Regularity of Weakly Conformal Maps

MICHAEL TAYLOR (IN CONSULTATION WITH NORBERTO KERZMAN)

Let $\Omega \subset \mathbb{C}$ be an open set. A C^1 map $f : \Omega \to \mathbb{C}$ is said to be weakly conformal provided

(1)
$$|\partial_x f|^2 = |\partial_y f|^2, \quad \langle \partial_x f, \partial_y f \rangle = 0,$$

on Ω , where $\langle \cdot, \cdot \rangle$ is the standard inner product on \mathbb{R}^2 , identified with \mathbb{C} in the usual fashion. It is readily verified that such f is holomorphic on the set where det Df > 0, and anti-holomorphic on the set where det Df < 0, and furthermore that det $Df(z) = 0 \Rightarrow Df(z) = 0$. Hence an equivalent condition is that if

(2)
$$\overline{\mathcal{O}}_{+} = \{ z \in \Omega : \partial_{\overline{z}} f = 0 \}, \quad \overline{\mathcal{O}}_{-} = \{ z \in \Omega : \partial_{z} f = 0 \},$$

then

$$\Omega = \overline{\mathcal{O}}_+ \cup \mathcal{O}_- = \mathcal{O}_+ \cup \overline{\mathcal{O}}_-,$$

where \mathcal{O}_{\pm} denotes the interior of $\overline{\mathcal{O}}_{\pm}$. Another equivalent condition is that $\mathcal{O}_{+} \cup \mathcal{O}_{-}$ is dense in Ω .

The following reveals more precisely the structure of a weakly conformal map.

Proposition 1. If Ω is connected and $f \in C^1(\Omega)$ is weakly conformal, then f is either holomorphic on Ω or anti-holomorphic on Ω .

Such a result is well known, at least if the hypothesis is strengthened to $f \in C^2(\Omega)$. Proofs are given in [GMS], p. 372, and [Hel], p. 39. Here is a quick variant. Given these hypotheses, we can look at $g = \partial_z f$. We have

(3)
$$\partial_{\overline{z}}g = \frac{1}{4}\Delta f = 0 \text{ on } \mathcal{O}_+ \cup \mathcal{O}_-.$$

Also $f \in C^2(\Omega) \Rightarrow \Delta f \in C(\Omega)$, so $\mathcal{O}_+ \cup \mathcal{O}_-$ dense in $\Omega \Rightarrow \Delta f = 0$ on Ω , so f is real-analytic on Ω , and hence so is g. If $\overline{\mathcal{O}}_-$ has nonempty interior, $g \equiv 0$, hence fis anti-holomorphic on Ω , and otherwise $\overline{\mathcal{O}}_+ = \Omega$, hence f is holomorphic on Ω .

To prove the full strength version of Proposition 1, we continue to look at $g = \partial_z f$. Now we just have $g \in C(\Omega)$, though we still have

(4)
$$g$$
 holomorphic on $\mathcal{O}_+, \quad g = 0$ on $\overline{\mathcal{O}}_-,$

and $\mathcal{O}_+ \cup \overline{\mathcal{O}}_- = \Omega$. Hence Proposition 1 is a consequence of the following.

Proposition 2. Let $\Omega \subset \mathbb{C}$ be a connected open set, $\mathcal{O}_+ \subset \Omega$ an open subset, and $g \in C(\Omega)$. Assume

(5)
$$g$$
 holomorphic on \mathcal{O}_+ , $g = 0$ on $K = \Omega \setminus \mathcal{O}_+$.

Then g is holomorphic on Ω . In particular if K has nonempty interior, then $g \equiv 0$.

We emphasize the last assertion only because this is all that is needed to complete the proof of Proposition 1.

Proposition 2 is a classical result of T. Rado. Thanks to N. Kerzman for bringing this to my attention, and also for discussing the following proof (which is in fact close to a proof presented in [N], pp. 53–54). The method involves the use of subharmonic functions. Background material on subharmonic functions can be found on pp. 16–19 of [H].

Assume g is not $\equiv 0$ on \mathcal{O}_+ , since otherwise the result is trivial. Then $\log |g|$ is subharmonic on \mathcal{O}_+ ([H], Corollary 1.6.6). Given $N \in \mathbb{Z}^+$, set

(6)
$$\Phi_N(z) = \max(-N, \log |g(z)|) \quad \text{on } \mathcal{O}_+, \\ -N \qquad \text{on } K.$$

Then Φ_N is subharmonic on \mathcal{O}_+ ([H], Theorem 1.6.2). Also $\Phi_N = -N$ on a neighborhood of K. Hence Φ_N is subharmonic on Ω ([H], Corollary 1.6.5). Now, as $N \nearrow +\infty$,

(7)
$$\Phi_N(z) \searrow \Phi(z) = \log |g(z)| \quad \text{on } \mathcal{O}_+, \\ -\infty \quad \text{on } K,$$

and again by ([H], Theorem 1.6.2), Φ is subharmonic on Ω . Next, if Ω is connected and Φ is not $\equiv -\infty$, then Φ is locally integrable ([H], Theorem 1.6.9). This implies that K has measure zero, hence empty interior, unless $g \equiv 0$.

As mentioned, this is enough to prove Proposition 1, but we push on with the proof of Proposition 2. At this point, the fact that (7) holds and Φ is subharmonic implies that K is a (closed) *polar* set. In this case, given

(8) $g \in C(\Omega), g$ holomorphic (or even harmonic) on $\Omega \setminus K$,

it is a well known result of Rado [R] that g is holomorphic (resp., harmonic) on Ω , so Proposition 2 is proven.

References

[GMS] M. Giaquinta, G. Modica, and J. Soucek, Cartesian Currents in the Calculus of Variations, Vol. II, Springer-Verlag, New York, 1998.

- [Hel] F. Hélein, Constant Mean Curvature Surfaces, Harmonic Maps, and Integrable Systems, Birkhauser, Basel, 2001.
 - [H] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, N.J., 1966.
 - [N] R. Narasimhan, Several Complex Variables, Univ. of Chicago Press, Chicago, 1971.
 - [R] T. Rado, Subharmonic Functions, Berlin, 1937.