
Vanishing Viscosity Limit for Navier-Stokes Flows:
No-slip Boundary Condition

Navier-Stokes Equations

(NS)

∂tu
ν +∇uν uν +∇pν = ν∆uν ,

divuν = 0,

uν(t) = 0 on ∂Ω,

uν(0, x) = u0(x) given.

More generally might take uν(t) = B(t) on ∂Ω, B(t) ‖ ∂Ω (moving boundary).
Assume

u0 ‖ ∂Ω.

Circularly symmetric 2D flow

Joint with M. Lopes Filho, A. Mazzucato, and H. Nussenzveig Lopes

Ω = D, disk, or annulus, centered at 0 ∈ R2.

uν(t, x) =
α(t)
2π

x⊥, x ∈ ∂D.

Circular symmetry:
u0(Rθx) = Rθu0(x).

Implies circular symmetry for all t > 0.
Get detailed analysis of convergence

uν(t) → u0(t) ≡ u0,

steady solution to the Euler equation.

3D plane parallel channel flow
And related singular perturbation problems

Joint with A. Mazzucato

Ω = {(x, y, z) : 0 ≤ z ≤ 1}
uν(t, x, y, z) = (vν(t, z), wν(t, x, z), 0)

For such flows, we have

∇uν uν = (0, vν(t, z)∂xwν(t, x, z), 0)
⇒ div∇uν uν = 0

⇒ pν ≡ 0 (WLOG).
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So NS equations become

(1)

∂vν

∂t
= ν

∂2vν

∂z2

∂wν

∂t
+ vν ∂wν

∂x
= ν

(∂2wν

∂x2
+

∂2wν

∂z2

)
.

Boundary conditions:

vν(t, z) = 0, wν(t, x, z) = 0 for z = 0, 1.

Initial data

vν(0, z) = V (z), wν(0, x, z) = W (x, z)

V ∈ C∞(I), W ∈ C∞(O), I = [0, 1], O = (R/Z)× [0, 1],

(assume periodicity in x, for convenience).

Euler equations:

(E)
∂tu

0 +∇u0u0 +∇p0 = 0,

divu0 = 0, u0(t) ‖ ∂Ω.

Plane parallel case:

u0(t, x, y, z) = (v0(t, z), w0(t, x, z), 0).

Euler equations become

∂v0

∂t
= 0 ⇒ v0(t, z) ≡ V (z)

∂w0

∂t
+ v0 ∂w0

∂x
= 0 ⇒ w0(t, x, z) = W (x− tV (z), z).

Desire convergence results:

vν → v0, wν → w0, as ν ↘ 0.

Convergence vν → v0 elementary.
Convergence wν → w0 much more subtle.

First attack

Equation for wν in (1) has the form

∂wν

∂t
= ν∆wν −Xνwν , wν

∣∣
R+×∂O = 0.
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Here

(2) ∆ =
∂2

∂x2
+

∂2

∂z2
, Xν = vν(t, z)

∂

∂x
, vν(t, z) = eνt∂2

z V (z).

Rewrite (2) as
∂wν

∂t
= (ν∆−X)wν + (X −Xν)wν ,

where
X = V (z)∂x.

Apply Duhamel’s formula:

(3) wν(t) = et(ν∆−X)W +
∫ t

0

e(t−s)(ν∆−X)[(X −Xν)wν(s)] ds.

Note:
(X −Xν)wν(s) = (V (z)− vν(s, z))∂xwν(s, x, z).

Note that wν
k = ∂k

xwν satisfies

∂wν
k

∂t
+ vν ∂wν

k

∂x
= ν∆wν

k ,

since ∂x commutes with Xν . Also wν
k |R+×∂O = 0, so maximum principle applies:

‖∂xwν(s)‖L∞(O) ≤ ‖∂xW‖L∞(O) ≤ K (say).

