Simple Potential Wells in \mathbb{R}^{3} as a Model for the Deuteron

Michael Taylor

Abstract

We construct the wave function $\psi(x)$ for a simple model of the deuteron. We see that, in this model, the nucleons have a greater probability of lying outside the potential well than in it, as noted in nuclear physics texts. However, our calculations yield for the ratio of these probabilities a figure closer to 1 than what these texts say. We speculate on an explanation for this discrepancy. We then consider a modified potential, incorporating hard core repulsion.

1. First model - a simple well

Given $a, V_{0} \in(0, \infty), x \in \mathbb{R}^{3}$, set

$$
\begin{align*}
V(x)=-V_{0}, & |x|<a, \\
0, & |x|>a . \tag{1.1}
\end{align*}
$$

We consider whether $-\Delta+V$ has negative eigenvalues, and if so, how its ground state behaves. Our motivation is to clarify some calculations presented on pp. 44-47 of [BM] (and on pp. 115-116 of [F] and pp. 448-449 of [S]).

If $-\Delta+V$ has negative eigenvalues, denote by $-E$ the one with largest absolute value. We must have $E \in\left(0, V_{0}\right)$, and the ground state will be given by a function $\psi \in C^{1}\left(\mathbb{R}^{3}\right)$, rapidly decreasing at infinity, positive and radially symmetric, satisfying

$$
\begin{equation*}
\Delta \psi=[V(x)+E] \psi \quad \text { on } \quad \mathbb{R}^{3} . \tag{1.2}
\end{equation*}
$$

In particular, with $r=|x|$,

$$
\begin{equation*}
\psi(x)=\frac{u(r)}{r}, \tag{1.3}
\end{equation*}
$$

where $u \in C^{1}((0, \infty))$ satisfies

$$
\begin{equation*}
u^{\prime \prime}(r)=[V(r)+E] u(r) . \tag{1.4}
\end{equation*}
$$

The properties of E and ψ detailed above demand that, for some $A, B \in(0, \infty)$,

$$
\begin{array}{cl}
u(r)=A \sin k r, & r \leq a \\
B e^{-\gamma r}, & r \geq a \tag{1.5}\\
1 &
\end{array}
$$

with

$$
\begin{equation*}
k=\sqrt{V_{0}-E}, \quad \gamma=\sqrt{E} . \tag{1.6}
\end{equation*}
$$

The fact that $u \in C^{1}((0, \infty))$ yields the relations

$$
\begin{equation*}
A \sin k a=B e^{-\gamma a}, \quad k A \cos k a=-B \gamma e^{-\gamma a}, \tag{1.7}
\end{equation*}
$$

hence

$$
\begin{equation*}
B=A e^{\gamma a} \sin k a, \quad k \cot k a=-\gamma . \tag{1.8}
\end{equation*}
$$

Also

$$
\begin{align*}
\psi>0 & \Longrightarrow 0<k a<\pi \\
& \Longrightarrow\left(V_{0}-E\right) a^{2}<\pi^{2} . \tag{1.9}
\end{align*}
$$

Note that A is a positive multiple of B; hence the second part of (1.7) yields

$$
\begin{equation*}
\cos k a<0, \quad \text { so } \quad k a>\frac{\pi}{2} . \tag{1.10}
\end{equation*}
$$

Comparison with (1.9) gives

$$
\begin{equation*}
\frac{\pi}{2}<k a<\pi, \quad \text { hence } \frac{\pi^{2}}{4}<\left(V_{0}-E\right) a^{2}<\pi^{2} \tag{1.11}
\end{equation*}
$$

