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Introduction

These notes are divided into parts. The first part is an extremely sketchy outline
of those aspects of the Weyl calculus having to do with products of operators with
nice symbols. Emphasis is placed on contact with the representation theory of the
Heisenberg group and with explicit formulas, particularly involving the harmonic
oscillator.

The second part uses the Weyl calculus to give a “naive” heat equation proof of
the index formula for first order elliptic differential operators of Dirac type on 2-
dimensional manifolds. The advantage of the Weyl calculus here is that, if A(X,D)
is a second order elliptic operator and p(x, ξ) = ϕ(A(x, ξ)) has order m, then
(pA)(X,D) (which has order m + 2) differs from A(X, D)p(X, D) by an operator
of order m, rather than one of order m + 1, which is what you have using the
Kohn-Nirenberg calculus. This enables one to shorten by an order of magnitude
the number of calculations required to determine, in a straightforward fashion, the
second term in the expansion (on the diagonal) of the heat kernel.

As an illustration, we include a proof of the Riemann-Roch formula. Incidentally
(though the point is hardly important) we show how the proof of the Gauss-Bonnet
formula drops out as a special case.

Most of the material here is discussed in further detail in at least one of the
references [T1]–[T3].
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1.1. The Heisenberg group

The Heisenberg group Hn is the universal covering group of the group of unitary
operators on L2(Rn) generated by eiq·X and eip·D, where

(1) eiq·Xf(x) = eiq·xf(x), eip·Df(x) = f(x + p).

Let us note the relation

(2) ei(q·X+p·D) = eiq·p/2 eiq·X eip·D.

This leads to the following multiplication law for ei(t+q·X+p·D) = π1(t, q, p) :

(3) (t, q, p) · (t′, q′, p′) = (t + t′ +
1
2
(p · q′ − q · p′), q + q′, p + p′).

Here we have the symplectic form

(4) p · q′ − q · p′ = σ
(
(p, q), (p′, q′)

)
.

Thus the action of the symplectic group Sp(n,R) on (q, p) gives a group of auto-
morphisms of the Heisenberg group Hn.

The Lie algebra action of hn is

(5) π1(T ) = iI, π1(Lj) = iXj , π1(Mj) = ∂/∂xj .

Here we identify hn with TeHn ≈ T0R2n+1, with T = ∂/∂t, Lj = ∂/∂qj , Mj =
∂/∂pj , at the origin.

There is a family of unitary representations of Hn, on L2(Rn), given by

(6) π±λ(t, q, p) = e(±λt±λ
1
2 q·X+λ

1
2 p·D),

for λ ∈ (0,∞). Explicitly

(7) π±λ(t, q, p)f(x) = ei(±λt±λ
1
2 q·x+λq·p/2) f(x + λ

1
2 p).

Each one is irreducible. By the Stone-von Neuman Theorem, every irreducible
unitary representation representation of Hn is equivalent to either one of these or
to one of the one-dimensional representations

(8) πy,η(t, q, p) = ei(y·q+η·p).

Another way to describe the multiplication law on Hn is by

eip·Deiq·X = eiq·peiq·Xeip·D.

This suggests the following multiplication law for eiteiq·Xeip·D :

(t, q, p) ◦ (t′, q′, p′) = (t + t′ + p · q′, q + q′, p + p′).

The disadvantage of this approach is that the symplectic symmetry is hidden here.
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1.2. The Weyl calculus

Given a symbol a(x, ξ), we define the operator a(X,D), via the Weyl calculus,
as

(1) a(X, D)u = (2π)−n

∫
â(q, p) ei(q·X+p·D)u dqdp.

Recall that ei(q·X+p·D)u(x) = ei(q·x+q·p/2)u(x+p). Then a few simple manipulations
yield

(2) a(X,D)u = (2π)−n

∫
a
(x + y

2
, ξ

)
ei(x−y)·ξu(y) dy dξ.

