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Abstract

We study traveling wave solutions to nonlinear Schrödinger (NLS)
and nonlinear Klein-Gordon (NLKG) equations on a compact Rieman-
nian manifold M , with a Killing field X, generating a group of isome-
tries. The emphasis is on NLKG; then if X has length < 1 everywhere,
one gets a semilinear elliptic PDE on M , to which standard variational
techniques apply (for a natural class of nonlinearities), as reviewed in
§1, though there remains the question of whether the associated waves
are really (or just apparently) traveling, a point taken up in §2. In
§§3–4 we consider sonic speed waves, in some situations that lead to
subelliptic nonlinear PDE, and in §5 we consider some supersonic trav-
eling waves.

1 Introduction and first results

Let M be a complete, n-dimensional Riemannian manifold, possibly with
boundary. Assume g(t) is a 1-parameter group of isometries of M , generated
by the Killing vector field X (tangent to ∂M if the boundary is nonempty).
We look for solutions to the nonlinear Schrödinger equation

i∂tv +∆v = −K|v|p−1v, (1.1)

or the nonlinear Klein-Gordon equation

∂2
t v −∆v +m2v = K|v|p−1v, (1.2)

of the form
v(t, x) = eiλtu(g(t)x), (1.3)
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with λ ∈ R. Such solutions are called traveling waves.
In case M = Rn and g(t)x = x + tv, such traveling waves have been

studied in such classical works as [9] and [1]. Here we look into curved
Riemannian manifolds, and consider some phenomena that do not arise in
the Euclidean setting. We mention recent interest in standing wave solutions
to (1.1) and (1.2) (where g(t)x ≡ x), in non-euclidean settings, in [7], [2],
and [3].

Note that if v is given by (1.3), then

i∂tv = eiλt
[
−λu(g(t)x) + iXu(g(t)x)

]
, (1.4)

and
∂2
t v = eiλt

[
−λ2u(g(t)x) + 2iλXu(g(t)x) +X2u(g(t)x)

]
. (1.5)

Thus (1.1) holds if and only if

−∆u+ λu− iXu = K|u|p−1u, (1.6)

and (1.2) holds if and only if

−∆u+ (m2 − λ2)u+X2u+ 2iλXu = K|u|p−1u. (1.7)

If ∂M ̸= ∅, we will for the sake of definiteness place the Dirichlet boundary
condition on ∂M , though a similar analysis for the Neumann boundary
condition could be done.

We assume
⟨X,X⟩ ≤ b2 < ∞. (1.8)

Then iX is a relatively bounded perturbation of −∆, and −∆+ iX is self
adjoint. Say

Spec(−∆+ iX) ⊂ [α,∞). (1.9)

We will study (1.6) in case λ > −α and

1 < p <
n+ 2

n− 2
. (1.10)

We note that (1.8) is a significant restriction. There are no nonzero Killing
fields on hyperbolic space Hn satisfying (1.8). In fact, here we will concen-
trate on the case of compact M (possibly with boundary).

To study (1.7), we strengthen (1.8) to

⟨X,X⟩ ≤ b2 < 1. (1.11)
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Then −∆+X2 is a strongly elliptic, negative semidefinite self-adjoint oper-
ator, and 2iλX a relatively bounded perturbation. Say

Spec(−∆+X2 + 2iλX) ⊂ [β(λ),∞). (1.12)

Possibly β(λ) < 0.
Let us set

Fλ,X(u) = (−∆u− iXu+ λu, u), (1.13)

and

Fm,λ,X(u) = (−∆u+X2u+ 2iλXu+ (m2 − λ2)u, u). (1.14)

The following is readily established.

Proposition 1.1 Assume M is compact. If (1.9) holds and

λ > −α, (1.15)

then
Fλ,X(u) ≈ ∥u∥2H1 , ∀u ∈ H1

0 (M). (1.16)

If (1.11)–(1.12) hold and

m2 > λ2 − β(λ), (1.17)

then
Fm,λ,X(u) ≈ ∥u∥2H1 , ∀u ∈ H1

0 (M). (1.18)

We can produce a solution to (1.6) (under hypothesis (1.15)) by mini-
mizing Fλ,X(u), over u ∈ H1

0 (M), subject to the constraint

Ip(u) =

∫
M

|u|p+1 dV = A, (1.19)

with A ∈ (0,∞) fixed. The role of (1.10) in this minimization procedure is
that (if M has bounded geometry)

H1
0 (M) ⊂ Lq(M), ∀ q ∈

[
2,

2n

n− 2

]
, (1.20)

if n ≥ 3, ∀ q ∈ [2,∞) if n = 2. Furthermore, if M is compact,

H1
0 (M) ↪→ Lq(M) is compact, ∀ q ∈

[
2,

2n

n− 2

)
. (1.21)
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Such a result holds for q = p + 1 provided p satisfies (1.10). Note that if
u, v ∈ H1

0 (M),

d

dτ
Fλ,X(u+ τv)

∣∣∣
τ=0

= 2 Re (−∆u− iXu+ λu, v), (1.22)

and
d

dτ
Ip(u+ τv)

∣∣∣
τ=0

= (p+ 1) Re

∫
|u|p−1uv dV. (1.23)

Hence, if u is such a minimizer, we have the implication

v ∈ H1
0 (M), Re (|u|p−1u, v) = 0 =⇒ Re (−∆u− iXu+ λu, v) = 0. (1.24)