In particular:
Proposition 1.1. If $-\Delta+V$ has a negative eigenvalue, then

$$
\begin{equation*}
V_{0} a^{2}>\frac{\pi^{2}}{4} \tag{1.12}
\end{equation*}
$$

Given that there is a negative eigenvalue $-E$ with largest absolute value, we next strive for a formula: $E=E\left(V_{0}, a\right)$. To get this, it is convenient to set

$$
\begin{align*}
E=\delta^{2} V_{0}, & 0<\delta<1 \\
k a=\frac{\pi}{2}+\varepsilon, & 0<\varepsilon<\frac{\pi}{2}, \tag{1.13}
\end{align*}
$$

and get formulas relating these quantities. Note that

$$
\begin{equation*}
\cot k a=\cot \left(\frac{\pi}{2}+\varepsilon\right)=-\tan \varepsilon, \tag{1.14}
\end{equation*}
$$

and bringing in (1.8) we have

$$
\begin{equation*}
\tan \varepsilon=\frac{\gamma}{k}=\sqrt{\frac{E}{V_{0}-E}}=\sqrt{\frac{\delta^{2}}{1-\delta^{2}}}, \quad \delta \in(0,1) . \tag{1.15}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\delta=\sin \varepsilon, \quad 0<\varepsilon<\frac{\pi}{2} . \tag{1.16}
\end{equation*}
$$

To continue, we have

$$
\begin{array}{lr}
\left(V_{0}-E\right) a^{2}=(k a)^{2} & \text { by (1.6) } \\
\Rightarrow\left(1-\delta^{2}\right) V_{0} a^{2}=\left(\frac{\pi}{2}+\varepsilon\right)^{2} & \text { by }(1.13) \\
\Rightarrow V_{0} a^{2}=\frac{(\pi / 2+\varepsilon)^{2}}{1-\delta^{2}}=\frac{1}{\cos ^{2} \varepsilon}\left(\frac{\pi}{2}+\varepsilon\right)^{2} & \text { by }(1.16) .
\end{array}
$$

This gives the sought-after relation:
Proposition 1.2. Given $V_{0} a^{2}>\pi^{2} / 4$, we have

$$
\begin{align*}
& V_{0} a^{2}=\frac{1}{\cos ^{2} \varepsilon}\left(\frac{\pi}{2}+\varepsilon\right)^{2}, \quad 0<\varepsilon<\frac{\pi}{2} \tag{1.18}\\
& \Longrightarrow E=V_{0} \sin ^{2} \varepsilon,
\end{align*}
$$

where $-E$ is the negative eigenvalue of $-\Delta+V$ of largest absolute value.

Remark. Given $\varepsilon \ll 1$, we have

$$
\begin{equation*}
V_{0} a^{2} \approx \frac{\pi^{2}}{4}+\pi \varepsilon, \quad E \approx V_{0} \varepsilon^{2} . \tag{1.19}
\end{equation*}
$$

Having this calculation, we desire to compute the integral of $|\psi(x)|^{2}$ over the respective regions $\{|x|<a\}$ and $\{|x|>a\}$. We have

$$
\begin{align*}
\int_{|x|<a}|\psi(x)|^{2} d x & =4 \pi \int_{0}^{a} u(r)^{2} d r \\
& =4 \pi A^{2} \int_{0}^{a} \sin ^{2} k r d r \\
& =\frac{4 \pi A^{2}}{k} \int_{0}^{\pi / 2+\varepsilon} \sin ^{2} s d s \tag{1.20}\\
& =\frac{4 \pi A^{2}}{\sqrt{V_{0}-E}}\left(\frac{\pi}{4}+\int_{0}^{\varepsilon} \cos ^{2} t d t\right) \\
& =\frac{1}{\cos \varepsilon}\left(\frac{\pi}{4}+\int_{0}^{\varepsilon} \cos ^{2} t d t\right) \frac{4 \pi A^{2}}{\sqrt{V_{0}}}
\end{align*}
$$

and

$$
\begin{aligned}
\int_{|x|>a}|\psi(x)|^{2} d x & =4 \pi \int_{a}^{\infty} u(r)^{2} d r \\
& =4 \pi B^{2} \int_{a}^{\infty} e^{-2 \gamma r} d r \\
& =\frac{4 \pi B^{2}}{2 \gamma} e^{-2 \gamma a} \\
& =\frac{4 \pi A^{2}}{2 \gamma} \sin ^{2} k a \\
& =\frac{4 \pi A^{2}}{2 \sqrt{E}} \sin ^{2}\left(\frac{\pi}{2}+\varepsilon\right) \\
& =\frac{\cos ^{2} \varepsilon}{2 \sin \varepsilon} \frac{4 \pi A^{2}}{\sqrt{V_{0}}} .
\end{aligned}
$$

