Vanishing Viscosity Limit for Navier-Stokes Flows: No-slip Boundary Condition

Navier-Stokes Equations

(NS) $\begin{aligned} \partial_t u^{\nu} + \nabla_{u^{\nu}} u^{\nu} + \nabla p^{\nu} &= \nu \Delta u^{\nu}, \\ \operatorname{div} u^{\nu} &= 0, \\ u^{\nu}(t) &= 0 \quad \text{on} \quad \partial\Omega, \\ u^{\nu}(0, x) &= u_0(x) \quad \text{given.} \end{aligned}$

More generally might take $u^{\nu}(t) = B(t)$ on $\partial\Omega$, $B(t) \parallel \partial\Omega$ (moving boundary). Assume

$$u_0 \parallel \partial \Omega.$$

Circularly symmetric 2D flow

JOINT WITH M. LOPES FILHO, A. MAZZUCATO, AND H. NUSSENZVEIG LOPES

 $\Omega = D$, disk, or annulus, centered at $0 \in \mathbb{R}^2$.

$$u^{\nu}(t,x) = \frac{\alpha(t)}{2\pi} x^{\perp}, \ x \in \partial D.$$

Circular symmetry:

$$u_0(R_\theta x) = R_\theta u_0(x).$$

Implies circular symmetry for all t > 0. Get detailed analysis of convergence

$$u^{\nu}(t) \to u^0(t) \equiv u_0,$$

steady solution to the Euler equation.

3D plane parallel channel flow And related singular perturbation problems

JOINT WITH A. MAZZUCATO

$$\Omega = \{(x, y, z) : 0 \le z \le 1\}$$

$$u^{\nu}(t, x, y, z) = (v^{\nu}(t, z), w^{\nu}(t, x, z), 0)$$

For such flows, we have

$$\nabla_{u^{\nu}} u^{\nu} = (0, v^{\nu}(t, z) \partial_x w^{\nu}(t, x, z), 0)$$

$$\Rightarrow \operatorname{div} \nabla_{u^{\nu}} u^{\nu} = 0$$

$$\Rightarrow p^{\nu} \equiv 0 \text{ (WLOG).}$$

So NS equations become

(1)
$$\frac{\partial v^{\nu}}{\partial t} = \nu \frac{\partial^2 v^{\nu}}{\partial z^2} \\ \frac{\partial w^{\nu}}{\partial t} + v^{\nu} \frac{\partial w^{\nu}}{\partial x} = \nu \Big(\frac{\partial^2 w^{\nu}}{\partial x^2} + \frac{\partial^2 w^{\nu}}{\partial z^2} \Big).$$

Boundary conditions:

$$v^{\nu}(t,z) = 0, \quad w^{\nu}(t,x,z) = 0 \text{ for } z = 0, 1.$$

Initial data

$$\begin{aligned} v^{\nu}(0,z) &= V(z), \quad w^{\nu}(0,x,z) = W(x,z) \\ V &\in C^{\infty}(I), \quad W \in C^{\infty}(\overline{\mathcal{O}}), \quad I = [0,1], \quad \overline{\mathcal{O}} = (\mathbb{R}/\mathbb{Z}) \times [0,1], \end{aligned}$$

~

(assume periodicity in x, for convenience).

Euler equations:

(E)
$$\begin{aligned} \partial_t u^0 + \nabla_{u^0} u^0 + \nabla p^0 &= 0, \\ \operatorname{div} u^0 &= 0, \quad u^0(t) \parallel \partial \Omega. \end{aligned}$$

Plane parallel case:

$$u^{0}(t, x, y, z) = (v^{0}(t, z), w^{0}(t, x, z), 0).$$

Euler equations become

$$\begin{aligned} \frac{\partial v^0}{\partial t} &= 0 \Rightarrow v^0(t,z) \equiv V(z) \\ \frac{\partial w^0}{\partial t} &+ v^0 \frac{\partial w^0}{\partial x} = 0 \Rightarrow w^0(t,x,z) = W(x - tV(z),z). \end{aligned}$$

Desire convergence results:

$$v^{\nu} \to v^{0}, \quad w^{\nu} \to w^{0}, \quad \text{as } \nu \searrow 0.$$

Convergence $v^{\nu} \to v^{0}$ elementary. Convergence $w^{\nu} \to w^{0}$ much more subtle.

