Proof of the Weber integral formula

MICHAEL TAYLOR

We desire to prove the identity

(1)
$$\int_0^\infty e^{-t\lambda^2} J_\nu(r_1\lambda) J_\nu(r_2\lambda) \lambda \, d\lambda = \frac{1}{2t} e^{-(r_1^2 + r_2^2)/4t} I_\nu\left(\frac{r_1r_2}{2t}\right),$$

for $t, r_1, r_2 > 0$, where $J_{\nu}(z)$ is the standard Bessel function and $I_{\nu}(y) = e^{-\pi i \nu/2} J_{\nu}(iy), y > 0$, so

(2)
$$I_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{1}{k! \Gamma(\nu+k+1)} \left(\frac{z}{2}\right)^{2k}.$$

To begin, one can expand $J_{\nu}(r_j\lambda)$ in power series (similar to (2)) and integrate term by term, to see that the left side of (1) is equal to

(3)
$$\frac{1}{2t} \left(\frac{r_1 r_2}{4t}\right)^{\nu} \sum_{j,k \ge 0} \frac{\Gamma(\nu+j+k+1)}{\Gamma(\nu+j+1)\Gamma(\nu+k+1)} \frac{1}{j!k!} \left(-\frac{r_1^2}{4t}\right)^j \left(-\frac{r_2^2}{4t}\right)^k.$$

Meanwhile, by (2), the right side of (1) is equal to

(4)
$$\sum_{\ell,m\geq 0} \frac{1}{\ell!m!} \left(-\frac{r_1^2}{4t}\right)^\ell \left(-\frac{r_2^2}{4t}\right)^m \sum_{n=0}^\infty \frac{1}{n!\Gamma(\nu+n+1)} \left(\frac{r_1r_2}{4t}\right)^{2n}.$$

If we set $y_j = -r_j^2/4t$, we see that the asserted identity (1) is equivalent to the identity

(5)
$$\sum_{j,k\geq 0} \frac{\Gamma(\nu+j+k+1)}{\Gamma(\nu+j+1)\Gamma(\nu+k+1)} \frac{1}{j!k!} y_1^j y_2^k = \sum_{\ell,m,n\geq 0} \frac{1}{\ell!m!} \frac{1}{n!\Gamma(\nu+n+1)} y_1^{\ell+n} y_2^{m+n}.$$

This approach was taken in \S 8, Chapter 8 of [T], but no explicit proof of (5) was given. We fill in the details here.

We compare coefficients of $y_1^j y_2^k$ in (5). Since both sides of (5) are symmetric in (y_1, y_2) , it suffices to treat the case

$$(6) j \le k,$$

which we assume henceforth. Then we take $\ell + n = j$, m + n = k and sum over $n \in \{0, \ldots, j\}$, to see that (5) is equivalent to the validity of

(7)
$$\sum_{n=0}^{j} \frac{1}{(j-n)!(k-n)!n!\Gamma(\nu+n+1)} = \frac{\Gamma(\nu+j+k+1)}{\Gamma(\nu+j+1)\Gamma(\nu+k+1)} \frac{1}{j!k!},$$

whenever $0 \le j \le k$. Using the identity

$$\Gamma(\nu+j+1) = (\nu+j)\cdots(\nu+n+1)\Gamma(\nu+n+1)$$

and its analogues for the other Γ -factors in (7), we see that (7) is equivalent to the validity of

(8)
$$\sum_{n=0}^{j} \frac{j!k!}{(j-n)!(k-n)!n!} (\nu+j) \cdots (\nu+n+1) = (\nu+j+k) \cdots (\nu+k+1),$$

for $0 \le j \le k$. Note that the right side of (8) is a polynomial of degree j in ν , and the general term on the left side of (8) is a polynomial of degree j - n in ν .

In order to establish (8), it is convenient to set

(9)
$$\mu = \nu + j$$

and consider the associated polynomial identity in μ . With (10)

 $p_0(\mu) = 1$, $p_1(\mu) = \mu$, $p_2(\mu) = \mu(\mu - 1)$, ..., $p_j(\mu) = \mu(\mu - 1) \cdots (\mu - j + 1)$, we see that $\{p_0, p_1, \dots, p_j\}$ is a basis of the space \mathcal{P}_j of polynomials of degree j in μ , and our task is to write

(11)
$$p_j(\mu+k) = (\mu+k)(\mu+k-1)\cdots(\mu+k-j+1)$$

as a linear combination of p_0, \ldots, p_j . To this end, define

(12)
$$T: \mathcal{P}_j \longrightarrow \mathcal{P}_j, \quad Tp(\mu) = p(\mu+1).$$

By explicit calculation,

(13)
$$p_1(\mu+1) = p_1(\mu) + p_0(\mu),$$
$$p_2(\mu+1) = (\mu+1)\mu = \mu(\mu-1) + 2\mu = p_2(\mu) + 2p_1(\mu).$$

and an inductive argument gives

(14)
$$Tp_i = p_i + ip_{i-1}$$
.
By convention we set $p_i = 0$ for $i < 0$. Our goal is to compute $T^k p_j$. Note that

(15)
$$T = I + N, \quad Np_i = ip_{i-1},$$

and

(16)
$$T^{k} = \sum_{n=0}^{J} \binom{k}{n} N^{n},$$

(17) If
$$j \le k$$
. By (15),
(17) $N^n p_i = i(i-1)\cdots(i-n+1)p_{i-n}$

so we have

(18)
$$T^{k}p_{j} = \sum_{n=0}^{j} \binom{k}{n} j(j-1) \cdots (j-n+1)p_{j-n}$$
$$= \sum_{n=0}^{j} \frac{k!}{(k-n)!n!} \frac{j!}{(j-n)!} p_{j-n}.$$

This verifies (8) and completes the proof of (1).

Reference

[T] M. Taylor, Partial Differential Equations, Vol. 2, Springer-Verlag, New York, 1996.