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Abstract

We develop properties of Cauchy integrals associated to a general class of first-order
elliptic systems of differential operators D on a bounded, uniformly rectifiable (UR)
domain Ω in a Riemannian manifold M . We show that associated to such Cauchy
integrals are analogues of Hardy spaces of functions on Ω annihilated by D, and we
produce projections, of Calderón type, onto subspaces of Lp(∂Ω) consisting of boundary
values of elements of such Hardy spaces. We consider Toeplitz operators associated to
such projections and study their index properties. Of particular interest is a “cobordism
argument,” which often enables one to identify the index of a Toeplitz operator on a
rough UR domain with that of one on a smoothly bounded domain.
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1 Introduction

Let M be a compact, connected, n-dimensional Riemannian manifold, and D a first-order
elliptic differential operator on M , acting between sections of Hermitian vector bundles
Fj → M, j = 0, 1, each of rank κ. We assume that there is a coordinate system on M for
which the metric tensor is of class C2 and, on such a local coordinate chart U , and with
respect to trivializations of Fj ,

Du(x) = Aj(x)∂ju(x) + B(x)u(x) (1.0.1)

(using the summation convention), with

Aj ∈ C2(U,EndCκ), B ∈ C1(U,EndCκ). (1.0.2)

Here EndCκ is the space of κ × κ complex matrices. To say that D is elliptic is to say
that the symbol iAj(x)ξj is invertible for each nonzero ξ ∈ Rn. With Hs,p denoting the
Lp-Sobolev space of regularity s, we have

D : Hs+1,p(M,F0) −→ Hs,p(M,F1), s ∈ [−2, 1], p ∈ (1,∞). (1.0.3)

Let Ω ⊂ M be an open subset. We will assume Ω is a uniformly rectifiable (UR) domain,
a class we characterize as follows. First, we assume Ω has finite perimeter, which implies

∇χΩ = −ν σ, (1.0.4)

where χΩ is the characteristic function of Ω, ν is the outward pointing unit normal to ∂Ω,
and σ is “surface area” on ∂Ω, carried by the measure-theoretic boundary ∂∗Ω ⊂ ∂Ω. We
assume

Hn−1(∂Ω \ ∂∗Ω) = 0, (1.0.5)

to avoid pathologies. Then σ = Hn−1b∂Ω. (Here, Hn−1 is (n − 1)-dimensional Hausdorff
measure.) Next, we assume ∂Ω is Ahlfors regular, i.e., there exist C0, C1 ∈ (0,∞) such that
if x0 ∈ ∂Ω, r ∈ (0, diamΩ),

C0r
n−1 ≤ Hn−1(∂Ω ∩Br(x0)) ≤ C1r

n−1. (1.0.6)

Under these conditions, we say Ω is an Ahlfors regular domain. We say Ω is a UR domain
if, in addition, ∂Ω is uniformly rectifiable, in the sense of G. David and S. Semmes. This
means ∂Ω has, at all length scales ≤ diamΩ, and in a uniformly controlled fashion, “large
pieces” of Lipschitz surfaces. See §2.3 for a detailed definition. For such UR domains,
fundamental work of David [9] yields bounds on Lp(∂Ω) for singular integral operators of
the form

Bf(x) = PV
∫

∂Ω

E(x− y)f(y) dσ(y), x ∈ ∂Ω, (1.0.7)

2



in case Ω ⊂ Rn, provided E(z) is smooth on Rn \ 0, odd in z, and homogeneous of degree
−(n− 1) in z. Such estimates are established for certain variable coefficient versions

Bf(x) = PV
∫

∂Ω

E(x, y)f(y) dσ(y), x ∈ ∂Ω, (1.0.8)

and in the manifold context, Ω ⊂ M , in [11]. (We will say more about these operators later
in this paper.) For n = 2, R2 ≈ C, and E(z) = 1/z, (1.0.7) is a standard version of a
Cauchy integral.

We desire to study Cauchy integrals associated to the elliptic operator D mentioned
above. If we replace M by Rn and take D to have constant coefficients,

Du(x) = Aj∂ju(x), Aj ∈ End(Cκ), (1.0.9)

then we can take E ∈ C∞(Rn \ 0) to be the fundamental solution to D, which is odd and
homogeneous of degree −(n− 1), and produces an operator of the form (1.0.7). If we work
in the manifold setting and D is invertible in (1.0.3), we can take E(x, y) to be the integral
kernel of D−1 and use (1.0.8). However, in many natural cases of great interest, D has
nonzero index, and a different route is called for. We are motivated to consider

D =
(

iMa D∗

D iMa

)
, (1.0.10)

acting on Hs+1,p(M, E), where E = F0⊕F1. Here D∗ is the formal adjoint of D, defined via
the Riemannian metric on M and C2 Hermitian metrics on Fj , and Mau(x) = a(x)u(x).
Our hypotheses on the metric tensor (gjk) and D, and on these Hermitian metrics, imply

D∗v(x) = −Aj(x)∗∂jv(x) + B̃(x)v(x),

B̃(x) = −g(x)−1/2∂j(g(x)1/2Aj(x)∗) + B(x)∗,
(1.0.11)

so
A∗j ∈ C2(U,EndCκ), B̃ ∈ C1(U,EndCκ). (1.0.12)

(Here, the “adjoints” A∗j , etc., are computed using the Hermitian metrics on F0 and F1.)
We also assume

a ∈ C1(M), a ≥ 0, (1.0.13)

and, if D in (1.0.3) is not invertible,

O = {x ∈ M : a(x) > 0} 6= ∅, O ⊂ M \ Ω. (1.0.14)

(If D is invertible in (1.0.3), we can just take a ≡ 0.) Then

D : Hs+1,p(M, E) −→ Hs,p(M, E), s ∈ [−2, 1], p ∈ (1,∞). (1.0.15)

As shown in Appendix A.1, under these hypotheses, D in (1.0.15) is Fredholm, of index 0,
and

KerD =
{
u ∈ ∩q<∞H2,q(M, E) : u

∣∣
O = 0, Du0 = 0, D∗u1 = 0

}
, (1.0.16)

where u = (u0, u1)t, uj ∈ H2,q(M,Fj). Thus D in (1.0.15) is invertible whenever the right
side of (1.0.16) can be shown to be 0. Such a condition holds in particuler if

D and D∗ have the unique continuation property (UCP). (1.0.17)
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See Appendix A.1 for the definition of the property UCP. This property holds if M has a
real analytic metric tensor, Fj have real analytic Hermitian metrics, and the coefficients of
D (and hence of D∗) are real analytic, by the Holmgren uniqueness theorem. Some classes
of operators with limited regularity (1.0.2) and (1.0.12) that satisfy (1.0.17) are discussed
in Appendix A.1. They include operators of Dirac type, and of “generalized Dirac type.”
From here on, we assume UCP.

Given that D in (1.0.15) is invertible, we denote the integral kernel of D−1 by E(x, y):

D−1u(x) =
∫

M

E(x, y)u(y) dV (y), (1.0.18)

and use this function E(x, y) in (1.0.8). Results on E(x, y) given in Appendix A.1, together
with the variable coefficient extension of David’s estimates given in [11], yield Lp(∂Ω) bound-
edness of such an operator B, for each p ∈ (1,∞). See §2.3 for more details on this. Going
further, we examine

Bf(x) =
∫

∂Ω

E(x, y)f(y) dσ(y), x ∈ M \ ∂Ω, (1.0.19)

establish nontangential maximal function estimates, and show that, for f ∈ Lp(∂Ω, E),
p ∈ (1,∞), nontangential boundary values exist:

lim
z→x,z∈Γx

Bf(z) =
1
2i

σE(x, ν(x))f(x) + Bf(x), for σ-a.e. x ∈ ∂Ω, (1.0.20)

where σE(x, ν) = σD(x, ν)−1 (σD standing for the principal symbol of D), and Γx ⊂ Ω is a
region of nontangential approach to x ∈ ∂Ω. Thus, we are motivated to consider

CDf(x) = i

∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y), x ∈ Ω, (1.0.21)

and the principal value integral

CDf(x) = PV i

∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y), x ∈ ∂Ω, (1.0.22)

for which
lim

z→x,z∈Γx

CDf(x) =
1
2
f(x) + CDf(x), σ-a.e. x ∈ ∂Ω. (1.0.23)

These results bear on the study of the following family of Hardy spaces:

Hp(Ω,D) = {u ∈ C(Ω, E) : Du = 0, Nu ∈ Lp(∂Ω), and u has a
nontangential trace ub ∈ Lp(∂Ω, E)}. (1.0.24)

(Here, Nu denotes the nontangential maximal function associated with u.) In particular,
for p ∈ (1,∞),

B, CD : Lp(∂Ω, E) −→ Hp(Ω,D). (1.0.25)

One of the main results of §2 is the following Cauchy-Pompieu reproducing formula:

u ∈ Hp(Ω,D) =⇒ u = CD(ub). (1.0.26)
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It follows that
u = CDf, f ∈ Lp(∂Ω, E) =⇒ u = CD

(
u
∣∣
∂Ω

)
, (1.0.27)

where u|∂Ω = ub, and hence

PD =
1
2
I + CD =⇒ P2

D = PD. (1.0.28)

We furthermore show in §3 that, for p ∈ (1,∞), the range of PD on Lp(∂Ω, E), which we
denote by

Hp(∂Ω,D) = PD
(
Lp(∂Ω, E)

)
, (1.0.29)

has the property that the trace map gives an isomorphism:

τ : Hp(Ω,D) ≈−→ Hp(∂Ω,D). (1.0.30)

With respect to the splitting E = F0 ⊕F1, PD has the diagonal form

PD =
(PD Q01

Q10 PD∗

)
. (1.0.31)

General considerations readily yield that Qab are compact and PD and PD∗ are projections
modulo compacts. In fact, using (1.0.26), we show that PD and PD∗ are projections. With
obvious notation, for p ∈ (1,∞),

PD is a projection of Lp(∂Ω,F0) onto Hp(∂Ω, D). (1.0.32)

The projections PD,PD, and PD∗ are of a sort considered by A.P. Calderón in his
work on boundary problems for elliptic operators. They also play a role in the formulation
of boundary problems of Atiyah-Patodi-Singer type for elliptic systems. Another related
operator, also considered in §3, is

SD = orthogonal projection of L2(∂Ω, E) onto H2(∂Ω,D). (1.0.33)

This is analogous to the Szegö projection, onto spaces of boundary values of holomorphic
functions. Extensions of SD to Lp(∂Ω, E) for a range of p, and comparisons with PD can
be found in §3.

In §4 we study Toeplitz operators TΦ, initially for Φ ∈ C(∂Ω, EndC`), acting on
Lp(∂Ω, E ⊗ C`), given by

TΦf = PDΦPDf + (I − PD)f, (1.0.34)

with PD acting on Lp(∂Ω, E) and Φ acting on C`. We also define TΦ on Lp(∂Ω,F0⊗C`) by

TΦf = PDΦPDf + (I −PD)f. (1.0.35)

We show that TΦ and TΦ are Fredholm if Φ ∈ C(∂Ω, G`(`,C)), where G`(`,C) denotes the
group of invertible `× ` matrices. We set

ι(Φ) = IndexTΦ on Lp(∂Ω,F0 ⊗ C`), (1.0.36)

which we show is independent of p ∈ (1,∞), and depends only on the homotopy class of
Φ : ∂Ω → G`(`,C). We extend this to

Φ ∈ L∞ ∩ vmo(∂Ω,EndC`), (1.0.37)
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again obtaining Fredholm operators if also Φ−1 ∈ L∞(∂Ω, EndC`). In this setting, we
extend to the multi-dimensional setting of a UR domain Ω results on the index established
by Brezis-Nirenberg [7] in the setting of Ω = the unit disk in C and D = ∂/∂z.

We also study TΦ on Lp-Sobolev spaces Lp
1(∂Ω, E), first for Φ ∈ C1(∂Ω, EndC`), and

then more generally for Φ ∈ Lq
1(∂Ω, EndC`), with q > n−1, q ≥ p. Here we use the notation

Lp
1(∂Ω, E) to denote the space of Lp sections of E over ∂Ω whose gradients, suitably defined,

belong to Lp. See Appendix A.2 for the precise definition.
In addition, we study a class of Toeplitz operators TΦ, defined as in (1.0.34), but with

PD replaced by the Calderón-Szegö projector SD.
Section 4.5 considers twisted Toeplitz operators, acting on sections of F0 ⊗ C, where

C is an auxiliary vector bundle, with Φ a section of the bundle G`(C). In §4.6, we study
localization of Toeplitz operators. In §4.7, we establish an important cobordism invariance
result for the index. With this, one can often show that the index of a Toeplitz operator on
a rough UR domain is equal to one on a smoothly bounded domain. We make use of these
results in §4.8 to obtain some explicit index formulas on rough UR domains.

This paper ends with some appendices, giving useful background material. Appendix
A.1, already mentioned, discusses conditions under which D in (1.0.15) is invertible, and
produces results on the integral kernel E(x, y) of D−1 needed to establish the mapping
properties (1.0.8) and (1.0.25). Appendix A.2 discusses Lp-Sobolev spaces on boundaries
of Ahlfors regular domains, and Appendix A.3 gives some basic results on Cauchy integrals
applied to elements of such spaces Lp

1(∂Ω), when Ω is a UR domain. These results are
useful for the study of Toeplitz operators on Lp-Sobolev spaces in §4. Appendix A.4 gives
examples of UR domains with fairly wild boundaries.

1.1 Further directions

The results of this paper are applicable to the study of Riemann-Hilbert problems on uni-
formly rectifiable domains. This is being developed by the authors in [21].

2 Cauchy-Pompieu reproducing formulas

Here we prove the result stated in (1.0.26), namely, with E(x, y) as in (1.0.18),

u(x) = i

∫

∂Ω

E(x, y)σD(y, ν(y))u(y) dσ(y), ∀x ∈ Ω, (2.0.1)

provided
Du = 0 on Ω, (2.0.2)

and u satisfies certain regularity conditions up to ∂Ω. More generally, we show that

u(x) = i

∫

∂Ω

E(x, y)σD(y, ν(y))u(y) dσ(y)

+
∫

Ω

E(x, y)Du(y) dV (y), ∀x ∈ Ω,

(2.0.3)

for u having such regularity, a result that implies (2.1) if Du = 0 on Ω. We take Ω ⊂ M
and D as in §1.
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We proceed in stages. In §2.1 we establish (2.0.3) when Ω is a finite perimeter domain
and

u ∈ C(M, E), Du ∈ L1(M, E). (2.0.4)

In §2.2 we require Ω to be Ahlfors regular, and establish (2.0.3) when, for some p > 1,

u ∈ Lp and Du ∈ L1(Ω, E), (2.0.5)

where
Lp = {u ∈ C(Ω, E) : Nu ∈ Lp(∂Ω), and

∃ nontangential limit ub, σ-a.e.}. (2.0.6)

In §2.3, we assume Ω is a UR domain and, as in (1.0.21), take

u(x) = CDf(x) = i

∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y), (2.0.7)

with
f ∈ Lp(∂Ω, E), p ∈ (1,∞). (2.0.8)

In this situation, we show that the results of §2.2 apply, and draw conclusions about

PD =
1
2
I + CD (2.0.9)

(with CD as in (1.0.22)–(1.0.23)), which will play a major role in §3.

2.1 Reproducing formulas on finite perimeter domains

Take M to be a compact, connected, Riemannian manifold with metric tensor of class C2,
as in §1. We work in the setting where the first-order, elliptic differential operator D is
given by (1.0.10), with D as in (1.0.1). We assume

D : Hs+1,p(M, E) −→ Hs,p(M, E) (2.1.1)

is invertible, for
s ∈ [−2, 1], p ∈ (1,∞), (2.1.2)

with inverse
E = D−1 : Hs,p(M, E) −→ Hs+1,p(M, E). (2.1.3)

We also let E(x, y) denote the integral kernel of D−1:

Eu(x) =
∫

M

E(x, y)u(y) dV (y), (2.1.4)

and recall results on E(x, y) established in Appendix A.1.
As a first step toward producing the reproducing formula (2.0.3), we start with the

following “product formula.” If u ∈ Hs+1,p(M, E) and if f ∈ C1(M) is real (or complex)
valued,

D(fu) = fD(u) + (D0f)u, (2.1.5)

where D0 is a first-order differential operator given by

D0f(x) =
1
i
σD(x, df(x)), D0 : C1(M) −→ C0(M, End E). (2.1.6)
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In local coordinates (and this time eschewing the summation convention), if

Du(x) =
∑

Aj(x)∂ju + B(x)u, Aj(x), B(x) ∈ End Ex, (2.1.7)

then
(D0f(x))u(x) =

∑
∂jf(x) Aj(x)u(x). (2.1.8)

Applying E to (2.1.5) yields

fu = E((D0f)u) + E(fDu). (2.1.9)

We aim to extend the class of functions f to which (2.1.9) applies, first for u defined on
M and having some moderate regularity, then, in subsequent sections, for more general u.
As a first step, we consider the case when

u ∈ C(M, E), Du ∈ L1(M, E). (2.1.10)

We then assume
f ∈ L∞(M), df ∈M(M), (2.1.11)

where df is the exterior derivative of f , and M(M) denotes the space of finite (vector
valued) measures on M . Then we can use convolutions in local coordinates to obtain

fj ∈ C1(M), ‖fj‖L∞ ≤ C‖f‖L∞ , fj → f pointwise a.e.,
dfj → df weak∗ in M.

(2.1.12)

We have, for each j,
fju = E((D0fj)u) + E(fjDu). (2.1.13)

As long as u satisfies (2.1.10),

fju → fu, boundedly and a.e., (2.1.14)
(D0fj)u → (D0f)u, weak∗ in M(M), (2.1.15)

fjDu → fDu, in L1-norm. (2.1.16)

Note that (2.1.14) implies norm convergence in Lp, for all p < ∞, and (2.1.15)–(2.1.16)
imply norm convergence in H−ε,p, for some ε ∈ (0, 1), p ∈ (1,∞). Hence

E((D0fj)u) → E((D0f)u), E(fjDu) → E(fDu), (2.1.17)

in H1−ε,p, and we deduce from (2.1.13) that

fu = E((D0f)u) + E(fDu), (2.1.18)

whenever u satisfies (2.1.10) and f satisfies (2.1.11).
We apply (2.1.18) to f = χΩ, when Ω ⊂ M is an open set satisfying

Ω is a finite-perimeter domain, (2.1.19)

so
dχΩ = −νσ, (2.1.20)
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where σ is a positive (finite) Borel measure, supported on ∂Ω, ν ∈ L∞(∂Ω, σ), and, for
σ-a.e. x, ν(x) ∈ T ∗xM satisfies |ν(x)| = 1. It follows from (2.1.6)–(2.1.8) that

D0χΩ = iσD(x, ν)σ. (2.1.21)

Hence, if E(x, y) denotes the integral kernel of E (taking values in Hom(Ey, Ex) for x 6= y ∈
M),

E((D0χΩ)u)(x) = i

∫

∂Ω

E(x, y)σD(y, ν(y))u(y) dσ(y), (2.1.22)

and (2.1.18) implies

u(x) = i

∫

∂Ω

E(x, y)σD(y, ν(y))u(y) dσ(y)

+
∫

Ω

E(x, y)Du(y) dV (y), ∀x ∈ Ω,

(2.1.23)

given that u satisfies (2.1.10) and Ω satisfies (2.1.19). If, in addition,

Du = 0 on Ω, (2.1.24)

we obtain
u(x) = i

∫

∂Ω

E(x, y)σD(y, ν(y))u(y) dσ(y), ∀x ∈ Ω. (2.1.25)

We need to expand the class of functions u to which (2.1.25) applies, at least for a broad
but more restricted class of domains Ω. We take this up in the following subsections.

2.2 Reproducing formulas on Ahlfors regular domains

If Ω ⊂ M is an open domain of finite perimeter, and σ is as in (2.1.20), it is known that σ
is carried by the “measure theoretic boundary” ∂∗Ω and

σ = Hn−1b∂∗Ω. (2.2.1)

We say Ω is Ahlfors regular if the following two further conditions hold:

Hn−1(∂Ω \ ∂∗Ω) = 0, (2.2.2)

and there exist c0, c1 ∈ (0,∞) such that for all x ∈ ∂Ω, r ∈ (0, 1],

c0r
n−1 ≤ σ(Br(x) ∩ ∂Ω) ≤ c1r

n−1. (2.2.3)

We intend to extend the identity (2.1.23) to a broader family of functions u than were dealt
with there (see (2.1.10)), when Ω is Ahlfors regular. To introduce our larger family, let us
set

Lp = {u ∈ C(Ω, E) : Nu ∈ Lp(∂Ω) and
∃ nontangential limit ub, σ-a.e.}. (2.2.4)

Here is the main result of this section.
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Theorem 2.2.1 Assume Ω ⊂ M is Ahlfors regular. If, for some p > 1,

u ∈ Lp and Du ∈ L1(Ω, E), (2.2.5)

then
u(x) = i

∫

∂Ω

E(x, y)σD(y, ν(y))u(y) dσ(y) +
∫

Ω

E(x, y)Du(y) dV (y), (2.2.6)

for all x ∈ Ω.

From §2.1, we have (2.2.6) for u satisfying (2.1.10), in particular for u ∈ Lip(Ω), since
such u has an extension to an element of Lip(M). More generally, results of §2.1 plus
applications of a smooth cutoff give (2.2.6) whenever there exists an open Ω̃ ⊃ Ω such that
u ∈ C(Ω̃) and Du ∈ L1(Ω̃, E). Consequently, if u satisfies (2.2.5), then (2.2.6) holds with Ω
replaced by a finite perimeter domain Ω0 such that Ω0 ⊂ Ω0 ⊂ Ω, as long as x ∈ Ω0. We
can take Ω0 to be smoothly bounded. Replacing Ω by Ω \ Ω0 (which does not contain x),
we see that to prove Theorem 2.2.1 it suffices to prove the following.

Proposition 2.2.2 Assume Ω ⊂ M is Ahlfors regular and u satisfies (2.2.5), for some
p > 1. Then

∫

Ω

E(x, y)Du(y) dV (y) = −i

∫

∂Ω

E(x, y)σD(y, ν(y))u(y) dσ(y), ∀x /∈ Ω. (2.2.7)

To prove Proposition 2.2.2, we use two lemmas that were established in §2.3 of [11].

