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Abstract

We develop properties of Cauchy integrals associated to a general class of first-order
elliptic systems of differential operators D on a bounded, uniformly rectifiable (UR)
domain () in a Riemannian manifold M. We show that associated to such Cauchy
integrals are analogues of Hardy spaces of functions on 2 annihilated by D, and we
produce projections, of Calderén type, onto subspaces of LP(952) consisting of boundary
values of elements of such Hardy spaces. We consider Toeplitz operators associated to
such projections and study their index properties. Of particular interest is a “cobordism
argument,” which often enables one to identify the index of a Toeplitz operator on a
rough UR domain with that of one on a smoothly bounded domain.
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1 Introduction

Let M be a compact, connected, n-dimensional Riemannian manifold, and D a first-order
elliptic differential operator on M, acting between sections of Hermitian vector bundles
Fj — M, j =0,1, each of rank x. We assume that there is a coordinate system on M for
which the metric tensor is of class C? and, on such a local coordinate chart U, and with
respect to trivializations of Fj,

Du(z) = Aj(x)0ju(z) + B(z)u(z) (1.0.1)
(using the summation convention), with
A; € C*(U,EndC"), B e CY(U,EndC"). (1.0.2)

Here End C* is the space of k X k complex matrices. To say that D is elliptic is to say
that the symbol iA4;(z)&; is invertible for each nonzero £ € R™. With H*P? denoting the
LP-Sobolev space of regularity s, we have

D : H™YP (M, Fo) — HSP(M, Fy), s€[-2,1], pe (1,00). (1.0.3)

Let Q C M be an open subset. We will assume €2 is a uniformly rectifiable (UR) domain,
a class we characterize as follows. First, we assume () has finite perimeter, which implies

Vxa = —vo, (1.0.4)

where yq is the characteristic function of €2, v is the outward pointing unit normal to 952,
and o is “surface area” on 052, carried by the measure-theoretic boundary 0,02 C 9€2. We
assume

H L0\ 0,9Q) = 0, (1.0.5)

to avoid pathologies. Then o = H""!|9. (Here, H" ! is (n — 1)-dimensional Hausdorff
measure.) Next, we assume 0f2 is Ahlfors regular, i.e., there exist Cy, C; € (0, 00) such that
if xg € 092, r € (0,diam ),

Cor™™' < H" 190N B, (w)) < Cyr" L. (1.0.6)

Under these conditions, we say {2 is an Ahlfors regular domain. We say (2 is a UR domain
if, in addition, 0f2 is uniformly rectifiable, in the sense of G. David and S. Semmes. This
means 0f) has, at all length scales < diam €2, and in a uniformly controlled fashion, “large
pieces” of Lipschitz surfaces. See §2.3 for a detailed definition. For such UR domains,
fundamental work of David [9] yields bounds on LP(0f2) for singular integral operators of
the form

Bf(z) = PV/E(CL’ —y)f(y)do(y), x € IR, (1.0.7)
o0



in case Q C R", provided E(z) is smooth on R™ \ 0, odd in z, and homogeneous of degree
—(n —1) in z. Such estimates are established for certain variable coefficient versions

Bf(x) = PV/E(x,y)f(y) do(y), x€ 09, (1.0.8)
o0

and in the manifold context, 0 C M, in [11]. (We will say more about these operators later
in this paper.) For n = 2, R? ~ C, and E(z) = 1/z, (1.0.7) is a standard version of a
Cauchy integral.

We desire to study Cauchy integrals associated to the elliptic operator D mentioned
above. If we replace M by R™ and take D to have constant coefficients,

Du(z) = A;0;u(z), A; € End(C"), (1.0.9)

then we can take E € C*°(R™\ 0) to be the fundamental solution to D, which is odd and
homogeneous of degree —(n — 1), and produces an operator of the form (1.0.7). If we work
in the manifold setting and D is invertible in (1.0.3), we can take E(x,y) to be the integral
kernel of D=1 and use (1.0.8). However, in many natural cases of great interest, D has
nonzero index, and a different route is called for. We are motivated to consider

iM, D*
D= ( D Z_Ma>, (1.0.10)

acting on H*TYP(M, £), where £ = Fy @ Fi. Here D* is the formal adjoint of D, defined via
the Riemannian metric on M and C? Hermitian metrics on Fj, and Myu(z) = a(x)u(z).
Our hypotheses on the metric tensor (gj;) and D, and on these Hermitian metrics, imply

D*v(w) = —4;(2) Dy0(@) + Bla)o(w). Lo
B(x) = —g(@)" /%0, (9(x) /2 A;()") + B(a)",

SO
* 2 K n 1 K
A5 € C2(U,EndC"), B e CH(U,EndCF). (1.0.12)

(Here, the “adjoints” A;, etc., are computed using the Hermitian metrics on Fy and Fj.)
We also assume

acCYM), a>0, (1.0.13)
and, if D in (1.0.3) is not invertible,
O={xeM:alx)>0}#0, OcCM\Q. (1.0.14)
(If D is invertible in (1.0.3), we can just take a = 0.) Then
D:HP(M E) — HP(M,E), sc[-2,1], pe(1,00). (1.0.15)

As shown in Appendix A.1, under these hypotheses, D in (1.0.15) is Fredholm, of index 0,
and
KerD = {u € Ngecoc H*4(M, &) : u|,, =0, Dug =0, D*uy =0}, (1.0.16)

where u = (ug,u1)?, u; € H*Y(M,F;). Thus D in (1.0.15) is invertible whenever the right
side of (1.0.16) can be shown to be 0. Such a condition holds in particuler if

D and D* have the unique continuation property (UCP). (1.0.17)



See Appendix A.1 for the definition of the property UCP. This property holds if M has a
real analytic metric tensor, F; have real analytic Hermitian metrics, and the coefficients of
D (and hence of D*) are real analytic, by the Holmgren uniqueness theorem. Some classes
of operators with limited regularity (1.0.2) and (1.0.12) that satisfy (1.0.17) are discussed
in Appendix A.1. They include operators of Dirac type, and of “generalized Dirac type.”
From here on, we assume UCP.

Given that D in (1.0.15) is invertible, we denote the integral kernel of D=1 by E(x,y):

Dlu(z) = / Bz, y)uly) dV (y), (1.0.18)
M

and use this function E(z,y) in (1.0.8). Results on E(z,y) given in Appendix A.1, together
with the variable coefficient extension of David’s estimates given in [11], yield LP(92) bound-
edness of such an operator B, for each p € (1,00). See §2.3 for more details on this. Going
further, we examine

Bf(x) = /E($,y)f(y) do(y), =€ M)\ 0Q, (1.0.19)
o0

establish nontangential maximal function estimates, and show that, for f € LP(0Q,¢E),
p € (1,00), nontangential boundary values exist:

lim  Bf(2) = ~op(z,v(2)f() + Bf(z), for o-ac. xc o, (1.0.20)

z—x,z€l, 21

where og(x,v) = op(z,v)"! (op standing for the principal symbol of D), and I', C Q is a
region of nontangential approach to z € 9. Thus, we are motivated to consider

Cpf(x) =i / E(x,y)op(y () f(y) doly). =€, (1.0.21)
o0

and the principal value integral

Cpf(z) =PV i/E(ﬂfvy)ffD(y,V(y))f(y) do(y), =€ 09, (1.0.22)
oN
for which )
hmgr. Cpf(x) = §f(x) +Cpf(x), o-ae. x€ . (1.0.23)

These results bear on the study of the following family of Hardy spaces:

HP(,D) ={ue C(Q,E): Du=0, Nue LP(99), and u has a

, (1.0.24)
nontangential trace u, € LP(09Q, E)}.

(Here, Nu denotes the nontangential maximal function associated with u.) In particular,
for p € (1,00),
B,Cp : LP(0R,E) — HP(Q, D). (1.0.25)

One of the main results of §2 is the following Cauchy-Pompieu reproducing formula:

u € HP(Q,D) = u = Cp(up). (1.0.26)



It follows that
u=Cpf, fELp(ﬁﬂ,E)ﬁu:Cp(u‘ag), (1.0.27)

where u|sn = up, and hence
1
Pp=1+Cp= P2 = Pp. (1.0.28)

We furthermore show in §3 that, for p € (1,00), the range of Pp on LP(0,E), which we
denote by
HP (09, D) = Pp(LP(0,E)), (1.0.29)

has the property that the trace map gives an isomorphism:
7 HP(Q, D) = HP(0Q, D). (1.0.30)
With respect to the splitting &€ = Fo & F1, Pp has the diagonal form

_(Pp Qo
pD_<Q10 PD*>' (1.0.31)

General considerations readily yield that Qg are compact and Pp and Pp« are projections
modulo compacts. In fact, using (1.0.26), we show that Pp and Pp~ are projections. With
obvious notation, for p € (1, c0),

Pp is a projection of LP(09Q, Fy) onto HP(0R, D). (1.0.32)

The projections Pp, Pp, and Pp+ are of a sort considered by A.P. Calderén in his
work on boundary problems for elliptic operators. They also play a role in the formulation
of boundary problems of Atiyah-Patodi-Singer type for elliptic systems. Another related
operator, also considered in §3, is

Sp = orthogonal projection of L?(95, &) onto H2(9Q, D). (1.0.33)

This is analogous to the Szegd projection, onto spaces of boundary values of holomorphic
functions. Extensions of Sp to LP(0,€) for a range of p, and comparisons with Pp can
be found in §3.
In §4 we study Toeplitz operators Tg, initially for ® € C(99,EndC?), acting on
LP(09, € ® CY), given by
Sof =PpPPpf+ (I —Pp)f, (1.0.34)

with Pp acting on LP(92, £) and ® acting on C’. We also define Tp on LP (99, Fo @ C*) by
Tof =Pp@Ppf + (I - Pp)f. (1.0.35)

We show that T¢ and Ty are Fredholm if & € C'(992, G¢(¢,C)), where GL(¢,C) denotes the
group of invertible ¢ x £ matrices. We set

(@) = IndexTp on LP(9Q, Fy @ CY), (1.0.36)

which we show is independent of p € (1,00), and depends only on the homotopy class of
$: 00 — GL(¢,C). We extend this to

® € L™ Nvmo(dQ, End C*), (1.0.37)



again obtaining Fredholm operators if also ®~' € L°°(9Q,End C*). In this setting, we
extend to the multi-dimensional setting of a UR domain €2 results on the index established
by Brezis-Nirenberg [7] in the setting of € = the unit disk in C and D = 9/0z.

We also study Ty on LP-Sobolev spaces LY (99, &), first for & € C1(9Q, End C?), and
then more generally for ® € L (09, End C*), with ¢ > n—1, ¢ > p. Here we use the notation
L1 (99, E) to denote the space of LP sections of £ over ) whose gradients, suitably defined,
belong to LP. See Appendix A.2 for the precise definition.

In addition, we study a class of Toeplitz operators 7g, defined as in (1.0.34), but with
Pp replaced by the Calderén-Szegd projector Sp.

Section 4.5 considers twisted Toeplitz operators, acting on sections of Fy ® C, where
C is an auxiliary vector bundle, with ® a section of the bundle G/¢(C). In §4.6, we study
localization of Toeplitz operators. In §4.7, we establish an important cobordism invariance
result for the index. With this, one can often show that the index of a Toeplitz operator on
a rough UR domain is equal to one on a smoothly bounded domain. We make use of these
results in §4.8 to obtain some explicit index formulas on rough UR domains.

This paper ends with some appendices, giving useful background material. Appendix
A.1, already mentioned, discusses conditions under which D in (1.0.15) is invertible, and
produces results on the integral kernel E(z,y) of D~! needed to establish the mapping
properties (1.0.8) and (1.0.25). Appendix A.2 discusses LP-Sobolev spaces on boundaries
of Ahlfors regular domains, and Appendix A.3 gives some basic results on Cauchy integrals
applied to elements of such spaces L}(9f2), when Q is a UR domain. These results are
useful for the study of Toeplitz operators on LP-Sobolev spaces in §4. Appendix A.4 gives
examples of UR domains with fairly wild boundaries.

1.1 Further directions

The results of this paper are applicable to the study of Riemann-Hilbert problems on uni-
formly rectifiable domains. This is being developed by the authors in [21].

2 Cauchy-Pompieu reproducing formulas

Here we prove the result stated in (1.0.26), namely, with E(z,y) as in (1.0.18),

u(z) =i / E(z,y)op(y,v(y))uly) do(y), Ve, (2.0.1)
o0

provided
Du=0 on £, (2.0.2)

and u satisfies certain regularity conditions up to 9€2. More generally, we show that

u(z) =i / E(z,y)op(y, v(y))uly) do(y)
oN

(2.0.3)
—i—/E(a:,y)Du(y) dV(y), Vz e,
Q

for u having such regularity, a result that implies (2.1) if Du = 0 on . We take Q C M
and D as in §1.



We proceed in stages. In §2.1 we establish (2.0.3) when Q is a finite perimeter domain
and

u e C(M,E), Duc LY(M,E). (2.0.4)
In §2.2 we require Q to be Ahlfors regular, and establish (2.0.3) when, for some p > 1,
u € £P and Duc L'(Q,E), (2.0.5)
where
P ={ue C(E): Nue LP(09), and (2.06)
3 nontangential limit uy, o-a.e.}. o
In §2.3, we assume {2 is a UR domain and, as in (1.0.21), take
u(e) =Cof () =i [ Elwy)onl.v(0) 1) do () (207)
0N
with
ferLPoN€), pe(l,o0). (2.0.8)

In this situation, we show that the results of §2.2 apply, and draw conclusions about
1
Pp = 5[ +Cp (2.0.9)
(with Cp as in (1.0.22)—(1.0.23)), which will play a major role in §3.

2.1 Reproducing formulas on finite perimeter domains

Take M to be a compact, connected, Riemannian manifold with metric tensor of class C?,
as in §1. We work in the setting where the first-order, elliptic differential operator D is
given by (1.0.10), with D as in (1.0.1). We assume

D: HYP(M,E) — H*P(M,E) (2.1.1)
is invertible, for
s€[-2,1], pe(1,00), (2.1.2)
with inverse
E=D7':H?(M,E) — H*TVP(M,E). (2.1.3)

We also let E(z,y) denote the integral kernel of D~1:

Bule) = [ E(w.y)uly) v (o) (2.1.4)
M

and recall results on E(z,y) established in Appendix A.1.

As a first step toward producing the reproducing formula (2.0.3), we start with the
following “product formula.” If uw € H5"1P(M,E) and if f € C1(M) is real (or complex)
valued,

D(fu) = fD(u) + (Dof)u, (2.1.5)

where Dy is a first-order differential operator given by

Dof(z) = %Up(z,df(z)), Dy : CY(M) —s CO(M, End £). (2.1.6)

7



In local coordinates (and this time eschewing the summation convention), if
Du(z) = Y Aj(x)0ju+ B(x)u, Aj(z),B(z) € Endé&,, (2.1.7)

then
(Dof (@) u(z) =Y 9;f(x) Aj(x)u(z). (2.1.8)
Applying E to (2.1.5) yields
fu=E({(Dof)u) + E(fDu). (2.1.9)

We aim to extend the class of functions f to which (2.1.9) applies, first for u defined on
M and having some moderate regularity, then, in subsequent sections, for more general .
As a first step, we consider the case when

ueC(M,E), Duc LYM,E). (2.1.10)

We then assume
feLxM), df e M(M), (2.1.11)

where df is the exterior derivative of f, and M(M) denotes the space of finite (vector
valued) measures on M. Then we can use convolutions in local coordinates to obtain

fi € CHM), | fjllee < Cllfllz, f; — f pointwise a.e.,

, (2.1.12)
df; — df weak™ in M.
We have, for each j,
As long as u satisfies (2.1.10),
fiu — fu, boundedly and a.e., (2.1.14)
(Dofj)u — (Dof)u, weak™ in M(M), (2.1.15)
fiDu — fDu, in L'-norm. (2.1.16)

Note that (2.1.14) implies norm convergence in LP, for all p < oo, and (2.1.15)—(2.1.16)
imply norm convergence in H P, for some € € (0,1), p € (1,00). Hence

E((Dofj)u) — E((Dof)u), E(fiDu) — E(fDu), (2.1.17)
in H'=*? and we deduce from (2.1.13) that
fu=E(Dof)u)+ E(fDu), (2.1.18)

whenever u satisfies (2.1.10) and f satisfies (2.1.11).
We apply (2.1.18) to f = xq, when Q C M is an open set satisfying

(2 is a finite-perimeter domain, (2.1.19)

S0
dxq = —vo, (2.1.20)



where o is a positive (finite) Borel measure, supported on 9, v € L (9, 0), and, for
o-a.e. x, v(x) € T} M satisfies |v(x)| = 1. It follows from (2.1.6)—(2.1.8) that

Doxa = iop(z,v)o. (2.1.21)

Hence, if E(z,y) denotes the integral kernel of E (taking values in Hom(&,, &;) for x # y €
M),

E(Doxe)u)(z) = i / E(z,)on(y, v())uly) do(y), (2.1.22)
o0
and (2.1.18) implies

u(z) = i / E(z,y)op(y, v(y))uly) do(y)

o0N

(2.1.23)
+ /E(m,y)Du(y) dV(y), VzeQ,
Q
given that u satisfies (2.1.10) and € satisfies (2.1.19). If, in addition,
Du=0 on £, (2.1.24)
we obtain
u(e) =i [ Bley)on(yvl)uty) doy), Yo e, (21.25)

o0

We need to expand the class of functions u to which (2.1.25) applies, at least for a broad
but more restricted class of domains 2. We take this up in the following subsections.

2.2 Reproducing formulas on Ahlfors regular domains

If Q@ C M is an open domain of finite perimeter, and o is as in (2.1.20), it is known that o
is carried by the “measure theoretic boundary” 9,£) and

o =H"10.%. (2.2.1)
We say 2 is Ahlfors regular if the following two further conditions hold:
HH00)\ 8,Q) =0, (2.2.2)
and there exist cg, c; € (0,00) such that for all z € 9Q, r € (0, 1],
cor"! < o(By(x) NON) < el (2.2.3)

We intend to extend the identity (2.1.23) to a broader family of functions u than were dealt
with there (see (2.1.10)), when € is Ahlfors regular. To introduce our larger family, let us
set

L ={ue C(QE): Nu e LP(09) and

e (2.2.4)
3 nontangential limit u,, o-a.e.}.

