Uniform Convergence of Fourier Series

MICHAEL TAYLOR

Given f € L'(T!), we consider the partial sums of the Fourier series of f:

(1) Snf(6 Z Fk)etke,

A calculation gives the Dirichlet formula
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using €% for x, and multiplying numerator and denominator by e~**/2. Using
sin(N + %)cp = COS g sin Ny +singcochp,
we deduce that
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Clearly, for N 0,
(© f € LT = [hg(£N)] = [f(EN)| = 0 as N = oo,

the convergence to 0 by the Riemann-Lebesgue lemma.
Applying the Riemann-Lebesgue lemma to go(+N) gives the following.
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Proposition 1. Let f € LY(T!). Let K C T! be compact. Then
(7) Snf(0) — f(0), wuniformly for 0 € K,
provided that

(8) {go:0 € K} is a relatively compact subset of L'(T").

Proof. The Riemann-Lebesgue lemma plus the compactness hypothesis (8) implies
that |gg(IV)| goes to 0 as |[N| — oo, uniformly in § € K. In more detail, take ¢ > 0.
Pick a finite set {0, : 1 < j < M(e)} such that, with g;(¢) = g, (),

(8A) VO €K, |gj—gollzr <e, for some j < M(e).

The compactness hypothesis (8) guarantees you can do this. The Riemann-Lebesgue
lemma says that, for each j € {1,...,M(e)}, there exists N; such that

(8B) |g;(N)| <e, VN such that [N| > N;.

Now set N () = max{N; : 1 <j < M(e)}. By (8A) we have, for all § € K,

96(N)| < min (13 (N) +1; (N) — 3o(N)))

<e+e,

(8C)

provided |[N| > N(g). The desired conclusion (7) follows from this, in concert with
(4)(6).
The following is an important special case.

Corollary 2. Let f € C¥(T?), i.e.,
(9) [f(0 =) = f(O)] < Cw(lgl), VO,p €T

Assume the modulus of continuity w(t) satisfies

(10) /QW @dt < oo
0

Then (7) holds with K = T*.
Proof. We claim the hypotheses (9)—(10) imply that

(11) go is a continuous function of § with values in L*(T*).
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Given this, the compactness condition (8) holds, with K = T!. So let 6,0y €
T, 6, — 6y. We see that

(12) 90, () — go,(¢) for all @ €T\ 0,
and that
(13) on. ()] < <5 — H().

Hence |gg, (©) — ga, ()| — 0 for all p € T!\ 0, and

(14) 90, () — g, ()| < 2H (o).

Now (10) implies H € L'(T!), so the convergence

(15) / 190, (&) — o0 (9)] dip — 0

follows by the Dominated Convergence Theorem.
The following is a version of Riemann localization.

Proposition 3. Take f € L'(T'). Assume f =0 on O, an open subset of T!, and
let K C O be compact. Then Sy f — f uniformly on K.

Proof. Take an interval I = (—¢,¢) so small that

(16) beK, pel —=0—pec0,
S0
(17) e K, pel = gg(p)=0.

Then take 1) € C(T') such that ¢(p) = 1 for |p| < /2, ¥(p) = 0 for || > e. Then

e K= gy =0
(18) 1—4¢(¥)

Since (1 — 1(¢))/ tan(¢/2) is continuous on T*, it follows that
(19) 0 — go is continuous from K to L'(T').

Thus (8) holds, and Proposition 3 follows from Proposition 1.
Putting together Corollary 2 and Proposition 3 gives the following.
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Corollary 4. Take f € LY(T'). Let O C T be open and assume flo € C*(0),
with w satisfying (10). Let K C O be compact. Then Sy f — f uniformly on K.

We now produce another strengthening of Corollary 2.

Proposition 5. Take f € LY(T'), and let K C T! be compact. Assume f|x €
C(K) and

(20) [f(0 =) = f(O)] < Cw(lgl), VOEK, peT,

where w is measurable and satisfies (10). Then (7) holds.
Proof. Again it suffices to show that

(21) 0+ gg is continuous from K to L'(T').

So let 0,6y € K and 6, — 6y. We continue to have (13)—(14), i.e.,
(22) 196, (¢) — g0 ()] < 2H(p), H € LY(TY).

We need a replacement for (12). In fact, we claim that

(23) go, — go, in measure, as v — 09,

i.e., if m denotes Lebesgue measure on T!, then, for each € > 0,

(24) m(Eey) — 0 as v — oo,
where
(25) E., ={p€ T' : |96, (©) — g6, (¢)| > e}

In fact, (23) follows directly from the continuity of f|x, together with the fact that,
with fo(¢) = f(0 — ¢),

(26) fo, — fo, in measure, as v — o0,

itself a consequence of the fact that

(27) fo, — fa, in L'-norm,

ie.,

(28) [190.00) = fue)lde —0,
’I[‘l

together with Chebechev’s inequality,

1
(29) m({: IF ()| > e}) < Z|FllL.
It is a variant of the Dominated Convergence Theorem (cf. [T], pp. 37-38), that
(22)—(23) imply (15). This completes the proof of Proposition 5.

Bringing in an argument used for Riemann localization in Proposition 3, we have
the following strengthening of Proposition 5.
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Proposition 6. Take f € LY(T') and let K C T! be compact. Assume f|x €

C(K). Assume there exists € > 0 such that

(30) [F(0 — @) = FO) < cw(lol), VOeK, |of <e,

where w is measurable on [0,27] and satisfies (10). Then (7) holds.

Proof. Take 1 as in (18), and set

(31) go () = ug () +vo(),
where

us(p) = () 1 t_afzpkf(e),
(32) B

(i) = o (0 = ) = F(6)]

Clearly f € L'(T!) and f|x bounded implies {vg : § € K} is relatively compact in
LY(T'). Meanwhile an analysis parallel to (21)—(29) applies here, with gy replaced

by ug, under the hypotheses given above.
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