Lemma 2.2.3 If Ω ⊂ M is Ahlfors regular, then there exists C < ∞ such that, for all
δ ∈ (0, 1],

1
δ

∫

Oδ

|v| dV ≤ C‖N v‖L1(∂Ω), ∀ v ∈ L1, (2.2.8)

where N v is the nontangential maximal function and

Oδ = {x ∈ Ω : dist(x, ∂Ω) ≤ δ}. (2.2.9)

Lemma 2.2.4 If Ω ⊂ M is Ahlfors regular and p ∈ (1,∞), then the following holds.

If u ∈ Lp, ∃w ∈ L1 such that wb = ub and ∃wk ∈ Lip(Ω)
such that ‖N (w − wk)‖L1(∂Ω) → 0.

(2.2.10)

We begin the proof of Proposition 2.2.2. Let Ωs = {x ∈ Ω : dist(x, ∂Ω) ≥ s}. Let
ϕδ(x) = dist(x, ∂Ωδ/2), and set

χδ(x) = 1 on Ωδ,

2δ−1ϕδ(x) on Ω \ (Ωδ ∪ Oδ/2),

0 on Oδ/2.

(2.2.11)

Note that each χδ is Lipschitz and

dχδ(y) = −2
δ
χÕδ

(y)ν̃(y), Õδ = Oδ \ Oδ/2, (2.2.12)
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where
ν̃(y) = dψΩ(y), ψΩ(y) = dist(y, ∂Ω). (2.2.13)

The function ψΩ has Lipschitz constant 1, so |ν̃(y)| ≤ 1 a.e. The Lipschitz character of χδ

suffices to yield
D(χδu) = (D0χδ)u + χδDu, (2.2.14)

if u satisfies (2.2.5). We have χδu continuous and compactly supported on Ω (we write
χδu ∈ C0

0 (Ω)), and D(χδu) ∈ L1(Ω, E). It is elementary that
∫

Ω

E(x, y)D(χδu(y)) dV (y) = 0, ∀x /∈ Ω. (2.2.15)

Noting that

D0χδ(y) =
2i

δ
σD(y, ν̃(y))χÕδ

(y), Õδ = Oδ \ Oδ/2, (2.2.16)

we have, for x /∈ Ω, ∫

Ω

E(x, y)χδ(y)Du(y) dV (y)

= −2i

δ

∫

Õδ

E(x, y)σD(y, ν̃(y))u(y) dV (y).
(2.2.17)

Given Du ∈ L1(Ω), it is clear that the left side of (2.2.17) converges to the left side of (2.2.7)
as δ → 0, provided x /∈ Ω. Therefore, so does the right side of (2.2.17). What we need to
show is that

2
δ

∫

Õδ

E(x, y)σD(y, ν̃(y))u(y) dV (y)

→
∫

∂Ω

E(x, y)σD(y, ν(y))u(y) dσ(y),
(2.2.18)

as δ ↘ 0, provided u satisfies (2.2.5) and x /∈ Ω. From what has just been said, we know that
(2.2.18) holds whenever (2.2.7) holds. In particular, (2.2.18) holds whenever u ∈ Lip(Ω, E).

To complete the proof of Proposition 2.2.2, we take w and wk as in Lemma 2.2.4. Given
(2.2.8), and the estimates for E, we have, uniformly in δ ∈ (0, 1],

∣∣∣2
δ

∫

Õδ

E(x, y)σD(y, ν̃(y))[wk(y)− w(y)] dV (y)
∣∣∣

≤ C‖N (w − wk)‖L1(∂Ω),

(2.2.19)

and we also have ∣∣∣
∫

∂Ω

E(x, y)σD(y, ν(y))[wk(y)− w(y)] dσ(y)
∣∣∣

≤ C‖N (wk − w)‖L1(∂Ω),

(2.2.20)
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as long as x /∈ Ω. Thus, since (2.2.18) holds for wk, we have

2
δ

∫

Õδ

E(x, y)σD(y, ν̃(y))w(y) dV (y)

→
∫

∂Ω

E(x, y)σD(y, ν(y))w(y) dσ(y)

=
∫

∂Ω

E(x, y)σD(y, ν(y))u(y) dσ(y),

(2.2.21)

as δ ↘ 0. Thus to obtain (2.2.18) for u satisfying (2.2.5), it suffices to show that

v ∈ L1, vb = 0 =⇒ 2
δ

∫

Õδ

|v| dV → 0, as δ ↘ 0. (2.2.22)

To show this, we note that the condition (2.2.8) is equivalent to the apparently stronger
condition

1
δ

∫

Oδ

|v| dV ≤ C‖Nδv‖L1(∂Ω), ∀ v ∈ L1, δ ∈ (0, 1], (2.2.23)

where
Nδv(x) = sup{|v(y)| : y ∈ Γx, dist(x, y) ≤ 2δ}, (2.2.24)

as a simple cutoff argument shows. Thus, to prove (2.2.22), it suffices to show that

v ∈ L1, vb = 0 =⇒ ‖Nδv‖L1(∂Ω) → 0, as δ ↘ 0. (2.2.25)

Indeed, the hypotheses of (2.2.25) yield Nδv(x) → 0, σ-a.e., and furthermore Nδv ≤ N v for
each δ, so (2.2.25) follows from the dominated convergence theorem.

Proposition 2.2.2 is proven. Hence Theorem 2.2.1 is proven.

2.3 Cauchy integrals and reproducing formulas on UR domains

Here, we take Ω ⊂ M to be a UR domain. As stated in the Introduction, this means Ω is
an Ahlfors regular domain and that ∂Ω satisfies the uniform recifiability condition of David
and Semmes. In more detail, this uniform rectifiability condition is defined as follows (given
that ∂Ω is compact). There exist ε, L ∈ (0,∞) such that, for each x ∈ ∂Ω, R ∈ (0, 1], there
is a Lipschitz map ϕ : Bn−1

R → M (where Bn−1
R is a ball of radius R in Rn−1) with Lipschitz

constant ≤ L, such that

Hn−1(∂Ω ∩BR(x) ∩ ϕ(Bn−1
R )) ≥ εRn−1. (2.3.1)

As shown in [9], if Ω ⊂ Rn is bounded and UR and k ∈ Cm(Rn \0) is odd and homogeneous
of degree −(n− 1), with m large enough, then, given

f ∈ Lp(∂Ω), 1 < p < ∞, (2.3.2)

Kf(x) = PV
∫

∂Ω

k(x− y)f(y) dσ(y)

:= lim
ε→0

∫

∂Ω\Bε(x)

k(x− y)f(y) dσ(y)
(2.3.3)
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exists for σ-a.e. x ∈ ∂Ω, and
K : Lp(∂Ω) −→ Lp(∂Ω) (2.3.4)

is bounded. In [11], this result is extended to “variable coefficient” kernels, such as

Kf(x) = PV
∫

∂Ω

k(x− y, y)f(y) dσ(y), (2.3.5)

where k(z, y) is continuous on (Rn \0)×∂Ω, odd in z, and homogeneous of degree −(n−1)
in z, and satisfies

|∂α
z k(z, x)| ≤ Cα|z|−(n−1)−|α|, z ∈ Rn \ 0, x ∈ ∂Ω, |α| ≤ m, (2.3.6)

for m large enough. Again one has (2.3.4). Going further, [11] established for

Kf(x) =
∫

∂Ω

k(x− y, y)f(y) dσ(y), x ∈ Ω, (2.3.7)

nontangential maximal function estimates

‖NKf‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω), 1 < p < ∞, (2.3.8)

and nontangential convergence

lim
z→x,z∈Γx

Kf(z) =
1
2i

k̂(ν(x), x)f(x) + Kf(x), for σ-a.e. x ∈ ∂Ω, (2.3.9)

with K as in (2.3.5) and k̂(ξ, x) the Fourier transform of k(z, x) with respect to z. These
results are established in §§3.2–3.4 of [11].

These results apply to

Bf(x) = PV
∫

∂Ω

E(x, y)f(y) dσ(y), x ∈ ∂Ω, (2.3.10)

and
Bf(x) =

∫

∂Ω

E(x, y)f(y) dσ(y), x ∈ Ω, (2.3.11)

when Ω ⊂ M is a UR domain and E(x, y) is the integral kernel of D−1. In fact, as shown
in Appendix A.1, E ∈ Cr(M ×M \ diag) for each r < 2, and, near the diagonal, E(x, y) is
given in local coordinates by

E(x, y) = e0(x− y, y) + e1(x, y), (2.3.12)

with e0(x− y, y) as in (A.1.38)–(A.1.39). In particular, the results above on (2.3.5)–(2.3.7)
apply to the first term on the right side of (2.3.12). As for the remainder e1(x, y), we have
the estimate (A.1.51), i.e.,

|e1(x, y)| ≤ Cε|x− y|−(n−2+ε), (2.3.13)

for each ε > 0. Thus e1(x, y) is weakly singular. For

K1f(x) =
∫

∂Ω

e1(x, y)f(y) dσ(y), x ∈ ∂Ω, (2.3.14)
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we have compactness of K1 : Lp(∂Ω) → Lp(∂Ω), for each p ∈ (1,∞), as well as nontangential
maximal function estimates on

K1f(x) =
∫

∂Ω

e1(x, y)f(y) dσ(y), x ∈ Ω, (2.3.15)

and nontangential a.e. convergence K1f(z) → K1f(x). These results, which are more
straightforward than those on (2.3.5)–(2.3.9), are also demonstrated in [11]. Thus we have
for (2.3.10)–(2.3.11) that

‖Bf‖Lp(∂Ω), ‖NBf‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω), 1 < p < ∞, (2.3.16)

and, given f ∈ Lp(∂Ω), 1 < p < ∞,

lim
z→x,z∈Γx

Bf(z) =
1
2i

σE(x, ν(x))f(x) + Bf(x), for σ-a.e. x ∈ ∂Ω. (2.3.17)

Here, σE(x, ξ) = σD(x, ξ)−1, and

σD(x, ξ) = i
∑

j

Aj(x)ξj , Aj(x) =
(

0 −Aj(x)∗

Aj(x) 0

)
. (2.3.18)

In light of these results, we are motivated, even independently of the calculations of
§§2.1–2.2, to consider

CDf(x) = i

∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y), x ∈ Ω, (2.3.19)

and
CDf(x) = PV i

∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y), x ∈ ∂Ω. (2.3.20)

We have
CD : Lp(∂Ω, E) −→ Lp(∂Ω, E), 1 < p < ∞, (2.3.21)

a bounded operator, nontangential maximal function estimates,

‖NCDf‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω), 1 < p < ∞, (2.3.22)

and boundary behavior

lim
z→x,z∈Γx

CDf(x) =
1
2
f(x) + CDf(x), σ-a.e. x ∈ ∂Ω. (2.3.23)

We see that if f ∈ Lp(∂Ω, E), 1 < p < ∞, then u = CDf satisfies the hypotheses of
Theorem 2.2.1, with Du = 0 on Ω, so

u = CDf, f ∈ Lp(∂Ω, E) =⇒ u = CD
(
u
∣∣
∂Ω

)
. (2.3.24)

In concert with (2.3.23), this implies that

PD =
1
2
I + CD =⇒ P2

D = PD, (2.3.25)
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so PD is a bounded projection operator on Lp(∂Ω, E) for each p ∈ (1,∞).
With respect to the splitting E = F0 ⊕F1, we can write

PD =
(PD Q01

Q10 PD∗

)
, (2.3.26)

where P0 = PD and P1 = PD∗ satisfy

Pj : Lp(∂Ω,Fj) −→ Lp(∂Ω,Fj), (2.3.27)

while
Qab : Lp(∂Ω,Fb) −→ Lp(∂Ω,Fa), (2.3.28)

for a 6= b ∈ {0, 1}. From (2.3.18), we see that the 2 × 2 matrix σD(y, ν(y)) in (2.3.20) is
completely off-diagonal. As for E(x, y), we have from (A.1.40) that its principal part is
completely off-diagonal. We get

Q01, Q10 compact on Lp(∂Ω), for p ∈ (1,∞). (2.3.29)

It also follows that (Pj)2 = Pj , modulo compacts. In fact, we have a stronger conclusion.

Proposition 2.3.1 For each j ∈ {0, 1}, p ∈ (1,∞), Pj is a projection on Lp(∂Ω,Fj).

Proof. Consider P0 = PD, and take f0 ∈ Lp(∂Ω,F0). We have

u = CD
(

f0

0

)
=

(
u0

u1

)
∈ C(Ω,F0)⊕ C(Ω,F1), (2.3.30)

each factor uj belonging to Lp, defined in (2.2.4), satisfying

Du0 = 0, D∗u1 = 0 on Ω, (2.3.31)

since Du = 0 on Ω and a is supported on the complement of Ω. By definition,

PDf0 = u0

∣∣
∂Ω

. (2.3.32)

Now

v =
(

v0

v1

)
=

(
u0

0

)
∈ Lp, and Dv = 0 on Ω, (2.3.33)

so Theorem 2.2.1 implies

v = CD
(

u0|∂Ω

0

)
= CD

(PDf0

0

)
, (2.3.34)

and then, parallel to (2.3.32),

PD(PDf0) = v0

∣∣
∂Ω

= u0

∣∣
∂Ω

= PDf0, (2.3.35)

proving that PD is a projection. The argument for PD∗ is similar. ¤
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3 Hardy spaces and Calderón projectors

Let M and D be as in §1 and let Ω ⊂ M be a UR domain. For p ∈ [1,∞), we define Hardy
spaces of functions on Ω:

Hp(Ω,D) = {u ∈ C(Ω, E) : Du = 0, Nu ∈ Lp(∂Ω), and u has a
nontangential trace ub ∈ Lp(∂Ω, E)}. (3.0.1)

We also denote ub by u|∂Ω. This is a Banach space, with norm

‖u‖Hp = ‖Nu‖Lp(∂Ω). (3.0.2)

Results of §2.3 give

B, CD : Lp(∂Ω, E) −→ Hp(Ω,D), 1 < p < ∞, (3.0.3)

bounded operators. Also, given f ∈ Lp(∂Ω, E), p ∈ (1,∞),

CDf
∣∣
∂Ω

=
1
2
f + CDf := PDf. (3.0.4)

It was further shown that PD is a projection on Lp(∂Ω, E). This is a consequence of Theorem
2.2.1, which gives, for p ∈ (1,∞),

u ∈ Hp(Ω,D) =⇒ u = CD
(
u
∣∣
∂Ω

)
. (3.0.5)

In addition, we have a projection

PD : Lp(∂Ω,F0) −→ Lp(∂Ω,F0), (3.0.6)

given by
PDf0 = CDf0

∣∣
∂Ω

, (3.0.7)

where
CD : Lp(∂Ω,F0) −→ Hp(Ω, D) (3.0.8)

is defined, via the decomposition E = F0 ⊕F1, by

CD
(

f0

0

)
=

(CDf0

u1

)
, (3.0.9)

and the target space in (3.0.8) is

Hp(Ω, D) = {u ∈ C(Ω,F0) : Du = 0, Nu ∈ Lp(∂Ω), and u has a
nontangential limit ub ∈ Lp(∂Ω,F0)}.

(3.0.10)

The proofs that PD and PD are projections made essential use of the Cauchy-Pompieu
formula, Theorem 2.2.1.

In §3.1 we show that the trace map takes Hp(Ω,D) isomorphically onto the range of PD,
i.e., PD(Lp(∂Ω, E)), which we denote Hp(∂Ω,D). Similarly, the trace map takes Hp(Ω, D)
isomorphically onto PD(Lp(∂Ω,F0)) = Hp(∂Ω, D). In §3.2 we define the Calderón-Szegö
projector SD, as the orthogonal projection of L2(∂Ω, E) onto H2(∂Ω,D), analyze the dif-
ference SD −PD, and use this analysis to extend SD to Lp(∂Ω, E) for a range of exponents
p.
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We can restate the definition of the Hardy space (3.0.1) as

Hp(Ω,D) = H̃p(Ω,D) ∩ Lp, (3.0.11)

with Lp as in (2.0.6) and

H̃p(Ω,D) = {u ∈ C(Ω, E) : Du = 0, Nu ∈ Lp(∂Ω)}. (3.0.12)

A natural question is whether

H̃p(Ω,D) = Hp(Ω,D), (3.0.13)

i.e., whether all elements of H̃p(Ω,D) have nontangential traces, σ-a.e. on ∂Ω. Such results
are known as Fatou theorems. In [21], we show that (3.0.13) holds for certain classes of
domains Ω.

In §3.3 we examine PD as providing a nonlocal boundary condition on D, producing an
operator AP = D on

Dom(AP) = {u ∈ H1(Ω,F0) : PDu|∂Ω = 0}. (3.0.14)

We compare this with AΠ, satisfying another nonlocal boundary condition, and study the
index of AΠ. This is done in the framework of Lipschitz domains. We indicate possible
contact with the Atiyah-Patodi-Singer theory of nonlocal boundary problems.

3.1 The trace isomorphism on Hp(Ω,D)

The map u 7→ u|∂Ω = ub acting on Hp(Ω,D) gives a bounded trace map

τ : Hp(Ω,D) −→ Lp(∂Ω, E), (3.1.1)

for p ∈ (1,∞). In fact, in view of (3.0.4)–(3.0.5),

τ : Hp(Ω,D) −→ Hp(∂Ω,D), (3.1.2)

for p ∈ (1,∞), where we set

Hp(∂Ω,D) = PD(Lp(∂Ω, E)), (3.1.3)

the range of PD on Lp(∂Ω, E). We have the following.

Proposition 3.1.1 The trace map τ in (3.1.2) is an isomorphism, for p ∈ (1,∞).

Proof. That τ is injective follows from (3.0.5), which gives

u = CD(τu), ∀u ∈ Hp(Ω,D). (3.1.4)

The fact that τ is surjective follows from (3.0.6), which gives

τCDf = PDf, ∀ f ∈ Lp(∂Ω, E). (3.1.5)

¤
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Similarly, we have
τ : Hp(Ω, D) −→ Hp(∂Ω, D), (3.1.6)

with Hp(Ω, D) as in (3.0.10) and

Hp(∂Ω, D) = PD(Lp(∂Ω,F0)), (3.1.7)

the range of PD on Lp(∂Ω,F0). We see that

u = CD(τu), ∀u ∈ Hp(Ω, D), (3.1.8)

and
τCDf0 = PDf0, ∀ f0 ∈ Lp(∂Ω,F0), (3.1.9)

so, parallel to Proposition 3.1.1, we have

τ : Hp(Ω, D) ≈−→ Hp(∂Ω, D). (3.1.10)

3.2 Calderón projectors and the Calderón-Szegö projector

The projections PD and PD, defined respectively on Lp(∂Ω, E) and on Lp(∂Ω,F0), are
singular integral operators of the type often called Calderón projectors. They play a role
in Calderón’s approach to the theory of elliptic boundary problems. They also arise in the
Atiyah-Patodi-Singer index theory. Here, we introduce a variant, a Calderón type projector
which, in the setting of holomorphic function theory is also called a Szegö projector.

We define the Calderón-Szegö projector

SD : L2(∂Ω, E) −→ H2(∂Ω,D) (3.2.1)

to be the orthogonal projection of L2(∂Ω, E) onto the closed linear subspace

H2(∂Ω,D) = PD(L2(∂Ω, E)) = Ker(I − PD). (3.2.2)

We aim to extend SD to act on Lp(∂Ω, E), at least for p close to 2. To this end, note
from (3.2.2) that

SDPD = PD, (I −PD)SD = 0, hence SD(I − P∗D) = 0. (3.2.3)

Now we can set

A = PD − P∗D = CD − C∗
D : Lp(∂Ω) → Lp(∂Ω), 1 < p < ∞, (3.2.4)

and then (3.2.3) implies
SD(I + A) = PD on L2(∂Ω, E). (3.2.5)

Since A∗ = −A, I +A is clearly invertible on L2(∂Ω, E). An extrapolation result of Sneiberg
implies that there exist p0 < 2 and p1 > 2 such that

I + A : Lp(∂Ω) −→ Lp(∂Ω) is invertible for p ∈ (p0, p1). (3.2.6)

We have proved the following.

Proposition 3.2.1 If Ω ⊂ M is a UR domain, then there exist p0 < 2 and p1 > 2 such
that

SD = PD(I + A)−1 : Lp(∂Ω) −→ Lp(∂Ω), p ∈ (p0, p1). (3.2.7)
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The following result shows how a compactness condition allows one to extend the range
of p.

Proposition 3.2.2 Suppose A, given by (3.2.4), is compact on Lp(∂Ω) for some p ∈ (1,∞).
Then (3.2.6) and (3.2.7) hold with p0 = 1 and p1 = ∞.

Proof. First, an interpolation result of Krasnoselski (see [4], p. 203) implies that A is
compact on Lp(∂Ω) for all p ∈ (1,∞) if it is compact for one such p, and bounded for all
such p. From this, we have

I −A, I + A : Lp(∂Ω) −→ Lp(∂Ω) Fredholm, of index 0, ∀ p ∈ (1,∞). (3.2.8)

To get invertibility, it suffices to get injectivity. We clearly have injectivity on L2(∂Ω),
hence on Lp(∂Ω) for 2 ≤ p < ∞. This gives invertibility in (3.2.8) for p ∈ [2,∞). Taking
adjoints gives invertibility for p ∈ (1, 2]. ¤

We want to give explicit conditions on Ω and D that guarantee that the operator A is
compact. As a preliminary, we write A as a singular integral operator. We have

C∗
Df(x) = PV(−i)

∫

∂Ω

[
E(y, x)σD(x, ν(x))

]∗
f(y) dσ(y). (3.2.9)

Since D is a zero-order perturbation of a first order elliptic, self adjoint operator, it follows
from the analysis of §A.1 that

E(y, x)∗ = E(x, y) + R0(x, y), (3.2.10)

where R0 has a weak singularity on x = y ∈ ∂Ω, hence is the integral kernel of a compact
operator on Lp(∂Ω), for p ∈ (1,∞). Hence

Af(x) = PV i

∫

∂Ω

{
E(x, y)σD(y, ν(y)) + σD(x, ν(x))E(x, y)

}
f(y) dσ(y) +R1f(x), (3.2.11)

where R1 is compact on Lp(∂Ω) for p ∈ (1,∞).
We now formulate our condition for the next compactness result. First, we assume D

is of Dirac type, i.e.,

σD(x, ξ)∗σD(x, ξ) = 〈ξ, ξ〉x, hence σD(x, ξ)2 = 〈ξ, ξ〉x, (3.2.12)

where 〈 , 〉x is the inner product on T ∗xM associatd to the Riemannian metric. Next,
we assume Ω is a regular SKT (Semmes-Kenig-Toro) domain. This class of domains was
introduced and studied in [26] and [13]–[15], where they were called cord-arc domains with
vanishing constant. The label “regular SKT domain” was proposed in [11], where it was
shown that this class of domains can be characterized as follows:

Ω is an Ahlfors regular domain,
Ω satisfies a two-sided local John condition, and
the unit normal ν belongs to vmo(∂Ω).