This can be compared with the Kohn-Nirenberg calculus, which associates to
a(x, ξ) the operator a(x,D), defined by

(3) a(x,D)u = (2π)−n

∫
â(q, p) eiq·Xeip·Du dqdp,

or alternatively as

(4) a(x, D)u = (2π)−n

∫
a(x, ξ) ei(x−y)·ξu(y) dy dξ.

The first fundamental result in the Weyl calculus is the
Product law:

(5) a(X,D)b(X,D) = (a ◦ b)(X,D),

with

(6) (a ◦ b)(x, ξ) = e−
1
2 i(∂y·∂ξ−∂x·∂η)a(x, ξ)b(y, η)

∣∣∣
y=x,η=ξ

.

The proof proceeds by examining

(7)
(a ◦ b)(X, D) =

∫
â(q, p)ei(q·X+p·D)b̂(q′, p′)ei(q′·X+p′·D) dqdpdq′dp′

=
∫

â(q, p)b̂(q′, p′)e
1
2 i(p·q′−q·p′)ei

(
(q+q′)·X+(p+p′)·D

)
dqdpdq′dp′.

Formally:

(8) (a ◦ b)(x, ξ) ∼ ab +
∑

j≥1

1
j!
{a, b}j(x, ξ),

where

(9) {a, b}j(x, ξ) =
(
− i

2

)j(
∂y · ∂ξ − ∂x · ∂η

)j
a(x, ξ)b(y, η)

∣∣∣
y=x,η=ξ

.

Note that {a, b}1 = − 1
2 i{a, b}, involving the ordinary Poisson bracket.

An important fact is that, if either a(x, ξ) or b(x, ξ) is a polynomial in (x, ξ),
then (8) is a finite sum, and is exact.
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We record a few consequences of the product rule when the factors have symbols
of type (1,0). Recall that

(10) p(x, ξ) ∈ Sm
1,0 ⇐⇒ |Dβ

xDα
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−|α|.

Proposition. If pj(x, ξ) ∈ S
mj

1,0 , then

(11) p1 ◦ p2 = p1p2 − i

2
{p1, p2} mod Sm1+m2−2

1,0 ,

and, mod Sm1+m2+m3−2
1,0 ,

(12) p1 ◦ p2 ◦ p3 = p1p2p3 − i

2
({p1, p3}p2 + {p2, p3}p1 + {p1, p2}p3

)
.

As a consequence of (12), we have

(13) q ◦ p ◦ q = q2p mod Sm+2µ−2
1,0 ,

if p ∈ Sm
1,0 and q ∈ Sµ

1,0. More generally, if pjk ∈ Sm
1,0, pjk = pkj , and if qj ∈ Sµ

1,0,
then

(14)
∑

j,k

qj ◦ pjk ◦ qk =
∑

j,k

qjpjkqk mod Sm+2µ−2
1,0 .

To relate the Weyl calculus to the Heisenberg group Hn, recall the representa-
tions π±λ of Hn on L2(Rn). They yield representations of the convolution algebra
L1(Hn) on L2(Rn),

(15) π±λ(k) =
∫

Hn

k(t, q, p) π±λ(t, q, p) dtdqdp.

Using (1), we obtain the formula

(16) π±λ(k) = k̃(±λ,±λ
1
2 X, λ

1
2 D).
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1.3. The metaplactic representation, infinitesimally

The crucial fact about compositions of operators in the Weyl calculus which
gives rise to the metaplactic representation is that, if either a(x, ξ) or b(x, ξ) is a
polynomial of degree ≤ 2 in (x, ξ), then

(1) (a ◦ b)(x, ξ) = ab− i

2
{a, b}+

1
2
{a, b}2,

and consequently

(2) [a(X, D), b(X,D)] = c(X, D), with c(x, ξ) = −i{a, b}(x, ξ).

Proposition. If Q(x, ξ) is a polynomial homogeneous of degree 2 in (x, ξ), (we say
Q ∈ P2), then

(3) e−isQ(X,D) a(X, D) eisQ(X,D) = asQ(X, D),

with

(4) asQ(x, ξ) = a
(
(exp sHQ)(x, ξ)

)
.

