Vanishing Viscosity Limit for Navier-Stokes Flows:
No-slip Boundary Condition

Navier-Stokes Equations

o’ + Vpeu” + Vp” = vAu”,
divu” =0,

u”’(t) =0 on 09,

u”(0,2) = up(z) given.

(NS)

More generally might take u”(t) = B(t) on 012, B(t)| 02 (moving boundary).
Assume

Circularly symmetric 2D flow

JOINT wWiTH M. LopPEs FILHO, A. MAZzZUCATO, AND H. NUSSENZVEIG LOPES

Q = D, disk, or annulus, centered at 0 € R

t
u’(t,x) = ?azﬁ x € 0D.
s

Circular symmetry:
uo(Repx) = Roup(x).

Implies circular symmetry for all ¢ > 0.
Get detailed analysis of convergence

u’ (t) — u®(t) = uo,

steady solution to the Euler equation.

3D plane parallel channel flow
And related singular perturbation problems

JOINT wiTH A. MAZZUCATO
Q={(z,y,2): 0<z<1}
u”(t,x,y,z) = (VW(t, 2),w"(t,z,2),0)
For such flows, we have
Vuru” = (0,0"(t, 2)0,w" (t, z, 2),0)
= divVyu” =0

= p” =0 (WLOG).
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So NS equations become

o’ 0%v”

) a o2
ow” 0w’ O?w”  *w
ot v ox :V( Ox? + 822>

Boundary conditions:
v(t,z) =0, w"(t,z,z)=0 for z=0, 1.

Initial data
v (0,2) =V (z), w"(0,z,2)=W(z,z2)

VeC>(I), WeC>®0), I1=10,1, O=(R/Z) x[0,1],
(assume periodicity in z, for convenience).

Euler equations:

O’ 4+ Vou’ + Vp? =0,

E
(E) divu® =0, u°(t) | 09.

Plane parallel case:
u(t,x,y,2) = (V°0(t, 2),w°(t, z, 2),0).

Euler equations become

0
% =0=1"(t,2) = V()
0 0
a(‘?it + voaa% = 0= w'(t,z, 2) = Wz —tV(2),2).

Desire convergence results:
v —v, w’ —w’, aswv \, 0.

Convergence v¥ — v° elementary.
Convergence w” — w” much more subtle.

First attack
Equation for w” in (1) has the form

a 14
;; =vAw” — X,w”, w"

r+x00 = O-



Here
82 62 v 0 v vtd?2
(2) A:%—kﬁ, X, =v (t,z)%, v (t, z) = eV (2).
Rewrite (2) as
ow” 5 y
el (vA — X)w” + (X — X,)w",
where
X =V(2)0,.
Apply Duhamel’s formula:
'
(3) W (t) = HA-X)py 4 / =DWA-X) (X _ X, )u (s)] ds.
0

Note:
(X — X )w"(s) = (V(z) — v"(s,2))0,w" (s, , 2).

Note that w¥ = OFw" satisfies

owy, owy,
Bk = pAw,

ot ox

since 0, commutes with X,,. Also w}|g+x90 = 0, so maximum principle applies:
10sw” () |22 (0) < 10T [l (o) < K (sa).

Using positivity of et=s)(vA=X)

IWEZDNV — 0" (s)) 0w ()]
< Kelt=9)wa=X) V(z) —v" (s, 2)|
= Ke(=9A |V (2) — 0¥ (s, 2)|.
Conclusion:
‘w”(u x,z) — et(”A_X)W(x, z)|
(4) < K/t =RV (2) —v¥ (s, 2)| ds
= R”(g, z).

Note: We could replace e(t=972 in (4) by e(t=9)¥9Z There are elementary estimates
on R¥(t,z).



Second attack

Estimates on et(VA—X)

Expand the setting:

O compact Riemannian manifold with smooth boundary 90,

A Laplace-Beltrami operator on O,
X smooth vector field, divX =0, X |00.
Note: D(vA — X)*) = D(A¥) for k = 1,2.
D(A) = H*(0) N Hy(0),
D(A?) = {u € H*(O) : u, Au € H}(0O)}.

Lemma 1. There ezists K, independent of v € (0, 1], such that for f € D(A?%), u”(t) =
et(VA_X)f,

() 1Au (]2 < e AS]Z:

Proof. Estimate
d
p |Au” () ||32: = 2Re (Adyu”, Au”) 2.

Convergence result: write u”(t) = e!(*2=%) f as solving
opu” = —Xu" +vAu”, u”(0) = f.

Duhamel’s formula gives

t
u’(t) = e "N f 4 V/ e~ DX A (s) ds.
0

Using Lemma 1, one shows:

Proposition 2. Given p € [1,00), f € LP(O), we have
tWAX L as v\ 0,

mn LP-norm.