(3.2.13)

In such a case, Ω is a UR domain and also an NTA domain. See the references cited above
for more details. Here is our result.
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Proposition 3.2.3 Assume D is of Dirac type and Ω ⊂ M is a regular SKT domain. Then
A = CD − C∗

D is compact on Lp(∂Ω), for all p ∈ (1,∞).

In order to expose the main lines of the argument, we first treat the case where Ω ⊂ Rn

is a bounded, regular SKT domain, D has constant coefficients, and D is given by (1.0.10)
with a ≡ 0, so

Du(x) =
∑

j

Aj∂ju(x), A∗j = −Aj . (3.2.14)

In such a case, we have R0 = 0 and R1 = 0 in (3.2.10)–(3.2.11), and

Af(x) = PV i

∫

∂Ω

{
E(x− y)σD(y, ν(y)) + σD(x, ν(x))E(x− y)

}
f(y) dσ(y), (3.2.15)

with
E(z) = DG(z), G(z) = Cn|z|−(n−2), (3.2.16)

for n ≥ 3, G(z) = C2 log |z| if n = 2, since D2 = −∆. Hence

Af(x) = PV i

∫

∂Ω

Γ(x, y)f(y) dσ(y), (3.2.17)

with
Γ(x, y) =

∑

j,k

{
AjAkνk(y) + AkAjνk(x)

}
∂jG(x− y). (3.2.18)

Now the Dirac type condition (3.2.12) translates to the anticommutator condition

AjAk + AkAj = −2δjk. (3.2.19)

Hence
Γ(x, y) =

∑

j 6=k

AjAk[νk(y)− νk(x)]∂jG(x− y)

−
∑

k

[νk(y) + νk(x)]∂kG(x− y)

= Γ1(x, y) + Γ2(x, y).

(3.2.20)

It follows that A1, given by

A1f(x) = PV i

∫

∂Ω

Γ1(x, y)f(y) dσ(y), (3.2.21)

is a sum of commutators of bounded singular integral integral operators with multiplication
by νk. As long as ν ∈ vmo(∂Ω), these commutators are all compact on Lp(∂Ω), for p ∈
(1,∞); cf. Theorem 2.19 of [11]. Meanwhile, A2, given by

A2f(x) = PV i

∫

∂Ω

Γ2(x, y)f(y) dσ(y), (3.2.22)
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is a sum of two terms, namely

A21f(x) = C ′
n PV

∫

∂Ω

〈x− y, ν(y)〉|x− y|−nf(y) dσ(y),

A22f(x) = C ′
n PV

∫

∂Ω

〈x− y, ν(x)〉|x− y|−nf(y) dσ(y).
(3.2.23)

Compactness of A21 on Lp(∂Ω) for all p ∈ (1,∞), provided Ω is a regular SKT domain, is
a special case of the main result in §4.5 of [11], and compactness of A22 on Lp(∂Ω) for all
such p follows by duality. This takes care of the Euclidean case of Proposition 3.2.3.

The extension of Proposition 3.2.3 to the manifold case is mainly technical, making use
of results on E(x, y) given in Appendix A.1.

3.3 Nonlocal boundary conditions on D

Let Ω ⊂ M be open, D : H1,p(M,F0) → Lp(M,F1) a first order elliptic differential operator,
as presented in the introduction, in particular, satisfying UCP. Construct the Calderon
projector PD on Lp(∂Ω,F0) as done previously.

In this subsection, we will assume that Ω is a Lipschitz domain. Extending this analysis
to a more general class of domains is an intriguing problem.

We set P = PD and let Π be another projection on L2(∂Ω,F0). We assume boundedness
on the L2-Sobolev space H1/2:

P, Π : H1/2(∂Ω,F0) −→ H1/2(∂Ω,F0). (3.3.1)

We know this holds for P = PD, in case Ω is a UR domain, since then P : H1(∂Ω) →
H1(∂Ω), and we can interpolate.

Let us define unbounded operators AP and AΠ on L2(∂Ω,F0) by

Dom(AP) = {u ∈ H1(Ω,F0) : Pu|∂Ω = 0},
Dom(AΠ) = {u ∈ H1(Ω,F0) : Πu|∂Ω = 0}.

(3.3.2)

We set APu = Du and AΠu = Du, on their respective domains.

Proposition 3.3.1 If Ω is a Lipschitz domain,

AP : Dom(AP) −→ L2(Ω,F1) is bijective. (3.3.3)

Proof. Given u ∈ KerAP , we have

Du = 0 on Ω, and u
∣∣
∂Ω

= 0, (3.3.4)

the latter result because Du = 0 on Ω ⇒ Pu|∂Ω = u|∂Ω. Then UCP ⇒ u = 0, so AP is
injective.

Next, given f ∈ L2(Ω,F1), we can find u0 ∈ H1(Ω,F0) such that Du0 = f on Ω (via
the construction of D−1). Then (for Ω Lipschitz) one has

u0

∣∣
∂Ω

= ψ ∈ H1/2(∂Ω,F0). (3.3.5)
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We need to find u1 ∈ H1(Ω,F0) such that

Du1 = 0 on Ω, Pu1

∣∣
∂Ω

= Pψ, (3.3.6)

so u0 − u1 ∈ D(AP) and AP(u0 − u1) = f . In fact, we can take

u1 = CDψ, (3.3.7)

and satisfy (3.3.6). We claim that, if Ω is a Lipschitz domain,

CD : H1/2(∂Ω,F0) −→ H1(Ω,F0). (3.3.8)

See Proposition 3.3.6 below. Given this, we have Proposition 3.3.1. ¤

Proposition 3.3.2 If Ω is a Lipschitz domain,

KerAΠ ≈ KerΠ
∣∣
R(P)

. (3.3.9)

with R(P) denoting the range of P as a projection on H1/2(∂Ω,F0).

Proof. Given u ∈ KerAΠ, we have u ∈ H1(Ω,F0), and the defining condition is

Du = 0 on Ω, Π
(
u
∣∣
∂Ω

)
= 0. (3.3.10)

Now the first condition in (3.3.10) implies u|∂Ω ∈ R(P), and in fact u = CDf , for a uniquely
defined f ∈ R(P), so

KerAΠ ≈ {f ∈ R(P) ⊂ H1/2(∂Ω,F0) : Πf = 0}, (3.3.11)

giving (3.3.9). ¤

Proposition 3.3.3 If Ω is a Lipschitz domain,

L2(Ω,F1)/R(AΠ) ≈ R(Π)/R(ΠP), (3.3.12)

where R(Π) denotes the range of Π as a projection on H1/2(∂Ω,F0), and R(ΠP) denotes
the image of H1/2(∂Ω,F0) under ΠP.

Proof. As in the proof of Proposition 3.3.1, given f ∈ L2(Ω,F1), we can take u0 ∈ H1(Ω,F0)
such that Du0 = f on Ω. Such u0 is determined uniquely mod {u1 ∈ H1(Ω,F0) : Du1 =
0 on Ω}. We then form u0|∂Ω = ψ ∈ H1/2(∂Ω,F0), as in (3.3.5), and ψ is determined
uniquely, mod R(P). Note that u0 ∈ H1(Ω,F0) can be arbitrary, hence ψ ∈ H1/2(∂Ω,F0)
can be arbitrary, due to the surjectivity of the trace map. We hence have a linear isomor-
phism

L2(Ω,F1)
≈−→ H1/2(∂Ω,F0)/R(P), f 7→ ψ (mod R(P)). (3.3.13)

Following this with Π then yields

f 7→ Πψ (mod R(ΠP)), (3.3.14)
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and hence a surjective map

ϑ : L2(Ω,F1) −→ R(Π)/R(ΠP). (3.3.15)

Now, to see if f ∈ L2(Ω,F1) belongs to R(AΠ), having u0 as above, we seek u1 ∈ H1(Ω,F0)
such that

Du1 = 0 on Ω, Πu1

∣∣
∂Ω

= Πψ, (3.3.16)

so u0 − u1 ∈ D(AΠ). This is equivalent to seeking

u1 = CDϕ, ϕ ∈ R(P), Πϕ = Πψ. (3.3.17)

It follows that, in (3.3.15), Kerϑ = R(AΠ), so we have the isomorphism (3.3.12). ¤

From here, we have the following generalization of Proposition 2 of [33].

Corollary 3.3.4 Assume Ω is a Lipschitz domain, and consider the maps

AΠ : Dom(AΠ) −→ L2(Ω,F1) (3.3.18)

and
Π

∣∣
R(P)

: R(P) −→ R(Π). (3.3.19)

If either (3.3.18) or (3.3.19) is semi-Fredholm, so is the other, and the two maps have the
same index.

Regarding the applicability of Corollary 3.3.4, note the following.

Proposition 3.3.5 If P and Π are bounded projections on H1/2(∂Ω,F0) and

P −Π is compact on H1/2(∂Ω,F0), (3.3.20)

then the map (3.3.19) is Fredholm. Hence, in the setting of Corollary 3.3.4,

IndexAΠ = IndexΠ
∣∣
R(P)

: R(P) −→ R(Π). (3.3.21)

It remains to establish (3.3.8) when Ω is a Lipschitz domain. This result (which is well
known for smoothly bounded Ω) is the case s = 1/2 of the following.

Proposition 3.3.6 Let Ω be a Lipschitz domain. Then

CD : Hs(∂Ω,F0) −→ Hs+1/2(Ω,F0), ∀ s ∈ [0, 1]. (3.3.22)

Proof. It suffices to get (3.3.22) for s = 0 and s = 1. The rest follows by interpolation. The
facts that

CD : L2(∂Ω) −→ H1/2(Ω),

CD : H1(∂Ω) −→ H3/2(Ω),
(3.3.23)

follow from Theorem 3.1 of [20], applied to u = CDf , which solves Lu = 0, with L = D∗D, a
second order, strongly elliptic, formally self adjoint system. In fact, the first part of (3.3.23)
follows from Theorem 1.1 of [20], plus some elementary auxiliary estimates (carried out in
the proof of Theorem 3.1). ¤

Remark. In [33], the emphasis was on Π arising from the Atiyah-Patodi-Singer boundary
condition.
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4 Toeplitz operators on UR domains

We continue to take M and D as in §1, and let Ω ⊂ M be a UR domain. Recall the
projection PD on Lp(∂Ω, E), for p ∈ (1,∞), given by

PD =
1
2
I + CD, (4.0.1)

with
CDf(x) = PV i

∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y), x ∈ ∂Ω, (4.0.2)

where, for x 6= y ∈ ∂Ω, E(x, y) ∈ Hom(Ey, Ex). Given ` ∈ N, we extend PD to a projection

PD : Lp(∂Ω, E ⊗ C`) −→ Lp(∂Ω, E ⊗ C`), (4.0.3)

in the standard fashion, i.e., componentwise. Then, if

Φ ∈ L∞(∂Ω, EndC`), (4.0.4)

we define the “Toeplitz operator”

TΦ : Lp(∂Ω, E ⊗ C`) −→ Lp(∂Ω, E ⊗ C`) (4.0.5)

by
TΦf = PDΦPDf + (I − PD)f. (4.0.6)

The structure described above implies the commutativity

Φ(x)E(x, y) = E(x, y)Φ(x), Φ(x)σD(y, ν(y)) = σD(y, ν(y))Φ(x), (4.0.7)

which will be useful in the analysis.
We also define

TΦ : Lp(∂Ω,F0 ⊗ C`) −→ Lp(∂Ω,F0 ⊗ C`) (4.0.8)

by
TΦf = PDΦPDf + (I −PD)f, (4.0.9)

where PD arises in

PD =
(PD Q01

Q10 PD∗

)
, (4.0.10)

and we have also seen that PD is a projection. As noted before, the operators Q01 and Q10

are compact. There is a similar definition of T 1
Φ, and, for Φ as in (4.0.4),

TΦ −
(

TΦ

T 1
Φ

)
is compact on Lp(∂Ω, E ⊗ C`), (4.0.11)

for each p ∈ (1,∞), thanks to the compactness of Q01 and Q10.
Our main goal here is to investigate Fredholm properties of TΦ and TΦ, for subclasses

of functions Φ which, together with Φ−1, satisfy (4.0.4). In §4.1, we take

Φ ∈ C(∂Ω, G`(`,C)), (4.0.12)
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and show that these operators are Fredholm on Lp(∂Ω). In §4.2, we take

Φ, Φ−1 ∈ L∞ ∩ vmo(∂Ω,EndC`), (4.0.13)

and demonstrate such Fredholm properties. We study the index ι(Φ) of TΦ in cases (4.0.12)
and (4.0.13). We show it is independent of p ∈ (1,∞). In case (4.0.12), ι(Φ) depends only on
the homotopy class of Φ : ∂Ω → G`(`,C). The case (4.0.13), which involves discontinuous
Φ, requires a more delicate analysis. For this, we extend results of Brezis-Nirenberg [7],
involving a generalized notion of degree.

In §4.3 we examine Toeplitz operators on the Lp-Sobolev spaces Lp
1(∂Ω, E ⊗ C`), first

for Φ ∈ C1(∂Ω, G`(`,C)), then for Φ ∈ Lq
1(∂Ω, G`(`,C)), provided q > n− 1 and q ≥ p.

In §4.4 we consider Toeplitz operators of the form

TΦf = SDΦSDf + (I − SD)f, (4.0.14)

i.e., like (4.0.6), but with PD replaced by the Szegö projector SD.
Section 4.5 considers twisted Toeplitz operators, replacing E ⊗C` by E ⊗C, where C is a

vector bundle over M . Section 4.6 investigates localizations of Toeplitz operators. Results
of these sections are applied in §4.7 to establish an important cobordism invariance result,
which can be used to show that a Toeplitz operator on a rough UR domain has the same
index as one on a smoothly bounded domain.

Section 4.8 applies these results to the computation of the index of some examples of
Toeplitz operators on rough UR domains.

Section 4.9 considers “Toeplitz operators” associated to the orthogonal projection of
L2(Ω, E) onto H2(Ω, D), the subspace of elements annihilated by D.

For simplicity, we will use the notation Lp(∂Ω), in place of Lp(∂Ω, E ⊗ C`), etc., when
the context is clear.

4.1 Toeplitz operators with continuous coefficients

In this subsection, we study TΦ and TΦ for

Φ ∈ C(∂Ω, EndC`). (4.1.1)

We want to show that TΦ is Fredholm on Lp(∂Ω) provided Φ(x) is invertible for each x ∈ ∂Ω.
A key to this is to demonstrate compactness of the commutator

[PD, Φ] = PDΦ− ΦPD = [CD,Φ], (4.1.2)

with CD given by (4.0.2). Now (4.0.7) implies

[PD,Φ]f(x) = PV
∫

∂Ω

E(x, y){Φ(y)− Φ(x)}σD(y, ν(y))f(y) dσ(y) = Kg(x), (4.1.3)

with
g(y) = σD(y, ν(y))f(y),

Kg(x) = PV
∫

∂Ω

E(x, y){Φ(y)− Φ(x)}g(y) dσ(y). (4.1.4)
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Lemma 4.1.1 If Φ ∈ C(∂Ω, EndC`), then

[PD, Φ] : Lp(∂Ω) −→ Lp(∂Ω) is compact, ∀ p ∈ (1,∞). (4.1.5)

Proof. By a limiting argument, it suffices to prove (4.1.5) when Φ is Hölder continuous, of
exponent r ∈ (0, 1), i.e., Φ ∈ Cr(∂Ω, EndC`). Then we have (4.1.3) with

Kg(x) =
∫

∂Ω

k(x, y)g(y) dσ(y), |k(x, y)| ≤ Cd(x, y)−(n−1)+r. (4.1.6)

Since Ω is Ahlfors regular, the compactness of K on Lp(∂Ω) for p ∈ (1,∞) follows from
Lemma 2.20 (or Proposition 5.1) of [11]. ¤

To proceed, assume
Φ, Ψ ∈ C(∂Ω, EndC`). (4.1.7)

Then
TΨTΦ =

(PDΨPD + (I − PD)
)(PDΦPD + (I − PD)

)

= PDΨPDΦPD + (I − PD)
= TΨΦ + PDΨ[PD, Φ]PD.

(4.1.8)

(We could also write the last term as −PD[PD, Ψ]ΦPD.) Consequently,

TΨTΦ − TΨΦ is compact on Lp(∂Ω), ∀ p ∈ (1,∞). (4.1.9)

Similarly, we have compactness of TΦTΨ − TΦΨ. This yields the following.

Proposition 4.1.2 Let Ω ⊂ M be a UR domain, and suppose

Φ : ∂Ω −→ G`(`,C) (4.1.10)

is continuous. Then

TΦ−1TΦ − I and TΦTΦ−1 − I are compact on Lp(∂Ω), (4.1.11)

for all p ∈ (1,∞), so

TΦ : Lp(∂Ω) −→ Lp(∂Ω) is Fredholm, ∀ p ∈ (1,∞). (4.1.12)

Similarly we have
TΦTΨ − TΦΨ compact on Lp(∂Ω), (4.1.13)

which yields the following.

Corollary 4.1.3 In the setting of Proposition 4.1.2,

TΦ−1TΦ − I and TΦTΦ−1 − I are compact on Lp(∂Ω), (4.1.14)

for all p ∈ (1,∞), so

TΦ : Lp(∂Ω) −→ Lp(∂Ω) is Fredholm, ∀ p ∈ (1,∞). (4.1.15)
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We set
ιp(Φ) = IndexTΦ on Lp(∂Ω). (4.1.16)

From (4.1.9) we have

Φ, Ψ ∈ C(∂Ω, G`(`,C)) =⇒ ιp(ΦΨ) = ιp(Φ) + ιp(Ψ). (4.1.17)

Also
Φ0,Φ1 ∈ C(∂Ω, G`(`,C)) homotopic =⇒ ιp(Φ0) = ιp(Φ1), (4.1.18)

since then TΦ0 and TΦ1 are connected by an operator-norm continuous family of Fredholm
Toeplitz operators.

In fact, ιp(Φ) is independent of p. We record a simple proof of this, which simultaneously
establishes a regularity result. Given p ∈ (1,∞), let us set

KΦ,p = KerTΦ on Lp(∂Ω),

K∗
Φ,p = Ker(TΦ)∗ on Lp′(∂Ω),

(4.1.19)

where p′ is the dual index to p.

Proposition 4.1.4 If Φ ∈ C(∂Ω, G`(`,C)), then, given 1 < p < q < ∞,

KΦ,p = KΦ,q and K∗
Φ,p = K∗

Φ,q, (4.1.20)

and
ιp(Φ) = ιq(Φ). (4.1.21)

Proof. Clearly
p < q ⇒ KΦ,q ⊂ KΦ,p and K∗

Φ,p ⊂ K∗
Φ,q

⇒ ιq(Φ) ≤ ιp(Φ).
(4.1.22)

Similarly,
p < q =⇒ ιq(Φ−1) ≤ ιp(Φ−1). (4.1.23)

But since ιp(Φ) + ιp(Φ−1) = 0 = ιq(Φ) + ιq(Φ−1), this yields the asserted identity (4.1.21),
and thus forces equality in (4.1.20). ¤

Let us note the following further regularity result.

Proposition 4.1.5 In the setting of Proposition 4.1.4, with 1 < p < q < ∞,

f ∈ Lp(∂Ω), TΦf ∈ Lq(∂Ω) =⇒ f ∈ Lq(∂Ω). (4.1.24)

Proof. Set g = TΦf , so g is in the range of TΦ, acting on Lp(∂Ω). Hence 〈ϕ, g〉 = 0 for all
ϕ ∈ K∗

Φ,p. By (4.1.20), 〈ϕ, g〉 = 0 for all ϕ ∈ K∗
Φ,q, so g is in the range of TΦ, acting on

Lq(∂Ω). We have
TΦf = TΦf̃ , for some f̃ ∈ Lq(∂Ω) ⊂ Lp(∂Ω). (4.1.25)

Hence f− f̃ ∈ KΦ,p. Again by (4.1.20), f− f̃ ∈ KΦ,q, and we have the conclusion in (4.1.24).
¤

Remark. We mention previous works that deduce regularity results from Fredholmness.
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See [28] and [24]. See also [12] for a general index stability result on a complex interpolation
scale, from which (4.1.21) also follows.

Having the identity (4.1.21), we set

ι(Φ) = ιp(Φ), 1 < p < ∞. (4.1.26)

By (4.1.17)–(4.1.18), this induces

ι : [∂Ω; G`(`,C)] −→ Z, homomorphism, (4.1.27)

where [∂Ω;G`(`,C)] is the set of homotopy classes of continuous maps ∂Ω → G`(`,C), with
group structure given by pointwise multiplication.

Returning to (4.1.16), we will often find it useful to record the dependence on D, and
use the notation

ι(Φ;D) = IndexTΦ on Lp(∂Ω). (4.1.28)

Note that, in the decomposition (4.0.10), we have projections

PD : Lp(∂Ω, E) −→ Hp(∂Ω,D),
PD : Lp(∂Ω,F0) −→ Hp(∂Ω, D),
PD∗ : Lp(∂Ω,F1) −→ Hp(∂Ω, D∗),

(4.1.29)

each tensored with C`. We also have

ι(Φ; D) = IndexPDΦ on Hp(∂Ω, D). (4.1.30)

Note that switching D and D∗ effectively switches PD and PD∗ , so

ι(Φ; D∗) = IndexT 1
Φ on Lp(∂Ω). (4.1.31)

Also,
ι(Φ;D) = IndexTΦ on Lp(∂Ω)

= ι(Φ; D) + ι(Φ; D∗).
(4.1.32)

In cases where the use of D is understood, we will use the notation ι(Φ) for ι(Φ; D), but we
use the notation (4.1.28) when additional precision is desired.

