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We desire to prove the identity
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for t, r1, r2 > 0, where Jν(z) is the standard Bessel function and Iν(y) = e−πiν/2Jν(iy), y >
0, so
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To begin, one can expand Jν(rjλ) in power series (similar to (2)) and integrate
term by term, to see that the left side of (1) is equal to
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Meanwhile, by (2), the right side of (1) is equal to
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If we set yj = −r2
j /4t, we see that the asserted identity (1) is equivalent to the

identity
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This approach was taken in §8, Chapter 8 of [T], but no explicit proof of (5) was
given. We fill in the details here.

We compare coefficients of yj
1y

k
2 in (5). Since both sides of (5) are symmetric in

(y1, y2), it suffices to treat the case

(6) j ≤ k,

which we assume henceforth. Then we take ` + n = j, m + n = k and sum over
n ∈ {0, . . . , j}, to see that (5) is equivalent to the validity of
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whenever 0 ≤ j ≤ k. Using the identity

Γ(ν + j + 1) = (ν + j) · · · (ν + n + 1)Γ(ν + n + 1)

and its analogues for the other Γ-factors in (7), we see that (7) is equivalent to the
validity of
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for 0 ≤ j ≤ k. Note that the right side of (8) is a polynomial of degree j in ν, and
the general term on the left side of (8) is a polynomial of degree j − n in ν.

In order to establish (8), it is convenient to set
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and consider the associated polynomial identity in µ. With
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we see that {p0, p1, . . . , pj} is a basis of the space Pj of polynomials of degree j in
µ, and our task is to write
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as a linear combination of p0, . . . , pj . To this end, define

(12) T : Pj −→ Pj , Tp(µ) = p(µ + 1).

By explicit calculation,
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and an inductive argument gives
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By convention we set pi = 0 for i < 0. Our goal is to compute T kpj . Note that
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if j ≤ k. By (15),
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so we have
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This verifies (8) and completes the proof of (1).
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