Now Re ( , ) is a nondegenerate, R-bilinear dual pairing of (complex)H1
0 (M)

and H−1(M), so (1.24) implies

−∆u+ λu− iXu = K0|u|p−1u, (1.25)

for some K0 ∈ R. Pairing both sides of (1.25) with u, using H1
0 − H−1

duality, we have

K0Ip(u) = Fλ,X(u) ≥ (λ+ α)∥u∥2L2 , (1.26)

and in particular K0 > 0. If u solves (1.25), then ua = au solves

−∆ua + λua − iXua = |a|−(p−1)K0|ua|p−1ua, (1.27)

so we have a solution to (1.6), given any K > 0.
We produce a solution to (1.7) (under hypothesis (1.17)) by minimizing

Fm,λ,X(u) over H1
0 (M), subject to the constraint (1.19). In this case, for

u, v ∈ H1
0 (M),

d

dτ
Fm,λ,X(u+τv)

∣∣∣
τ=0

= 2 Re (−∆u+X2u+2iλXu+(m2−λ2)u, v). (1.28)

Comparing (1.23), we see that if u is such a minimizer, then

v ∈ H1
0 (M), Re (|u|p−1u, v) = 0

=⇒ Re (−∆u+X2u+ 2iλXu+ (m2 − λ2)u, v) = 0.
(1.29)

Hence
−∆u+X2u+ 2iλXu+ (m2 − λ2)u = K0|u|p−1u, (1.30)

for some K0 ∈ R. Parallel to (1.26), we have

K0Ip(u) = Fm,λ,X(u) ≥ (m2 − λ2 + β(λ))∥u∥2L2 , (1.31)
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so K0 > 0. If u solves (1.30), then ua = au solves

−∆ua +X2ua + 2iλXua + (m2 − λ2)ua = |a|−(p−1)K0|ua|p−1ua, (1.32)

so we have a solution to (1.7), give K > 0.
Given (1.16), (1.18), and (1.21), a straightforward variant of the proof

of Theorem 1 in [8] yields the following existence result.

Proposition 1.2 Assume M is compact and p satisfies (1.10).
If (1.8)–(1.9) and (1.15) hold, then, given A ∈ (0,∞), there exists u ∈

H1
0 (M) minimizing Fλ,X(u), subject to the constraint (1.19). Such u is a

solution to (1.6), and (1.3) then gives a traveling wave solution to the NLS
equation (1.1).

If (1.11)–(1.12) and (1.17) hold, then, given A ∈ (0,∞), there exists
u ∈ H1

0 (M) minimizing Fm,λ,X(u), subject to the constraint (1.19). Such u
is a solution to (1.7), and then (1.3) gives a traveling wave solution to the
NLKG equation (1.2).

Proof. The details for the first part go as follows. Take uν ∈ H1
0 (M) such

that Ip(uν) = A and Fλ,X(uν) tends to the infimum, say B. Then, by (1.16),
{uν} is bounded in H1

0 (M), so there is a weakly convergent subsequence
uν → u ∈ H1

0 (M), and Fλ,B(u) ≤ B. By (1.21), uν → u in Lp+1-norm,
so Ip(u) = A. Hence u is a minimizer (and Fλ,X(u) = B, and uν → u in
H1-norm). The details for the second part are similar. �

Now that we have minimizers, which satisfy (1.25) and (1.30), we need to
verify that passing to v(t, x) in (1.3) yields waves that are actually traveling.
Here is a potential source of a problem. Suppose ∂M = ∅. Then the constant
u = [(m2−λ2)/K0]

1/p solves (1.25) and (1.30), and one might wonder if this
is a minimizer. Even if ∂M ̸= ∅, there are solutions to (1.25) and (1.30)
that are constant on each orbit of X, obtained by minimizing Fλ,X(u) and
Fm,λ,X(u) over

{u ∈ H1
0 (M) : Xu = 0}, (1.33)

subject to the constraint Ip(u) = A. Can one be sure this is not also a
minimizer over all u ∈ H1

0 (M), subject to this constraint? We tackle this
question in §2. There we show that, when M = Sn, the standard unit
sphere in Rn+1, minimizers for Fm,0,X(u), subject to Ip(u) = A, give rise to
genuinely traveling waves, at least for a nonempty set of parameters. Part
of the argument will involve transfering minimizers of related functionals
attached to Rn to Sn

R, the sphere of radius R, taken large, and then scaling.
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In sections 3–5 we pursue further results for traveling waves, for NLKG,
first relaxing and then erasing the “subsonic speed” condition (1.11). In §3
we take M = S2 and let X generate the 2π-periodic rotation of S2 about the
x-axis. Then ⟨X,X⟩ < 1 except on the great circle γ = {(x, y, z) ∈ S2 : x =
0}, where ⟨X,X⟩ = 1. Thus an associated traveling wave will travel at the
“speed of sound” on γ. Our analysis of the needed analogue of Proposition
1.2 makes use of subelliptic estimates for −∆+X2+ iαX, valid for |α| < 1.
See Proposition 3.3 for an existence result.

In §4, we construct mach 1 traveling waves on S3. The construction
is somewhat parallel to that in §3, in particular making essential use of
subelliptic estimates. One difference is that the waves we produce on S3

travel at the speed of sound everywhere, not just along an “equator.” See
Proposition 4.4 for the existence result.

