Uniform Convergence of Fourier Series

MICHAEL TAYLOR

Given $f \in L^1(\mathbb{T}^1)$, we consider the partial sums of the Fourier series of f:

(1)
$$S_N f(\theta) = \sum_{k=-N}^{N} \hat{f}(k) e^{ik\theta}.$$

A calculation gives the Dirichlet formula

(2)
$$S_N f(\theta) = \frac{1}{2\pi} \int_{\mathbb{T}^1} f(\theta - \varphi) D_N(\varphi) \, d\varphi,$$

where

(3)
$$D_N(\varphi) = \sum_{k=-N}^{N} e^{ik\varphi}$$
$$= e^{-iN\varphi} \sum_{k=0}^{2N} e^{ik\varphi}$$
$$= \frac{\sin(N+1/2)\varphi}{\sin\varphi/2},$$

the last identity by virtue of

$$x^{-N} \sum_{k=0}^{2N} x^k = x^{-N} \frac{1 - x^{2N+1}}{1 - x},$$

using $e^{i\varphi}$ for x, and multiplying numerator and denominator by $e^{-i\varphi/2}$. Using $\sin\left(N+\frac{1}{2}\right)\varphi = \cos\frac{\varphi}{2}\sin N\varphi + \sin\frac{\varphi}{2}\cos N\varphi$,

we deduce that

(4)
$$S_N f(\theta) - f(\theta) = \frac{1}{2\pi} \int_{\mathbb{T}^1} [f(\theta - \varphi) - f(\theta)] D_N(\varphi) \, d\varphi$$
$$= \frac{1}{2\pi} \int_{\mathbb{T}^1} g_\theta(\varphi) \sin N\varphi \, d\varphi + \frac{1}{2\pi} \int_{\mathbb{T}^1} h_\theta(\varphi) \cos N\varphi \, d\varphi,$$

where

(5)
$$g_{\theta}(\varphi) = \frac{f(\theta - \varphi) - f(\theta)}{\tan \varphi/2}, \quad h_{\theta}(\varphi) = f(\theta - \varphi) - f(\theta).$$

Clearly, for $N \neq 0$,

(6)
$$f \in L^1(\mathbb{T}^1) \Longrightarrow |\hat{h}_{\theta}(\pm N)| = |\hat{f}(\pm N)| \to 0 \text{ as } N \to \infty,$$

the convergence to 0 by the Riemann-Lebesgue lemma.

Applying the Riemann-Lebesgue lemma to $\hat{g}_{\theta}(\pm N)$ gives the following.

Proposition 1. Let $f \in L^1(\mathbb{T}^1)$. Let $K \subset \mathbb{T}^1$ be compact. Then

(7)
$$S_N f(\theta) \longrightarrow f(\theta), \text{ uniformly for } \theta \in K_{\theta}$$

provided that

(8)
$$\{g_{\theta}: \theta \in K\}$$
 is a relatively compact subset of $L^{1}(\mathbb{T}^{1})$.

Proof. The Riemann-Lebesgue lemma plus the compactness hypothesis (8) implies that $|\hat{g}_{\theta}(N)|$ goes to 0 as $|N| \to \infty$, uniformly in $\theta \in K$. In more detail, take $\varepsilon > 0$. Pick a finite set $\{\theta_j : 1 \le j \le M(\varepsilon)\}$ such that, with $g_j(\varphi) = g_{\varepsilon_j}(\varphi)$,

(8A)
$$\forall \theta \in K, \|g_j - g_\theta\|_{L^1} \le \varepsilon, \text{ for some } j \le M(\varepsilon).$$

The compactness hypothesis (8) guarantees you can do this. The Riemann-Lebesgue lemma says that, for each $j \in \{1, \ldots, M(\varepsilon)\}$, there exists N_j such that

(8B)
$$|\hat{g}_j(N)| < \varepsilon, \quad \forall N \text{ such that } |N| > N_j.$$

Now set $\widetilde{N}(\varepsilon) = \max\{N_j : 1 \le j \le M(\varepsilon)\}$. By (8A) we have, for all $\theta \in K$,

(8C)
$$\begin{aligned} |\hat{g}_{\theta}(N)| &\leq \min_{j} \left(|\hat{g}_{j}(N) + |\hat{g}_{j}(N) - \hat{g}_{\theta}(N)| \right) \\ &\leq \varepsilon + \varepsilon, \end{aligned}$$

provided $|N| > \widetilde{N}(\varepsilon)$. The desired conclusion (7) follows from this, in concert with (4)–(6).

