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Abstract

We study a special class of solutions to the 3D Navier-Stokes equa-
tions ∂tu

ν + ∇uνuν + ∇pν = ν∆uν , with no-slip boundary condition,
on a domain of the form Ω = {(x, y, z) : 0 ≤ z ≤ 1}, dealing with ve-
locity fields of the form uν(t, x, y, z) = (vν(t, z), wν(t, x, z), 0), describ-
ing plane-parallel channel flows. We establish results on convergence
uν → u0 as ν → 0, where u0 solves the associated Euler equations.
These results go well beyond previously established L2-norm conver-
gence, and provide a much more detailed picture of the nature of this
convergence. Carrying out this analysis also leads naturally to consid-
eration of related singular perturbation problems on bounded domains.
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1 Introduction

We look at a special class of solutions to the 3D Navier-Stokes equations on
a region Ω ⊂ R

3 with boundary:

∂tu
ν + ∇uνuν + ∇pν = ν∆uν + F, divuν = 0, (1.0.1)

with no-slip boundary data

uν(t, q) = B(t, q), q ∈ ∂Ω, (1.0.2)

given B(t, q) a vector field tangent to ∂Ω. This class consists of what are
called plane parallel channel flows. They involve a domain of the form

Ω = {(x, y, z) : 0 ≤ z ≤ 1}, (1.0.3)

velocity fields of the form

uν(t, x, y, z) = (vν(t, z), wν(t, x, z), 0), (1.0.4)

and external forces of the form

F = (f(t, z), g(t, x, z), 0). (1.0.5)

This class is mentioned by X. Wang in [14], as a class to which his main
theorem on L2(Ω)-convergence as ν → 0 (itself a refinement of earlier work
of T. Kato [5]) applies.

There is substantial motivation to obtain a much more detailed picture of
the behavior as ν → 0, including convergence in much stronger topologies,
especially away from the boundary, if the initial data and forces satisfy
appropriate smoothness hypotheses, and also an analysis of the boundary
layer on which the solution can make an abrupt transition. The goal of this
paper is to establish such stronger results for this class of fluid flows, and to
explore some related singular perturbation problems that arise in the course
of the analysis.

To begin the analysis, we note that if uν has the form (1.0.4) then
divuν = 0 and

∇uνuν = (0, vν(t, z)∂xw
ν(t, x, z), 0), (1.0.6)

and hence
div∇uνuν = 0. (1.0.7)
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Thus we can take pν ≡ 0 in (1.0.1) and rewrite the system (1.0.1) as

∂vν

∂t
= ν

∂2vν

∂z2
+ f(t, z),

∂wν

∂t
+ vν ∂w

ν

∂x
= ν

(∂2wν

∂x2
+
∂2wν

∂z2

)
+ g(t, x, z).

(1.0.8)

(Note: The equations stated on p. 228 of [14] have two missprints.) The
boundary conditions take the form

vν(t, z) = a(t, z), z = 0, 1,

wν(t, x, z) = b(t, x, z), z = 0, 1.
(1.0.9)

We take initial data independent of ν:

vν(0, z) = V (z),

wν(0, x, z) = W (x, z).
(1.0.10)

One wants to establish convergence of uν to u0, the solution to the Euler
equation

∂tu
0 + ∇u0u0 + ∇p0 = F, divu0 = 0, (1.0.11)

with boundary condition
u0(t, p) ‖ ∂Ω, (1.0.12)

for p ∈ ∂Ω, and initial condition

u0(0, x, y, z) = (V (z),W (x, z), 0). (1.0.13)

We have
u0(t, x, y, z) = (v0(t, z), w0(t, x, z), 0), (1.0.14)

satisfying
∂v0

∂t
= f(t, z),

∂w0

∂t
+ v0∂w

0

∂x
= g(t, x, z).

(1.0.15)

Initial data are as in (1.0.10).
We begin the analysis of the convergence of vν to v0 and of wν to w0 in

Chapter 2. For simplicity we take vanishing forces and boundary velocity.
We also take functions to be periodic in x and work on

O = {(x, z) : x ∈ R/Z, z ∈ [0, 1]}. (1.0.16)
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In §2.1 we take the particular case V ≡ 1 in (1.0.10) and in §2.2 we consider
general initial velocities of the form (1.0.10). We see that while the conver-
gence of vν to v0 has a simple nature, with a boundary layer phenomenon
easily treatable via the method of images, the nature of the convergence of
wν to w0 is much more subtle. One tool we use to analyze wν is to compare
it with the solution to the analogue of the second equation in (1.0.8) with
vν replaced by V (z). To state the strategy more abstractly, we analyze the
solution to

∂wν

∂t
= ν∆wν −Xνw

ν , wν
∣∣
R×∂O

= 0, (1.0.17)

where ∆ = ∂2
x + ∂2

z and Xν = vν(t, z)∂x, by considering the solution to

∂wν

∂t
= ν∆wν −Xwν + gν , wν

∣∣
R+×∂O

= 0, (1.0.18)

where X = V (z)∂x and gν = (X − Xν)wν . To tackle (1.0.17), we use
Duhamel’s formula, which gives

wν(t) = et(ν∆−X)W +

∫ t

0
e(t−s)(ν∆−X)gν(s) ds. (1.0.19)

This leads to some successful estimates, produced in §§2.1–2.2, on the differ-
ence Rν(t, x, z) = wν(t)−et(ν∆−X)W . We show that for each p ∈ [1,∞), t ∈
(0, T ],

‖Rν(t, ·)‖Lp(O) ≤ Cpν
1/2pt1+1/2p, (1.0.20)

and that, as ν → 0,

Rν(t, x, z) −→ 0, uniformly for t ∈ [0, T ], (x, z, ν) ∈ Oη, (1.0.21)

where Oη = {(x, z, ν) : dist(x, z), ∂O) ≥ η(ν)}, for each η(ν) satisfying
η(ν)/ν1/2 → ∞ as ν → 0.

Thus much information about wν is revealed by the behavior of et(ν∆−X)W .
In case V ≡ 1, the operators X and ∆ commute, and the behavior of
et(ν∆−X)W = e−tXetν∆W is also quite accessible via the method of images.
For general V (z), the behavior of et(ν∆−X) requires further study.

Chapter 3 is devoted to the study of et(ν∆−X). It is natural to work in a
more general setting than in Chapter 2. In place of (1.0.16), we take O to
be a compact Riemannian manifold with smooth boundary, with Laplace-
Beltrami operator ∆, and we take a smooth vector field X on O satisfying

X ‖ ∂O, divX = 0. (1.0.22)
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We obtain convergence results

et(ν∆−X)f −→ e−tXf (1.0.23)

as ν → 0, in a number of function spaces, including Lq-Sobolev spaces
Hσ,q(O), for q ∈ [2,∞), σ ∈ [0, 1/q), and also spaces

Vk(O) = {f ∈ L2(O) : Y1 · · · Yjf ∈ L2(O), ∀ j ≤ k, Y` ∈ X1}, (1.0.24)

where X1 consists of smooth vector fields on O that are tangent to ∂O.
We also produce a layer potential analysis of et(ν∆−X)f , which provides

a detailed picture of the boundary layer behavior as ν → 0. To do this, we
find it convenient to work with

vν(t) = etXet(ν∆−X)f. (1.0.25)

One of the main results is given in Proposition 3.7.4, that for I = [0, T ], δ >
0,

‖vν − (f − 2D0
νf

b)‖L∞(I×O) ≤ C(I)ν1/2‖f‖C1,δ(O), (1.0.26)

where f b(t, y) = χR+(t)f(y) and D0
ν is a certain layer potential operator:

D0
νf

b(t, x) = ν

∫ t

0

∫

∂O

f(y)
∂H0

∂ns,y
(ν, s, t, x, y) dSs(y) ds. (1.0.27)

See §3.7 for more details, including the definitions of dSs(y), ∂/∂ns,y, and
the Gaussian-type integral kernel H0(ν, s, t, x, y).

In Chapter 4 we again consider solutions to (1.0.17). Here we work on
a compact Riemannian manifold with boundary O as in Chapter 3. We
take Xν to be a family of time dependent vector fields, suitably generalizing
the class Xν = vν(t, z)∂x that arose in Chapter 2, converging to X in a
similar way as vν(t, z)∂x converges to V (z)∂x. The main results are given
in Propositions 4.2.1–4.2.4. We obtain convergence results

wν(t) −→ e−tXf (1.0.28)

as ν → 0, in Vk(O), and in Lp(O), for 1 ≤ p < ∞. Analogues of (1.0.19)
play a role in the analysis, and we make strong use of results of Chapter 3.

In Chapter 5 we return to the specific setting of plane parallel channel
flow and draw further conclusions about the convergence of vν to v0 and of
wν to w0. We extend the scope of Chapter 2 by allowing for some nonzero
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boundary velocity, arising from rigidly translating the flat boundary faces.
We take boundary data B(t, q) of the form

B(t, x, z) = (αj(t), βj(t), 0), z = j ∈ {0, 1}, (1.0.29)

and allow αj(t) and βj(t) to be fairly rough. We start with the special case
(αj(t), 0, 0), giving motions of the boundary parallel to the x-axis.

The spaces Vk(O) in (1.0.24) are special cases of “weighted b-Sobolev
spaces,” introduced and studied in [10]. In Appendix A we discuss this point
and use it to establish some complex interpolation results for these spaces,
which are of use in Sections 3.3 and 4.2.

This paper is a companion to [7], whose goal was to give a precise analysis
of the convergence of the solution of the Navier-Stokes equation, as the
vorticity tends to zero, to a steady solution of the Euler equation for 2D
circularly symmetric flow in a disk or annulus, sharpening L2 analyses done
in [8], [1], and [6].

Acknowledgment. Thanks to Rafe Mazzeo for useful conversations about
b-Sobolev spaces. Thanks also to Victor Nistor for useful conversations.

2 First results on plane parallel channel flows

Here we start our investigation of the convergence of vν and wν as ν → 0,
when these functions are solutions to (1.0.8) (with f = g = 0 and vanishing
boundary condition). The main result of this chapter is the estimate (2.2.11)
on

wν(t, x, z) − et(ν∆−X)W (x, z), (2.0.1)

together with some of its consequences. To carry on, we need to understand
the second term in (2.0.1). This motivates the work of Chapter 3.

2.1 Particular case

Let us take f ≡ g ≡ 0 in (1.0.8) and in (1.0.15), and

V ≡ 1, W = W (x, z) (2.1.1)

in (1.0.10). Consequently we have

v0(t, z) ≡ 1, w0(t, x, z) = W (x− t, z) (2.1.2)
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as the solution to the Euler equations. Let us also take a ≡ b ≡ 0 in (1.0.9),
i.e., boundary conditions

vν(t, z) = wν(t, x, z) = 0, z = 0, 1. (2.1.3)

Consequently, for the solution (vν , wν , 0) to the Navier-Stokes equation,
we have first of all that

vν(t, z) = etνAv0(z) = etνA1(z), (2.1.4)

where A is the self-adjoint operator on L2([0, 1]) defined by

D(A) = H2([0, 1]) ∩H1
0 ([0, 1]), A = ∂2

z on D(A). (2.1.5)

One can analyze (2.1.4) via the method of images to get a good picture of
the boundary layer near z = 0, 1. Then the equation for wν becomes

∂wν

∂t
+ vν ∂w

ν

∂x
= ν

(∂2wν

∂x2
+
∂2wν

∂z2

)
, (2.1.6)

with initial condition given in (2.1.1) and boundary condition given in
(2.1.3).

Let us assume W (x, z) in (2.1.1) is smooth and periodic of period 1 in
x, so

W ∈ C∞(O), O = {(x, z) : x ∈ R/Z, z ∈ [0, 1]}. (2.1.7)

Elementary estimates imply

‖wν(t)‖Lp(O) ≤ ‖W‖Lp(O), 1 ≤ p ≤ ∞. (2.1.8)

Note that for k ∈ Z
+,

wν
k = ∂k

xw
ν (2.1.9)

satisfies
∂wν

k

∂t
+ vν ∂w

ν
k

∂x
= ν∆wν

k , (2.1.10)

where we have set

∆ =
∂2

∂x2
+

∂2

∂z2
. (2.1.11)

Also
wν

k(t, x, z) = 0, z = 0, 1. (2.1.12)

Hence, parallel to (2.1.8), we have

‖wν
k(t)‖Lp(O) ≤ ‖∂k

xW‖Lp(O), 1 ≤ p ≤ ∞. (2.1.13)
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To obtain a finer analysis of wν(t, x, z), let us rewrite (2.1.6) as

∂wν

∂t
= −∂xw

ν + ν∆wν + (1 − vν)
∂wν

∂x
. (2.1.14)

Then Duhamel’s formula gives

wν(t, x, z) = et(ν∆−∂x)W (x, z)

+

∫ t

0
e(t−s)(ν∆−∂x)

[
(1 − vν(s, z))

∂wν

∂x
(s, x, z)

]
ds.

(2.1.15)

Here ∆ stands for the self adjoint operator given by (2.1.11), with

D(∆) = H2(O) ∩H1
0 (O). (2.1.16)

Note that etν∆ and e−t∂x are commuting semigroups, with e−t∂xf(x, z) =
f(x− t, z). Hence we have

wν(t, x, z) = etν∆W (x− t, z)

+

∫ t

0
e(t−s)ν∆

[
(1 − vν(s, z))wν

1 (s, x− t+ s, z)
]
ds,

(2.1.17)

where, as in (2.1.9), we have wν
1 = ∂xw

ν . Let us write (2.1.16) as

wν(t, x, z) = etν∆W (x− t, z) +Rν(t, x, z). (2.1.18)

By the method of images (or otherwise) we have a clear picture of the
first term on the right side of (2.1.18). Let us estimate the remainder,
Rν(t, x, z). By (2.1.13) and the positivity of e(t−s)ν∆, we have

|Rν(t, x, z)| ≤ C

∫ t

0
e(t−s)ν∆|1 − vν(s, z)| ds, (2.1.19)

since ∂xW ∈ L∞(O). The analysis of (2.1.4) via the method of images gives

|1 − vν(s, z)| ≤ CTϕ
(
(sν)−1/2δ(z)

)
, (2.1.20)

for s ∈ [0, T ], where δ(z) = dist(z, {0, 1}) and ϕ(ζ) is rapidly decreasing as
ζ → ∞. Hence, for p ∈ [1,∞),

‖Rν(t, ·)‖Lp(O) ≤ C

∫ t

0

(∫ 1

0
|1 − vν(s, z)|p dz

)1/p
ds

≤ Cpν
1/2pt1+1/2p.

(2.1.21)
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Furthermore we have that, as ν → 0,

Rν(t, x, z) −→ 0, uniformly for t ∈ [0, T ], δ(z) ≥ δ0, (2.1.22)

given δ0 > 0. Indeed, given η(ν) such that

η(ν)

ν1/2
−→ ∞ as ν → 0, (2.1.23)

and
Oη = {(x, z, ν) : x ∈ R/Z, δ(z) ≥ η(ν)}, (2.1.24)

we have

Rν(t, x, z) −→ 0, uniformly for t ∈ [0, T ], (x, z, ν) ∈ Oη. (2.1.25)

However, (2.1.15)–(2.1.19) do not reveal the fine structure of wν(t, x, z) on
the boundary layer. Some other approach will be required for this.

2.2 More general case

As in §2.1, we take f ≡ g ≡ 0 in (1.0.8), but now we extend (2.1.1) to the
more general case

vν(0, z) = V (z) ∈ C∞(I), wν(0, x, z) = W (x, z) ∈ C∞(O), (2.2.1)

with O as in (2.1.7). Then (2.1.2) is modified to

v0(t, z) = V (z), w0(t, x, z) = W (x− tV (z), z). (2.2.2)

We retain the boundary conditions (2.1.3), i.e.,

vν(t, z) = wν(t, x, z) = 0, z = 0, 1. (2.2.3)

Thus, in place of (2.1.4), we have

vν(t, z) = etνAV (z), (2.2.4)

again with A as in (2.1.5). With these modifications, one still has the
equation (2.1.6) for wν . We continue to have the estimates (2.1.8) on
‖wν(t)‖Lp(O). We also have the estimates (2.1.13) on ‖wν

k(t)‖Lp , where

wν
k = ∂k

xw
ν .

To obtain a finer analysis of wν(t, x, z), we use the following modification
of (2.1.14):

∂wν

∂t
= −V (z)∂xw

ν + ν∆wν + (V − vν)
∂wν

∂x
. (2.2.5)
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Then Duhamel’s formula gives the following variant of (2.1.15):

wν(t, x, z) = et(ν∆−V ∂x)W (x, z)

+

∫ t

0
e(t−s)(ν∆−V ∂x)

[
(V − vν(s))

∂wν

∂x
(s)

]
ds.

(2.2.6)

Here ν∆ − V ∂x generates a contraction semigroup on L2(O) with domain

D(ν∆ − V ∂x) = H1
0 (O) ∩H2(O). (2.2.7)

It also generates a contraction semigroup on Lp(O) for 1 ≤ p ≤ ∞, strongly
continuous for p ∈ [1,∞), but not for p = ∞. We mention that the Trotter
product formula (cf. [13] or [12], Chapter 11, Appendix A) holds here. Given
p ∈ [1,∞) and f ∈ Lp(O),

et(ν∆−V ∂x)f = lim
n→∞

(
e(t/n)ν∆e−(t/n)V ∂x

)n
f, in Lp-norm. (2.2.8)

Of course,
e−sV ∂xf(x, z) = f(x− sV (z), z). (2.2.9)

To proceed, we have, parallel to (2.1.18)–(2.1.19),

wν(t, x, z) = et(ν∆−V ∂x)W (x, z) +Rν(t, x, z), (2.2.10)

with

|Rν(t, x, z)| ≤ C

∫ t

0
e(t−s)(ν∆−V ∂x)|V − vν(s)| ds

= C

∫ t

0
e(t−s)ν∆|V (z) − vν(s, z)| ds,

(2.2.11)

since ∂xW ∈ L∞(O). Again, to get this, one uses the estimate (2.1.13) with
k = 1, and the positivity of e(t−s)(ν∆−V ∂x). For the last identity in (2.2.11),
one uses the fact that V (z) − vν(s, z) is independent of x. Once we have
(2.2.11), we can again apply the method of images to estimate

|V (z) − vν(s, z)| ≤ CTϕ
(
(sν)−1/2δ(z)

)
, (2.2.12)

as in (2.1.20), except now we have only ϕ(ζ) ≤ C(1 + ζ 2)−1. This is enough
for the estimates (2.1.21)–(2.1.25) on Rν(t, x, z) continue to hold.

In the current setting, the term et(ν∆−V ∂x)W requires a more vigorous
investigation for general smooth V (z) on [0, 1] than it did in the case V ≡ 1,
considered in §2.1. We want to establish results of the form

et(ν∆−X)f −→ e−tXf, as ν → 0, (2.2.13)
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in Lp-norm, for all f ∈ Lp(O), where

X = V (z)∂x. (2.2.14)

We also want to investigate such convergence in other function spaces. We
will obtain such results, in a more general context, in the chapters that
follow.

