Proof of the Weber integral formula

Michael Taylor

We desire to prove the identity

$$
\begin{equation*}
\int_{0}^{\infty} e^{-t \lambda^{2}} J_{\nu}\left(r_{1} \lambda\right) J_{\nu}\left(r_{2} \lambda\right) \lambda d \lambda=\frac{1}{2 t} e^{-\left(r_{1}^{2}+r_{2}^{2}\right) / 4 t} I_{\nu}\left(\frac{r_{1} r_{2}}{2 t}\right) \tag{1}
\end{equation*}
$$

for $t, r_{1}, r_{2}>0$, where $J_{\nu}(z)$ is the standard Bessel function and $I_{\nu}(y)=e^{-\pi i \nu / 2} J_{\nu}(i y), y>$ 0 , so

$$
\begin{equation*}
I_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{1}{k!\Gamma(\nu+k+1)}\left(\frac{z}{2}\right)^{2 k} \tag{2}
\end{equation*}
$$

To begin, one can expand $J_{\nu}\left(r_{j} \lambda\right)$ in power series (similar to (2)) and integrate term by term, to see that the left side of (1) is equal to

$$
\begin{equation*}
\frac{1}{2 t}\left(\frac{r_{1} r_{2}}{4 t}\right)^{\nu} \sum_{j, k \geq 0} \frac{\Gamma(\nu+j+k+1)}{\Gamma(\nu+j+1) \Gamma(\nu+k+1)} \frac{1}{j!k!}\left(-\frac{r_{1}^{2}}{4 t}\right)^{j}\left(-\frac{r_{2}^{2}}{4 t}\right)^{k} . \tag{3}
\end{equation*}
$$

Meanwhile, by (2), the right side of (1) is equal to

$$
\begin{equation*}
\sum_{\ell, m \geq 0} \frac{1}{\ell!m!}\left(-\frac{r_{1}^{2}}{4 t}\right)^{\ell}\left(-\frac{r_{2}^{2}}{4 t}\right)^{m} \sum_{n=0}^{\infty} \frac{1}{n!\Gamma(\nu+n+1)}\left(\frac{r_{1} r_{2}}{4 t}\right)^{2 n} \tag{4}
\end{equation*}
$$

If we set $y_{j}=-r_{j}^{2} / 4 t$, we see that the asserted identity (1) is equivalent to the identity

$$
\begin{align*}
\sum_{j, k \geq 0} & \frac{\Gamma(\nu+j+k+1)}{\Gamma(\nu+j+1) \Gamma(\nu+k+1)} \frac{1}{j!k!} y_{1}^{j} y_{2}^{k} \\
& =\sum_{\ell, m, n \geq 0} \frac{1}{\ell!m!} \frac{1}{n!\Gamma(\nu+n+1)} y_{1}^{\ell+n} y_{2}^{m+n} \tag{5}
\end{align*}
$$

This approach was taken in $\S 8$, Chapter 8 of $[\mathrm{T}]$, but no explicit proof of (5) was given. We fill in the details here.

We compare coefficients of $y_{1}^{j} y_{2}^{k}$ in (5). Since both sides of (5) are symmetric in $\left(y_{1}, y_{2}\right)$, it suffices to treat the case

$$
\begin{equation*}
j \leq k \tag{6}
\end{equation*}
$$

which we assume henceforth. Then we take $\ell+n=j, m+n=k$ and sum over $n \in\{0, \ldots, j\}$, to see that (5) is equivalent to the validity of

$$
\begin{equation*}
\sum_{n=0}^{j} \frac{1}{(j-n)!(k-n)!n!\Gamma(\nu+n+1)}=\frac{\Gamma(\nu+j+k+1)}{\Gamma(\nu+j+1) \Gamma(\nu+k+1)} \frac{1}{j!k!} \tag{7}
\end{equation*}
$$

whenever $0 \leq j \leq k$. Using the identity

$$
\Gamma(\nu+j+1)=(\nu+j) \cdots(\nu+n+1) \Gamma(\nu+n+1)
$$

and its analogues for the other Γ-factors in (7), we see that (7) is equivalent to the validity of
(8) $\quad \sum_{n=0}^{j} \frac{j!k!}{(j-n)!(k-n)!n!}(\nu+j) \cdots(\nu+n+1)=(\nu+j+k) \cdots(\nu+k+1)$,
for $0 \leq j \leq k$. Note that the right side of (8) is a polynomial of degree j in ν, and the general term on the left side of (8) is a polynomial of degree $j-n$ in ν.

In order to establish (8), it is convenient to set

$$
\begin{equation*}
\mu=\nu+j \tag{9}
\end{equation*}
$$

and consider the associated polynomial identity in μ. With
$p_{0}(\mu)=1, \quad p_{1}(\mu)=\mu, \quad p_{2}(\mu)=\mu(\mu-1), \quad \cdots \quad, p_{j}(\mu)=\mu(\mu-1) \cdots(\mu-j+1)$, we see that $\left\{p_{0}, p_{1}, \ldots, p_{j}\right\}$ is a basis of the space \mathcal{P}_{j} of polynomials of degree j in μ, and our task is to write

$$
\begin{equation*}
p_{j}(\mu+k)=(\mu+k)(\mu+k-1) \cdots(\mu+k-j+1) \tag{11}
\end{equation*}
$$

as a linear combination of p_{0}, \ldots, p_{j}. To this end, define

$$
\begin{equation*}
T: \mathcal{P}_{j} \longrightarrow \mathcal{P}_{j}, \quad T p(\mu)=p(\mu+1) \tag{12}
\end{equation*}
$$

By explicit calculation,

$$
\begin{align*}
& p_{1}(\mu+1)=p_{1}(\mu)+p_{0}(\mu) \\
& p_{2}(\mu+1)=(\mu+1) \mu=\mu(\mu-1)+2 \mu=p_{2}(\mu)+2 p_{1}(\mu) \tag{13}
\end{align*}
$$

and an inductive argument gives

$$
\begin{equation*}
T p_{i}=p_{i}+i p_{i-1} \tag{14}
\end{equation*}
$$

By convention we set $p_{i}=0$ for $i<0$. Our goal is to compute $T^{k} p_{j}$. Note that

$$
\begin{equation*}
T=I+N, \quad N p_{i}=i p_{i-1}, \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{k}=\sum_{n=0}^{j}\binom{k}{n} N^{n} \tag{16}
\end{equation*}
$$

if $j \leq k$. By (15),

$$
\begin{equation*}
N^{n} p_{i}=i(i-1) \cdots(i-n+1) p_{i-n} \tag{17}
\end{equation*}
$$

so we have

$$
\begin{align*}
T^{k} p_{j} & =\sum_{n=0}^{j}\binom{k}{n} j(j-1) \cdots(j-n+1) p_{j-n} \\
& =\sum_{n=0}^{j} \frac{k!}{(k-n)!n!} \frac{j!}{(j-n)!} p_{j-n} . \tag{18}
\end{align*}
$$

This verifies (8) and completes the proof of (1).

Reference

[T] M. Taylor, Partial Differential Equations, Vol. 2, Springer-Verlag, New York, 1996.