Results of §§3–4 have no parallel in the setting of flat Euclidean space.
A certain degree of curvature is necessary for the production of operators
satisfying subelliptic estimates. Here, we have chosen to illustrate these
subelliptic phenomena on two and three dimensional spheres, but one could
extend the analysis to much larger classes of manifolds. For example, we
could take compact surfaces of rotation in R3 which “bulge out” at their
equator. We could also take higher dimensional manifolds, including spheres,
compact semisimple Lie groups, and other cases.

In §5, we allow ⟨X,X⟩ > 1. Associated traveling waves are “supersonic.”
In such a case, we replace Proposition 1.2 by the existence of constrained
minima on spaces

Vµ = {u ∈ H1
0 (M) : Xu = iµu},

when such a space is ̸= 0.

2 Nontriviality of solutions

In this section we take M = Sn, the standard n-sphere, and let X be a
nonzero Killing field on Sn (satisfying (1.11)), so X generates a 1-parameter
subgroup of SO(n+ 1). We take λ = 0 and m > 0 and assume u ∈ H1(Sn)
minimizes Fm,0,X(u), subject to the constraint (1.19), so u solves

−∆u+X2u+m2u = K0|u|p−1u, (2.1)

for some K0 > 0. Our first observation is that if u were constant on each
orbit of X, it would have to be trivial.
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Lemma 2.1 If u ∈ H1(Sn) minimizes Fm,0,X(u), subject to (1.19), and
Xu = 0, then u must minimize Fm,0,0(u), subject to (1.19), and furthermore,
u must be constant.

Proof. Comparing

Fm,0,X(u) = ((−∆+X2 +m2)u, u)

= ∥∇u∥2L2 − ∥Xu∥2L2 +m2∥u∥2L2

(2.2)

with
Fm,0,0(u) = ((−∆+m2)u, u)

= ∥∇u∥2L2 +m2∥u∥2L2 ,
(2.3)

we see that
Fm,0,X(u) ≤ Fm,0,0(u), ∀u ∈ H1(Sn). (2.4)

Now if u satisfies the hypotheses of Lemma 2.1, then Fm,0,X(u) = Fm,0,0(u),
so, by (2.4), u must also minimize Fm,0,0(u), subject to (1.19). To proceed,
set

ug(x) = u(gx), g ∈ SO(n+ 1). (2.5)

Then Fm,0,0(ug) = Fm,0,0(u) for all g ∈ SO(n + 1). On the other hand,
Fm,0,X(ug) ≥ Fm,0,X(u). Hence, by (2.4) with u replaced by ug, we must
have

Fm,0,X(ug) = Fm,0,0(ug). (2.6)

Then (2.2)–(2.3), with u replaced by ug, yields

Xug = 0, ∀ g ∈ SO(n+ 1), (2.7)

which implies u is constant. �

We now scale the metric up. Let Sn
R denote Sn with the distance magni-

fied by a factor of R. Thus Sn
R has circumference 2πR, and Vol(Sn

R) = AnR
n,

where An = Vol(Sn). We set ε = 1/R and let ∆ε denote the Laplace-
Beltrami operator on Sn

R. Also, given a vector field X on Sn satisfying
(1.11), let Xε denote the constant multiple of X whose rescaled norm is
pointwise equal to the original norm of X. If we pick a “north pole” o ∈ Sn

R

and use exponential coordinates centered at o, then, as R → ∞, Sn
R ap-

proaches flat Euclidean space Rn, ∆ε approaches the flat Laplacian on Rn,
and we can arrange that Xε approaches b∂1, with b ∈ (0, 1).
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Fix p ∈ (1, (n+ 2)/(n− 2)), m > 0, and A ∈ (0,∞), and, for ε > 0, let
uε ∈ H1(Sn

R) denote a minimizer of

Fε
m,0,X(u) = ((−∆ε +X2

ε +m2)u, u)

= ∥∇εu∥2L2(Sn
R) − ∥Xεu∥2L2(Sn

R) +m2∥u∥2L2(Sn
R),

(2.8)

subject to the constraint

Iεp(u) =

∫
Sn
R

|u|p+1 dV = A. (2.9)

The analogue of Lemma 2.1 applies. For each ε > 0, if Xεu
ε = 0, then uε

must be constant on Sn
R. From (2.9), we get

Xεu
ε = 0 =⇒ uε ≡

( A

AnRn

)1/(p+1)
, (2.10)

hence
Fε
m,0,X(uε) = m2|uε|2AnR

n

= m2A1/(p+1)(AnR
n)p/(p+1).

(2.11)

Since Xεu
ε = 0, this must also be the infimum of Fε

m,0,0(u), subject to the
constraint (2.9). We will show that this is not the case if R is sufficiently
large.

We do this via the following construction. With p and A as in (2.8)–(2.9),
set

Fm(u) = F0
m,0,0(u) = ((−∆0 +m2)u, u)

= ∥∇u∥2L2(Rn) +m2∥u∥2L2(Rn),
(2.12)

and

I0p (u) =

∫
Rn

|u|p+1 dx. (2.13)

The following holds.

Lemma 2.2 Given

n ≥ 2, p ∈
(
1,

n+ 2

n− 2

)
, A ∈ (0,∞), (2.14)

there is a minimizer u0 ∈ H1(Rn) to Fm(u) = F0
m,0,0(u), subject to the

constraint I0p (u
0) = A.