3 Analysis of solutions to ut = ν∆u − Xu

We examine the solution operator et(ν∆−X)f = u(t), given by

∂u

∂t
= ν∆u−Xu, u(0) = f, u(t, x) = 0 for x ∈ ∂O. (3.0.1)

We work in a more general context than in §2.2. Let us assume O is a com-
pact Riemannian manifold, with smooth boundary ∂O, and with Laplace-
Beltrami operator ∆, and X is a smooth, real vector field on O, satisfying

X ‖ ∂O, divX = 0. (3.0.2)

Under such hypotheses, for each ν ∈ (0,∞), et(ν∆−X) is a strongly continu-
ous contraction semigroup on Lp(O) for each p ∈ [1,∞). Furthermore, the
Trotter product formula holds; given p ∈ [1,∞), f ∈ Lp(O),

et(ν∆−X)f = lim
n→∞

(
e(t/n)ν∆e−(t/n)X

)n
f, in Lp-norm. (3.0.3)

Our goal is to obtain precise results on convergence

et(ν∆−X)f → e−tXf, (3.0.4)

as ν ↘ 0. In particular, we establish convergence in a variety of func-
tion spaces. In §3.1 we establish such convergence in the Lq-Sobolev space
Hs,q(O) for q ∈ [2,∞) and s ∈ [0, 1/q). In §3.2 we study local convergence.
For this, it is convenient to work with

vν(t) = etXet(ν∆−X)f, (3.0.5)

which solves
∂vν

∂t
= νL(t)vν , vν(0) = f, (3.0.6)

with boundary condition vν = 0 on R
+ × ∂O, where L(t) is the smooth

family of strongly elliptic differential operators given by L(t) = etX∆e−tX .
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Given Ω1 ⊂⊂ Ω0 ⊂⊂ O, we show that if f ∈ L2(O) and f ∈ Hk(Ω0), then
vν(t) → f in Hk(Ω1). In §3.3 we establish convergence in the space

Vk(O) = {f ∈ L2(O) : Y1 · · · Yjf ∈ L2(O), ∀ j ≤ k, Y` ∈ X1}, (3.0.7)

where X1 consists of all smooth vector fields on O that are tangent to ∂O. In
§3.4 we show that the Laplace operator, with Dirichlet boundary condition,
generates a holomorphic semigroup on Vk(O). This result is peripheral to
the other results of this chapter, but it will prove useful in §4.1.

In §3.5 we extend the results of §3.1 to convergence in Hσ,q for all
q ∈ [2,∞), σ ≥ 0, in case O is replaced by a compact manifold without
boundary, M . These results are relatively easy, since it is only the pres-
ence of a boundary that causes a problem. They are recorded here to lay
a foundation for the work in §§3.6–3.7. Section 3.6 is devoted to construct-
ing a parametrix for the solution of (3.0.6) on R

+ × M , valid uniformly
for ν ∈ (0, 1], and with increased precision as ν ↘ 0. The construction
here is parallel to, but somewhat more elaborate than the construction of a
parametrix for the heat equation (∂t − ∆)u = 0 on R

+ ×M , yielding short
time asymptotics. The parametrix constructed in §3.6 is used in §3.7 to
produce a layer potential attack on solutions to (3.0.6) on R

+ ×O, yielding
sharp results on convergence in (3.0.4), including a picture of the boundary
layer behavior.

3.1 Lq-Sobolev estimates on et(ν∆−X)

This section is devoted to Lq-Sobolev estimates. To begin, take q = 2. We
have, for each ν > 0,

D(ν∆ −X) = {f ∈ H2(O) : f |∂O = 0}, (3.1.1)

D((ν∆ −X)2) = {f ∈ H4(O) : f |∂O = 0, ν∆f −Xf |∂O = 0}, (3.1.2)

and, for k ≥ 3,

D((ν∆ −X)k)

= {f ∈ H2k(O) : f |∂O = 0, (ν∆ −X)jf |∂O = 0 for j < k}.
(3.1.3)

Comparison with analogous formulas for D(∆k) yields the following.

Proposition 3.1.1 We have, for each ν > 0,

D((ν∆ −X)k) = D(∆k), for k = 1, 2. (3.1.4)
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Proof. The case k = 1 is immediate from (3.1.1). As for k = 2, note that if
f ∈ H4(O) and f |∂O = 0, then also Xf |∂O = 0 (since X ‖ ∂O), and hence
∆f |∂O = 0 ⇔ (ν∆ −X)f |∂O = 0. �

As stated in §2.2, we want to establish results of the form

et(ν∆−X)f −→ e−tXf, as ν → 0, in Lp-norm, (3.1.5)

for all f ∈ Lp(O), p ∈ [1,∞). Since we know et(ν∆−X) is a contraction semi-
group on Lp(O), if we can establish (3.1.5) for f in a dense linear subspace
V of Lp(O), we will have it for all f ∈ Lp(O). This is the approach we will
take for p ∈ [1, 2], using

V = D(∆2) = D((ν∆ −X)2), given by (3.1.2). (3.1.6)

Given such f, u(t) = et(ν∆−X)f satisfies

∂u

∂t
= −Xu+ ν∆u, u(0) = f, (3.1.7)

and belongs to C([0,∞),D(∆2)) ∩ C1([0,∞),D(∆)). Duhamel’s formula
yields

u(t) = e−tXf + ν

∫ t

0
e−(t−s)X∆u(s) ds. (3.1.8)

Thus

‖et(ν∆−X)f − e−tXf‖Lp ≤ ν

∫ t

0
‖∆u(s)‖Lp ds, (3.1.9)

so we have (3.1.5) whenever we can obtain a favorable estimate on the right
side of (3.1.9). The following lemma provides a key, first for p = 2.

Lemma 3.1.2 Take f ∈ V, given by (3.1.6), and set u(t) = et(ν∆−X)f ,
with ν > 0. Then there exists K ∈ (0,∞), independent of ν, such that

‖∆u(t)‖2
L2 ≤ e2Kt‖∆f‖2

L2 . (3.1.10)

Proof. We have

d

dt
‖∆u(t)‖2

L2 = 2Re (∆∂tu,∆u)L2

= 2Re (ν∆2u,∆u)L2 − 2Re (∆Xu,∆u)L2

≤ −2Re (∆Xu,∆u)L2

= −2Re (X∆u,∆u)L2 − 2Re ([∆, X]u,∆u)L2

≤ 2K‖∆u‖2
L2 ,

(3.1.11)
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with K independent of ν. The last estimate holds because

g ∈ D(∆) =⇒ |(Xg, g)L2 | ≤ K1‖g‖2
L2 , (3.1.12)

and

u(t) ∈ D(∆2) ⇒ [∆, X]u(t) ∈ L2(O) and

‖[∆, X]u(t)‖L2 ≤ K̃2‖u(t)‖H2 ≤ K2‖∆u(t)‖L2 .
(3.1.13)

The asserted estimate (3.1.10) follows. �

We can now prove the following.

Proposition 3.1.3 Given p ∈ [1,∞) and f ∈ Lp(O), we have (3.1.5), with
convergence in Lp-norm.

Proof. For p ∈ [1, 2], this follows from the operator bound ‖et(ν∆−X)‖L(Lp) ≤
1, the denseness of V in Lp(O), and the application of (3.1.10) to (3.1.9),
which gives convergence in L2-norm, and a fortiori in Lp-norm, for each
f ∈ V.

Suppose now that p ∈ (2,∞), with dual exponent p′ ∈ (1, 2). All con-
siderations above apply with X replaced by −X, so we have

et(ν∆+X)g −→ etXg, as ν → 0, (3.1.14)

in Lp′-norm, for each g ∈ Lp′ . This implies that for each f ∈ Lp(O),
convergence in (3.1.5) holds in the weak∗ topology of Lp(O). Now, since
e−tX is an isometry on Lp(O), we have

‖e−tXf‖Lp ≥ lim sup
ν→0

‖et(ν∆−X)f‖Lp , (3.1.15)

for each f ∈ Lp(O). Since Lp(O) is a uniformly convex Banach space for
such p, this yields Lp-norm convergence in (3.1.5). �

To continue, we have from (3.1.10) the estimate

‖et(ν∆−X)f‖D(∆) ≤ eKt‖f‖D(∆), (3.1.16)

first for each f ∈ V, hence for each f ∈ D(∆). Interpolation with the L2-
estimate then yields

‖et(ν∆−X)f‖D((−∆)s/2) ≤ eKt‖f‖D((−∆)s/2), (3.1.17)
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for each s ∈ [0, 2], f ∈ D((−∆)s/2). Now

D((−∆)s/2) = Hs(O), for s ∈
[
0,

1

2

)
, (3.1.18)

so we have

‖et(ν∆−X)f‖Hs(O) ≤ CeKt‖f‖Hs(O), s ∈
[
0,

1

2

)
, (3.1.19)

where the factor of C might arise due to the choice of H s-norm; the impor-
tant fact is that C and K are independent of ν ∈ (0,∞). We can interpolate
the estimate (3.1.19) with

‖et(ν∆−X)f‖Lp(O) ≤ ‖f‖Lp(O), 1 ≤ p <∞. (3.1.20)

Using

[Hs(O), Lp(O)]θ = H(1−θ)s,q(θ)(O),
1

q(θ)
=

1 − θ

2
+
θ

p
, (3.1.21)

we have
‖et(ν∆−X)f‖Hσ,q(O) ≤ Cσ,q e

Kt‖f‖Hσ,q(O), (3.1.22)

valid for
2 ≤ q <∞, σq ∈ [0, 1). (3.1.23)

We mention that similar arguments give analogous operator bounds on e−tX ,
and also on etX .

Remark. In the absence of further compatibility conditions between X and
∆, one does not have

e−tX : D(∆2) −→ D(∆2). (3.1.24)

Hence, typically, for f ∈ D(∆2),

sup
ν∈(0,1]

‖et(ν∆−X)f‖D(∆2) = ∞. (3.1.25)

In some cases one does have (3.1.24), for example when X and ∆ commute.
In such a case, et(ν∆−X) = eνt∆e−tX . It is our goal here to analyze et(ν∆−X)

when one does not have this extra compatibility.

From (3.1.22), we have the following convergence result.
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Proposition 3.1.4 Let q, σ satisfy (3.1.23). Then, for each t ∈ (0,∞),

f ∈ Hσ,q(O) =⇒ lim
ν→0

et(ν∆−X)f = e−tXf, (3.1.26)

in Hσ,q-norm.

Proof. Given f ∈ Hσ,q(O), (3.1.22) implies {et(ν∆−X)f : ν ∈ (0, 1]} is
bounded in Hσ,q(O), for each t ∈ (0,∞), so there are weak∗ limit points.
But Proposition 3.1.3 yields convergence to e−tXf in Lq-norm, so e−tXf
is the only possible weak∗ limit point. Norm convergence in H τ,q(O), for
each τ < σ, then follows from the compactness of the inclusion Hσ,q(O) ↪→
Hτ,q(O). Now we can pick σ′ > σ so that σ′q < 1, and take fk ∈ Hσ′,q(O)
so that fk → f in Hσ,q-norm. We deduce from the argument just made that
as ν → 0, et(ν∆−X)fk → e−tXfk in Hσ,q-norm, for each k. Application of
(3.1.22) with f replaced by f − fk then finishes the proof. �

We move on to some convergence results for classes of data f that vanish
on ∂O.

Proposition 3.1.5 For each t ∈ (0,∞),

f ∈ D(∆) =⇒ lim
ν→0

et(ν∆−X)f = e−tXf (3.1.27)

weak∗ in D(∆) = H2(O) ∩H1
0 (O), hence in Hs-norm for each s < 2.

Proof. Lemma 3.1.2 gives {et(ν∆−X)f : ν ∈ (0, 1]} bounded in D(∆) for
each f ∈ V, hence for each f ∈ D(∆), as noted in (3.1.16). Since we
have convergence to e−tXf in L2-norm, the weak∗ convergence in D(∆)
follows. The norm convergence in Hs(O) for each s < 2 then follows from
compactness of the inclusion H2(O) ↪→ Hs(O). �

Proposition 3.1.6 Let Cb(O) = {f ∈ C(O) : f |∂O = 0}. Then for each
t ∈ (0,∞),

f ∈ Cb(O) =⇒ lim
ν→0

et(ν∆−X)f = e−tXf, (3.1.28)

in the supremum norm, provided dimO ≤ 3.

Proof. For dimO ≤ 3, D(∆) ⊂ C(O), and it is dense in Cb(O). Since
et(ν∆−X) is a contraction on Cb(O), a standard argument yields (3.1.28)
from (3.1.27). �
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If the hypothesis in (3.1.28) is weakened to f ∈ C(O), results obtained
above yield convergence, weak∗ in L∞(O), but of course one does not have
L∞-norm convergence if f does not vanish on ∂O. In §3.2 we will show that
convergence does hold uniformly on compact subsets of O.

3.2 Local regularity and convergence results for et(ν∆−X)

Given a function f on O, consider

v(t) = etXet(ν∆−X)f. (3.2.1)

We have
∂v

∂t
= etX [X + ν∆ −X]et(ν∆−X)f

= νetX∆et(ν∆−X)f.

(3.2.2)

Now
L(t) = etX∆e−tX (3.2.3)

is a one-parameter family of strongly elliptic differential operators on O,
depending smoothly on t, and (3.2.2) yields

∂v

∂t
= νL(t)etXet(ν∆−X)f, (3.2.4)

so v(t) is uniquely characterized by

∂v

∂t
= νL(t)v, v(0) = f, v

∣∣
R+×∂O

= 0. (3.2.5)

We now prove the following local regularity result.

Proposition 3.2.1 Let f ∈ L2(O) and assume Ωj are smoothly bounded
domains satisfying Ω1 ⊂⊂ Ω0 ⊂⊂ O. Assume k ∈ N and f ∈ Hk(Ω0).
Then the solution v = vν to (3.2.5) belongs to C([0,∞),Hk(Ω1)), and for
each T ∈ (0,∞) we have

‖vν(t)‖2
Hk(Ω1) + cTkν

∫ t

0
‖vν(s)‖2

Hk+1(Ω1) ds

≤ CTk

[
‖f‖2

Hk(Ω0) + ‖f‖2
L2(O)

]
, 0 ≤ t ≤ T,

(3.2.6)

with cTk, CTk ∈ (0,∞), independent of ν ∈ R
+.
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Proof. To start, note that

d

dt
‖v‖2

L2 = 2ν(L(t)v, v)

≤ −Cν‖∇v‖2
L2 + C ′ν‖v‖2

L2 ,
(3.2.7)

hence, for 0 ≤ t ≤ T ,

‖v(t)‖2
L2(O) + cT0ν

∫ t

0
‖∇v(s)‖2

L2(O) ds ≤ CT0‖f‖2
L2(O), (3.2.8)

which contains (3.2.6) for k = 0. To proceed, take ϕ ∈ C∞
0 (Ω0) such that

ϕ = 1 on a neighborhood of Ω1. Then w = ϕvν satisfies

∂tw = νL(t)w + νY (t)v, w(0) = ϕf, (3.2.9)

with
Y (t) = [ϕ,L(t)]. (3.2.10)

Note that Y (t) is a smooth family of differential operators of order 1. Now
pick m ∈ {1, . . . , k}. We have, for ‖Dmw‖2

L2 =
∑

|α|≤m ‖Dαw‖2
L2 ,

d

dt
‖Dmw‖2

L2

= 2ν(Dm[L(t)w + Y (t)v], Dmw)L2

= 2ν(L(t)Dmw,Dmw) + 2ν([Dm, L(t)]w,Dmw) + 2ν(DmY (t)v,Dmw)

≤ −C1ν‖Dm+1w‖2
L2 + C2ν‖Dmw‖2

L2 + C3ν‖Dm−1Y (t)v‖2
L2 .

(3.2.11)
To get from the third line to the fourth line in (3.2.11), integrate by parts
to put the term 2ν(DmY (t)v,Dmw)) in the form 2ν(Dm−1Y (t)v,Dm+1w).
Hence we obtain, for t ∈ [0, T ],

‖Dmw(t)‖2
L2 + cTmν

∫ t

0
‖Dm+1w(s)‖2

L2 ds

≤ CTm

[
‖Dmw(0)‖2

L2 + ν

∫ t

0
‖Dmv(s)‖2

L2(Ω0) ds
]
,

(3.2.12)

from which (3.2.6) follows inductively. �

We can deduce local convergence results from Proposition 3.2.1. Since

vν(t) − f = ν

∫ t

0
L(s)v(s) ds, (3.2.13)
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we see that under the hypotheses of Proposition 3.2.1,

‖vν(t) − f‖Hk−2(Ω1) ≤ Cν1/2
[
‖f‖Hk(Ω0) + ‖f‖L2(O)

]
. (3.2.14)

Interpolation with the bound on ‖vν(t)‖Hk(Ω1) in (3.2.6) then gives

‖vν(t) − f‖Hk−2θ(Ω1) ≤ Cνθ/2
[
‖f‖Hk(Ω0) + ‖f‖L2(O)

]
, (3.2.15)

for θ ∈ (0, 1]. Now if we take fj ∈ L2(O) such that fj ∈ Hk+1(Ω0) and
fj → f in L2(O)-norm and in Hk(Ω0)-norm, an argument such as used at
the end of the proof of Proposition 3.1.4 gives:

Proposition 3.2.2 Under the hypotheses of Proposition 3.2.1, as ν → 0,

vν(t) −→ f in Hk(Ω1), (3.2.16)

for each t ≥ 0.

We can pass from Proposition 3.2.2 to other local convergence results.
Here is one.

Proposition 3.2.3 Let f ∈ C(O), and take Ωj as in Proposition 3.2.1.
Then the solution vν to (3.2.5) satisfies

vν(t) −→ f, uniformly on Ω1, (3.2.17)

as ν → 0. This holds uniformly in t ∈ [0, T ].

Proof. Take k > n/2 (n = dimO), and take ε > 0. Take gε ∈ Hk(O) such
that ‖f − gε‖L∞(O) ≤ ε. Let vν

ε satisfy

∂vν
ε

∂t
= νL(t)vν

ε , vν
ε (0) = gε, v

∣∣
R+×∂O

= 0. (3.2.18)

We have, by the maximum principle,

‖vν
ε (t) − vν(t)‖L∞(O) ≤ ‖f − g‖L∞(O) ≤ ε. (3.2.19)

Meanwhile, Proposition 3.2.2 gives

vν
ε (t) −→ gε in Hk(Ω1) ⊂ C(Ω1), (3.2.20)

as ν → 0, so (3.2.17) holds. �
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3.3 Conormal type estimates on et(ν∆−X)

Here we aim to show that {et(ν∆−X) : ν ∈ (0, 1]} is a strongly continuous
semigroup, with norm bounds independent of ν ∈ (0, 1], on spaces of the
following form:

Vk(O) = {u ∈ L2(O) : Y1 · · · Yju ∈ L2(O), ∀ j ≤ k, Y` ∈ X1}, (3.3.1)

for k ∈ Z
+ = {0, 1, 2, . . . }, where

X1 = {Y smooth vector field on O : Y ‖ ∂O}. (3.3.2)

See the Remark at the end of this subsection for a discussion of why V k(O)-
norm estimates are called conormal estimates.

Before starting to produce estimates, we develop some notation and pre-
liminary material, starting with:

Lemma 3.3.1 There exists a finite set

{Yj : 1 ≤ j ≤M} ⊂ X1 (3.3.3)

with the property that each element of X1 is a linear combination, with co-
efficients in C∞(O) of these vector fields Yj.

Proof. Routine. �

From here, take Yj as in (3.3.3), let

J = (j1, . . . , jk), (3.3.4)

and set
Y J = Yj1 · · · Yjk

, |J | = k. (3.3.5)

Also set
Xk = Span {Z1 · · ·Zj : j ≤ k, Z` ∈ X1}. (3.3.6)

We have
Xk = Span over C∞(O) of {Y J : |J | ≤ k}, (3.3.7)

and
Vk(O) = {u ∈ L2(O) : Y Ju ∈ L2(O), ∀ |J | ≤ k}

= {u ∈ L2(O) : Lu ∈ L2(O), ∀L ∈ Xk}.
(3.3.8)

We have the following square-norm and norm on Vk(O):

N2
k (u) =

∑

|J |≤k

‖Y Ju‖2
L2 , Nk(u) = N2

k (u)1/2. (3.3.9)
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Also set
P 2

k (u) =
∑

|J |=k

‖Y Ju‖2
L2 . (3.3.10)

We now estimate the rate of change of P 2
k (u(t)) for

u(t) = et(ν∆−X)f, f ∈ Vk(O), (3.3.11)

starting with the case k = 0:

d

dt
‖u‖2

L2 = 2(ut, u)L2

= 2ν(∆u, u)L2 − 2(Xu, u)L2

= −2ν‖∇u‖2
L2 ,

(3.3.12)

since, for t > 0, u(t) ∈ D((ν∆−X)m) for all m, and hence u(t) ∈ H2m(O)∩
H1

0 (O). Moving on to k = 1, we have

d

dt
‖Yju‖2

L2

= 2(Yjut, Yju)L2

= 2ν(Yj∆u, Yju)L2 − 2(YjXu, Yju)L2

= 2ν(∆Yju, Yju)L2 + 2ν([Yj ,∆]u, Yju)L2

− 2(XYju, Yju)L2 − 2([Yj , X]u, Yju)L
2

= − 2ν‖∇Yju‖2
L2 + 2ν([Yj ,∆]u, Yju)L2 − 2([Yj , X]u, Yju)L2 .