To illustrate material developed above, let us take

Ω ⊂ R2 ≈ C, bounded, connected UR domain, (4.1.33)

and
k = ` = 1, D = ∂ =

∂

∂z
. (4.1.34)

Here, Φ : ∂Ω → C \ 0. If Ω is the unit disk, it is classical that ι(Φ) = −w(Φ), where w(Φ) is
the winding number of the curve Φ(∂Ω) about 0. We can extend this, as follows. Assume
C \ Ω has µ + 1 connected components and

∂Ω =
µ⋃

j=0

γj , (4.1.35)

where γ0 is the outer boundary and γj for j ≥ 1 enclose bounded components of C \ Ω.
We assume each γj is homeomorphic to the circle S1, and gets the orientation induced as
a boundary component of Ω (counterclockwise for γ0, clockwise for other γj). Let wj(Φ)
denote the winding number of Φ|γj about 0.
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Proposition 4.1.6 In the setting of (4.1.33)–(4.1.34), with Φ ∈ C(∂Ω,C \ 0),

ι(Φ; ∂) = −
µ∑

j=0

wj(Φ). (4.1.36)

Proof. It follows from (4.1.27) that there exist cj ∈ Z such that

ι(Φ; ∂) =
µ∑

j=0

cjwj(Φ), ∀Φ ∈ C(∂Ω,C \ 0). (4.1.37)

We find cj by picking certain special cases of Φ. In fact, pick

a0 ∈ Ω, ak ∈ Ok, 1 ≤ k ≤ µ, (4.1.38)

where Ok are the bounded components of C \ Ω, with boundary −γk. Then set

Φk(z) = z − ak, 0 ≤ k ≤ µ. (4.1.39)

It is clear that TΦk
: Lp(∂Ω) → Lp(∂Ω) is injective for each k ∈ {0, . . . , µ}. In fact it is

bijective for k ≥ 1, with inverse TΨk
, Ψk(z) = (z − ak)−1. On the other hand, f ∈ Lp(∂Ω)

belongs to the range of TΦ0 if and only if PDf , extended to be holomorphic on Ω, vanishes
at a0. Hence

ι(Φ0) = −1, ι(Φk) = 0, k ≥ 1, (4.1.40)

while
w0(Φ0) = 1, wj(Φ0) = 0 for j ≥ 1, (4.1.41)

and, for k ≥ 1,
wj(Φk) = 1, j = 0,

− 1, j = k,

0, other j.

(4.1.42)

These identities force cj = −1 for all j in (4.1.37). ¤

Note that in the setting of (4.1.33)–(4.1.34), we have

D∗ = −∂ = − ∂

∂z
. (4.1.43)

Since complex conjugation takes Hp(Ω, ∂) to Hp(Ω, ∂) (and hence Hp(∂Ω, ∂) to Hp(∂Ω, ∂))
and vice-versa, we obtain

ι(Φ; ∂) = ι(Φ; ∂) = −ι(Φ; ∂), (4.1.44)

the latter identity holding because, with ` = 1, Φ is homotopic to Φ−1. Generally, relations
can be more elaborate. In particular, it is not always the case that ι(Φ;D) = −ι(Φ;D). We
return to this issue later on.
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4.2 Toeplitz operators with coefficients in L∞ ∩ vmo

Here, we extend the setting of Φ in (4.0.6) and (4.0.8) from Φ ∈ C(∂Ω, EndC`) to

Φ ∈ L∞ ∩ vmo(∂Ω,EndC`). (4.2.1)

We note the following useful result, for scalar valued functions.

Lemma 4.2.1 L∞∩vmo(∂Ω) is a closed linear subspace of L∞(∂Ω), closed under products,
hence a closed ∗-subalgebra of the C∗-algebra L∞(∂Ω).

A proof can be found in [30], p. 81. This extends to L∞ ∩ vmo(∂Ω, EndC`). Generally,
if A is a C∗-algebra with unit 1 and B a C∗-subalgebra, containing 1, then an element ϕ ∈ B
is invertible in B if and only if it is invertible in A. This has the following consequence:

Φ ∈ L∞ ∩ vmo(∂Ω, EndC`), Φ−1 ∈ L∞(∂Ω, EndC`)

=⇒ Φ−1 ∈ L∞ ∩ vmo(∂Ω, EndC`).
(4.2.2)

When Φ satisfies (4.2.2), we say

Φ ∈ L∞ ∩ vmo(∂Ω, G`(`,C)). (4.2.3)

Our goal here is to treat Toeplitz operators TΦ and TΦ for Φ as in (4.2.1), with special
attention to Fredholm properties for Φ as in (4.2.3). We start with the following extension
of Lemma 4.1.1.

Lemma 4.2.2 If Ω ⊂ M is a UR domain and Φ ∈ L∞ ∩ vmo(∂Ω, EndC`), then

[PD, Φ] : Lp(∂Ω) −→ Lp(∂Ω) is compact, ∀ p ∈ (1,∞). (4.2.4)

Proof. The computation (4.1.3) continues to hold, so it suffices to obtain compactness on
Lp(∂Ω) of K, given by

Kg(x) = PV
∫

∂Ω

E(x, y){Φ(y)− Φ(x)}g(y) dσ(y). (4.2.5)

Given the results on E(x, y) in Appendix A.1, such compactness follows from Theorem 2.19
of [11]. ¤

For later use, we remark that Theorem 2.19 of [11] also gives

‖[PD, Φ]‖L(Lp(∂Ω)) ≤ Cp‖Φ‖BMO, (4.2.6)

where the BMO-seminorm is given by

‖Φ‖BMO = sup
B

1
σ(B)

‖Φ− ΦB‖L1(B), (4.2.7)

where B runs over all balls in ∂Ω and

ΦB =
1

σ(B)

∫

B

Φ(y) dσ(y). (4.2.8)

30



This is only a seminorm, since Φ constant ⇒ ‖Φ‖BMO = 0. We have the norm

‖Φ‖bmo = ‖Φ‖BMO + ‖Φ‖L1(∂Ω). (4.2.9)

To proceed, assume
Φ,Ψ ∈ L∞ ∩ vmo(∂Ω, EndC`). (4.2.10)

Then, as in (4.1.8),
TΨTΦ = TΨΦ + PDΨ[PD, Φ]PD. (4.2.11)

Consequently,
TΨTΦ − TΨΦ is compact on Lp(∂Ω), ∀ p ∈ (1,∞). (4.2.12)

Similarly, we have compactness of TΦTΨ − TΦΨ. This yields the following extension of
Proposition 4.1.2.

Proposition 4.2.3 Let Ω ⊂ M be a UR domain, and suppose

Φ ∈ L∞ ∩ vmo(∂Ω, G`(`,C)). (4.2.13)

Then
TΦ−1TΦ − I and TΦTΦ−1 − I are compact on Lp(∂Ω), (4.2.14)

for all p ∈ (1,∞), so

TΦ : Lp(∂Ω) −→ Lp(∂Ω) is Fredholm, ∀ p ∈ (1,∞). (4.2.15)

We have analogous results for TΦ.

We set
ιp(Φ) = IndexTΦ on Lp(∂Ω). (4.2.16)

From (4.2.12) we have

Φ, Ψ ∈ L∞ ∩ vmo(∂Ω, G`(`,C)) =⇒ ιp(ΦΨ) = ιp(Φ) + ιp(Ψ), (4.2.17)

extending (5.25).
Propositions 4.1.4–4.1.5 extend immediately to the current setting. In particular, ιp(Φ)

is independent of p ∈ (0,∞), so we simply set

ι(Φ) = ιp(Φ). (4.2.18)

The appropriate extension of the homotopy invariance (4.1.18) to the current setting is
less straightforward. As a first step, given Φ ∈ L∞ ∩ vmo(∂Ω, G`(`,C)), we write

A = (ΦΦ∗)1/2. (4.2.19)

Using the Riesz functional calculus

A =
1

2πi

∫

γ

ζ1/2(ζI − ΦΦ∗)−1 dζ, (4.2.20)

for an appropriate contour γ, and using Lemma 4.2.1, we have

A ∈ L∞ ∩ vmo(∂Ω, G`(`,C)), (4.2.21)
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and similarly for A−1. Hence

Φ = AU, U = A−1Φ ∈ L∞ ∩ vmo(∂Ω, G`(`,C)), (4.2.22)

and in fact
U ∈ L∞ ∩ vmo(∂Ω, U(`)), (4.2.23)

where U(`) is the compact group of unitary operators on C`. We see that TA and TU are
Fredholm on Lp(∂Ω) for each p ∈ (1,∞), and

ι(Φ) = ι(U) + ι(A). (4.2.24)

On the other hand,
τt = T(1−t)A+tI = (1− t)TA + tTI , (4.2.25)

is a norm continuous family of bounded operators on Lp(∂Ω), and

(1− t)A + tI ∈ L∞ ∩ vmo(∂Ω, G`(`,C)), ∀ t ∈ [0, 1], (4.2.26)

so (4.2.25) is a norm continuous family of Fredholm operators on Lp(∂Ω), for t ∈ [0, 1], and
we have

ι(A) = ι(I) = 0, (4.2.27)

hence
ι(Φ) = ι(U), (4.2.28)

when Φ and U are related by (4.2.19)–(4.2.22).
We are left with the task of understanding ι(Φ) for Φ ∈ L∞ ∩ vmo(∂Ω, U(`)). The

following is a key homotopy result.

Proposition 4.2.4 Assume Φt ∈ L∞ ∩ vmo(∂Ω, U(`)) for each t ∈ [0, 1], and

t 7→ Φt is continuous from [0, 1] to bmo(∂Ω,EndC`). (4.2.29)

Then ι(Φt) is independent of t ∈ [0, 1].

To prove Proposition 4.2.4, we use an argument adapted from a treatment of Toeplitz
operators on the disk in [7], Appendix 2. It suffices to show that, under the hypotheses of
Proposition 4.2.4, ι(Φt) = ι(Φ0) for t close enough to 0. Now

ι(Φt)− ι(Φ0) = ι(ΦtΦ∗0), (4.2.30)

so it suffices to show that ι(ΦtΦ∗0) = 0 for t close enough to 0. We bring in a couple of
lemmas.

Lemma 4.2.5 Let Ψt ∈ L∞ ∩ vmo(∂Ω, U(`)) satisfy

‖Ψt‖BMO → 0, as t → 0. (4.2.31)

Then, for each p ∈ (1,∞), TΨt is invertible on Lp(∂Ω) for t small enough.
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Proof. As in (4.2.11) (cf. also (4.1.8)), we have

TΨtTΨ∗t = I + Rt, TΨ∗t TΨt = I + R̃t, (4.2.32)

with
Rt = PDΨt[PD, Ψ∗

t ]PD, R̃t = PDΨ∗
t [PD, Ψt]PD. (4.2.33)

Using (4.2.6), we have from (4.2.31) (which also implies ‖Ψ∗
t ‖BMO → 0) that ‖Rt‖L(Lp) and

‖R̃t‖L(Lp) → 0 as t → 0, for each p ∈ (1,∞). Hence (4.2.32) yields the asserted invertibility.
¤

With Φt as in Proposition 4.2.4, we have

‖ΦtΦ∗0‖BMO = ‖(Φt − Φ0)Φ∗0‖BMO, (4.2.34)

since Φ0Φ∗0 = I is constant. The following lemma will be useful.

Lemma 4.2.6 Fix g ∈ L∞ ∩ vmo(∂Ω). For δ > 0, there exists C(δ, g) < ∞ such that

‖fg‖BMO ≤ δ‖f‖L∞ + C(δ, g)‖f‖bmo, ∀ f ∈ L∞(∂Ω). (4.2.35)

Proof. This is Lemma A.2.5 of [7], when ∂Ω is a smooth compact manifold, but the argument
works when ∂Ω is the boundary of a bounded, Ahlfors regular domain. ¤

Proof of Proposition 4.2.4. As seen from (4.2.30), we need to show that ιp(ΦtΦ∗0) = 0 for
t close to 0. We apply Lemma 4.2.5, with Ψt = ΦtΦ∗0, and use (4.2.34). By Lemma 4.2.6,

‖Ψt‖BMO ≤ δ‖Φt − Φ0‖L∞ + C(δ,Φ∗0)‖Φt − Φ0‖bmo. (4.2.36)

By the hypotheses of Proposition 4.2.4, this implies lim supt→0 ‖Ψt‖BMO ≤ Cδ for each
δ > 0, and hence ‖Ψt‖BMO → 0 as t → 0, which by Lemma 4.2.5 gives ι(Ψt) = 0 for t small,
as desired. ¤

To tie in Proposition 4.2.4 with material from §4.1, we bring in some constructions,
which in the case when ∂Ω is a compact smooth manifold were made in [6]. We then make
modifications to deal with Ahlfors regular domains. To set things up, let u ∈ BMO(∂Ω),
and, for ε > 0, set

uε(x) =
1

σ(Bε(x))

∫

Bε(x)

u(y) dσ(y). (4.2.37)

With
Ma(u) = sup

ε<a
sup
x∈∂Ω

1
σ(Bε(x))

∫

Bε(x)

|u(y)− uε(x)| dσ(y), (4.2.38)

we have Ma(u) ≤ ‖u‖BMO, and

u ∈ VMO(∂Ω) =⇒ lim
a→0

Ma(u) = 0. (4.2.39)

One has the following result of D. Sarason.
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Lemma 4.2.7 Assume ∂Ω is smooth. There exists A, depending on ∂Ω, such that

‖u− uε‖BMO ≤ AMε(u), ∀u ∈ BMO(∂Ω). (4.2.40)

Hence, for u ∈ VMO(∂Ω),

‖u− uε‖bmo −→ 0, as ε → 0. (4.2.41)

The following is key to results of [6]. It arose as an observation of L. Boutet de Monvel
and O. Gabber. Let Y be a smooth compact submanifold of some Euclidean space RN . For
us, Y = U(`) ⊂ EndC`.

Lemma 4.2.8 Assume Ω is Ahlfors regular. Given u ∈ vmo(∂Ω, Y ), x ∈ ∂Ω, ε > 0,

dist(uε(x), Y ) ≤ 1
σ(Bε(x))

∫

Bε(x)

|u(y)− uε(x)| dσ(y) ≤ Mε(u). (4.2.42)

Proof. The first inequality in (4.2.42) holds because each u(y) ∈ Y , and the second follows
from the definition (4.2.38). ¤

In the setting of [6], where ∂Ω is smooth, uε is continuous, at least for small ε > 0, but
such continuity is not guaranteed for rougher ∂Ω (even Lipschitz). Hence we produce the
following modification of uε. It is convenient to embed M in Rm, for some m > n. Fix
h ∈ C(Rm) such that

h ≥ 0, h(x) = 1 for |x| ≤ 1
2
, 0 for |x| ≥ 1, (4.2.43)

and introduce
hε(x) = h(ε−1x). (4.2.44)

Then set
ũε(x) =

1
Aε(x)

∫

∂Ω

u(y)hε(x− y) dσ(y),

Aε(x) =
∫

∂Ω

hε(x− y) dσ(y).
(4.2.45)

Note that
ũε(x) =

uσ ∗ hε(x)
σ ∗ hε(x)

(4.2.46)

is a quotient of two continuous functions on Rm, and Ahlfors regularity of ∂Ω implies

Aε(x) ≥ Cεn−1, ∀x ∈ ∂Ω, ε ∈ (0, 1], (4.2.47)

so
ũε is continuous on ∂Ω, ∀ ε ∈ (0, 1]. (4.2.48)

We can write (4.2.45)–(4.2.46) as

ũε(x) =
∫

∂Ω

pε(x, y)u(y) dσ(y), (4.2.49)
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where
pε(x, y) =

hε(x− y)
Aε(x)

. (4.2.50)

We have the following estimates:

pε(x, u) = 0, if |x− y| ≥ ε,

|pε(x, y)| ≤ Cε−(n−1), ∀x, y ∈ ∂Ω,

|pε(x, y)− pε(x′, y)| ≤ Cε−(n−1) · |x− x′|
ε

, for x, x′, y ∈ ∂Ω,
∫

∂Ω

pε(x, y) dσ(y) = 1, ∀x ∈ ∂Ω.

(4.2.51)

Of these four properties, the first and last are obvious, and the second follows from (4.2.47).
It suffices to establish the third estimate for |x− x′| ≤ ε/4, since otherwise it follows from
the second. This in turn follows from the estimate

|∇xpε(x, y)| ≤ Cε−n, for y ∈ ∂Ω, dist(x, ∂Ω) ≤ ε

4
, (4.2.52)

which in turn follows directly from the definition (4.2.50) and from (4.2.47), also valid when
dist(x, ∂Ω) ≤ ε/4.

Remark. It is convenient to have (4.2.52) on a tubular neighborhood of ∂Ω, since we do
not want to assume that each x, y ∈ ∂Ω can be joined by a path in ∂Ω of length ≤ C|x−y|.

Given the estimate (4.2.51), we have from the proof of Proposition 2.22 in [11] that, for
u ∈ bmo(∂Ω),

‖u− ũε‖bmo ≤ C1Mc2ε(u), (4.2.53)

which leads to the following.

Lemma 4.2.9 If Ω is Ahlfors regular,

u ∈ vmo(∂Ω) =⇒ ‖u− ũε‖bmo → 0 as ε → 0. (4.2.54)

Next, parallel to (4.2.42), we have, for u ∈ vmo(∂Ω, Y ), x ∈ ∂Ω,

dist(ũε(x), Y ) ≤ 1
σ(Bε(x))

∫

Bε(x)

|u(y)− ũε(x)| dσ(y)

≤ M̃ε(u),

(4.2.55)

where
M̃a(u) = sup

ε<a
sup
x∈∂Ω

1
σ(Bε(x))

∫

Bε(x)

|u(y)− ũε(x)| dσ(y). (4.2.56)

This leads us to the following.

Proposition 4.2.10 If Ω is Ahlfors regular, and u ∈ vmo(∂Ω, Y ), then

sup
x∈∂Ω

dist(ũε(x), Y ) −→ 0, as ε → 0. (4.2.57)
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Proof. By (4.2.55), this follows from

u ∈ vmo(∂Ω) =⇒ M̃ε(u) → 0 as ε → 0. (4.2.58)

This in turn is a consequence of the estimate

M̃1(u) ≤ C‖u‖bmo, (4.2.59)

since it is clear that M̃ε(u) → 0 for u ∈ C(∂Ω), and M̃ε(u1 + u2) ≤ M̃ε(u1) + M̃ε(u2).
It remains to prove (4.2.59), i.e.,

1
σ(Bε(x))

∫

Bε(x)

|u− ũε(x)| dσ ≤ C‖u‖bmo, ∀x ∈ ∂Ω, ε ∈ (0, 1]. (4.2.60)

Indeed, given uε(x) as in (4.2.37), we have, for each x ∈ ∂Ω, ε > 0,

|ũε(x)− uε(x)| ≤
∫

∂Ω

pε(x, y)|u(y)− uε(x)| dσ(y)

≤ C

σ(Bε(x))

∫

Bε(x)

|u− uε(x)| dσ

≤ C‖u‖bmo,

(4.2.61)

the second inequality in (4.2.61) by the second estimate in (4.2.51), coupled with Ahlfors
regularity of ∂Ω. In other words,

‖ũ− u‖L∞ ≤ C‖u‖bmo. (4.2.62)

Hence (4.2.60) follows from (4.2.7) and (4.2.62). ¤

Having Proposition 4.2.10, we proceed as follows. Given u ∈ vmo(∂Ω, Y ), there exists
ε0 > 0 such that, for all ε ∈ (0, ε0], ũε has range in a small tubular neighborhood O of Y .
We have N : O → Y , mapping z ∈ O to the nearest point in Y , and

uε(x) = Nũε(x) ∈ Y is well defined. (4.2.63)

Since ‖ũε − uε‖L∞ → 0 as ε → 0, we have from (4.2.54) that

‖uε − u‖bmo −→ 0, as ε → 0. (4.2.64)

We apply these results to Φ ∈ L∞ ∩ vmo(∂Ω, U(`)), obtaining ε0 > 0 and

Φt ∈ C(∂Ω, U(`)), ∀ t ∈ (0, ε0], (4.2.65)

such that
‖Φt − Φ‖bmo −→ 0, as t → 0. (4.2.66)

The same argument used to establish Proposition 4.2.4 now yields the following.

Proposition 4.2.11 Let Ω be a bounded UR domain. Given Φ ∈ L∞ ∩ vmo(∂Ω, U(`)),
there exists ε1 > 0 such that

ι(Φ) = ι(Φt), ∀ t ∈ (0, ε1]. (4.2.67)

Here, Φt is as in the paragraph above.
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4.3 Toeplitz operators on Lp-Sobolev spaces

In this subsection, we assume Ω ⊂ Rn is a bounded UR domain and

Φ ∈ Lip(∂Ω, EndC`), (4.3.1)

though later we impose other conditions. We assume D has the form

D =
(

D∗

D

)
, Du = Aj∂ju, Aj ∈ EndCκ. (4.3.2)

In this case E → Rn is the trivial vector bundle, with fiber Cκ ⊕ Cκ. We define TΦ as in
(4.0.6), and make use of results of §§A.2–A.3 to get

TΦf = PDΦPDf + (I − PD)f, TΦ : Lp
1(∂Ω) −→ Lp

1(∂Ω), 1 < p < ∞. (4.3.3)

We will seek conditions under which we can show that TΨTΦ − TΨΦ is compact on
Lp

1(∂Ω), given also Ψ ∈ Lip(∂Ω,EndC`). In fact, we will start by seeking conditions on Φ
and Ψ that imply

TΨTΦ − TΨΦ : Lp(∂Ω) −→ Lp
1(∂Ω). (4.3.4)

Such a property will imply compactness on Lp
1(∂Ω), whenever ∂Ω has the property that the

natural injection
Lp

1(∂Ω) ↪→ Lp(∂Ω) is compact. (4.3.5)

We recall the following sufficient condition for (4.3.5) to hold, established in Corollary 4.31
of [11].

