Vanishing Viscosity Limit for Navier-Stokes Flows: No-slip Boundary Condition

Navier-Stokes Equations

$$
\begin{align*}
& \partial_{t} u^{\nu}+\nabla_{u^{\nu}} u^{\nu}+\nabla p^{\nu}=\nu \Delta u^{\nu}, \\
& \operatorname{div} u^{\nu}=0 \\
& u^{\nu}(t)=0 \text { on } \partial \Omega, \tag{NS}\\
& u^{\nu}(0, x)=u_{0}(x) \text { given. }
\end{align*}
$$

More generally might take $u^{\nu}(t)=B(t)$ on $\partial \Omega, B(t) \| \partial \Omega$ (moving boundary). Assume

$$
u_{0} \| \partial \Omega
$$

Circularly symmetric 2D flow

Joint with M. Lopes Filho, A. Mazzucato, and H. Nussenzveig Lopes $\Omega=D$, disk, or annulus, centered at $0 \in \mathbb{R}^{2}$.

$$
u^{\nu}(t, x)=\frac{\alpha(t)}{2 \pi} x^{\perp}, \quad x \in \partial D
$$

Circular symmetry:

$$
u_{0}\left(R_{\theta} x\right)=R_{\theta} u_{0}(x)
$$

Implies circular symmetry for all $t>0$.
Get detailed analysis of convergence

$$
u^{\nu}(t) \rightarrow u^{0}(t) \equiv u_{0}
$$

steady solution to the Euler equation.

3D plane parallel channel flow

And related singular perturbation problems
Joint with A. Mazzucato

$$
\begin{aligned}
& \Omega=\{(x, y, z): 0 \leq z \leq 1\} \\
& u^{\nu}(t, x, y, z)=\left(v^{\nu}(t, z), w^{\nu}(t, x, z), 0\right)
\end{aligned}
$$

For such flows, we have

$$
\begin{aligned}
& \nabla_{u^{\nu}} u^{\nu}=\left(0, v^{\nu}(t, z) \partial_{x} w^{\nu}(t, x, z), 0\right) \\
& \Rightarrow \operatorname{div} \nabla_{u^{\nu}} u^{\nu}=0 \\
& \Rightarrow p^{\nu} \equiv 0(\text { WLOG }) \\
& 1
\end{aligned}
$$

So NS equations become

$$
\begin{align*}
\frac{\partial v^{\nu}}{\partial t} & =\nu \frac{\partial^{2} v^{\nu}}{\partial z^{2}} \tag{1}\\
\frac{\partial w^{\nu}}{\partial t}+v^{\nu} \frac{\partial w^{\nu}}{\partial x} & =\nu\left(\frac{\partial^{2} w^{\nu}}{\partial x^{2}}+\frac{\partial^{2} w^{\nu}}{\partial z^{2}}\right)
\end{align*}
$$

Boundary conditions:

$$
v^{\nu}(t, z)=0, \quad w^{\nu}(t, x, z)=0 \text { for } z=0,1 .
$$

Initial data

$$
\begin{aligned}
& v^{\nu}(0, z)=V(z), \quad w^{\nu}(0, x, z)=W(x, z) \\
& V \in C^{\infty}(I), \quad W \in C^{\infty}(\overline{\mathcal{O}}), \quad I=[0,1], \quad \overline{\mathcal{O}}=(\mathbb{R} / \mathbb{Z}) \times[0,1],
\end{aligned}
$$

(assume periodicity in x, for convenience).

Euler equations:

(E)

$$
\begin{aligned}
& \partial_{t} u^{0}+\nabla_{u^{0}} u^{0}+\nabla p^{0}=0, \\
& \operatorname{div} u^{0}=0, \quad u^{0}(t) \| \partial \Omega
\end{aligned}
$$

Plane parallel case:

$$
u^{0}(t, x, y, z)=\left(v^{0}(t, z), w^{0}(t, x, z), 0\right)
$$

Euler equations become

$$
\begin{aligned}
\frac{\partial v^{0}}{\partial t} & =0 \Rightarrow v^{0}(t, z) \equiv V(z) \\
\frac{\partial w^{0}}{\partial t}+v^{0} \frac{\partial w^{0}}{\partial x} & =0 \Rightarrow w^{0}(t, x, z)=W(x-t V(z), z)
\end{aligned}
$$

Desire convergence results:

$$
v^{\nu} \rightarrow v^{0}, \quad w^{\nu} \rightarrow w^{0}, \quad \text { as } \nu \searrow 0 .
$$

Convergence $v^{\nu} \rightarrow v^{0}$ elementary.
Convergence $w^{\nu} \rightarrow w^{0}$ much more subtle.

