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Let Ω ⊂ C be an open set. A C1 map f : Ω → C is said to be weakly conformal
provided

(1) |∂xf |2 = |∂yf |2, 〈∂xf, ∂yf〉 = 0,

on Ω, where 〈·, ·〉 is the standard inner product on R2, identified with C in the
usual fashion. It is readily verified that such f is holomorphic on the set where
detDf > 0, and anti-holomorphic on the set where detDf < 0, and furthermore
that det Df(z) = 0 ⇒ Df(z) = 0. Hence an equivalent condition is that if

(2) O+ = {z ∈ Ω : ∂zf = 0}, O− = {z ∈ Ω : ∂zf = 0},

then
Ω = O+ ∪ O− = O+ ∪ O−,

where O± denotes the interior of O±. Another equivalent condition is that O+∪O−
is dense in Ω.

The following reveals more precisely the structure of a weakly conformal map.

Proposition 1. If Ω is connected and f ∈ C1(Ω) is weakly conformal, then f is
either holomorphic on Ω or anti-holomorphic on Ω.

Such a result is well known, at least if the hypothesis is strengthened to f ∈
C2(Ω). Proofs are given in [GMS], p. 372, and [Hel], p. 39. Here is a quick variant.
Given these hypotheses, we can look at g = ∂zf . We have

(3) ∂zg =
1
4
∆f = 0 on O+ ∪ O−.

Also f ∈ C2(Ω) ⇒ ∆f ∈ C(Ω), so O+ ∪ O− dense in Ω ⇒ ∆f = 0 on Ω, so f is
real-analytic on Ω, and hence so is g. If O− has nonempty interior, g ≡ 0, hence f
is anti-holomorphic on Ω, and otherwise O+ = Ω, hence f is holomorphic on Ω.

To prove the full strength version of Proposition 1, we continue to look at g =
∂zf . Now we just have g ∈ C(Ω), though we still have

(4) g holomorphic on O+, g = 0 on O−,

and O+ ∪ O− = Ω. Hence Proposition 1 is a consequence of the following.
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Proposition 2. Let Ω ⊂ C be a connected open set, O+ ⊂ Ω an open subset, and
g ∈ C(Ω). Assume

(5) g holomorphic on O+, g = 0 on K = Ω \ O+.

Then g is holomorphic on Ω. In particular if K has nonempty interior, then g ≡ 0.

We emphasize the last assertion only because this is all that is needed to complete
the proof of Proposition 1.

Proposition 2 is a classical result of T. Rado. Thanks to N. Kerzman for bringing
this to my attention, and also for discussing the following proof (which is in fact
close to a proof presented in [N], pp. 53–54). The method involves the use of
subharmonic functions. Background material on subharmonic functions can be
found on pp. 16–19 of [H].

Assume g is not ≡ 0 on O+, since otherwise the result is trivial. Then log |g| is
subharmonic on O+ ([H], Corollary 1.6.6). Given N ∈ Z+, set

(6)
ΦN (z) = max(−N, log |g(z)|) on O+,

−N on K.

Then ΦN is subharmonic on O+ ([H], Theorem 1.6.2). Also ΦN = −N on a
neighborhood of K. Hence ΦN is subharmonic on Ω ([H], Corollary 1.6.5). Now,
as N ↗ +∞,

(7)
ΦN (z) ↘ Φ(z) = log |g(z)| on O+,

−∞ on K,

and again by ([H], Theorem 1.6.2), Φ is subharmonic on Ω. Next, if Ω is connected
and Φ is not ≡ −∞, then Φ is locally integrable ([H], Theorem 1.6.9). This implies
that K has measure zero, hence empty interior, unless g ≡ 0.

As mentioned, this is enough to prove Proposition 1, but we push on with the
proof of Proposition 2. At this point, the fact that (7) holds and Φ is subharmonic
implies that K is a (closed ) polar set. In this case, given

(8) g ∈ C(Ω), g holomorphic (or even harmonic) on Ω \K,

it is a well known result of Rado [R] that g is holomorphic (resp., harmonic) on Ω,
so Proposition 2 is proven.
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