Lemma 4.3.1 If Ω is a bounded UR domain satisfying a two-sided John condition, then
(4.3.5) holds, for each p ∈ (1,∞).

To continue, we recall from (4.1.8) that

TΨTΦ − TΨΦ = PDΨ[PD, Φ]PD, (4.3.6)

so (4.3.4) will hold provided

[PD, Φ] = [CD, Φ] : Lp(∂Ω) −→ Lp
1(∂Ω). (4.3.7)

Since CDf = iB(σD(x, ν)f), this holds provided

[B, Φ] : Lp(∂Ω) −→ Lp
1(∂Ω). (4.3.8)

Note that
[B, Φ]f(x) = PV

∫

∂Ω

E(x− y){Φ(y)− Φ(x)}f(y) dσ(y). (4.3.9)

Here is our first result.

Proposition 4.3.2 Assume
Φ ∈ C1,ω(Rn, EndC`), (4.3.10)

so ∂jΦ has modulus of continuity ω for each j, i.e.,

|∂jΦ(x)− ∂jΦ(y)| ≤ Cω(|x− y|). (4.3.11)
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Assume ω satisfies the Dini condition
∫ 1

0

ω(t)
t

dt < ∞. (4.3.12)

Then (4.3.7)–(4.3.8) hold, and hence so does (4.3.4) for all Ψ ∈ Lip(∂Ω,EndC`).

Proof. Our strategy is to apply Proposition A.2.3 to

u(x) =
∫

∂Ω

E(x− y){Φ(y)− Φ(x)}f(y) dσ(y), x ∈ Ω. (4.3.13)

Note that E(x− y) and Φ(x) are defined for x ∈ Ω. We know that

N (u) ∈ Lp(∂Ω), u
∣∣
∂Ω

= [B, Φ]f, (4.3.14)

given f ∈ Lp(∂Ω). We need to show that

N (∇u) ∈ Lp(∂Ω), (4.3.15)

and that ∂ju has a nontangential limit on ∂Ω, for each j. To proceed, for x ∈ Ω we have

∂ju(x) = − Φj(x)
∫

∂Ω

E(x− y)f(y) dσ(y)

+
∫

∂Ω

Ej(x− y){Φ(y)− Φ(x)}f(y) dσ(y)

= vj(x) + wj(x),

(4.3.16)

with
Φj = ∂jΦ, Ej = ∂jE. (4.3.17)

Since vj = −ΦjB(f), results of §2.3 apply to yieldN (vj) ∈ Lp(∂Ω) and vj |∂Ω = −ΦjB(f)|∂Ω.
To analyze wj , write

Φ(x)− Φ(y) = ∇Φ(x)(x− y) + R(x, y)(x− y),

R(x, y) =
∫ 1

0
{∇Φ(sx + (1− s)y)−DΦ(x)} ds,

(4.3.18)

so R is continuous on Rn × Rn, and

|R(x, y)| ≤ Cω(|x− y|). (4.3.19)

We have
wj(x) = −∇Φ(x)

∫

∂Ω

Ej(x− y)⊗ (x− y) f(y) dσ(y)

−
∫

∂Ω

R(x, y)Ej(x− y)⊗ (x− y) f(y) dσ(y)

= wj1(x) + wj2(x).

(4.3.20)
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Now Ej(x) ⊗ x shares with E(x) the properties of being smooth on Rn \ 0, odd, and
homogeneous of degree −(n − 1) in x. Hence the results in §3.4 of [11] that yield (2.3.8)–
(2.3.9) also give N (wj1) ∈ Lp(∂Ω) and nontangential limits of wj1 on ∂Ω.

It remains to consider wj2. We have

sup
z∈Γx

|R(z, y)Ej(z − y)⊗ (z − y)| ≤ C
ω(|x− y|)
|x− y|n−1

, ∀x, y ∈ ∂Ω, (4.3.21)

hence
Nwj2(x) ≤ C

∫

∂Ω

ω(|x− y|)
|x− y|n−1

|f(y)| dσ(y), x ∈ ∂Ω. (4.3.22)

As long as the Dini condition (4.3.12) holds, Proposition 5.1 of [11] yields

‖Nwj2‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω). (4.3.23)

To get nontangential a.e. convergence of wj2 for all f ∈ Lp(∂Ω), we can use (4.3.23) to
deduce this from such convergence for all f on a dense linear subspace, e.g., for f ∈ C(∂Ω).
However, for f ∈ C(∂Ω), such convergence at each x ∈ ∂Ω follows by the Lebesgue domi-
nated convergence theorem. This finishes the proof of Proposition 4.3.2. ¤

This leads to the following compactness result.

Proposition 4.3.3 Assume Ω is a bounded UR domain and that the natural injection
Lp

1(∂Ω) ↪→ Lp(∂Ω) is compact. Then

TΨTΦ − TΨΦ : Lp
1(∂Ω) −→ Lp

1(∂Ω) is compact, (4.3.24)

for all Ψ ∈ Lip(∂Ω,EndC`), whenever

Φ ∈ C1(∂Ω, EndC`). (4.3.25)

Proof. Compactness in (4.3.24) follows from (4.3.5) and (4.3.4) if Φ ∈ C1,ω(∂Ω, EndC`),
given ω as in (4.3.12). It then follows for all Φ ∈ C1(∂Ω, EndC`), by a standard approxi-
mation argument. ¤

Corollary 4.3.4 Assume Ω is a bounded UR domain satisfying (4.3.5), and

Φ ∈ C1(∂Ω, G`(`,C)). (4.3.26)

Then
TΦ : Lp

1(∂Ω) −→ Lp
1(∂Ω) is Fredholm, (4.3.27)

with Fredholm inverse TΦ−1.

We want to expand the scope of Proposition 4.3.3 and Corollary 4.3.4, to a broader class
of Toeplitz operators, going beyond even Φ,Ψ ∈ Lip(∂Ω, EndC`). For this, we will require
on Ω the assumptions used in Lemma 4.3.1, namely that Ω be a bounded UR domain
satisfying a two-sided John condition (equivalently, Ω is an Ahlfors regular domain and
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satisfies a two-sided John condition, since these hypotheses imply Ω is a UR domain). In
such a case, we have from Corollary 4.31 of [11] that

q ∈ (n− 1,∞] =⇒ Lq
1(∂Ω) ⊂ Cr(∂Ω), r = 1− n− 1

q
, (4.3.28)

and, from Proposition 4.29 of [11], that

C∞(∂Ω) is dense in Lq
1(∂Ω), ∀ q ∈ (1,∞), (4.3.29)

where C∞(∂Ω) is the space of restrictions to ∂Ω of elements of C∞(Rn). To complement
these results, we have the following, proven in Appendix A.2.

p ∈ (1,∞), q ∈ (n− 1,∞), q ≥ p

=⇒ Lp
1(∂Ω) is a module over Lq

1(∂Ω),
(4.3.30)

under our current hypotheses on Ω. In such a circumstance,

Φ ∈ Lq
1(∂Ω) =⇒ TΦ : Lp

1(∂Ω) → Lp
1(∂Ω), (4.3.31)

and
Φk ∈ C∞(∂Ω), ‖Φk − Φ‖Lq

1
→ 0 =⇒ ‖TΦk

− TΦ‖L(Lp
1) → 0. (4.3.32)

We also have (thanks to the validity of the Leibniz rule)

Φ ∈ Lq
1(∂Ω, G`(`,C)), q > n− 1 =⇒ Φ−1 ∈ Lq

1(∂Ω, G`(`,C)). (4.3.33)

Then standard limiting arguments applied to Corollary 4.3.4 yield the following.

Proposition 4.3.5 Assume Ω is a bounded Ahlfors regular domain, satisfying a two-sided
John condition. Take p ∈ (1,∞) and assume

Φ ∈ Lq
1(∂Ω, G`(`,C)), q ≥ p, q ∈ (n− 1,∞). (4.3.34)

Then
TΦ : Lp

1(∂Ω) −→ Lp
1(∂Ω) is Fredholm, (4.3.35)

with Fredholm inverse TΦ−1.

Under the hypotheses of Proposition 4.3.5, we also have

TΦ : Lp
1(∂Ω) −→ Lp

1(∂Ω), Fredholm, ∀ p ∈ (1, q]. (4.3.36)

Parallel to (4.1.16), we set

ιp,1(Φ) = IndexTΦ on Lp
1(∂Ω), (4.3.37)

and we get
Φ, Ψ ∈ Lq

1(∂Ω, G`(`,C)) =⇒ ιp,1(ΦΨ) = ιp,1(Φ) + ιp,1(Ψ). (4.3.38)

We have a regularity result and index identity parallel to that of Proposition 4.1.4, given
as follows. Define KΦ,p and K∗

Φ,p as in (4.1.19), and set

LΦ,p = KerTΦ on Lp
1(∂Ω),

L∗Φ,p = Ker(TΦ)∗ on Lp
1(∂Ω)∗,

(4.3.39)

so
ι(Φ) = ιp(Φ) = dimKΦ,p − dimK∗

Φ,p,

ιp,1(Φ) = dimLΦ,p − dimL∗Φ,p.
(4.3.40)

We have the following.

40



Proposition 4.3.6 In the setting of Proposition 4.3.5, in particular, with the assumption
that Φ ∈ Lq

1(∂Ω, G`(`,C)) for q > n− 1, q ≥ p,

KΦ,p = LΦ,p and K∗
Φ,p = L∗Φ,p, (4.3.41)

and
ιp,1(Φ) = ι(Φ). (4.3.42)

Proof. The proof is similar to that of Proposition 4.1.4. We clearly have LΦ,p ⊂ KΦ,p and
K∗

Φ,p ⊂ L∗Φ,p, so
ιp,1(Φ) ≤ ιp(Φ). (4.3.43)

Similarly, ιp,1(Φ−1) ≤ ιp(Φ−1), but since ιp(Φ) + ιp(Φ−1) = 0 = ιp,1(Φ) + ιp,1(Φ−1), this
yields (4.3.42), and then this forces (4.3.41). ¤

Remark. Comparison with (4.1.20) yields other regularity results. Going further, one can
extend Proposition 4.1.5 to cases where f ∈ Lp(∂Ω), TΦf ∈ Lr

1(∂Ω). We leave this to the
interested reader.

4.4 Toeplitz operators associated to Calderón-Szegö projectors

We return to the setting of §§4.1–4.2, but replace PD by the Calderón-Szegö projector SD.
Thus, given Φ ∈ L∞(∂Ω, EndC`), we set

TΦf = SDΦSDf + (I − SD)f, (4.4.1)

so TΦ is bounded on Lp(∂Ω) whenever SD is bounded on Lp(∂Ω) (cf. Proposition 3.2.1).
Note that the splitting E = F0 ⊕F1, as an orthogonal direct sum, yields

SD =
(

SD

SD∗

)
, (4.4.2)

and hence

TΦ =
(T 0

Φ

T 1
Φ

)
. (4.4.3)

It is clear (via Proposition 3.2.2) that

A = CD − C∗
D compact on Lp(∂Ω)

⇒ TΦ − TΦ compact on Lp(∂Ω),
(4.4.4)

for all Φ ∈ L∞(∂Ω, EndC`). Hence, when D is of Dirac type and Ω is a regular SKT
domain, Proposition 3.2.3 implies that TΦ−TΦ is compact for all such Φ, for all p ∈ (1,∞).
Hence all the Fredholm results of §§4.1–4.2 apply to such a situation.

Here we look at the behavior of TΦ when Ω is not necessarily a regular SKT domain
(and D is perhaps not of Dirac type), based on the identity

SD(I + A) = PD on L2(∂Ω), (4.4.5)

and the fact that

I + A : Lp(∂Ω) −→ Lp(∂Ω) is invertible for p ∈ (p0, p1), (4.4.6)
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for some p0 < 2, p1 > 2. Recall that

A = CD − C∗
D : Lp(∂Ω) −→ Lp(∂Ω), p ∈ (1,∞), (4.4.7)

with
CDf(x) = PV i

∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y). (4.4.8)

It follows from (4.4.5) that, with MΦf = Φf ,

[SD,MΦ](I + A) = [PD,MΦ]− SD[A,MΦ]. (4.4.9)

As seen in §§4.1–4.2, if Φ ∈ C(∂Ω,EndC`), or more generally

Φ ∈ L∞ ∩ vmo(∂Ω,EndC`), (4.4.10)

then
[PD,MΦ] is compact on Lp(∂Ω), ∀ p ∈ (1,∞). (4.4.11)

Similarly, [CD,MΦ] enjoys such compactness, and, by duality, so does [C∗
D,MΦ], and con-

sequently [A,MΦ]. This gives the following analogue of Proposition 4.1.2.

Proposition 4.4.1 Given p0 < 2, p1 > 2 such that (4.4.6) holds,

[SD, MΦ] is compact on Lp(∂Ω), ∀ p ∈ (p0, p1), (4.4.12)

whenever Φ ∈ L∞ ∩ vmo(∂Ω, EndC`).

From here, using (parallel to (4.1.8)) the identity

TΨTΦ = TΨΦ + SDΨ[SD, Φ]SD, (4.4.13)

we deduce that

TΨTΦ − TΨΦ is compact on Lp(∂Ω), ∀ p ∈ (p0, p1), (4.4.14)

provided
Φ,Ψ ∈ L∞ ∩ vmo(∂Ω, EndC`). (4.4.15)

This leads to the following.

Proposition 4.4.2 If Ω ⊂ M is a UR domain and

Φ, Φ−1 ∈ L∞ ∩ vmo(∂Ω,EndC`), (4.4.16)

then

TΦ−1TΦ − I and TΦTΦ−1 − I are compact on Lp(∂Ω), ∀ p ∈ (p0, p1), (4.4.17)

so
TΦ : Lp(∂Ω) −→ Lp(∂Ω) is Fredholm, ∀ p ∈ (p0, p1). (4.4.18)

We have analogous results for T 0
Φ .
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Parallel to (4.1.16), we set

ι̃p(Φ) = Index T 0
Φ on Lp(∂Ω), (4.4.19)

for p ∈ (p0, p1). Recall from §§4.1–4.2 the quantity

ι(Φ) = IndexTΦ on Lp(∂Ω), (4.4.20)

which was shown to be independent of p ∈ (1,∞). We have the following key result.

Proposition 4.4.3 In the setting of Proposition 4.4.2,

ι̃p(Φ) = ι(Φ), ∀ p ∈ (p0, p1). (4.4.21)

Proof. We produce a norm-continuous path TΦ,t, 0 ≤ t ≤ 1, consisting of Fredholm opera-
tors, such that TΦ,0 = TΦ and TΦ,1 = TΦ. To get this, take

Pt = tSD + (1− t)PD, 0 ≤ t ≤ 1. (4.4.22)

This is a norm-continuous path of operators on Lp(∂Ω), for p ∈ (p0, p1). A computation,
using SDPD = PD, PDSD = SD, gives

P2
t = Pt. (4.4.23)

Furthermore, it is clear from (4.4.12) and results of §4.2 that

[Pt,MΦ] is compact on Lp(∂Ω), ∀ p ∈ (p0, p1), (4.4.24)

from which we deduce that, if

TΦ,tf = PtΦPtf + (I − Pt)f, (4.4.25)

then TΦ,t is Fredholm for each t ∈ [0, 1], and hence is the desired path from TΦ to TΦ. The
index identity (4.4.21) is an immediate consequence. ¤

4.5 Twisted Toeplitz operators

In previous sections, we have extended the action of D from sections of E → M to sections
of E ⊗C`, in a canonical fashion. Then we have taken Φ ∈ C(∂Ω, EndC`), or a variant, and
defined TΦ on Lp(∂Ω, E ⊗C`) and TΦ on Lp(∂Ω,F0⊗C`). Here, we replace C` by a complex
vector bundle C → M , with a Hermitian metric, and define “twisted” Toeplitz operators

TΦ on Lp(∂Ω, E ⊗ C) and TΦ on Lp(∂Ω,F0 ⊗ C). (4.5.1)

The first order of business is to define twisted versions of D and D,

DC : Hs+1,p(M,F0 ⊗ C) −→ Hs,p(M,F1 ⊗ C),
DC : Hs+1,p(M, E ⊗ C) −→ Hs,p(M, E ⊗ C), (4.5.2)

such that
σDC(x, ξ) = σD(x, ξ)⊗ I, σDC(x, ξ) = σD(x, ξ)⊗ I. (4.5.3)
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For the trivial bundle C` ×M , this is done componentwise. However, if C is a nontrivial
bundle, more work is required. We will construct DC and DC when C has a connection,
i.e., a covariant derivative. To motivate the construction, recall from Chapter 2 that, if f
is scalar, and u is a section of F0, then

D(fu) = fDu + (D0f)u, D0f(x) =
1
i
σD(x, df(x)). (4.5.4)

We aim to define DC via
DC(u⊗ v) = Du⊗ v + (D0v)u, (4.5.5)

when u is a section of F0 and v is a section of C. It remains to define D0v when v is a
section of the bundle C, which is equipped with a connection ∇. To get this, we note that
σD(x, ξ) is linear in ξ, so

σD(x, ξ) = σD(x)ξ, σD(x) : T ∗x −→ Hom(F0x,F1x), (4.5.6)

or equivalently
σD(x) : F0x ⊗ T ∗x −→ F1x. (4.5.7)

We can tensor with the identity on Cx to extend σD(x) to

σD(x) : F0x ⊗ T ∗x ⊗ Cx −→ F1x ⊗ Cx. (4.5.8)

Now, if v is a section of C, then its covariant derivative ∇v is a section of T ∗ ⊗ C. We
complete the definition of DC in (4.5.5) by setting

(D0v(x))u(x) =
1
i
σD(x)

(
u(x)⊗∇v(x)

)
. (4.5.9)

Having DC , we can define DC as in the Introduction. This operator is invertible provided
DC and D∗

C possess UCP. In particular, if D is of Dirac type, so is DC , and this leads to
invertibility. From here on, we will assume DC is invertible.

Having constructed the twisted operators DC and DC , we lighten our notational load,
and simply denote these twisted operators by D and D, respectively. With E(x, y) denoting
the integral kernel of D−1, acting on Hs,p(M, E ⊗ C), we define

CD : Lp(∂Ω, E ⊗ C) −→ Lp(∂Ω, E ⊗ C) (4.5.10)

as before, i.e., by

CDf(x) = PV i

∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y), (4.5.11)

and similarly define CD,PD, and PD.
We now define the operators TΦ and TΦ by the same formulas as before, i.e.,

TΦf = PDΦPDf + (I − PD)f,

TΦf = PDΦPDf + (I − PD)f,
(4.5.12)

for f ∈ Lp(∂Ω, E ⊗ C) or Lp(∂Ω,F0 ⊗ C), respectively, where, in the current setting,

Φ ∈ C(∂Ω, End C), (4.5.13)
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or more generally
Φ ∈ L∞ ∩ vmo(∂Ω, End C). (4.5.14)

From (4.5.3), which follows from our twisting construction, we have the crucial identity

σD(x, ξ)Φ(x)f(x) = Φ(x)σD(x, ξ)f(x), (4.5.15)

for x ∈ ∂Ω, ξ ∈ T ∗xM . The key to the extension of the previous results to the current
setting is the following.

Proposition 4.5.1 If Ω ⊂ M is a UR domain and Φ satisfies (4.5.14), then

[PD, Φ] : Lp(∂Ω) −→ Lp(∂Ω) is compact, ∀ p ∈ (1,∞). (4.5.16)

Proof. As before, we have [PD,Φ] = [CD,Φ], hence

[PD, Φ]f(x) = PV i

∫

∂Ω

{
E(x, y)Φ(y)− Φ(x)E(x, y)

}
σD(y, ν(y))f(y) dσ(y), (4.5.17)

where we have used (4.5.15), with x = y, ξ = ν(y). As opposed to arguments in previous
sections, we do not necessarily have E(x, y)Φ(y) = Φ(y)E(x, y) here, but we can come close
enough, as follows.

By the regularity of E(x, y) off the diagonal, it suffices to get compactness when f is
supported on a coordinate chart and x in (4.5.17) is restricted to that chart. Then we have

E(x, y)
√

g(y) = e0(x− y, y) + e1(x, y), (4.5.18)

where e1(x, y) has a weak singularity and

e0(x− y, y) = (2π)−n

∫
E0(ξ, y)ei(x−y)·ξ dξ,

E0(ξ, y) = σD(y, ξ)−1.

(4.5.19)

Thus, modulo a compact opeator, the right side of (4.5.17) becomes

PV i

∫

∂Ω

{
e0(x− y, y)Φ(y)− Φ(x)e0(x− y, y)

}
g(y)−1/2σD(y, ν(y))f(y) dσ(y)

= PV i

∫

∂Ω

{
Φ(y)− Φ(x)

}
e0(x− y, y)g(y)−1/2σD(y, ν(y))f(y) dσ(y),

(4.5.20)

the latter identity by (4.5.15) and (4.5.19). At this point, we can again deduce compactness
from Theorem 2.19 of [11]. ¤

Corollary 4.5.2 In the seting of Proposition 4.5.1, if

Φ ∈ C(∂Ω, G`(C)), (4.5.21)

or more generally
Φ, Φ−1 ∈ L∞ ∩ vmo(∂Ω, End C), (4.5.22)

then
TΦ : Lp(∂Ω) −→ Lp(∂Ω) is Fredholm, ∀ p ∈ (1,∞), (4.5.23)

with a similar result for TΦ.
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Thus we can set

ι(Φ) = IndexTΦ on Lp(∂Ω,F0 ⊗ C), p ∈ (1,∞). (4.5.24)

As before, this index is independent of p ∈ (1,∞). If also Ψ satisfies (4.5.21) or (4.5.22),
we have

ι(ΦΨ) = ι(Φ) + ι(Ψ). (4.5.25)

Furthermore, if Φ satisfies (4.5.21), ι(Φ) depends only on the homotopy class of Φ (within
the class of continuous sections of G`(C)). Also, results on the stability of the index in the
setting of (4.5.22) extend. We leave the details to the reader.