(3.3.13)

Of the three terms in the last line, the first has a clear significance. For the
third, we have [Yj, X] ∈ X1, and hence

2([Yj , X]u, Yju)L2 ≤ CP 2
1 (u). (3.3.14)

It remains to estimate the second term. For this, write

[Y,∆] =
∑

`

A`B`, (3.3.15)

with A`, B` smooth vector fields on O. We have

2ν([Yj ,∆]u, Yju)L2 = 2ν
∑

`

(B`u,A
∗
`Yju)L2

≤ ν‖∇Yju‖2
L2 + ν‖Yju‖2

L2 +K1ν‖∇u‖2
L2 .

(3.3.16)
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Plugging (3.3.14) and (3.3.16) into (3.3.13) and summing over j gives

d

dt
P 2

1 (u) ≤ −ν
∑

j

‖∇Yju‖2
L2 + (MC + ν)P 2

1 (u) +MK1ν‖∇u‖2. (3.3.17)

The term MK1ν‖∇u‖2
L2 is tamed by bringing in (3.3.12), to obtain

d

dt

(
P 2

1 (u) +
MK1

2
P 2

0 (u)
)
≤ −ν

∑

j

‖∇Yju‖2
L2 + (MC + ν)P 2

1 (u). (3.3.18)

Proceeding to general k, we take |J | = k and look at

d

dt
‖Y Ju‖2

L2

= 2(Y Jut, Y
Ju)L2

= 2ν(Y J∆u, Y Ju)L2 − 2(Y JXu, Y Ju)L2

= 2ν(∆Y Ju, Y Ju)L2 + 2ν([Y J ,∆]u, Y Ju)L2

− 2(XY Ju, Y Ju)L2 − 2([Y J , X]u, Y Ju)L2

= − 2ν‖∇Y Ju‖2
L2 + 2ν([Y J ,∆]u, Y Ju)L2 − 2([Y J , X]u, Y Ju)L2 .

(3.3.19)
As with (3.3.13), of the three terms in the last line of (3.3.19), the first has
a clear significance. For the third, we have

[X,Y J ] = [X,Yj1 ]Yj2 · · · Yjk
+ · · · + Yj1 · · · Yjk−1

[X,Yjk
] ∈ Xk, (3.3.20)

and hence
|([Y J , X]u, Y Ju)L2 | ≤ CkP

2
k (u). (3.3.21)

It remains to estimate the second term in the last line of (3.3.19). For this,
write

[∆, Y J ] =

k∑

`=1

Yj1 · · · Yj`−1
[∆, Yj`

]Yj`+1
· · · Yjk

=
k∑

`=1

Yj1 · · · Yj`−1
Lj`

Yj`+1
· · · Yjk

,

(3.3.22)

where Lj`
= [∆, Yj`

] is a second order differential operator that annihilates
constants. We say a product of k factors

Yj1 · · · Yj`−1
Lj`

Yj`+1
· · · Yjk

(3.3.23)
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is of type (k, `), meaning it is a product of k factors, all being vector fields
in X1 except one, in position `, which is a second order differential operator
that annihilates constants. If ` ≥ 2, we can write (3.3.23) as

Yj1 · · · Yj`−2Lj`
· · · Yjk

+ Yj1 · · · Yj`−2
[Yj`−1

, Lj`
] · · · Yjk

, (3.3.24)

a sum of terms of type (k, ` − 1) and of type (k − 1, ` − 1). Repeating this
process, we convert (3.3.23) into a sum of terms of type (j, 1), for j ≤ k.
Hence we have

([Y J ,∆]u, Y Ju)L2 =
∑

|I|≤k−1

(LIY
Iu, Y Ju)L2 , (3.3.25)

where LI are differential operators of order 2, annihilating constants, hence

LI =
∑

j

AIjBIj , (3.3.26)

where AIj are first order differential operators and BIj are vector fields. We
then have

2ν([Y J ,∆]u, Y Ju)L2

= 2ν
∑

|I|≤k−1

∑

j

(BIjY
Iu,A∗

IjY
Ju)L2

≤ C̃ν
∑

|I|≤k−1

‖∇Y Iu‖L2 ·
(
‖∇Y Ju‖L2 + ‖Y Ju‖L2

)

≤ ν‖∇Y Ju‖2
L2 + ν‖Y Ju‖2

L2 + Ckν
∑

|I|≤k−1

‖∇Y Iu‖2
L2 .

(3.3.27)

Inserting (3.3.21) and (3.3.27) into (3.3.19), we have

d

dt
‖Y Ju‖2

L2 ≤ −ν‖∇Y Ju‖2
L2 + (Ck + ν)P 2

k (u)

+ Ckν
∑

|I|≤k−1

‖∇Y Iu‖2
L2 ,

(3.3.28)

hence, for ν ∈ (0, 1], and with Ck + 1 re-notated as Ck,

d

dt
P 2

k (u) ≤ −ν
∑

|J |=k

‖∇Y Ju‖2
L2 +MCkP

2
k (u)

+MCkν
∑

|I|≤k−1

‖∇Y Iu‖2
L2 .

(3.3.29)
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It follows that there exist Akj ∈ (0,∞) and Bk ∈ (0,∞) such that if we set

Ñ2
k (u) = P 2

k (u) +

k−1∑

j=0

AkjP
2
j (u), (3.3.30)

then
d

dt
Ñ2

k (u) ≤ −ν
∑

|J |=k

‖∇Y Ju‖2
L2 + 2BkÑ

2
k (u), (3.3.31)

when u = u(t) is given by (3.3.11). In particular, taking

‖u‖2
Vk = Ñ2

k (u), (3.3.32)

we obtain
‖u(t)‖Vk ≤ e(t−s)Bk‖u(s)‖Vk , (3.3.33)

for 0 < s < t <∞. The next result will allow us to pass to the limit s↘ 0
for f ∈ Vk.

Lemma 3.3.2 For each k ∈ Z
+, C∞

0 (O) is dense in Vk(O).

Proof. Let ψ ∈ C∞(R) satisfy

ψ(s) = 0 for s ≤ 1

2
1 for s ≥ 1,

(3.3.34)

and set
ϕδ(x)(x) = ψ

(
δ−1 dist(x, ∂O)

)
. (3.3.35)

There exists δ0 > 0 such that ϕδ ∈ C∞
0 (O) for δ ∈ (0, δ0). Given f ∈ Vk(O)

and |J | ≤ k, we have

Y J(ϕδf) = ϕδY
Jf +

∑

(I1,I2)

(Y I1ϕδ)(Y
I2f), (3.3.36)

where (I1, I2) runs over the partitions of the ordered set {j1, . . . jk} into two
subsets, such that |I1| ≥ 1 (hence |I2| ≤ k − 1). It is clear from (3.3.35)
that ϕδY

Jf → Y Jf in L2-norm as δ ↘ 0. Meanwhile Y I1ϕδ = 0 on
{x ∈ O : dist(x, ∂O) ≥ δ}, and

Yj ∈ X1 =⇒ ‖Y I1ϕδ‖L∞ ≤ CI1 , independent of δ ∈ (0, δ0/2), (3.3.37)
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so the sum over (I1, I2) in (3.3.36) tends to 0 in L2-norm as δ ↘ 0. Hence,
whenever f ∈ Vk(O),

ϕδf → f in Vk-norm. (3.3.38)

From here the density of C∞
0 (O) in Vk(O) follows by a standard mollifier

argument. �

Since C∞
0 (O) ⊂ D((ν∆ −X)m) for all m, we have u ∈ C∞([0,∞) ×O)

whenever f ∈ C∞
0 (O), and hence (3.3.31) holds for t ≥ 0 and (3.3.33) holds

for s = 0. That is to say, we have

‖et(ν∆−X)f‖Vk ≤ etBk‖f‖Vk , (3.3.39)

for all f in the dense linear subspace C∞
0 (O) of Vk(O), and hence for all

f ∈ Vk. Also this density implies:

Proposition 3.3.3 For each k ∈ Z
+, ν > 0, et(ν∆−X) is a strongly contin-

uous semigroup on Vk(O), and (3.3.39) holds for each f ∈ Vk(O).

We emphasize that (3.3.39) holds with Bk independent of ν ∈ (0, 1].
From here we can obtain convergence results as ν ↘ 0.

Proposition 3.3.4 In the setting of Proposition 3.3.3,

f ∈ Vk(O) =⇒ lim
ν↘0

et(ν∆−X)f = e−tXf, (3.3.40)

in norm, in Vk(O).

Proof. The estimate (3.3.39) implies {et(ν∆−X)f : ν ∈ (0, 1]} has weak∗

limit points as ν ↘ 0. By Proposition 3.1.3, (with p = 2), e−tXf is the
only possible such limit point. This gives convergence in (3.3.40), weak∗ in
Vk(O). We next aim to improve this to norm convergence. In view of the
uniform bounds in (3.3.39), it suffices to establish norm convergence on a
dense linear subspace of Vk(O). Take f ∈ C∞

0 (O). We use the complex
interpolation identity

Vk(O) = [L2(O),V2k ]1/2. (3.3.41)

See Proposition A.1.1 in the Appendix for a proof. This implies -

‖g‖Vk ≤ ‖g‖1/2
L2 ‖g‖1/2

V2k , (3.3.42)
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for g ∈ V2k(O). Hence, for f ∈ V2k(O),

‖(et(ν∆−X) − e−tX)f‖Vk ≤ ‖(et(ν∆−X) − e−tX)f‖1/2
L2

× ‖(et(ν∆−X) − e−tX)f‖1/2

V2k .
(3.3.43)

The first factor on the right side tends to zero as ν ↘ 0, by Proposition
3.1.3, and the last factor is uniformly bounded as ν ↘ 0, by (3.3.39), with
k replaced by 2k. This completes the proof. �

Remark. The class of differential operators Xk, k ≥ 1, together with
multiplications by smooth functions on O, is what is called the algebra of
totally characteristic differential operators in [9] and [10]. These works also
develop a related class of pseudodifferential operators; see also [11] and [4],
§18.3. The spaces Vk(O) are special cases of “weighted b-Sobolev spaces,”
introduced in [10]. This is discussed further in Appendix A.

We briefly comment on why we call Vk(O)-norm estimates “conormal
estimates.” The term “conormal distribution” was introduced in [3]. In
essence, if M is a smooth manifold, Σ a smooth submanifold and L a given
Banach space of distributions onM (such as L2(M)) and if f andX1 · · ·Xkf
belong to L for all k and all smooth vector fields Xj on M that are tangent
to Σ, then f is said to be conormal distribution with respect to Σ. See also
[4], §18.2, for a detailed treatment.

3.4 Holomorphy of the semigroup eζ∆ on Vk(O)

As usual, take D(∆) = H2(O)∩H1
0 (O). The semigroup eζ∆ is a holomorphic

semigroup on L2(O), for Re ζ > 0. Here we show it has a bound

‖eζ∆f‖Vk ≤ eB|ζ|‖f‖Vk , (3.4.1)

uniformly for ζ in a wedge

WK = {t+ is : t > 0, |s| < Kt}, (3.4.2)

with B = B(k,K). We then derive some useful consequences from this.
To start, take θ ∈ R and set s = θt and consider

u(t) = et(1+iθ)∆f, (3.4.3)
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supressing θ in the notation on the left side of (3.4.3). We have

d

dt
‖u‖2

L2 = 2Re (ut, u)L2

= 2Re ((1 + iθ)∆u, u)L2

= −2‖∇u‖2
L2 .

(3.4.4)

This is the standard result for V0(O) = L2(O). Moving on to Vk(O) with
k = 1, we have

d

dt
‖Yju‖2

L2

= 2Re (Yjut, Yju)L2

= 2Re (1 + iθ)(Yj∆u, Yju)L2

= 2Re (1 + iθ)(∆Yju, Yju)L2 + 2Re (1 + iθ)([Yj ,∆]u, Yju)L2

≤ −2‖∇Yju‖2
L2 + 2Θ|([Yj ,∆]u, Yju)L2 |

(3.4.5)

where we have set Θ =
√

1 + θ2. As in (3.3.15)–(3.3.16), we have

2Θ|([Yj ,∆]u, Yju)L2 | ≤ ‖∇Yju‖2
L2 + ‖Yju‖2

L2 +K1‖∇u‖2
L2 , (3.4.6)

and hence, parallel to (3.3.17),

d

dt
P 2

1 (u) = −
∑

j

‖∇Yju‖2
L2 +K2‖∇u‖2

L2 . (3.4.7)

Then, parallel to (3.3.18), we have

d

dt

(
P 2

1 (u) +K2P
2
0 (u)

)
≤ −

∑

j

‖∇Yju‖2
L2 , (3.4.8)

giving (3.4.1) for k = 1, first for f ∈ C∞
0 (O), which is dense in V1(O), then

for general f ∈ V1(O).
The passage to general k proceeds along the same lines, in parallel with

estimates done in (3.3.19)–(3.3.31), but with the simplification that X is not
involved.

We record some standard but significant consequences of the holomorphy
of eζ∆ and the estimates (3.4.1). First,

∥∥∥ d
dt
eζ∆f

∥∥∥
Vk

≤ C|ζ|−1eB|ζ|‖f‖Vk , (3.4.9)
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for ζ ∈ WK/2, as follows from the Cauchy integral formula applied to a circle
of radius ∼ c|ζ| centered about ζ. This estimate implies

‖∆et∆f‖Vk ≤ C

t
eBt‖f‖Vk , (3.4.10)

for t > 0, and hence

‖Y J∆et∆f‖L2 ≤ C

t
eBt‖f‖Vk , |J | = k. (3.4.11)

Using this, we will establish the following.

Proposition 3.4.1 Take T0 ∈ (0,∞). Then, for t ∈ [0, T0], we have

tY Jet∆ : Vk(O) −→ H2(O) bounded, for |J | = k. (3.4.12)

Proof. We use induction on k. For k = 0, (3.4.12) follows from the k = 0
case of (3.4.10). To establish (3.4.12) for k ≥ 1, it suffices to show that

t∆Y Jet∆ : Vk(O) −→ L2(O) is bounded, for |J | = k. (3.4.13)

Using (3.3.22)–(3.3.25), we have

t∆Y Jet∆ = tY J∆et∆ + t
∑

|I|≤k−1

LIY
Iet∆, (3.4.14)

where each LI is a second order differential operator. The bound on the first
term on the right side of (3.4.14) in L(Vk(O), L2(O)) follows from (3.4.11).
The bound on the sum over |I| ≤ k− 1 follows by the induction hypothesis.
This proves (3.4.12). �

We can interpolate the bound

‖Y Jet∆f‖H2(O) ≤
C

t
‖f‖Vk (3.4.15)

with the bound
‖Y Jet∆f‖L2(O) ≤ C‖f‖Vk , (3.4.16)

valid for t ∈ [0, T0] by (3.4.1), using

‖F‖H1 ≤ C‖F‖1/2
L2 ‖F‖1/2

H2 , (3.4.17)

to obtain

28



Corollary 3.4.2 In the setting of Proposition 3.4.1,

‖Y Jet∆f‖H1(O) ≤
C

t1/2
‖f‖Vk , |J | = k. (3.4.18)

Consequently

‖et∆f‖Vk+1 ≤ C

t1/2
‖f‖Vk . (3.4.19)

3.5 Estimates on et(ν∆−X) in case of empty boundary

Here we consider the family of semigroups et(ν∆−X) acting on functions
on M , a compact, n-dimensional, Riemannian manifold without boundary.
Again ∆ is the Laplace-Beltrami operator. We assume X is a smooth vector
field on M . This time we will not assume that divX = 0. We will show
that in this setting we have much stronger convergence results than obtained
in §3.1. Ultimately it will be our goal to use the results obtained here to
strengthen the results of §3.1.

To begin, let us note that in the current context, (3.1.4) is strengthened
to

D((ν∆ −X)k) = D(∆k) = H2k(M), ∀ k ∈ N, (3.5.1)

whenever ν > 0. Because of this, we can improve Lemma 3.1.2 to the
following.

Lemma 3.5.1 Take f ∈ C∞(M), and set u(t) = et(ν∆−X)f , with ν > 0.
For each k ∈ Z

+, there exists K = K(k) ∈ (0,∞), independent of ν, such
that

‖(1 − ∆)ku(t)‖2
L2 ≤ e2Kt‖(1 − ∆)kf‖2

L2 . (3.5.2)

Proof. Straightforward analogue of the proof of Lemma 3.1.2. �

Corollary 3.5.2 We have, for each k ∈ Z
+,

‖et(ν∆−X)f‖D(∆k) ≤ eKt‖f‖D(∆k), (3.5.3)

for each f ∈ C∞(M), hence for each f ∈ D(∆k).

Remark. Note the contrast with the possibility of (3.1.25), which can occur
in case of nonempty boundary.
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Note that the maximum principle holds, so, for each ν > 0,

‖et(ν∆−X)f‖L∞ ≤ ‖f‖L∞ . (3.5.4)

Interpolation with the case k = 0 of (3.5.3) implies

‖et(ν∆−X)f‖Lp ≤ eKt‖f‖Lp , (3.5.5)

for f ∈ Lp(M), p ∈ [2,∞). We could also get this for p ∈ [1, 2), but we will
not take the space to do this. We can further apply interpolation to (3.5.5)
and the estimates

‖et(ν∆−X)f‖H2k ≤ CeKt‖f‖H2k , k ∈ Z
+, (3.5.6)

which follow from (3.5.3) and (3.5.1). First, we have

‖et(ν∆−X)f‖Hs ≤ CeKt‖f‖Hs , s ∈ R
+, (3.5.7)

with C = Cs, K = Ks, independent of ν. Then, in place of (3.1.21), we
have

[Hs(M), Lp(M)]θ = H(1−θ)s,q(θ)(M),
1

q(θ)
=

1 − θ

2
+
θ

p
, (3.5.8)

and hence
‖et(ν∆−X)f‖Hσ,q(M) ≤ Cσ,qe

Kt‖f‖Hσ,q(M), (3.5.9)

valid for q ∈ [2,∞), σ > 0.
We next consider convergence results, as ν → 0. As in (3.1.8), we have

for u(t) = et(ν∆−X)f the identity

u(t) = e−tXf + ν

∫ t

0
e(t−s)X∆u(s) ds, (3.5.10)

hence

‖u(t) − e−tXf‖D(∆k) ≤ ν

∫ t

0
‖e(t−s)X∆u(s)‖D(∆k) ds. (3.5.11)

We use (3.5.3) plus the analogous estimate on e−tX to deduce that

‖et(ν∆−X)f − e−tXf‖D(∆k) ≤ Cν‖f‖D(∆k+1), (3.5.12)

for f ∈ C∞(M). We hence have

et(ν∆−X)f −→ e−tXf (3.5.13)

in D(∆k)-norm (hence in H2k-norm), for each f ∈ C∞(M), hence, via
(3.5.3), for each f ∈ D(∆k). Then, using (3.5.9) and (3.5.4), and standard
density arguments, we have:
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Proposition 3.5.3 Given f ∈ Hσ,q(M), σ ≥ 0, q ∈ [2,∞), convergence in
(3.5.13) holds in Hσ,q-norm, as ν → 0. Given f ∈ C(M), convergence in
(3.5.13) holds uniformly, as ν → 0.