Here is the main result of this section.



Theorem 2.2.1 Assume  C M is Ahlfors reqular. If, for somep > 1,

u€ £ and Duc LY(Q,E), (2.2.5)
then
u(a) = i / E(z,y)op(y, v())uly) doy) + / E(x,y)Du(y) dV (y), (2.2.6)
o0 Q
for all x € Q.

From §2.1, we have (2.2.6) for u satisfying (2.1.10), in particular for v € Lip(2), since
such u has an extension to an element of Lip(M). More generally, results of §2.1 plus
applications of a smooth cutoff give (2.2.6) whenever there exists an open D Q such that
u € C(Q) and Du € LY(Q, ). Consequently, if u satisfies (2.2.5), then (2.2.6) holds with ©
replaced by a finite perimeter domain g such that Qo C Q¢ C €, as long as € Qy. We
can take (g to be smoothly bounded. Replacing © by ©\ Qg (which does not contain x),
we see that to prove Theorem 2.2.1 it suffices to prove the following.

Proposition 2.2.2 Assume Q C M is Ahlfors regular and u satisfies (2.2.5), for some
p>1. Then

[ B@ypu) aviy) =i [ Bepoourw)u) doty), Vg 220)
Q o0

To prove Proposition 2.2.2, we use two lemmas that were established in §2.3 of [11].

Lemma 2.2.3 If Q C M is Ahlfors reqular, then there exists C' < oo such that, for all
5 € (0,1],

1
5 / lv|dV < CHNUHLl(aQ), Vv e 21, (2.2.8)
Os

where Nv is the nontangential mazimal function and
Os = {z € Q : dist(z,002) < §}. (2.2.9)
Lemma 2.2.4 If Q C M is Ahlfors regular and p € (1,00), then the following holds.

Ifuec £P, Jwe &' such that wy, = uy and Jwy, € Lip(Q)

2.2.10
such that |N(w —wg)|l 10y — 0. ( )

We begin the proof of Proposition 2.2.2. Let Qs = {z € Q : dist(z,0Q) > s}. Let
ps(x) = dist(z, 08s/2), and set

xs(z) =1 on Qj,
20" ps(x) on Q\ (25U Og)s), (2.2.11)
0 on Ogsp.

Note that each ygs is Lipschitz and
2 R ~
dxs(y) = —5Xp,W)P(y),  Os = Os\ O, (2.2.12)

10



where
U(y) = da(y), va(y) = dist(y, 09Q). (2.2.13)

The function 1 has Lipschitz constant 1, so |7(y)| < 1 a.e. The Lipschitz character of xs
suffices to yield
D(xsu) = (Doxs)u + xsDu, (2.2.14)

if u satisfies (2.2.5). We have xsu continuous and compactly supported on © (we write
xou € CJ(2)), and D(xsu) € L(, E). It is elementary that

/E(m,y)D(X(;u(y)) dV(y) =0, Vz¢&Q. (2.2.15)
Q
Noting that .
Doxs(y) = S op(u, 1)xg, (), Os = 05\ O, (22.16)

we have, for z ¢ Q,

/E(x, y)xs(y)Duly) dV(y)

Q

0 (2.2.17)

=5 | E@y)on(y v(y))uly) dV(y)-
Os
Given Du € L(Q), it is clear that the left side of (2.2.17) converges to the left side of (2.2.7)
as 6 — 0, provided z ¢ Q. Therefore, so does the right side of (2.2.17). What we need to
show is that

; / E(z,y)op(y, 7(y))uly) dV (y)

Os (2.2.18)
H/E(x,y)op(y,V(y))U(y) do(y),

o0

as 6 \, 0, provided u satisfies (2.2.5) and = ¢ 2. From what has just been said, we know that
(2.2.18) holds whenever (2.2.7) holds. In particular, (2.2.18) holds whenever u € Lip($, £).

To complete the proof of Proposition 2.2.2, we take w and wj, as in Lemma 2.2.4. Given
(2.2.8), and the estimates for F, we have, uniformly in § € (0, 1],

2 / E(z,y)on(y, 7(y))[we(y) — w(y)] dV(y)|

b5 (2.2.19)

< COIIN (w — w21 (00)

and we also have

[ B ooty )l - v do)]
J (2.2.20)

< CIN (wr — w)|| 21 (a0

11



as long as x ¢ Q. Thus, since (2.2.18) holds for wy, we have

; / E(z,y)op(y, #(y))w(y) dV(y)
Os

R / E(z,y)on(y, v(y))w(y) do(y) (2.2.21)
o0

_ / E(x,y)on(y, v(y))uly) do(y),

[2/9]
as 0 \, 0. Thus to obtain (2.2.18) for u satisfying (2.2.5), it suffices to show that

2
ve gl Ub:0:>5/|v|dV—>0, as 0\, 0. (2.2.22)
Os

To show this, we note that the condition (2.2.8) is equivalent to the apparently stronger
condition

;/MMVgcw@Mwm Vue gl §e (0,1], (2.2.23)
Os
where
Nsv(z) = sup{|v(y)| : y € Ty, dist(z,y) < 2§}, (2.2.24)

as a simple cutoff argument shows. Thus, to prove (2.2.22), it suffices to show that
ve Ll v =0= |Nsvllpia) — 0, as 6\, 0. (2.2.25)

Indeed, the hypotheses of (2.2.25) yield Nsv(z) — 0, o-a.e., and furthermore Nsv < Nv for
each 4, so (2.2.25) follows from the dominated convergence theorem.
Proposition 2.2.2 is proven. Hence Theorem 2.2.1 is proven.

2.3 Cauchy integrals and reproducing formulas on UR domains

Here, we take €2 C M to be a UR domain. As stated in the Introduction, this means € is
an Ahlfors regular domain and that 0¢2 satisfies the uniform recifiability condition of David
and Semmes. In more detail, this uniform rectifiability condition is defined as follows (given
that €2 is compact). There exist €, L € (0, 00) such that, for each z € 99, R € (0, 1], there
is a Lipschitz map ¢ : Bg_l — M (where B?{l is a ball of radius R in R"~!) with Lipschitz
constant < L, such that

H" (00N Br(z) N@(BE 1) > eR™ (2.3.1)

As shown in [9], if @ C R™ is bounded and UR and k € C™(R™\ 0) is odd and homogeneous
of degree —(n — 1), with m large enough, then, given

FerIrOQ), 1<p< oo, (2.3.2)

Kf(x) = PV / Kz — 4)f(y) doly)
o0

(2.3.3)
~ lim / k(z — y) f(y) do(y)

90\ Be (z)
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exists for o-a.e. z € 0f), and
K : LP(02) — LP(09Q) (2.3.4)

is bounded. In [11], this result is extended to “variable coefficient” kernels, such as

Kf(x) = PV / K(x — y.9)f(y) do(y), (2.3.5)
o0

where k(z,y) is continuous on (R™\ 0) x 92, odd in z, and homogeneous of degree —(n —1)
in z, and satisfies

0%k (2, )| < Culz|~ D=l 2 e R\ 0, 2 €99, |a] <m, (2.3.6)
for m large enough. Again one has (2.3.4). Going further, [11] established for

Kf(x) = / Ko - y.0) (W) do(y), o€, (2.3.7)

o0

nontangential maximal function estimates

INKfllrao) < Collfllzrany, 1<p < oo, (2.3.8)
and nontangential convergence
lilrnF Kf(z) = Q%I%(V(x),x)f(:v) + Kf(x), for c-a.e. z €09, (2.3.9)
z—x,zely

with K as in (2.3.5) and k(¢, ) the Fourier transform of k(z, ) with respect to z. These
results are established in §§3.2-3.4 of [11].
These results apply to

Bf(z) = PV / E(z,9)f(y)doly), =€ 0, (2.3.10)
o0

and

Bf(x) = /E(x,y)f(y) do(y), =€, (2.3.11)
0N

when Q C M is a UR domain and E(z,y) is the integral kernel of D~!. In fact, as shown
in Appendix A.1, E € C"(M x M \ diag) for each r < 2, and, near the diagonal, E(z,y) is
given in local coordinates by

E(z,y) = eo(z —y,y) + e1(,y), (2.3.12)

with ep(z —y,y) as in (A.1.38)—(A.1.39). In particular, the results above on (2.3.5)—(2.3.7)
apply to the first term on the right side of (2.3.12). As for the remainder e;j(z,y), we have
the estimate (A.1.51), i.e.,

ler(z,y)| < Cela —y|~(72+9), (2.3.13)

for each € > 0. Thus e;(z,y) is weakly singular. For

Ky f(x) = / e1(2,9)f(y) doly), x € 00, (2.3.14)
o0
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we have compactness of K7 : LP(92) — LP(09Q), for each p € (1, 00), as well as nontangential
maximal function estimates on

Kif(z) = /el(m,y)f(y) do(y), =€, (2.3.15)

o2

and nontangential a.e. convergence Kif(z) — Kjf(x). These results, which are more
straightforward than those on (2.3.5)—(2.3.9), are also demonstrated in [11]. Thus we have
for (2.3.10)~(2.3.11) that

IBfllzra0) INBfllrroa) < Collfllzeeo), 1 <p < oo, (2.3.16)

and, given f € LP(09), 1 < p < oo,

lim  Bf(2) = ~op(e,v(2)f(x) + Bf(z), for o-ae. e Q. (2.3.17)

z—x,z€l; 21

Here, O-E(x7§) = O'D(l',f)_l, and
ool =i Y A0 A = (40, ). (23.15)
Z j

In light of these results, we are motivated, even independently of the calculations of
§62.1-2.2, to consider

Cpflx) =i / E(z,y)op(y () f(y) doly). =€, (2.3.19)
o0
and
Cpf(x) = PVi / E(z,y)op(y,v()f(y) do(y), = € O9. (2.3.20)
o0
We have
Cp: LP(0Q,E) — LP(0Q,E), 1<p< o0, (2.3.21)

a bounded operator, nontangential maximal function estimates,

INCo fllzran) < Cpllfllzr@an), 1<p < oo, (2.3.22)

and boundary behavior

lim  Cpf(z) = %f(x) +Cpf(x), o-ae. ze€d. (2.3.23)

z—x,z€l

We see that if f € LP(0Q,E), 1 < p < oo, then u = Cpf satisfies the hypotheses of
Theorem 2.2.1, with Du = 0 on 2, so

u=Cpf, fe LP(0Q,E) :>u:CD(u‘aQ). (2.3.24)

In concert with (2.3.23), this implies that

1
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so Pp is a bounded projection operator on LP(9€, E) for each p € (1, 00).
With respect to the splitting £ = Fy ® F1, we can write

Pp Qo
Pp = ,
b (QIO 73D*>

where Py = Pp and P; = Pp« satisfy
Py s V09, F}) — LP(00, Fy),

while
Qab : Lp(89>fb) - Lp(aQ7fa)a

(2.3.26)

(2.3.27)

(2.3.28)

for a # b € {0,1}. From (2.3.18), we see that the 2 x 2 matrix op(y,v(y)) in (2.3.20) is
completely off-diagonal. As for E(x,y), we have from (A.1.40) that its principal part is

completely off-diagonal. We get

Qo1, Qip compact on LP(0Q), for pe (1,00).

(2.3.29)

It also follows that (P;)? = P;, modulo compacts. In fact, we have a stronger conclusion.

Proposition 2.3.1 For each j € {0,1}, p € (1,00), P; is a projection on LP(0S2, F;).

Proof. Consider Py = Pp, and take fy € LP(09Q, Fy). We have

u=Cp <f0> = (uo) € C(2, Fo) ® C(Q, F1),

0 Ul
each factor u; belonging to £°, defined in (2.2.4), satisfying
Duy=0, D'u; =0 on 9,
since Du = 0 on 2 and a is supported on the complement of 2. By definition,
Ppfo = uoyq-
Now

v = (1)0) = <u0) e £? and Dv=0 on (,
U1 0

= Cp <u0(\)as2> —Cp <73[())f0>7

and then, parallel to (2.3.32),

so Theorem 2.2.1 implies

Pp(Pp fo) = vo| 5o = 0|0 = Ppfo,

proving that Pp is a projection. The argument for Pp« is similar.

15

(2.3.30)

(2.3.31)

(2.3.32)

(2.3.33)

(2.3.34)

(2.3.35)



3 Hardy spaces and Calderén projectors

Let M and D be as in §1 and let & C M be a UR domain. For p € [1,00), we define Hardy
spaces of functions on §2:

HP(Q,D) = {ue C(Q,E): Du=0, Nue LP(0R), and u has a

nontangential trace u, € LP(99Q, €)}. (3.0.1)
We also denote up by u|gq. This is a Banach space, with norm
[ullmr = [Null Lo o0)- (3.0.2)
Results of §2.3 give
B,Cp: LP(09,E) — HP(2, D), 1<p< oo, (3.0.3)
bounded operators. Also, given f € LP(0,E), p € (1,00),
Cpflag = %f+cpf = Ppf. (3.0.4)

It was further shown that Pp is a projection on LP(952, £). This is a consequence of Theorem
2.2.1, which gives, for p € (1, 0),

u € HP(Q,D) = u=Cp (u‘aQ). (3.0.5)

In addition, we have a projection

Pp : LP(0Q, Fy) — LP (092, Fo), (3.0.6)
given by
PDfO - CDfO‘agp (307)
where
Cp : LP(0Q, Fy) — HP(Q2, D) (3.0.8)

is defined, via the decomposition & = Fy @ F1, by
fo Cp fo
C = 3.0.9
o(5) = ("), (309)

HP(Q, D) ={ue C(Q,Fy): Du=0, Nue LP(09), and u has a
nontangential limit u, € LP(09, Fo)}.

and the target space in (3.0.8) is
(3.0.10)

The proofs that Pp and Pp are projections made essential use of the Cauchy-Pompieu
formula, Theorem 2.2.1.

In §3.1 we show that the trace map takes HP (2, D) isomorphically onto the range of Pp,
i.e., Pp(LP (02, E)), which we denote HP(02, D). Similarly, the trace map takes HP(2, D)
isomorphically onto Pp(LP(092, Fp)) = HP(02, D). In §3.2 we define the Calderén-Szegd
projector Sp, as the orthogonal projection of L2(952, &) onto H2(952, D), analyze the dif-
ference Sp — Pp, and use this analysis to extend Sp to LP(99, E) for a range of exponents
.
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We can restate the definition of the Hardy space (3.0.1) as

HP(Q, D) = HP(Q, D) N £7, (3.0.11)
with £7 as in (2.0.6) and
HP(Q,D) = {ue C(Q,E) : Du=0, Nue LP(OQ)}. (3.0.12)
A natural question is whether
HP(Q, D) = HP(Q, D), (3.0.13)

i.e., whether all elements of HP (©, D) have nontangential traces, o-a.e. on 9f2. Such results
are known as Fatou theorems. In [21], we show that (3.0.13) holds for certain classes of
domains ().

In §3.3 we examine Pp as providing a nonlocal boundary condition on D, producing an
operator Ap = D on

Dom(Ap) = {u € H (2, Fo) : Ppuloq = 0}. (3.0.14)

We compare this with Ay, satisfying another nonlocal boundary condition, and study the
index of Ap. This is done in the framework of Lipschitz domains. We indicate possible
contact with the Atiyah-Patodi-Singer theory of nonlocal boundary problems.

3.1 The trace isomorphism on H?({2, D)
The map u — ulgq = up acting on HP (2, D) gives a bounded trace map

7: HP(, D) — LP(0Q,E), (3.1.1)
for p € (1,00). In fact, in view of (3.0.4)—(3.0.5),

7 : HP (2, D) — HP (09, D), (3.1.2)
for p € (1, 00), where we set

HP (092, D) = Pp(LP(092,E)), (3.1.3)
the range of Pp on LP(92,E). We have the following.

Proposition 3.1.1 The trace map T in (3.1.2) is an isomorphism, for p € (1,00).

Proof. That 7 is injective follows from (3.0.5), which gives
u=Cp(tu), VueH(Q,D). (3.1.4)
The fact that 7 is surjective follows from (3.0.6), which gives

TCpf =Ppf, VfeLP(O9,E). (3.1.5)
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Similarly, we have
7 : HP(Q, D) — HP (092, D), (3.1.6)

with HP(Q, D) as in (3.0.10) and

HP(0Q2, D) = Pp(LP (09, Fv)), (3.1.7)
the range of Pp on LP(0), Fy). We see that

u=_Cp(tu), YueHP(Q,D), (3.1.8)

and
7Cpfo=Ppfo, Y fo€ LP(O, Fo), (3.1.9)

so, parallel to Proposition 3.1.1, we have

7 HP(Q, D) =5 HP (9K, D). (3.1.10)

3.2 Calderdn projectors and the Calderon-Szego projector

The projections Pp and Pp, defined respectively on LP(0€,E) and on LP(0N, Fy), are
singular integral operators of the type often called Calderén projectors. They play a role
in Calderén’s approach to the theory of elliptic boundary problems. They also arise in the
Atiyah-Patodi-Singer index theory. Here, we introduce a variant, a Calderén type projector
which, in the setting of holomorphic function theory is also called a Szeg6 projector.

We define the Calderén-Szego projector

Sp : L*(09, &) — H*(09Q, D) (3.2.1)
to be the orthogonal projection of L?(9€, £) onto the closed linear subspace
H2(09, D) = Pp(L2(09Q,&)) = Ker(I — Pp). (3.2.2)

We aim to extend Sp to act on LP(99,E), at least for p close to 2. To this end, note
from (3.2.2) that

SpPp=Pp, (I—Pp)Sp=0, hence Sp(I —Pp)=0. (3.2.3)
Now we can set
A=Pp—Pp=Cp—Ch:LPON) — LP(ON), 1< p< oo, (3.2.4)

and then (3.2.3) implies
Sp(I+ A)=Pp on L2(89,5). (3.2.5)

Since A* = —A, I+ A is clearly invertible on L2(92, £). An extrapolation result of Sneiberg
implies that there exist pp < 2 and p; > 2 such that

I+ A:LP(OQY) — LP(0N) is invertible for p € (po,p1). (3.2.6)
We have proved the following.