The quantity A (which we need not compute) is the normalizing constant, making the two integrals above sum to 1 . We see that, as $\varepsilon \searrow 0$,

$$
\begin{align*}
\int_{|x|<a}|\psi(x)|^{2} d x & \approx \frac{\pi^{2} A^{2}}{\sqrt{V_{0}}} \tag{1.22}\\
\int_{|x|>a}|\psi(x)|^{2} d x & \approx \frac{2 \pi A^{2}}{\varepsilon \sqrt{V_{0}}}
\end{align*}
$$

so the integral over $\{|x|>a\}$ is much larger than the integral over $\{|x|<a\}$, for ε small enough.

As for how small ε is, we note that (1.18) plus the identity $E=\gamma^{2}$ yield

$$
\begin{equation*}
\left(\frac{\pi}{2}+\varepsilon\right) \tan \varepsilon=\gamma a \tag{1.23}
\end{equation*}
$$

Information on a and on E (hence on γ) would allow one to solve for ε, and then for $V_{0}=E / \sin ^{2} \varepsilon$.

We next see how this plays out for the deuteron, for which (1.2) arises as a crude model for the ground state. Actually, (1.2) is the nondimensionalized form. The physical form is

$$
\begin{equation*}
\Delta \psi=\frac{2 m}{\hbar^{2}}[\widetilde{V}(x)+\widetilde{E}] \psi, \tag{1.24}
\end{equation*}
$$

where, with $m=m_{p} m_{n} /\left(m_{p}+m_{n}\right) \approx m_{p} / 2$ and $c \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$,

$$
\begin{align*}
2 m & \approx \text { mass of a proton } \approx 938 \mathrm{MeV} / c^{2} \\
\hbar & =\text { Planck's constant } \approx 6.6 \times 10^{-22} \mathrm{MeV} \text {-sec } \tag{1.25}
\end{align*}
$$

and $\widetilde{V}(x)$ and \widetilde{E} are measured in MeV . This leads to (1.2) with

$$
\begin{equation*}
V(x)=\frac{2 m}{\hbar^{2}} \widetilde{V}(x), \quad E=\frac{2 m}{\hbar^{2}} \widetilde{E} \tag{1.25A}
\end{equation*}
$$

where $\widetilde{V}(x)=-\widetilde{V}_{0}$ on $|x|<a$, and $V_{0}=\left(2 m / \hbar^{2}\right) \widetilde{V}_{0}$. Experiments shooting gamma rays at deuterium show that

$$
\begin{equation*}
\widetilde{E} \approx 2.225 \mathrm{MeV} \tag{1.26}
\end{equation*}
$$

This corresponds via $\gamma=\sqrt{E}=\sqrt{2 m \widetilde{E}} / \hbar$ to

$$
\begin{equation*}
\gamma^{-1} \approx 4.32 \mathrm{fm} \tag{1.27}
\end{equation*}
$$

where $1 \mathrm{fm}=10^{-15} \mathrm{~m}$. The meson model of nuclear forces suggests

$$
\begin{equation*}
a \approx 2.8 \mathrm{fm} \tag{1.28}
\end{equation*}
$$

Cf. [S], p. 449. This gives

$$
\begin{equation*}
\gamma a \approx 0.648 \tag{1.29}
\end{equation*}
$$

and solving (1.23) then gives

$$
\begin{equation*}
\varepsilon \approx 0.329 \tag{1.30}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\delta \approx 0.323 \tag{1.31}
\end{equation*}
$$

so

$$
\begin{equation*}
\widetilde{V}_{0}=\delta^{-2} \widetilde{E} \approx 21.34 \mathrm{MeV} \tag{1.32}
\end{equation*}
$$