3.6 Parametrix for ∂t − νL(t) on R
+ × M

As in §3.5, let M be a compact, n-dimensional, Riemannian manifold with-
out boundary, with Laplace-Beltrami operator ∆, and let X be a smooth
vector field on M . As in §3.2, let L(t) = etX∆e−tX , so, for f ∈ D′(M),

v(t) = etXet(ν∆−X)f (3.6.1)

solves
∂v

∂t
= νL(t)v, v(0) = f. (3.6.2)

We denote the solution operator by S t
ν :

St
ν = etXet(ν∆−X). (3.6.3)

Parallel to results of §3.5, we have

‖St
νf‖Hs,p ≤ CeKt‖f‖Hs,p , (3.6.4)

for f ∈ Hs,p(M), with C = Cs,p, K = Ks,p independent of ν > 0, given
p ≥ 2, s ≥ 0. (With a little more work, we could take any p ∈ (1,∞), s ∈ R.)
Our goal here is to construct a parametrix, revealing the fine structure of
St

ν as ν → 0.
Preparatory to beginning this parametrix construction, it is also useful

to note that Proposition 3.2.1 continues to hold in the current setting. In
particular, given Ω1 ⊂⊂ Ω0 ⊂M, k ∈ N,

‖St
νf‖2

Hk(Ω1) ≤ CTk

(
‖f‖2

Hk(Ω0) + ‖f‖2
L2(M)

)
, 0 ≤ t ≤ T, (3.6.5)

with CTk independent of ν > 0. Applying this and a partition of unity
argument, we see it suffices to construct a parametrix for S t

νf when f is
supported on a coordinate patch Ω ⊂ M , and it suffices to analyze this
approximation to St

νf(x) for (t, x) ∈ [0, T ] × Ω, uniformly in ν ∈ (0, 1].
On a coordinate patch Ω, we have

L(t)u =
∑

1≤|α|≤2

Lα(t, x)∂α
x . (3.6.6)
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(Note that L(t)1 = 0.) Let us set

Lk(t, x, ξ) =
∑

|α|=k

Lα(t, x)(iξ)α, k = 1, 2. (3.6.7)

Note that
L2(t, x, ξ) = −G(t, x, ξ) = −

∑

ij

gij(t, x)ξiξj, (3.6.8)

where (gij(t, x)) = (gij(t, x))−1 is the metric tensor on M , pulled back via
the flow generated by X.

We write our approximate solution to (3.6.2) on R
+ × Ω as

St
νf(x) = (2π)−n/2

∫
a(ν, t, x, ξ)eix·ξ f̂(ξ) dξ, (3.6.9)

where f̂(ξ) is the Fourier transform of f , given by

f̂(ξ) = (2π)−n/2

∫
f(x)e−ix·ξ dx,

and the amplitude a(ν, t, x, ξ) will take the form of an asymptotic series

a(ν, t, x, ξ) ∼
∑

j≥0

aj(ν, t, x, ξ), (3.6.10)

whose terms aj will be constructed below. In outline this construction is
similar to that done in Chapter 7, §13 of [12], constructing a parametrix for
et∆ for small t, but here the set-up is more complicated.

We start with the following consequence of the Leibniz identity:

νL(t)(aeix·ξ) =
[
νL2(t, x, ξ)a(ν, t, x, ξ)

+ ν
2∑

`=1

B2−`(t, x, ξ,Dx)a(ν, t, x, ξ)
]
eix·ξ,

(3.6.11)

where B2−`(t, x, ξ,Dx) is a differential operator of order `, whose coefficients
are polynomials of degree 2− ` in ξ, and smooth in (t, x). To satisfy (3.6.2)
formally, we require

∂a

∂t
∼ νL2(t, x, ξ)a + ν

2∑

`=1

B2−`(t, x, ξ,Dx)a,

a(ν, 0, x, ξ) = 1.

(3.6.12)
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This tells us how to construct the terms aj . For starters, a0 is defined
by

∂a0

∂t
= −νG(t, x, ξ)a0, a0(ν, 0, x, ξ) = 1, (3.6.13)

so

a0(ν, t, x, ξ) = e−νtH(t,x,ξ), H(t, x, ξ) =
1

t

∫ t

0
G(s, x, ξ) ds. (3.6.14)

Note that H(t, x, ξ) is a polynomial in ξ, homogeneous of degree 2, with
coefficients smooth in (t, x), and

H(t, x, ξ) ≥ C|ξ|2, (3.6.15)

for some C > 0. For j ≥ 1, aj solves

∂aj

∂t
= −νG(t, x, ξ)aj + Ωj(ν, t, x, ξ), aj(ν, 0, x, ξ) = 0, (3.6.16)

where

Ωj(ν, t, x, ξ) = ν
2∑

`=1

B2−`(t, x, ξ,Dx)aj−`(ν, t, x, ξ), (3.6.17)

with the convention (operative for j = 1, ` = 2) that a−1 ≡ 0. We hence
have

aj(ν, t, x, ξ) = e−νtH(t,x,ξ)

∫ t

0
eνsH(s,x,ξ)Ωj(ν, s, x, ξ) ds. (3.6.18)

Another way to display these terms in the amplitude is to set

aj(ν, t, x, ξ) = Aj(ν, t, x, ξ)e
−νtH(t,x,ξ). (3.6.19)

Also set
Ωj(ν, t, x, ξ) = Γj(ν, t, x, ξ)e

−νtH(t,x,ξ), (3.6.20)

so (3.6.17) becomes

Γj(ν, t, x, ξ) = νeνtH(t,x,ξ)
2∑

`=1

B2−`(t, x, ξ,Dx)
(
Aj−`e

−νtH(t,x,ξ)
)
, (3.6.21)

and (3.6.18) becomes

Aj(ν, t, x, ξ) =

∫ t

0
Γj(ν, s, x, ξ) ds. (3.6.22)
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We next take an explicit look at the case j = 1. In that case, (3.6.17)
gives

Ω1 = νB1(t, x, ξ,Dx)e−νtH(t,x,ξ)

= −ν2te−νtH(t,x,ξ)B1(t, x, ξ,Dx)H(t, x, ξ),
(3.6.23)

and recall that B1 is a differential operator of order 1, whose coefficients are
polynomials of degree 1 in ξ. A formula equivalent to (3.6.23) is

Γ1 = −ν2tB1(t, x, ξ,Dx)H(t, x, ξ)

= −ν2t
∑

|α|≤3

Cα
1 (t, x)ξα, (3.6.24)

with Cα
1 (t, x) smooth. Then, by (3.6.22),

A1(ν, t, x, ξ) = −ν2
∑

|α|≤3

(∫ t

0
sCα

1 (s, x) ds
)
ξα

= −(νt)2
∑

|α|≤3

Dα
1 (t, x)ξα,

(3.6.25)

with Dα
1 (t, x) smooth, and we have

a1(ν, t, x, ξ) = −(νt)2
∑

|α|≤3

Dα
1 (t, x)ξα e−νtH(t,x,ξ). (3.6.26)

Let us now recall the definition of a symbol class, important in the theory
of pseudodifferential operators. Given m ∈ R, we say

p(x, ξ) ∈ Sm
1,0 ⇐⇒ |Dβ

xD
α
ξ p(x, ξ)| ≤ Cαβ(1 + |ξ|)m−|α|, (3.6.27)

and we say a family {p(ν, t, x, ξ) : t ∈ [0, T ], ν ∈ (0, 1]} is bounded in Sm
1,0

provided such estimates hold with Cαβ independent of ν and t. In follows
from (3.6.14) that

{a0(ν, t, x, ξ) : t ∈ [0, T ], ν ∈ (0, 1]} is bounded in S0
1,0, (3.6.28)

or as we say for short, a0(ν, t, x, ξ) is bounded in S0
1,0. Similarly, from (3.6.26)

we have
a1(ν, t, x, ξ) bounded in S−1

1,0 , and

O((νt)1/2) in S0
1,0,

(3.6.29)

where the latter means (νt)−1/2a1(ν, t, x, ξ) is bounded in S0
1,0.
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To extend (3.6.28)–(3.6.29) to aj for larger j, it is convenient to have
another presentation. Set

ζ = (νt)1/2ξ, ω = νtξ. (3.6.30)

Now (3.6.14) and (3.6.26) give

a0(ν, t, x, ξ) = e−H(t,x,ζ),

a1(ν, t, x, ξ) = νtA1(νt, t, x, ξ, ζ)e
−H(t,x,ζ),

(3.6.31)

where A1(τ, t, x, ξ, ζ) is a polynomial in τ of degree 1, in ξ of degree 1 and
in ζ of degree 2, with coefficients smooth in (t, x). It will be useful to have
the following:

Definition. The space Pk is characterized by

F (νt, t, x, ξ, ζ, ω) ∈ Pk ⇐⇒ F is a polynomial in νt, ζ, ω, and ξ,

even in ζ, of degree ≤ k in ξ, with

coefficients smooth in (t, x).
(3.6.32)

Without loss of generality, we can assume the degree in ω is ≤ 1.
Then a1 satisfies (3.6.31) with

A1(νt, t, x, ξ, ζ) ∈ P1. (3.6.33)

(Actually A1 is independent of ω, but other amplitudes will have ω depen-
dence.) We are prepared to prove the following.

Theorem 3.6.1 For each k = 0, 1, 2, . . . , we have

a2k(ν, t, x, ξ) = (νt)kA2ke
−H(t,x,ζ), A2k ∈ P0,

a2k+1(ν, t, x, ξ) = (νt)k+1A2k+1e
−H(t,x,ζ), A2k+1 ∈ P1.

(3.6.34)

Proof. The results in (3.6.31) give (3.6.34) for k = 0. We proceed by
induction on k. To set this up, let us assume

aj = (νt)αjAje
−H(t,x,ζ), Aj ∈ Pβj

, (3.6.35)

for j ≤ 2k+1, with indices αj and βj consistent with (3.6.34). Then (3.6.17)
gives

Ωj+1 = Ω1
j+1 + Ω0

j+1 (3.6.36)
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with
Ω1

j+1 = ν(νt)αjB1(t, x, ξ,Dx)
(
Aje

−H(t,x,ζ)
)

= ν(νt)αjB1
j+1e

−H(t,x,ζ), B1
j+1 ∈ Pβj+1,

(3.6.37)

so Γ1
j+1 = ν(νt)αjB1

j+1 and

A1
j+1(ν, t, x, ξ) =

∫ t

0
Γ1

j+1(ν, s, x, ξ) ds ∈ (νt)αj+1 · Pβj+1, (3.6.38)

and furthermore

Ω0
j+1 = ν(νt)αj−1B0(t, x,Dx)

(
Aj−1e

−H(t,x,ζ)
)

= ν(νt)αj−1B0
j+1e

−H(t,x,ζ), B0
j+1 ∈ Pβj−1

,
(3.6.39)

so Γ0
j+1 = ν(νt)αj−1B0

j+1 and

A0
j+1(ν, t, x, ξ) =

∫ t

0
Γ0

j+1(ν, s, x, ξ) ds ∈ (νt)αj−1+1 · Pβj−1
. (3.6.40)

We are now ready to verify the induction step in the proof of Theorem
3.6.1. Suppose (3.6.34) holds for a given k ∈ Z

+, i.e.,

A2k ∈ (νt)k · P0, A2k+1 ∈ (νt)k+1 · P1. (3.6.41)

(If k ≥ 1, assume also the counterpart of (3.6.41) with k replaced by k− 1.)
Then, using the fact that (3.6.35) implies (3.6.38) and (3.6.40), we obtain

A2k+2 = A1
2k+2 +A0

2k+2

∈ (νt)k+2 · P2 + (νt)k+1 · P0 ⊂ (νt)k+1 · P0,
(3.6.42)

(upon noting that (νt) · P2 ⊂ P0), and furthermore

A2k+3 = A1
2k+3 +A0

2k+3 ∈ (νt)k+2 · P1. (3.6.43)

This completes the proof. �

We can use Theorem 3.6.1 to extend (3.6.28)–(3.6.29), as follows.

Corollary 3.6.2 In the setting of Theorem 3.6.1, we have

a2k(ν, t, x, ξ) = O((νt)k) in S0
1,0,

bounded in S−2k
1,0 ,

(3.6.44)
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and
a2k+1(ν, t, x, ξ) = O((νt)k+1) in S1

1,0,

bounded in S−2k−1
1,0 ,

(3.6.45)

hence, for j ≥ 0,

aj(ν, t, x, ξ) = O((νt)j/2) in S0
1,0,

bounded in S−j
1,0.

(3.6.46)

Proof. The result (3.6.34) directly gives (3.6.44)–(3.6.45), and (3.6.46) fol-
lows from this plus the observation that

p(ν, t, x, ξ) = (νt)Ae−H(t,x,ζ), A ∈ P1

=⇒ p(ν, t, x, ξ) = O((νt)1/2) in S0
1,0.

(3.6.47)

�

Returning to (3.6.9)–(3.6.10), let us fix N ∈ N and set

a(ν, t, x, ξ) =
N∑

j=0

aj(ν, t, x, ξ). (3.6.48)

We use this to define St
νf in (3.6.9). Then we have

(∂t − νL(t))St
νf(x) = (2π)−n/2

∫
RN (ν, t, x, ξ)eix·ξ f̂(ξ) dξ, (3.6.49)

with

RN (ν, t, x, ξ) = νB1(t, x, ξ,Dx)aN (ν, t, x, ξ)

+ νB0(t, x,Dx)
[
aN−1(ν, t, x, ξ) + aN (ν, t, x, ξ)

]
.

(3.6.50)

Arguments used in the proof of (3.6.34) and (3.6.45) give

νB1(t, x, ξ,Dx)aN (ν, t, x, ξ) = O(ν(νt)N/2) in S1
1,0,

O(ν(νt)(N−1)/2) in S0
1,0,

O(ν) in S
−(N−1)
1,0 ,

(3.6.51)

and

νB0(t, x,Dx)[aN−1 + aN ] = O(ν(νt)(N−1)/2) in S0
1,0,

O(ν) in S
−(N−1)
1,0 .

(3.6.52)

In conclusion, we have:
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Proposition 3.6.3 If N ∈ N is given, a is defined as in (3.6.48), and St
ν

as in (3.6.9), then
uν(t) = St

νf (3.6.53)

solves
∂uν

∂t
= νL(t)u+ gν , uν(0) = f, (3.6.54)

with

gν(t, x) = (2π)−n/2

∫
RN (ν, t, x, ξ)eix·ξ f̂(ξ) dξ, (3.6.55)

where
RN (ν, t, x, ξ) = O(ν(νt)(N−1)/2) in S0

1,0,

O(ν) in S
−(N−1)
1,0 .

(3.6.56)

Using standard pseudodifferential operator estimates, we obtain:

Corollary 3.6.4 In the setting of Proposition 3.6.3, if p ∈ (1,∞), s ∈ R,
then, for t ∈ [0, T ], ν ∈ (0, 1],

‖gν(t)‖Hs,p(M) ≤ CT ν
(N+1)/2‖f‖Hs,p(M), (3.6.57)

and
‖gν(t)‖Hs+N−1,p(M) ≤ CT ν‖f‖Hs,p(M), (3.6.58)

with CT independent of ν.

We can compare the approximate solution St
νf with the exact solution

St
νf to (3.6.2) by applying the Duhamel formula to (3.6.54), which gives

St
νf = St

νf +

∫ t

0
Ss,t

ν gν(s) ds, (3.6.59)

where, for 0 ≤ s ≤ t, Ss,t
ν is the solution operator to (3.6.2) defined by

v(t) = Ss,t
ν v(s), equivalently, Ss,t

ν = etXe(t−s)(ν∆−X)e−sX . (3.6.60)

A straightforward analogue of (3.6.4) is

‖Ss,t
ν f‖Hσ,p ≤ CeK(t−s)‖f‖Hσ,p , (3.6.61)

valid for p ∈ [2,∞), σ ∈ [0,∞), with C = Cσ,p and K = Kσ,p independent
of ν ∈ (0, 1]. This gives:

38



Corollary 3.6.5 In the setting of Proposition 3.6.3, if p ∈ [2,∞), σ ≥ 0,
then for t ∈ [0, T ], ν ∈ (0, 1],

‖St
νf − St

νf‖Hσ,p(M) ≤ CT ν
(N+1)/2‖f‖Hσ,p(M), (3.6.62)

and
‖St

νf − St
νf‖Hσ+N−1,p(M) ≤ CT ν‖f‖Hσ,p(M), (3.6.63)

with CT independent of ν.

Remark. Applying Corollary 3.6.5 with N replaced by N + 2 and taking
into account the fact that this just adds aN+1 + aN+2 to the amplitude in
the formula for St

ν , we obtain a complement to (3.6.62)–(3.6.63), namely

‖St
νf − St

νf‖Hσ+N+1,p(M) ≤ CT ‖f‖Hσ,p(M). (3.6.64)

The family of operators Ss,t
ν is as important as the family St

ν , and it is
also of interest to have a parametrix for this family. This is obtained by a
slight modification of the previous construction. Parallel to (3.6.9)–(3.6.10),
this parametrix has the form

Ss,t
ν f(x) = (2π)−n/2

∫
a(ν, s, t, x, ξ)eix·ξ f̂(ξ) dξ, (3.6.65)

with
a(ν, s, t, x, ξ) ∼

∑

j≥0

aj(ν, s, t, x, ξ), (3.6.66)

given by equations similar to (3.6.12), except that the initial condition is

a(ν, s, s, x, ξ) = 1. (3.6.67)

Thus, in place of (3.6.14) we have

a0(ν, s, t, x, ξ) = e−ν(t−s)H(s,t,x,ξ),

H(s, t, x, ξ) =
1

t− s

∫ t

s
G(σ, x, ξ) dσ,

(3.6.68)

and in place of (3.6.31) we have

a1(ν, s, t, x, ξ) = ν(t− s)A1(ν(t− s), s, t, x, ξ, ζ)e−H(s,t,x,ζ), (3.6.69)

this time with

ζ = (ν(t− s))1/2ξ, ω = ν(t− s)ξ, A1 ∈ P1, (3.6.70)

39



where now Pk is defined to consist of functions F (ν(t − s), s, t, x, ξ, ζ, ω),
polynomials in ν(t − s), ζ, ω, and ξ, even in ζ, of degree ≤ k in ξ and of
degree ≤ 1 in ω, with coefficients smooth in (s, t, x), the obvious variant of
(3.6.32). (As in (3.6.31), A1 does not actually depend on ω.) More generally,
parallel to (3.6.34), we have

a2k(ν, s, t, x, ξ) = (ν(t− s))kA2k e
−H(s,t,x,ζ), A2k ∈ P0,

a2k+1(ν, s, t, x, ξ) = (ν(t− s))k+1A2k+1 e
−H(s,t,x,ζ), A2k+1 ∈ P1,

(3.6.71)

except now with ζ = (ν(t − s))1/2ξ (as in (3.6.70)), with Aj = Aj(ν(t −
s), s, t, x, ξ, ζ, ω), and with Pk as redefined above. In place of (3.6.46), we
have

aj(ν, s, t, x, ξ) = O((ν(t− s))j/2) in S0
1,0,

bounded in S−j
1,0.

(3.6.72)

The estimates recorded in Corollary 3.6.5 readily extend, to yield:

Proposition 3.6.6 Given N ∈ N, take

a(ν, s, t, x, ξ) =

N∑

j=0

aj(ν, s, t, x, ξ), (3.6.73)

and define S
s,t
ν f by (3.6.65). Then for p ∈ [2,∞), σ ≥ 0, 0 ≤ s ≤ t ≤ T ,

and ν ∈ (0, 1], we have

‖Ss,t
ν f − Ss,t

ν f‖Hσ,p(M) ≤ CT ν
(N+1)/2‖f‖Hσ,p(M),

‖Ss,t
ν f − Ss,t

ν f‖Hσ+N+1,p(M) ≤ CT ‖f‖Hσ,p(M),
(3.6.74)

with CT independent of ν.