First attack

Equation for w^{ν} in (1) has the form

$$
\frac{\partial w^{\nu}}{\partial t}=\nu \Delta w^{\nu}-X_{\nu} w^{\nu},\left.\quad w^{\nu}\right|_{\mathbb{R}^{+} \times \partial \mathcal{O}}=0 .
$$

Here

$$
\begin{equation*}
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}, \quad X_{\nu}=v^{\nu}(t, z) \frac{\partial}{\partial x}, \quad v^{\nu}(t, z)=e^{\nu t \partial_{z}^{2}} V(z) . \tag{2}
\end{equation*}
$$

Rewrite (2) as

$$
\frac{\partial w^{\nu}}{\partial t}=(\nu \Delta-X) w^{\nu}+\left(X-X_{\nu}\right) w^{\nu}
$$

where

$$
X=V(z) \partial_{x}
$$

Apply Duhamel's formula:

$$
\begin{equation*}
w^{\nu}(t)=e^{t(\nu \Delta-X)} W+\int_{0}^{t} e^{(t-s)(\nu \Delta-X)}\left[\left(X-X_{\nu}\right) w^{\nu}(s)\right] d s \tag{3}
\end{equation*}
$$

Note:

$$
\left(X-X_{\nu}\right) w^{\nu}(s)=\left(V(z)-v^{\nu}(s, z)\right) \partial_{x} w^{\nu}(s, x, z) .
$$

Note that $w_{k}^{\nu}=\partial_{x}^{k} w^{\nu}$ satisfies

$$
\frac{\partial w_{k}^{\nu}}{\partial t}+v^{\nu} \frac{\partial w_{k}^{\nu}}{\partial x}=\nu \Delta w_{k}^{\nu},
$$

since ∂_{x} commutes with X_{ν}. Also $\left.w_{k}^{\nu}\right|_{\mathbb{R}^{+} \times \partial \mathcal{O}}=0$, so maximum principle applies:

$$
\left\|\partial_{x} w^{\nu}(s)\right\|_{L^{\infty}(\mathcal{O})} \leq\left\|\partial_{x} W\right\|_{L^{\infty}(\mathcal{O})} \leq K \text { (say) } .
$$

Using positivity of $e^{(t-s)(\nu \Delta-X)}$,

$$
\begin{aligned}
& \left|e^{(t-s)(\nu \Delta-X)}\left[\left(V-v^{\nu}(s)\right) \partial_{x} w^{\nu}(s)\right]\right| \\
& \leq K e^{(t-s)(\nu \Delta-X)}\left|V(z)-v^{\nu}(s, z)\right| \\
& =K e^{(t-s) \nu \Delta}\left|V(z)-v^{\nu}(s, z)\right| .
\end{aligned}
$$

Conclusion:

$$
\begin{align*}
& \left|w^{\nu}(t, x, z)-e^{t(\nu \Delta-X)} W(x, z)\right| \\
& \leq K \int_{0}^{t} e^{(t-s) \nu \Delta}\left|V(z)-v^{\nu}(s, z)\right| d s \tag{4}\\
& =R^{\nu}(t, z)
\end{align*}
$$

Note: We could replace $e^{(t-s) \nu \Delta}$ in (4) by $e^{(t-s) \nu \partial_{z}^{2}}$. There are elementary estimates on $R^{\nu}(t, z)$.