The following is an important special case.

Corollary 2. Let $f \in C^{\omega}(\mathbb{T}^1)$, *i.e.*,

(9)
$$|f(\theta - \varphi) - f(\theta)| \le C\omega(|\varphi|), \quad \forall \, \theta, \varphi \in \mathbb{T}^1.$$

Assume the modulus of continuity $\omega(t)$ satisfies

(10)
$$\int_0^{2\pi} \frac{\omega(t)}{t} \, dt < \infty.$$

Then (7) holds with $K = \mathbb{T}^1$.

Proof. We claim the hypotheses (9)-(10) imply that

(11) g_{θ} is a continuous function of θ with values in $L^{1}(\mathbb{T}^{1})$.

Given this, the compactness condition (8) holds, with $K = \mathbb{T}^1$. So let $\theta_{\nu}, \theta_0 \in \mathbb{T}^1, \ \theta_{\nu} \to \theta_0$. We see that

(12)
$$g_{\theta_{\nu}}(\varphi) \longrightarrow g_{\theta_{0}}(\varphi) \text{ for all } \varphi \in \mathbb{T}^{1} \setminus 0,$$

and that

(13)
$$|g_{\theta_{\nu}}(\varphi)| \leq C \frac{\omega(|\varphi|)}{|\varphi|} = H(\varphi).$$

Hence $|g_{\theta_{\nu}}(\varphi) - g_{\theta_0}(\varphi)| \to 0$ for all $\varphi \in \mathbb{T}^1 \setminus 0$, and

(14)
$$|g_{\theta_{\nu}}(\varphi) - g_{\theta_{0}}(\varphi)| \le 2H(\varphi).$$

Now (10) implies $H \in L^1(\mathbb{T}^1)$, so the convergence

(15)
$$\int_{\mathbb{T}^1} |g_{\theta_{\nu}}(\varphi) - g_{\theta_0}(\varphi)| \, d\varphi \longrightarrow 0$$

follows by the Dominated Convergence Theorem.

The following is a version of Riemann localization.

Proposition 3. Take $f \in L^1(\mathbb{T}^1)$. Assume f = 0 on \mathcal{O} , an open subset of \mathbb{T}^1 , and let $K \subset \mathcal{O}$ be compact. Then $S_N f \to f$ uniformly on K.

Proof. Take an interval $I = (-\varepsilon, \varepsilon)$ so small that

(16)
$$\theta \in K, \ \varphi \in I \Longrightarrow \theta - \varphi \in \mathcal{O},$$

 \mathbf{SO}

(17)
$$\theta \in K, \ \varphi \in I \Longrightarrow g_{\theta}(\varphi) = 0.$$

Then take $\psi \in C(\mathbb{T}^1)$ such that $\psi(\varphi) = 1$ for $|\varphi| < \varepsilon/2$, $\psi(\varphi) = 0$ for $|\varphi| \ge \varepsilon$. Then

(18)
$$\theta \in K \Longrightarrow \psi g_{\theta} \equiv 0$$
$$\Longrightarrow g_{\theta}(\varphi) \equiv \frac{1 - \psi(\varphi)}{\tan \varphi/2} \left[f(\theta - \varphi) - f(\theta) \right].$$

Since $(1 - \psi(\varphi)) / \tan(\varphi/2)$ is continuous on \mathbb{T}^1 , it follows that

(19)
$$\theta \mapsto g_{\theta}$$
 is continuous from K to $L^{1}(\mathbb{T}^{1})$.

Thus (8) holds, and Proposition 3 follows from Proposition 1.

Putting together Corollary 2 and Proposition 3 gives the following.

Corollary 4. Take $f \in L^1(\mathbb{T}^1)$. Let $\mathcal{O} \subset \mathbb{T}^1$ be open and assume $f|_{\mathcal{O}} \in C^{\omega}(\mathcal{O})$, with ω satisfying (10). Let $K \subset \mathcal{O}$ be compact. Then $S_N f \to f$ uniformly on K.