The formula (3.6.65) represents the parametrix S
s,t
ν in Fourier integral

form. We next obtain a more explicit representation of its integral kernel.
We examine the individual terms

S
s,t
ν,jf(x) = (2π)−n/2

∫
aj(ν, s, t, x, ξ)e

ix·ξ f̂(ξ) dξ

=

∫
Kj(ν, s, t, x, x− y)f(y) dy,

(3.6.75)

where

Kj(ν, s, t, x, z) = (2π)−n

∫
aj(ν, s, t, x, ξ)e

iz·ξ dξ, z = x− y. (3.6.76)
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In case j = 0, let us rewrite a0 as

a0(ν, s, t, x, ξ) = e−ν(t−s)H(s,t,x)ξ·ξ , (3.6.77)

where H(s, t, x) is a positive-definite n × n matrix. We have a standard
Gaussian integral:

K0(ν, s, t, x, z)

= (2π)−n

∫
e−ν(t−s)H(s,t,x)ξ·ξeiz·ξ dξ

=
(
4πν(t− s)

)−n/2
detG(s, t, x)1/2 e−G(s,t,x)z·z/4ν(t−s),

(3.6.78)

where
G(s, t, x) = H(s, t, x)−1. (3.6.79)

Note from (3.6.8) that

Hij(s, t, x) =
1

t− s

∫ t

s
gij(σ, x) dσ, (3.6.80)

where (gij) = (gij)
−1, so in particular Hij(s, s, x) = gij(s, x) and

Gij(s, s, x) = gij(s, x). (3.6.81)

To compute Kj more generally, we use (3.6.71), which we restate as
follows:

a2k(ν, s, t, x, ξ)

= (ν(t− s))k
∑

α even,|β|≤1

Fαβ(ν(t− s), s, t, x)

×
(
(ν(t− s))1/2ξ

)α(
ν(t− s)ξ

)β
e−ν(t−s)Hξ·ξ,

(3.6.82)

and
a2k+1(ν, s, t, x, ξ)

= (ν(t− s))k+1
∑

α even,|β|≤1,`

Fαβ`(ν(t− s), s, t, x)

× ξ`
(
(ν(t− s))1/2ξ

)α(
ν(t− s)ξ

)β
e−ν(t−s)Hξ·ξ

+ (ν(t− s))k+1
∑

α even,|β|≤1

F 0
αβ(ν(t− s), s, t, x)

×
(
(ν(t− s))1/2ξ

)α(
ν(t− s)ξ

)β
e−ν(t−s)Hξ·ξ.

(3.6.83)

41



Here H = H(s, t, x) is as in (3.6.77), and Fαβ , Fαβ`, and F 0
αβ are smooth

functions of their arguments. All the sums are finite. To compute the
integrals in (3.6.76), we use the following result:

(2π)−n

∫
ξαe−Hξ·ξeiz·ξ dξ =

[
det(4πH)

]−1/2
Dα

z e
−Gz·z/4

= pα(H, z)e−Gz·z/4,

(3.6.84)

where the last identity defines pα(H, z), which is a polynomial of degree |α|
whose coefficients depend smoothly on H, and G = H−1. We note that

pα(H,−z) = (−1)|α|pα(H, z). (3.6.85)

Taking
µ = ν(t− s), (3.6.86)

we go from (3.6.82)–(3.6.83) to formulas for Kj(ν, s, t, x, z) via the identities

(2π)−n

∫
(µ1/2ξ)α(µξ)βe−µHξ·ξeiz·ξ dξ

= µ(−n+|β|)/2pα+β(H, µ−1/2z)e−Gz·z/4µ,

(3.6.87)

and

(2π)−n

∫
ξ`(µ

1/2ξ)α(µξ)βe−µHξ·ξeiz·ξ dξ

= µ(−n+|β|−1)/2pα+β+ε`
(H, µ−1/2z)e−Gz·z/4µ.

(3.6.88)

We obtain

K2k(ν, s, t, x, z)

= (ν(t− s))−n/2+k
∑

α even,|β|≤1

(ν(t− s))|β|/2Fαβ(ν(t− s), s, t, x)

× pα+β(H, (ν(t− s))−1/2z)e−Gz·z/4ν(t−s),

(3.6.89)

hence

K2k(ν, s, t, x, z)

= (ν(t− s))−n/2+k
1∑

b=0

(ν(t− s))b/2Φ2k,b(ν(t− s), s, t, x, (ν(t − s))−1/2z)

× e−G(s,t,x)z·z/4ν(t−s),
(3.6.90)
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where Φ2k,b is a polynomial in (ν(t− s))−1/2z = Z, with coefficients smooth
in ν(t− s), s, t, x, satisfying

Φ2k,b(ν(t− s), s, t, x,−Z) = (−1)bΦ2k,b(ν(t− s), s, t, x, Z). (3.6.91)

Similarly,

K2k+1(ν, s, t, x, z)

= (ν(t− s))−n/2+k+1/2
∑

α even,|β|≤1,`

(ν(t− s))|β|/2Fαβ`(ν(t− s), s, t, x)

× pα+β+ε`
(H, (ν(t− s))−1/2z)e−Gz·z/4ν(t−s)

+ (ν(t− s))−n/2+k+1
∑

α even,|β|≤1

(ν(t− s))|β|/2F 0
αβ(ν(t− s), s, t, x)

× pα+β(H, (ν(t− s))−1/2z)e−Gz·z/4ν(t−s),
(3.6.92)

hence

K2k+1(ν, s, t, x, z)

= (ν(t− s))−n/2+k+1/2

×
1∑

b=0

(ν(t− s))b/2Φ2k+1,b(ν(t− s), s, t, x, (ν(t− s))−1/2z)

× e−G(s,t,x)z·z/4ν(t−s)

+ (ν(t− s))−n/2+k+1

×
1∑

b=0

(ν(t− s))b/2Φ0
2k+1,b(ν(t− s), s, t, x, (ν(t− s))−1/2z)

× e−G(s,t,x)z·z/4ν(t−s),

(3.6.93)

where Φ2k+1,b is a polynomial in (ν(t−s))−1/2z = Z, with coefficients smooth
in ν(t− s), s, t, x, satisfying

Φ2k+1,b(ν(t− s), s, t, x,−Z) = (−1)b+1Φ2k+1,b(ν(t− s), s, t, x, Z), (3.6.94)

and Φ0
2k+1,b is a polynomial in (ν(t − s))−1/2z with coefficients smooth in

ν(t− s), s, t, x, satisfying

Φ0
2k+1,b(ν(t− s), s, t, x,−Z) = (−1)bΦ0

2k+1,b(ν(t− s), s, t, x, Z). (3.6.95)
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While the formulas (3.6.89)–(3.6.90) and (3.6.92)–(3.6.93) for the func-
tions Kj(ν, s, t, x, z) are rather lengthy, they are not difficult to compre-
hend. The basic result to be gleaned from these calculations is that for
j ≥ 1, Kj(ν, s, t, x, z) is smaller and smoother than the dominant term
K0(ν, s, t, x, z), given by the comparatively simple formula (3.6.78).

3.7 Boundary layer analysis of et(ν∆−X)

In this section we examine the fine behavior near ∂O as ν ↘ 0 of et(ν∆−X)f ,
with emphasis on the cases f ∈ C(O) and f ∈ C∞(O). As in §3.2, we work
with solutions to

∂vν

∂t
= νL(t)vν , vν

∣∣
R+×∂O

= 0, vν(0) = f, (3.7.1)

where
L(t) = etX∆e−tX (3.7.2)

is a smooth family of strongly elliptic operators, as in (3.2.3) and (3.6.6).
From this, the behavior of

et(ν∆−X)f = e−tXvν(t) (3.7.3)

is easily deduced.
We assume O is a smoothly bounded open subset of a compact Rieman-

nian manifold M without boundary. To begin the analysis of (3.7.1), we
extend f to f̃ on M , having the same degree of smoothness as f , e.g.,

f ∈ C(O) ⇒ f̃ ∈ C(M), f ∈ C∞(O) ⇒ f̃ ∈ C∞(M), etc. (3.7.4)

We also extend X to be a smooth vector field on M (we need not assume
divX = 0 on M), and define V ν on R

+ ×M by

∂V ν

∂t
= νL(t)V ν on R

+ ×M, V ν(0, x) = f̃(x). (3.7.5)

Here L(t) is given by (3.7.2). The solution to (3.7.5) has the form

V ν(t, x) =

∫

M

f̃(y)H(ν, 0, t, x, y) dV (y), (3.7.6)

where dV is the Riemannian volume element on M . More generally, for
0 ≤ s < t,

V ν(t, x) =

∫

M

V ν(s, y)H(ν, s, t, x, y) dVs(y), (3.7.7)
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where dVs is the pull-back of dV via the flow generated by X, or equivalently
the Riemannian volume element for gs, the metric tensor g of O pulled back
by this flow. In local coordinates, we have

H(ν, s, t, x, y) = g(s, y)−1/2K(ν, s, t, x, x− y), (3.7.8)

where K(ν, s, t, x, x− y) has the form

K(ν, s, t, x, z) =

N∑

j=0

Kj(ν, s, t, x, z) +RN (ν, s, t, x, z), (3.7.9)

with RN the kernel of an operator satisfying the results given in Proposition
3.6.6, i.e., negligible for N large. As seen in (3.6.78),

K0(ν, s, t, x, z)

= (4πν(t− s))−n/2 detG(s, t, x)1/2e−G(s,t,x)z·z/4ν(t−s),
(3.7.10)

and for j ≥ 1,Kj(ν, s, t, x, z) are given by (3.6.90) and (3.6.93), as integral
kernels that are smaller and smoother then K0(ν, s, t, x, z). As before, n =
dimM = dimO.

Having V ν , we can write the solution to (3.7.1) as

vν(t, x) = V ν(t, x) − uν(t, x), t ≥ 0, x ∈ O, (3.7.11)

where uν(t, x) is defined by

∂uν

∂t
= νL(t)uν on R ×O,

uν = gν on R × ∂O,
uν = 0 on (−∞, 0) ×O,

(3.7.12)

where
gν(t, x) = χR+(t)V ν(t, x), x ∈ ∂O. (3.7.13)

We now describe how to use the method of layer potentials to solve (3.7.12).
We start with the case ν = 1 and then explain the modifications that

work for ν ∈ (0, 1]. With H as in (3.7.7)–(3.7.8), we set

D1h(t, x) =

∫ t

0

∫

∂O

h(s, y)
∂H

∂ns,y
(1, s, t, x, y) dSs(y) ds, t ≥ 0, x ∈ O.

(3.7.14)

45



Here dSs is the area element on ∂O induced by the metric tensor gs, de-
scribed as below (3.7.7), and ∂/∂ns,y is the outward unit normal to ∂O at
y ∈ ∂O, determined by this metric tensor. The boundary trace relation for
D1 is

D1h
∣∣
R×∂O

=
(1

2
I +N1

)
h, (3.7.15)

assuming h(s, y) = 0 for s < 0, where

N1h(t, x) =

∫ t

0

∫

∂O

h(s, y)
∂H

∂ns,y
(1, s, t, x, y) dSs(y) ds, t ≥ 0, x ∈ ∂O.

(3.7.16)
The integral formula on the right sides of (3.7.14) and (3.7.16) have an
identical appearance, but in the former case x ∈ O and in the latter case
x ∈ ∂O. It follows that we can solve (3.7.12), in the case ν = 1, as

u1 = D1h
1, (3.7.17)

provided h1 solves (1

2
I +N1

)
h1 = g1. (3.7.18)

For general ν > 0, we have essentially the same situation, except that
νL(t) is the Laplace operator for the metric tensor ν−1gt. One has the
analogue of (3.7.16), with this scaled metric tensor. This rescaling re-
quires that ∂/∂ns,y be replaced by ν1/2∂/∂ns,y and that dSs be replaced
by ν−(n−1)/2 dSs. Also dV is replaced by ν−n/2 dV , so we need to replace
H(1, s, t, x, y) by νn/2H(ν, s, t, x, y). Since

ν1/2ν−(n−1)/2νn/2 = ν, (3.7.19)

we obtain

Dνh(t, x) = ν

∫ t

0

∫

∂O

h(s, y)
∂H

∂ns,y
(ν, s, t, x, y) dSs(y) ds. (3.7.20)

The boundary trace result (3.7.15) becomes

Dνh
∣∣
R×∂O

=
(1

2
I + νNν

)
h, (3.7.21)

for supp h ⊂ R
+ × ∂O, where

Nνh(t, x) =

∫ t

0

∫

∂O

h(s, y)
∂H

∂ns,y
(ν, s, t, x, y) dSs(y) ds. (3.7.22)
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Hence the solution to (3.7.12) has the form

uν(t, x) = Dνh
ν(t, x), (3.7.23)

provided Hν solves (1

2
I + νNν

)
hν = gν , (3.7.24)

with gν(t, x) given by (3.7.13).
We now tackle the problem of inverting ((1/2)I + νNν) in (3.7.24). The

results (3.7.8)–(3.7.10) on H and related estimates on Kj established in §3.6
imply

∥∥∥ ∂H

∂ns,y
(ν, s, t, x, ·)

∥∥∥
L1(∂O)

≤ C(ν(t− s))−1/2, x ∈ ∂O, (3.7.25)

and

∥∥∥ ∂H

∂ns,y
(ν, s, t, x, ·)

∥∥∥
L1(∂O)

≤ C(ν(t− s))−1, x ∈ O, (3.7.26)

uniformly for 0 ≤ s < t ≤ T0. For the present analysis, the focus is on
(3.7.25). It implies for I = [0, T0]

‖νNνh‖L∞(I×∂O) ≤ C(T0) ν
1/2. (3.7.27)

Hence, given T0 ∈ (0,∞), as long as ν is so small that C(T0)ν
1/2 ≤ 1/2, if

gν ∈ L∞(I × ∂O), the equation (3.7.24) is solved by

hν = 2(I + 2νNν)
−1gν

= 2(I − 2νNν + 4ν2N2
ν − · · · )gν .

(3.7.28)

Note that

‖hν − 2gν‖L∞(I×∂O) ≤ Cν1/2‖gν‖L∞(I×∂O). (3.7.29)

We are motivated to estimate Dν(h
ν − 2gν). The estimate (3.7.26) is not

adequate for this; instead we argue as follows. Denote the solution to (3.7.12)
by

uν = PIνg
ν . (3.7.30)

The content of (3.7.21) and (3.7.28) is that

PIνg
ν = Dνh

ν ,
(1

2
I + νNν

)
hν = gν . (3.7.31)
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Hence

Dν(h
ν − 2gν) = PIν

(1

2
I + νNν

)
(hν − 2gν). (3.7.32)

Now the maximum principle gives

‖PIνh‖L∞(I×O) ≤ ‖h‖L∞(I×∂O), (3.7.33)

so we have the general estimate

‖Dνh‖L∞(I×O) ≤ C‖h‖L∞(I×∂O), (3.7.34)

with C independent of ν ∈ (0, 1], and in particular

‖Dν(hν − 2gν)‖L∞(I×O) ≤ C‖hν − 2gν‖L∞(I×∂O)

≤ Cν1/2‖gν‖L∞(I×∂O),
(3.7.35)

the last inequality by (3.7.29).
We have the following.

Proposition 3.7.1 The solution uν to (3.7.12) has the property

‖uν − 2Dνg
ν‖L∞(I×O) ≤ C(I)ν1/2‖gν‖L∞(I×∂O)

≤ C ′(I)ν1/2‖f̃‖L∞(M).
(3.7.36)

Proof. The first inequality in (3.7.36) follows from (3.7.35) and the fact that
uν = Dνh

ν . The second inequality follows from the identification of gν in
(3.7.13) and the maximum principle, applied to (3.7.5). �

Recalling (3.7.11), we have:

Corollary 3.7.2 The solution vν to (3.7.1) has the property

‖vν − (V ν − 2Dνg
ν)‖L∞(I×O) ≤ C(I)ν1/2‖f̃‖L∞(M). (3.7.37)

We can obtain simpler approximations to uν and vν if we assume more
regularity on f . Using (3.5.9), we have, for q ∈ [2,∞), σ > 0,

‖V ν(t, ·)‖Hσ,q(M) ≤ C‖f̃‖Hσ,q(M), 0 ≤ t ≤ T0, (3.7.38)

with C independent of ν ∈ (0, 1]. Taking σ = 2 + ε and q sufficiently large,
we obtain

‖V ν(t, ·)‖C2(M) ≤ C‖f̃‖H2+ε,q(M), 0 ≤ t ≤ T0, (3.7.39)
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for each ε > 0, q > n/ε, with C independent of ν. Hence the solution V ν

to (3.7.5) satisfies

‖V ν(t) − f̃‖L∞(M) ≤ Cν‖f̃‖H2+ε,q(M), 0 ≤ t ≤ T0. (3.7.40)

Interpolation with

‖V ν(t) − f̃‖L∞(M) ≤ 2‖f̃‖L∞(M) ≤ C‖f̃‖Hε,q(M) (3.7.41)

gives
‖V ν(t) − f̃‖L∞(M) ≤ Cν1/2‖f̃‖H1+ε,q(M)

≤ C ′ν1/2‖f̃‖C1,δ(M),
(3.7.42)

the last inequality holding provided δ > ε. We hence have the following.

Proposition 3.7.3 In the setting of Proposition 3.7.1 and Corollary 3.7.2,
we have, for each δ > 0,

‖uν − 2Dνf
b‖L∞(I×O) ≤ C(I)ν1/2‖f̃‖C1,δ(M), (3.7.43)

and
‖vν − (f − 2Dνf

b)‖L∞(I×O) ≤ C(I)ν1/2‖f̃‖C1,δ(M), (3.7.44)

where
f b = χR+(t) f

∣∣∣
∂O
. (3.7.45)

Proof. From (3.7.42) we have

‖gν − f b‖L∞(I×∂O) ≤ Cν1/2‖f̃‖C1,δ(M), (3.7.46)

and then the estimate (3.7.34) applied to h = gν − f b gives (3.7.43) from
(3.7.36). The proof of (3.7.44) is similar. �

For a further simplification, we compare Dν with D0
ν , defined by

D0
νh(t, x) = ν

∫ t

0

∫

∂O

h(s, y)
∂H0

∂ns,y
(ν, s, t, x, y) dSs(y) ds, (3.7.47)

where, parallel to (3.7.8), we set

H0(ν, s, t, x, y) = g(s, y)−1/2K0(ν, s, t, x, x− y), (3.7.48)
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with K0 given by (3.7.10). By (3.7.9) we have

K −K0 =

N∑

j=1

Kj +RN . (3.7.49)

Parallel to (3.7.26) we have

∥∥∥ ∂K1

∂ns,y
(ν, s, t, x, ·)

∥∥∥
L1(∂O)

≤ C(ν(t− s))−1/2, x ∈ O, (3.7.50)

with better estimates on ∂Kj/∂ns,y for j ≥ 2 and on ∂RN/∂ns,y. This leads
to:

Proposition 3.7.4 With D0
ν defined by (3.7.47)–(3.7.48), we have

‖Dνh−D0
νh‖L∞(I×O) ≤ C(I)ν1/2‖h‖L∞(I×∂O). (3.7.51)

Hence, in the setting of Proposition 3.7.3, we have, for each δ > 0,

‖uν − 2D0
νf

b‖L∞(I×O) ≤ C(I)ν1/2‖f̃‖C1,δ(M), (3.7.52)

and
‖vν − (f − 2D0

νf
b)‖L∞(I×O) ≤ C(I)ν1/2‖f̃‖C1,δ(M). (3.7.53)

4 Analysis of solutions to ut = ν∆u − Xνu

In this chapter, we extend some of the results of Chapter 3 from the setting
of solutions to ut = ν∆u − Xu to the more subtle setting of solutions to
ut = ν∆u−Xνu, directly relevant to the equation for wν in (1.0.8). As in
Chapter 3, we assume O is a compact Riemannian manifold with boundary
∂O, and with Laplace Beltrami operator ∆. We take Xν , for ν ∈ (0, 1], to
be a family of (time dependent) vector fields on O having certain properties
that we will specify below, and take u = uν to solve

∂u

∂t
= ν∆u−Xνu, u

∣∣
R+×∂O

= 0, u(0) = f. (4.0.1)

In §4.1 we estimate uν(t) in the spaces Vk(O), introduced in §3.3, given
f ∈ Vk(O), extending the scope of the uniform boundedness results of §3.3.
In §4.2 we establish convergence of uν(t) to e−tXf in Vk(O), for such f ,
when ν ↘ 0 and Xν → X in an appropriate sense, specified there. We also
obtain Lp-norm convergence results, for p ∈ [1,∞).
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4.1 Conormal type estimates

We will find it useful to extend the class of function spaces V k(O). Given
k ∈ Z

+ = {0, 1, 2, . . . }, p ∈ [1,∞], we define

Vk,p(O) = {u ∈ Lp(O) : Y1 · · · Yj u ∈ Lp(O), ∀ j ≤ k, Y` ∈ X1}, (4.1.1)

with
X1 = {Y smooth vector field on O : Y ‖ ∂O}. (4.1.2)

Recall that the case p = 2 is defined in (3.3.1). As in (3.3.3), there exists a
finite set

{Yj : 1 ≤ j ≤M} ⊂ X1 (4.1.3)

with the property that each element of X1 is a linear combination, with
coefficients in C∞(O) of these vector fields Yj . We recall and generalize some
further useful notation from §3.3. With Yj as in (4.1.3), let J = (j1, . . . , jk)
and set

Y J = Yj1 · · · Yjk
, |J | = k. (4.1.4)

Also set
Xk = Span {Z1 · · ·Zj : j ≤ k, Z` ∈ X1}. (4.1.5)

We have
Xk = Span over C∞(O) of {Y J : |J | ≤ k}, (4.1.6)

and
Vk,p(O) = {u ∈ Lp(O) : Y Ju ∈ Lp(O), ∀ |J | ≤ k}

= {u ∈ Lp(O) : Lu ∈ Lp(O) : ∀L ∈ Xk}.
(4.1.7)

Let us also set
V∞,p(O) =

⋂

k

Vk,p(O). (4.1.8)

We now discuss conditions on Xν . We require

Xν ∈ X̂1, (4.1.9)

a space of t-dependent vector fields on O, depending on the parameter ν ∈
(0, 1], which we proceed to define. We want to include the example arising
in (2.2.4)–(2.2.5), i.e.,

Xν = vν(t, z)
∂

∂x
, vν(t, z) = eνtAV (z). (4.1.10)

In this case we have O = T × I, T = R/Z, I = [0, 1], and A is given by
(2.1.5).
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Lemma 4.1.1 Given T0 ∈ (0,∞), we have

vν(t, ·) ∈ V∞,∞(O), (4.1.11)

with bounds independent of t ∈ [0, T0], ν ∈ (0, 1].