Other estimates from (5), plus interpolation:
"2 Fllpay < e fllpea)
= "2 fllpayerzy < X fllp_aysrzy, 0<s<2
= Het(VA_X)f”Hs(O) < CeKtHfHHs(@), 0<s< 1/2.



Further interpolate with the elementary inequalities

1" 2= fll ooy < Ifllzro), 1< p < oo,

to get

127 fl| oa(0) < Co g™ || fll o0 (0)

2<g<o0, oqel0,1).

(6)

Proposition 3. For o,q as in (6),
fe Ha,q(o) = ili% et(uAfX)f — eftXf,

in H%%-norm.

More precise estimates
“Conormal estimates,” yielding strong interior convergence. Set

VRHO)={uec L*(0):Y, - Yjuec L*(O):Vj<k Y, €X'},

where

X' = {Y smooth vector field on O : Y || 00}.
Lemma 4. C§°(0O) is dense in V*(O).

Proposition 5. For each k € Zt, e!"2=X) is a strongly continuous semigroup on

VE(O), and
€A% fllpe < e Pr| fllyr,

with By independent of v € (0,1].

Proof. Set u = e!"2=X) f and estimate
d 7 2 J J
E”Y U(t)”L2 = 2(Y 8tU,Y U)LQ,

where Y/ =Y}, ---Yj,. One needs to make a careful study of the commutators

(A Y],



6

Proposition 6. In the setting of Proposition 5,
feVvko) = lim, etWA=X) f — =t X g
V—

in norm, in V*(O).

Proof. Use Proposition 5 plus L?-norm convergence to get convergence weak* in
VE(O). Use denseness of V2¥(0) in V¥(O) plus the interpolation result:

VF(0) = [L*(0), V(O] 2,

(whose proof is not trivial) to finish off Proposition 6.

Remark. The spaces V*(O) are special cases of “weighted b-Sobolev spaces,”
introduced by R. Melrose and used in scattering theory.

Still more precise estimates: exhibiting the boundary layer
Set

(7) Uy(t) — etXet(VA—X) f
This solves
(8) =vL(t)v”, v(0)=f, UV|R+X60 =0,

where

L(t) = !X Ae™X

is a smooth family of strongly elliptic operators on O.

Say O is a smoothly bounded domain in M, a compact Riemannian manifold with-
out boundary, and X is extended to a smooth vector field on M. Construct a
parametrix for the solution on RT x M to

(9) 88‘/; _VLHVY, V()= F,

valid uniformly for ¢ € [0,7y], v € (0,1], increasingly precise as v \, 0. The
construction is a (nontrivial) variant of the heat kernel parametrix construction. It
gives

(10) VY (t,z) = / H(w,t,2,y)F(y) dV (y),

where

H(V7t7x7y) ~ ZHk(l/,t,x,y),
(11) k=20

Gt 2)Y? G oy o) (o)
Ho(v,t,x,y) = W@ G(t,x)(z—y) (z—y)/4vt

(in local coordinates), the terms for k£ > 1 being progresively smaller and smoother.

Then solve (8) by the method of layer potentials. Here is one result.



Proposition 7. Given I = [0,T], § > 0, the family v¥ in (7)-(8) satisfies
(12) 10" = (f = 2D0 ") | = (rx0) < CUW2 (| fll gr.o 0

where
£t y) = xee (5 f(y)

and DY is the layer potential operator

H
Ofo (), 5,t,2,4) dS.(y) ds.
S’y

13 D =v [ [ 10
o0

Here 0/0ns, and dS, are suitable normal derivatives and boundary surface area
forms, and Hy is a variant of Hy in (11).

Third attack

Return to analysis of

ow”
ot

Here X, belongs to a suitable class of t-dependent vector fields, containing the
example

(14) =vAw” — X,w".

X, =0"(t,2)0,, v'(t,x)= et”an(z),
when O = (R/Z) x I. As before,

(15) 0, w’(0)=W.

wV|R+><8(9 =

Proposition 8. Given W € VF(O), there exists a unique solution to (14)-(15),
such that -
W € C([0,50), VE(0)) N (0, 50) x O),

and we have
[w” (8)]lve < P W Iy,

with By, independent of v € (0, 1].

Proof. More elaborate variant of that done for d,u” = (vA — X)u”, in Proposition
5.

Convergence result

Proposition 9. In the setting of Proposition 8,

(16) W e VE(O) = w”(t) — e W,
in VE-norm, as v\, 0.

Proof. L?-norm convergence follows from the first two attacks. The V*-norm
bounds in Proposition 8 then imply weak* convergence in V*. Density of V?*(0) C
V¥(0O) and interpolation then imply norm convergence in (16).