First attack

Equation for w^{ν} in (1) has the form

$$\frac{\partial w^{\nu}}{\partial t} = \nu \Delta w^{\nu} - X_{\nu} w^{\nu}, \quad w^{\nu} \big|_{\mathbb{R}^{+} \times \partial \mathcal{O}} = 0.$$

Here

(2)
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}, \quad X_{\nu} = v^{\nu}(t,z)\frac{\partial}{\partial x}, \quad v^{\nu}(t,z) = e^{\nu t \partial_z^2} V(z).$$

Rewrite (2) as

$$\frac{\partial w^{\nu}}{\partial t} = (\nu \Delta - X)w^{\nu} + (X - X_{\nu})w^{\nu},$$

where

$$X = V(z)\partial_x.$$

Apply Duhamel's formula:

(3)
$$w^{\nu}(t) = e^{t(\nu\Delta - X)}W + \int_0^t e^{(t-s)(\nu\Delta - X)} [(X - X_{\nu})w^{\nu}(s)] \, ds.$$

Note:

$$(X - X_{\nu})w^{\nu}(s) = (V(z) - v^{\nu}(s, z))\partial_{x}w^{\nu}(s, x, z).$$

Note that $w_k^{\nu} = \partial_x^k w^{\nu}$ satisfies

$$\frac{\partial w_k^\nu}{\partial t} + v^\nu \frac{\partial w_k^\nu}{\partial x} = \nu \Delta w_k^\nu,$$

since ∂_x commutes with X_{ν} . Also $w_k^{\nu}|_{\mathbb{R}^+ \times \partial \mathcal{O}} = 0$, so maximum principle applies:

$$\|\partial_x w^{\nu}(s)\|_{L^{\infty}(\mathcal{O})} \le \|\partial_x W\|_{L^{\infty}(\mathcal{O})} \le K \text{ (say)}.$$

Using positivity of $e^{(t-s)(\nu\Delta - X)}$,

$$\begin{aligned} \left| e^{(t-s)(\nu\Delta - X)} [(V - v^{\nu}(s))\partial_x w^{\nu}(s)] \right| \\ &\leq K e^{(t-s)(\nu\Delta - X)} |V(z) - v^{\nu}(s,z)| \\ &= K e^{(t-s)\nu\Delta} |V(z) - v^{\nu}(s,z)|. \end{aligned}$$

Conclusion:

(4)
$$\begin{aligned} \left| w^{\nu}(t,x,z) - e^{t(\nu\Delta - X)}W(x,z) \right| \\ &\leq K \int_0^t e^{(t-s)\nu\Delta} |V(z) - v^{\nu}(s,z)| \, ds \\ &= R^{\nu}(t,z). \end{aligned}$$

Note: We could replace $e^{(t-s)\nu\Delta}$ in (4) by $e^{(t-s)\nu\partial_z^2}$. There are elementary estimates on $R^{\nu}(t, z)$.

Second attack

Estimates on $e^{t(\nu\Delta-X)}$ Expand the setting:

- $\overline{\mathcal{O}}$ compact Riemannian manifold with smooth boundary $\partial \mathcal{O}$,
- Δ Laplace-Beltrami operator on $\overline{\mathcal{O}}$,
- X smooth vector field, $\operatorname{div} X = 0$, $X \parallel \partial \mathcal{O}$.

Note: $\mathcal{D}(\nu\Delta - X)^k) = \mathcal{D}(\Delta^k)$ for k = 1, 2.

$$\mathcal{D}(\Delta) = H^2(\mathcal{O}) \cap H^1_0(\mathcal{O}),$$

$$\mathcal{D}(\Delta^2) = \{ u \in H^4(\mathcal{O}) : u, \Delta u \in H^1_0(\mathcal{O}) \}.$$

Lemma 1. There exists K, independent of $\nu \in (0,1]$, such that for $f \in \mathcal{D}(\Delta^2)$, $u^{\nu}(t) = e^{t(\nu\Delta - X)}f$,

(5)
$$\|\Delta u^{\nu}(t)\|_{L^{2}}^{2} \leq e^{2Kt} \|\Delta f\|_{L^{2}}^{2}.$$

Proof. Estimate

$$\frac{d}{dt} \|\Delta u^{\nu}(t)\|_{L^2}^2 = 2\operatorname{Re}\left(\Delta \partial_t u^{\nu}, \Delta u^{\nu}\right)_{L^2}.$$

Convergence result: write $u^{\nu}(t) = e^{t(\nu\Delta - X)}f$ as solving

$$\partial_t u^{\nu} = -X u^{\nu} + \nu \Delta u^{\nu}, \quad u^{\nu}(0) = f.$$

Duhamel's formula gives

$$u^{\nu}(t) = e^{-tX}f + \nu \int_0^t e^{-(t-s)X} \Delta u^{\nu}(s) \, ds.$$

Using Lemma 1, one shows:

Proposition 2. Given $p \in [1, \infty)$, $f \in L^p(\mathcal{O})$, we have

$$e^{t(\nu\Delta-X)}f \to f \quad as \quad \nu \searrow 0,$$

in L^p -norm.