Proof. Straightforward from the construction of eνtAV (z) via the method
of images. There is no x-dependence, so the result is actually vν(t, ·) ∈
V∞,∞(I), with uniform bounds. In this setting, we mention that X1(I)
consists of smooth vector fields on I that vanish at the endpoints. �

To define X̂1 in general, we first specify that, on any compact Ω ⊂⊂ O,
an element Xν(t) has uniform bounds in Ck(Ω) for all k. To complete the
definition, we take a collar neighborhood U of ∂O, diffeomorphic to ∂O× I,
take coordinates (x, z) ∈ ∂O × I, and write

Xν = vν(t, x, z)
∂

∂x
+wν(t, x, z)β(x, z)

∂

∂z
. (4.1.12)

Here vν∂/∂x is shorthand for
∑

j v
ν
j ∂/∂xj . We require (with bounds uniform

in t ∈ [0, T0], ν ∈ (0, 1]),

vν , wν ∈ V∞,∞(O), β ∈ C∞(O), β
∣∣
∂O

= 0. (4.1.13)

These conditions define X̂1.

Lemma 4.1.2 We have

Xν ∈ X̂1, Y ∈ X1 =⇒ [Xν , Y ] ∈ X̂1. (4.1.14)

Proof. The bounds on [Xν , Y ] on any Ω ⊂⊂ O are clear. Near ∂O, we
represent Xν as in (4.1.12) and set

Y = a(x, z)
∂

∂x
+ b(x, z)

∂

∂z
, a, b ∈ C∞(O), b

∣∣
∂O

= 0. (4.1.15)

Then

[Xν , Y ] = ξν(t, x, z)
∂

∂x
+ ην(t, x, z)

∂

∂z
, (4.1.16)

with

ξν = vν(∂xa) + wνβ(∂za) − a(∂xv
ν) − b(∂zv

ν),

ην = vν(∂xb) + wνβ(∂zb) − a∂x(wνβ) − b∂z(w
νβ).

(4.1.17)
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Comparison with the defining conditions in (4.1.12)–(4.1.13) gives [Xν , Y ] ∈
X̂1. �

Next we define

X̂k = Span {XνY
J : Xν ∈ X̂1, Y J ∈ Xk−1}. (4.1.18)

Lemma 4.1.3 We have

Pν ∈ X̂k, Y ∈ X1 =⇒ Y Pν ∈ X̂k+1, (4.1.19)

hence
Pν ∈ X̂k, Y I ∈ X` =⇒ Y IPν ∈ X̂k+`. (4.1.20)

Proof. To prove (4.1.19), note that for Xν ∈ X̂1, Y J ∈ Xk−1,

Y XνY
J = XνY Y

J + [Y,Xν ]Y J , (4.1.21)

and apply Lemma 4.1.2 to the second term on the right side of (4.1.21). The
result (4.1.20) follows directly from (4.1.19). �

Lemma 4.1.3 will prove useful in connection with the following. With Yj

as in (4.1.3), let us set

‖u‖Vk,p =
∑

|J |≤k

‖Y Ju‖Lp . (4.1.22)

From the representation (4.1.12), we have

Xν ∈ X̂1 =⇒ Xν =
∑

aj
ν,tYj , aj

ν,t ∈ L∞(O), (4.1.23)

with bounds independent of ν ∈ (0, 1], t ∈ [0, T0], hence, given Xν ∈ X̂1,

‖Xνu‖Lp ≤ C‖u‖V1,p , (4.1.24)

and, by (4.1.20),
‖Xνu‖Vk,p ≤ C‖u‖Vk+1,p. (4.1.25)

Let us also set
P 2

k (u) =
∑

|J |=k

‖Y Ju‖2
L2 , (4.1.26)

so
‖u‖2

Vk,2 ≈
∑

j≤k

P 2
j (u). (4.1.27)
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We also denote Vk,2 by Vk.
We now estimate the rate of change of P 2

k (u(t)) for u(t) satisfying (4.0.1).
We assume

Xν ∈ X̂1, divXν = 0. (4.1.28)

We also assume u is sufficiently smooth on (0,∞) × O for the calculations
made below to work. We will comment on how to verify this assumption
later in this section.

We start with the case k = 0:

d

dt
‖u‖2

L2 = 2(ut, u)L2

= 2ν(∆u, u)L2 − 2(Xνu, u)L2

= −2ν‖∇u‖2
L2 ,

(4.1.29)

Moving on to k = 1, we have

d

dt
‖Yju‖2

L2

= 2(Yjut, Yju)L2

= 2ν(Yj∆u, Yju)L2 − 2(YjXνu, Yju)L2

= 2ν(∆Yju, Yju)L2 + 2ν([Yj ,∆]u, Yju)L2

− 2(XνYju, Yju)L2 − 2([Yj , Xν ]u, Yju)L
2

= − 2ν‖∇Yju‖2
L2 + 2ν([Yj ,∆]u, Yju)L2 − 2([Yj , Xν ]u, Yju)L2 .

(4.1.30)

Of the three terms in the last line, the first has a clear significance. For the
third, we have [Yj, Xν ] ∈ X̂1, by Lemma 4.1.2, and hence, by (4.1.23),

2([Yj , Xν ]u, Yju)L2 ≤ CP 2
1 (u). (4.1.31)

It remains to estimate the second term. For this, write

[Y,∆] =
∑

`

A`B`, (4.1.32)

with A`, B` smooth vector fields on O. We have

2ν([Yj ,∆]u, Yju)L2 = 2ν
∑

`

(B`u,A
∗
`Yju)L2

≤ ν‖∇Yju‖2
L2 + ν‖Yju‖2

L2 +K1ν‖∇u‖2
L2 .

(4.1.33)
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Plugging (4.1.31) and (4.1.33) into (4.1.30) and summing over j gives

d

dt
P 2

1 (u) ≤ −ν
∑

j

‖∇Yju‖2
L2 + (MC + ν)P 2

1 (u) +MK1ν‖∇u‖2. (4.1.34)

The term MK1ν‖∇u‖2
L2 is tamed by bringing in (4.1.29), to obtain

d

dt

(
P 2

1 (u) +MK1P
2
0 (u)

)
≤ −ν

∑

j

‖∇Yju‖2
L2 + (MC + ν)P 2

1 (u). (4.1.35)

Proceeding to general k, we take |J | = k and look at

d

dt
‖Y Ju‖2

L2

= 2(Y Jut, Y
Ju)L2

= 2ν(Y J∆u, Y Ju)L2 − 2(Y JXνu, Y
Ju)L2

= 2ν(∆Y Ju, Y Ju)L2 + 2ν([Y J ,∆]u, Y Ju)L2

− 2(XνY
Ju, Y Ju)L2 − 2([Y J , Xν ]u, Y Ju)L2

= − 2ν‖∇Y Ju‖2
L2 + 2ν([Y J ,∆]u, Y Ju)L2 − 2([Y J , Xν ]u, Y Ju)L2 .

(4.1.36)
As with (4.1.30), of the three terms in the last line of (4.1.36), the first has
a clear significance. For the third, we have, by Lemmas 4.1.2–4.1.3,

[Xν , Y
J ] = [Xν , Yj1 ]Yj2 · · · Yjk

+ · · · + Yj1 · · · Yjk−1
[Xν , Yjk

] ∈ X̂k, (4.1.37)

and hence, by (4.1.25),

([Y J , Xν ]u, Y Ju)L2 ≤ Ck‖u‖2
Vk . (4.1.38)

It remains to estimate the second term in the last line of (4.1.36). For this,
write

[∆, Y J ] =
k∑

`=1

Yj1 · · · Yj`−1
[∆, Yj`

]Yj`+1
· · · Yjk

=

k∑

`=1

Yj1 · · · Yj`−1
Lj`

Yj`+1
· · · Yjk

,

(4.1.39)

where Lj`
= [∆, Yj`

] is a second order differential operator that annihilates
constants.. We say a product of k factors

Yj1 · · · Yj`−1
Lj`

Yj`+1
· · · Yjk

(4.1.40)
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is of type (k, `), meaning it is a product of k factors, all being vector fields
in X1 except one, in position `, which is a second order differential operator
that annihilates constants. If ` ≥ 2, we can write (4.1.40) as

Yj1 · · · Yj`−2Lj`
· · · Yjk

+ Yj1 · · · Yj`−2
[Yj`−1

, Lj`
] · · · Yjk

, (4.1.41)

a sum of terms of type (k, ` − 1) and of type (k − 1, ` − 1). Repeating this
process, we convert (4.1.40) into a sum of terms of type (j, 1), for j ≤ k.
Hence we have

([Y J ,∆]u, Y Ju)L2 =
∑

|I|≤k−1

(LIY
Iu, Y Ju)L2 , (4.1.42)

where LI are differential operators of order 2, annihilating constants, hence

LI =
∑

j

AIjBIj , (4.1.43)

where AIj are first order differential operators and BIj are vector fields. We
then have

2ν([Y J ,∆]u, Y Ju)L2

= 2ν
∑

|I|≤k−1

∑

j

(BIjY
Iu,A∗

IjY
Ju)L2

≤ C̃ν
∑

|I|≤k−1

‖∇Y Iu‖L2 ·
(
‖∇Y Ju‖L2 + ‖Y Ju‖L2

)

≤ ν‖∇Y Ju‖2
L2 + ν‖Y Ju‖2

L2 + Ckν
∑

|I|≤k−1

‖∇Y Iu‖2
L2 .

(4.1.44)

Inserting (4.1.38) and (4.1.44) into (4.1.36), we have

d

dt
‖Y Ju‖2

L2 ≤ −ν‖∇Y Ju‖2
L2 + (Ck + ν)‖u‖2

Vk

+ Ckν
∑

|I|≤k−1

‖∇Y Iu‖2
L2 ,

(4.1.45)

hence, for ν ∈ (0, 1], and with Ck + 1 re-notated as Ck,

d

dt
P 2

k (u) ≤ −ν
∑

|J |=k

‖∇Y Ju‖2
L2 +MCk‖u‖2

Vk

+MCkν
∑

|I|≤k−1

‖∇Y Iu‖2
L2 .

(4.1.46)
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It follows that there exist Akj ∈ (0,∞) and Bk ∈ (0,∞) such that if we set

Ñ2
k (u) = P 2

k (u) +

k−1∑

j=0

AkjP
2
j (u), (4.1.47)

then
d

dt
Ñ2

k (u) ≤ −ν
∑

|J |=k

‖∇Y Ju‖2
L2 + 2BkÑ

2
k (u), (4.1.48)

when u = u(t) is given by (4.0.1). In particular, redefining ‖u‖2
Vk as

‖u‖2
Vk = Ñ2

k (u), (4.1.49)

we obtain
‖u(t)‖Vk ≤ e(t−s)Bk‖u(s)‖Vk , (4.1.50)

for 0 < s < t <∞.
The estimates (4.1.48)–(4.1.50) have been established under the assump-

tion that u(t) = uν(t) is sufficiently smooth on O for t > 0. For example, if
we add the assumption

Xν ∈ C∞((0,∞) ×O) (4.1.51)

for each ν ∈ (0, 1], we have such estimates, since well known parabolic
regularity results give u ∈ C∞((0,∞) ×O). (We emphasize that we do not
assume Xν ∈ C([0,∞) ×O).) Let us record this result.

Proposition 4.1.4 Let u = uν solve (4.0.1). Assume Xν satisfies (4.1.9)
and (4.1.51). Then the estimate (4.1.50) holds, for 0 < s < t <∞, with Bk

and the Vk-norm independent of ν ∈ (0, 1].

Next we want to pass to the limit s = 0 in (4.1.50), obtaining

‖u(t)‖Vk ≤ etBk‖f‖Vk . (4.1.52)

It is clear that we can do this in the context of Proposition 4.1.4 if we also
know that

u ∈ C([0,∞),Vk(O)). (4.1.53)

In turn, since the hypotheses of Proposition 4.1.4 already imply the result
u ∈ C∞((0,∞) ×O), it remains to establish that

f ∈ Vk(O) =⇒ u ∈ C([0, Tν ],Vk(O)), (4.1.54)
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for some Tν > 0 (possibly depending on ν). We turn to this task.
We set

Z = C([0, Tν ],Vk(O)), (4.1.55)

and seek u ∈ Z as a unique solution to

u(t) = etν∆f −
∫ t

0
e(t−s)ν∆Xν(s)u(s) ds, (4.1.56)

i.e., as a fixed point of Φ : Z → Z, defined by

Φu(t) = etν∆f −
∫ t

0
e(t−s)ν∆Xν(s)u(s) ds. (4.1.57)

This will work if we are able to show Φ : Z → Z is a contraction map for
Tν > 0 sufficiently small. We have

Φu(t) − Φv(t) = −
∫ t

0
e(t−s)ν∆Xν(x)(u(s) − v(s)) ds. (4.1.58)

Note that, by (4.1.25),

‖Xν(s)(u(s) − v(s))‖Vk−1 ≤ C‖u(s) − v(s)‖Vk . (4.1.59)

Meanwhile, it follows from (3.4.19) that

‖e(t−s)ν∆g‖Vk ≤ C

ν1/2(t− s)1/2
‖g‖Vk−1 . (4.1.60)

Hence

‖Φu(t) − Φv(t)‖Vk ≤ C
t1/2

ν1/2
sup

0≤s≤t
‖u(s) − v(s)‖Vk . (4.1.61)

A similar estimate works on (4.1.57), and we deduce that Φ is a contraction
map on Z provided Tν ≤ ν/2C2.

We summarize what has been accomplished.

Proposition 4.1.5 In the setting of Proposition 4.1.4, given f ∈ V k(O),
there is a unique solution u = uν to (4.0.1), satisfying

u ∈ C([0,∞),Vk(O)) ∩ C∞((0,∞) ×O), (4.1.62)

and we have
‖u(t)‖Vk ≤ etBk‖f‖Vk . (4.1.63)
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4.2 Vanishing ν limits

As in §4.1, we assume u = uν solves

∂uν

∂t
= ν∆uν −Xνu

ν , uν
∣∣
R+×∂O

= 0, u(0) = f, (4.2.1)

with f ∈ Vk(O). We assume, as in (4.1.28), that

Xν ∈ X̂1, divXν = 0, (4.2.2)

and as in (4.1.51) that

Xν ∈ C∞((0,∞) ×O). (4.2.3)

We also assume
X ∈ X1, divX = 0 (4.2.4)

Here is our first convergence result.

Proposition 4.2.1 Under these hypotheses, we have, as ν ↘ 0,

uν(t) −→ e−tXf, weak∗ in Vk(O), (4.2.5)

provided Xν also satisfies the following: we can write

Xν =
∑

j

aν
j (t, x)Yj , X =

∑

j

aj(x)Yj , (4.2.6)

where, as in (4.1.3), {Yj : 1 ≤ j ≤M} ⊂ X1 spans X1 over C∞(O), and we
have ‖aν

j (t, ·)‖L∞(O), ‖aj‖L∞(O) ≤ K, and

lim
ν↘0

[aν
j (t, x) − aj(x)] = 0, uniformly on compact subsets of O. (4.2.7)

Remark. Looking at (4.1.10), we see that (4.2.6)–(4.2.7) hold when Xν is
the family arising in the plane-parallel chanel flow problem.

Proof. Rewrite (4.2.1) as

∂uν

∂t
= (ν∆ −X)uν + (X −Xν)uν , (4.2.8)

so

uν(t) = et(ν∆−X)f +

∫ t

0
e(t−s)(ν∆−X)(X −Xν(s))u

ν(s) ds. (4.2.9)
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We have

(X −Xν(s))uν(s) =
∑

j

[aj(x) − aν
j (s, x)]Yju

ν(s), (4.2.10)

and uν(s) is bounded in Vk(O). As long as k ≥ 1, Yju
ν(s) is bounded in

L2(O), and the hypotheses on aν
j give

‖(X −Xν(s))u
ν(s)‖Lp(O) −→ 0, as ν ↘ 0, ∀ p < 2, (4.2.11)

with uniform bounds in L2(O). Now et(ν∆−X) is a contraction semigroup
on each space Lp(O), so from (4.2.9) we obtain

lim
ν↘0

‖uν(t) − et(ν∆−X)f‖Lp = 0, ∀ p < 2. (4.2.12)

This result together with the uniform bounds on uν(t) and on et(ν∆−X) in
Vk(O), and in concert with the result that

et(ν∆−X)f −→ e−tXf, weak∗ in Vk(O), (4.2.13)

given in Proposition 3.3.4, yield the asserted convergence (4.2.5), for k ≥ 1.
The case k = 0 then follows since V1(O) is dense in V0(O) = L2(O). �

We will improve weak∗ convergence in (4.2.5) to norm convergence. Here
is a first step.

Proposition 4.2.2 In the setting of Proposition 4.2.1,

f ∈ L2(O) =⇒ uν(t) → e−tXf, in L2-norm, (4.2.14)

as ν ↘ 0.

Proof. We already have weak∗ convergence in L2(O). Also, results of §4.1,
involving (4.1.29), imply

‖uν(t)‖L2(O) ≤ ‖f‖L2(O), ∀ ν, t > 0. (4.2.15)

Since for X ∈ X1 such that divX = 0 we have ‖e−tXf‖L2 = ‖f‖L2 , the
conclusion in (4.2.14) follows from the weak∗ convergence. �

An alternative proof of a generalization of Proposition 4.2.2 will be pro-
vided in Proposition 4.2.3 below. We begin with the elementary inequality

‖uν(t)‖Lp ≤ ‖f‖Lp , 1 ≤ p ≤ ∞, (4.2.16)
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for solutions to (4.2.1) with f ∈ Lp(O). If also f ∈ Vk(O) with k > n/2,
the result that uν(t) → e−tXf weak∗ in Vk(O), proven in Proposition 4.2.1,
implies

uν(t) −→ e−tXf locally uniformly on O. (4.2.17)

In particular,

f ∈ C∞(O) =⇒ uν(t) → e−tXf, boundedly and locally uniformly.
(4.2.18)

Combining (4.2.16) and (4.2.18) and using standard approximation argu-
ments, we have:

Proposition 4.2.3 In the setting of Proposition 4.2.1,

f ∈ C(O) =⇒ uν(t) → e−tXf, boundedly and locally uniformly on O,
(4.2.19)

and, for 1 ≤ p <∞,

f ∈ Lp(O) =⇒ uν(t) → e−tXf in Lp-norm. (4.2.20)

We now sharpen Proposition 4.2.1.

