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Abstract. We construct the wave function ψ(x) for a simple model of the
deuteron. We see that, in this model, the nucleons have a greater probability
of lying outside the potential well than in it, as noted in nuclear physics texts.
However, our calculations yield for the ratio of these probabilities a figure closer to
1 than what these texts say. We speculate on an explanation for this discrepancy.
We then consider a modified potential, incorporating hard core repulsion.

1. First model – a simple well

Given a, V0 ∈ (0,∞), x ∈ R3, set

(1.1)
V (x) = −V0, |x| < a,

0, |x| > a.

We consider whether −∆ + V has negative eigenvalues, and if so, how its ground
state behaves. Our motivation is to clarify some calculations presented on pp. 44–47
of [BM] (and on pp. 115–116 of [F] and pp. 448–449 of [S]).

If −∆+V has negative eigenvalues, denote by −E the one with largest absolute
value. We must have E ∈ (0, V0), and the ground state will be given by a func-
tion ψ ∈ C1(R3), rapidly decreasing at infinity, positive and radially symmetric,
satisfying

(1.2) ∆ψ = [V (x) + E]ψ on R3.

In particular, with r = |x|,

(1.3) ψ(x) =
u(r)

r
,

where u ∈ C1((0,∞)) satisfies

(1.4) u′′(r) = [V (r) + E]u(r).

The properties of E and ψ detailed above demand that, for some A,B ∈ (0,∞),

(1.5)
u(r) = A sin kr, r ≤ a,

Be−γr, r ≥ a,
1
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with

(1.6) k =
√

V0 −E, γ =
√

E.

The fact that u ∈ C1((0,∞)) yields the relations

(1.7) A sin ka = Be−γa, kA cos ka = −Bγe−γa,

hence

(1.8) B = Aeγa sin ka, k cot ka = −γ.

Also

(1.9)
ψ > 0 =⇒ 0 < ka < π

=⇒ (V0 − E)a2 < π2.

Note that A is a positive multiple of B; hence the second part of (1.7) yields

(1.10) cos ka < 0, so ka >
π

2
.

Comparison with (1.9) gives

(1.11)
π

2
< ka < π, hence

π2

4
< (V0 − E)a2 < π2.

In particular:

Proposition 1.1. If −∆ + V has a negative eigenvalue, then

(1.12) V0a
2 >

π2

4
.

Given that there is a negative eigenvalue −E with largest absolute value, we
next strive for a formula: E = E(V0, a). To get this, it is convenient to set

(1.13)
E = δ2V0, 0 < δ < 1,

ka =
π

2
+ ε, 0 < ε <

π

2
,

and get formulas relating these quantities. Note that

(1.14) cot ka = cot
(π

2
+ ε

)
= − tan ε,
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and bringing in (1.8) we have

(1.15) tan ε =
γ

k
=

√
E

V0 − E
=

√
δ2

1− δ2
, δ ∈ (0, 1).

Equivalently,

(1.16) δ = sin ε, 0 < ε <
π

2
.

To continue, we have

(1.17)

(V0 − E)a2 = (ka)2 by (1.6)

⇒ (1− δ2)V0a
2 =

(π

2
+ ε

)2

by (1.13)

⇒ V0a
2 =

(π/2 + ε)2

1− δ2
=

1
cos2 ε

(π

2
+ ε

)2

by (1.16).

This gives the sought-after relation:

Proposition 1.2. Given V0a
2 > π2/4, we have

(1.18)
V0a

2 =
1

cos2 ε

(π

2
+ ε

)2

, 0 < ε <
π

2
=⇒ E = V0 sin2 ε,

where −E is the negative eigenvalue of −∆ + V of largest absolute value.

Remark. Given ε << 1, we have

(1.19) V0a
2 ≈ π2

4
+ πε, E ≈ V0ε

2.

Having this calculation, we desire to compute the integral of |ψ(x)|2 over the
respective regions {|x| < a} and {|x| > a}. We have

(1.20)

∫

|x|<a

|ψ(x)|2 dx = 4π

∫ a

0

u(r)2 dr

= 4πA2

∫ a

0

sin2 kr dr

=
4πA2

k

∫ π/2+ε

0

sin2 s ds

=
4πA2

√
V0 − E

(π

4
+

∫ ε

0

cos2 t dt
)

=
1

cos ε

(π

4
+

∫ ε

0

cos2 t dt
)4πA2

√
V0

,
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and

(1.21)

∫

|x|>a

|ψ(x)|2 dx = 4π

∫ ∞

a

u(r)2 dr

= 4πB2

∫ ∞

a

e−2γr dr

=
4πB2

2γ
e−2γa

=
4πA2

2γ
sin2 ka

=
4πA2

2
√

E
sin2

(π

2
+ ε

)

=
cos2 ε

2 sin ε

4πA2

√
V0

.