8



This is essentially a special case of work of [1]. Since that paper treated
a slightly different constrained minimization problem, we will sketch the
argument. Parallel to (1.20), we have

H1(Rn) ⊂ Lq(Rn), ∀ q ∈
[
2,

2n

n− 2

]
, (2.15)

if n ≥ 3, ∀ q ∈ [2,∞) if n = 2, but (1.21) must be weakened to the result
that restriction to the ball BK = {x ∈ Rn : |x| ≤ K} gives

H1(Rn) −→ Lq(BK) compact, ∀ q ∈
[
2,

2n

n− 2

)
, K < ∞. (2.16)

An extra argument is required to show that a minimizing sequence wν for
Fm, satisfying I0p (wν) ≡ A, has a subsequence that converges to the desired
minimizer.

To get this, let wν be such a minimizing sequence; say Fm(wν) → B. By
(2.15), B > 0. The following is the key to success. Let uν be the radially
symmetric, decreasing rearrangement of wν . Then clearly

I0p (uν) = I0p (wν) and ∥uν∥L2 = ∥wν∥L2 . (2.17)

Furthermore, as shown in [6],∫
Rn

|∇uν |2 dx ≤
∫
Rn

|∇wν |2 dx. (2.18)

Then I0p (uν) ≡ A and Fm(uν) ≤ Fm(wν), so we have a minimizing sequence,
consisting of positive, radial, decreasing functions. We have convergence (of
a subsequence) uν → u, weakly in H1(Rn), and clearly Fm(u) ≤ B. We can
conclude that u is the desired minimizer if we can establish

uν −→ u in norm, in Lp+1(Rn). (2.19)

Now (2.16) gives such Lp+1-norm convergence on any ballBK of finite radius.
The proof of (2.19) is completed via the following result (Radial Lemma A.II
of [1]). If n ≥ 2,

v ∈ H1(Rn) radial =⇒ |v(x)| ≤ Cn|x|−(n−1)/2∥v∥H1 , ∀ |x| ≥ 1. (2.20)

We can apply this to vν = u− uν , to get∫
|x|>K

|vν |p+1 dx ≤ C sup
|x|>K

|vν |p−1

∫
|x|>K

|vν |2 dx

≤ CK−(p−1)(n−1)/2 ∥vν∥p+1
H1 ,

(2.21)
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and finish off the proof of (2.19). This yields Lemma 2.2.

Remark. As shown in [1], the resulting minimizer u0 ∈ H1(Rn) satisfies

|u0(x)|, |∇u0(x)| ≤ Ce−δ|x|, (2.22)

for some δ > 0.

We can use the minimizer u0 of Lemma 2.2 to construct functions vε on
Sn
R (R = 1/ε), as follows. As we have noted, u0 is radial, i.e.,

u0(x) = u#(|x|), x ∈ Rn. (2.23)

We fix a pole o ∈ Sn
R, and set

vε(x) = u#(dist(o, x)), x ∈ Sn
R, (2.24)

where dist denotes geodesic distance in Sn
R. We have

Iεp(v
ε) −→ A, (2.25)

and
Fε
m,0,0(v

ε) −→ F0
m,0,0(u

0) < ∞, (2.26)

as ε → 0 (R → ∞). Comparison with (2.10)–(2.11) contradicts the pos-
sibility that (2.10) gives a minimizer, for small ε > 0. Hence, for ε > 0
sufficiently small, a minimizer uε of (2.8), subject to the constraint (2.9),
has the property Xεu

ε ̸= 0. Such a function uε solves

−∆εu
ε +X2

εu
ε +m2uε = K|uε|p−1uε, (2.27)

on Sn
R, with K = Kε > 0, and as before the substitution uε 7→ auε yields a

solution to (2.27) for arbitrary K > 0.
Using radial projection, we can identify Sn

R with the unit sphere Sn, and
hence identify functions on Sn

R with functions on Sn. By slight abuse of
notation, we continue to denote the associated function on Sn by uε. Seeing
how ∆ε and Xε scale, we have

−∆uε +X2uε +R2m2uε = R2K|uε|p−1uε, on Sn. (2.28)

We have established the following result.

Proposition 2.3 Given n ≥ 2, p ∈ (1, (n+2)/(n−2)), m > 0, K > 0, and
a Killing field X on Sn such that ⟨X,X⟩ ≤ b2 < 1, there exists ε0 > 0 such
that, for ε ∈ (0, ε0], the minimization procedure described above produces a
solution uε to (2.28), with R = 1/ε, such that Xuε ̸= 0.
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3 Mach 1 NLKG traveling waves on S2

Let S2 denote the unit sphere centered at the origin in R3, and let X, Y ,
and Z generate 2π-periodic rotations of S2 about the x, y, and z-axis,
respectively. The condition (1.11) fails for X. We have ⟨X,X⟩ < 1 except
on the great circle γ = S2 ∩ {(0, y, z)}, but ⟨X,X⟩ = 1 on γ. The operator

L0 = ∆−X2 = Y 2 + Z2 (3.1)

satisfies Hörmander’s condition for hypoellipticity with loss of one derivative.
We have

D(L0) ⊂ H1(S2), hence D((−L0)
1/2) ⊂ H1/2(S2), (3.2)

and in fact

−(L0u, u) ≥ C∥u∥2
H1/2 , if

∫
S2

u dS = 0. (3.3)