Proposition 4.2.4 In the setting of Proposition 4.2.1, (4.2.5) can be sharp-
ened to

uν(t) −→ e−tXf, in Vk-norm. (4.2.21)

Proof. In view of uniform bounds on ‖uν(t)‖Vk in (4.1.63), it suffices to
establish (4.2.21) for f in a dense subspace of Vk(O), so take f ∈ C∞

0 (O). As
in the proof of Proposition 3.3.4, we use the complex interpolation identity

Vk(O) = [L2(O),V2k(O)]1/2, (4.2.22)

established in Proposition A.1.1 of the Appendix, which yields, for f ∈
V2k(O),

‖uν(t) − e−tXf‖Vk ≤ ‖uν(t) − e−tXf‖1/2
L2

× ‖uν(t) − e−tXf‖1/2

V2k .
(4.2.23)

The first factor on the right side tends to zero as ν ↘ 0, by Proposition 4.2.2
(or Proposition 4.2.3), and the last factor is uniformly bounded as ν ↘ 0 by
(4.1.63) (with k replaced by 2k). This completes the proof. �
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Let us tie these results more closely to estimates obtained in §2.2. In such
a case we had additional structure to exploit. Namely, X and Xν were given
in (2.2.5) as V (z)∂x and vν(t, z)∂x, respectively, where vν(t, z) = eνt∂2

zV (z)
(cf. also (4.1.10)). To generalize a bit to our present context, we assume in
addition to (4.2.2)–(4.2.4) that

X = vZ, Xν = vνZ, Z ∈ X1,

Z commutes with ∆ and with X and Xν .
(4.2.24)

The last two conditions are equivalent to

Zv = Zvν = 0. (4.2.25)

In such a case, (4.2.9) becomes

uν(t) = et(ν∆−X)f +

∫ t

0
e(t−s)(ν∆−X)[(v − vν)Zuν(s)] ds. (4.2.26)

The commutation properties yield

wν(t) = Zuν(t) =⇒
∂tw

ν = (ν∆ −Xν)w
ν , wν

∣∣
R+×∂O

= 0, wν(0) = Zf.
(4.2.27)

Then the maximum principle gives

‖Zuν(s)‖L∞ ≤ ‖Zf‖L∞ . (4.2.28)

Let us assume Zf ∈ L∞(O) and set ‖Zf‖L∞ = K. Since e(t−s)(ν∆−X) is
positivity preserving, we have from (4.2.26) that

∣∣uν(t, x) − et(ν∆−X)f(x)
∣∣ ≤ K

∫ t

0
e(t−s)(ν∆−X)|v − vν(s)| ds. (4.2.29)

Now (4.2.24)–(4.2.25) imply Ze(t−s)(ν∆−X)|v − vν(s)| = 0, and hence

e(t−s)(ν∆−X)|v − vν(s)| = e(t−s)ν∆|v − vν(s)|, (4.2.30)

so we have

∣∣uν(t, x) − et(ν∆−X)f(x)
∣∣ ≤ K

∫ t

0
e(t−s)ν∆|v − vν(s)| ds, (4.2.31)

which can be compared to (2.2.10)–(2.2.11). To be sure, results of Chapter 3
apply to the right side of (4.2.29), as we have seen in the analysis of (4.2.9),
but the analysis of the right side of (4.2.31) is more elementary.
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5 Further conclusions on plane parallel flows

This chapter contains further results pertaining to plane parallel flows in a
channel. In §5.1 we generalize the analysis of the vanishing viscosity limit
for plane parallel flows to include flows sheared by a moving boundary,
translated at varying speed parallel to the x-axis. In §5.2 we consider more
general boundary motions, parallel to the x-y-plane. We continue to assume
(1.0.1)–(1.0.4) and we take the forcing F = 0.

5.1 Moving boundary, parallel to x-axis

We begin with the case in which both channel walls move with the same
velocity α(t), that is, we take the vector field B in (1.0.2) of the form:

B(t, p) = (α(t), 0, 0), p ∈ ∂O. (5.1.1)

Recall O = R/Z × [0, 1]. Since α is spatially constant, this is consistent
with the assumption of periodicity in x. Later we extend the analysis to
independent motion of the walls, in (5.1.47), and then extend it further in
(5.2.1).

The goal is again to study the limit of vanishing viscosity and the corre-
sponding boundary layer, assuming a rough boundary velocity α. The case
of circularly symmetric flows in a rotating circle or annulus was studied in
[7]. We follow the notation used there.

It is convenient to assume α is defined on the whole R but supported in
[0,∞). If X is a space of distributions on R, we indicate with Xb the space
of elements of X supported on [0,∞). We then take α ∈ BVb(R) or even
α ∈ Lp

b(R). Since C∞
b (R) is dense in these spaces (p <∞), we can first pick

α ∈ C∞
b and then use limiting arguments.

In order to highlight the effect of the moving boundary, we again take
smooth initial data compatible with (1.0.4) and independent of ν, that is,

uν(0, x, y, z) = (V (z),W (x, z), 0), (5.1.2)

with V ∈ C∞([0, 1]) and W ∈ C∞(O). Here uν satisfies the system (1.0.8)
with f = g = 0, which we repeat here for convenience:

∂vν

∂t
= ν

∂2vν

∂z2
, (5.1.3)

∂wν

∂t
+ vν ∂w

ν

∂x
= ν

(∂2wν

∂x2
+
∂2wν

∂z2

)
. (5.1.4)
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At the same time, since the inviscid flow does not see the moving boundary
due to slip boundary conditions (see below), we do not impose compatibility
of the initial data with the motion of the boundary, (i. e., in this context,
we do not assume that V (z) = α(0) for z = 0, 1). Consequently, the viscous
flow has an initial layer at t = 0.

As we will demonstrate, the vanishing viscosity limit in this context takes
the form uν → u0, where

u0(t, x, y, z) = (v0(t, z), w0(t, x, z), 0), (5.1.5)

is the solution of the Euler equations (1.0.15) again with f = g = 0, that is,

∂v0

∂t
= 0, (5.1.6)

∂w0

∂t
+ v0 ∂w

0

∂x
= 0. (5.1.7)

Initial data are as in (5.1.2) so that

u0(0, x, y, z) = (V (z),W (x, z), 0),

and the boundary conditions (1.0.12) are automatically satisfied in this case.
In particular, the Euler flow is independent of the moving boundary and
there is a boundary layer in the limit ν → 0.

As in [6] and [7], we pass to a frame moving with the boundary. Equiv-
alently, we set

v̄ν(t, z) = vν(t, z) − α(t), ūν = (v̄ν , wν , 0). (5.1.8)

We continue to assume α ∈ C∞
b (R), in particular α(0) = 0. Then ūν must

solve the following problem in O:

∂v̄ν

∂t
= ν

∂2v̄ν

∂z2
− α′(t), (5.1.9)

∂wν

∂t
+ V

∂wν

∂x
+ (v̄ν + α(t) − V )

∂wν

∂x
= ν

(∂2wν

∂x2
+
∂2wν

∂z2

)
, (5.1.10)

ūν(t, x, z) = 0 on ∂O, (5.1.11)

ūν(0, x, z) = (V (z),W (x, z), 0). (5.1.12)

By Duhamel’s principle, the system above is equivalent to:

v̄ν = eνt AV (z) −
∫ t

0
[eν(t−s) A 1] dα(s), (5.1.13)

wν = et(ν ∆−X)W +

∫ t

0
e(t−s)(ν ∆−X)[(V − v̄ν − α(s)) ∂xw

ν ] ds. (5.1.14)
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The solution to the Euler system is given by

v0(t, z) = V (z), t > 0, z ∈ [0, 1], (5.1.15)

w0(t, x, z) = e−t X W0(x, z)

= W (x− t V (z), z), t > 0, x ∈ R/Z, z ∈ [0, 1], (5.1.16)

as long as V and W are smooth enough.
We separate the contribution of the boundary conditions by writing

(5.1.13) as

vν(t) = v̄ν(t) + α(t) = eνt AV (z) + Sν α(t), where

Sν α(t) :=

∫ t

0
[(I − eν (t−s) A) 1] dα(s),

(5.1.17)

with the integral defined as a Bochner integral. As long as ν > 0, we have
Sν : C∞

b (R) → C1
b (R, C∞([0, 1])) and in particular the boundary conditions

are satisfied pointwise, since eνs A 1α(s) is continuous in s and vanishes at
z = 0, 1 for s ≥ 0. The trace at the boundary takes value in two copies of
C1

b (R).
To treat less regular α, we observe that for α smooth (5.1.9) is equivalent

to (5.1.3), so that Sνα is a classical solution of (5.1.3) with V ≡ 0. Therefore,
the maximum principle for the heat equation gives

Sν : Cb(R) −→ Cb

(
R, C([0, 1])

)
⊂ L2

b,loc

(
R, C([0, 1])

)
. (5.1.18)

Next, we observe that if β ∈ C∞
b (R) then

α = β′ =⇒ Sνα = ∂tSνβ.

so that
Sν∂t = ∂tSν : C∞

b (R) −→ Cb

(
R, C∞([0, 1])

)
.

From (5.1.18) it follows

Sν∂t = ∂tSν : Cb(R) −→ H−1
b,loc

(
R, C([0, 1])

)
. (5.1.19)

But each α ∈ Lp′

b (R), p′ ≥ 1, has the form α = β ′ with β ∈ Cb(R), namely

β(t) =
∫ t
−∞ α(s) ds. It follows that

Sν : Lp′

b (R) −→ H−1
b,loc

(
R, C([0, 1])

)
, (5.1.20)
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for each p′ ≥ 1. Consequently we have the continuous linear map

Tr ◦Sν : Lp′

b (R) −→
(
H−1

b,loc(R) ⊗H−1
b,loc(R)

)
, (5.1.21)

By density then, the boundary condition vν(t)|∂O = α in H−1
b,loc(R) holds

for any α ∈ Lp′

b (R), p′ ≥ 1 and also α ∈ BVb(R) ⊂ L1
b(R). The vanishing

viscosity limit cannot hold in these spaces, which have good trace properties;
in fact, we seek convergence as ν → 0 in Hσ(O), 0 ≤ σ < 1/2, locally
uniformly in t. Note that L2(O) is the energy space for solutions to the
Euler system, but convergence in L2-norm is relatively weak compared to
the convergence results we are in a position to establish.

We first consider α ∈ BVb(R). Let X be a Banach space of functions on
[0, 1] such that 1 ∈ X and {etA : t ≥ 0} is a strongly continuous semigroup
on X. For example, X = Lp([0, 1]), 1 ≤ p < ∞. More generally, we could
take X = Hs,p([0, 1]), with p ∈ (1,∞) and s ∈ [0, 1/p). Recall that S να is
given explicitly in (5.1.17) for α smooth. By an approximation argument
using mollifiers with support in (0, 1/k), we can extend the validity of that
expression to more singular αs (for details, we refer to [7], Proposition 2.1).
We observe that the integral in (5.1.17) can be taken over [0, t) or [0, t], since
the integrand vanishes at s = t.

Lemma 5.1.1 If X is a space such as described in the previous paragraph,
then we have

Sν : BVb(R) −→ Cb(R, X),

given by

Sνα(t) =

∫

I(t)

[
(I − eν(t−s)A)1

]
dα(s), I(t) = [0, t], (5.1.22)

where the integral is a Lebesgue-Stieltjes-Bochner integral.

Formula (5.1.22) also implies the estimate

‖Sνα(t)‖X ≤ ‖α‖BV([0,t]) sup
s∈[0,t]

‖eνsAf1 − f1‖X , (5.1.23)

and, if vν(0) = V ∈ X,

‖vν(t) − V ‖X ≤ ‖eνtAV − V ‖X + ‖Sνα(t)‖X→0, (5.1.24)

as ν → 0, which shows the zero-viscosity limit holds in the X-norm, for the
v component of the velocity, in view of (5.1.15).

66



We next consider some rougher α, namely α ∈ Lp′ , for a certain range
of p′. To begin, take α ∈ C∞

b (R), in particular α(0) = 0, and integrate by
parts in formula (5.1.22):

∫ t

0
[eν(t−s) A · 1] dα(s) = α(t) − eνt A α(0) − lim

ε→0

∫ t−ε

0
ν
(
Aeν(t−s) A 1

)
α(s) ds,

using that eν(t−s) A 1 ∈ D(A), whenever s < t. The limit ε → 0 exists at
least in L2([0, 1]) and we write

lim
ε→0

∫ t−ε

0
ν
(
Aeν(t−s) A 1

)
α(s) ds =

∫ t

0
ν(Aeν(t−s) A 1)α(s) ds.

Equation (5.1.13) then becomes:

v̄ν = eνt AV (z) − α(t) +

∫ t

0
(ν A eν(t−s) A 1)α(s) ds. (5.1.25)

and

vν = eνt AV (z) +

∫ t

0
(ν A eν(t−s) A 1)α(s) ds. (5.1.26)

Consequently, to establish convergence of the v component of the velocity
to the corresponding Euler solution in the limit ν → 0 it is enough to prove
the last integral vanishes in the limit.

We observe that eνt A1 and νA eνt A1 can be explicitly computed using
Fourier series. However, it is preferable to use Green’s function methods as
we are interested in the limit νt → 0. To this end, we bring in the Sobolev
spaces Hσ([0, 1]) with 0 ≤ σ < 1/2. We recall the well-known interpolation
estimate:

[L2(M),H1
0 (M)]σ = Hσ

0 (M),
1

2
< σ ≤ 1,

= Hσ(M), 0 ≤ σ <
1

2

(5.1.27)

where M = [0, 1] or M = O here, which gives

D((−A)σ/2) = Hσ([0, 1]), for σ ∈
[
0,

1

2

)
. (5.1.28)

Hence, we first have uniformly in t ∈ [0, T ] for any 0 < T <∞,

eνt A V−→V strongly in Hσ([0, 1]), as ν → 0. (5.1.29)
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We next observe as in [7, Equation 3.8–3.11] that

‖νAeνsA 1‖Hσ([0,1])

≤ C‖ν(−A)1+σ/2eνsA 1‖L2([0,1])

= C‖ν(−A)1−(τ−σ)/2eνsA(−A)τ/2 1‖L2([0,1])

= Cν(τ−σ)/2s(τ−σ)/2−1‖(−νsA)1−(τ−σ)/2eνsA(−A)τ/2 1‖L2([0,1])

≤ Cν(τ−σ)/2s(τ−σ)/2−1‖1‖Hτ ([0,1]).

for 0 ≤ σ < τ < 1/2, so that by Hölder’s inequality:

∫ t

0
‖νAeν(t−s)A 1α(s)‖Hσ(D) ds

≤ ‖α‖Lp′ ([0,t])

(∫ t

0
‖νAeνsA 1‖p

Hσ(D) ds
)1/p

≤ Cpστ ν
(τ−σ)/2 t(τ−σ)/2−1+1/p‖α‖Lp′ ([0,t])‖1‖Hτ (D),

(5.1.30)

provided 1 ≤ p < 2
2−(τ−σ) , where p′ is the conjugate exponent to p. For

example, it is enough to have p′ > 4. The same estimate holds for α ∈ Lp′

b (R)
using a smooth approximation by convolutions.

Combining the estimates in (5.1.29) and (5.1.30), we obtain convergence
of the v component of the velocity in the limit ν → 0 in the Sobolev space
Hσ([0, 1]). We record this result in a proposition.

Proposition 5.1.2 Let 0 ≤ σ < τ < 1/2 and assume α ∈ Lp′

b (R) with

p′ = p/(p− 1) and 1 ≤ p <
2

2 − (τ − σ)
. Then

Sν : Lp′

b (R) −→ Cb(R,H
σ([0, 1])),

where Sνα(t) =

∫ t

0
(ν A eν(t−s) A 1)α(s) ds and satisfies estimate (5.1.30).

Furthermore, uniformly in t ∈ [0, T ] for any 0 < T <∞,

vν−→v0 strongly in Hσ([0, 1]), as ν → 0. (5.1.31)

Having settled the analysis of the first equation (5.1.3), we now turn to
equation (5.1.4) in its mild fomulation (5.1.14), which we solve as a fixed-
point problem, but first we record some useful a priori estimates.

68



We denote again ∂k
xw

ν by wν
k , k ∈ Z+. Since α depends only on t and v̄ν

depend only on t, z, the same arguments as in (2.1.9) – (2.1.12) gives that
wν

k also solves (5.1.4). Integrating by parts in that equation, we obtain:

1

2

d

dt
‖wν‖2

L2(O) +

∫ 1

0

∫ 2π

0

[
(v̄ν(t, z) + α(t))

∂

∂x

|wν(t, x, z)|2
2

]
dx dz

=
1

2

d

dt
‖wν‖2

L2(O) +

∫ 1

0

∫ 2π

0
(v̄ν(t, z) + α(t))

[ |wν(t, x, z)|2
2

]2π

0
dz

=
1

2

d

dt
‖wν‖2

L2(O) = −ν‖∇wν‖2
L2(O) ≤ 0,

using periodicity in x. Therefore:

‖wν
k(t)‖L2(O) ≤ ‖∂k

xW‖L2(O). (5.1.32)

On the other hand the maximum principle gives

‖wν
k(t)‖L∞(O) ≤ ‖∂k

xW‖L∞(O). (5.1.33)

These estimates continue to hold for α ∈ BV or Lp′ (1 ≤ p′ < +∞) by
approximation with smooth functions.

We write (5.1.14) as wν(t) = et(ν ∆−X)W (t) + Fν(wν)(t), where

Fν(t, V, α, v)(w) = Fν(w)(t)

=

∫ t

0
e(t−s)(ν ∆−X)[(V − v̄ν − α(s)) ∂xw(s)] ds.

(5.1.34)

To establish existence of a unique solution to (5.1.14), it is enough to prove
that Fν is a contraction in L∞([0, T ], L2(O)), T small enough, since then
continuation of the solution follows from the uniform estimate (5.1.32).

We observe first that Proposition 5.1.2 and the Sobolev embedding im-
plies V − v̄ − α ∈ Lp′([0, T ], Lq([0, 1])) for any 1 ≤ q < ∞. Furthermore,
at fixed viscosity, given that V is smooth and bounded on [0, 1] with all its
derivatives, a scaling argument gives

‖et (ν∆−X)f‖H1(O) ≤ Cν,V t
−(1/r−1/2)−1/2 ‖f‖Lr(O), (5.1.35)

if 1 ≤ r ≤ 2, 0 < t ≤ 1. We apply this estimate below with 1/r = 1/q+1/2,
q large, so that r > 1.
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Let ‖|w‖| = ‖w‖L∞([0,T ],L2(O)). Then from (5.1.35)

‖|F(w) − F(w′)‖|

≤ Cν,V

∫ T

0
(t− s)−1/r‖(V − v̄ν(s) − α(s)) (w(s) − w′(s)‖Lr(O) ds

≤ Cν,V

∫ T

0
(t− s)−1/r‖V − v̄ν(s) − α(s)‖Lq([0,1])‖w(s) − w′(s)‖L2(O) ds

≤ Cν,V T
1/p−1/r‖V − v̄ − α‖Lp′ ([0,T ],Lq([0,1]) ‖|w − w′‖|,

(5.1.36)
using that V − v̄ν − α commutes with ∂x. This estimate holds provided
p < r, where p is the conjugate exponent to p′ and 1/r = 1/q + 1/2. If
p′ > 4, we can find such an r > p > 4/3 by choosing q > 4 in (5.1.35). The
estimate above gives that F is a strict contraction on L∞([0, T ], L2(O)) if T
is sufficiently small. We therefore have existence and uniqueness of solutions
to (5.1.4) in L∞([0, T ], L2(O)), and hence in L∞([0,∞), L2(O)) thanks to
(5.1.32). Furthermore, since wν

k satisfies the same equation for all k ∈ Z+,
wν

k is the unique solution to (5.1.14) in L∞([0,∞), L2(O)) and we conclude
that wν ∈ L∞([0,∞),Vk(O)) for all k ∈ Z+. Also wν is smooth in x, z for
t > 0, and satifies the boundary condition wν ≡ 0 on ∂O pointwise.