Second attack

Estimates on $e^{t(\nu \Delta-X)}$
Expand the setting:
$\overline{\mathcal{O}}$ compact Riemannian manifold with smooth boundary $\partial \mathcal{O}$,
Δ Laplace-Beltrami operator on $\overline{\mathcal{O}}$,
X smooth vector field, $\operatorname{div} X=0, \quad X \| \partial \mathcal{O}$.
Note: $\left.\mathcal{D}(\nu \Delta-X)^{k}\right)=\mathcal{D}\left(\Delta^{k}\right)$ for $k=1,2$.

$$
\begin{aligned}
\mathcal{D}(\Delta) & =H^{2}(\mathcal{O}) \cap H_{0}^{1}(\mathcal{O}) \\
\mathcal{D}\left(\Delta^{2}\right) & =\left\{u \in H^{4}(\mathcal{O}): u, \Delta u \in H_{0}^{1}(\mathcal{O})\right\}
\end{aligned}
$$

Lemma 1. There exists K, independent of $\nu \in(0,1]$, such that for $f \in \mathcal{D}\left(\Delta^{2}\right), u^{\nu}(t)=$ $e^{t(\nu \Delta-X)} f$,

$$
\begin{equation*}
\left\|\Delta u^{\nu}(t)\right\|_{L^{2}}^{2} \leq e^{2 K t}\|\Delta f\|_{L^{2}}^{2} \tag{5}
\end{equation*}
$$

Proof. Estimate

$$
\frac{d}{d t}\left\|\Delta u^{\nu}(t)\right\|_{L^{2}}^{2}=2 \operatorname{Re}\left(\Delta \partial_{t} u^{\nu}, \Delta u^{\nu}\right)_{L^{2}}
$$

Convergence result: write $u^{\nu}(t)=e^{t(\nu \Delta-X)} f$ as solving

$$
\partial_{t} u^{\nu}=-X u^{\nu}+\nu \Delta u^{\nu}, \quad u^{\nu}(0)=f .
$$

Duhamel's formula gives

$$
u^{\nu}(t)=e^{-t X} f+\nu \int_{0}^{t} e^{-(t-s) X} \Delta u^{\nu}(s) d s
$$

Using Lemma 1, one shows:
Proposition 2. Given $p \in[1, \infty), f \in L^{p}(\mathcal{O})$, we have

$$
e^{t(\nu \Delta-X)} f \rightarrow f \text { as } \nu \searrow 0,
$$

in L^{p}-norm.
Other estimates from (5), plus interpolation:

$$
\begin{aligned}
& \left\|e^{t(\nu \Delta-X)} f\right\|_{\mathcal{D}(\Delta)} \leq e^{K t}\|f\|_{\mathcal{D}(\Delta)} \\
& \Rightarrow\left\|e^{t(\nu \Delta-X)} f\right\|_{\left.\mathcal{D}(-\Delta)^{s / 2}\right)} \leq e^{K t}\|f\|_{\left.\mathcal{D}(-\Delta)^{s / 2}\right)}, \quad 0<s<2 \\
& \Rightarrow\left\|e^{t(\nu \Delta-X)} f\right\|_{H^{s}(\mathcal{O})} \leq C e^{K t}\|f\|_{H^{s}(\mathcal{O})}, \quad 0<s<1 / 2
\end{aligned}
$$

Further interpolate with the elementary inequalities

$$
\left\|e^{t(\nu \Delta-X)} f\right\|_{L^{p}(\mathcal{O})} \leq\|f\|_{L^{p}(\mathcal{O})}, \quad 1 \leq p<\infty
$$

to get

$$
\begin{align*}
& \left\|e^{t(\nu \Delta-X)} f\right\|_{H^{\sigma, q}(\mathcal{O})} \leq C_{\sigma, q} e^{K t}\|f\|_{H^{\sigma, q}(\mathcal{O})}, \tag{6}\\
& 2 \leq q<\infty, \quad \sigma q \in[0,1)
\end{align*}
$$

Proposition 3. For σ, q as in (6),

$$
f \in H^{\sigma, q}(\mathcal{O}) \Rightarrow \lim _{\nu \rightarrow 0} e^{t(\nu \Delta-X)} f=e^{-t X} f
$$

in $H^{\sigma, q}$-norm.