We can write (1.7) as

−L2λu+ (m2 − λ2)u = K|u|p−1u, (3.4)

where
Lα = L0 − iαX. (3.5)

For α ∈ R, Lα is self adjoint. Well known results on spherical harmonics
(cf., e.g., [11], Chapters 2 and 4) imply −Lα is positive semidefinite with 1-
dimensional kernel if |α| < 1, positive semidefinite with infinite-dimensional
kernel if |α| = 1, and not semibounded if |α| > 1. Also, classical results on
subellipticty (cf. [10], Chapter 15) imply that

|α| < 1 ⇒ D(Lα) = D(L0), hence D((−Lα)
1/2) = D((−L0)

1/2), and

− (Lαu, u) ≥ Cα∥u∥2H1/2 , if

∫
S2

u dS = 0.

(3.6)
To proceed, we bring in the following variant of (1.20)–(1.21). Namely, there
exists q∗ > 2 such that

D((−L0)
1/2) ⊂ Lq(S2), ∀ q ∈ [2, q∗], (3.7)

and hence

D((−L0)
1/2) ↪→ Lq(S2) is compact, ∀ q ∈ [2, q∗). (3.8)
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It would be of interest to know the sharp value of q∗ for which (3.7) holds.
From the Sobolev embedding result

H1/2(S2) ⊂ L4(S2), (3.9)

we have a lower bound, q∗ ≥ 4. We will obtain a better bound below. First,
we formulate an existence result.

Proposition 3.1 Let X be as in the first paragraph of this section. With
q∗ as in (3.8), assume

2 < p+ 1 < q∗. (3.10)

Also assume λ ∈ R satisfies

|λ| < 1

2
, (3.11)

and
m2 > λ2. (3.12)

Then, given K > 0, (3.4) has a nonzero solution u ∈ D((−L0)
1/2), obtained

by the method previewed in §1.

Proof. Under these hypotheses, with Fm,λ,X as in (1.14), we have

Fm,λ,X(u) ≈ ∥u∥2D((−L0)1/2)
. (3.13)

Via (3.8), we can pick A ∈ (0,∞) and minimize Fm,λ,X(u), under the con-
straint ∫

S2

|u|p+1 dS = A. (3.14)

Such a minimizer solves (1.7), for some K = K0 > 0, and replacing such u
by au gives solutions for general K > 0. �

Remark. Also (3.4) has a constant solution. Arguments as in §2 imply
that the solution obtained above is not constant on orbits of X, at least for
some values of λ,m, and K.

We next establish a result of the form (3.8), better than what follows
from (3.9).
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Proposition 3.2 For L0 as in (3.1), we have

D((−L0)
1/2) ↪→ Lq(S2), ∀ q ∈ [2, 6), (3.15)

and the inclusion is compact.

Proof. It suffices to show that there is a continuous inclusion of the form
(3.15). In fact, from there, interpolation implies that, for each q ∈ [2, 6),
there exists s ∈ (0, 1) such that D((−L0)

s/2) ↪→ Lq(S2) is continuous, and we
can compose this with the compact inclusion D((−L0)

1/2) ↪→ D((−L0)
s/2).

To proceed, we complement (3.2) with the characterization

D((−L0)
1/2) = {u ∈ L2(S2) : Y u, Zu ∈ L2(S2)}. (3.16)

Since Y (φu) = (Y φ)u+φ(Y u), with a similar identity for Z(φu), we see that
D((−L0)

1/2) is stable under u 7→ φu, when φ ∈ C∞(S2). Also, ellipticity
away from γ yields

u ∈ D((−L0)
1/2) =⇒ φu ∈ H1(S2), (3.17)

whenever supp φ is disjoint from γ. It remains to show that if u ∈ D((−L0)
1/2)

has support in a small neighborhood of a point z0 ∈ γ, then u ∈ Lq(S2) for
all q < 6. Using a coordinate chart that takes a neighborhood of z0 in γ to
the x-axis in R2, we obtain a compactly supported u on R2 such that

u ∈ H1/2(R2), ∂yu ∈ L2(R2). (3.18)

It remains to show that this implies u ∈ Lq(R2), ∀ q < 6.
To establish this, we note that the conditions in (3.18) imply (ξ2 +

η2)1/4û(ξ, η) and ηû(ξ, η) belong to L2(R2), hence

f̂ = (ξ2 + η4)1/4û(ξ, η) ∈ L2(R2). (3.19)

We have
u = k ∗ f, (3.20)

with
k̂(ξ, η) = (ξ2 + η4)−1/4. (3.21)

Now, away from (ξ, η) = (0, 0), k̂(ξ, η) satisfies symbol estimates for mem-

bership in S
−1/2
1/2,0(R

2), hence

k ∈ C∞(R2 \ 0). (3.22)

13



Also,

k̂(δ−2ξ, δ−1η) = δk̂(ξ, η) ∀ δ > 0 =⇒ k(δ2x, δy) = δ−2k(x, y). (3.23)

To continue, for j ∈ Z, let

Oj = {(2−jx, 2−j/2y) : x2 + y2 < 1}, Ωj = Oj \ Oj+1. (3.24)

Then R2 = ∪j∈ZΩj is a partition of R2 into disjoint sets, and

(x, y) 7→ (2−1x, 2−1/2y) takes Ωj onto Ωj+1. (3.25)