So far in this subsection, we have defined and studied

TΦ : Lp(∂Ω,F0 ⊗ C) −→ Lp(∂Ω,F0 ⊗ C), (4.5.26)

when C → M is a vector bundle, equipped with a connection, and seen that it is Fredholm
when Φ ∈ C(∂Ω, G`(C)), or more generally when Φ, Φ−1 ∈ L∞ ∩ vmo(∂Ω, End C). Let us
also use the notation

T̂Φ = TΦ

∣∣
R(PD)

, T̂Φ : R(PD) −→ R(PD), (4.5.27)

where
R(PD) = PD(Lp(∂Ω,F0 ⊗ C)). (4.5.28)

We suppress the p-dependence; of course, we assume p ∈ (1,∞). Note that

T̂Φf = PDΦf, f ∈ R(PD). (4.5.29)

Also, if Φ, Ψ ∈ L∞ ∩ vmo(∂Ω,End C), then

T̂ΦΨ = T̂ΦT̂Ψ is compact on R(PD). (4.5.30)

If Φ satisfies (4.5.22), then T̂Φ is Fredholm, and

Index T̂Φ = IndexTΦ. (4.5.31)

Since the bundle C was equipped with a connection in order to define DC , and hence TΦ

and T̂Φ, it is useful to record the following.

Proposition 4.5.3 The index of TΦ (hence of T̂Φ) is independent of the choice of connec-
tion on C.
Proof. Two connections on C give two operators DC that differ by an operator of order zero.
Hence the integral kernels E(x, y) differ by a weakly singular term, and so the two versions
of TΦ differ by a compact operator. ¤

We now extend our notion of twisted Toeplitz operators. For simplicity, we assume D
is of Dirac type. Let C0 and C1 be two vector bundles (of the same rank) over M , equipped
with connections. Then, associated to D : Hs+1,p(M,F0) → Hs,p(M,F1), we have twisted
operators

Dj : Hs+1,p(M,F0 ⊗ Cj) −→ Hs,p(M,F1 ⊗ Cj), j = 0, 1, (4.5.32)
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and then associated Calderón-type projectors

Pj : Lp(∂Ω,F0 ⊗ Cj) −→ Lp(∂Ω,F0 ⊗ Cj), j = 0, 1. (4.5.33)

Let us take
Φ0 ∈ C(∂Ω, Hom(C0, C1)), Φ1 ∈ C(∂Ω, Hom(C1, C0)). (4.5.34)

(We could replace C by L∞ ∩ vmo.) Then we form C = C0 ⊕ C1,

DC =
(

D0

D1

)
: Hs+1,p(M,F0 ⊗ C) −→ Hs,p(M,F1 ⊗ C), (4.5.35)

and

Φ =
(

Φ1

Φ0

)
∈ C(∂Ω,End C). (4.5.36)

Construction of P = PDC gives

P =
(P0

P1

)
: Lp(∂Ω,F0 ⊗ C) −→ Lp(∂Ω,F0 ⊗ C). (4.5.37)

As before, we form
TΦ = PΦP + (I −P). (4.5.38)

A calculation gives

TΦ =
( Pc

0 P0Φ1P1

P1Φ0P0 Pc
1

)
, Pc

j = I − Pj . (4.5.39)

If also

Ψ =
(

Ψ1

Ψ0

)
∈ C(∂Ω,End C), (4.5.40)

(or more generally, in L∞ ∩ vmo(∂Ω,End C)), then

TΦTΨ =
(P0Φ1P1Ψ0P0 + Pc

0 0
0 P1Φ0P0Ψ1P1 + Pc

1

)
. (4.5.41)

By contrast, we have

ΦΨ =
(

Φ1Ψ0

Φ0Ψ1

)
, (4.5.42)

and

TΦΨ =
(P0Φ1Ψ0P0 + Pc

0 0
0 P1Φ0Ψ1P1 + Pc

1

)
. (4.5.43)

Now we know
TΦΨ − TΦTΨ is compact on Lp(∂Ω,F0 ⊗ C). (4.5.44)

It follows that

(P0Φ1P1)(P1Ψ0P0)−P0Φ1Ψ0P0 is compact on Lp(∂Ω,F0 ⊗ C0). (4.5.45)

We are in a position to define a further class of Toeplitz operators. First, we simplify
notation (altering the convention used in (4.5.36)), and consider

Ψ ∈ C(∂Ω,Hom(C0, C1)), Φ ∈ C(∂Ω, Hom(C1, C0)). (4.5.46)
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(As before, we can replace C by L∞ ∩ vmo.) Then we define

T̂Ψ : R(P0) −→ R(P1), T̂Φ : R(P1) −→ R(P0), (4.5.47)

by
T̂Ψ = P1Ψ on R(P0), T̂Φ = P0Φ on R(P1). (4.5.48)

As in (4.5.28), we set

R(Pj) = Pj(Lp(∂Ω,F0 ⊗ Cj)), j = 0, 1, (4.5.49)

and suppress dependence on p ∈ (1,∞). It follows from (4.5.45) that

T̂ΦT̂Ψ − T̂ΦΨ is compact on R(P0), (4.5.50)

and
T̂ΨT̂Φ − T̂ΨΦ is compact on R(P1). (4.5.51)

Note that the Toeplitz operators T̂ΦΨ and T̂ΨΦ are of the sort treated in (4.5.27)–(4.5.29).
These results imply the following.

Proposition 4.5.4 Assume Ψ ∈ C(∂Ω, Hom(C0, C1)) is invertible at each point of ∂Ω, or
more generally

Ψ ∈ L∞ ∩ vmo(∂Ω,Hom(C0, C1)), Ψ−1 ∈ L∞ ∩ vmo(∂Ω, Hom(C1, C0)). (4.5.52)

Then T̂Ψ : R(P0) → R(P1) is Fredholm, with index independent of p ∈ (1,∞).

The next proposition is a useful precursor of an important “cobordism invariance” result,
which will be treated in §4.7.

Proposition 4.5.5 In the setting of Proposition 4.5.4, assume Ψ extends to M , satisfying

Ψ ∈ C(M, Hom(C0, C1)), Ψ−1 ∈ C(M, Hom(C1, C0)). (4.5.53)

Then
Index T̂Ψ = 0. (4.5.54)

Proof. Using a homotopy, we can assume Ψ is smooth, of class C2. Then, using Ψ, we
can pull back C1 to the vector bundle C0, and hence conjugate D1, acting on sections of
F0 ⊗ C1, to an operator D̃1, acting on sections of F0 ⊗ C0. Then P1 is conjugated to a
projection acting on sections of F0⊗C0. The difference between D0 and D̃1 is that they are
associated to different connections on C0, the given one and the one pulled back via Ψ. Now
these two connections can be joined by a path, producing a continuous family Ds of elliptic
operators, acting on sections of F0⊗C0, all with the same principal symbol. They give rise
to a norm-continuous family of projections Ps, differing by compact operators from P0, and
T̂Ψ is conjugated to T1, where

Ts = Ps

∣∣
R(P0)

, Ts : R(P0) →R(Ps). (4.5.55)

The proof of Proposition 4.5.5 is completed by the following result.
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Lemma 4.5.6 Let {Ps : 0 ≤ s ≤ 1} be a norm continuous family of projections on a
Banach space V . Assume Ps − P0 is compact for each s. Set

Ts = Ps

∣∣
R(P0)

, Ts : R(P0) −→ R(Ps). (4.5.56)

Then, for each s ∈ [0, 1], Ts is Fredholm, of index zero.

Proof. Write Ps = P0 + Ks, and consider

T̃s = PsP0 + (I − Ps)(I − P0) = I + Ks(2P0 − I). (4.5.57)

For s small, T̃s is invertible on V , and hence Ts : R(P0) → R(Ps) is an isomorphism.
Similarly, we can partition [0, 1] into intervals [sj , sj+1], 0 = s0 < s1 < · · · < sN = 1, such
that

Ps

∣∣
R(Psj )

: R(Psj ) −→ R(Ps) (4.5.58)

is an isomorphism, for each j, and each s ∈ [sj , sj+1]. In fact, this isomorphism is the
restriction to R(Psj ) of

T̃s,j = PsPsj + (I − Ps)(I − Psj ), s ∈ [sj , sj+1], (4.5.59)

which is invertible on V , and differs from I by a compact operator. Composing these, we
get a norm-continuous family Qs of invertible operators on V , each differing from I by a
compact operator, such that, for each s ∈ [0, 1],

Qs : R(P0) −→ R(Ps) is an isomorphism. (4.5.60)

Then
Q−1

s Ts : R(P0) −→ R(P0) (4.5.61)

is a norm continuous family of operators on R(P0), each differing from the identity by a
compact operator, hence each Fredholm of index zero. Since Qs is invertible, this implies
each Ts is Fredholm, of index zero. ¤

4.6 Localization of Toeplitz operators

We take D, acting on sections of F0 ⊗ C, of Dirac type, Ω ⊂ M a UR domain, Φ ∈
L∞ ∩ vmo(∂Ω,End C), and

TΦ = PDΦPD + (I − PD) : Lp(∂Ω,F0 ⊗ C) → Lp(∂Ω,F0 ⊗ C). (4.6.1)

Recall that PD = (1/2)I + CD and CD is the upper left block of CD, defined by

CDf(x) = iPV
∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y), (4.6.2)

where E(x, y) is the integral kernel of D−1. Hence with E =
(

E00 E01

E10 E11

)
,

CDf(x) = iPV
∫

∂Ω

E01(x, y)σD(y, ν(y))f(y) dσ(y). (4.6.3)
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Here, we consider some localization phenomena for Toeplitz operators.
To begin, we consider localizing TΦ, when ∂Ω is not connected. Suppose

∂Ω =
J⋃

j=1

Γj , disjoint closed subsets. (4.6.4)

We do not assume the sets Γj are connected. Let us set

Cjf(x) = iPV
∫

Γj

E01(x, y)σD(y, ν(y))f(y) dσ(y), (4.6.5)

for
x ∈ Γj , f ∈ Lp(Γj ,F0 ⊗ C). (4.6.6)

We have
Cj : Lp(Γj) −→ Lp(Γj), (4.6.7)

for 1 ≤ j ≤ J, p ∈ (1,∞), hence ⊕J
1 Cj : Lp(∂Ω) → Lp(∂Ω). It is clear from the behavior of

E(x, y) that

C −
J⊕

j=1

Cj is compact on Lp(∂Ω), ∀ p ∈ (1,∞). (4.6.8)

Consequently, with

Pj =
1
2
I + Cj : Lp(Γj) → Lp(Γj), (4.6.9)

we have

PD −
J⊕

j=1

Pj compact on Lp(∂Ω), P2
j − Pj compact on Lp(Γj). (4.6.10)

Then, with
TΓj ,Ω,Φf = PjΦPjf + (I − Pj)f, f ∈ Lp(Γj), (4.6.11)

we have

TΦ −
J⊕

j=1

TΓj ,Ω,Φ compact on Lp(∂Ω). (4.6.12)

Clearly TΓj ,Ω,Φ depends only on Φ|Γj . Note that, if

Φ, Φ−1 ∈ L∞ ∩ vmo(∂Ω, End C), (4.6.13)

then each operator TΓj ,Ω,Φ is Fredholm on Lp(Γj ,F0 ⊗ C), if p ∈ (1,∞), by (4.6.12). Fur-
thermore,

IndexTΦ =
J∑

j=1

IndexTΓj ,Ω,Φ. (4.6.14)

We move on to another localization phenomenon. Namely, with Ω ⊂ M as above,
assume there exists another Riemannian manifold M̃ , a neighborhood O of Ω in M , and
an open Õ ⊂ M̃ , isometric to O. (From here on, we identify O and Õ.) Assume that
there exists a first order elliptic differential operator D̃ on M̃ , acting on sections of a vector
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bundle over M̃ which agrees with F0 ⊗ C on Õ = O, such that the coefficients of D̃ on Õ
agree with those of D on O. We can then form

D̃ =

(
ib D̃∗

D̃ ib

)
, (4.6.15)

with b ≥ 0 on M̃, b = 0 on a neighborhood of Ω, b > 0 on M̃ \ Õ, so D̃ is invertible, and
then we have the associated Toeplitz operator

T
M̃,Φ

: Lp(∂Ω,F0 ⊗ C) −→ Lp(∂Ω,F0 ⊗ C). (4.6.16)

Here, T
M̃,Φ

= P
D̃

ΦP
D̃

+ (I − P
D̃

), P
D̃

= (1/2)I + C
D̃

, and C
D̃

is given as in (4.6.3), with

E01(x, y) replaced by Ẽ01(x, y), and clearly the difference E01(x, y) − Ẽ01(x, y) is weakly
singular. Hence, for Φ ∈ L∞ ∩ vmo(∂Ω, End C),

TΦ − T
M̃,Φ

is compact on Lp(∂Ω,F0 ⊗ C), (4.6.17)

for all p ∈ (1,∞). Thus, if also Φ−1 ∈ L∞ ∩ vmo(∂Ω,End C),
IndexTΦ = IndexT

M̃,Φ
. (4.6.18)

4.7 Cobordism invariance of the index

As in §4.6, we take D, of Dirac type, acting on sections of F0 ⊗ C, and assume Ω ⊂ M is a
UR domain. We begin with the following significant sharpening of Proposition 4.5.5.

Proposition 4.7.1 If Φ ∈ C(Ω, G`(C)), then

IndexTΦ = 0. (4.7.1)

Proof. Extend Φ to M as a continuous section of End C. There is a neighborhood O ⊃ Ω
on which Φ is invertible. Then one can take a smoothly bounded M0 such that Ω ⊂ M0 ⊂
M0 ⊂ O. Let M̃ denote the double of M0. Using a gluing construction, it is shown in
[33], p. 111, that there are vector bundles F̃j → M̃ , extending Fj |M0

, and that there is a
first order elliptic differential operator D̃ on M̃ , extending D|M0

. In addition, one can use
reflection to extend C|M0

to C̃ → M̃ and to extend Φ|M0
to Φ̃ ∈ C(M̃,G`(C̃)). One can also

give C̃ an extended connection.
Now Proposition 4.5.5 applies, to give

IndexT
M̃,Φ

= 0. (4.7.2)

On the other hand, (4.6.18) implies

IndexTΦ = IndexT
M̃,Φ

, (4.7.3)

so we have (4.7.1). ¤

Proposition 4.7.1 applies in the following setting. Let us take an open set O ⊂ Ω, with
the properties that O is a UR domain and

∂O = ∂Ω ∪ Γ, disjoint closed subsets. (4.7.4)
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Let
Φ ∈ C(O, G`(C)). (4.7.5)

Then, using notation as in (4.6.11), we have

TΦ Fredholm on Lp(∂Ω,F0 ⊗ C),
T∂Ω,O,Φ Fredholm on Lp(∂Ω,F0 ⊗ C),
TΓ,O,Φ Fredholm on Lp(Γ,F0 ⊗ C).

(4.7.6)

Furthermore,
TΦ − T∂Ω,O,Φ is compact on Lp(∂Ω), (4.7.7)

so
IndexTΦ = IndexT∂Ω,O,Φ. (4.7.8)

We also have the analogue of TΦ, which we will denote TO,Φ, defined by replacing Ω by O
in our basic construction, and (4.6.14) gives, in this setting,

IndexTO,Φ = IndexT∂Ω,O,Φ + IndexTΓ,O,Φ. (4.7.9)

Given (4.7.5), we can apply Proposition 4.7.1 (with O in place of Ω) and deduce that

IndexTO,Φ = 0. (4.7.10)

Putting this together with (4.7.8)–(4.7.9) then yields the identity

IndexTΦ = − IndexTΓ,O,Φ. (4.7.11)

Furthermore, with Ω̃ = Ω \ O, we have ∂Ω̃ = Γ and

IndexTΓ,O,Φ = − IndexT
Ω̃,Φ

. (4.7.12)

Hence
IndexTΦ = IndexT

Ω̃,Φ
. (4.7.13)

This chain of reasoning can be used in cases where ∂Ω is rough but ∂Ω̃ is smooth.
There are tools available for calculating the right side of (4.7.13) (including the Atiyah-
Singer index theorem) when ∂Ω̃ is smooth, so the identity (4.7.13) provides a path for the
calculation of the index of TΦ, in many cases where ∂Ω is rough.

4.8 Further results on index computations

Here we use results from previous sections to draw conclusions about computing

ι(Φ) = ι(Φ; D) = IndexTΦ. (4.8.1)

We assume for simplicity that
Φ ∈ C(∂Ω, G`(`)). (4.8.2)

Results for Φ ∈ L∞ ∩ vmo(∂Ω, G`(`)) follow via results of §4.2.
We begin with general conclusions that can be drawn from the fact that (4.8.1) yields

a group homomorphism
ι : [∂Ω; G`(`)] −→ Z, (4.8.3)
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where [∂Ω;G`(`)] is the group of homotopy classes of continuous maps of ∂Ω to G`(`).
Writing

Φ(x) = A(x)Ψ(x), A(x) =
(
Φ(x)Φ(x)∗

)1/2
, Ψ ∈ C(∂Ω, U(`)), (4.8.4)

we have ι(Φ) = ι(A) + ι(Ψ) = ι(Ψ), since a homotopy argument gives ι(A) = 0, thanks to
the contractibility of the set of positive-definite `×` matrices. Hence we can focus attention
on the case

Φ ∈ C(∂Ω, U(`)). (4.8.5)

Furthermore, we can write
Φ(x) = Φ0(x)Φ1(x), (4.8.6)

with

Φ0(x) =
(

ϕ(x)
I

)
, ϕ(x) = det Φ(x), Φ1 ∈ C(∂Ω, SU(`)), (4.8.7)

and
ι(Φ) = ι(Φ0) + ι(Φ1)

= ι(ϕ) + ι(Φ1),
(4.8.8)

with ϕ ∈ C(∂Ω, S1), S1 ⊂ C. Then

[∂Ω;S1] = 0 =⇒ ι(Φ) = ι(Φ1), (4.8.9)

and
[∂Ω; SU(`)] = 0 =⇒ ι(Φ) = ι(ϕ). (4.8.10)

As for the applicability of (4.8.9)–(4.8.10), we note that

∂Ω simply connected =⇒ [∂Ω; S1] = 0, (4.8.11)

and
dimΩ ≤ 3 =⇒ [∂Ω;SU(2)] = 0. (4.8.12)

On the other hand, [T3; S1] 6= 0 and [T3; SU(2)] 6= 0.
We now specialize to the case where ∂Ω is homeomorphic to a sphere:

∂Ω ≈ Sm, m = n− 1 (n = dimΩ). (4.8.13)

In such a case, [∂Ω; U(`)] ≈ πm(U(`)). That is to say, we are in the setting of πm(Y ), the
group of homotopy classes of maps from the sphere Sm to a space Y (with Y = U(`)).
Classical results of Bott (cf. [18]) imply

m = 2µ− 1 =⇒ πm(U(`)) ≈ Z, if ` ≥ µ. (4.8.14)

By contrast,
m /∈ {1, 3, . . . , 2`− 1} =⇒ πm(U(`)) is finite. (4.8.15)

When (4.8.14) holds, let
ϑ : [∂Ω; U(`)] ≈−→ Z (4.8.16)

denote the induced isomorphism (uniquely defined up to sign). We have the following.
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Proposition 4.8.1 Assume Ω ⊂ M is a UR domain and (4.8.13) holds. If m = 2µ − 1
and ` ≥ µ, then there exists α = α(Ω, D) ∈ Z such that

ι(Φ, D) = αϑ([Φ]), ∀Φ ∈ C(∂Ω, U(`)). (4.8.17)

If m /∈ {1, 3, . . . , 2`− 1}, then

ι(Φ; D) = 0, ∀Φ ∈ C(∂Ω, U(`)). (4.8.18)

Actually, the argument given so far yields (4.8.17) with α = α`, possibly depending
on ` (satisfying ` ≥ µ, m = 2µ − 1). We now establish that α is independent of such `
(up to sign). This uses the fact that the natural inclusion U(`) ↪→ U(` + 1) induces an
isomorphism πm(U(`)) ≈ πm(U(` + 1)) for m = 2µ − 1, ` ≥ µ (cf. [18]). In more detail,
let Φ` ∈ C(∂Ω, U(`)) have the property that its homotopy class generates πm(U(`)). Then
ι(Φ`, D) = α` (up to sign). Now Φ`+1 ∈ C(∂Ω, U(` + 1)), given by

Φ`+1 =
(

Φ`

1

)

gives a generator of πm(U(` + 1)), by the isomorphism mentioned above, and clearly
ι(Φ`+1, D) = ι(Φ`, D). Hence α`+1 = α` (up to sign), as asserted.

This argument also yields the following.

Corollary 4.8.2 In the setting of Proposition 4.8.1, if m = 2µ−1 and `1 ≥ µ, and if there
exists Φ1 ∈ C(∂Ω, U(`1)) such that

IndexTΦ1 = 1, (4.8.19)

then (4.8.17) holds with α = ±1, for all ` ≥ µ.

In fact, we see that α must be a nonzero integer of magnitude ≤ 1.
Our next goal is to produce some cases where Corollary 4.8.2 applies. We begin with

an apparent digression. Namely, let B ⊂ Cµ be the unit ball. Assume µ ≥ 2. Let
Sh : L2(B) → L2(B) be the Szegö projector onto the space of boundary values of functions
holomorphic on B. Since holomorphic functions satisfy an overdetermined elliptic system,
this is a different sort of projector from what we have been considering. For example,

Sh ∈ OPS0
1/2,1/2(∂B). (4.8.20)

This is sufficient to imply that operators τΦ = ShΦSh + (I − Sh) are Fredholm if Φ ∈
C(∂B, U(`)), and one has an analogue of (4.8.17):

Index τΦ = αhϑ([Φ]). (4.8.21)

In [32], it is shown that (4.8.21) holds with αh = ±1. An alternative treatment of such
an index formula, in a more general setting, was done by Boutet de Monvel in [5]. His
formula, valid when B ⊂ Cµ is a smoothly bounded, strongly pseudoconvex domain, can
be described as follows. Consider

D = ∂ + ∂
∗ : Λ0,even(Cµ) −→ Λ0,odd(Cµ). (4.8.22)

This is an operator of Dirac type. Then

Index τΦ = ι(Φ;D). (4.8.23)

See also [3], for a proof of (4.8.23) using K-homology. We have the following consequence.
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Proposition 4.8.3 When Ω = B is the unit ball in Cµ and D is given by (4.8.22), then
(4.8.17) holds with α = ±1, provided ` ≥ µ.