Proof. The identity (3) is equivalent to the operator equation

(5) ∂s asQ(X, D) = i[asQ(X,D), Q(X, D)],

so

(6) ∂s asQ(x, ξ) = {Q, asQ}(x, ξ),

which gives (4).

Note that P2, with the Poisson bracket, is the Lie algebra of Sp(n,R).

Corollary. We get a representation ω̃ of ˜Sp(n,R), such that, for g ∈ ˜Sp(n,R),

(7) ag(X, D) = ω̃(g)−1 a(X, D) ω̃(g),

where, given the covering map j : ˜Sp(n,R) → Sp(n,R),

(8) ag(x, ξ) = a
(
j(g)(x, ξ)

)
.

Here ˜Sp(n,R) denotes the universal covering group of Sp(n,R). In fact, one gets
a representation of the double cover of Sp(n,R), as will be shown in §5.
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1.4. The harmonic oscillator

Our main goal here is an explicit formula for e−tH when H = Q(X, D), with
Q(x, ξ) = |x|2 + |ξ|2. In this case, e−tH is called the Hermite semigroup, and
H = |X|2 + |D|2 is called the Hermite operator. It is the Schrodinger hamiltonian
associated to the harmonic oscillator.

Proposition. We have

(1) e−tH = ht(X, D),

with

(2) ht(x, ξ) = (cosh t)−n e−(tanh t)(|x|2+|ξ|2).

Let us first note that metaplectic covariance implies that

(3) ht(x, ξ) = g(t,Q), Q = |x|2 + |ξ|2.

Thus, if ht(x, ξ) is defined by (1), then

(4)

∂

∂t
ht(x, ξ) = −(Q ◦ ht)(x, ξ)

= −Q(x, ξ)ht(x, ξ)− 1
2
{Q,ht}2(x, ξ)

= −(|x|2 + |ξ|2)ht(x, ξ) +
1
4

∑

k

(
∂2

xk
+ ∂2

ξk

)
ht(x, ξ).

Thus we have

(5)
∂g

∂t
= −Qg + Q

∂2g

∂Q2
+ n

∂g

∂Q
.

If we make the ‘guess’ g(t,Q) = a(t)e−b(t)Q, with a(t) and b(t) to be determined,
then we obtain

(6)
a′(t)
a(t)

= −n b(t), b′(t) = 1− b(t)2.

The initial condition h0(x, ξ) = 1 implies a(0) = 1 and b(0) = 0. Hence we get

(7) b(t) = tanh t, a(t) = (cosh t)−n,

establishing (2).
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We can obtain a formula for

(8) e−tQ(X,D) = hQ
t (X, D),

for a general positive quadratic form Q(x, ξ). First, in the case

(9) Q(x, ξ) =
n∑

j=1

µj(x2
j + ξ2

j ), µj > 0,

it follows easily from (2) that

(10) hQ
t (x, ξ) =

n∏

j=1

(
cosh tµj

)−1 · exp
{
−

n∑

j=1

(tanh tµj)(x2
j + ξ2

j )
}

.

Now any positive quadratic form Q(x, ξ) can be put in the form (9) via a linear
symplectic transformation, so to get the general formula we need only rewrite (10)
in a symplectically invariant fashion. This is accomplished using the ‘Hamilton
map’ FQ, a skew symmetric transformation on R2n defined by

(11) Q(u, v) = σ(u, FQv), u, v ∈ R2n,

where Q(u, v) is the bilinear form polarizing Q. When Q has the form (9), FQ is a

sum of 2× 2 blocks
(

0 µj

−µj 0

)
, and we have

(12)
n∏

j=1

(
cosh tµj

)−1 =
(
det cosh itFQ

)− 1
2
.