We now turn to the analysis of the vanishing viscosity limit wν → w0

as ν → 0. For this analysis, we rely on the results in § 3.1 on the behavior
of the semigroup et(ν∆−X) as ν → 0. In view of (5.1.16), we can write

(wν − w0)(t, x, z) = [et(ν∆−X) − e−t X ]W (x, z) +Rν(t, x, z),

where

Rν(t, x, z) =

∫ t

0
e(t−s)(ν ∆−X)[(V (z) − v̄ν(s, z) − α(s)) ∂xw

ν(s, x, z)] ds.

We estimate the easier term Rν(t, x, z) first. This can be done exactly as in
(2.2.11), using (5.1.33) and the positivity of the kernel of et(ν∆−X):

|Rν(t, x, z)| ≤ C ‖∂xW‖L∞(O)

∫ t

0
e(t−s)(ν∆−X) |V (z) − vν(s, z) − α(s)| ds

= C ‖∂xW‖L∞(O)

∫ t

0
e(t−s)ν∆|V (z) − vν(s, z)| ds,

(5.1.37)
where the equality follows since V − vν is independent of x. Next, since
V − vν → 0 strongly in Lq([0, 1]), 1 ≤ q < ∞, uniformly in t ∈ [0, T ] from
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(5.1.30), and eν(t−s)∆ is uniformly bounded in t and ν on Lq(O), we conclude

Rν(x, z, t)→ 0 strongly in Lq(O) uniformly in t ∈ [0, T ], as ν → 0.
(5.1.38)

In fact, when q = 2 and V = 0, the estimate (5.1.30) gives also an upper
bound for the rate of convergence:

sup
0≤t≤T

‖Rν(·, t)‖L2(O) ≤ CV ν
τ/2 T τ/2+2−1/p‖1‖Hτ ([0,1]) ‖α‖Lp′ ([0,T ], (5.1.39)

with again p = p′/(p′ − 1), 0 < τ < 1/2. In the case p = ∞, we get a
rate consistent with estimate (2.1.21) for α = 0. We now turn to the more
delicate term [et(ν∆−X)−e−t X ]W (x, z) for which we directly use Proposition
4.3 to conclude:

[et(ν∆−X) − e−t X ]W→0 strongly in Lq(O) uniformly in t ∈ [0, T ], (5.1.40)

as ν → 0. Putting together (5.1.40) and (5.1.38) we obtain convergence in
Lq(O) of the w component of the velocity in the vanishing viscosity limit,
and hence of the Navier-Stokes solution to the Euler solution.

Proposition 5.1.3 Let α ∈ Lp′

b (R), p′ > 4. Let uν = (vν , wν) be the
solution of the Navier-Stokes system (5.1.3)–(5.1.4) with initial condition
(5.1.2) and boundary conditions (5.1.1). Let u0 be the solution of the Euler
system (5.1.6)–(5.1.7) with the same initial condition, given by formulas
(5.1.15)-(5.1.16). Then, as ν → 0,

uν(t) → u0(t) strongly in Lq(O), ∀ q ∈ [1,∞),

locally uniformly in t ∈ [0,∞).

Exploiting the analysis of § 3.2 yields convergence in higher norms in
the interior. Recall that vν is given by formula (5.1.25), and wν by formula
(5.1.14) respectively. Below, v0 and w0 are the components of the Euler
solution, given respectively by (5.1.15) and (5.1.16). Let the set Ωj be
defined as in Proposition 3.2.1, i. e., Ω1 ⊂⊂ Ω0 ⊂⊂ O. Projecting along the
z-direction we then have two maximal intervals I1 ⊂⊂ I0 ⊂⊂ [0, 1].

Lemma 5.1.4 Let k ∈ N and fix 0 < T < ∞. Then vν defined in (5.1.25)
belongs to C∞([0, T ],Hk(I1)) and

vν → V = v0 in L∞([0, T ],Hk(I1)), as ν → 0. (5.1.41)
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Proof. The limit et Af → f as t → 0 in Hk(I1) ∩ L2([0, 1]) follows easily
from the explicit formula for the Green’s function. Since V ∈ C∞(Ō), we
immediately have eνt AV → V as ν → 0 in Hk(I1), ∀k ∈ N. We also have
eνt A1 → 1 in L∞([0, T ],Hk(I1)) as ν → 0, so that

lim
ν→0

Sν(α) = 0, in L∞([0, T ],Hk(I1)),

since Sνα(t) =

∫ t

0
(ν A eν(t−s) A 1)α(s) ds. �

From the Lemma, proceeding as in the proof of Proposition 3.2.3, we
obtain

vν → V = v0 as ν → 0, uniformly on I1 for t ∈ [0, T ]. (5.1.42)

The method of images yields more precise estimates. In fact, from (2.1.20),
when α ∈ BVb(R)

∣∣Sνα(z, t)
∣∣ =

∣∣∣
∫ t

0
[1 − eν(t−s)A 1] dα(s)

∣∣∣

≤ CT ‖α‖TV ([0,t]) sup
0≤s≤t

ϕ
(
(νs)−1/2δ(z)

)
,

(5.1.43)

for t ∈ [0, T ], where δ(z) = dist(z, {0, 1}) and ϕ(ζ) is rapidly decreasing as
ζ → ∞. Similarly, if α ∈ Lp

b(R), 1 ≤ p ≤ ∞,

∣∣Sνα(z, t)
∣∣ =

∣∣∣
∫ t

0
(ν∆ eν(t−s)A 1)α(s) ds

∣∣∣

≤ CT ‖α‖L1(R) sup
0≤s≤t

ψ
(
(sν)−1/2δ(z)

)
,

(5.1.44)

where ψ(ζ) vanishes at 0 and is rapidly decreasing as ζ → ∞.
Next, we address convergence of wν .

Lemma 5.1.5 Fix 0 < T < ∞. Then wν defined in (5.1.14) belongs to
C∞([0, T ], C(Ω1)) and

wν → w0 as ν → 0, uniformly on Ω1 for t ∈ [0, T ]. (5.1.45)

Proof. We first observe that, since eνt ∆ is uniformly bounded in L∞(O)
(though not strongly continuous), estimate (5.1.37) together with (5.1.42)
implies

Rν(t, x, z) → 0 as ν → 0, uniformly on Ω1 for t ∈ [0, T ]. (5.1.46)
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Therefore, it is enough to show that [et(ν∆−X)−e−t X ]W (x, z) → 0 uniformly
as ν → 0. In fact, it is equivalent to show

et X et(ν∆−X)W (x, z) →W (x, z),

given that et X is an isometry. This result then follows from Proposition 3.2.3
(cf. (3.2.1)). �

We combine the two lemmas in a proposition (cf. Proposition 4.2.3).

Proposition 5.1.6 In the setting of Theorem 5.1.3 , let Ω1 ⊂⊂ Ω0 ⊂⊂ O.
Then, as ν → 0,

uν(t, x, z)−→u0(t, x, z) uniformly in (x, z) ∈ Ω1, t ∈ [0, T ].

If α is sufficiently regular, then it follows from (2.1.20) and (5.1.25) that
Xν = vν(t, z)∂x ∈ X̂1 and hence the results in § 3.7 can be applied to wν

to obtain a more detailed analysis in the boundary layer.
We now generalize the setting to allow for the two channel walls to move

with different velocities, that is, we replace the boundary condition 5.1.1
with:

(vν(t, j), wν (t, x, j), 0) = (αj(t), 0, 0), x ∈ R/Z, t > 0, j ∈ {0, 1}. (5.1.47)

It is straightforward to extend the results derived above to this case. We
begin by replacing (5.1.8) with

v̄ν(t, z) = vν(t, z) − Φ(t, z), ūν = (v̄ν , wν , 0), (5.1.48)

where Φ is given by

Φ(t, z) = [α1(t) − α0(t)]z + α0(t). (5.1.49)

Note that Φ solves

∂2
z Φ(t, ·) = 0 on [0, 1],

Φ(t, 0) = α0(t), t > 0,

Φ(t, 1) = α1(t), t > 0.
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Formula (5.1.17) is then replaced by

vν(t) = eνt AV + Sν(α0, α1)(t),

Sν(α0, α1)(t, z) =

∫

[0,t]
[(I − eν(t−s)A)∂sΦ(s, z)] ds

=

∫

[0,t]
[(I − eν(t−s)A)(1 − z)] dα0(s)

+

∫

[0,t]
[(I − eν(t−s)A)z] dα1(s).

(5.1.50)

Integrating by parts we can obtain the analog of (5.1.25). Estimates analo-
gous to those done above on Sνα(t) are readily verified.

5.2 Moving boundary, parallel to the x-y-plane

In this section, we take a look at the following more general motion of ∂O,
namely

B(t, x, z) = (αj(t), βj(t), 0), z = j ∈ {0, 1}. (5.2.1)

Most of the techniques have been developed in §5.1, so we will be brief. First
note that allowing βj to be nonzero has no effect on the component vν(t, z),
and (5.1.50) continues to hold.

Let us analyze the effect on wν(t, x, z). Take βj ∈ C∞
b (R) to start

(though later we can extend to βj ∈ BVb(R)). Set

Ψ(t, z) = [β1(t) − β0(t)]z + β0(t). (5.2.2)

We see that
wν(t, x, z) = wν(t, x, z) − Ψ(t, z) (5.2.3)

vanishes on ∂O and satisfies

∂tw
ν + vν∂xw

ν = ν∆wν − ∂tΨ, wν(0, x, z) = W (x, z). (5.2.4)

Hence, with X = V ∂x,

wν(t, x, z) = et(ν∆−X)W (x, z)

+

∫ t

0
e(t−s)(ν∆−X)(V − vν(s, z))∂xw

ν(s, x, z) ds

−
∫ t

0
e(t−s)(ν∆−X)∂sΨ(s, z) ds,

(5.2.5)
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so, making use of the fact that Ψ(s, z) is independent of x, we obtain

wν(t, x, z) = et(ν∆−X)W (x, z)

+

∫ t

0
e(t−s)(ν∆−X)(V − vν(s, z))∂sw

ν(s, x, z) ds

+

∫ t

0
(I − e(t−s)ν∆)∂sΨ(s, z) ds.

(5.2.6)

One can write the last integral as
∫ t

0
(I − e(t−s)ν∆)(1 − z) dβ0(s) +

∫ t

0
(I − e(t−s)ν∆)z dβ1(s). (5.2.7)

Previously developed techniques apply to (5.2.6)–(5.2.7).
Finally, we draw further conclusions when (5.2.1) is specialized to

B(t, x, z) = (0, βj(t), 0), z = j ∈ {0, 1}. (5.2.8)

In such a case, vν(t, z) is as in Chapters 3–4. Consequently, (5.2.4) is

∂tw
ν = (ν∆ −Xν)wν − ∂tΨ, (5.2.9)

with initial data wν(0, x, z) = W (x, z), boundary data 0 on ∂O, and with
Xν exactly as in §2.2. Hence the results of Chapter 4 apply. We have

wν(t, x, z) = Σ0,t
ν W (x, z) −

∫ t

0
Σs,t

ν ∂sΨ(s, z) ds, (5.2.10)

where Σs,t
ν is the solution operator to

∂tu = (ν∆ −Xν)u, u
∣∣
R+×∂O

= 0, (5.2.11)

i.e., u(t) = Σs,t
ν u(s) for 0 ≤ s < t. Hence

wν(t, x, z) = Σ0,t
ν W (x, z) +

∫ t

0
(I − Σs,t

ν )∂sΨ(s, z) ds, (5.2.12)

and we can write the last integral as
∫ t

0
(I − Σs,t

ν )(1 − z) dβ0(s) +

∫ t

0
(I − Σs,t

ν )z dβ1(s). (5.2.13)

Results of Chapter 4 then give convergence

wν(t) −→ w0(t) (5.2.14)

in various function spaces, including Vk(O).
Obtaining such convergence in the context of (5.2.1) would require some

extra hypotheses on αj(t), which we will not pursue here.
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A Vk(O) and b-Sobolev spaces

We take O to be a compact Riemannian manifold with smooth boundary.
Recall from (3.3.1) the definition

Vk(O) = {u ∈ L2(O) : Y1 · · · Yju ∈ L2(O), ∀ j ≤ k, Y` ∈ X1}, (A.0.1)

for k ∈ {0, 1, 2, . . . }, where

X1 = {Y smooth vector field on O : Y ‖ ∂O}. (A.0.2)

These spaces are special cases of weighted b-Sobolev spaces, introduced and
studied in [10] (cf. also [11]). Here we discuss this matter and draw some
conclusions that are useful in Sections 3.3 and 4.2.

The manifold O carries a complete Riemannian metric, called a “b-
metric,” which on a collar neighborhood of ∂O, identified with [0, 1) × ∂O
(with {0} × ∂O identified with ∂O ⊂ O) has the form

g =
(dy
y

)2
+ h, (A.0.3)

where h is a smooth metric tensor on ∂O and y the parameter on [0, 1). Let
us use the symbol Õ to denote O as a Riemannian manifold with such a
Riemannian metric. The b-Sobolev spaces Hk

b (O) are defined by

Hk
b (O) = {u ∈ L2

b(O) : Y1 · · · Yju ∈ L2
b(O), ∀ j ≤ k, Y` ∈ X1}, (A.0.4)

where X1 is as in (A.0.2) and

L2
b(O) = L2(Õ). (A.0.5)

Different choices of b-metrics on O give the same spaces, with equivalent
norms. To define weighted b-Sobolev spaces, take a defining function ρ for
∂O, i.e., ρ ∈ C∞(O), ρ > 0 on O, ρ = 0 on ∂O, ∇ρ(x) 6= 0, ∀x ∈ ∂O.
Thus, for s ∈ R, set

ρsHk
b (O) = {ρsu : u ∈ Hk

b (O)}. (A.0.6)

An inductive argument shows that

ρsHk
b (O) = {u ∈ ρsL2

b(O) : Y1 · · · Yju ∈ ρsL2
b(O), ∀ j ≤ k, Y` ∈ X1}.

(A.0.7)
We also have

L2(O) = ρ−1/2L2
b(O). (A.0.8)
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Hence
Vk(O) = ρ−1/2Hk

b (O). (A.0.9)

Remark. The use of “b” as a subscript in names of function spaces is
different in this appendix than it was in Chapter 5. We trust this warning
will forestall confusion.

A.1 Interpolation identities

This identity (A.0.9) is of use in establishing the following result, which is
valuable in §§3.3 and 4.2.

Proposition A.1.1 If 0 < k < ` and k = `θ, then

[L2(O),V`(O)]θ = Vk(O), (A.1.1)

where the left side is the complex interpolation space.

In light of (A.0.9), this follows straightaway from:

Proposition A.1.2 If 0 < k < ` and k = `θ, then

[L2
b(O),H`

b (O)]θ = Hk
b (O). (A.1.2)

In turn, Proposition A.1.2 can be proven by identifying H k
b (O) with a

regular Sobolev space of functions on the complete Riemannian manifold Õ.
(Thanks to R. Mazzeo for pointing this out.) In detail, we set

Hk(Õ) = {u ∈ L2(Õ) : ∇ju ∈ L2(Õ), ∀ j ≤ k}, (A.1.3)

where a priori ∇ju is a distributional section of ⊗jT ∗Õ, whose fiber ⊗jT ∗
x Õ

inherits an inner product from that of TxÕ given by the complete Rieman-
nian metric tensor on Õ described above. Since the Riemannian manifold
Õ considered here, arising from O via a b-metric, has special structure as
a Riemannian manifold with bounded geometry, we can give a convenient
alternative characterization of Hk(Õ), as follows. There exist K ∈ N and
smooth maps from the closed unit ball B1 ⊂ R

n into Õ (n = dim Õ)

ϕν : B1 −→ Õ, (A.1.4)

with the properties

ϕν is a diffeomorphism of B1 onto its image,

{ϕ∗
νg} is a C∞ bounded family of metric tensors on B1,

{ϕν(B1/2)} covers Õ,
Each p ∈ Õ is contained in at most K sets ϕν(B1).

(A.1.5)
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Given a function u ∈ L1
loc(Õ), set

uν = ϕ∗
νu ∈ L1(B1). (A.1.6)

Then

Hk(Õ) =
{
u ∈ L2(Õ) :

∑

ν

∑

|α|≤k

‖Dαuν‖2
L2(B1) <∞

}
. (A.1.7)

Note also that

u ∈ Hk(Õ) ⇔
∑

ν

∑

|α|≤k

‖Dαuν‖2
L2(B1/2) <∞. (A.1.8)

An examination of the behavior of elements of X1 when pushed forward
to B1 via ϕν establishes:

Proposition A.1.3 For k ∈ Z
+,

Hk
b (O) = Hk(Õ). (A.1.9)

Hence (A.1.2) follows from the result that

[L2(Õ),H`(Õ)]θ = Hk(Õ). (A.1.10)

To establish this, it is convenient to bring in the Laplace-Beltrami operator
of Õ, which we denote L. This is defined as an unbounded operator on
L2(Õ) via the Friedrichs construction:

u ∈ D(L) and Lu = f

⇐⇒ u ∈ H1(Õ) and (∇u,∇g)L2( eO) = −(f, g)L2( eO), ∀ g ∈ H1(Õ).

(A.1.11)
The fact that Õ is complete implies L is a negative self adjoint operator and
C∞

0 (Õ) is dense in the domain of all powers of L, defined inductively by

u ∈ D(Lk+1) =⇒ u ∈ D(L) and Lu ∈ D(Lk). (A.1.12)

Cf. [2]. More generally, for each s ∈ [0,∞), (−L)s is defined via the spec-
tral theorem as a positive self adjoint operator, and one has the classical
interpolation identity

[L2(Õ),D((−L)s)]θ = D((−L)sθ). (A.1.13)

Hence the identity (A.1.10) is a consequence of:
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Proposition A.1.4 For k ∈ N,

Hk(Õ) = D((−L)k/2). (A.1.14)

Proof. That
D((−L)1/2) = H1(Õ) (A.1.15)

is a fundamental property of the Friedrichs construction. Next, from (A.1.11)
we have

D(L) = {u ∈ H1(Õ) : Lu ∈ L2(Õ)}, (A.1.16)

where Lu is a priori a distribution on Õ. Clearly H2(Õ) ⊂ D(L). We can
use the interior elliptic estimates

∑

|α|≤2

‖Dαu‖2
L2(B1/2) ≤ C

(
‖u‖2

L2(B1) + ‖Lνu‖2
L2(B1)

)
, (A.1.17)

with Lν the image of L on B1 via ϕν . The estimate (A.1.17) holds with C
independent of ν. We use this together with the equivalence of (A.1.7) and
(A.1.8), to obtain the reverse inclusion, hence

D(L) = H2(Õ). (A.1.18)

To continue, we note that (A.1.17) extends to

∑

|α|≤2k

‖Dαu‖2
L2(B1/2) ≤ Ck

(
‖u‖2

L2(B1) + ‖Lk
νu‖2

L2(B1)

)
, (A.1.19)

again with Ck independent of ν, and this together with (A.1.7)–(A.1.8) gives

{u ∈ H1(Õ) : Lku ∈ L2(Õ)} ⊂ H2k(Õ). (A.1.20)

By comparison, the definition (A.1.12) says

D(Lk) = {u ∈ H1(Õ) : Lu ∈ D(Lk−1)}. (A.1.21)

The right side of (A.1.21) is contained in the left side of (A.1.20). On the
other hand, if we know that D(Lk−1) = H2k−2(Õ), it readily follows that
H2k(Õ) ⊂ D(Lk). Hence it follows inductively that

D(Lk) = H2k(Õ). (A.1.22)

To complete the proof of (A.1.14), we use

D((−L)k+1/2) = {u ∈ D(Lk) : Lku ∈ D((−L)1/2)}
= {u ∈ H2k(Õ) : Lku ∈ H1(Õ)},

(A.1.23)
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and the interior regularity estimate

∑

|α|≤2k+1

‖Dαu‖2
L2(B1/2) ≤ Ck

(
‖u‖2

L2(B1) + ‖Lk
νu‖2

H1(B1)

)
. (A.1.24)

This proves Proposition A.1.4, and hence Propositions A.1.1–A.1.3. �
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