Set
k1 = k on

∪
j≥0

Ωj , 0 elsewhere, (3.26)

and
k2 = k on

∪
j<0

Ωj , 0 elsewhere, (3.27)

so k = k1 + k2. We estimate

uℓ = kℓ ∗ f, ℓ = 1, 2, (3.28)

by determining which Lr-spaces k1 and k2 belong to. To get this, note that,
by (3.22)–(3.23),

|k| ≤ C2j on Ωj . (3.29)

Meanwhile, by (3.25),

VolΩj = 2−3/2 VolΩj−1 = C2−(3/2)j , (3.30)

so ∫
|k1|r dx dy ≤ C

∑
j≥0

2jr−(3/2)j

< ∞, ∀ r <
3

2
,

(3.31)

and ∫
|k2|r dx dy ≤

∑
j<0

2jr−(3/2)j

< ∞, ∀ r >
3

2
.

(3.32)

To use this to estimate uj in (3.28), we interpolate

L2 ∗ L2 → L∞ and L2 ∗ L1 → L2. (3.33)

14



Noting that
[L2, L1]1/3 = L3/2 and [L∞, L2]1/3 ⊂ L6, (3.34)

hence L2 ∗ L3/2 → L6, we see that

u1 ∈ Lq(R2), ∀ q ∈ [2, 6), and u2 ∈ Lq(R2), ∀ q > 6. (3.35)

Since u = u1 + u2 has compact support, this gives u ∈ Lq(R2) for all q < 6,
and completes the proof of Proposition 3.2. �

We record the existence result that follows from Propositions 3.1–3.2.

Proposition 3.3 Take X as in Proposition 3.1. Assume λ and m satisfy
(3.11)–(3.12), and

1 < p < 5. (3.36)

Then the equation (3.4) has a solution u ∈ D((−L0)
1/2), obtained via the

minimization process described in §1. This leads, via (1.3), to a traveling
wave solution to (1.2), sonic along the “equator” γ ⊂ S2.

It is natural to investigate higher order regularity of such a solution. We
treat one case, namely p = 3.

Proposition 3.4 In the setting of Proposition 3.3, take p = 3, and let
u ∈ D((−L0)

1/2) solve

−L2λu+ (m2 − λ2)u = K|u|2u. (3.37)

Then u ∈ C∞(S2).

Proof. Set
P = −L2λ + (m2 − λ2), F (u) = K|u|2u. (3.38)

Standard subelliptic regularity results (cf., e.g., [10], Chapter 15, Theorem
1.8) yield

P−1 : Hs(S2) −→ Hs+1(S2), ∀ s ∈ R. (3.39)

Alternatively, (3.39) can be deduced from the behavior of P on spherical
harmonics (cf. [11], Chapters 2 and 4). If (3.37) holds, then

u = P−1F (u). (3.40)

15



Now
u ∈ D((−L0)

1/2) ⊂
∩
q<6

Lq(S2)

⇒ F (u) ∈
∩
p<2

Lp(S2) ⊂
∩
ε>0

H−ε,2(S2)

⇒ u = P−1F (u) ∈
∩
ε>0

H1−ε,2(S2)

⇒ u ∈
∩
q<∞

Lq(S2)

⇒ F (u) ∈
∩
p<∞

Lp(S2) ⊂ L2(S2)

⇒ u ∈ H1(S2).

(3.41)

We emphasize two conclusions:

u ∈ H1(S2), u ∈
∩
q<∞

Lq(S2). (3.42)

If also v has such properties, then since

∇(uv) = (∇u)v + u(∇v), (3.43)

we have ∇(uv) ∈ Lq(S2) for all q < 2. Iteration gives

∇F (u) ∈
∩
q<2

Lq(S2), hence F (u) ∈
∩
ε>0

H1−ε,2(S2). (3.44)

Hence, by (3.39),

u ∈
∩
ε>0

H2−ε,2(S2). (3.45)

Now Hσ,2(S2) is a Banach algebra for σ > 1, so we have

F (u) ∈
∩
ε>0

Hk−ε,2(S2), hence u ∈
∩
ε>0

Hk+1−ε(S2), (3.46)

first for k = 2, then, inductively, for all k > 2. This gives the asserted
regularity. �
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4 Mach 1 traveling waves on S3

The group SU(2), with its bi-invariant Riemannian metric, is isometric to
S3. It covers SO(3). There are left-invariant vector fields X, Y , and Z on
SU(2), covering vector fields on SO(3) that generate 2π-periodic riattions
of R3 about the x, y, and z-axes, respectively. With appropriate scaling of
the metric on S3, we have

⟨X,X⟩ ≡ ⟨Y, Y ⟩ ≡ ⟨Z,Z⟩ ≡ 1 on S3, (4.1)

and
∆ = X2 + Y 2 + Z2. (4.2)

Furthermore, the operator

L0 = ∆−X2 = Y 2 + Z2 (4.3)

satisfies Hörmander’s condition for hypoellipticity with loss of one derivative.
Parallel to (3.2)–(3.3), we have

D(L0) ⊂ H1(S3), hence D((−L0)
1/2) ⊂ H1/2(S3), (4.4)

and

−(L0u, u) ≥ C∥u∥2
H1/2 , if

∫
S3

u dV = 0. (4.5)

Parallel to (3.4), we can write (1.7) as

−L2λu+ (m2 − λ2)u = K|u|p−1u, (4.6)

where
Lα = L0 − iαX. (4.7)

Parallel to §3, nontrivial solutions to (4.6) give traveling waves on S3, via
(1.3), but in the current setting these waves travel at the speed of sound,
not just on an equator, but everywhere on S3. We proceed to see when (4.6)
has nontrivial solutions. Up to a point, this analysis will parallel that of §3,
and then details will diverge.