More precise estimates

"Conormal estimates," yielding strong interior convergence. Set

$$
\mathcal{V}^{k}(\mathcal{O})=\left\{u \in L^{2}(\mathcal{O}): Y_{1} \cdots Y_{j} u \in L^{2}(\mathcal{O}): \forall j \leq k, Y_{\ell} \in \mathfrak{X}^{1}\right\},
$$

where

$$
\mathfrak{X}^{1}=\{Y \text { smooth vector field on } \overline{\mathcal{O}}: Y \| \partial \mathcal{O}\} .
$$

Lemma 4. $C_{0}^{\infty}(\mathcal{O})$ is dense in $\mathcal{V}^{k}(\mathcal{O})$.
Proposition 5. For each $k \in \mathbb{Z}^{+}, e^{t(\nu \Delta-X)}$ is a strongly continuous semigroup on $\mathcal{V}^{k}(\mathcal{O})$, and

$$
\left\|e^{t(\nu \Delta-X)} f\right\|_{\mathcal{V}^{k}} \leq e^{t B_{k}}\|f\|_{\mathcal{V}^{k}}
$$

with B_{k} independent of $\nu \in(0,1]$.
Proof. Set $u=e^{t(\nu \Delta-X)} f$ and estimate

$$
\frac{d}{d t}\left\|Y^{J} u(t)\right\|_{L^{2}}^{2}=2\left(Y^{J} \partial_{t} u, Y^{J} u\right)_{L^{2}}
$$

where $Y^{J}=Y_{j_{1}} \cdots Y_{j_{k}}$. One needs to make a careful study of the commutators

$$
\left[\Delta, Y^{J}\right] .
$$

Proposition 6. In the setting of Proposition 5,

$$
f \in \mathcal{V}^{k}(\mathcal{O}) \Rightarrow \lim _{\nu \rightarrow 0} e^{t(\nu \Delta-X)} f=e^{-t X} f
$$

in norm, in $\mathcal{V}^{k}(\mathcal{O})$.
Proof. Use Proposition 5 plus L^{2}-norm convergence to get convergence weak* in $\mathcal{V}^{k}(\mathcal{O})$. Use denseness of $\mathcal{V}^{2 k}(\mathcal{O})$ in $\mathcal{V}^{k}(\mathcal{O})$ plus the interpolation result:

$$
\mathcal{V}^{k}(\mathcal{O})=\left[L^{2}(\mathcal{O}), \mathcal{V}^{2 k}(\mathcal{O})\right]_{1 / 2},
$$

(whose proof is not trivial) to finish off Proposition 6.

Remark. The spaces $\mathcal{V}^{k}(\mathcal{O})$ are special cases of "weighted b-Sobolev spaces," introduced by R. Melrose and used in scattering theory.

Still more precise estimates: exhibiting the boundary layer Set

$$
\begin{equation*}
v^{\nu}(t)=e^{t X} e^{t(\nu \Delta-X)} f \tag{7}
\end{equation*}
$$

This solves

$$
\begin{equation*}
\frac{\partial v^{\nu}}{\partial t}=\nu L(t) v^{\nu}, \quad v^{\nu}(0)=f,\left.\quad v^{\nu}\right|_{\mathbb{R}^{+} \times \partial \mathcal{O}}=0 \tag{8}
\end{equation*}
$$

where

$$
L(t)=e^{t X} \Delta e^{-t X}
$$

is a smooth family of strongly elliptic operators on $\overline{\mathcal{O}}$.
Say \mathcal{O} is a smoothly bounded domain in M, a compact Riemannian manifold without boundary, and X is extended to a smooth vector field on M. Construct a parametrix for the solution on $\mathbb{R}^{+} \times M$ to

$$
\begin{equation*}
\frac{\partial V^{\nu}}{\partial t}=\nu L(t) V^{\nu}, \quad V^{\nu}(0)=F \tag{9}
\end{equation*}
$$

valid uniformly for $t \in\left[0, T_{0}\right], \nu \in(0,1]$, increasingly precise as $\nu \searrow 0$. The construction is a (nontrivial) variant of the heat kernel parametrix construction. It gives

$$
\begin{equation*}
V^{\nu}(t, x)=\int_{M} H(\nu, t, x, y) F(y) d V(y), \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& H(\nu, t, x, y) \sim \sum_{k \geq 0} H_{k}(\nu, t, x, y), \\
& H_{0}(\nu, t, x, y)=\frac{\mathcal{G}(t, x)^{1 / 2}}{(4 \pi \nu t)^{n / 2}} e^{-\mathcal{G}(t, x)(x-y) \cdot(x-y) / 4 \nu t} \tag{11}
\end{align*}
$$

(in local coordinates), the terms for $k \geq 1$ being progresively smaller and smoother.
Then solve (8) by the method of layer potentials. Here is one result.