Proposition 3.2.1 If Q) C M is a UR domain, then there exist pg < 2 and p1 > 2 such
that
Sp = Pp(I+A)!: LP(0Q) — LP(3Q), p € (po, ). (3.2.7)
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The following result shows how a compactness condition allows one to extend the range
of p.

Proposition 3.2.2 Suppose A, given by (3.2.4), is compact on LP(92) for somep € (1,00).
Then (3.2.6) and (3.2.7) hold with py = 1 and p; = oco.

Proof. First, an interpolation result of Krasnoselski (see [4], p. 203) implies that A is
compact on LP(0Q) for all p € (1,00) if it is compact for one such p, and bounded for all
such p. From this, we have

I—A T+ A:LP(0Y) — LP(092) Fredholm, of index 0, Vp € (1,00). (3.2.8)

To get invertibility, it suffices to get injectivity. We clearly have injectivity on L2(9%2),
hence on LP(09) for 2 < p < co. This gives invertibility in (3.2.8) for p € [2,00). Taking
adjoints gives invertibility for p € (1,2]. O

We want to give explicit conditions on 2 and D that guarantee that the operator A is
compact. As a preliminary, we write A as a singular integral operator. We have

Chf(x) = PV(—i) / [E(y, 2)op (e, v())]" () do(y). (3.2.9)

o0
Since D is a zero-order perturbation of a first order elliptic, self adjoint operator, it follows
from the analysis of §A.1 that

where Ry has a weak singularity on z = y € 92, hence is the integral kernel of a compact
operator on LP(0R2), for p € (1,00). Hence

Af(@) =PVi [ {E(@.0)on(.v(w) + o0(e. (@) Ele,) (1) doy) + Raf(@), (3:2.11)
o0
where R; is compact on LP(99) for p € (1, 00).
We now formulate our condition for the next compactness result. First, we assume D
is of Dirac type, i.e.,

UD($,£)*UD($,£) = <£7§>$7 hence UD($,£)2 = <£7£>$7 (3212)

where ( , ) is the inner product on T;M associatd to the Riemannian metric. Next,
we assume (2 is a regular SKT (Semmes-Kenig-Toro) domain. This class of domains was
introduced and studied in [26] and [13]-[15], where they were called cord-arc domains with
vanishing constant. The label “regular SKT domain” was proposed in [11], where it was
shown that this class of domains can be characterized as follows:

Q is an Ahlfors regular domain,
() satisfies a two-sided local John condition, and (3.2.13)

the unit normal v belongs to vmo(9f2).

In such a case, © is a UR domain and also an NTA domain. See the references cited above
for more details. Here is our result.
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Proposition 3.2.3 Assume D is of Dirac type and 2 C M is a reqular SKT domain. Then
A = Cp — C} is compact on LP(0RY), for all p € (1,00).

In order to expose the main lines of the argument, we first treat the case where 2 C R”
is a bounded, regular SKT domain, D has constant coefficients, and D is given by (1.0.10)
with a = 0, so

Du(z) = Ajdju(x), Af=—A;. (3.2.14)

In such a case, we have Ry = 0 and Ry = 0 in (3.2.10)—(3.2.11), and

Af@) =PV [{B(e— y)on(y.v(0) + ap(e (@) B — ) ) doy),  (3:215)
o002

with
E(z) =DG(z), G(z) = Cylz|" "2, (3.2.16)

for n > 3, G(2) = Cylog |2] if n = 2, since D? = —A. Hence

Af(z) = PVi/F(w,y)f(y) do(y), (3.2.17)
o0
with
T(z,y) = > {AjAwi(y) + AxAjun(z) }0,G(x — ). (3.2.18)
ik

Now the Dirac type condition (3.2.12) translates to the anticommutator condition

AjAk + AkA] = _26jk- (3219)
Hence
D(z,y) = Y AjAgvr(y) — ve(2)]0;G(z — y)
J#k
= ) + (@) 0G( — ) (3.2.20)
k

= Fl(xvy) + Fg(flf,y)
It follows that Ai, given by

Aif(z) = PVi / Iy (2,9) f(y) do(y), (3.2.21)

o0

is a sum of commutators of bounded singular integral integral operators with multiplication
by vk. As long as v € vmo(9f2), these commutators are all compact on LP(012), for p €
(1,00); cf. Theorem 2.19 of [11]. Meanwhile, A, given by

Asf(z) =PVi / Pa(z, ) f(y) do(y), (3.2.22)

o0
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is a sum of two terms, namely

Ay f(z) = C, PV/<w —y, vz —yl ™" f(y) do(y),

s (3.2.23)

Ansf(x) = CL PV / (@ — g, v(@))z -y " f(y) do(y).
o0

Compactness of Ag; on LP(9€) for all p € (1,00), provided € is a regular SKT domain, is
a special case of the main result in §4.5 of [11], and compactness of Ay on LP(9Q) for all
such p follows by duality. This takes care of the Euclidean case of Proposition 3.2.3.

The extension of Proposition 3.2.3 to the manifold case is mainly technical, making use
of results on E(z,y) given in Appendix A.1.

3.3 Nonlocal boundary conditions on D

Let Q C M beopen, D : HYP(M, Fy) — LP(M, F) a first order elliptic differential operator,
as presented in the introduction, in particular, satisfying UCP. Construct the Calderon
projector Pp on LP(02, Fy) as done previously.

In this subsection, we will assume that €2 is a Lipschitz domain. Extending this analysis
to a more general class of domains is an intriguing problem.

We set P = Pp and let II be another projection on L?(99, Fy). We assume boundedness
on the L2-Sobolev space H'Y/2:

P, : HY?(00, Fy) — HY?(09, Fo). (3.3.1)

We know this holds for P = Pp, in case  is a UR domain, since then P : H(0Q) —
H1(09), and we can interpolate.
Let us define unbounded operators Ap and Ay on L?(99, Fo) by

Dom(Ap) = {u € H(Q, Fo) : Pulaq = 0},

(3.3.2)
Dom(Aq) = {u € H'(Q, 7o) : Tlu|pq = 0}.
We set Apu = Du and Anu = Du, on their respective domains.
Proposition 3.3.1 If Q is a Lipschitz domain,
Ap : Dom(Ap) — L*(Q, F1) is bijective. (3.3.3)
Proof. Given u € Ker Ap, we have
Du=0 on , and u‘ag =0, (3.3.4)

the latter result because Du = 0 on Q = Pulsq = ulsq. Then UCP = u = 0, so Ap is
injective.

Next, given f € L*(Q,F1), we can find ug € H'(Q, Fy) such that Dug = f on Q (via
the construction of D~1). Then (for Q Lipschitz) one has

oy = ¥ € HY2(09, Fo). (3.3.5)
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We need to find u; € H'(£2, Fy) such that
Duy =0 on Q, Puy|y, =P, (3.3.6)
so ug — u1 € D(Ap) and Ap(ug —u1) = f. In fact, we can take
u1 = Cp1, (3.3.7)
and satisfy (3.3.6). We claim that, if Q is a Lipschitz domain,
Cp : HY?(89Q, Fy) — HY(Q, Fo). (3.3.8)

See Proposition 3.3.6 below. Given this, we have Proposition 3.3.1. O

Proposition 3.3.2 If Q) is a Lipschitz domain,

Ker Ay =~ KerH‘R(P). (3.3.9)

with R(P) denoting the range of P as a projection on HY?(98, Fy).

Proof. Given u € Ker Ary, we have u € H' (2, F), and the defining condition is
Du=0 on Q, TI(uly,)=0. (3.3.10)

Now the first condition in (3.3.10) implies u|gg € R(P), and in fact u = Cp f, for a uniquely
defined f € R(P), so

Ker A ~ {f € R(P) € HY2(0Q, Fo) : I1f = 0}, (3.3.11)

giving (3.3.9). O

Proposition 3.3.3 If Q) is a Lipschitz domain,
L*(Q, F1)/R(An) = R(1T)/R(IIP), (3.3.12)

where R(II) denotes the range of I1 as a projection on HY/?(9Q, Fy), and R(IIP) denotes
the image of HY?(9Q, Fo) under IIP.

Proof. As in the proof of Proposition 3.3.1, given f € L?(£, F}), we can take ug € H'($, Fo)
such that Dug = f on Q. Such ug is determined uniquely mod {u; € H'(, F) : Duy =
0 on Q}. We then form ugloq = o € HY?(9Q, Fy), as in (3.3.5), and ¢ is determined
uniquely, mod R(P). Note that ug € H'(Q, Fy) can be arbitrary, hence ¢ € H'/2(9Q, Fp)
can be arbitrary, due to the surjectivity of the trace map. We hence have a linear isomor-
phism

L(Q, 7)) =5 H'2(09, F)/R(P),  f+ ¢ (mod R(P)). (3.3.13)

Following this with II then yields

£ Iy (mod R(IIP)), (3.3.14)
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and hence a surjective map
¥ : L2(Q, Fy) — R(II)/R(IIP). (3.3.15)

Now, to see if f € L?(2, F;) belongs to R(Aq), having ug as above, we seek u; € H(£2, )
such that

Du; =0 on Q, Ty, = Iy, (3.3.16)

so ug — u1 € D(Aq). This is equivalent to seeking
ur =Cpyp, ¢ €R(P), Ip=I. (3.3.17)
It follows that, in (3.3.15), Ker 9 = R(Am), so we have the isomorphism (3.3.12). O

From here, we have the following generalization of Proposition 2 of [33].

Corollary 3.3.4 Assume ) is a Lipschitz domain, and consider the maps
A : Dom(Ap) — L*(Q, Fy) (3.3.18)

and

H}R(P) : R(P) — R(II). (3.3.19)

If either (3.3.18) or (3.3.19) is semi-Fredholm, so is the other, and the two maps have the
same index.

Regarding the applicability of Corollary 3.3.4, note the following.

Proposition 3.3.5 If P and Il are bounded projections on H1/2(8Q,.7:0) and
P —10 is compact on HY?(0Q, Fy), (3.3.20)
then the map (3.3.19) is Fredholm. Hence, in the setting of Corollary 3.3.4,
Index Ay = IndexH!R(P) : R(P) — R(ID). (3.3.21)

It remains to establish (3.3.8) when  is a Lipschitz domain. This result (which is well
known for smoothly bounded €?) is the case s = 1/2 of the following.

Proposition 3.3.6 Let ) be a Lipschitz domain. Then
Cp : H3(09, Fo) — H*TV2(Q, Fy), Vs el0,1]. (3.3.22)

Proof. 1t suffices to get (3.3.22) for s = 0 and s = 1. The rest follows by interpolation. The
facts that
Cp : L*(8Q) — HY*(Q),
Cp : H'(8Q) — H*?(Q),

follow from Theorem 3.1 of [20], applied to u = Cp f, which solves Lu = 0, with L = D*D, a
second order, strongly elliptic, formally self adjoint system. In fact, the first part of (3.3.23)

follows from Theorem 1.1 of [20], plus some elementary auxiliary estimates (carried out in
the proof of Theorem 3.1). O

(3.3.23)

REMARK. In [33], the emphasis was on II arising from the Atiyah-Patodi-Singer boundary
condition.
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4 Toeplitz operators on UR domains

We continue to take M and D as in §1, and let 2 C M be a UR domain. Recall the
projection Pp on LP(0%, E), for p € (1,00), given by

1
Pp = 51 + Cp, (4.0.1)
with
Cof(e) =PVi [ E(w.0)on(u,v)f () doty), = € o9 (102)
o0
where, for z # y € 09, E(z,y) € Hom(&,, &;). Given £ € N, we extend Pp to a projection
Pp : LP(0Q, € @ CY) — LP(9Q,£ @ CY), (4.0.3)

in the standard fashion, i.e., componentwise. Then, if

® € L®(9Q, End CY), (4.0.4)
we define the “Toeplitz operator”
Tp : LP(0Q,E @ CY) — LP(89Q, € @ CY) (4.0.5)
by
Tof =PpP®Ppf+ (I —Pp)f. (4.0.6)

The structure described above implies the commutativity

O(2)E(r,y) = E(z,y)®(x), ®(x)op(y,v(y)) = oy, v(y))®(z), (4.0.7)

which will be useful in the analysis.
We also define

Ty : LP(89, Fo ® C*) — LP(8Q, Fo ® CY) (4.0.8)
by
Tof = Pp®Ppf + (I Pp)f, (4.0.9)
where Pp arises in
Pp Qo
Pp = , 4.0.10
P (Qw PD*) ( )

and we have also seen that Pp is a projection. As noted before, the operators Qy; and Q1g
are compact. There is a similar definition of qu,, and, for ® as in (4.0.4),

Tp — <T¢ T1> is compact on LP(99, & ® CY), (4.0.11)
®

for each p € (1,00), thanks to the compactness of Qp; and Qjp.
Our main goal here is to investigate Fredholm properties of T3 and T, for subclasses
of functions ® which, together with ®~!, satisfy (4.0.4). In §4.1, we take

® € C(09, GL(L,T)), (4.0.12)
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and show that these operators are Fredholm on LP(012). In §4.2, we take
®,d~! € L® Nvmo(dQ, End C*), (4.0.13)

and demonstrate such Fredholm properties. We study the index ¢(®) of Tg in cases (4.0.12)
and (4.0.13). We show it is independent of p € (1, 00). In case (4.0.12), ¢(®) depends only on
the homotopy class of ® : 9Q — G¥(¢,C). The case (4.0.13), which involves discontinuous
®, requires a more delicate analysis. For this, we extend results of Brezis-Nirenberg [7],
involving a generalized notion of degree.

In §4.3 we examine Toeplitz operators on the LP-Sobolev spaces L)(99, & ® CY), first
for ® € C1(9Q, GL(¢,C)), then for ® € LI(9Q, GL(¢,C)), provided ¢ >n — 1 and ¢q > p.

In §4.4 we consider Toeplitz operators of the form

Tof = Sp®Spf+ (I — Sp)f, (4.0.14)

i.e., like (4.0.6), but with Pp replaced by the Szegé projector Sp.

Section 4.5 considers twisted Toeplitz operators, replacing £ ® Cf by £ ® C, where C is a
vector bundle over M. Section 4.6 investigates localizations of Toeplitz operators. Results
of these sections are applied in §4.7 to establish an important cobordism invariance result,
which can be used to show that a Toeplitz operator on a rough UR domain has the same
index as one on a smoothly bounded domain.

Section 4.8 applies these results to the computation of the index of some examples of
Toeplitz operators on rough UR domains.

Section 4.9 considers “Toeplitz operators” associated to the orthogonal projection of
L?(Q, &) onto $H2(£2, D), the subspace of elements annihilated by D.

For simplicity, we will use the notation LP(9), in place of LP(9, £ @ C), etc., when
the context is clear.

4.1 Toeplitz operators with continuous coefficients

In this subsection, we study T¢ and Tg for
® € C(9Q,End CY). (4.1.1)

We want to show that T is Fredholm on LP(9€2) provided ®(z) is invertible for each x € 0f.
A key to this is to demonstrate compactness of the commutator

[73@, (I)] =Ppd — dPp = [Cp, <I>], (4.1.2)

with Cp given by (4.0.2). Now (4.0.7) implies

(Po. 815 (2) = PV [ Ela.){() — 8a)}on(u.v) f0) do(y) = Kg(a), (413
o0
with
9(y) = op(y,v(y)) f(v),
Kg(z) = PV / E(x,y){B(y) — B(x)}g(y) do(y). (4.1.4)
o0
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Lemma 4.1.1 If ® € C(99Q,End CY), then
[Pp, ®] : LP(0Q2) — LP(0Q) is compact, Vp € (1,00). (4.1.5)

Proof. By a limiting argument, it suffices to prove (4.1.5) when ® is Holder continuous, of
exponent r € (0,1), i.e., ® € C"(95, End C’). Then we have (4.1.3) with

Kg(z) = /k(ﬂzy)g(y) do(y), |k(z,y)| < Cd(w,y)” "D+ (4.1.6)
oN

Since 2 is Ahlfors regular, the compactness of I on LP(92) for p € (1,00) follows from

Lemma 2.20 (or Proposition 5.1) of [11]. O
To proceed, assume

®, ¥ € C(09,End C"). (4.1.7)

Then
TyTe = (Pp¥Pp + (I — Pp)) (Pp®Pp + (I — Pp))

— PpUPROPp + (I — Pp) (4.1.8)
= Tye + PpV[Pp, ®|Pp.

(We could also write the last term as —Pp[Pp, V|®Pp.) Consequently,
TyTe — Twe is compact on LP(0N), Vp e (1,00). (4.1.9)
Similarly, we have compactness of €%y — Toy. This yields the following.

Proposition 4.1.2 Let Q2 C M be a UR domain, and suppose

o 00— GLY,C) (4.1.10)

s continuous. Then
To-1%p — 1 and TeTe-1 — 1 are compact on LP(0N), (4.1.11)

for allp € (1,00), so
T 2 LP(OQY) — LP(ORY) s Fredholm, Vp € (1,00). (4.1.12)

Similarly we have
TeTy — Ty compact on LP(0Q), (4.1.13)

which yields the following.
Corollary 4.1.3 In the setting of Proposition 4.1.2,

To-1Te — I and TeTe-1 — I are compact on LP(O9), (4.1.14)
for all p € (1,00), so

Ty : LP(0QY) — LP(0RY) s Fredholm, Vp € (1,00). (4.1.15)
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We set

1p(®) = IndexTp on LP(9Q). (4.1.16)
From (4.1.9) we have
D, U e C(ON,GIL,C)) = 1p(PT) = 1,(P) + ¢,(T). (4.1.17)
Also
Oy, 1 € C(0Q,GL(¢,C)) homotopic = 1,(Pg) = 1p(P1), (4.1.18)

since then T, and Ty, are connected by an operator-norm continuous family of Fredholm
Toeplitz operators.