The quantity A (which we need not compute) is the normalizing constant, making
the two integrals above sum to 1. We see that, as ε ↘ 0,

(1.22)

∫

|x|<a

|ψ(x)|2 dx ≈ π2A2

√
V0

,

∫

|x|>a

|ψ(x)|2 dx ≈ 2πA2

ε
√

V0

,

so the integral over {|x| > a} is much larger than the integral over {|x| < a}, for ε
small enough.

As for how small ε is, we note that (1.18) plus the identity E = γ2 yield

(1.23)
(π

2
+ ε

)
tan ε = γa.

Information on a and on E (hence on γ) would allow one to solve for ε, and then
for V0 = E/ sin2 ε.

We next see how this plays out for the deuteron, for which (1.2) arises as a crude
model for the ground state. Actually, (1.2) is the nondimensionalized form. The
physical form is

(1.24) ∆ψ =
2m

~2
[Ṽ (x) + Ẽ]ψ,

where, with m = mpmn/(mp + mn) ≈ mp/2 and c ≈ 3× 108 m/sec,

(1.25)
2m ≈ mass of a proton ≈ 938 MeV/c2,

~ = Planck’s constant ≈ 6.6× 10−22 MeV-sec,
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and Ṽ (x) and Ẽ are measured in MeV. This leads to (1.2) with

(1.25A) V (x) =
2m

~2
Ṽ (x), E =

2m

~2
Ẽ,

where Ṽ (x) = −Ṽ0 on |x| < a, and V0 = (2m/~2)Ṽ0. Experiments shooting gamma
rays at deuterium show that

(1.26) Ẽ ≈ 2.225 MeV.

This corresponds via γ =
√

E =
√

2mẼ/~ to

(1.27) γ−1 ≈ 4.32 fm,

where 1 fm=10−15 m. The meson model of nuclear forces suggests

(1.28) a ≈ 2.8 fm.

Cf. [S], p. 449. This gives

(1.29) γa ≈ 0.648,

and solving (1.23) then gives

(1.30) ε ≈ 0.329.

Hence

(1.31) δ ≈ 0.323,

so

(1.32) Ṽ0 = δ−2Ẽ ≈ 21.34 MeV.

Referring to (1.20)–(1.21), we see that in this case

(1.33)
∫

|x|<a

|ψ(x)|2 dx ≈ (1.165)
4πA2

√
V0

and

(1.34)
∫

|x|>a

|ψ(x)|2 dx ≈ (1.387)
4πA2

√
V0

.
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The figure (1.30) for ε is not terribly consistent with the hypothesis that ε << 1,
though the figure (1.32) for Ṽ0 is consistent with Ṽ0 >> Ẽ. The figures for γ and Ṽ0

given in (1.27) and (1.32) agree with those given in [S] (p. 449). We note however
that the integral (1.34) is only a little larger than (1.33). This disagrees with the
statement in [S] that it is “about twice as large.”

In more detail, the ratio of (1.34) to (1.33) is

(1.35) R ≈ 1.387
1.165

≈ 1.191,

which is not close to 2. On the other hand, if we take ε as in (1.30) and plug it into
the “small ε approximation” (1.22), we get the “approximation”

(1.36) R ≈ 2
πε

≈ 1.935,

in close agreement with the assertion in [S].
Coincidence? Who can say?
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2. Second model – well with hard core repulsion

We now consider a model in which the two nucleons experience a hard core
repulsion when their centers are at a distance b, for some b ∈ (0, a). Then (1.1) is
replaced by

(2.1)
V (x) = −V0, b < |x| < a,

0, |x| > a,

and we solve (1.2) on R3 \ Bb(0), with boundary condition ψ(x) = 0 for |x| = b.
Taking u as in (1.3), we solve (1.4) on r ∈ (b,∞), with u(b) = 0. Thus, in place of
(1.5), we have

(2.2)
u(r) = A sink(r − b), b ≤ r ≤ a,

Be−γr, r ≥ a.

We again have (1.6), i.e.,

(2.3) k =
√

V0 −E, γ =
√

E.

Since u ∈ C1([b,∞)), we have the following analogue of (1.7),

(2.4) A sin k(a− b) = Be−γa, kA cos k(a− b) = −Bγe−γa,

yielding the following analogue of (1.8):

(2.5) B = Aeγa sin k(a− b), k cot k(a− b) = −γ.