For α ∈ R, Lα is self adjoint. Results on the representation theory
of SU(2) (cf. [11], Chapter 2) imply −Lα is positive semidefinite with 1-
dimensional kernel if |α| < 1, positive semidefinite with infinite-dimensional
kernel if |α| = 1, and not semi-bounded if |α| > 1. Also, parallel to (3.6),

|α| < 1 ⇒ D(Lα) = D(L0), hence D((−Lα)
1/2) = D((−L0)

1/2), and

− (Lαu, u) ≥ Cα∥u∥2H1/2 , if

∫
S3

u dV = 0. (4.8)
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To proceed, we bring in the following variant of (3.8). Namely, there exists
q∗ > 2 such that

D((−L0)
1/2) ↪→ Lq(S3) is compact, ∀ q ∈ [2, q∗). (4.9)

From the Sobolev embedding result

H1/2(S3) ⊂ L3(S3), (4.10)

we have (4.9) with q∗ = 3. We will obtain a better result below. First we
formulate an existence result, parallel to Proposition 3.1.

Proposition 4.1 Let X be as in the first paragraph of this section. With
q∗ as in (4.9), assume

2 < p+ 1 < q∗. (4.11)

Also assume λ ∈ R satisfies

|λ| < 1

2
, (4.12)

and
m2 > λ2. (4.13)

Then, given K > 0, (4.6) has a nonzero solution u ∈ D((−L0)
1/2), obtained

by the method previewed in §1.

Proof. Same as that of Proposition 3.1. �

Remark. As with Proposition 3.1, arguments as in §2 imply that the solu-
tion obtained above is not constant on orbits of X, at least for some values
of λ,m, and K.

The following is a result of the form (4.9), improving what follows from
(4.10).

Proposition 4.2 For L0 as in (4.3), we have

D((−L0)
1/2) ↪→ Lq(S3), ∀ q ∈ [2, 4), (4.14)

and the inclusion is compact.
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Proof. As with Proposition 3.2, it suffices to establish the inclusion (4.14),
and the compactness automatically follows. We need to show that

(1− L0)
−1/2 : L2(S3) −→ Lq(S3), ∀ q ∈ [2, 4). (4.15)

This follows from the analysis of a parametrix for (1 − L0)
−1/2 using the

theory developed in Folland-Stein [4] (see also [12] for an exposition). After
a localization, one has a diffeomorphism of an open set in S3 to an open set
in the 3-dimensional Heisenberg group H3, with coordinates (p, q, t), such
that

(1− L0)
−1/2u(z) =

∫
H3

F (z, w)u(w−1z) dw

= F (z, ·) ∗ u(z),
(4.16)

plus lower order terms, where z 7→ F (z, ·) is a smooth function of z with
values in the space of functions F ∈ C∞(H3 \ 0) that have the anisotropic
homogeneity

F (δp, δq, δ2t) = δ−3F (p, q, t), δ > 0. (4.17)

Equivalently, its Euclidean Fourier transform F̂ belongs to C∞(R3 \ 0) and
satisfies

F̂ (sx, sξ, s2λ) = s−1F̂ (x, ξ, λ), s > 0.

The ∗ in the second line of (4.16) denotes the group convolution for H3. Via
standard techniques explained in the references given above, to prove (4.14)
it suffices to show that if F ∈ C∞(H3 \ 0) satisfies (4.17), then

u ∈ L2
comp(H3) =⇒ F ∗ u ∈ Lq

loc(H
3), ∀ q < 4. (4.18)

The key to this is the following.

Lemma 4.3 If F ∈ C∞(H3 \ 0) satisfies (4.17), then

F ∈ Lp
loc(H

3), ∀ p <
4

3
. (4.19)

To see how Lemma 4.3 implies (4.18), we interpolate

L2 ∗ L2 ⊂ L∞, and L1 ∗ L2 ⊂ L2. (4.20)

Now

[L2, L1]θ = L4/3 for
3

4
=

θ

1
+

1− θ

2
, i.e., θ =

1

2
, (4.21)
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and
[L∞, L2]1/2 ⊂ L4, (4.22)

so
L4/3 ∗ L2 ⊂ L4. (4.23)

The implication (4.19) ⇒ (4.18) follows readily from this.
It remains to prove Lemma 4.3. We proceed as follows. It suffices to

prove (4.19) when (4.17) holds and

F (p, q, t) = 1 for p2 + q2 + t2 = 1. (4.24)

Set
Ω0 = {(p, q, t) : 1 ≤ F (p, q, t) ≤ 8}. (4.25)

For k ≥ 1, define Ωk by

(p, q, t) 7→ (2−1p, 2−1q, 2−2t) maps Ωk−1 → Ωk. (4.26)

Note that
VolΩk = 2−4 VolΩk−1 = C 2−4k, (4.27)

and, by (4.17),

F
∣∣∣
Ωk

≈ 23k. (4.28)

Hence, with B = ∪k≥0Ωk = {(p, q, t) : p2 + q2 + t2 ≤ 1},∫
B

|F (p, q, t)|p dV ≤ C
∑
k≥0

23pk · 2−4k

< ∞ ⇐⇒ p <
4

3
.