In fact, ¢,(®) is independent of p. We record a simple proof of this, which simultaneously
establishes a regularity result. Given p € (1, 00), let us set

Kgp=KerTe on LP(0Q),

. . , (4.1.19)
K3, = Ker(Tp)" on LF (09),
where p’ is the dual index to p.
Proposition 4.1.4 If ® € C(9Q,GL(¢,C)), then, given 1 < p < g < 00,
Kop=Koy and Ky, = Kg,, (4.1.20)
and
1p( @) = 14(P). (4.1.21)
Proof. Clearly
<q=K¢p,C Kop,p and Ky, C Kj
P=d= Bea = Rer Pp = T (4.1.22)
= 14(P) < 1p(P).
Similarly,
P<q=1,(®71) <, (d7H). (4.1.23)
But since ¢,(®) + tp(®71) =0 = 1,(P) + 14(P 1), this yields the asserted identity (4.1.21),
and thus forces equality in (4.1.20). O
Let us note the following further regularity result.
Proposition 4.1.5 In the setting of Proposition 4.1.4, with 1 < p < g < 00,
feLP(0), Tef € L1(00) = f € LI(09). (4.1.24)

Proof. Set g = Ta f, so g is in the range of Ty, acting on LP(992). Hence (¢, g) = 0 for all
¢ € Kg,. By (4.1.20), (p,g) = 0 for all p € K} _, so g is in the range of Ty, acting on
L9(0). We have

7q,
Tof =Tof, forsome fe LI(9Q) C LP(9Q). (4.1.25)

Hence f—f € Kg . Again by (4.1.20), f—fe€ K 4, and we have the conclusion in (4.1.24).
O

REMARK. We mention previous works that deduce regularity results from Fredholmness.
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See [28] and [24]. See also [12] for a general index stability result on a complex interpolation
scale, from which (4.1.21) also follows.

Having the identity (4.1.21), we set

U(®) =1p(P), 1<p<oo. (4.1.26)
By (4.1.17)—(4.1.18), this induces
L:[0Q; Ge(¢,C)] — Z, homomorphism, (4.1.27)

where [09Q; G£(¢,C)] is the set of homotopy classes of continuous maps 9 — G¥(¢,C), with
group structure given by pointwise multiplication.
Returning to (4.1.16), we will often find it useful to record the dependence on D, and

use the notation
1(®; D) =IndexTy on LP(ON). (4.1.28)

Note that, in the decomposition (4.0.10), we have projections
Pp : LP(0Q,E) — HP (092, D),
Pp : LP(02, Fy) — HP(0N2, D), (4.1.29)
Pp= : LP(0Q, F1) — HP (002, D*),
each tensored with C’. We also have
1(®; D) = IndexPp® on HP(0Q, D). (4.1.30)
Note that switching D and D* effectively switches Pp and Pp+, so
(®; D*) = IndexTj on LP(99Q). (4.1.31)
Also,
1(®;D) =IndexTp on LP(0N0)
= 1(®; D) + +(P; D).

In cases where the use of D is understood, we will use the notation +(®) for «(®; D), but we
use the notation (4.1.28) when additional precision is desired.
To illustrate material developed above, let us take

(4.1.32)

Q cR?~C, bounded, connected UR domain, (4.1.33)

and 5
k=(=1 D=0=_. 4.1.34
, 0=~ (4.1.34)

Here, ® : 900 — C\ 0. If © is the unit disk, it is classical that ¢(®) = —w(P), where w(®P) is
the winding number of the curve ®(912) about 0. We can extend this, as follows. Assume
C\  has p + 1 connected components and

w
0 =, (4.1.35)
=0

where 7 is the outer boundary and v; for j > 1 enclose bounded components of C \ .
We assume each v; is homeomorphic to the circle S1, and gets the orientation induced as
a boundary component of €2 (counterclockwise for 7, clockwise for other ;). Let w;(®)
denote the winding number of @[, about 0.
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Proposition 4.1.6 In the setting of (4.1.33)—(4.1.34), with ® € C(092,C\ 0),

17
U(®;0) == > wi(®). (4.1.36)

J=0

Proof. 1t follows from (4.1.27) that there exist ¢; € Z such that

m
U®;0) =) _cwi(®), Ve C(OQ,C\0). (4.1.37)
j=0
We find ¢; by picking certain special cases of ®. In fact, pick
ap €9, ar €O 1<k<pu, (4.1.38)
where O}, are the bounded components of C \ , with boundary —~;. Then set
Op(z)=2z—ap, 0<Ek<p. (4.1.39)

It is clear that Ty, : LP(0Q2) — LP(09) is injective for each k € {0,...,u}. In fact it is
bijective for k > 1, with inverse Ty,, Wi(z) = (z — ag)~!. On the other hand, f € LP(99)
belongs to the range of T, if and only if Pp f, extended to be holomorphic on 2, vanishes
at ap. Hence
L((I)o) = —1, L(‘I)k) = O, k > 1, (4.1.40)
while
’LUo(q)o) = 1, wj(CI)o) =0 for j > 1, (4141)
and, for k > 1,
wi(®r) =1, j=0,
-1, j=k, (4.1.42)
0, other j.
These identities force ¢; = —1 for all j in (4.1.37). O

Note that in the setting of (4.1.33)—(4.1.34), we have

0

Df=-—9=—2,
g 0z

(4.1.43)
Since complex conjugation takes HP(Q2, ) to HP(£2, ) (and hence HP (52, 0) to HP (0%, 9))
and vice-versa, we obtain

1(®;0) = 1(®;0) = —1(®; ), (4.1.44)

the latter identity holding because, with £ = 1, ® is homotopic to ®~!. Generally, relations
can be more elaborate. In particular, it is not always the case that «(®; D) = —¢(®; D). We
return to this issue later on.
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4.2 Toeplitz operators with coefficients in L*° N vmo

Here, we extend the setting of ® in (4.0.6) and (4.0.8) from ® € C(9Q, End C) to
® € L™ Nvmo(9Q, End C*). (4.2.1)
We note the following useful result, for scalar valued functions.

Lemma 4.2.1 L*°Nvmo(df?) is a closed linear subspace of L>°(0S2), closed under products,
hence a closed x-subalgebra of the C*-algebra L>°(01).

A proof can be found in [30], p. 81. This extends to L> N vmo(9€, End C’). Generally,
if A is a C*-algebra with unit 1 and B a C*-subalgebra, containing 1, then an element ¢ € B
is invertible in B if and only if it is invertible in .A. This has the following consequence:

® € L™ Nvmo(dQ,EndC*), &~ e L®(9, End CY)

. ; (4.2.2)
= &7 € L Nvmo(9N, End C*).
When @ satisfies (4.2.2), we say
¢ € L Nvmo(99, GL(¢,C)). (4.2.3)

Our goal here is to treat Toeplitz operators T3 and Ty for & as in (4.2.1), with special
attention to Fredholm properties for ® as in (4.2.3). We start with the following extension
of Lemma 4.1.1.

Lemma 4.2.2 IfQ C M is a UR domain and ® € L Nvmo(9, End C*), then
[Pp, ®] : LP(02) — LP(0Q) is compact, ¥p € (1,00). (4.2.4)

Proof. The computation (4.1.3) continues to hold, so it suffices to obtain compactness on
LP(09) of K, given by
Kglz) =PV [ Ee.0){8(0) - 2()}g(y) doy). (4.2.5)
0N

Given the results on F(z,y) in Appendix A.1, such compactness follows from Theorem 2.19
of [11]. O

For later use, we remark that Theorem 2.19 of [11] also gives

I[P, @]l z(zr00)) < Cpll®|lBMOS (4.2.6)

where the BMO-seminorm is given by

1
(o) = — |- D 4.2.7
|#lsi0 = s1p 519 = B 11, (1.27)

where B runs over all balls in 992 and
1

dp = P(y)d . 4.2.8
b= =g | P o) (128)

B
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This is only a seminorm, since ® constant = ||®||gmo = 0. We have the norm

[®][bmo = [|®[IBMO + ]| 21 (50)- (4.2.9)
To proceed, assume
®, ¥ € L N vmo(dN, End C). (4.2.10)
Then, as in (4.1.8),
TuTs = CTuap + PD\I/[PD, (I)]PD. (4.2.11)
Consequently,
TeTp — Tye is compact on LP(O), Vp € (1,000). (4.2.12)

Similarly, we have compactness of Ts%y — Tpy. This yields the following extension of
Proposition 4.1.2.

Proposition 4.2.3 Let Q C M be a UR domain, and suppose

¢ € L Nvmo(99, GL(¢,C)). (4.2.13)
Then
To-1%0 — I and FTeTe—1 — I are compact on LP(0N), (4.2.14)
for all p € (1,00), so
T« LP(OQY) — LP(0QY) is Fredholm, Vp € (1,00). (4.2.15)

We have analogous results for Tg.

We set
tp(®) = IndexTyp on LP(09). (4.2.16)

From (4.2.12) we have
O, ¥ e L Nvmo(0, GL(L,C)) = 1p(PY) = 1,(P) + 1, (¥), (4.2.17)

extending (5.25).
Propositions 4.1.4-4.1.5 extend immediately to the current setting. In particular, ¢,(®)
is independent of p € (0, 00), so we simply set

L(P) = 1, (D). (4.2.18)

The appropriate extension of the homotopy invariance (4.1.18) to the current setting is
less straightforward. As a first step, given ® € L Nvmo(992, G¢(¢,C)), we write

A= (99*)1/2, (4.2.19)

Using the Riesz functional calculus

L T Y.y
A= / (T — 307 dc, (4.2.20)
Y

for an appropriate contour 7, and using Lemma 4.2.1, we have

A e L Nvmo(99, GL(¢,C)), (4.2.21)
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and similarly for A=!'. Hence
d =AU, U=A"'dec L®nvmo(dQ,GL(,TC)), (4.2.22)

and in fact
U € L>* Nvmo(9Q,U (L)), (4.2.23)

where U({) is the compact group of unitary operators on C!. We see that T4 and Ty are
Fredholm on LP(0) for each p € (1,00), and

(@) = (U) + 1(A). (4.2.24)

On the other hand,
T = T(l—t)A+tI = (1 — t)TA + 17, (4225)

is a norm continuous family of bounded operators on LP(952), and

(1 —t)A+tI € L™ Nvmo(dN, GL(L,C)), Vte[0,1], (4.2.26)

o (4.2.25) is a norm continuous family of Fredholm operators on LP(0R), for ¢t € [0, 1], and
we have

L(A) = u(I) =0, (4.2.27)

hence
u(®) =(U), (4.2.28)

when ® and U are related by (4.2.19)—-(4.2.22).
We are left with the task of understanding ¢(®) for ® € L% N vmo(9€2,U(¢)). The
following is a key homotopy result.

Proposition 4.2.4 Assume ®; € L Nvmo(9Q, U (¢)) for each t € [0,1], and
t — @y is continuous from [0,1] to bmo(8Q, End C*). (4.2.29)

Then o(®¢) is independent of t € [0, 1].

To prove Proposition 4.2.4, we use an argument adapted from a treatment of Toeplitz
operators on the disk in [7], Appendix 2. It suffices to show that, under the hypotheses of
Proposition 4.2.4, o(®;) = ¢(Pg) for ¢ close enough to 0. Now

(D) — (Do) = L(By DY), (4.2.30)

so it suffices to show that «(®;®§) = 0 for ¢ close enough to 0. We bring in a couple of
lemmas.

Lemma 4.2.5 Let ¥y € L Nvmo(9Q, U ({)) satisfy
H\I]tHBMO — 0, as t— 0. (4.2.31)

Then, for each p € (1,00), Ty, is invertible on LP(92) for t small enough.
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Proof. Asin (4.2.11) (cf. also (4.1.8)), we have
Ty, Ty =1+ Ry, Ty:Ty, =1+ Ry, (4.2.32)

with
Ry = Pp¥[Pp,Y;|Pp, Ri=Pp¥;[Pp,V:|Pp. (4.2.33)

Using (4.2.6), we have from (4.2.31) (which also implies || ¥} |lgmo — 0) that || R z») and

||§t||L(Lp) — 0ast— 0, for each p € (1,00). Hence (4.2.32) yields the asserted invertibility.
(]

With ®; as in Proposition 4.2.4, we have
[2:®ollBMO = [[(Pr — o) P5|BMO (4.2.34)
since ®o®(; = I is constant. The following lemma will be useful.

Lemma 4.2.6 Fiz g € L>® Nvmo(dN). For d > 0, there exists C(d,g) < oo such that

1f9lByo < [l + C (6, 9) | fllbmo, V¥ f € L>(09). (4.2.35)

Proof. This is Lemma A.2.5 of [7], when 0f2 is a smooth compact manifold, but the argument
works when 02 is the boundary of a bounded, Ahlfors regular domain. O

Proof of Proposition 4.2.4. As seen from (4.2.30), we need to show that ¢,(®;®) = 0 for
t close to 0. We apply Lemma 4.2.5, with ¥; = ®&;®§, and use (4.2.34). By Lemma 4.2.6,

|W:|lBMo < 0||P: — Dol + C(9,25)||P: — Polbmo- (4.2.36)

By the hypotheses of Proposition 4.2.4, this implies limsup,_,, ||¥¢|[smo < C§ for each
d > 0, and hence ||¥;||pmo — 0 as t — 0, which by Lemma 4.2.5 gives ¢(¥;) = 0 for ¢ small,
as desired. D

To tie in Proposition 4.2.4 with material from §4.1, we bring in some constructions,
which in the case when 0f) is a compact smooth manifold were made in [6]. We then make
modifications to deal with Ahlfors regular domains. To set things up, let u € BMO(0%),
and, for € > 0, set

(@) = —— | wedo
wla) =~ [ () doty) (1237
B:(x)
With
Mgy (u) = sup sup _ / lu(y) — we(x)| do(y) (4.2.38)
¢ e<a €N U(Bs(w))B ) : ’

we have M, (u) < ||ullpmo, and

u € VMO(09)) = ili% My (u) = 0. (4.2.39)

One has the following result of D. Sarason.
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Lemma 4.2.7 Assume 082 is smooth. There exists A, depending on OS2, such that
|lu — Te|lBMo < AM:(u), Yu € BMO(09Q). (4.2.40)
Hence, for u € VMO(09),
lu — Te|lbmo — 0, as € — 0. (4.2.41)

The following is key to results of [6]. It arose as an observation of L. Boutet de Monvel
and O. Gabber. Let Y be a smooth compact submanifold of some Euclidean space RY. For
us, Y = U(¢) C EndC".

Lemma 4.2.8 Assume 2 is Ahlfors reqular. Given u € vino(9Q,Y), = € 99, € > 0,

dist(7. (z), Y) < U(Bi(x))B (/ | luly) — T (2)] do(y) < Mo (u). (4.2.42)

Proof. The first inequality in (4.2.42) holds because each u(y) € Y, and the second follows
from the definition (4.2.38). O

In the setting of [6], where ) is smooth, T, is continuous, at least for small € > 0, but
such continuity is not guaranteed for rougher 9 (even Lipschitz). Hence we produce the
following modification of u.. It is convenient to embed M in R™, for some m > n. Fix
h € C(R™) such that

1
h >0, h(z)=1for |z| < 5 0 for |z| > 1, (4.2.43)
and introduce
he(z) = h(e '2). (4.2.44)
Then set 1
@) = 7 [ Wl =) dolw)
% (4.2.45)
Aa) = [ hela—y) doty)
o0
Note that o)
. uo * he(x
=—2* 4.2.46
is a quotient of two continuous functions on R™, and Ahlfors regularity of 02 implies
A(z) > Ce™ Y Yo edQ, €€ (0,1], (4.2.47)
SO
@ is continuous on 99, Ve € (0,1]. (4.2.48)

We can write (4.2.45)—(4.2.46) as

e (z) = / pe (@, y)uly) do(y), (4.2.49)

o0
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where

== I/ 4.2.50
pe(7,y) \_(z) ( )
We have the following estimates:

pe(xz,u) =0, if |z—y|>e,
pe(a,y)| < Ce= D, Va,y € 99,

|z — 2|

Ipe(2,y) — pe(a’,y)| < Ce~ 71 , for z,a',y € 09, (4.2.51)

/pa(fcvy) do(y) =1, Vaz €N
o0

3

Of these four properties, the first and last are obvious, and the second follows from (4.2.47).
It suffices to establish the third estimate for |z — 2/| < £/4, since otherwise it follows from
the second. This in turn follows from the estimate

|Vape(z,y)| < Ce™™, for y e 09, dist(x,dN) < =, (4.2.52)

N s

which in turn follows directly from the definition (4.2.50) and from (4.
dist(z,00) < e/4.

A7), also valid when

REMARK. It is convenient to have (4.2.52) on a tubular neighborhood of 912, since we do
not want to assume that each z,y € 0€2 can be joined by a path in 92 of length < C|z —y|.

Given the estimate (4.2.51), we have from the proof of Proposition 2.22 in [11] that, for
u € bmo(09),
|t — e |lbmo < C1Meye(u), (4.2.53)

which leads to the following.
Lemma 4.2.9 If Q is Ahlfors regular,
u € vino(0) = ||u — Ue|lbmo — 0 as € — 0. (4.2.54)

Next, parallel to (4.2.42), we have, for u € vimo(92,Y), = € 09,

o 1 .
dist (ie(z), Y) < B, (/ | u(y) — ()| do(y)

(4.2.55)
< M.(u),
where .
Mau =sup sup ————— / u(y) — te(x)| do(y). 4.2.56
( ) c<a 2edQ O'(BE(I‘)) ’ (y) 5( )| (y) ( )
B:(x)
This leads us to the following.
Proposition 4.2.10 If Q is Ahlfors regular, and u € vmo(9%2,Y"), then
sup dist(d.(x),Y) — 0, as € — 0. (4.2.57)

€N
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Proof. By (4.2.55), this follows from
u € vmo(99) => M.(u) — 0 as & — 0. (4.2.58)
This in turn is a consequence of the estimate
My (1) < Clfullbmo, (4.2.59)

since it is clear that M. (u) — 0 for u € C(9), and M. (u1 + ug) < M (uy) + M (us).
It remains to prove (4.2.59), i.e.,

/ lu— (@) do < Cllullome, Vo €09, & € (0,1]. (4.2.60)
B:(x)

o (Be())
Indeed, given . (z) as in (4.2.37), we have, for each x € 992, ¢ > 0,

ie() — ()] < / pe () [u(y) — e (2)| dor(y)
o0

C
v T () do (4.2.61)
= o) J T

B:(z)

< CHqumoa

the second inequality in (4.2.61) by the second estimate in (4.2.51), coupled with Ahlfors
regularity of 0€2. In other words,

& =Tl Lo < Cllufpmo- (4.2.62)
Hence (4.2.60) follows from (4.2.7) and (4.2.62). O

Having Proposition 4.2.10, we proceed as follows. Given u € vmo(9f,Y"), there exists
g0 > 0 such that, for all € € (0,&g], 4. has range in a small tubular neighborhood O of Y.
We have N : O — Y, mapping z € O to the nearest point in Y, and

ue(z) = Nt (x) € Y is well defined. (4.2.63)
Since ||t — ue||~ — 0 as € — 0, we have from (4.2.54) that
llue — ullbmo — 0, as e — 0. (4.2.64)
We apply these results to ® € L N vmo(9€2, U(¥)), obtaining g > 0 and
o, € C(0Q,U(X)), Vte(0,e0], (4.2.65)

such that
|®: — @lbmo —> 0, as ¢t — 0. (4.2.66)

The same argument used to establish Proposition 4.2.4 now yields the following.

