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Given f ∈ L1(T1), we consider the partial sums of the Fourier series of f :

(1) SNf(θ) =
N∑

k=−N

f̂(k)eikθ.

A calculation gives the Dirichlet formula

(2) SNf(θ) =
1
2π

∫

T1

f(θ − ϕ)DN (ϕ) dϕ,

where

(3)

DN (ϕ) =
N∑

k=−N

eikϕ

= e−iNϕ
2N∑

k=0

eikϕ

=
sin(N + 1/2)ϕ

sin ϕ/2
,

the last identity by virtue of

x−N
2N∑

k=0

xk = x−N 1− x2N+1

1− x
,

using eiϕ for x, and multiplying numerator and denominator by e−iϕ/2. Using

sin
(
N +

1
2

)
ϕ = cos

ϕ

2
sin Nϕ + sin

ϕ

2
cos Nϕ,

we deduce that

(4)

SNf(θ)− f(θ) =
1
2π

∫

T1

[f(θ − ϕ)− f(θ)]DN (ϕ) dϕ

=
1
2π

∫

T1

gθ(ϕ) sin Nϕdϕ +
1
2π

∫

T1

hθ(ϕ) cos Nϕ dϕ,

where

(5) gθ(ϕ) =
f(θ − ϕ)− f(θ)

tanϕ/2
, hθ(ϕ) = f(θ − ϕ)− f(θ).

Clearly, for N 6= 0,

(6) f ∈ L1(T1) =⇒ |ĥθ(±N)| = |f̂(±N)| → 0 as N →∞,

the convergence to 0 by the Riemann-Lebesgue lemma.
Applying the Riemann-Lebesgue lemma to ĝθ(±N) gives the following.
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Proposition 1. Let f ∈ L1(T1). Let K ⊂ T1 be compact. Then

(7) SNf(θ) −→ f(θ), uniformly for θ ∈ K,

provided that

(8) {gθ : θ ∈ K} is a relatively compact subset of L1(T1).

Proof. The Riemann-Lebesgue lemma plus the compactness hypothesis (8) implies
that |ĝθ(N)| goes to 0 as |N | → ∞, uniformly in θ ∈ K. In more detail, take ε > 0.
Pick a finite set {θj : 1 ≤ j ≤ M(ε)} such that, with gj(ϕ) = gεj (ϕ),

(8A) ∀ θ ∈ K, ‖gj − gθ‖L1 ≤ ε, for some j ≤ M(ε).

The compactness hypothesis (8) guarantees you can do this. The Riemann-Lebesgue
lemma says that, for each j ∈ {1, . . . ,M(ε)}, there exists Nj such that

(8B) |ĝj(N)| < ε, ∀N such that |N | > Nj .

Now set Ñ(ε) = max{Nj : 1 ≤ j ≤ M(ε)}. By (8A) we have, for all θ ∈ K,

(8C)
|ĝθ(N)| ≤ min

j

(
|ĝj(N) + |ĝj(N)− ĝθ(N)|

)

≤ ε + ε,

provided |N | > Ñ(ε). The desired conclusion (7) follows from this, in concert with
(4)–(6).

The following is an important special case.

Corollary 2. Let f ∈ Cω(T1), i.e.,

(9) |f(θ − ϕ)− f(θ)| ≤ Cω(|ϕ|), ∀ θ, ϕ ∈ T1.

Assume the modulus of continuity ω(t) satisfies

(10)
∫ 2π

0

ω(t)
t

dt < ∞.

Then (7) holds with K = T1.

Proof. We claim the hypotheses (9)–(10) imply that

(11) gθ is a continuous function of θ with values in L1(T1).



3

Given this, the compactness condition (8) holds, with K = T1. So let θν , θ0 ∈
T1, θν → θ0. We see that

(12) gθν
(ϕ) −→ gθ0(ϕ) for all ϕ ∈ T1 \ 0,

and that

(13) |gθν
(ϕ)| ≤ C

ω(|ϕ|)
|ϕ| = H(ϕ).

Hence |gθν
(ϕ)− gθ0(ϕ)| → 0 for all ϕ ∈ T1 \ 0, and

(14) |gθν (ϕ)− gθ0(ϕ)| ≤ 2H(ϕ).

Now (10) implies H ∈ L1(T1), so the convergence

(15)
∫

T1

|gθν (ϕ)− gθ0(ϕ)| dϕ −→ 0

follows by the Dominated Convergence Theorem.