We now produce another strengthening of Corollary 2.

Proposition 5. Take $f \in L^1(\mathbb{T}^1)$, and let $K \subset \mathbb{T}^1$ be compact. Assume $f|_K \in C(K)$ and

(20)
$$|f(\theta - \varphi) - f(\theta)| \le C\omega(|\varphi|), \quad \forall \theta \in K, \ \varphi \in \mathbb{T}^1,$$

where ω is measurable and satisfies (10). Then (7) holds.

Proof. Again it suffices to show that

(21)
$$\theta \mapsto g_{\theta}$$
 is continuous from K to $L^1(\mathbb{T}^1)$.

So let $\theta_{\nu}, \theta_0 \in K$ and $\theta_{\nu} \to \theta_0$. We continue to have (13)–(14), i.e.,

(22)
$$|g_{\theta_{\nu}}(\varphi) - g_{\theta_{0}}(\varphi)| \le 2H(\varphi), \quad H \in L^{1}(\mathbb{T}^{1})$$

We need a replacement for (12). In fact, we claim that

(23)
$$g_{\theta_{\nu}} \longrightarrow g_{\theta_0}$$
 in measure, as $\nu \to \infty$

i.e., if m denotes Lebesgue measure on \mathbb{T}^1 , then, for each $\varepsilon > 0$,

(24)
$$m(E_{\varepsilon\nu}) \longrightarrow 0 \text{ as } \nu \to \infty,$$

where

(25)
$$E_{\varepsilon\nu} = \{\varphi \in \mathbb{T}^1 : |g_{\theta_{\nu}}(\varphi) - g_{\theta_0}(\varphi)| > \varepsilon\}.$$

In fact, (23) follows directly from the continuity of $f|_K$, together with the fact that, with $f_\theta(\varphi) = f(\theta - \varphi)$,

(26)
$$f_{\theta_{\nu}} \longrightarrow f_{\theta_0}$$
 in measure, as $\nu \to \infty$,

itself a consequence of the fact that

(27)
$$f_{\theta_{\nu}} \longrightarrow f_{\theta_0} \text{ in } L^1\text{-norm},$$

(28)
$$\int_{\mathbb{T}^1} |f_{\theta_{\nu}}(\varphi) - f_{\theta_0}(\varphi)| \, d\varphi \longrightarrow 0,$$

together with Chebechev's inequality,

(29)
$$m\left(\{\varphi:|F(\varphi)|>\varepsilon\}\right) \leq \frac{1}{\varepsilon} \|F\|_{L^1}$$

It is a variant of the Dominated Convergence Theorem (cf. [T], pp. 37–38), that (22)–(23) imply (15). This completes the proof of Proposition 5.

Bringing in an argument used for Riemann localization in Proposition 3, we have the following strengthening of Proposition 5. **Proposition 6.** Take $f \in L^1(\mathbb{T}^1)$ and let $K \subset \mathbb{T}^1$ be compact. Assume $f|_K \in C(K)$. Assume there exists $\varepsilon > 0$ such that

(30)
$$|f(\theta - \varphi) - f(\theta)| < c\omega(|\varphi|), \quad \forall \theta \in K, \ |\varphi| < \varepsilon,$$

where ω is measurable on $[0, 2\pi]$ and satisfies (10). Then (7) holds.

Proof. Take ψ as in (18), and set

(31)
$$g_{\theta}(\varphi) = u_{\theta}(\varphi) + v_{\theta}(\varphi),$$

where

(32)
$$u_{\theta}(\varphi) = \psi(\varphi) \frac{f(\theta - \varphi) - f(\theta)}{\tan \varphi/2},$$
$$v_{\theta}(\varphi) = \frac{1 - \psi(\varphi)}{\tan \varphi/2} [f(\theta - \varphi) - f(\theta)].$$

Clearly $f \in L^1(\mathbb{T}^1)$ and $f|_K$ bounded implies $\{v_\theta : \theta \in K\}$ is relatively compact in $L^1(\mathbb{T}^1)$. Meanwhile an analysis parallel to (21)–(29) applies here, with g_θ replaced by u_θ , under the hypotheses given above.

Reference

[T] M. Taylor, Measure Theory and Integration, AMS, Providence RI, 2006.