Proposition 4.2.11 Let Q be a bounded UR domain. Given ® € L N vmo(9Q, U({)),
there exists €1 > 0 such that

u(P) = o(Py), Vte (0,e1]. (4.2.67)

Here, ®; is as in the paragraph above.
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4.3 Toeplitz operators on LP-Sobolev spaces

In this subsection, we assume 2 C R" is a bounded UR domain and
® € Lip(dQ, End C"), (4.3.1)

though later we impose other conditions. We assume D has the form
D* o
D= D , Du= Ajaju, Aj € End C". (4.3.2)

In this case &€ — R™ is the trivial vector bundle, with fiber C* @& C*. We define T4 as in
(4.0.6), and make use of results of §§A.2-A.3 to get

Tof =PpP®Ppf+ (I —Pp)f, To:Li(00) — LI(OQ), 1<p<oo. (4.3.3)

We will seek conditions under which we can show that T¢%¢ — Tye is compact on
L1(09), given also ¥ € Lip(9£2, End C?). In fact, we will start by seeking conditions on ®
and ¥ that imply

TpTo — Tye : LP(ON) — LI (09). (4.3.4)

Such a property will imply compactness on L} (992), whenever 99 has the property that the
natural injection

LE(09Q) — LP(09) is compact. (4.3.5)

We recall the following sufficient condition for (4.3.5) to hold, established in Corollary 4.31
of [11].

Lemma 4.3.1 If Q is a bounded UR domain satisfying a two-sided John condition, then
(4.3.5) holds, for each p € (1,00).

To continue, we recall from (4.1.8) that
TwvTs — Twe = PpV[Pp, ®|Pp, (4.3.6)
o0 (4.3.4) will hold provided
[Pp, ®] = [Cp, ®] : LP(0Q) — LY(0N). (4.3.7)

Since Cpf = iB(op(z,v)f), this holds provided

(B, ®] : LP(0Q) — LY(09). (4.3.8)
Note that
(B.917() = PV [ B~ p){@() - ()} (0) doy). (43.9)
o0
Here is our first result.
Proposition 4.3.2 Assume
® € CH¥(R" End CY), (4.3.10)

50 0;® has modulus of continuity w for each j, i.e.,

9,9 (2) — 9,(y)| < Cw(la — y)). (4.3.11)
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Assume w satisfies the Dini condition
1
t
/ wi) dt < o0. (4.3.12)
0

Then (4.3.7)-(4.3.8) hold, and hence so does (4.3.4) for all ¥ € Lip(0S2, End C¥).

Proof. Our strategy is to apply Proposition A.2.3 to

u(z) = / Bz — y){®(y) - 9(@)} f(y) do(y), z € 9. (4.3.13)
o0

Note that E(z —y) and ®(x) are defined for x € Q2. We know that

N(u) € LP(09), ul,, = [B, P, (4.3.14)
given f € LP(0f)). We need to show that
N(Vu) € LP(09), (4.3.15)

and that 0ju has a nontangential limit on 0f2, for each j. To proceed, for x € Q2 we have

djulr) = — ;(x) / E(z — y)f(y) do(y)

o0N
T /Ej(fE —y){2(y) — ®(x)} f(y) do(y) (4.3.16)
o0

= vj(x) + w;(x),

with
®; = 0,0, Ej=0;E. (4.3.17)
Since v; = —®;B(f), results of §2.3 apply to yield N (v;) € LP(9N) and vj|aq = —P;B(f)|sq-

To analyze w;, write

d(z) — (y) = VO(2) (2 — y) + R(z,y)(z — y),

1 4.3.18
R(z,y) = / (VO(sz+ (1 — s)y) — DD(x)} ds, (4.3.18)
0
so R is continuous on R™ x R™, and
|R(z,y)| < Cw(|lz —yl). (4.3.19)
We have
wja) = = Vo) [ Eiw—9) @ (=) f) doly)
o0
(4.3.20)

- /R(m, YE;j(x —y) @ (z —y) fly)do(y)
o0

= wjl(:c) + wjg(.’L').
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Now Ej(z) ® x shares with E(z) the properties of being smooth on R"™ \ 0, odd, and
homogeneous of degree —(n — 1) in . Hence the results in §3.4 of [11] that yield (2.3.8)—
(2.3.9) also give N (wj1) € LP(99Q) and nontangential limits of w;; on 0€2.

It remains to consider wjs. We have

sup [R(z9)B;(s — ) ® (2 —y)| < LU vy e g0, (43.21)
zel'y |x - y|n
hence o)
Nuwjs(z) < C / — A==, p)do(y), = o0 (4.3.22)

As long as the Dini condition (4.3.12) holds, Proposition 5.1 of [11] yields
[Nwjal e a0) < CpllfllLro0)- (4.3.23)

To get nontangential a.e. convergence of wjo for all f € LP(0Q), we can use (4.3.23) to
deduce this from such convergence for all f on a dense linear subspace, e.g., for f € C(0%).
However, for f € C(912), such convergence at each x € 9f) follows by the Lebesgue domi-
nated convergence theorem. This finishes the proof of Proposition 4.3.2. O

This leads to the following compactness result.

Proposition 4.3.3 Assume Q is a bounded UR domain and that the natural injection
LY (0Q) — LP(0Q) is compact. Then

TuTo — Twe : LY(0Q) — LY (OQ) is compact, (4.3.24)
for all ¥ € Lip(0Q, End C*), whenever
® € C1(9Q, End CY). (4.3.25)

Proof. Compactness in (4.3.24) follows from (4.3.5) and (4.3.4) if ® € C'* (99, End C"),
given w as in (4.3.12). It then follows for all ® € C*(99, End C?), by a standard approxi-
mation argument. O

Corollary 4.3.4 Assume Q is a bounded UR domain satisfying (4.3.5), and
®d € CH(09,GL(L,C)). (4.3.26)

Then
T : L (0Q) — LY(0KY) is Fredholm, (4.3.27)

with Fredholm inverse Tg—1.

We want to expand the scope of Proposition 4.3.3 and Corollary 4.3.4, to a broader class
of Toeplitz operators, going beyond even ®, ¥ € Lip(9f2, End (CZ). For this, we will require
on §) the assumptions used in Lemma 4.3.1, namely that  be a bounded UR domain
satisfying a two-sided John condition (equivalently, € is an Ahlfors regular domain and
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satisfies a two-sided John condition, since these hypotheses imply Q is a UR domain). In
such a case, we have from Corollary 4.31 of [11] that

-1
g€ (n—1,00] = LI(OQ) C C(0Q), r=1-— ”q , (4.3.28)
and, from Proposition 4.29 of [11], that
C>(09) is dense in L1(09Q), Vgqe (1,00), (4.3.29)

where C'*°(0) is the space of restrictions to 99 of elements of C*°(R™). To complement
these results, we have the following, proven in Appendix A.2.

pE(l,OO), qE(n—l,oo), qu

4.3.30
= [J(09Q) is a module over L$(9Q), ( )
under our current hypotheses on 2. In such a circumstance,
¢ e LI(09) = Tg : LY(002) — LY(09), (4.3.31)
and
(I)k S Coo(aQ), H(I)k — q)HLtlz — 0= ||(Z¢)k - rS@Hﬁ(LJlD) — 0. (4332)
We also have (thanks to the validity of the Leibniz rule)
® € LI, GL(L,C)), ¢ >n—1= & c LI(99,GL((,T)). (4.3.33)

Then standard limiting arguments applied to Corollary 4.3.4 yield the following.

Proposition 4.3.5 Assume §2 is a bounded Ahlfors regular domain, satisfying a two-sided
John condition. Take p € (1,00) and assume

® € LY(09Q,GU(,C)), g>p, g€ (n—1,00). (4.3.34)

Then
Tp : LY (0Q) — LY(0KY) is Fredholm, (4.3.35)

with Fredholm inverse Tg-1.
Under the hypotheses of Proposition 4.3.5, we also have
Te : L (0Q) — LY(09), Fredholm, Vp € (1,q]. (4.3.36)
Parallel to (4.1.16), we set
tp1(®) = IndexTp on LY (09), (4.3.37)

and we get
D, U e LI(00,GL(L,C)) = 1p1(PT) = 1, 1(P) + 11 (D). (4.3.38)
We have a regularity result and index identity parallel to that of Proposition 4.1.4, given
as follows. Define Ko, and K3 , as in (4.1.19), and set
Le,=KerTy on LF(09Q),
i - 1(p ) . (4.3.39)
op = Ker(Tp)" on Ly(082),
SO
L(®) = 1p(®) = dim K¢, — dim K},
() = (@) = dim Ky, — dim I, a0
tp1(®) = dim Lg , — dim Lg ,,.

We have the following.
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Proposition 4.3.6 In the setting of Proposition 4.3.5, in particular, with the assumption
that ® € L1(0Q,GL(¢,C)) forq>n—1, ¢ > p,

Kop=La, and K}, =L}, (4.3.41)

and

tp1(P) = (D). (4.3.42)

Proof. The proof is similar to that of Proposition 4.1.4. We clearly have Ly, C K¢, and
K;p C Li’%’p, SO

tp1(P) < 1p(P). (4.3.43)
Similarly, ¢,1(®71) < 1,(®@71), but since 1,(®) + 1,(@71) = 0 = 1,1(®) + 1,1(®71), this
yields (4.3.42), and then this forces (4.3.41). O

REMARK. Comparison with (4.1.20) yields other regularity results. Going further, one can
extend Proposition 4.1.5 to cases where f € LP(0Q),Tef € L} (0€2). We leave this to the
interested reader.

4.4 Toeplitz operators associated to Calderén-Szego projectors

We return to the setting of §§4.1-4.2, but replace Pp by the Calderén-Szegd projector Sp.
Thus, given ® € L>®(9Q, End C?), we set

Tof = Sp®Spf+ (I —Sp)f, (4.4.1)

so Tg is bounded on LP(92) whenever Sp is bounded on LP(952) (cf. Proposition 3.2.1).
Note that the splitting £ = Fy @ Fi, as an orthogonal direct sum, yields

Sp = ( SD*) , (4.4.2)
and hence
= T‘I? 4.4.3
It is clear (via Proposition 3.2.2) that

A =Cp — Cp compact on LP(9)

(4.4.4)
= Tp — Tp compact on LP(0%2),

for all ® € L>°(9Q,EndC?). Hence, when D is of Dirac type and Q is a regular SKT
domain, Proposition 3.2.3 implies that T¢ — 7 is compact for all such @, for all p € (1, 00).
Hence all the Fredholm results of §§4.1-4.2 apply to such a situation.

Here we look at the behavior of 73 when € is not necessarily a regular SKT domain
(and D is perhaps not of Dirac type), based on the identity

Sp(I+ A)=Pp on L*(99), (4.4.5)
and the fact that

I+ A:LP(0QY) — LP(0N) is invertible for p € (po,p1), (4.4.6)
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for some pg < 2,p1 > 2. Recall that
A=Cp—Cp:LP(OQ) — LP(09), pe (1,00),

with
Cpf(x) = PVi / E(z,9)op(y, v(y)) (1) do(y).
o0
It follows from (4.4.5) that, with Mg f = ®f,

[SD7 MCI)](I + A) = [PD’ Mq)] - S'D[A’ Mq)]
As seen in §§4.1-4.2, if ® € C(0Q, End C*), or more generally
® € L™ N vmo(dQ, End C*),

then
[Pp, Mg| is compact on LP(99), Vp € (1,00).

Similarly, [Cp, Ms| enjoys such compactness, and, by duality, so does [C, Ms],

sequently [A, Mg]. This gives the following analogue of Proposition 4.1.2.
Proposition 4.4.1 Given py < 2, p1 > 2 such that (4.4.6) holds,
[Sp, M| is compact on LP(O), Vp € (po,p1),

whenever ® € L>® N vmo(dS2, End CY).

From here, using (parallel to (4.1.8)) the identity
TyTs = Tve + Sp¥[Sp, P|Sp,
we deduce that
TvTo — Tye is compact on LP(9Q), Vp € (po,p1),

provided
®, U e L*® N vmo(d9, End CY).

This leads to the following.
Proposition 4.4.2 If Q C M is a UR domain and
®, &1 € L N vmo(dQ, End CY),
then
To-1Te — I and ToTy—1 — I are compact on LP(0Q), Vp € (po,p1),

SO

T : LP(0QY) — LP(0QY) is Fredholm, Y p € (po,p1).

We have analogous results for Tq?.
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Parallel to (4.1.16), we set
ip(®) = Index 7 on LP(9Q), (4.4.19)
for p € (po,p1). Recall from §§4.1-4.2 the quantity
((®) =IndexTyp on LP(09), (4.4.20)
which was shown to be independent of p € (1,00). We have the following key result.
Proposition 4.4.3 In the setting of Proposition 4.4.2,
ip(®) = (@), Vp € (po,p1) (4.4.21)

Proof. We produce a norm-continuous path 73 ;, 0 <t < 1, consisting of Fredholm opera-
tors, such that 7¢ 90 = T3 and 731 = 7. To get this, take

Pr=tSp+(1—t)Pp, 0<t<1. (4.4.22)

This is a norm-continuous path of operators on LP(9%2), for p € (pg,p1). A computation,
using SpPp = Pp, PpSp = Sp, gives

P? =P, (4.4.23)
Furthermore, it is clear from (4.4.12) and results of §4.2 that
[P, M| is compact on LP(0S2), Vp € (po,p1), (4.4.24)
from which we deduce that, if
Ty1f = P@Pf + (I —Po)f, (4.4.25)

then 7+ is Fredholm for each t € [0, 1], and hence is the desired path from Tg to 7. The
index identity (4.4.21) is an immediate consequence. O

4.5 Twisted Toeplitz operators

In previous sections, we have extended the action of D from sections of £ — M to sections
of £€®CY, in a canonical fashion. Then we have taken ® € C(99Q, End (Ce), or a variant, and
defined T on LP(9, € ®@CY) and Tp on LP(99, Fo@CF). Here, we replace C’ by a complex
vector bundle C — M, with a Hermitian metric, and define “twisted” Toeplitz operators

Tp on LP(ON,E®C) and Te on LP(OQ,Fy®C). (4.5.1)
The first order of business is to define twisted versions of D and D,

D¢ : HSYBP(M, Fy @ C) — H*P (M, F1 ® C),

. (4.5.2)
De : HSP'YP(M,E ® C) — H*P(M,E ® C),

such that
opc(2,§) =op(x,§) @1, op.(,§) =op(z,§) @I (4.5.3)
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For the trivial bundle C* x M, this is done componentwise. However, if C is a nontrivial
bundle, more work is required. We will construct D¢ and D¢ when C has a connection,
i.e., a covariant derivative. To motivate the construction, recall from Chapter 2 that, if f
is scalar, and w is a section of Fy, then

D(fu) = fDu+ (Dof)u, Dof(x) = %JD(x,df(x)). (4.5.4)

We aim to define D¢ via
D¢(u®v) = Du® v+ (Dov)u, (4.5.5)

when w is a section of Fp and v is a section of C. It remains to define Dgv when v is a
section of the bundle C, which is equipped with a connection V. To get this, we note that
op(z,€) is linear in &, so

op(z,§) =op(x)§, op(x): T, — Hom(Foz, Fiz), (4.5.6)

or equivalently
O'D(.CC) For ® T; — Fiz. (457)

We can tensor with the identity on C, to extend op(x) to
op(z): Fou Ty @ Cp — Fiz @C,. (4.5.8)

Now, if v is a section of C, then its covariant derivative Vv is a section of T* ® C. We
complete the definition of D¢ in (4.5.5) by setting

(Dov())u(z) %Jp(x)(u(:zj) V(). (4.5.9)

Having D¢, we can define D¢ as in the Introduction. This operator is invertible provided
D¢ and D} possess UCP. In particular, if D is of Dirac type, so is D¢, and this leads to
invertibility. From here on, we will assume D¢ is invertible.

Having constructed the twisted operators D¢ and D¢, we lighten our notational load,
and simply denote these twisted operators by D and D, respectively. With E(z,y) denoting
the integral kernel of D!, acting on H*P(M,E ® C), we define

Cp : LP(9Q, € © C) — LP(9Q,E & C) (4.5.10)
as before, i.e., by
Cpf(z) = PVi / E(z,y)op(y, v(y)) f(y) do(y), (4.5.11)
o0

and similarly define Cp, Pp, and Pp.
We now define the operators T3 and T by the same formulas as before, i.e.,

Tof =PpPPpf+ (I —Pp)f,

(4.5.12)
Tef =Pp®Ppf+ (I —Pp)f,

for f € LP(09,E @ C) or LP(09, Fy @ C), respectively, where, in the current setting,

® € C(0Q,EndC), (4.5.13)
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or more generally

® € L Nvmo(9Q, EndC). (4.5.14)
From (4.5.3), which follows from our twisting construction, we have the crucial identity
op(2,)®(2) f () = B(2)op(x, &) (), (4.5.15)

for x € 02, € € TyM. The key to the extension of the previous results to the current
setting is the following.