Passing from FQ to

(13) AQ =
(−F 2

Q

) 1
2 ,

the unique positive definite square root, means passing to blocks
(

µj 0
0 µj

)
, and,

when Q has the form (9), then

(14)
n∑

j=1

(tanh tµj)(x2
j + ξ2

j ) = tQ
(
ϑ(tAQ)ζ, ζ

)
,

where ζ = (x, ξ), and

(15) ϑ(t) =
tanh t

t
.
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Thus the general formula for (8) is

(16) hQ
t (x, ξ) =

(
cosh tAQ

)− 1
2

e−tQ(ϑ(tAQ)ζ,ζ).

Analytic continuation and other arguments give, for generic real Q(x, ξ) ∈ P2,

(17) eiQ(X,D)u(x) = a(Q)
∫

eiϕ(Q, 1
2 (x+y),ξ)+i(x−y)·ξ u(y) dy dξ,

where

(18) a(Q) = (2π)−n
(
det cos AQ

)− 1
2

and

(19) ϕ(Q, x, ξ) = −Q(θ(AQ)ζ, ζ), θ(t) =
tan t

t
.

In particular, analytic continuation of (2) gives

(20) eit(H−n) = Et(X, D), Et(x, ξ) =
( e−it

cos t

)n

ei(tan t)(|x|2+|ξ|2).

Note that the right side is periodic in t of period π, consistent with the fact that
spec H = {n + 2k : k = 0, 1, 2, . . . }. We deduce that

(21)

f(H − n) = ψf (X, D), ψf (x, ξ) = ϕf

(|x|2 + |ξ|2),

ϕf (λ) =
1
π

∫ π/2

−π/2

f̂(t)
( e−it

cos t

)n

eiλ tan t dt.

Using y = tan t, we can write

(22)

πϕf (λ) =
∫ ∞

−∞
f̂(tan−1 y)

(1− iy)n

1 + y2
eiλy dy

= (1− ∂λ)n

∫ ∞

−∞

f̂(tan−1 y)
1 + y2

eiλy dy.

In particular, if Pk is the orthogonal projection on the (n+2k)-eigenspace of H,
then

(23) Pk = Πk(X, D), Πk(x, ξ) = τk

(|x|2 + |ξ|2),
with

(24)
πτk(λ) =

∫ ∞

−∞

( (1− iy)2

1 + y2

)k (1− iy)n

1 + y2
eiλy dy

= (1− ∂λ)n+2k

∫ ∞

−∞
(1 + y2)−k−1eiλy dy.
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An alternative approach to formulas for Pk is to use

(25) e−tH =
∑

k≥0

e−(2k+n)tPk,

which, together with (2), gives

(26)
∑

k≥0

e−2ktΠk(x, ξ) =
( 2

1 + e−2t

)n

e−(tanh t)(|x|2+|ξ|2).

Taking t →∞ gives

(27) Π0(x, ξ) = 2ne−|x|
2−|ξ|2 .

Also, using Πk(x, ξ) = τk

(|x|2 + |ξ|2), we can write the relation above as

(28)
∑

k≥0

τk(λ)e−2kt =
( 2

1 + e−2t

)n

e−λ tanh t.

If we set z = e−2t, and also set

(29) τk(λ) = σk(λ)e−λ,

we get

(30)
∞∑

k=0

σk(λ)zk =
( 2

1 + z

)n

e
2λz
1+z ,

a generating function for the polynomials σk(λ).
J. Derezinski has pointed out that you can extend some of these formulas, in a

way we will illustrate by example. With H as in (1), consider

(31) at(X, D) = eitHa(X, D).

Then at(x, ξ) satisfies

(32)
∂

∂t
at(x, ξ) = −i

{1
4
(∆x + ∆ξ) + (ξ · ∂x − x · ∂ξ) + (|x|2 + |ξ|2)

}
at(x, ξ),

a0(x, ξ) = a(x, ξ),

i.e.,

(33) at(x, ξ) = e−itHa(x, ξ),



NOTES ON THE WEYL CALCULUS 11

where

(34) H = 1
4 (∆x + ∆ξ) + (ξ · ∂x − x · ∂ξ) + |x|2 + |ξ|2.

