), with 8 replaced by 8 + 1/k, since then (16.47) applies with K > 4, so (16.38) holds. Then $\bigcap_k S_k$ is precisely the set of paths satisfying (16.48).

The estimate (16.48) is not quite sharp; P. Lévy showed that for almost all $\omega \in \mathfrak{P}$, with $\mu(\delta) = 2\sqrt{\delta \log 1/\delta}$,

(16.50)
$$\limsup_{|s-t|\to 0} \frac{|\omega(s) - \omega(t)|}{\mu(|s-t|)} = 1.$$

See [McK] for a proof.

Wiener proved that almost all Brownian paths are nowhere differentiable. We refer to [McK] for a proof of this. The following result specifies another respect in which Brownian paths are highly irregular.

Proposition 16.6. Assume $n \ge 2$, and pick $T \in (0, \infty)$. Then, for almost all $\omega \in \mathfrak{P}_0$,

(16.51) $\omega([0,T]) = \{\omega(t) : 0 \le t \le T\} \subset \mathbb{R}^n$ has Hausdorff dimension 2.

Proof. The fact that $\operatorname{Hdim} \omega([0,T]) \leq 2$ for *W*-a.e. ω follows from the modulus of continuity estimate (16.48), which implies that for each $\delta > 0, \omega$ is Hölder continuous of order $1/(2+\delta)$. This implies by Exercise 9 of Chapter 12 that $\mathcal{H}^r(\omega([0,T])) < \infty$ for $r = 2 + \delta$. (Of course this upper bound is trivial in the case n = 2.)

We will obtain the estimate $\operatorname{Hdim} \omega([0,T]) \geq 2$ for a.e. ω as an application of Proposition 12.19. To get this, we start with the following generalization of (16.16): for 0 < s < t,

(16.52)

$$E(\varphi(X_t - X_s)) = \iint p(s, x_1) p(t - s, x_2 - x_1) \varphi(x_2 - x_1) \, dx_1 \, dx_2$$

$$= \int p(t - s, y) \varphi(y) \, dy$$

$$= \left(4\pi (t - s)\right)^{-n/2} \int e^{-|y|^2/4|t - s|} \varphi(y) \, dy.$$

We now assume φ is radial. We switch to spherical polar coordinates. We also allow t < s and obtain

(16.53)
$$E(\varphi(X_t - X_s)) = \frac{A_{n-1}}{(4\pi|t-s|)^{n/2}} \int_0^\infty e^{-r^2/4|t-s|} \varphi(r) r^{n-1} dr,$$

where $A_{n-1} = \text{Area}(S^{n-1})$. We apply this to $\varphi(r) = r^{-a}$ to get

(16.54)
$$E(|X_t - X_s|^{-a}) = C_n |t - s|^{-n/2} \int_0^\infty e^{-r^2/4|t - s|} r^{n-1-a} dr$$
$$= C_{n,a} |t - s|^{-a/2},$$

where $C_{n,a} < \infty$ provided a < n. We deduce that

(16.55)
$$\int_{\mathfrak{P}}^{T} \int_{0}^{T} \frac{ds \, dt}{|\omega(t) - \omega(s)|^{a}} \, dW(\omega)$$
$$= C_{n,a} \int_{0}^{T} \int_{0}^{T} \frac{ds \, dt}{|t - s|^{a/2}} = C'_{n,a} < \infty, \quad \text{if } a < 2.$$

Consequently, as long as $a < 2 \le n$,

(16.56)
$$\int_0^T \int_0^T \frac{ds \, dt}{|\omega(t) - \omega(s)|^a} < \infty, \quad \text{for } W\text{-a.e. } \omega.$$

We can rewrite this as

(16.57)
$$\int_{\omega([0,T])} \int_{\omega([0,T])} \frac{d\mu^{\omega}(x) d\mu^{\omega}(y)}{|x-y|^a} < \infty, \quad \text{for } W\text{-a.e. } \omega,$$

where μ^{ω} is the measure on $\omega([0,T])$ given by

(16.58)
$$\mu^{\omega}(S) = m(\{t \in [0,T] : \omega(t) \in S\}),$$

m denoting Lebesgue measure on \mathbb{R} . The existence of a nonzero positive Borel measure on $\omega([0,T])$ satisfying (16.57) implies $\operatorname{Hdim} \omega([0,T]) \geq 2$, by Proposition 12.19, so Proposition 16.6 is proven.

So far we have considered Brownian paths starting at the origin in \mathbb{R}^n . Via a simple translation of coordinates, we have a similar construction for the set of Brownian paths ω starting at a general point $x \in \mathbb{R}^n$, yielding the positive functional $E_x : C(\mathfrak{P}) \to \mathbb{R}$, and Wiener measure W_x , such that

(16.59)
$$E_x(\varphi) = \int_{\mathfrak{P}} \varphi(\omega) \, dW_x(\omega).$$

When $\varphi(\omega)$ is given by (16.11), $E_x(\varphi)$ has the form (16.12), with the function $p(t_1, x_1)$ replaced by $p(t_1, x_1 - x)$. To put it another way, $E_x(\varphi)$ has the form (16.12) with $F(x_1, \ldots, x_k)$ replaced by $F(x_1 + x, \ldots, x_k + x)$. One often uses such notation as $E_x(f(\omega(t)))$ instead of $\int_{\mathfrak{P}} f(X_t(\omega)) dW_x(\omega)$ or $E_x(f(X_t(\omega)))$.