Referring to (1.20)-(1.21), we see that in this case

$$
\begin{equation*}
\int_{|x|<a}|\psi(x)|^{2} d x \approx(1.165) \frac{4 \pi A^{2}}{\sqrt{V_{0}}} \tag{1.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{|x|>a}|\psi(x)|^{2} d x \approx(1.387) \frac{4 \pi A^{2}}{\sqrt{V_{0}}} \tag{1.34}
\end{equation*}
$$

The figure (1.30) for ε is not terribly consistent with the hypothesis that $\varepsilon \ll 1$, though the figure (1.32) for \widetilde{V}_{0} is consistent with $\widetilde{V}_{0} \gg \widetilde{E}$. The figures for γ and \widetilde{V}_{0} given in (1.27) and (1.32) agree with those given in [S] (p. 449). We note however that the integral (1.34) is only a little larger than (1.33). This disagrees with the statement in $[\mathrm{S}]$ that it is "about twice as large."

In more detail, the ratio of (1.34) to (1.33) is

$$
\begin{equation*}
R \approx \frac{1.387}{1.165} \approx 1.191 \tag{1.35}
\end{equation*}
$$

which is not close to 2 . On the other hand, if we take ε as in (1.30) and plug it into the "small ε approximation" (1.22), we get the "approximation"

$$
\begin{equation*}
R \approx \frac{2}{\pi \varepsilon} \approx 1.935 \tag{1.36}
\end{equation*}
$$

in close agreement with the assertion in [S].
Coincidence? Who can say?

2. Second model - well with hard core repulsion

We now consider a model in which the two nucleons experience a hard core repulsion when their centers are at a distance b, for some $b \in(0, a)$. Then (1.1) is replaced by

$$
\begin{array}{r}
V(x)=-V_{0}, \quad b<|x|<a \\
0, \quad|x|>a \tag{2.1}
\end{array}
$$

and we solve (1.2) on $\mathbb{R}^{3} \backslash B_{b}(0)$, with boundary condition $\psi(x)=0$ for $|x|=b$. Taking u as in (1.3), we solve (1.4) on $r \in(b, \infty)$, with $u(b)=0$. Thus, in place of (1.5), we have

$$
\begin{array}{cr}
u(r)=A \sin k(r-b), & b \leq r \leq a, \\
B e^{-\gamma r}, & r \geq a . \tag{2.2}
\end{array}
$$

We again have (1.6), i.e.,

$$
\begin{equation*}
k=\sqrt{V_{0}-E}, \quad \gamma=\sqrt{E} \tag{2.3}
\end{equation*}
$$

Since $u \in C^{1}([b, \infty))$, we have the following analogue of (1.7),

$$
\begin{equation*}
A \sin k(a-b)=B e^{-\gamma a}, \quad k A \cos k(a-b)=-B \gamma e^{-\gamma a} \tag{2.4}
\end{equation*}
$$

yielding the following analogue of (1.8):

$$
\begin{equation*}
B=A e^{\gamma a} \sin k(a-b), \quad k \cot k(a-b)=-\gamma \tag{2.5}
\end{equation*}
$$

Also, parallel to (1.9),

$$
\begin{align*}
\psi>0 & \Longrightarrow 0<k(a-b)<\pi \\
& \Longrightarrow\left(V_{0}-E\right)(a-b)^{2}<\pi^{2} \tag{2.6}
\end{align*}
$$

As in $\S 1, A$ must be a positive multiple of B, so the second part of (2.5) yields

$$
\begin{equation*}
\cos k(a-b)<0, \quad \text { so } \quad k(a-b)>\frac{\pi}{2} \tag{2.7}
\end{equation*}
$$