From here, we obtain the following.

Proposition 4.8.4 Let Ω ⊂ Cµ be a bounded UR domain and let D be given by (4.8.22).
Let ` ≥ µ. Then

there exists Φ1 ∈ C(∂Ω, U(`)) such that IndexTΦ1 = 1. (4.8.24)

Proof. We can assume 0 ∈ B ⊂ B ⊂ Ω. Take Φ1 ∈ C(∂B,U(`)) such that TB,Φ1 has index
1, using Proposition 4.8.3. Then extend Φ1 to an element of C(Cµ \ 0, U(`)), homogeneous
of degree 0, and restrict to ∂Ω. The cobordism argument of §4.7 implies

IndexTΩ,Φ1 = IndexTB,Φ1 , (4.8.25)

so we have (4.8.24). ¤

Corollary 4.8.5 Let Ω ⊂ Cµ be a bounded UR domain and let D be given by (4.8.22). If
∂Ω is homeomorphic to S2µ−1, then (4.8.17) holds, with α = ±1.

4.9 Another class of Toeplitz operators

Let D be a first order elliptic differential operator on a compact manifold M , as in §1. Let
Ω ⊂ M be open, possibly with nasty boundary. We define

D =
(

D∗

D

)
(4.9.1)

as a closed, unbounded operator on H0 ⊕ H1 (with Hj = L2(Ω,Fj)), using the maximal
extension of D, so

DomD = {u ∈ H0 : Du ∈ H1}, DomD∗ = H1
0 (Ω,F1). (4.9.2)

Here H1
0 (Ω,F1) denotes the closure in H1(Ω,F1) of the space of smooth sections with

compact support in Ω. Then D2 has compact resolvent on H1, though not on H0. (In
fact, D has infinite dimensional null space on H0.) We recall some results from [3]. From
Proposition 1.1 of [3] we have

[Mϕ,D(D2 + 1)−1/2] compact on H0 ⊕H1, ∀ϕ ∈ C(Ω), (4.9.3)

where Mϕ acts on Hj by scalar multiplication. Furthermore, D has closed range. As shown
in Proposition 3.1 of [3], (4.9.3) implies that the pair (M,D) defines a relative cycle

[D] ∈ K0(Ω, ∂Ω). (4.9.4)

Here, K0(Ω, ∂Ω) denotes a relative K-homology group. We refer the reader to [3] for the
definition and basic properties of this group, and also to the groups K1(∂Ω) and K1(∂Ω)
mentioned below.

If P0 denotes the orthogonal projection of H0 onto

H2(Ω, D) = {u ∈ L2(Ω,F0) : Du = 0}, (4.9.5)
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and we set
τ̃ϕ : H2(Ω, D) −→ H2(Ω, D), τ̃ϕu = P0Mϕu, (4.9.6)

for u ∈ H2(Ω, D), ϕ ∈ C(Ω), then with

C∗(Ω) = {ϕ ∈ C(Ω) : ϕ|∂Ω = 0}, (4.9.7)

we have
ϕ ∈ C∗(Ω) =⇒ τ̃ϕ compact on H2(Ω, D), (4.9.8)

so we get a linear map

τ : C(∂Ω) −→ Q(H2(Ω, D)), τf = τ̃ϕ, ϕ|∂Ω = f, (4.9.9)

where if H is a Hilbert space, Q(H) = L(H)/K(H) is the Calkin algebra. Furthermore,
closely related to (4.9.3), we have

ϕ ∈ C(Ω) =⇒ [Mϕ, P0] compact, (4.9.10)

so
τfg = τfτg, f, g ∈ C(∂Ω). (4.9.11)

The map τ defines a K-homology cycle,

[τ ] ∈ K1(∂Ω), (4.9.12)

and (cf. [3], Proposition 4.1) we have

[τ ] = ∂[D], ∂ : K0(Ω, ∂Ω) → K1(∂Ω). (4.9.13)

We move from scalar multipliers to matrix multipliers. If Φ ∈ C(∂Ω, EndC`), we have

τΦ ∈ Q(H2(Ω, D)⊗ C`), (4.9.14)

and if also Ψ ∈ C(∂Ω,EndC`),
τΦτΨ = τΦΨ. (4.9.15)

Hence
Φ ∈ C(∂Ω, G`(`,C)) =⇒ τΦ invertible in Q(H2(Ω, D)⊗ C`), (4.9.16)

and we have an index map
j(Φ) = index of τΦ, (4.9.17)

giving
j : [∂Ω;G`(`,C)] −→ Z, homomorphism. (4.9.18)

As in (4.1.30), [∂Ω;G`(`,C)] denotes the group of homotopy classes of continuous maps
∂Ω → G`(`,C).

This also has a K-theoretic interpretation. The homotopy class of Φ ∈ C(∂Ω, G`(`,C))
defines

[Φ] ∈ K1(∂Ω), (4.9.19)

and, with [τ ] as in (4.9.12)–(4.9.13),

j(Φ) = 〈[τ ], [Φ]〉 (4.9.20)

is given by the intersection product

K1(∂Ω)×K1(∂Ω) −→ Z. (4.9.21)

To compare j(Φ) with ι(Φ) from §4.1, we note that Proposition 4.3 of [3] yields the
following.
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Proposition 4.9.1 If Ω has smooth boundary, then

j(Φ) = ι(Φ), ∀Φ ∈ C(∂Ω, G`(`,C)). (4.9.22)

Generally, when Ω is a UR domain, the association ϕ 7→ Tϕ constructed in §4.1 yields
an element

[T ] ∈ K1(∂Ω). (4.9.23)

Proposition 4.3 of [3] implies
[T ] = [τ ] in K1(∂Ω), (4.9.24)

when Ω has smooth boundary. One might conjecture that (4.9.24) holds for general UR
domains. This would imply that (4.9.22) holds for general UR domains, since both sides of
(4.9.22) are given by the intersection product (4.9.21).

A Auxiliary results

A.1 Invertibility of D and behavior of D−1

As in §1, we have a first order elliptic differential operator D, mapping from sections of
F0 to sections of F1 (each of rank κ), on a compact, connected Riemannian manifold M ,
equipped with a C2 metric tensor. Such an operator is given in a local coordinate chart U
(and with respect to local trivializations of Fj) by

Du(x) = Aj(x)∂ju(x) + B(x)u(x), (A.1.1)

(using the summation convention), and we assume

Aj ∈ C2(U,EndCκ), B ∈ C1(U,EndCκ). (A.1.2)

We take a ∈ C1(M), a ≥ 0, and set

D =
(

iMa D∗

D iMa

)
, (A.1.3)

where Mau = au. Here, in such local coordinates,

D∗v(x) = −Aj(x)∗∂jv(x) + B̃(x)v(x),

B̃(x) = −g(x)−1/2∂j(g(x)1/2Aj(x)∗) + B(x)∗,
(A.1.4)

so A∗j ∈ C2(U,EndCκ) and B̃ ∈ C1(U,EndCκ). In this situation, we have

D : Hs+1,p(M, E) −→ Hs,p(M, E), s ∈ [−2, 1], p ∈ (1,∞), (A.1.5)

where E = F0 ⊕ F1. We begin our investigation of conditions under which D is invertible
in (A.1.5) with the following result.

Proposition A.1.1 Under the hypotheses given above, D in (A.1.5) is Fredholm, of index
zero, and in each such case,

KerD ⊂ H2,q(M, E), ∀ q < ∞. (A.1.6)
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Proof. The symbol smoothing technique described in Chapter 2 of [29] (see also [31], Chapter
13, §9) gives, for δ ∈ (0, 1),

D = D# +Db + M
B̂

, D# ∈ OPS1
1,δ, elliptic,

Db ∈ OPC2S1−2δ
1,δ , B̂ ∈ C1.

(A.1.7)

Then D# has a two-sided parametrix

E# ∈ OPS−1
1,δ , (A.1.8)

with the mapping property

E# : Hs,p(M, E) −→ Hs+1,p(M, E) (A.1.9)

(valid for all s ∈ R, p ∈ (1,∞)), and a standard iterative argument applied to

Du = f ⇒ u = E#f − E#Dbu− E#(B̂u), mod C∞, (A.1.10)

making use of the mapping property (A.1.9) and

Db : Hσ+1−2δ,p −→ Hσ,p, ∀σ ∈ (−2(1− δ), 2), p ∈ (1,∞), (A.1.11)

gives
u ∈ H−1,p(M, E), Du ∈ Hs,q(M, E) =⇒ u ∈ Hs+1,q(M, E), (A.1.12)

for each s ∈ (−2, 1], p, q ∈ (1,∞). This implies (A.1.6). Furthermore, E# is a two-sided
Fredholm inverse of D in (A.1.5). As for the index calculation, note that D differs by a
compact operator from what one gets by taking a ≡ 0, so

IndexD = IndexD + IndexD∗ = 0, (A.1.13)

where the last calculation takes into account the regularity result (A.1.6). ¤

Proposition A.1.2 In the setting of Proposition A.1.1, for u = (u0, u1)t ∈ ∩qH
2,q(M, E),

Du = 0 ⇐⇒ u
∣∣
O = 0, Du0 = 0, D∗u1 = 0, (A.1.14)

where
O = {x ∈ M : a(x) > 0}. (A.1.15)

Proof. The implication ⇐ is obvious. For the implication ⇒, note that if u ∈ KerD, then

Im(Du, u)L2 =
∫

M

a〈u, u〉 dV = 0. (A.1.16)

Hence u = (u0, u1)t ∈ KerD satisfies au = 0, so u = 0 on O, and hence Du0 = 0 and
D∗u1 = 0 on M . ¤

Putting together Propositions A.1.1–A.1.2 gives the following.
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Corollary A.1.3 In the setting of Propositions A.1.1–A.1.2, D in (A.1.5) is invertible
provided that, given u = (u0, u1)t ∈ ∩qH

2,q(M, E),

u0

∣∣
O = 0, Du0 = 0 on M =⇒ u0 = 0 on M, (A.1.17)

and
u1

∣∣
O = 0, D∗u1 = 0 on M =⇒ u1 = 0 on M. (A.1.18)

The operator D is said to have the unique continuation property (UCP) provided the
implication (A.1.17) holds for arbitrary nonempty O ⊂ M (and without the requirement
that M be compact). There is a similar notion for D∗ to have UCP. We thus have the
following.

Corollary A.1.4 In the setting of Proposition A.1.1, if O in (A.1.15) is nonempty, then
D in (A.1.5) is invertible, provided

D and D∗ have UCP. (A.1.19)

One well known case where Corollary A.1.4 applies is when M has a real analytic metric
tensor and the coefficients of D (and hence of D∗) are real analytic. Then Holmgren’s
uniqueness theorem implies (A.1.19). Another is when σD(x, ξ)∗σD(x, ξ) is a scalar multiple
of the identity. Here, σD(x, ξ) denotes the principal symbol of D. In local coordinates (with
the summation convention)

σD(x, ξ) = iAj(x)ξj . (A.1.20)

In such a case, one sometimes says D is of Dirac type. Here is a more general class of
operators to which we will show (A.1.19) applies.

Definition. We say D is of generalized Dirac type provided there exists a first order elliptic
differential operator D̃ : Hs+1,p(M,F1) → Hs,p(M,F0), given in local coordinates by

D̃v(x) = Ãj(x)∂jv(x) + B̃(x)v(x), Ãj ∈ C2, B̃ ∈ C1, (A.1.21)

such that
σ

D̃
(x, ξ)σD(x, ξ) = γ(x, ξ)I, γ(x, ξ) ∈ (0,∞) for ξ 6= 0. (A.1.22)

Note that
γ(x, ξ) = γjk(x)ξjξk, γjk ∈ C2(U). (A.1.23)

Proposition A.1.5 If D is of generalized Dirac type, with D and D̃ having the regularity
of (A.1.2) and (A.1.21), then D, D̃, and D∗ all have UCP.

Proof. If u0 ∈ ∩qH
2,q(M,F0) satisfies Du0 = 0, then

Lu0 = 0 on M, L = D̃D, (A.1.24)

and, in local coordinates

Lu0(x) = −γjk(x)∂j∂ku0(x) + Xj(x)∂ju0(x) + Y (x)u0(x), (A.1.25)

where
Xj = Ãk(∂kAj) + ÃjB + B̃Aj ∈ C1(U),

Y = Ãj(∂jB) + B̃B ∈ C0(U).
(A.1.26)
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Thus L is a strongly elliptic, second order operator, with real principal symbol. Classic
work of [1] and [8] yields

L has UCP. (A.1.27)

Hence D has UCP, if D is of generalized Dirac type. Note that (A.1.22) implies

σD(x, ξ)σ
D̃

(x, ξ) = γ(x, ξ)I, (A.1.28)

so also D̃ is of generalized Dirac type. Applying adjoints to (A.1.28) gives

σ
D̃∗(x, ξ)σD∗(x, ξ) = γ(x, ξ)I, (A.1.29)

so also D∗ is of generalized Dirac type. This finishes the proof of Proposition A.1.5. ¤

For the rest of this subsection, we assume that D in (A.1.5) is invertible, with inverse

D−1 : Hs,p(M, E) −→ Hs+1,p(M, E), s ∈ [−2, 1], p ∈ (1,∞). (A.1.30)

We investigate properties of its integral kernel E(x, y), given by

D−1u(x) =
∫

M

E(x, y)u(y) dV (y). (A.1.31)

Note that δy ∈ H−ε,p for each ε > 0, for some p = p(ε) > 1, and E(x, y) = D−1δy(x).
We have E(·, y) ∈ H1−ε,p(ε)(M). Furthermore, the arguments yielding the regularity result
(A.1.12) are of a local nature, and we have

E(·, y) ∈ H2,q
loc (M \ {y}), ∀ q < ∞. (A.1.32)

Similar arguments apply to E∗(x, y) = E(y, x)∗, the integral kernel of (D∗)−1, yielding

E(y, ·) ∈ H2,q
loc (M \ {y}), ∀ q < ∞. (A.1.33)

It follows that (∆x + ∆y)E ∈ Lq
loc(M ×M \ diag), and hence

E ∈ H2,q
loc (M ×M \ diag), ∀ q < ∞. (A.1.34)

In particular,
E ∈ Cr

loc(M ×M \ diag), ∀ r < 2. (A.1.35)

It remains to investigate E on a small neighborhood of the diagonal. Hence, given
y0 ∈ M , we want to investigate E on O ×O, where O is a coordinate neighborhood of y0.
Our subsequent calculations will be done in such a coordinate chart.

Recall that the class of classical symbols Sm
cl is defined by requiring that (the matrix-

valued) function q(x, ξ) has an asymptotic expansion of the form

q(x, ξ) ∼ qm(x, ξ) + qm−1(x, ξ) + · · · , (A.1.36)

with qj smooth in x and ξ and homogeneous of degree j in ξ (for |ξ| ≥ 1). Here we
find it convenient to work with classes of symbols CrSm

1,0 which are only Cr in the spatial
variable, while still C∞ in the Fourier variable. The family of classical pseudodifferential
operators associated with such symbols whose symbols can be expanded as in (A.1.36),
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where qj(X, ξ) ∈ CrSm−j
1,0 is homogeneous of degree j in ξ for |ξ| ≥ 1, j = m,m − 1, . . . ,

will be denoted OPCrSm
cl . Finally, we set ØPCrSm

cl for the space of all formal adjoints of
operators in OPCrSm

cl .
Let E0(D,x) denote the operator in ØPC2S−1

cl , given by

E0(D, x)u(x) = (2π)−n

∫
E0(ξ, y)ei(x−y)·ξu(y) dy dξ, (A.1.37)

with
E0(ξ, y) = A(y, ξ)−1, A(y, ξ) =

∑

j

iAj(y)ξj ,

Aj(y) =
(

0 −Aj(y)∗

Aj(y) 0

)
.

(A.1.38)

The Schwartz kernel of E0(D, x) has the form

e0(x− y, y) = (2π)−n

∫
E0(ξ, y)ei(x−y)·ξ dξ. (A.1.39)

It follows that e0(z, y) is odd in z, smooth in z ∈ Rn\0, and homogeneous of degree −(n−1)
in z, with C2 y-dependence. Let us also note that e0(x − y, y) has a strictly off-diagonal
form:

e0(x− y, y) =
(

0 e01(x− y, y)
e10(x− y, y) 0

)
. (A.1.40)

As a first step toward comparing e0(x − y, y) and E(x, y), we apply D to (A.1.37),
obtaining

DE0(D,x)u(x) = (2π)−n

∫ [A(x, ξ) + B?(x)
]
E0(ξ, y)ei(x−y)·ξu(y) dy dξ, (A.1.41)

with A(x, ξ) as in (A.1.38) and B? ∈ C1(O). Note that A(y, ξ)E0(ξ, y) = I. Hence

A(x, ξ)E0(y, ξ) = I + [A(x, ξ)−A(y, ξ)]E0(ξ, y)

= I +
∑

H`j(x, y)(x` − y`)ξjE0(ξ, y),
(A.1.42)

where

iAj(x)− iAj(y) =
∑

`

H`j(x, y)(x` − y`), H`j ∈ C1(O ×O). (A.1.43)

Then an integration by parts gives

DE0(D, x)u(x) = u(x) +
∫

R(x, y)u(y) dy, (A.1.44)

where
R(x, y) = (2π)−n

∫
B?E0(ξ, y)ei(x−y)·ξ dξ

− i(2π)−n

∫
∂

∂ξ`

{
H`j(x, y)ξjE0(ξ, y)

}
ei(x−y)·ξ dξ.

(A.1.45)

The amplitudes in the integrands in (A.1.45) are homogeneous in ξ of degree −1. Hence

|R(x, y)| ≤ C|x− y|−(n−1). (A.1.46)
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In terms of (A.1.39), we have

Dxe0(x− y, y) = δy(x) + R(x, y). (A.1.47)

In local coordinates,

D−1u(x) =
∫

E(x, y)u(y)
√

g(y) dy, (A.1.48)

since dV (y) =
√

g(y) dy. We desire to estimate the difference

e1(x, y) = E(x, y)
√

g(y)− e0(x− y, y). (A.1.49)

Note that, by (A.1.48),
Dxe1(x, y) = −R(x, y). (A.1.50)

Given (A.1.46), a dilation argument parallel to that used on pp. 200–201 of [23] gives, for
each ε > 0,

|e1(x, y)| ≤ Cε|x− y|−(n−2+ε), (A.1.51)

and
|∇xe1(x, y)| ≤ Cε|x− y|−(n−1+ε). (A.1.52)

From the results on e0(x− y, y) above plus (A.1.51)–(A.1.52), we deduce that

|E(x, y)| ≤ C dist(x, y)−(n−1), |∇xE(x, y)| ≤ C dist(x, y)−n. (A.1.53)

Since the integral kernel of (D∗)−1 is E∗(x, y) = E(y, x)∗, we deduce that also

|∇yE(x, y)| ≤ C dist(x, y)−n. (A.1.54)

Remark. If the metric tensor of M and coefficients of D are C∞, the analysis of E(x, y)
can be done much more briefly. In that case,

D−1, E0(D, x) ∈ OPS−1
cl (M), (A.1.55)

and
D−1 −E0(D,x) ∈ OPS−2

cl (M), (A.1.56)

so e1(x, y) is the integral kernel of an operator in OPS−2
cl (M). These results imply (A.1.53)–

(A.1.54) and also (A.1.51)–(A.1.52), with ε = 0, except that, when n = 2, (A.1.51) becomes

|e1(x, y)| ≤ C log
1

|x− y| , (A.1.57)

for |x− y| small.
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A.2 Lp-Sobolev spaces on boundaries of Ahlfors regular domains

We recall some results from §3.6 of [11], but with some slightly different arguments. Let
Ω ⊂ Rn be bounded and Ahlfors regular. Given ϕ ∈ C1

0 (Rn), we set

∂τjk
ϕ = νk∂jϕ− νj∂kϕ

∣∣
∂Ω

. (A.2.1)

Note that if also ψ ∈ C1
0 (Rn),∫

∂Ω

(∂τjk
ϕ)ψ dσ =

∫

∂Ω

{
νk(∂jϕ)ψ − νj(∂kϕ)ψ

}
dσ

=
∫

Ω

{
(∂jϕ)(∂kψ)− (∂kϕ)(∂jψ)

}
dV

=
∫

∂Ω

{
νjϕ(∂kψ)− νkϕ(∂jψ)

}
dσ

= −
∫

∂Ω

ϕ(∂τjk
ψ) dσ,

(A.2.2)

the second and third identities by the Gauss-Green formula (“easy” version),∫

∂Ω

νkFj dσ =
∫

Ω

∂kFj dV, (A.2.3)

applied first to Fj = (∂jϕ)ψ, and its counterpart with j and k switched, so the resulting
integral is ∫

Ω

{
(∂jϕ)(∂kψ) + (∂k∂jϕ)ψ − (∂kϕ)(∂jψ)− (∂j∂kϕ)ψ

}
dV, (A.2.4)

and the resulting cancellation yields the second line in (A.2.2), provided ϕ,ψ ∈ C2
0 (Rn).

This gives (A.2.2) for such ϕ,ψ, and a limiting argument gives (A.2.2) for ϕ,ψ ∈ C1
0 (Rn).

For later use, we recast this argument. We set up the vector fields

Gjk = (∂jϕ)ψek − (∂kϕ)ψej ,

Hjk = ϕ(∂kψ)ej − ϕ(∂jψ)ek,
(A.2.5)

where {e1, . . . , en} is the standard orthonormal basis of Rn. Then

div Gjk = div Hjk = (∂jϕ)(∂kψ)− (∂kϕ)(∂jψ),
ν ·Gjk = (∂τjk

ϕ)ψ, ν ·Hjk = −ϕ(∂τjk
ψ),

(A.2.6)

Then (A.2.2) can be rewritten∫

∂Ω

(∂τjk
ϕ)ψ dσ =

∫

∂Ω

ν ·Gjk dσ

=
∫

Ω

div Gjk dV

=
∫

∂Ω

ν ·Hjk dσ

= −
∫

∂Ω

ϕ(∂τjk
ψ) dσ,

(A.2.7)

63



a sequence of identities that applies directly to all ϕ,ψ ∈ C1
0 (Rn), using a slightly more

sophisticated version of the Gauss-Green theorem, given in §2.2 of [11].
To proceed, given f ∈ Lp(∂Ω), p ∈ [1,∞], we say f ∈ Lp

1(∂Ω) provided that for each
j, k, there exists fjk ∈ Lp(∂Ω) such that

∫

∂Ω

(∂τjk
ϕ)f dσ = −

∫

∂Ω

ϕfjk dσ, ∀ϕ ∈ C1
0 (Rn). (A.2.8)

In such a case, we say
∂τjk

f = fjk. (A.2.9)

By (A.2.2), or (A.2.7), if f = ψ|∂Ω, with ψ ∈ C1
0 (Rn), then f ∈ Lp

1(∂Ω) and fjk =
νk∂jψ − νj∂kψ|∂Ω.