Proposition 4.5.1 If Q C M is a UR domain and ® satisfies (4.5.14), then
[Pp, ®] : LP(OQ) — LP(0Q) is compact, Vp € (1,00). (4.5.16)
Proof. As before, we have [Pp, ®] = [Cp, ?], hence

[Pp, ®]f(x) = PVi/{E(w,y)¢(y) — ®(2)E(x,y) fop(y, v(y)) f(y) do(y), (4.5.17)

where we have used (4.5.15), with x = y, £ = v(y). As opposed to arguments in previous
sections, we do not necessarily have E(z,y)®(y) = ®(y)E(z,y) here, but we can come close
enough, as follows.

By the regularity of E(x,y) off the diagonal, it suffices to get compactness when f is
supported on a coordinate chart and x in (4.5.17) is restricted to that chart. Then we have

E(z,y)v9(y) = eo(z — y,y) +e1(z,y), (4.5.18)

where e;(x,y) has a weak singularity and

ol — ) = (21)" / (&, )@ 0€ de,

(4.5.19)
EO(Ea y) = O-'D(y, g)—l.
Thus, modulo a compact opeator, the right side of (4.5.17) becomes
PV / {eole — 3,9)B(y) — B(@)eo(x — 1,9) boy) 200 (,1(1))f (4) dor(y)
(4.5.20)

—PVi /{(I) ®(x) feo(x —y,9)9(y) " Pon(y, v(y)) f(y) do(y),

the latter identity by (4.5.15) and (4.5.19). At this point, we can again deduce compactness
from Theorem 2.19 of [11]. O

Corollary 4.5.2 In the seting of Proposition 4.5.1, if

o € C(00,Gl(C)), (4.5.21)
or more generally
®, 07! € L Nvmo(9Q, End C), (4.5.22)
then
T« LP(OQY) — LP(OQY) is Fredholm, Vp € (1,00), (4.5.23)

with a similar result for Tg.
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Thus we can set
1(®) =IndexTy on LP(OQ, Fo®C), pe€ (1,00). (4.5.24)

As before, this index is independent of p € (1,00). If also ¥ satisfies (4.5.21) or (4.5.22),
we have

L(OW) = () + o(P). (4.5.25)

Furthermore, if ® satisfies (4.5.21), ¢(®) depends only on the homotopy class of ® (within
the class of continuous sections of G/(C)). Also, results on the stability of the index in the
setting of (4.5.22) extend. We leave the details to the reader.

So far in this subsection, we have defined and studied

Ty : LP(3Q, Fo & C) — LP(8Q, Fy @ C), (4.5.26)

when C — M is a vector bundle, equipped with a connection, and seen that it is Fredholm
when ® € C(99Q, G{(C)), or more generally when ®, &~ € L N vmo(d, EndC). Let us
also use the notation

To = T To : R(Pp) — R(Pp), (4.5.27)

|R(7’D)’

where

R(Pp) = Pp(LP(0, Fo @ C)). (4.5.28)
We suppress the p-dependence; of course, we assume p € (1,00). Note that
Tof = Pp®f, feR(Pp). (4.5.29)
Also, if &, ¥ € L Nvmo(92, EndC), then
f@q; = fcpﬁp is compact on R(Pp). (4.5.30)
If ® satisfies (4.5.22), then Ty is Fredholm, and
Index Ty = Index T. (4.5.31)

Since the bundle C was equipped with a connection in order to define D¢, and hence Tg
and Tg, it is useful to record the following.

Proposition 4.5.3 The index of Te (hence of f@) is independent of the choice of connec-
tion on C.

Proof. Two connections on C give two operators D¢ that differ by an operator of order zero.
Hence the integral kernels F(z,y) differ by a weakly singular term, and so the two versions
of Ty differ by a compact operator. O

We now extend our notion of twisted Toeplitz operators. For simplicity, we assume D
is of Dirac type. Let Cy and C; be two vector bundles (of the same rank) over M, equipped
with connections. Then, associated to D : H*YVP(M, Fy) — H*P(M, Fy), we have twisted
operators

Dj: H" Y2 (M, Fo ® Cj) — HP(M,F1 ®C;), j=0,1, (4.5.32)
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and then associated Calderén-type projectors
Pj : Lp(aﬁ,]:o@Cj) —>Lp(3Q,fo®Cj), 7=0,1.

Let us take
Py € C(@Q,Hom(Co,Cl)), P, € C(@Q,Hom(cl,CO)).

(We could replace C' by L* N vmo.) Then we form C = Cy @ C1,

D¢ = (DO > CHSTYP(M, Fo @ C) — HSP(M, F; ® C),

D,

and
®q
¢ = < ) € C(09,End ().
D

Construction of P = Pp,, gives
P = <P°

As before, we form

5 > L LP(99, Fy @ C) — LP(99, Fo @ C).
1

Ty = POP + (I — P).

_ Ps Po®1 Py c_1_ D
T‘I’_<7>1<I>o7>o P¢ > Pi=1="7j

A calculation gives

If also
Uy
U = ( > € C(09,End (),
vy

(or more generally, in L> N vmo (92, End C)), then

ToTy = <770(I>1P1\I/07)0 + PS 0 > '

0 P1PoPo¥1P1 + P§

By contrast, we have

(19
2w = < " %) ,

Too — Po®1VoyPy + 'Pg 0
o= 0 P1doU P+ PS)

and

Now we know
Toy — TeTy is compact on LP(9, Fy ® C).

It follows that

(Po®1P1)(P1%oPy) — Po®1¥oPy is compact on LP(9Q, Fy ® Cp).

(4.5.33)

(4.5.34)

(4.5.35)

(4.5.36)

(4.5.37)

(4.5.38)

(4.5.39)

(4.5.40)

(4.5.41)

(4.5.42)

(4.5.43)

(4.5.44)

(4.5.45)

We are in a position to define a further class of Toeplitz operators. First, we simplify

notation (altering the convention used in (4.5.36)), and consider

U € 0(09, Hom(Co, 1)), @ € C(9, Hom(Cy,Co)).
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(As before, we can replace C' by L® Nvmo.) Then we define
Tv : R(Py) — R(P1), T :R(P1) — R(Py), (4.5.47)

by
Ty =P1¥ on R(Po), Te = PP on R('Pl). (4.5.48)

As in (4.5.28), we set
R(Pj) = Pj(LP(09, Fo ®Cj)), j=0,1, (4.5.49)
and suppress dependence on p € (1,00). It follows from (4.5.45) that
TsTy — Tpy is compact on R(Pp), (4.5.50)

and
f\pﬁp — fq@ is compact on R(Py). (4.5.51)

Note that the Toeplitz operators Tcpq; and T\pq) are of the sort treated in (4.5.27)—(4.5.29).
These results imply the following.

Proposition 4.5.4 Assume U € C(92, Hom(Cy, C1)) is invertible at each point of O, or
more generally

T € L Nvmo(dN, Hom(Cy,C1)), ¥~ € L= N vmo(dQ, Hom(Cy,Co)). (4.5.52)

Then Ty : R(Py) — R(P1) is Fredholm, with index independent of p € (1,00).

The next proposition is a useful precursor of an important “cobordism invariance” result,
which will be treated in §4.7.

Proposition 4.5.5 In the setting of Proposition 4.5.4, assume ¥ extends to M, satisfying
U € C(M,Hom(Cy,Cy1)), ¥ 'eC(M,Hom(Ci,Cp)). (4.5.53)

Then R
Index Ty = 0. (4.5.54)

Proof. Using a homotopy, we can assume V¥ is smooth, of class C2. Then, using ¥, we
can pull back C; to the vector bundle Cy, and hence conjugate Dp, acting on sections of
Fo ® C1, to an operator Dy, acting on sections of Fy ® Cp. Then P; is conjugated to a
projection acting on sections of Fy® Cy. The difference between Dy and D; is that they are
associated to different connections on Cy, the given one and the one pulled back via ¥. Now
these two connections can be joined by a path, producing a continuous family D, of elliptic
operators, acting on sections of Fy ® Cgp, all with the same principal symbol. They give rise
to a norm-continuous family of projections Ps, differing by compact operators from Py, and
ﬁy is conjugated to 17, where

Ty = Pilgepyy:  Ts : R(Po) = R(Ps). (4.5.55)

The proof of Proposition 4.5.5 is completed by the following result.
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Lemma 4.5.6 Let {P; : 0 < s < 1} be a norm continuous family of projections on a
Banach space V. Assume Ps — Py is compact for each s. Set

T, = PS|R(PO), Ty : R(Py) — R(Ps). (4.5.56)

Then, for each s € [0,1], Ts is Fredholm, of index zero.
Proof. Write P, = Py + K, and consider

Ty = P.Py+ (I — P)(I—Py) =1+ K,(2Py —1I). (4.5.57)
For s small, T, is invertible on V, and hence Ty : R(Py) — R(Ps) is an isomorphism.
Similarly, we can partition [0, 1] into intervals [sj, sj41], 0 =859 < 51 < --- < sy = 1, such
that
Pulgp, y: R(Ps;) — R(Py) (4.5.58)
J

is an isomorphism, for each j, and each s € [sj,s;41]. In fact, this isomorphism is the
restriction to R(Ps;) of

Tyj= PPy, + (I — P)(I - Py,), s€[s;,s8541), (4.5.59)

which is invertible on V, and differs from I by a compact operator. Composing these, we
get a norm-continuous family Qs of invertible operators on V', each differing from I by a
compact operator, such that, for each s € [0, 1],

Qs : R(Pp) — R(Ps) is an isomorphism. (4.5.60)

Then
Q5 'Ts : R(Py) — R(Py) (4.5.61)

is a norm continuous family of operators on R(Fp), each differing from the identity by a
compact operator, hence each Fredholm of index zero. Since @), is invertible, this implies
each T is Fredholm, of index zero. O

4.6 Localization of Toeplitz operators

We take D, acting on sections of Fy ® C, of Dirac type, & C M a UR domain, ® €
L Nvmo(9N2, End C), and

Te = Pp®Pp+ (I —Pp) : LP(0Q, Fo @ C) — LP(9Q, Fy @ C). (4.6.1)

Recall that Pp = (1/2)I + Cp and Cp is the upper left block of Cp, defined by

Cpf(x) = iPV / E(z,y)on(y, v(4)) 1 (4) do(y), (46.2)
o0

where E(xz,vy) is the integral kernel of D~!. Hence with E = <EOO EOI),

Eiv En

Cpf(x) = Z'PV/EOI(%ZU)O'D(CU’ v(y)) f(y) do(y). (4.6.3)
o0
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Here, we consider some localization phenomena for Toeplitz operators.
To begin, we consider localizing T, when 0f2 is not connected. Suppose

J

ol = U I';, disjoint closed subsets. (4.6.4)
j=1

We do not assume the sets I'; are connected. Let us set

Csf() =PV [ Bowy)on(y. v(0) () do (o) (4.6.5)
Ly
for
zely, fell(T;,FoxC(). (4.6.6)
We have
C; : LP(T;) — LP(T;), (4.6.7)

for 1 <j <J, p€ (1,00), hence ®{C; : LP(0Q) — LP(9R). It is clear from the behavior of
E(x,y) that

J
C - @Cj is compact on LP(092), Vp € (1,00). (4.6.8)
j=1
Consequently, with
1
P; = 5[—1— C;: LP(Tj) — LP(I'y), (4.6.9)
we have
J
Pp — @Pj compact on LP(01), 77]2 — P; compact on LP(I';). (4.6.10)
j=1
Then, with
Trj7Q,<I>f = PjCI)ij + (I — Pj)f, fe LP(Fj), (4.6.11)
we have
J
Te — @Trj7g7<1> compact on LP(9). (4.6.12)
j=1

Clearly ij797¢ depends only on @\pj. Note that, if
®, 07! ¢ L Nvmo(9Q, End C), (4.6.13)

then each operator Tt o ¢ is Fredholm on LP(T';, Fo ® C), if p € (1,00), by (4.6.12). Fur-
thermore,

J
IndexTy = » IndexTr, 0.0 (4.6.14)

j=1
We move on to another localization phenomenon. Namely, with @ C M as above,
assume there exists another Riemannian manifold M, a neighborhood O of Qin M, and
an open OcM , isometric to O. (From here on, we identify O and O.) Assume that
there exists a first order elliptic differential operator Don M , acting on sections of a vector
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bundle over M which agrees with 7y ® C on 0= O, such that the coefficients of D on O
agree with those of D on O. We can then form

(% DY) (4.6.15)
D b

with b > 0 on M, b = 0 on a neighborhood of Q, b > 0 on M\ (5, so D is invertible, and
then we have the associated Toeplitz operator

TJ\A/fﬁP :

Here, T o = Pp®Pp + (I = Pp), P = (1/2)1 + Cp, and Cf is given as in (4.6.3), with

Epi(x,y) replaced by En (z,y), and clearly the difference Epi(z,y) — E(n(:n, y) is weakly
singular. Hence, for ® € L Nvmo(992, EndC),

LP(09), Fo @ C) — LP(99, Fo @ C). (4.6.16)

Te —T

7 18 compact on LF(99Q, Fo ®C), (4.6.17)

for all p € (1,00). Thus, if also ®~! € L N vmo(dQ, End C),

IndexTe = IndexTy; 4- (4.6.18)

4.7 Cobordism invariance of the index

As in §4.6, we take D, of Dirac type, acting on sections of Fy ® C, and assume 2 C M is a
UR domain. We begin with the following significant sharpening of Proposition 4.5.5.

Proposition 4.7.1 If ® € C(Q,G((C)), then
Index Ty = 0. (4.7.1)

Proof. Extend ® to M as a continuous section of EndC. There is a neighborhood © > Q
on which @ is invertible. Then one can take a smoothly bounded My such that QcC My cC
My C O. Let M denote the double of Mj. Using a gluing construction, it is shown in
[33], p. 111, that there are vector bundles fj — M, extending ‘7:J'|Mo’ and that there is a
first order elliptic differential operator Don M , extending D|M0' In addition, one can use
reflection to extend Clgz, to C — M and to extend Plg7, to D e C(M, G/(C)). One can also

give C an extended connection.
Now Proposition 4.5.5 applies, to give

Index Ty; ,, = 0. (4.7.2)

On the other hand, (4.6.18) implies
Index Ty = IndexTy; 4, (4.7.3)
so we have (4.7.1). O

Proposition 4.7.1 applies in the following setting. Let us take an open set O C €2, with
the properties that O is a UR domain and

00 =0QUT, disjoint closed subsets. (4.7.4)
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Let
® e C(O,GL(C)). (4.7.5)

Then, using notation as in (4.6.11), we have

Ty Fredholm on LP(09, Fy ® C),
TQQ’(’l@ Fredholm on L”(@Q, Fo® C), (4.7.6)
TF,O,‘P Fredholm on Lp(l“, Fo® C)

Furthermore,
T —Too,0e is compact on LP(09), (4.7.7)

SO
Index Tq> = Index TaQ(),q). (478)

We also have the analogue of T, which we will denote Tp &, defined by replacing €2 by O
in our basic construction, and (4.6.14) gives, in this setting,

IndexTop ¢ = IndexThn 0.0 + IndexTr 0.5. (4.7.9)
Given (4.7.5), we can apply Proposition 4.7.1 (with O in place of ) and deduce that
IndexTp ¢ = 0. (4.7.10)
Putting this together with (4.7.8)—(4.7.9) then yields the identity
Index Ty = — Index Tt 0,¢. (4.7.11)
Furthermore, with Q=0 \ O, we have 0Q =T and
IndexTr 0,0 = —IndexTQ@. (4.7.12)

Hence
Index Ty = Index T§ 4. (4.7.13)

This chain of reasoning can be used in cases where 0€) is rough but 99 is smooth.
There are tools available for calculating the right side of (4.7.13) (including the Atiyah-
Singer index theorem) when 99 is smooth, so the identity (4.7.13) provides a path for the
calculation of the index of T, in many cases where 02 is rough.

4.8 Further results on index computations
Here we use results from previous sections to draw conclusions about computing
(P) = 1(P; D) = Index Tp. (4.8.1)
We assume for simplicity that
d € C(00,GL0)). (4.8.2)

Results for & € L> Nvmo(9N, GL({)) follow via results of §4.2.
We begin with general conclusions that can be drawn from the fact that (4.8.1) yields
a group homomorphism

L [0Q;Gel)] — Z, (4.8.3)
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where [0Q; G({)] is the group of homotopy classes of continuous maps of 9Q to GL({).
Writing

O(x) = A(x)T(z), Alx) = (B(2)®(2)*)", WeCO2,UF), (4.8.4)
we have 1(®) = 1(A) + (V) = +(¥), since a homotopy argument gives ¢(A) = 0, thanks to

the contractibility of the set of positive-definite ¢ x £ matrices. Hence we can focus attention
on the case

e C(ONUY)). (4.8.5)
Furthermore, we can write
O(z) = Po(z)P1(2), (4.8.6)
with
Bo(z) = (@(f‘f) 1) | p(x) = det B(z), B1 € (A, SU(L)), (4.8.7)
and
D) = (P )
{(®) = (o) + 1) (4.8.8)
= 1(p) + 1(P1),
with ¢ € C(99, S'), S c C. Then
[09; S = 0 = 1(®) = 1(P1), (4.8.9)
and
[09; SU0)] =0 = 1(P) = 1(p). (4.8.10)
As for the applicability of (4.8.9)—(4.8.10), we note that
08 simply connected = [9§; S'] =0, (4.8.11)
and
dimQ <3 = [09; SU(2)] = 0. (4.8.12)
On the other hand, [T3;S'] # 0 and [T3; SU(2)] # 0.
We now specialize to the case where 02 is homeomorphic to a sphere:
MN~=S" m=n—-1 (n=dimQ). (4.8.13)

In such a case, [0Q; U (£)] =~ mp,(U(€)). That is to say, we are in the setting of m,,(Y"), the
group of homotopy classes of maps from the sphere S™ to a space Y (with Y = U(¥)).
Classical results of Bott (cf. [18]) imply

m=2p—1= mn(Ul) =2, if > (4.8.14)

By contrast,
m¢&{1,3,...,20 — 1} = 7, (U(¥)) is finite. (4.8.15)

When (4.8.14) holds, let
0 [0Q;U()] = Z (4.8.16)

denote the induced isomorphism (uniquely defined up to sign). We have the following.
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Proposition 4.8.1 Assume Q@ C M is a UR domain and (4.8.13) holds. If m = 2u — 1
and £ > i, then there exists a = a(Q2, D) € Z such that

((®,D) = ad([®]), V& e CONU{)). (4.8.17)

If m¢{1,3,...,20 — 1}, then
u(®;D)=0, V®eCONUWY)). (4.8.18)
Actually, the argument given so far yields (4.8.17) with = «y, possibly depending
on ¢ (satisfying ¢ > pu, m = 2u — 1). We now establish that « is independent of such ¢
(up to sign). This uses the fact that the natural inclusion U(¢) < U(¢ + 1) induces an
isomorphism 7, (U({)) = 7 (U0 + 1)) for m = 2 — 1, £ > p (cf. [18]). In more detail,

let &, € C(9Q,U(¢)) have the property that its homotopy class generates 7,,(U(¢)). Then
t(®g, D) = ay (up to sign). Now &y q € C(0Q,U (¢ + 1)), given by

P
Qo1 = < ¢ 1)

gives a generator of 7, (U(¢ + 1)), by the isomorphism mentioned above, and clearly
(Ppy1, D) = 1(Py, D). Hence apr1 = ap (up to sign), as asserted.
This argument also yields the following.