Using positivity of e(t−s)(ν∆−X),
∣∣∣e(t−s)(ν∆−X)[(V − vν(s))∂xwν(s)]

∣∣∣
≤ Ke(t−s)(ν∆−X)|V (z)− vν(s, z)|
= Ke(t−s)ν∆|V (z)− vν(s, z)|.

Conclusion:

(4)

∣∣wν(t, x, z)− et(ν∆−X)W (x, z)
∣∣

≤ K

∫ t

0

e(t−s)ν∆|V (z)− vν(s, z)| ds

= Rν(t, z).

Note: We could replace e(t−s)ν∆ in (4) by e(t−s)ν∂2
z . There are elementary estimates

on Rν(t, z).
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Second attack

Estimates on et(ν∆−X)

Expand the setting:

O compact Riemannian manifold with smooth boundary ∂O,

∆ Laplace-Beltrami operator on O,

X smooth vector field, divX = 0, X ‖ ∂O.

Note: D(ν∆−X)k) = D(∆k) for k = 1, 2.

D(∆) = H2(O) ∩H1
0 (O),

D(∆2) = {u ∈ H4(O) : u, ∆u ∈ H1
0 (O)}.

Lemma 1. There exists K, independent of ν ∈ (0, 1], such that for f ∈ D(∆2), uν(t) =
et(ν∆−X)f ,

(5) ‖∆uν(t)‖2L2 ≤ e2Kt‖∆f‖2L2 .

Proof. Estimate
d

dt
‖∆uν(t)‖2L2 = 2 Re (∆∂tu

ν , ∆uν)L2 .

Convergence result: write uν(t) = et(ν∆−X)f as solving

∂tu
ν = −Xuν + ν∆uν , uν(0) = f.

Duhamel’s formula gives

uν(t) = e−tXf + ν

∫ t

0

e−(t−s)X∆uν(s) ds.

Using Lemma 1, one shows:

Proposition 2. Given p ∈ [1,∞), f ∈ Lp(O), we have

et(ν∆−X)f → f as ν ↘ 0,

in Lp-norm.

Other estimates from (5), plus interpolation:

‖et(ν∆−X)f‖D(∆) ≤ eKt‖f‖D(∆)

⇒ ‖et(ν∆−X)f‖D(−∆)s/2) ≤ eKt‖f‖D(−∆)s/2), 0 < s < 2

⇒ ‖et(ν∆−X)f‖Hs(O) ≤ CeKt‖f‖Hs(O), 0 < s < 1/2.
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Further interpolate with the elementary inequalities

‖et(ν∆−X)f‖Lp(O) ≤ ‖f‖Lp(O), 1 ≤ p < ∞,

to get

(6)
‖et(ν∆−X)f‖Hσ,q(O) ≤ Cσ,qe

Kt‖f‖Hσ,q(O),

2 ≤ q < ∞, σq ∈ [0, 1).

Proposition 3. For σ, q as in (6),

f ∈ Hσ,q(O) ⇒ lim
ν→0

et(ν∆−X)f = e−tXf,

in Hσ,q-norm.

More precise estimates
“Conormal estimates,” yielding strong interior convergence. Set

Vk(O) = {u ∈ L2(O) : Y1 · · ·Yju ∈ L2(O) : ∀ j ≤ k, Y` ∈ X1},

where
X1 = {Y smooth vector field on O : Y ‖ ∂O}.

Lemma 4. C∞0 (O) is dense in Vk(O).

Proposition 5. For each k ∈ Z+, et(ν∆−X) is a strongly continuous semigroup on
Vk(O), and

‖et(ν∆−X)f‖Vk ≤ etBk‖f‖Vk ,

with Bk independent of ν ∈ (0, 1].

Proof. Set u = et(ν∆−X)f and estimate

d

dt
‖Y Ju(t)‖2L2 = 2(Y J∂tu, Y Ju)L2 ,

where Y J = Yj1 · · ·Yjk
. One needs to make a careful study of the commutators

[∆, Y J ].
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Proposition 6. In the setting of Proposition 5,

f ∈ Vk(O) ⇒ lim
ν→0

et(ν∆−X)f = e−tXf,

in norm, in Vk(O).