Proposition A.2.1 For each p ∈ [1,∞], Lp
1(∂Ω) is a Banach space, with norm

‖f‖Lp
1

= ‖f‖Lp +
∑

j,k

‖∂τjk
f‖Lp . (A.2.10)

Proof. The right side of (A.2.10) makes Lp
1(∂Ω) a normed linear space. To check complete-

ness, suppose (fµ)µ is Cauchy in Lp
1(∂Ω), in such a norm. Then we have f, fjk ∈ Lp(∂Ω)

such that
fµ → f, ∂τjk

fµ → fjk in Lp(∂Ω). (A.2.11)

It suffices to show that
∂τjk

f = fjk. (A.2.12)

This follows from ∫

∂Ω

(∂τjk
ϕ)fµ dσ = −

∫

∂Ω

ϕ ∂τjk
fµ dσ, (A.2.13)

since taking µ →∞ yields (A.2.8). ¤

The following is useful information on Lip(∂Ω).

Proposition A.2.2 We have
Lip(∂Ω) ⊂ L∞1 (∂Ω). (A.2.14)

Proof. Suppose f ∈ Lip(∂Ω), so f = ψ|∂Ω, with ψ ∈ Lipc(Rn). We can use a mollifier
to construct ψµ ∈ C∞

0 (Rn) such that ψµ → ψ uniformly and ‖∇ψµ‖L∞ ≤ ‖ψ‖Lip; set
fµ = ψµ|∂Ω. Then, for all ϕ ∈ C1

0 (Rn),
∫

∂Ω

(∂τjk
ϕ)f dσ = lim

µ→∞

∫

∂Ω

(∂τjk
ϕ)fµ dσ. (A.2.15)

Meanwhile, for all ν, ∫

∂Ω

(∂τjk
ϕ)fµ dσ = −

∫

∂Ω

ϕfµ
jk dσ, (A.2.16)

with fµ
jk = νk∂jψ

µ − νj∂kψ
µ|∂Ω. We have

∫

∂Ω

(∂τjk
ϕ)f dσ = − lim

µ→∞

∫

∂Ω

ϕfµ
jk dσ, sup

∂Ω
|fµ

jk| ≤ ‖f‖Lip. (A.2.17)
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Hence ∣∣∣
∫

∂Ω

(∂τjk
ϕ)f dσ

∣∣∣ ≤ ‖f‖Lip(∂Ω)‖ϕ‖L1(∂Ω), ∀ϕ ∈ C1
0 (Rn), (A.2.18)

so there exist
fjk ∈ L∞(∂Ω, σ), ‖fjk‖L∞(∂Ω) ≤ ‖f‖Lip(∂Ω), (A.2.19)

such that ∫

∂Ω

(∂τjk
ϕ)f dσ = −

∫

∂Ω

ϕfjk dσ, ∀ϕ ∈ C1
0 (Rn). (A.2.20)

This completes the proof of the proposition. ¤

Remark. From (A.2.17), we have
∫

∂Ω

ϕfjk dσ = lim
µ→∞

∫

∂Ω

ϕfµ
jk dσ, (A.2.21)

for all ϕ ∈ C1
0 (Rn), hence, passing to the limit, for all ϕ ∈ L1(∂Ω, σ).

The following result is useful in Appendix A.3.

Proposition A.2.3 Take p ∈ (1,∞). Assume u ∈ C1(Ω), N (u),N (∇u) ∈ Lp(∂Ω), and
that there are nontangential a.e. limits in Lp(∂Ω),

u → f, ∂ju → fj . (A.2.22)

Then f ∈ Lp
1(∂Ω) and

∂τjk
f = νkfj − νjfk. (A.2.23)

Proof. Take ϕ ∈ C1
0 (Rn) and set

Gjk = (∂jϕ)uek − (∂kϕ)uej ,

Hjk = ϕ(∂ku)ej − ϕ(∂ju)ek.
(A.2.24)

We have Gjk,Hjk ∈ Lp, defined by (2.4). As a consequence of [11], Proposition 3.20 (§3.2),

N (∇u) ∈ Lp(∂Ω) =⇒ ∇u ∈ Lr(Ω), r =
n

n− 1
p. (A.2.25)

We hence have

div Gjk = div Hjk = (∂jϕ)(∂ku)− (∂kϕ)(∂ju) ∈ L1(Ω),

ν ·Gjk = (∂τjk
ϕ)f, ν ·Hjk = −ϕ(νjfk − νkfj).

(A.2.26)

65



Hence, parallel to (A.2.7),
∫

∂Ω

(∂τjk
ϕ)u dσ =

∫

∂Ω

ν ·Gjk dσ

=
∫

Ω

div Gjk dV

=
∫

∂Ω

ν ·Hjk dσ

= −
∫

∂Ω

ϕ(νjfk − νkfj) dσ.

(A.2.27)

In this case, the second and third identities hold by the “hard” Gauss-Green theorem, from
§2.3 of [11]. The last identity establishes (A.2.23). ¤

The next result extends the scope of (A.2.8)–(A.2.9).

Proposition A.2.4 Given f ∈ Lip(∂Ω), g ∈ Lp
1(∂Ω),

∫

∂Ω

(∂τjk
f)g dσ = −

∫

∂Ω

f(∂τjk
g) dσ. (A.2.28)

Proof. Take ψ, ψµ, fµ as in the argument involving (A.11)–(A.16). Since each ψµ ∈ C∞
0 (Rn),

we know that ∫

∂Ω

(∂τjk
fµ)g dσ = −

∫

∂Ω

fµ(∂τjk
g) dσ. (A.2.29)

As µ → ∞, the left side of (A.2.29) approaches the left side of (A.2.28), by (A.2.21), with
ϕ = g, extended from ϕ ∈ C1

0 (Rn) to ϕ ∈ L1(∂Ω, σ), as indicated there. Meanwhile, the
right side of (A.2.29) tends to the right side of (A.2.28), so (A.2.28) is established. ¤

We now show that each space Lp
1(∂Ω) is a module over Lip(∂Ω). We start with the

following.

Lemma A.2.5 Given f ∈ Lip(∂Ω), ϕ ∈ C1
0 (∂Ω),

∂τjk
(fϕ) = (∂τjk

f)ϕ + f∂τjk
ϕ. (A.2.30)

Proof. We know that fϕ ∈ Lip(∂Ω), hence ∂τjk
(fϕ) ∈ L∞(∂Ω, σ), so, given h ∈ C1

0 (Rn),
we have ∫

∂Ω

(∂τjk
h)fϕ dσ = −

∫

∂Ω

h ∂τjk
(fϕ) dσ. (A.2.31)

Taking ψµ as in the proof of Proposition A.4, we see that the left side of (A.2.31) equals
the limit as µ →∞ of

∫

∂Ω

(∂τjk
h)ψµϕdσ = −

∫

∂Ω

h{(∂τjk
ψµ)ϕ + (∂τjk

ϕ)ψµ} dσ. (A.2.32)
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Arguments mentioned above give ∂τjk
ψµ → ∂τjk

f , weak∗ in L∞(∂Ω, σ), and ψµ → f uni-
formly on ∂Ω, so, as µ →∞, (A.2.32) tends to

−
∫

∂Ω

h{(∂τjk
f)ϕ + (∂τjk

ϕ)f} dσ, (A.2.33)

which is hence equal to (A.2.31). This proves (A.2.30). ¤

Here is the promised module result.

Proposition A.2.6 Given f ∈ Lip(∂Ω), g ∈ Lp
1(∂Ω), we have

fg ∈ Lp
1(∂Ω), and ∂τjk

(fg) = (∂τjk
f)g + f(∂τjk

g). (A.2.34)

Proof. Take ϕ ∈ C1
0 (Rn). We have
∫

∂Ω

(∂τjk
ϕ)fg dσ =

∫

∂Ω

{∂τjk
(fϕ)− ϕ(∂τjk

f)}g dσ

= −
∫

∂Ω

fϕ ∂τjk
g dσ −

∫

∂Ω

ϕ(∂τjk
f)g dσ

= −
∫

∂Ω

ϕ{f∂τjk
g + (∂τjk

f)g} dσ,

(A.2.35)

the first identity by (A.2.30) and the second by (A.2.28). The last identity proves fg ∈
Lp

1(∂Ω) and establishes (A.2.34). ¤

We next aim to extend the scope of Proposition A.2.6, from f ∈ Lip(∂Ω) to f ∈ Lq
1(∂Ω),

for sufficiently large q. For this, we restrict the class of domains Ω under consideration; we
assume Ω is a bounded, Ahlfors regular domain, and that

Ω satisfies a two-sided John condition. (A.2.36)

(These hypotheses imply Ω is a UR domain.) In such a case, we have from Theorem 4.27
of [11] that

Lp
1(∂Ω) ⊂ Lp∗(∂Ω) for p∗ =

(n− 1)p
n− 1− p

, if p ∈ (1, n− 1),

Lq(∂Ω) for all q ∈ (1,∞), if p = n− 1,

Cr(∂Ω) for r = 1− n− 1
p

, if p ∈ (n− 1,∞).

(A.2.37)

Furthermore, by Proposition 4.29 of [11],

C∞(∂Ω) is dense in Lq
1(∂Ω), ∀ q ∈ (1,∞), (A.2.38)

where C∞(∂Ω) is the space of restrictions to ∂Ω of elements of C∞(Rn). Using these results,
we prove the following.
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Proposition A.2.7 Assume Ω is a bounded, Ahlfors regular domain, of dimension n, sat-
isfying a two-sided John condition. Assume

p ∈ (1,∞), q ∈ (n− 1,∞), q ≥ p. (A.2.39)

Then
Lp

1(∂Ω) is a module over Lq
1(∂Ω), (A.2.40)

i.e.,
f ∈ Lq

1(∂Ω), g ∈ Lp
1(∂Ω) =⇒ fg ∈ Lp

1(∂Ω). (A.2.41)

Furthermore, the Leibniz formula (A.2.35) holds.

Proof. Given f, g as in (A.2.41), pick

fν , gν ∈ C∞(∂Ω), ‖f − fν‖Lq
1
→ 0, ‖g − gν‖Lp

1
→ 0. (A.2.42)

Then fνgν ∈ C∞(∂Ω), and, by (A.2.37),

fν −→ f uniformly on ∂Ω, (A.2.43)

so
fνgν −→ fg in Lp(∂Ω). (A.2.44)

Also
∂τjk

(fνgν) = (∂τjk
fν)gν + fν(∂τjk

gν), (A.2.45)

and ∂τjk
gν → ∂τjk

g in Lp(∂Ω), so

fν(∂τjk
gν) −→ f∂τjk

g in Lp(∂Ω). (A.2.46)

Furthermore, ∂τjk
fν → ∂τjk

f in Lq(∂Ω), and, by (A.2.37),

gν → g in Lp∗(∂Ω), for p∗ =
(n− 1)p
n− n− p

, if p ∈ (1, n− 1),

Lr(∂Ω), for all r ∈ (1,∞), if p = n− 1,

C(∂Ω), if p > n− 1.

(A.2.47)

Under the hypothesis (A.2.39), we hence have

(∂τjk
fν)gν −→ (∂τjk

f)g in Lp(∂Ω), (A.2.48)

hence
∂τjk

(fνgν) −→ (∂τjk
f)g + f(∂τjk

g) in Lp(∂Ω). (A.2.49)

It follows that (fνgν) is Cauchy in Lp
1(∂Ω), so, by Proposition A.2.1, it has a limit in Lp

1(∂Ω),
and by (A.2.44) that limit is fg. The proof of Proposition A.2.1 then also yields the Leibniz
formula (A.2.34). ¤
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A.3 Gradient estimates

Here, we take M = Rn and assume (with a slight change in notation) that D has the form

Du(x) =
∑

Aj∂ju, Aj ∈ End(Rk), A∗j = −Aj . (A.3.1)

We continue to assume D is elliptic, so it has a fundamental solution E ∈ S ′(Rn), smooth
on Rn \ 0, homogeneous of degree −(n− 1), and satisfying

E(x) = E(−x)∗ = −E(−x). (A.3.2)

We take Ω ⊂ Rn to be a bounded UR domain. In place of (1.0.19), we take

Bf(x) =
∫

∂Ω

E(x− y)f(y) dσ(y), x ∈ Ω, (A.3.3)

and in place of (1.0.21), we take

Cf(x) = i

∫

∂Ω

E(x− y)σD(y, ν(y))f(y) dσ(y), x ∈ Ω. (A.3.4)

In this case,
iσD(y, ν(y)) =

∑
Ajνj(y). (A.3.5)

Parallel to (1.0.20), we have

Bf
∣∣∣
∂Ω

(x) =
1
2i

σE(x, ν(x))f(x) + Bf(x), (A.3.6)

and parallel to (1.0.23), we have

Cf
∣∣∣
∂Ω

(x) =
1
2
f(x) + Cf(x). (A.3.7)

We also have estimates parallel to (2.3.16), in particular

‖NBf‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω), 1 < p < ∞. (A.3.8)

Our goal here is to estimate ∇Cf on Ω when f ∈ Lp
1(∂Ω). The following is the first key

result. From here on, we sum over repeated indices.

Proposition A.3.1 If p ∈ (1,∞) and f ∈ Lp
1(∂Ω), then, for x ∈ Ω,

∂kCf(x) = −B(Aj∂τjk
f)(x). (A.3.9)

Proof. We have

∂kCf(x) =
∫

∂Ω

∂xk
E(x− y)Ajνj(y)f(y) dσ(y)

= −
∫

∂Ω

∂yk
E(x− y)Ajνj(y)f(y) dσ(y),

(A.3.10)
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for x ∈ Ω. Note that

Aj∂xjE(x− y) = DE(x− y) = δ(x− y)I, (A.3.11)

hence, by (A.3.2),
∂yjE(x− y)Aj = δ(x− y)I. (A.3.12)

In particular, x 6= y ⇒ ∂yjE(x− y)Aj = 0, so we can go from (A.3.10) to

∂kCf(x) =
∫

∂Ω

{−∂yk
E(x− y)Ajνj(y) + ∂yjE(x− y)Ajνk(y)

}
f(y) dσ(y)

=
∫

∂Ω

∂τjk
E(x− y)Ajf(y) dσ(y)

= −
∫

∂Ω

E(x− y)Aj∂τjk
f(y) dσ(y)

= −B(Aj∂τjk
f)(x),

(A.3.13)

for x ∈ Ω, as asserted in (A.3.9). ¤

Corollary A.3.2 If p ∈ (1,∞) and f ∈ Lp
1(∂Ω), then

‖N∇Cf‖Lp(∂Ω) ≤ Cp‖f‖Lp
1(∂Ω), (A.3.14)

and there exists a σ-a.e. nontangential limit

∂kCf
∣∣∣
∂Ω

(x) = − 1
2i

σE(x, ν(x))Aj∂τjk
f(x)−B(Aj∂τjk

f)(x), (A.3.15)

for x ∈ ∂Ω.

From (A.3.15), (A.3.7), and Proposition A.2.3, we deduce the following.

Corollary A.3.3 For p ∈ (1,∞),

C : Lp
1(∂Ω) −→ Lp

1(∂Ω). (A.3.16)

Hence, for PD, given by (3.0.4), we have

PD : Lp
1(∂Ω) −→ Lp

1(∂Ω), 1 < p < ∞. (A.3.17)

It would be interesting to know when the Calderń-Szegö projector SD, defined in §3.2,
satisfies

SD : Lp
1(∂Ω) −→ Lp

1(∂Ω). (A.3.18)

Returning to (A.3.15), we have, for f ∈ Lp
1(∂Ω),

∂τk`
Cf ∣∣

∂Ω
= ν`∂kCf

∣∣
∂Ω
− νk∂`Cf

∣∣
∂Ω

= − 1
2i

σE(x, ν(x))
{

ν`Aj∂τjk
f − νkAj∂τj`

f
}

− ν`B(Aj∂τjk
f) + νkB(Aj∂τj`

f).

(A.3.19)
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Furthermore (cf. [11], Lemma 3.36), for f ∈ Lp
1(∂Ω), Ω a UR domain,

νk∂τj`
f − ν`∂τjk

f = νj∂τk`
f, (A.3.20)

so, since iσE(x, ν(x))Ajνj(x) = I,

∂τk`
Cf ∣∣

∂Ω
=

1
2
∂τk`

f + νkB(Aj∂τj`
f)− ν`B(Aj∂τjk

f). (A.3.21)

Hence, for f ∈ Lp
1(∂Ω),

∂τk`
Cf = νkB(Aj∂τj`

f)− ν`B(Aj∂τjk
f). (A.3.22)

A.4 UR domains with infinite topology

Recall that a compact surface Σ ⊂ Rn is an Ahlfors regular surface provided there exist
cj ∈ (0,∞) such that c0r

n−1 ≤ Hn−1(Br(p)∩Σ) ≤ c1r
n−1 for each p ∈ Σ, r ∈ (0, 1]; that a

bounded open set Ω ⊂ Rn is an Ahlfors regular domain provided Hn−1(∂Ω \ ∂∗Ω) = 0 and
∂Ω is an Ahlfors regular surface; and that such Ω is a UR domain provided, in addition, ∂Ω
contains large pieces of Lipschitz surfaces. We aim to describe examples of UR domains of
infinite topological type.

We begin with an Ahlfors regular surface O that is a bounded subset of Rn−1 ⊂ Rn.
For example, we might have

O = D1(0) \
⋃

k≥1

D2−k−2(2−kvk), (A.4.1)

where Dρ(p) = {x′ ∈ Rn−1 : |x′ − p| < ρ}, and vk are unit vectors in Rn−1. The following
is easily established.

Lemma A.4.1 If f : Rn−1 → R is Lipschitz, then the set

Σ = {(x′, f(x′)) : x′ ∈ O} (A.4.2)

is an Ahlfors regular surface.

Proof. Given p = (q, f(q)) ∈ Σ, r ∈ (0, 1], the desired upper bound on Hn−1(Br(p) ∩ Σ)
is straightforward. It remains to establish a lower bound. For this, assume the Lipschitz
constant of f is ≤ L, and set β = (1 + L2)−1/2. Then

x′ ∈ Dβr(q) ∩ O =⇒ (x′, f(x′)) ∈ Br(p) ∩ Σ,

so
Hn−1(Br(p) ∩ Σ) ≥ Hn−1(Dβr(q) ∩ O),

yielding the desired lower bound. ¤

This lemma leads to the following.

Proposition A.4.2 If f, g : Rn−1 → R are Lipschitz,

f = g on ∂O, and f > g on O, (A.4.3)

then
Ω = {(x′, xn) : x′ ∈ O, g(x′) < xn < f(x′)} (A.4.4)

is a UR domain.
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Proof. That Ω is an Ahlfors regular domain follows from Lemma A.4.1. The UR property
then follows directly from the definition. ¤

Remark. For such O as in (A.4.1), one could take f(x′) = dist(x′,Rn−1 \ O), and g ≡ 0,
or perhaps g = −f .
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[16] L. Lanzani and E. Stein, Szegö and Bergman projections on non-smooth planar do-
mains, J. Geom. Anal. 14 (2004), 63–86.

[17] R. Melrose, Calderón’s projector for manifolds with corners, Lecture Notes, 2012.
http://www-math.mit.edu/∼rbm/UNC2012.pdf

[18] J. Milnor, Morse Theory, Princeton Univ. Press, Princeton NJ, 1963.

[19] D. Mitrea, I. Mitrea, and M. Mitrea, A sharp divergence theorem with non-tangential
pointwise traces, Preprint, 2012.

[20] D. Mitrea, M. Mitrea, and M. Taylor, Layer potentials, the Hodge Laplacian, and
global boundary problems in nonsmooth Riemannian manifolds, Memoir AMS #713,
2001.

[21] I. Mitrea, M. Mitrea, and M. Taylor, The Riemann-Hilbert problem, Cauchy integrals,
and Toeplitz operators on uniformly rectifiable domains, Manuscript, in preparation.

[22] M. Mitrea, Generalized Dirac operators on non-smooth manifolds and Maxwell’s equa-
tions, J. Fourier Anal. Appl. 7 (2001), 207–256.

[23] M. Mitrea and M. Taylor, Boundary layer methods for Lipschitz domains in Rieman-
nian manifolds, J. Funct. Anal. 163 (1999), 181–251.

[24] M. Mitrea and M. Wright, Boundary value problems for the Stokes system in arbitrary
Lipschitz domains, Asterisque, Soc. Math. de France, Vol. 344, 2012.

[25] R. Seeley, Singular integrals and boundary value problems, Amer. J. Math. 88 (1966),
781–809.

[26] S. Semmes, Chord-arc surfaces with small constant, Adv. Math. 85 (1991), 198–223.

[27] I. Sneiberg, Spectral properties of linear operators in interpolation families of Banach
spaces, Mat. Issled. 9 (1974), 214–229.

[28] M. Taylor, Gelfand theory of pseudodifferential operators and hypoelliptic operators,
Trans. Amer. Math. Soc. 153 (1971), 495–510.

[29] M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhauser, Boston,
1991.

[30] M. Taylor, Tools for PDE, Math. Surv. Monogr. #81, AMS, Providence, RI, 2000.

[31] M. Taylor, Partial Differential Equations, Vols. 1–3, Springer-Verlag, New York 1996
(2nd ed., 2011).

[32] U. Venugopalkrishna, Fredholm operators associated with strongly pseudoconvex do-
mains, J. Funct. Anal. 9 (1972), 349–373.

73



[33] K. Wojciechowski, On the Calderon projections and spectral projections of the elliptic
operators, J. Operator Theory 20 (1988), 107–115.

74