Corollary 4.8.2 In the setting of Proposition 4.8.1, if m =2u—1 and {1 > w, and if there
exists &1 € C(0Q,U(41)) such that

Index Ty, =1, (4.8.19)
then (4.8.17) holds with o = %1, for all £ > p.

In fact, we see that a must be a nonzero integer of magnitude < 1.

Our next goal is to produce some cases where Corollary 4.8.2 applies. We begin with
an apparent digression. Namely, let B C CH* be the unit ball. Assume p > 2. Let
Sy, : L?(B) — L?(B) be the Szegd projector onto the space of boundary values of functions
holomorphic on B. Since holomorphic functions satisfy an overdetermined elliptic system,
this is a different sort of projector from what we have been considering. For example,

Sh € OPSY )y, 5(0B). (4.8.20)

This is sufficient to imply that operators 7¢ = SR ®Sy + (I — Sp) are Fredholm if & €
C(0B,U(¢)), and one has an analogue of (4.8.17):

Index 1o = apd([P]). (4.8.21)

In [32], it is shown that (4.8.21) holds with a;, = £1. An alternative treatment of such
an index formula, in a more general setting, was done by Boutet de Monvel in [5]. His
formula, valid when B C C* is a smoothly bounded, strongly pseudoconvex domain, can
be described as follows. Consider

D=08+3 : Abeven(cH) — ADedd(ch). (4.8.22)
This is an operator of Dirac type. Then
Index 7 = ¢(®; D). (4.8.23)

See also [3], for a proof of (4.8.23) using K-homology. We have the following consequence.
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Proposition 4.8.3 When Q2 = B is the unit ball in C* and D is given by (4.8.22), then
(4.8.17) holds with oo = £1, provided ¢ > fu.

From here, we obtain the following.

Proposition 4.8.4 Let Q C CH* be a bounded UR domain and let D be given by (4.8.22).
Let £ > pu. Then

there exists &1 € C(0Q,U(f)) such that IndexTe, = 1. (4.8.24)

Proof. We can assume 0 € B C B C Q. Take ®; € C(0B,U({)) such that T ¢, has index
1, using Proposition 4.8.3. Then extend ®; to an element of C'(C*\ 0,U(¥¢)), homogeneous
of degree 0, and restrict to 0§2. The cobordism argument of §4.7 implies

Index T ¢, = IndexTp ¢, (4.8.25)

so we have (4.8.24). O

Corollary 4.8.5 Let 2 C CH be a bounded UR domain and let D be given by (4.8.22). If
0Q is homeomorphic to S**~1, then (4.8.17) holds, with o = +1.
4.9 Another class of Toeplitz operators

Let D be a first order elliptic differential operator on a compact manifold M, as in §1. Let
Q) C M be open, possibly with nasty boundary. We define

D— <D D*> (4.9.1)

as a closed, unbounded operator on Hy & H; (with H; = L?*(Q,F;)), using the maximal
extension of D, so

Dom D = {u € Hy: Du € H;}, Dom D* = H}(Q,F). (4.9.2)

Here H{(Q,F1) denotes the closure in H(Q,F;) of the space of smooth sections with
compact support in Q. Then D? has compact resolvent on Hp, though not on Hy. (In
fact, D has infinite dimensional null space on Hy.) We recall some results from [3]. From
Proposition 1.1 of [3] we have

[M,, D(D? + 1)~/2] compact on Hyo® Hy, V¢ e C(Q), (4.9.3)

where M, acts on H; by scalar multiplication. Furthermore, D has closed range. As shown
in Proposition 3.1 of [3], (4.9.3) implies that the pair (M, D) defines a relative cycle

(D] € Ko(,09). (4.9.4)

Here, K((Q,09) denotes a relative K-homology group. We refer the reader to [3] for the
definition and basic properties of this group, and also to the groups Ki(9f2) and K'(99)
mentioned below.

If Py denotes the orthogonal projection of Hy onto

9%(Q,D) = {u € L*(Q, Fy) : Du =0}, (4.9.5)
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and we set

7o H%(Q, D) — H%*(Q, D), Fou= PyMyu, (4.9.6)
for u € H2(Q, D), ¢ € C(Q), then with
Cu(Q) = {p € C(Q) : ¢laa =0}, (4.9.7)
we have
¢ € C.(Q) = 7, compact on $*(Q, D), (4.9.8)

so we get a linear map
7:C(09) — QH* (D)), T4 ="7p ploa =1, (4.9.9)

where if H is a Hilbert space, Q(H) = L(H)/K(H) is the Calkin algebra. Furthermore,
closely related to (4.9.3), we have

v € C(QY) = [M,, Py] compact, (4.9.10)
S0
Trg =TfTg, [, € C(09). (4.9.11)
The map 7 defines a K-homology cycle,
[7] € K1(09), (4.9.12)
and (cf. [3], Proposition 4.1) we have
[7] =0[D], 0:Ko(Q,00) — K1(09). (4.9.13)
We move from scalar multipliers to matrix multipliers. If ® € C(99Q, End C'), we have
6 € Q(H%(Q, D) @ CH, (4.9.14)
and if also ¥ € C(99, End C),
TOTY = Tow. (4.9.15)
Hence
d € C(00,GL(L,C)) = 79 invertible in Q(H2(Q, D) ® C*), (4.9.16)
and we have an index map
j(®) = index of 7o, (4.9.17)
giving
j:10Q; Ge(¢,C)] — Z, homomorphism. (4.9.18)
As in (4.1.30), [09; GL(¢,C)] denotes the group of homotopy classes of continuous maps
o0 — GU(¢,C).

This also has a K-theoretic interpretation. The homotopy class of ® € C'(9€, GL(¢,C))
defines
[®] € K'(09), (4.9.19)

and, with [7] as in (4.9.12)—(4.9.13),
§(®) = (7, [2)) (4.9.20)

is given by the intersection product
K1(09) x KY09) — Z. (4.9.21)

To compare j(®) with ¢(®) from §4.1, we note that Proposition 4.3 of [3] yields the
following.

56



Proposition 4.9.1 If Q has smooth boundary, then
J(®) =u(®), VI eC(00 GLTC)). (4.9.22)

Generally, when (2 is a UR domain, the association ¢ +— T, constructed in §4.1 yields
an element
[T] € K1(09). (4.9.23)

Proposition 4.3 of [3] implies
[T] =[r] in Ki(09), (4.9.24)

when © has smooth boundary. One might conjecture that (4.9.24) holds for general UR
domains. This would imply that (4.9.22) holds for general UR domains, since both sides of
(4.9.22) are given by the intersection product (4.9.21).

A Auxiliary results

A.1 Invertibility of D and behavior of D!

As in §1, we have a first order elliptic differential operator D, mapping from sections of
Fo to sections of F; (each of rank k), on a compact, connected Riemannian manifold M,
equipped with a C? metric tensor. Such an operator is given in a local coordinate chart U
(and with respect to local trivializations of ;) by

Du(z) = Aj(x)0ju(z) + B(z)u(x), (A.1.1)
(using the summation convention), and we assume
A; € C*(U,EndC"), B e CY(U,EndC"). (A.1.2)

We take a € C1(M), a > 0, and set

iM, D*
oo (W 2, a1

where M,u = au. Here, in such local coordinates,

D*v(z) = —A;(x)*j0(z) + B(z)v(z),

- s s (A.1.4)
B(x) = —g(2)""%9;(g(2)"/24;(2)") + B(a)",
so A% € C2(U,End C*) and B € C*(U,End C*). In this situation, we have
D: HYYP (M, E) — HP(M,E), sc[-2,1], pe(1,00), (A.1.5)

where £ = Fy @ F1. We begin our investigation of conditions under which D is invertible
in (A.1.5) with the following result.

Proposition A.1.1 Under the hypotheses given above, D in (A.1.5) is Fredholm, of index
zero, and in each such case,

KerD C H*Y(M,£), Vq < cc. (A.1.6)
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Proof. The symbol smoothing technique described in Chapter 2 of [29] (see also [31], Chapter
13, §9) gives, for 6 € (0,1),

D =D#+D’+ Mz, D¥eOPS|;, elliptic,

Db e OPC2813%, BeC'. (A.1.7)
Then D# has a two-sided parametrix
E* € OPS3, (A.1.8)
with the mapping property
E# . H%P(M,€) — H*™P(M,€) (A.1.9)
(valid for all s € R, p € (1,00)), and a standard iterative argument applied to
Du=f=u=E*f— E#*D'u— E#(Bu), mod C*®, (A.1.10)
making use of the mapping property (A.1.9) and
Db HOTLI2r L HOP Yo e (—2(1—90),2), pe (1,00), (A.1.11)
gives
we HYP(M,E), Du € HY(M,E) = u € H*™(M, &), (A.1.12)

for each s € (—2,1], p,q € (1,00). This implies (A.1.6). Furthermore, E# is a two-sided
Fredholm inverse of D in (A.1.5). As for the index calculation, note that D differs by a
compact operator from what one gets by taking a = 0, so

Index D = Index D + Index D* = 0, (A.1.13)

where the last calculation takes into account the regularity result (A.1.6). O

Proposition A.1.2 In the setting of Proposition A.1.1, for u = (ug,u1) € NgH>(M, &),
Du=0<+<=u|,=0, Dug=0, D"u =0, (A.1.14)

where

O={xeM:a(x)>0}. (A.1.15)

Proof. The implication < is obvious. For the implication =, note that if u € Ker D, then

Im(Du,u)r2 = [ alu,u)dV = 0. (A.1.16)
/

Hence u = (ug,u1)! € KerD satisfies au = 0, so v = 0 on O, and hence Duy = 0 and
D*u; =0 on M. O

Putting together Propositions A.1.1-A.1.2 gives the following.

58



Corollary A.1.3 In the setting of Propositions A.1.1-A.1.2, D in (A.1.5) is invertible
provided that, given u = (ug,u1)’ € NGH>I(M,E),

upl, =0, Dug=0 on M= ug=0 on M, (A.1.17)

and
ul‘O:0, D*ui =0 on M= u1 =0 on M. (A.1.18)

The operator D is said to have the unique continuation property (UCP) provided the
implication (A.1.17) holds for arbitrary nonempty O C M (and without the requirement
that M be compact). There is a similar notion for D* to have UCP. We thus have the
following.

Corollary A.1.4 In the setting of Proposition A.1.1, if O in (A.1.15) is nonempty, then
D in (A.1.5) is invertible, provided

D and D* have UCP. (A.1.19)

One well known case where Corollary A.1.4 applies is when M has a real analytic metric
tensor and the coefficients of D (and hence of D*) are real analytic. Then Holmgren’s
uniqueness theorem implies (A.1.19). Another is when op(z,£)*op(x, &) is a scalar multiple
of the identity. Here, op(x,§) denotes the principal symbol of D. In local coordinates (with
the summation convention)

op(x,§&) = iA;(x)E;. (A.1.20)

In such a case, one sometimes says D is of Dirac type. Here is a more general class of
operators to which we will show (A.1.19) applies.

Definition. We say D is of generalized Dirac type provided there exists a first order elliptic
differential operator D : H**\P(M, F) — H*P(M, Fy), given in local coordinates by

Du(z) = Zj(a:)ajv(x) + B(z)v(x), jj eC? BeC, (A.1.21)
such that
op(@, §op(x, &) = (@, I, ~(x,§) € (0,00) for &#0. (A.1.22)
Note that ‘ ‘
Y&, &) = ¥* (@), A e C?(U). (A.1.23)

Proposition A.1.5 If D is of generalized Dirac type, with D and D having the regularity
of (A.1.2) and (A.1.21), then D, D, and D* all have UCP.

Proof. If ug € quZq(M’ Fo) satisfies Dug = 0, then
Lup=0 on M, L=DD, (A.1.24)
and, in local coordinates
Lug(z) = 7% (2)0;0)uo () + X;j(x)0juo(x) + Y (x)uo(z), (A.1.25)

where

X; = A(OpAj) + A;B + BAj € CL(U),

- - (A.1.26)
Y = A;(0;B) + BB € C°(U).
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Thus L is a strongly elliptic, second order operator, with real principal symbol. Classic
work of [1] and [8] yields

L has UCP. (A.1.27)
Hence D has UCP, if D is of generalized Dirac type. Note that (A.1.22) implies
op(@,8)op(x, &) = (@, 81, (A.1.28)

so also D is of generalized Dirac type. Applying adjoints to (A.1.28) gives

9 D+ (SC,f)O‘D* (.’E,f) = 7(3376)]’ (A129)

so also D* is of generalized Dirac type. This finishes the proof of Proposition A.1.5. O

For the rest of this subsection, we assume that D in (A.1.5) is invertible, with inverse
DL HSP(M,E) — HTYP(M,E), se[-2,1], pe (1,00). (A.1.30)

We investigate properties of its integral kernel E(z,y), given by

D lu(x) = /E(x,y)u(y) av(y). (A.1.31)
M

Note that 6, € H™*P for each ¢ > 0, for some p = p(e) > 1, and E(z,y) = D~ 1§,(z).
We have E(-,y) € H'=¢P()(M). Furthermore, the arguments yielding the regularity result
(A.1.12) are of a local nature, and we have

E(,y) € HXY(M\ {y}), Vq< oo (A.1.32)

loc

Similar arguments apply to E*(z,y) = E(y,z)*, the integral kernel of (D*)~!, yielding

E(y,) € HYI(M \{y}), Vq< oo (A.1.33)
It follows that (A, + Ay)E € L (M x M \ diag), and hence

E e HXY(M x M\ diag), Vg < 0. (A.1.34)
In particular,

E € Cl.(M x M\ diag), Vr<2. (A.1.35)

It remains to investigate £ on a small neighborhood of the diagonal. Hence, given
Yo € M, we want to investigate E on O x O, where O is a coordinate neighborhood of yg.
Our subsequent calculations will be done in such a coordinate chart.

Recall that the class of classical symbols S7}' is defined by requiring that (the matrix-
valued) function ¢(z, &) has an asymptotic expansion of the form

Q(xvf) NQm(xa€)+Qm—l(x7§)+"' ) (A136)

with ¢; smooth in z and ¢ and homogeneous of degree j in £ (for || > 1). Here we
find it convenient to work with classes of symbols C"S7|, which are only C" in the spatial
variable, while still C*° in the Fourier variable. The family of classical pseudodifferential
operators associated with such symbols whose symbols can be expanded as in (A.1.36),
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where ¢;(X,§) € C’TSm 7 is homogeneous of degree j in & for €l > 1, j=mm—1,...,
will be denoted OPC’TSm Finally, we set OPC" S} for the space of all formal adjoints of
operators in OPC"S7}.

Let Ey(D, x) denote the operator in @PC’zSc_ll, given by

Eo(D, z)u(z) = (27) " / Eo(&, y)e' ™ Su(y) dy de, (A.137)

with
Eo(6.y) = AW, O)7", A& =Y iAW),
J (A.1.38)

Aj(y) = < Aj(zy) _A{)(y)*> .