Comparison with (2.6) gives

$$
\begin{equation*}
\frac{\pi}{2}<k(a-b)<\pi, \quad \text { hence } \frac{\pi^{2}}{4}<\left(V_{0}-E\right)(a-b)^{2}<\pi^{2} \tag{2.8}
\end{equation*}
$$

Thus, parallel to Proposition 1.1, we have that, if $-\Delta+V$ has a negative eigenvalue, then

$$
\begin{equation*}
V_{0}(a-b)^{2}>\frac{\pi^{2}}{4} \tag{2.9}
\end{equation*}
$$

Given that there exists a negative eigenvalue $-E$, with largest absolute value, we seek a formula, $E=E\left(V_{0}, a, b\right)$. Parallel to (1.13), we set

$$
\begin{align*}
E=\delta^{2} V_{0}, & 0<\delta<1 \\
k(a-b)=\frac{\pi}{2}+\varepsilon, & 0<\varepsilon<\frac{\pi}{2} \tag{2.10}
\end{align*}
$$

and seek formulas relating these quantities. Parallel to (1.14), we have

$$
\begin{equation*}
\cot k(a-b)=\cot \left(\frac{\pi}{2}+\varepsilon\right)=-\tan \varepsilon \tag{2.11}
\end{equation*}
$$

and then (2.5) yields

$$
\begin{equation*}
\tan \varepsilon=\frac{\gamma}{k}=\sqrt{\frac{E}{V_{0}-E}}=\sqrt{\frac{\delta^{2}}{1-\delta^{2}}}, \quad 0<\delta<1, \tag{2.12}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\delta=\sin \varepsilon, \quad 0<\varepsilon<\frac{\pi}{2} \tag{2.13}
\end{equation*}
$$

as in (1.16). We then get the following variant of (1.17):

$$
\begin{array}{lr}
\left(V_{0}-E\right)(a-b)^{2}=k^{2}(a-b)^{2} & \text { by }(2.3) \\
\Rightarrow\left(1-\delta^{2}\right) V_{0}(a-b)^{2}=\left(\frac{\pi}{2}+\varepsilon\right)^{2} & \text { by }(2.10) \\
\Rightarrow V_{0}(a-b)^{2}=\frac{(\pi / 2+\varepsilon)^{2}}{1-\delta^{2}}=\frac{1}{\cos ^{2} \varepsilon}\left(\frac{\pi}{2}+\varepsilon\right)^{2} & \text { by }(2.13) \tag{2.14}
\end{array}
$$

This gives the following analogue of Proposition 1.2.
Proposition 2.1. Given $V_{0}(a-b)^{2}>\pi^{2} / 4$, we have

$$
\begin{align*}
& V_{0}(a-b)^{2}=\frac{1}{\cos ^{2} \varepsilon}\left(\frac{\pi}{2}+\varepsilon\right)^{2}, \quad 0<\varepsilon<\frac{\pi}{2} \tag{2.15}\\
& \Longrightarrow E=V_{0} \sin ^{2} \varepsilon
\end{align*}
$$

where $-E$ is the negative eigenvalue of $-\Delta+V$ with largest absolute value.

We then have the following analogue of (1.20)-(1.21):

$$
\begin{align*}
\int_{b<|x|<a}|\psi(x)|^{2} d x & =4 \pi \int_{b}^{a} u(r)^{2} d r \\
& =4 \pi A^{2} \int_{b}^{a} \sin ^{2} k(r-b) d r \tag{2.16}\\
& =\frac{4 \pi A^{2}}{k} \int_{0}^{\pi / 2+\varepsilon} \sin ^{2} s d s \\
& =\frac{1}{\cos \varepsilon}\left(\frac{\pi}{4}+\int_{0}^{\varepsilon} \cos ^{2} t d t\right) \frac{4 \pi A^{2}}{\sqrt{V_{0}}}
\end{align*}
$$