(4.29)

This proves Lemma 4.3, and completes the proof of Proposition 4.2.
Putting together Propositions 4.1 and 4.2, we have the following exis-

tence result.

Proposition 4.4 Take X as in Proposition 4.1. Assume λ and m satisfy
(4.12)–(4.13), and assume

1 < p < 3. (4.30)

Then, given K > 0, (4.6) has a nonzero solution u ∈ D((−L0)
1/2), obtained

by the variational method of §1, and yielding, via (1.3), a solution to (1.2),
traveling at sonic speed at every point of S3.
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Remark. In [5] there is a study of a class of nonlinear subelliptic PDE on
bounded domains (and some unbounded domains) in the Heisenberg group
Hm (a Lie group of dimension d = 2m+ 1), for which there are conclusions
similar to Proposition 4.4, when d = 3.

5 Supersonic traveling waves for NLKG

In this section we let X be an arbitrary (nonzero) Killing field on a compact
n-dimensional Riemannian manifold M (tangent to ∂M if the boundary is
nonempty), and produce traveling waves of the form (1.3), with u solving
(1.7), without a restriction on ⟨X,X⟩. Such traveling waves are supersonic
wherever ⟨X,X⟩ > 1. Unlike the situations treated in §§1–4, we cannot
expect to obtain u by minimizing Fm,λ,X(u) subject only to the constraint
(1.19). Thus the solutions constructed here are far from being “ground
states.” We will obtain our solutions by minimizing Fm,λ,X over

Vµ = {u ∈ H1
0 (M) : Xu = iµu}, (5.1)

subject to the constraint (1.19), assuming Vµ ̸= 0. Note that X preserves
each eigenspace

Eβ = {u ∈ H1
0 (M) : ∆u = −β2u}, β2 ∈ Spec(−∆), (5.2)

and X is skew-adjoint on each of these finite-dimensional spaces. Thus there
is a countable set of µ such that Vµ ̸= 0, and in fact

L2(M) =
⊕
µ

V µ, (5.3)

where V µ is the closure in L2(M) of Vµ. Note that

u ∈ Vµ =⇒ Fm,λ,X(u) = (−∆u+ [m2 − (λ+ µ)2]u, u)

= F#
m,λ,µ(u),

(5.4)

so our task is to minimize F#
m,λ,µ over Vµ, subject to the constraint (1.19),

i.e.,

Ip(u) =

∫
M

|u|p+1 dV = A. (5.5)

The following is the key to an existence result.
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Proposition 5.1 Take n ≥ 2, p ∈ (1, (n+ 2)/(n− 2)), m > 0, and λ ∈ R.
Also, take µ ∈ R such that

Vµ ̸= 0. (5.6)

Then there exists u ∈ Vµ minimizing F#
m,λ,µ over Vµ, subject to the constraint

(5.5).

Proof. This goes like the proof of Proposition 1.2, once one notes that there
exists γ ∈ (0,∞) such that

∥u∥2H1 ≈ F#
m,λ,µ(u) + γ∥u∥2Lp+1 . (5.7)

�

Corollary 5.2 The minimizer u ∈ Vµ given by Proposition 5.1 solves the
equation

−∆u+ [m2 − (λ+ µ)2]u = K0|u|p−1u, (5.8)

for some K0 ∈ R, hence

−∆u+X2u+ 2iλXu+ (m2 − λ2)u = K0|u|p−1u, (5.9)

which is (1.7).

Proof. To see this, we record the following analogues of (1.23) and (1.28):

d

dτ
Ip(u+ τv)

∣∣∣
τ=0

= (p+ 1) Re

∫
|u|p−1uv dV,

d

dτ
F#
m,λ,µ(u+ τv)

∣∣∣
τ=0

= 2 Re (−∆u+ [m2 − (λ+ µ)2]u, v).

(5.10)

In place of (1.29), this yields

v ∈ Vµ, Re (|u|p−1u, v) = 0

=⇒ Re (−∆u+ [m2 − (λ+ µ)2]u, v) = 0,
(5.11)

and, of course, we have u ∈ Vµ. Now the R-bilinear pairing of H1
0 (M) with

H−1(M) given by Re ( , ) restricts to a dual pairing of Vµ with

V ′
µ = {w ∈ H−1(M) : Xw = iµw}. (5.12)

It is also useful to note that

Vµ = {u ∈ H1
0 (M) : u(g(t)x) = eitµu(x), ∀ t ∈ R}, (5.13)
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where g(t) is the 1-parameter group of isometries of M generated by X, and
also

V ′
µ = {w ∈ H−1(M) : w(g(t)x) = eitµw(x), ∀ t ∈ R}. (5.14)

Hence
u ∈ Vµ =⇒ u, ∆u, |u|p−1u ∈ V ′

µ, (5.15)

so the implication (5.11) yields the result that (5.8) holds for some K0 ∈ R.
This is an identity of elements of V ′

µ. Pairing both sides with u yields

K0A = ∥∇u∥2L2 + [m2 − (λ+ µ)2]∥u∥2L2 = F#
m,λ,µ(u). (5.16)

Hence K0 is positive if F#
m,λ,µ(u) is positive, and negative if F#

m,λ,µ(u) is
negative. �
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