Proof. Use Proposition 5 plus L2-norm convergence to get convergence weak∗ in
Vk(O). Use denseness of V2k(O) in Vk(O) plus the interpolation result:

Vk(O) = [L2(O),V2k(O)]1/2,

(whose proof is not trivial) to finish off Proposition 6.

Remark. The spaces Vk(O) are special cases of “weighted b-Sobolev spaces,”
introduced by R. Melrose and used in scattering theory.

Still more precise estimates: exhibiting the boundary layer
Set

(7) vν(t) = etXet(ν∆−X)f.

This solves

(8)
∂vν

∂t
= νL(t)vν , vν(0) = f, vν

∣∣
R+×∂O = 0,

where
L(t) = etX∆e−tX

is a smooth family of strongly elliptic operators on O.

Say O is a smoothly bounded domain in M , a compact Riemannian manifold with-
out boundary, and X is extended to a smooth vector field on M . Construct a
parametrix for the solution on R+ ×M to

(9)
∂V ν

∂t
= νL(t)V ν , V ν(0) = F,

valid uniformly for t ∈ [0, T0], ν ∈ (0, 1], increasingly precise as ν ↘ 0. The
construction is a (nontrivial) variant of the heat kernel parametrix construction. It
gives

(10) V ν(t, x) =
∫

M

H(ν, t, x, y)F (y) dV (y),

where

(11)

H(ν, t, x, y) ∼
∑

k≥0

Hk(ν, t, x, y),

H0(ν, t, x, y) =
G(t, x)1/2

(4πνt)n/2
e−G(t,x)(x−y)·(x−y)/4νt

(in local coordinates), the terms for k ≥ 1 being progresively smaller and smoother.

Then solve (8) by the method of layer potentials. Here is one result.
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Proposition 7. Given I = [0, T ], δ > 0, the family vν in (7)–(8) satisfies

(12) ‖vν − (f − 2D0
νf b)‖L∞(I×O) ≤ C(I)ν1/2‖f‖C1,δ(O),

where
f b(t, y) = χR+(t)f(y)

and D0
ν is the layer potential operator

(13) D0
νf b(t, x) = ν

∫ t

0

∫

∂O

f(y)
∂H0

∂ns,y
(ν, s, t, x, y) dSs(y) ds.

Here ∂/∂ns,y and dSs are suitable normal derivatives and boundary surface area
forms, and H0 is a variant of H0 in (11).

Third attack
Return to analysis of

(14)
∂wν

∂t
= ν∆wν −Xνwν .

Here Xν belongs to a suitable class of t-dependent vector fields, containing the
example

Xν = vν(t, z)∂x, vν(t, x) = etν∂2
z V (z),

when O = (R/Z)× I. As before,

(15) wν
∣∣
R+×∂O = 0, wν(0) = W.

Proposition 8. Given W ∈ Vk(O), there exists a unique solution to (14)–(15),
such that

wν ∈ C([0,∞),Vk(O)) ∩ C∞((0,∞)×O),

and we have
‖wν(t)‖Vk ≤ etBk‖W‖Vk ,

with Bk independent of ν ∈ (0, 1].

Proof. More elaborate variant of that done for ∂tu
ν = (ν∆−X)uν , in Proposition

5.

Convergence result

Proposition 9. In the setting of Proposition 8,

(16) W ∈ Vk(O) ⇒ wν(t) → e−tXW,

in Vk-norm, as ν ↘ 0.

Proof. L2-norm convergence follows from the first two attacks. The Vk-norm
bounds in Proposition 8 then imply weak∗ convergence in Vk. Density of V2k(O) ⊂
Vk(O) and interpolation then imply norm convergence in (16).