and

$$
\begin{align*}
\int_{|x|>a}|\psi(x)|^{2} d x & =4 \pi \int_{a}^{\infty} u(r)^{2} d r \\
& =4 \pi B^{2} \int_{a}^{\infty} e^{-2 \gamma r} d r \\
& =\frac{4 \pi B^{2}}{2 \gamma} e^{-2 \gamma a} \tag{2.17}\\
& =\frac{4 \pi A^{2}}{2 \gamma} \sin ^{2} k(a-b) \\
& =\frac{\cos ^{2} \varepsilon}{2 \sin \varepsilon} \frac{4 \pi A^{2}}{\sqrt{V_{0}}}
\end{align*}
$$

Hence the ratio

$$
\begin{equation*}
R=\left(\int_{|x|>a}|\psi(x)|^{2} d x\right)\left(\int_{b<|x|<a}|\psi(x)|^{2} d x\right)^{-1} \tag{2.18}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\frac{1}{R}=\frac{\pi}{2} \frac{\sin \varepsilon}{\cos ^{3} \varepsilon}\left(1+\frac{4}{\pi} \int_{0}^{\varepsilon} \cos ^{2} t d t\right) \tag{2.19}
\end{equation*}
$$

As for finding ε, note that (2.15) plus the identity $E=\gamma^{2}$ yield

$$
\begin{equation*}
\left(\frac{\pi}{2}+\varepsilon\right) \tan \varepsilon=\gamma(a-b) \tag{2.20}
\end{equation*}
$$

Now, parallel to (1.24)-(1.32), we have

$$
\begin{equation*}
V_{0}=\frac{2 m}{\hbar^{2}} \widetilde{V}_{0}, \quad E=\frac{2 m}{\hbar^{2}} \widetilde{E} \tag{2.21}
\end{equation*}
$$

with m and \hbar as in (1.25), and

$$
\begin{equation*}
\widetilde{E} \approx 2.225 \mathrm{Mev} \tag{2.22}
\end{equation*}
$$

as in (1.26), hence

$$
\begin{equation*}
\gamma^{-1} \approx 4.32 \mathrm{fm} \tag{2.23}
\end{equation*}
$$

as in (1.27). We also continue to take $a \approx 2.8 \mathrm{fm}$, as in (1.18). As for b, we take a cue from Fig. 3.2 on p. 23 of [CG], and set

$$
\begin{equation*}
b \approx 0.8 \mathrm{fm}, \quad \text { hence } a-b \approx 2.0 \mathrm{fm}, \tag{2.24}
\end{equation*}
$$

which leads to the following variant of (1.29):

$$
\begin{equation*}
\gamma(a-b) \approx 0.463 \tag{2.25}
\end{equation*}
$$

Now solving (2.20), via Newton's method, yields

$$
\begin{equation*}
\varepsilon \approx 0.249 \tag{2.26}
\end{equation*}
$$

in contrast with (1.30), hence

$$
\begin{equation*}
\delta \approx 0.247 \tag{2.27}
\end{equation*}
$$

so

$$
\begin{equation*}
\widetilde{V}_{0}=\delta^{-2} \widetilde{E} \approx 36.47 \mathrm{MeV} \tag{2.28}
\end{equation*}
$$

in contrast with (1.32). Also, we get from (2.16) and (2.26) that

$$
\begin{equation*}
R \approx 1.786 \tag{2.29}
\end{equation*}
$$

which is somewhat closer to 2 than (1.35).

References

[BM] H. Bethe and P. Morrison, Elementary Nuclear Theory, J. Wiley, New York, 1956 (Dover, 2006).
[CG] W. Cottingham and D. Greenwood, An Introduction to Nuclear Physics, Cambridge Univ. Press, Cambridge, 1986.
[F] E. Fermi, Nuclear Physics, Univ. of Chicago Press, 1949.
[S] E. Segre, Nuclei and Particles, Benjamin, New York, 1977.