The following is a version of Riemann localization.

Proposition 3. Take f ∈ L1(T1). Assume f = 0 on O, an open subset of T1, and
let K ⊂ O be compact. Then SNf → f uniformly on K.

Proof. Take an interval I = (−ε, ε) so small that

(16) θ ∈ K, ϕ ∈ I =⇒ θ − ϕ ∈ O,

so

(17) θ ∈ K, ϕ ∈ I =⇒ gθ(ϕ) = 0.

Then take ψ ∈ C(T1) such that ψ(ϕ) = 1 for |ϕ| < ε/2, ψ(ϕ) = 0 for |ϕ| ≥ ε. Then

(18)
θ ∈ K =⇒ ψgθ ≡ 0

=⇒ gθ(ϕ) ≡ 1− ψ(ϕ)
tanϕ/2

[f(θ − ϕ)− f(θ)].

Since (1− ψ(ϕ))/ tan(ϕ/2) is continuous on T1, it follows that

(19) θ 7→ gθ is continuous from K to L1(T1).

Thus (8) holds, and Proposition 3 follows from Proposition 1.

Putting together Corollary 2 and Proposition 3 gives the following.
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Corollary 4. Take f ∈ L1(T1). Let O ⊂ T1 be open and assume f |O ∈ Cω(O),
with ω satisfying (10). Let K ⊂ O be compact. Then SNf → f uniformly on K.

We now produce another strengthening of Corollary 2.

Proposition 5. Take f ∈ L1(T1), and let K ⊂ T1 be compact. Assume f |K ∈
C(K) and

(20) |f(θ − ϕ)− f(θ)| ≤ Cω(|ϕ|), ∀ θ ∈ K, ϕ ∈ T1,

where ω is measurable and satisfies (10). Then (7) holds.

Proof. Again it suffices to show that

(21) θ 7→ gθ is continuous from K to L1(T1).

So let θν , θ0 ∈ K and θν → θ0. We continue to have (13)–(14), i.e.,

(22) |gθν
(ϕ)− gθ0(ϕ)| ≤ 2H(ϕ), H ∈ L1(T1).

We need a replacement for (12). In fact, we claim that

(23) gθν −→ gθ0 in measure, as ν →∞,

i.e., if m denotes Lebesgue measure on T1, then, for each ε > 0,

(24) m(Eεν) −→ 0 as ν →∞,

where

(25) Eεν = {ϕ ∈ T1 : |gθν (ϕ)− gθ0(ϕ)| > ε}.
In fact, (23) follows directly from the continuity of f |K , together with the fact that,
with fθ(ϕ) = f(θ − ϕ),

(26) fθν −→ fθ0 in measure, as ν →∞,

itself a consequence of the fact that

(27) fθν −→ fθ0 in L1-norm,

i.e.,

(28)
∫

T1

|fθν (ϕ)− fθ0(ϕ)| dϕ −→ 0,

together with Chebechev’s inequality,

(29) m
(
{ϕ : |F (ϕ)| > ε}

)
≤ 1

ε
‖F‖L1 .

It is a variant of the Dominated Convergence Theorem (cf. [T], pp. 37–38), that
(22)–(23) imply (15). This completes the proof of Proposition 5.

Bringing in an argument used for Riemann localization in Proposition 3, we have
the following strengthening of Proposition 5.
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Proposition 6. Take f ∈ L1(T1) and let K ⊂ T1 be compact. Assume f |K ∈
C(K). Assume there exists ε > 0 such that

(30) |f(θ − ϕ)− f(θ)| < cω(|ϕ|), ∀ θ ∈ K, |ϕ| < ε,

where ω is measurable on [0, 2π] and satisfies (10). Then (7) holds.

Proof. Take ψ as in (18), and set

(31) gθ(ϕ) = uθ(ϕ) + vθ(ϕ),

where

(32)
uθ(ϕ) = ψ(ϕ)

f(θ − ϕ)− f(θ)
tan ϕ/2

,

vθ(ϕ) =
1− ψ(ϕ)
tan ϕ/2

[f(θ − ϕ)− f(θ)].

Clearly f ∈ L1(T1) and f |K bounded implies {vθ : θ ∈ K} is relatively compact in
L1(T1). Meanwhile an analysis parallel to (21)–(29) applies here, with gθ replaced
by uθ, under the hypotheses given above.
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