Other estimates from (5), plus interpolation:

$$\begin{aligned} \|e^{t(\nu\Delta-X)}f\|_{\mathcal{D}(\Delta)} &\leq e^{Kt}\|f\|_{\mathcal{D}(\Delta)} \\ \Rightarrow \|e^{t(\nu\Delta-X)}f\|_{\mathcal{D}(-\Delta)^{s/2}} \leq e^{Kt}\|f\|_{\mathcal{D}(-\Delta)^{s/2}}, \quad 0 < s < 2 \\ \Rightarrow \|e^{t(\nu\Delta-X)}f\|_{H^{s}(\mathcal{O})} \leq Ce^{Kt}\|f\|_{H^{s}(\mathcal{O})}, \quad 0 < s < 1/2. \end{aligned}$$

Further interpolate with the elementary inequalities

$$\|e^{t(\nu\Delta-X)}f\|_{L^p(\mathcal{O})} \le \|f\|_{L^p(\mathcal{O})}, \quad 1 \le p < \infty,$$

to get

(6)
$$\begin{aligned} \|e^{t(\nu\Delta-X)}f\|_{H^{\sigma,q}(\mathcal{O})} &\leq C_{\sigma,q}e^{Kt}\|f\|_{H^{\sigma,q}(\mathcal{O})},\\ 2 &\leq q < \infty, \quad \sigma q \in [0,1). \end{aligned}$$

Proposition 3. For σ , q as in (6),

$$f \in H^{\sigma,q}(\mathcal{O}) \Rightarrow \lim_{\nu \to 0} e^{t(\nu \Delta - X)} f = e^{-tX} f,$$

in $H^{\sigma,q}$ -norm.

More precise estimates

"Conormal estimates," yielding strong interior convergence. Set

$$\mathcal{V}^{k}(\mathcal{O}) = \{ u \in L^{2}(\mathcal{O}) : Y_{1} \cdots Y_{j} u \in L^{2}(\mathcal{O}) : \forall j \leq k, Y_{\ell} \in \mathfrak{X}^{1} \},\$$

where

$$\mathfrak{X}^1 = \{ Y \text{ smooth vector field on } \overline{\mathcal{O}} : Y \parallel \partial \mathcal{O} \}.$$

Lemma 4. $C_0^{\infty}(\mathcal{O})$ is dense in $\mathcal{V}^k(\mathcal{O})$.

Proposition 5. For each $k \in \mathbb{Z}^+$, $e^{t(\nu \Delta - X)}$ is a strongly continuous semigroup on $\mathcal{V}^k(\mathcal{O})$, and

$$\|e^{t(\nu\Delta-X)}f\|_{\mathcal{V}^k} \le e^{tB_k} \|f\|_{\mathcal{V}^k},$$

with B_k independent of $\nu \in (0, 1]$.

Proof. Set $u = e^{t(\nu \Delta - X)} f$ and estimate

$$\frac{d}{dt} \|Y^J u(t)\|_{L^2}^2 = 2(Y^J \partial_t u, Y^J u)_{L^2},$$

where $Y^J = Y_{j_1} \cdots Y_{j_k}$. One needs to make a careful study of the commutators

 $[\Delta, Y^J].$

Proposition 6. In the setting of Proposition 5,

$$f \in \mathcal{V}^k(\mathcal{O}) \Rightarrow \lim_{\nu \to 0} e^{t(\nu \Delta - X)} f = e^{-tX} f,$$

in norm, in $\mathcal{V}^k(\mathcal{O})$.

Proof. Use Proposition 5 plus L^2 -norm convergence to get convergence weak^{*} in $\mathcal{V}^k(\mathcal{O})$. Use denseness of $\mathcal{V}^{2k}(\mathcal{O})$ in $\mathcal{V}^k(\mathcal{O})$ plus the interpolation result:

$$\mathcal{V}^k(\mathcal{O}) = [L^2(\mathcal{O}), \mathcal{V}^{2k}(\mathcal{O})]_{1/2},$$

(whose proof is not trivial) to finish off Proposition 6.

Remark. The spaces $\mathcal{V}^k(\mathcal{O})$ are special cases of "weighted b-Sobolev spaces," introduced by R. Melrose and used in scattering theory.

Still more precise estimates: exhibiting the boundary layer Set

(7)
$$v^{\nu}(t) = e^{tX}e^{t(\nu\Delta - X)}f.$$

o ...