The Schwartz kernel of Ey(D, z) has the form

eo(r —y,y) = (QW)_”/Eo(f,y)e“x_y)f d€. (A.1.39)

It follows that eg(z,y) is odd in z, smooth in z € R™\ 0, and homogeneous of degree —(n—1)
in z, with C? y-dependence. Let us also note that eg(z — y,y) has a strictly off-diagonal

form:
B _ 0 eo1(z —y,y)
eo(z —y,y) = (610(:13 ) 0 . (A.1.40)

As a first step toward comparing eg(z — y,y) and E(zx,y), we apply D to (A.1.37),
obtaining

DE(D a)u(x) = (2m) " [ [Al.©) + B @] Eo(€.n)e™ Vouly)dyde, (A1)

with A(z, &) as in (A.1.38) and B* € C1(O). Note that A(y,&)Eo(¢,y) = I. Hence
Az, §)Eo(y, §) = I+ [Alz, &) — Ay, §)]Eo (&, y)

(A.1.42)
=T+ Hy(x,y)(ze — yo)&Bo(6,y),

where

iAj(x) —iA;(y ZH@ z,y)(xe —yi), Hyj € CHO x O). (A.1.43)
Then an integration by parts gives

DEy(D, x)u( /R x,y)u(y) dy, (A.1.44)

where

Ra.y) = (2m) " [ BEn(e )¢

(A.1.45)

. -n 9 (x—y):
—i(2m) /%{ng(x,y)ijo(ﬁ,y)}e ( y)gdf.
The amplitudes in the integrands in (A.1.45) are homogeneous in & of degree —1. Hence

R(z,y)| < Cla — y[7. (A.1.46)
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In terms of (A.1.39), we have

Dyeo(z — y,y) = 0y(x) + R(z,y). (A.1.47)
In local coordinates,
D tu(e) = [ B 0)ulw)Vo(o) dy (A143)
since dV (y) = \/g(y) dy. We desire to estimate the difference
er(z,y) = E(z,y)vV9(y) — eo(z — y,9). (A.1.49)
Note that, by (A.1.48),
Dmel(x7 y) = _R(:Ua y) (A150)

Given (A.1.46), a dilation argument parallel to that used on pp. 200-201 of [23] gives, for
each € > 0,
ler(z,y)| < Cela —y|~ (249, (A.1.51)

and
Vaeer(z,y)| < Celz — y| 719, (A.1.52)

From the results on ep(x — y,y) above plus (A.1.51)—(A.1.52), we deduce that
|E(z,y)| < Cdist(z,y)”" ™Y, |V.E(z,y)| < Cdist(z,y) " (A.1.53)
Since the integral kernel of (D*)~! is E*(z,y) = E(y,z)*, we deduce that also
|VyE(z,y)| < Cdist(x,y) " (A.1.54)
REMARK. If the metric tensor of M and coefficients of D are C*°, the analysis of E(x,y)
can be done much more briefly. In that case,
D!, Ey(D,z) € OPS; (M), (A.1.55)

and
D! — Ey(D,x) € OPS*(M), (A.1.56)

so0 e1(z,y) is the integral kernel of an operator in OPS(M). These results imply (A.1.53)-
(A.1.54) and also (A.1.51)—(A.1.52), with € = 0, except that, when n = 2, (A.1.51) becomes

1
e1(z,y)| < Clog ——, A.1.57

for |x — y| small.
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A.2 [P-Sobolev spaces on boundaries of Ahlfors regular domains

We recall some results from §3.6 of [11], but with some slightly different arguments. Let
Q2 C R"™ be bounded and Ahlfors regular. Given ¢ € C}(R™), we set

Orjp = k00 — V0P| 5o (A.2.1)
Note that if also 1 € C}(R™),
/(aﬁ'k@)w do = /{Vk(aj‘P)w — Vj(ak¢)¢} do
o0

o

— /{(3jg0)(8k¢) — (Okp)(059) } AV
0

(A.2.2)
= /{W@(&k#’) — vpp(0p)) } do
o0
= _/(p(aTjkw) dO’,
o0
the second and third identities by the Gauss-Green formula (“easy” version),

/Vij do = /8kF] dV, (A.2.3)
o0 Q

applied first to F; = (0j¢)1, and its counterpart with j and k switched, so the resulting
integral is

/ [(00)(0k0) + (Dudy0)) — (00) (00) — (0;00)0} AV (A2.4)
Q

and the resulting cancellation yields the second line in (A.2.2), provided ¢, € C3(R").
This gives (A.2.2) for such ¢, 1, and a limiting argument gives (A.2.2) for ¢, € C}(R™).
For later use, we recast this argument. We set up the vector fields

Gk = (9jp)ver — (Orp)ie;,

(A.2.5)
Hji = (Ory)ej — p(05¢)ek,
where {e1,...,e,} is the standard orthonormal basis of R™. Then
div G = div Hji. = (00) (Ox) — (Orep) (05)), (A.2.6)
v ij = (87']'}@(:0)1/]; v ij = _()0(87'3'1@1/))7
Then (A.2.2) can be rewritten
/(8Tjkg0)¢ do = /V -G do
[2}9] o0
= / div Gy dV
“ (A.2.7)
= /I/ . ij do
o0N
—- [ ¢@,0)do
o0
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a sequence of identities that applies directly to all ,% € C}(R"), using a slightly more
sophisticated version of the Gauss-Green theorem, given in §2.2 of [11].

To proceed, given f € LP(9N), p € [1,00], we say f € LI (99Q) provided that for each
J, k, there exists fj, € LP(0€2) such that

[@ordo = [otido. voechEn. (A.2.8)
[2)9] o0

In such a case, we say

Orn | = fik- (A.2.9)
By (A.2.2), or (A.2.7), if f = 1laq, with ¢ € CH(R™), then f € LY(9Q) and fj, =
V05 — vjOki|aq-

Proposition A.2.1 For each p € [1,00], L}(99Q) is a Banach space, with norm

£ lee =1 llee + D 105, flle- (A.2.10)
gk
Proof. The right side of (A.2.10) makes L} (92) a normed linear space. To check complete-

ness, suppose (f#), is Cauchy in LY(9€), in such a norm. Then we have f, fj; € LP(99)
such that

= f, Or f" — fijr in LP(09). (A.2.11)
It suffices to show that
Or | = Fik- (A.2.12)
This follows from
/(8Tjkg0)f“ do = — / ¢ O, f1 do, (A.2.13)
o0 o0
since taking p — oo yields (A.2.8). O

The following is useful information on Lip(9f2).

Proposition A.2.2 We have
Lip(0Q2) C L§°(092). (A.2.14)

Proof. Suppose f € Lip(d9), so f = ¥|sq, with ¢ € Lip.(R™). We can use a mollifier
to construct ¥* € C§°(R™) such that y* — 1 uniformly and [[V#||pe < ||¥]Lip; set
fH* = ¢H|9q. Then, for all ¢ € C3(R™),

/(&jkgo)f do = lim /(aTjkcp)f“ do. (A.2.15)
H—00
o0 o
Meanwhile, for all v,
/(a.rjkcp)f“ do = —/cpf]’.‘k do, (A.2.16)
oN oN

with fj”k = VR0 YH — VO sq. We have

(8Tjk<0)f do = — lim wf’.‘k do, sup |f“k\ < ||f||Lip. (A.2.1?)
H—00 J onN J
o0 o0
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Hence

| [ @07 do| < Wfluiiomllolisiony: ¥ € CHED) (A2.18)
o0
so there exist
fik € L72(09Q,0), | fikllzeoo) < IfllLip@o) (A.2.19)
such that
[@irdo == [ofido. voech@. (A.2:20)
o0 o0
This completes the proof of the proposition. O

REMARK. From (A.2.17), we have
/gpfjkdaz lim /gpfg‘;g do, (A.2.21)
p—00
o0 o0

for all ¢ € CL(R™), hence, passing to the limit, for all ¢ € L1(09, 7).
The following result is useful in Appendix A.3.

Proposition A.2.3 Take p € (1,00). Assume u € CH(Q), N(u), N (Vu) € LP(dR), and
that there are nontangential a.e. limits in LP(0SQ),

u — f, 8ju — fj. (A.2.22)

Then f € L¥(0R) and
8Tjk'f = kaj - ijk- (A223)

Proof. Take ¢ € C}(R™) and set

Gk = (0jp)uey, — (Opp)uej,
’ ’ ’ (A.2.24)
Hjr = p(Oru)ej — p(Oju)er.
We have G, Hj, € £P, defined by (2.4). As a consequence of [11], Proposition 3.20 (§3.2),

n

N(Vu) € LP(0Q) = Vu e L"(Q), r= P. (A.2.25)

n—1
We hence have
div ij = div ij = (ajﬁp)(aku) — (ak(p)(aju) c LI(Q),

(A.2.26)
v-Gix = 0 0)f, v-Hjx = —o(vjfe — v fj).
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Hence, parallel to (A.2.7),

/(8Tjkgp)u do = /1/ -G do

o0 oN
- / div G, dV
Q

—/V'ijdO'

o

= —/@(ijk—kaj)dU-

0N

(A.2.27)

In this case, the second and third identities hold by the “hard” Gauss-Green theorem, from
§2.3 of [11]. The last identity establishes (A.2.23). O

The next result extends the scope of (A.2.8)—(A.2.9).

Proposition A.2.4 Given f € Lip(99Q), g € LY(09),

/(8Tjkf)g do = — / f(aTjkg) do. (A'2'28)
N

onN

Proof. Take v, ¢*, f* as in the argument involving (A.11)—(A.16). Since each " € C°(R"),
we know that

/(&-jkf“)g do = —/f”(@Tjkg) do. (A.2.29)
onN o0

As p — oo, the left side of (A.2.29) approaches the left side of (A.2.28), by (A.2.21), with
¢ = g, extended from ¢ € C}(R™) to ¢ € LY(99Q,0), as indicated there. Meanwhile, the
right side of (A.2.29) tends to the right side of (A.2.28), so (A.2.28) is established. O

We now show that each space L¥(92) is a module over Lip(9Q). We start with the
following.

Lemma A.2.5 Given f € Lip(99), ¢ € C}(09),

Oriy (fp) = (Or ) + O 0- (A.2.30)

Proof. We know that fo € Lip(9Q), hence d-, (fy) € L*®(9,0), so, given h € Cj(R"),
we have

/ (0r,0h) fodo = — / hor, (fp)do. (A.2.31)
[}9) [o9)

Taking ¢* as in the proof of Proposition A.4, we see that the left side of (A.2.31) equals
the limit as u — oo of

J@mrods = = [ h{(0,00)6 + @000} do (A.2.32)

o0 o0N
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Arguments mentioned above give dr, ¢* — O, f, weak™ in L>°(0€,0), and ¢* — f uni-
formly on 09, so, as u — oo, (A.2.32) tends to

— [ 040010+ @)1} o (A.2.33)
o2
which is hence equal to (A.2.31). This proves (A.2.30). O

Here is the promised module result.
Proposition A.2.6 Given f € Lip(dQ), g € LY (99Q), we have
fg € 1{(09), and 0, (f9) = (0, f)g + f(0r;9)- (A.2.34)
Proof. Take ¢ € C}(R"™). We have

/ (Or0) fg do = / (0, (F0) — 90y, )} g do
o0

o0

= —/fsoafjkgda—/sO(@Tjkf)gda (A.2.35)
oN [o]9)

_ / o f0r,9+ (0r, g} dor,

oN

the first identity by (A.2.30) and the second by (A.2.28). The last identity proves fg €
LP(0€) and establishes (A.2.34). O

We next aim to extend the scope of Proposition A.2.6, from f € Lip(992) to f € L1(09),
for sufficiently large q. For this, we restrict the class of domains €2 under consideration; we
assume {2 is a bounded, Ahlfors regular domain, and that

Q satisfies a two-sided John condition. (A.2.36)

(These hypotheses imply € is a UR domain.) In such a case, we have from Theorem 4.27
of [11] that

>k _1
IP(0Q) C L' (69) for p* :(”1)79, it pe(ln—1),
n—1-p
L1(0Q) forall g€ (1,00), if p=n—1, (A.2.37)

C"(09) for rzl—L_l, if pe(n—1,00).
p

Furthermore, by Proposition 4.29 of [11],
C>°(09) is dense in L{(99Q), Vq € (1,00), (A.2.38)

where C°°(09) is the space of restrictions to 92 of elements of C*°(R"™). Using these results,
we prove the following.
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Proposition A.2.7 Assume Q is a bounded, Ahlfors regular domain, of dimension n, sat-

isfying a two-sided John condition. Assume
pE(l,OO), qe(n—l,oo), qu

Then
LE(09Q) is a module over L1(02),

1.€.,

[ € Li09Q), g€ L (0Q) = fg € LY(09).
Furthermore, the Leibniz formula (A.2.35) holds.
Proof. Given f, g as in (A.2.41), pick

fur90 € CF(092), |f = follLs = 0, llg = gullry — 0.

Then f,g, € C*°(9Q), and, by (A.2.37),
fu — f uniformly on 99,

SO
fvgy — fg in Lp(ag)'

Also
aTjk (fvgy) = (aTjka)gl/ + fl/(a‘rjkgy)’

and -, gy — Or, g in LP(09), so
Jv(0r;9v) — fOr,g in LP(09).

Furthermore, 0., f, — O, f in L1(09), and, by (A.2.37),

* 1
gy — g in LP (0Q), forp"=—""— ifpe(l,n—1),

L"(09), forall re (l,00), if p=n—1,
co9), if p>n—1.

Under the hypothesis (A.2.39), we hence have
(aTjkfI/)gl/ - (aTjkf)g in Lp(aQ)a

hence

8Tjk (frgv) — (aTjkf)g + f(a'rjkg) in LP(09).

(A.2.39)

(A.2.40)

(A.2.41)

(A.2.42)

(A.2.43)

(A.2.44)

(A.2.45)

(A.2.46)

(A.2.47)

(A.2.48)

(A.2.49)

It follows that (f,g,) is Cauchy in LY (99), so, by Proposition A.2.1, it has a limit in L] (),
and by (A.2.44) that limit is fg. The proof of Proposition A.2.1 then also yields the Leibniz

formula (A.2.34).
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A.3 Gradient estimates

Here, we take M = R™ and assume (with a slight change in notation) that D has the form

z) =Y A;jdju, A; € End(RF), Ar=-A4; (A.3.1)

We continue to assume D is elliptic, so it has a fundamental solution E € §'(R™), smooth
on R™\ 0, homogeneous of degree —(n — 1), and satisfying

E(z) = E(—z)* = —E(—xz). (A.3.2)

We take Q@ C R"™ to be a bounded UR domain. In place of (1.0.19), we take

/E x — y)do(y), x €, (A.3.3)
and in place of (1.0.21), we take
2) =i [ B~ )on(nr)fe)doy), €9 (A34)
In this case,
iop(y,v ZA vi(y (A.3.5)
Parallel to (1.0.20), we have
1
Bf|, (@) = 5:on(x.v(@))f(x) + B (@), (4.3.6)
and parallel to (1.0.23), we have
e, (@) = éf(x) + Cf (). (A3.7)

We also have estimates parallel to (2.3.16), in particular
INBfllLraa) < Cpll fllran), 1<p<oo. (A.3.8)

Our goal here is to estimate VCf on Q when f € L}(99). The following is the first key
result. From here on, we sum over repeated indices.

Proposition A.3.1 Ifp € (1,00) and f € LY(0N), then, for z € Q,

OCI (@) = ~B(A;dy,, f)(@). (A.3.9)

Proof. We have
N / Ou B — ) A5;(y) 1 (y) dor(y)

(A.3.10)
/ Oy E(x — 1) Ajw; () () do(y),
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for x € Q. Note that
Aj0y, E(x —y) = DE(x — y) = 0(x — y)I, (A.3.11)

hence, by (A.3.2),
0y, E(x —y)A; = d(x —y)I. (A.3.12)

In particular, z # y = 9,, E(x — y)A; = 0, so we can go from (A.3.10) to

hCf(x /{ Oy E(z —y)Ajvi(y) + 0y, E(x — y) Ajui(y) } f(y)
/ Ory Bz — ) A;f () do(y)
(A.3.13)
—~ [ B 9) 407, f5) doty)
onN
= —B(A0,,1)(@).
for z € Q, as asserted in (A.3.9). O
Corollary A.3.2 Ifp e (1,00) and f € LY (99Q), then
INVCfllzra0) < Collfllron) (A.3.14)
and there exists a o-a.e. nontangential limit
1
oCf 89(95) = —ZO'E(CC,V( r))A;0r, f(z) — B(A;07, f)(x), (A.3.15)
for x € 09).
From (A.3.15), (A.3.7), and Proposition A.2.3, we deduce the following.
Corollary A.3.3 Forp € (1,00),
C: LR (0QY) — LY(09). (A.3.16)
Hence, for Pp, given by (3.0.4), we have
Pp : LY(0Q) — LY(0), 1< p<oo. (A.3.17)

It would be interesting to know when the Caldern-Szegd projector Sp, defined in §3.2,
satisfies
Sp : LY(0Q) — LY (09). (A.3.18)

Returning to (A.3.15), we have, for f € L(99),
Ok Cf| g = VeOkCF g — vkOCF o
1
— — —op(z, u(x)){ygA@T.kf . ykAjaTﬂf} (A.3.19)

21
- VZB(AjaTjkf) + VkB(A 87’ gf)
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Furthermore (cf. [11], Lemma 3.36), for f € L}(09), Q a UR domain,
vk, f — viOr, f = vjOr, f, (A.3.20)

so, since iog(z,v(x))Avi(z) =1,
1
0 CF o = 50 + VkB(Air, ) = veB(A;0,, f). (A.3.21)

Hence, for f € LY (99),
87—MCf = VkB(AﬁTﬂf) - I/gB(AjaTjkf). (A.3.22)

A.4 UR domains with infinite topology

Recall that a compact surface ¥ C R™ is an Ahlfors regular surface provided there exist
¢j € (0,00) such that cor™™t < H" 1B, (p) NX) < ¢yr"~! for each p € &, r € (0,1]; that a
bounded open set 2 C R” is an Ahlfors regular domain provided H"1(9Q \ 0.2) = 0 and
091 is an Ahlfors regular surface; and that such €2 is a UR domain provided, in addition, 02
contains large pieces of Lipschitz surfaces. We aim to describe examples of UR domains of
infinite topological type.

We begin with an Ahlfors regular surface O that is a bounded subset of R*~! C R"™.
For example, we might have

O = D1(0)\ | Da-s—2(2 " up), (A.4.1)
k>1

where D,(p) = {2/ € R""1 : |2/ — p| < p}, and vy, are unit vectors in R"~!. The following
is easily established.

Lemma A.4.1 If f : R" ' — R is Lipschitz, then the set
Y ={(, f(z)): 2" € O} (A.4.2)
is an Ahlfors reqular surface.

Proof. Given p = (q, f(q)) € ¥, r € (0,1], the desired upper bound on H"~1(B,(p) N X)
is straightforward. It remains to establish a lower bound. For this, assume the Lipschitz
constant of f is < L, and set 3 = (14 L?)~Y/2. Then

2’ € Dg,(q) N O = (2, f(2))) € B;(p) N Z,

H" (Br(p) %) = H" " (Dg,(q) N O),

yielding the desired lower bound. ]

This lemma leads to the following.

Proposition A.4.2 If f,g: R"' = R are Lipschitz,
f=g on 00, and f>g on O, (A.4.3)

then
Q={(2,z,) : 2" €O, g(a) <z, < f(a')} (A.4.4)

is a UR domain.
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Proof. That €2 is an Ahlfors regular domain follows from Lemma A.4.1. The UR property
then follows directly from the definition. O

REMARK. For such O as in (A.4.1), one could take f(2') = dist(2/,R"~1\ O), and g = 0,
or perhaps g = —f.
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