Also, parallel to (1.9),

(2.6)
ψ > 0 =⇒ 0 < k(a− b) < π

=⇒ (V0 − E)(a− b)2 < π2.

As in §1, A must be a positive multiple of B, so the second part of (2.5) yields

(2.7) cos k(a− b) < 0, so k(a− b) >
π

2
.

Comparison with (2.6) gives

(2.8)
π

2
< k(a− b) < π, hence

π2

4
< (V0 − E)(a− b)2 < π2.
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Thus, parallel to Proposition 1.1, we have that, if −∆+V has a negative eigenvalue,
then

(2.9) V0(a− b)2 >
π2

4
.

Given that there exists a negative eigenvalue −E, with largest absolute value,
we seek a formula, E = E(V0, a, b). Parallel to (1.13), we set

(2.10)
E = δ2V0, 0 < δ < 1,

k(a− b) =
π

2
+ ε, 0 < ε <

π

2
,

and seek formulas relating these quantities. Parallel to (1.14), we have

(2.11) cot k(a− b) = cot
(π

2
+ ε

)
= − tan ε,

and then (2.5) yields

(2.12) tan ε =
γ

k
=

√
E

V0 − E
=

√
δ2

1− δ2
, 0 < δ < 1,

or equivalently

(2.13) δ = sin ε, 0 < ε <
π

2
,

as in (1.16). We then get the following variant of (1.17):

(2.14)

(V0 − E)(a− b)2 = k2(a− b)2 by (2.3)

⇒ (1− δ2)V0(a− b)2 =
(π

2
+ ε

)2

by (2.10)

⇒ V0(a− b)2 =
(π/2 + ε)2

1− δ2
=

1
cos2 ε

(π

2
+ ε

)2

by (2.13)

This gives the following analogue of Proposition 1.2.

Proposition 2.1. Given V0(a− b)2 > π2/4, we have

(2.15)
V0(a− b)2 =

1
cos2 ε

(π

2
+ ε

)2

, 0 < ε <
π

2
=⇒ E = V0 sin2 ε,

where −E is the negative eigenvalue of −∆ + V with largest absolute value.
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We then have the following analogue of (1.20)–(1.21):

(2.16)

∫

b<|x|<a

|ψ(x)|2 dx = 4π

∫ a

b

u(r)2 dr

= 4πA2

∫ a

b

sin2 k(r − b) dr

=
4πA2

k

∫ π/2+ε

0

sin2 s ds

=
1

cos ε

(π

4
+

∫ ε

0

cos2 t dt
)4πA2

√
V0

,

and

(2.17)

∫

|x|>a

|ψ(x)|2 dx = 4π

∫ ∞

a

u(r)2 dr

= 4πB2

∫ ∞

a

e−2γr dr

=
4πB2

2γ
e−2γa

=
4πA2

2γ
sin2 k(a− b)

=
cos2 ε

2 sin ε

4πA2

√
V0

.

Hence the ratio

(2.18) R =
( ∫

|x|>a

|ψ(x)|2 dx
)( ∫

b<|x|<a

|ψ(x)|2 dx
)−1

satisfies

(2.19)
1
R

=
π

2
sin ε

cos3 ε

(
1 +

4
π

∫ ε

0

cos2 t dt
)
.

As for finding ε, note that (2.15) plus the identity E = γ2 yield

(2.20)
(π

2
+ ε

)
tan ε = γ(a− b).

Now, parallel to (1.24)–(1.32), we have

(2.21) V0 =
2m

~2
Ṽ0, E =

2m

~2
Ẽ,
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with m and ~ as in (1.25), and

(2.22) Ẽ ≈ 2.225 Mev,

as in (1.26), hence

(2.23) γ−1 ≈ 4.32 fm,

as in (1.27). We also continue to take a ≈ 2.8 fm, as in (1.18). As for b, we take a
cue from Fig. 3.2 on p. 23 of [CG], and set

(2.24) b ≈ 0.8 fm, hence a− b ≈ 2.0 fm,

which leads to the following variant of (1.29):

(2.25) γ(a− b) ≈ 0.463.

Now solving (2.20), via Newton’s method, yields

(2.26) ε ≈ 0.249,

in contrast with (1.30), hence

(2.27) δ ≈ 0.247,

so

(2.28) Ṽ0 = δ−2Ẽ ≈ 36.47 MeV,

in contrast with (1.32). Also, we get from (2.16) and (2.26) that

(2.29) R ≈ 1.786,

which is somewhat closer to 2 than (1.35).
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