This solves

(8)
$$\frac{\partial v^{\nu}}{\partial t} = \nu L(t)v^{\nu}, \quad v^{\nu}(0) = f, \quad v^{\nu}\big|_{\mathbb{R}^{+} \times \partial \mathcal{O}} = 0,$$

where

$$L(t) = e^{tX} \Delta e^{-tX}$$

is a smooth family of strongly elliptic operators on $\overline{\mathcal{O}}$.

Say \mathcal{O} is a smoothly bounded domain in M, a compact Riemannian manifold without boundary, and X is extended to a smooth vector field on M. Construct a parametrix for the solution on $\mathbb{R}^+ \times M$ to

(9)
$$\frac{\partial V^{\nu}}{\partial t} = \nu L(t)V^{\nu}, \quad V^{\nu}(0) = F,$$

valid uniformly for $t \in [0, T_0]$, $\nu \in (0, 1]$, increasingly precise as $\nu \searrow 0$. The construction is a (nontrivial) variant of the heat kernel parametrix construction. It gives

(10)
$$V^{\nu}(t,x) = \int_{M} H(\nu,t,x,y)F(y) \, dV(y),$$

where

$$H(\nu, t, x, y) \sim \sum_{k \ge 0} H_k(\nu, t, x, y),$$

(11)
$$H_0(\nu, t, x, y) = \frac{\mathcal{G}(t, x)^{1/2}}{(4\pi\nu t)^{n/2}} e^{-\mathcal{G}(t, x)(x-y)\cdot(x-y)/4\nu t}$$

(in local coordinates), the terms for $k \ge 1$ being progressively smaller and smoother.

Then solve (8) by the method of layer potentials. Here is one result.

Proposition 7. Given I = [0, T], $\delta > 0$, the family v^{ν} in (7)–(8) satisfies

(12)
$$\|v^{\nu} - (f - 2\mathcal{D}^{0}_{\nu}f^{b})\|_{L^{\infty}(I \times \mathcal{O})} \leq C(I)\nu^{1/2} \|f\|_{C^{1,\delta}(\overline{\mathcal{O}})},$$

where

$$f^{b}(t,y) = \chi_{\mathbb{R}^{+}}(t)f(y)$$

and \mathcal{D}^0_{ν} is the layer potential operator

(13)
$$\mathcal{D}^0_{\nu} f^b(t,x) = \nu \int_0^t \int_{\partial \mathcal{O}} f(y) \frac{\partial H_0}{\partial n_{s,y}}(\nu, s, t, x, y) \, dS_s(y) \, ds.$$

Here $\partial/\partial n_{s,y}$ and dS_s are suitable normal derivatives and boundary surface area forms, and H_0 is a variant of H_0 in (11).

Third attack

Return to analysis of

(14)
$$\frac{\partial w^{\nu}}{\partial t} = \nu \Delta w^{\nu} - X_{\nu} w^{\nu}.$$

Here X_{ν} belongs to a suitable class of *t*-dependent vector fields, containing the example

$$X_{\nu} = v^{\nu}(t, z)\partial_x, \quad v^{\nu}(t, x) = e^{t\nu\partial_z^2}V(z),$$

when $\overline{\mathcal{O}} = (\mathbb{R}/\mathbb{Z}) \times I$. As before,

(15)
$$w^{\nu}\big|_{\mathbb{R}^+ \times \partial \mathcal{O}} = 0, \quad w^{\nu}(0) = W.$$

Proposition 8. Given $W \in \mathcal{V}^k(\mathcal{O})$, there exists a unique solution to (14)–(15), such that

 $w^{\nu} \in C([0,\infty), \mathcal{V}^k(\mathcal{O})) \cap C^{\infty}((0,\infty) \times \overline{\mathcal{O}}),$

and we have

$$||w^{\nu}(t)||_{\mathcal{V}^k} \le e^{tB_k} ||W||_{\mathcal{V}^k},$$

with B_k independent of $\nu \in (0, 1]$.

Proof. More elaborate variant of that done for $\partial_t u^{\nu} = (\nu \Delta - X)u^{\nu}$, in Proposition 5.

Convergence result

Proposition 9. In the setting of Proposition 8,

(16)
$$W \in \mathcal{V}^k(\mathcal{O}) \Rightarrow w^{\nu}(t) \to e^{-tX}W,$$

in \mathcal{V}^k -norm, as $\nu \searrow 0$.

Proof. L^2 -norm convergence follows from the first two attacks. The \mathcal{V}^k -norm bounds in Proposition 8 then imply weak^{*} convergence in \mathcal{V}^k . Density of $\mathcal{V}^{2k}(\mathcal{O}) \subset \mathcal{V}^k(\mathcal{O})$ and interpolation then imply norm convergence in (16).