In turn, e−itH is subject to the same sort of analysis as eitH . We remark that

H = H0 + L, H0 = 1
4 (∆x + ∆ξ) + |x|2 + |ξ|2, L = ξ · ∂x − x · ∂ξ,

and H0 and L commute.
A similar analysis applies to

(35) bt(X,D) = a(X,D)eitH .

In fact, bt(x, ξ) = a−t(x, ξ).
We conpute a special case of (35) directly. Namely, let

(36) αf(x) = f(−x).

Then

(37)

a(X,D)αf(x) = (2π)−n

∫∫
a
(x + y

2
, ξ

)
ei(x−y)·ξf(−y) dy dξ

= (2π)−n

∫∫
a
(x− y

2
, ξ

)
ei(x+y)·ξf(y) dy dξ

=
∫

K(x, y)f(y) dy,

with
K(x, y) = (2π)−n

∫
a
(x− y

2
, ξ

)
ei(x+y)·ξ dξ.

We want to write

(38) a(X,D)α = b(X,D),

i.e., we need to find b(x, ξ) so that

K(x, y) = (2π)−n

∫
b
(x + y

2
, ξ

)
ei(x−y)·ξ dξ.

Let us set x + y = u, x− y = v. Thus, we want

K
(u + v

2
,
u− v

2

)
= (2π)−n

∫
b( 1

2u, ξ)eiv·ξ dξ,

hence
b( 1

2u, ξ) =
∫

K
(u + v

2
,
u− v

2

)
e−iv·ξ dv.

Therefore, the desired formula is

(39) b(x, ξ) = 2−
n
2 â(−2ξ, 2x).
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1.5. The Bargmann-Fock and Weil representations

In §1 we described a representation π1 of Hn on L2(Rn), which is often called
the Schrödinger repesentation. The Bargmann-Fock representation β1 is a unitarily
equivalent representation, on the Hilbert space

(1) H = {u(ζ) holomorphic on Cn :
∫

Cn

|u(ζ)|2e−|ζ|2/2dζ < ∞}.

On the Lie algebra level, we have

(2) β1(T ) = iI, β1(Lj) =
i√
2

( ∂

∂ζj
+ ζj

)
, β1(Mj) =

1√
2

( ∂

∂ζj
− ζj

)
.

We note that
(∂/∂ζj)∗ = ζj on H.

On the Lie group level, if we identify (t, q, p) ∈ Hn with (t, z), z = q + ip ∈ Cn, we
have

(3) β1(t, z)u(ζ) = eit+(i/
√

2)ζ·z−|z|2 u(ζ + iz/
√

2).

The unitary equivalence of β1 and π1 is implemented by a unitary map K :
L2(Rn) → H, defined by

(4) Kf(ζ) =
∫

Rn

K(x, ζ) f(x) dx.

where

(5) K(x, ζ) = π−n/4 exp
(√

2ζ · x− 1
2
(
ζ · ζ + |x|2)

)
.

Recall that the Lie algebra of Sp(n,R) is isomorphic to P2. Now we can regard
Sp(n,R) as the group of (real) linear transformations on Cn, leaving invariant
the symplectic form σ(z, z′) = Im z · z′, i.e., the imaginary part of the natural
Hermitian form on Cn. Then we naturally have U(n) ⊂ Sp(n,R). The inclusion of
the Lie algebra u(n) in P2 can be described as follows; u(n) is spanned by

(6) λjk(x, ξ) = xjxk + ξjξk, µjk(x, ξ) = xjξk − xkξj .

The images under β1 (or under K−1ω̃K = ω#) of these are

(7) L′jk = i
(
ζj

∂

∂ζk
+ ζk

∂

∂ζj

)
, M ′

jk = ζj
∂

∂ζk
− ζk

∂

∂ζj
.

In particular the Hermite operator H is intertwined to

(8) KHK−1 = W, with W = 2
∑

ζj
∂

∂ζj
+ n.