Proposition 7. Given $I=[0, T], \delta>0$, the family v^{ν} in (7)-(8) satisfies

$$
\begin{equation*}
\left\|v^{\nu}-\left(f-2 \mathcal{D}_{\nu}^{0} f^{b}\right)\right\|_{L^{\infty}(I \times \mathcal{O})} \leq C(I) \nu^{1 / 2}\|f\|_{C^{1, \delta}(\overline{\mathcal{O}})} \tag{12}
\end{equation*}
$$

where

$$
f^{b}(t, y)=\chi_{\mathbb{R}^{+}}(t) f(y)
$$

and \mathcal{D}_{ν}^{0} is the layer potential operator

$$
\begin{equation*}
\mathcal{D}_{\nu}^{0} f^{b}(t, x)=\nu \int_{0}^{t} \int_{\partial \mathcal{O}} f(y) \frac{\partial H_{0}}{\partial n_{s, y}}(\nu, s, t, x, y) d S_{s}(y) d s \tag{13}
\end{equation*}
$$

Here $\partial / \partial n_{s, y}$ and $d S_{s}$ are suitable normal derivatives and boundary surface area forms, and H_{0} is a variant of H_{0} in (11).

Third attack

Return to analysis of

$$
\begin{equation*}
\frac{\partial w^{\nu}}{\partial t}=\nu \Delta w^{\nu}-X_{\nu} w^{\nu} \tag{14}
\end{equation*}
$$

Here X_{ν} belongs to a suitable class of t-dependent vector fields, containing the example

$$
X_{\nu}=v^{\nu}(t, z) \partial_{x}, \quad v^{\nu}(t, x)=e^{t \nu \partial_{z}^{2}} V(z),
$$

when $\overline{\mathcal{O}}=(\mathbb{R} / \mathbb{Z}) \times I$. As before,

$$
\begin{equation*}
\left.w^{\nu}\right|_{\mathbb{R}^{+} \times \partial \mathcal{O}}=0, \quad w^{\nu}(0)=W . \tag{15}
\end{equation*}
$$

Proposition 8. Given $W \in \mathcal{V}^{k}(\mathcal{O})$, there exists a unique solution to (14)-(15), such that

$$
w^{\nu} \in C\left([0, \infty), \mathcal{V}^{k}(\mathcal{O})\right) \cap C^{\infty}((0, \infty) \times \overline{\mathcal{O}})
$$

and we have

$$
\left\|w^{\nu}(t)\right\|_{\mathcal{V}^{k}} \leq e^{t B_{k}}\|W\|_{\mathcal{V}^{k}}
$$

with B_{k} independent of $\nu \in(0,1]$.
Proof. More elaborate variant of that done for $\partial_{t} u^{\nu}=(\nu \Delta-X) u^{\nu}$, in Proposition 5.

Convergence result

Proposition 9. In the setting of Proposition 8,

$$
\begin{equation*}
W \in \mathcal{V}^{k}(\mathcal{O}) \Rightarrow w^{\nu}(t) \rightarrow e^{-t X} W \tag{16}
\end{equation*}
$$

in \mathcal{V}^{k}-norm, as $\nu \searrow 0$.
Proof. L^{2}-norm convergence follows from the first two attacks. The \mathcal{V}^{k}-norm bounds in Proposition 8 then imply weak ${ }^{*}$ convergence in \mathcal{V}^{k}. Density of $\mathcal{V}^{2 k}(\mathcal{O}) \subset$ $\mathcal{V}^{k}(\mathcal{O})$ and interpolation then imply norm convergence in (16).