The following simple observation is useful.

Proposition 16.7. If $\varphi \in C(\mathfrak{P})$, then $E_x(\varphi)$ is continuous in x.

Proof. Continuity for $\varphi \in \mathcal{C}^{\#}$, the set of functions of the form (16.11), is clear from (16.12), and its extension to $x \neq 0$ discussed above. Since $\mathcal{C}^{\#}$ is dense in $C(\mathfrak{P})$, the result follows easily.

In Chapter 17 we discuss further results on Brownian motion, arising from the study of martingales. For other reading on the topic, we mention the books [**Dur**], [**McK**], and [**Si**] and also Chapter 11 of [**T1**].

The family of random variables X_t on the probability space (\mathfrak{P}, W) is a special case of a *stochastic process*, often called the Wiener process. More general stochastic processes include Lévy processes. They have a characterization similar to (16.12), with p(t, x) dx replaced by probability measures ν_t discussed in Exercises 17–18 of Chapter 15. Theorem 16.1 extends to the construction of such Lévy processes. However, the paths are not a.e. continuous in the non-Gaussian case, but rather there are jumps. For material on Lévy processes, see [**Sat**] and references therein.

Exercises

1. With $X_t(\omega) = \omega(t)$ as in (16.14), show that for all $\xi \in \mathbb{R}^n$

(16.60)
$$E(e^{i\xi \cdot X_t}) = e^{-t|\xi|^2}$$

Hence each component of X_t is a Gaussian random variable on (\mathfrak{P}_0, W) , of mean 0 and variance 2t, by (15.41).

2. More generally, if $0 < t_1 < \cdots < t_k$ and $\xi_j \in \mathbb{R}^n$, show that

(16.61)
$$E\left(e^{i\xi_1 \cdot X_{t_1} + i\xi_2 \cdot (X_{t_2} - X_{t_1}) + \dots + i\xi_k \cdot (X_{t_k} - X_{t_{k-1}})}\right) = e^{-t_1|\xi_1|^2 - (t_2 - t_1)|\xi_2|^2 - \dots - (t_k - t_{k-1})|\xi_k|^2}.$$

Deduce that each component of $\zeta_1 \cdot X_{t_1} + \cdots + \zeta_k \cdot X_{t_k}$ is a Gaussian random variable on (\mathfrak{P}_0, W) , for each $\zeta_1, \ldots, \zeta_k \in \mathbb{R}^n$.

3. Show that if $0 < t_1 < \cdots < t_k$, then $X_{t_1}, X_{t_2} - X_{t_1}, \ldots, X_{t_k} - X_{t_{k-1}}$ are independent (\mathbb{R}^n -valued) random variables on (\mathfrak{P}_0, W). *Hint.* Use (16.61) and Exercise 3 of Chapter 15. Alternatively (but less directly), use the orthogonality (16.22), the Gaussian behavior given in Exercise 2, and the independence result of Exercise 4 in Chapter 15.

- 4. Compute $E(e^{\lambda |X_t|^2})$. Show this is finite if and only if $\lambda < 1/4t$.
- 5. Show that

$$E([X_t - X_s]^{2k}) = E(X_{|t-s|}^{2k}) = \frac{(2k)!}{k!} |t-s|^k.$$

- 6. Show that $L^p(\mathfrak{P}_0, W)$ is separable, for $1 \leq p < \infty$. Hint. \mathfrak{P} is a compact metric space.
- 7. Given a > 0, define a transformation $D_a : \mathfrak{P}_0 \to \mathfrak{P}_0$ by

$$(D_a\omega)(t) = a\omega(t/a^2).$$

Show that D_a preserves the Wiener measure W. This transformation is called Brownian scaling.

8. Let

$$\widetilde{\mathfrak{P}}_0 = \big\{\omega \in \mathfrak{P}_0 : \lim_{s \to \infty} s^{-1}\omega(s) = 0\big\}.$$

Show that $W(\widetilde{\mathfrak{P}}_0) = 1$. Define a transformation $\rho : \widetilde{\mathfrak{P}}_0 \to \mathfrak{P}_0$ by

$$(\rho\omega)(t) = t\omega(1/t),$$

for t > 0. Show that ρ preserves the Wiener measure W.

9. Given a > 0, define a transformation $R_a : \mathfrak{P}_0 \to \mathfrak{P}_0$ by

$$(R_a\omega)(t) = \omega(t) \qquad \text{for } 0 \le t \le a$$
$$2\omega(a) - \omega(t) \quad \text{for } t \ge a.$$

Show that R_a preserves the Wiener measure W.