Note that

(9) eitW f(ζ) = eintf(e2itζ).
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Proposition. The representation ω# gives a unitary representation of MU(n),
the double cover of U(n), namely

(10) ω#(g)u(z) = (det g)−
1
2 u(g−1 · z), g ∈ MU(n).

Corollary. The Weil representation ω̃ gives a representation of Mp(n,R), the
double cover of Sp(n,R).
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1.6. The Toeplitz representation

This representation was introduced by R. Howe. WithH the Hilbert space for the
Bargmann-Fock representation, and L2

H(Bn) the space of L2 functions holomorphic
on the unit ball in Cn, define a unitary map

(1) V : H −→ L2
H(Bn),

by taking the orthonormal basis of H :

(2) uα = aαzα, aα =
( 2

α!

) 1
2

to the orthonormal basis of L2
H(Bn) :

(3) vα = bαzα, bα =
( (n + |α|)!

α!

) 1
2
.

Thus

(4) V zα = γαzα, γα =
bα

aα
= 2

1
2 π−

n
2
[
(n + |α|)!]

1
2 = γ|α|.

We define (unbounded) operators on L2
H(Bn) :

(5) Zj = V zj V −1, Lj = V (∂/∂zj)V −1.

We get

(6) Zj = zj

[|D|+ n + 1
] 1

2 , Lj = Z∗j ,

where D = (1/i)X, X the real vector field on R2n = Cn generating the flow
z 7→ eitz. Thus the representation ν1 of Hn on L2

H(Bn) defined by

(7) ν1(g) = V β1(g) V −1, g ∈ Hn,

satisfies

(8) ν1(T ) = iI, ν1(Lj) = iπXjπ, ν1(Mj) = iπDjπ,

where π is the orthogonal projection of L2(Bn) onto L2
H(Bn), and

(9)
Dj = zj

[|D|+ n + 1
] 1

2 +
[|D|+ n + 1

] 1
2 zj ,

iXj = zj

[|D|+ n + 1
] 1

2 − [|D|+ n + 1
] 1

2 zj .
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1.7. Differential operators in the Weyl calculus

Recall that

(1) a(X,D)u =
∫

Wa(x, y)u(y)dy

where

(2) Wa(x, y) = (2π)−n

∫
a
(x + y

2
, ξ

)
ei(x−y)·ξdξ.

If a(x, ξ) is a polynomial in ξ,

(3) a(x, ξ) =
∑
α

aα(x)ξα,

this gives

Wa(x, y) =
∑
α

aα

(x + y

2

)
δ(α)(x− y),

so a(X, D) is a differential operator, namely

a(X, D)u(x) =
∑∫

aα

(x + y

2

)
δ(α)(x− y)u(y) dy

=
∑∫

δ(x− y) Dα
y

[
aα

(x + y

2

)
u(y)

]
dy,

or

(4) a(X, D)u(x) =
∑
α

Dα
y

[
aα

(x + y

2

)
u(y)

]∣∣∣
y=x

.

Expanding by the Leibniz formula, we get

(5) a(X, D)u(x) =
∑
α

∑

β+γ=α

(
α

β

)
2−|γ|a(γ)

α (x)Dβu(x).

In particular, if |α| = 1 in (3), i.e.,

(6) a(x,D)u =
∑

aj(x)∂ju(x),
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we have

(7) a(X, D)u(x) =
∑

j

aj(x)∂ju(x) +
1
2

∑
(∂jaj)u(x).

If |α| = 2 in (3), i.e.,

(8) a(x, D)u =
∑

ajk(x)∂j∂ku,

with ajk = akj , we have

(9) a(X, D)u(x) =
∑[

ajk(x)∂j∂ku + (∂jajk)∂ku +
1
4
(∂j∂kajk)u

]
.

For comparison, note that

(10)
∑

∂j(ajk∂ku) =
∑[

ajk∂j∂ku + (∂jajk)∂ku
]
,

so (9) and (10) differ only in the zero order term:

(11) a(X, D)u =
∑

∂j(ajk∂ku) +
1
4

∑
(∂j∂kajk)u.

Let us note the following related phenomenon. Suppose

(12) qj(x, ξ) ∈ Sµ
1,0, pjk(x, ξ) ∈ Sm

1,0,

with pjk = pkj . Then

(13)
∑

j,k

qj(X,D)pjk(X, D)qk(X, D) = r(X, D) mod OPSm+2µ−2
1,0 ,

where

(14) r(x, ξ) =
∑

qj(x, ξ)pjk(x, ξ)qk(x, ξ).
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1.8. The Calderon-Vaillancourt thorem

Here we will show that, for any r > 0,

(1) a(x, ξ) ∈ C2n,r(R2n) =⇒ a(X, D) : L2(Rn) −→ L2(Rn),

where C2n,r(R2n) denotes the space of functions whose derivatives of order ≤ 2n are
bounded, and satisfy a uniform Hölder condition. We use a method of H.O.Cordes.
We begin with the following identity. If

(2) U(y) = eiq·X+ip·D, y = (q, p),

then

(3)
∫ ∣∣(U(y)f, g

)∣∣2 dy = Cn‖f‖2L2‖g‖2L2 .

This is a simple computation, making use of the Fourier inversion formula. Now,
if ‖f‖L2 = 1, let Πfu = (u, f)f, and consider

(4) Tb,f =
∫

b(y)U(y)−1ΠfU(y) dy.

We have

(5) (Tb,fu, v) =
∫

b(y)
(
f, U(y)u

) (
f, U(y)v

)
dy,

and (3) gives

(6) |(Tb,fu, v)| ≤ C‖b‖L∞‖u‖L2‖v‖L2 .

Using this, we easily deduce that, if G is a trace-class operator and

(7) Tb,G =
∫

b(y)U(y)−1GU(y) dy,

then

(8) ‖Tb,Gu‖L2 ≤ C‖b‖L∞‖G‖Tr‖u‖L2 .

We will apply the inequality (8) to the estimation of a(X,D), as follows. One
readily verifies that

(9) G = g(X, D) =⇒ Tb,G = a(X,D), a = b ∗ g.
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Let us take g(x, ξ) such that

(10) ĝ(q, p) =
(
1 + |q|2 + |p|2)−s

.

We claim that

(11) s > n =⇒ ‖g(X,D)‖Tr < ∞.

One way to see this is to note that, if αf(x) = f(−x), then, as shown in (38)-(39)
of §1.4,

(12) p(X, D) ◦ α = q(X,D), q(x, ξ) = cp̂(−2ξ, 2x).

Thus, when g satisfies (10),

(13) g(X, D) ◦ α = cϕ(X, D), ϕ(x, ξ) =
(
1 + 4|x|2 + 4|ξ|2)−s

,

and clearly

(14) s > n =⇒ ‖ϕ(X, D)‖Tr < ∞.

In light of (8), this gives

(15) ‖a(X,D)u‖L2 ≤ Cs‖(1−∆x −∆ξ)sa‖L∞‖u‖L2 , s > n,

so (1) is proved.
We can produce variants of this result, replacing (10) by

(16) ĝ(q, p) =
(
1 + |q|2 + |p|2)−n[

log
(
2 + |q|2 + |p|2)]−1−r

,

for example. The natural replacement for (13), in concert with (21)-(22) of §1.4,
gives that g(X, D) is of trace class provided r > 0 in (16). Then we can replace
the hypothesis on a(x, ξ) in (1) by a weaker modulus of continuity on derivatives
of a(x, ξ) of order ≤ 2n. We omit the details.



NOTES ON THE WEYL CALCULUS 19

2.1. Heat asymptotics via the Weyl calculus

We use the Weyl calculus to construct a parametrix for a ‘heat’ equation

(1)
∂u

∂t
= −Lu, u(0) = f,

with

(2) Lu = a(X, D)u + b(x)u.

We suppose a(X,D) is a self adjoint second order elliptic differential operator, with
positive symbol. We assume a(x, ξ) is scalar; b(x) may be a matrix.

We want to write an approximate solution to (1) as

(3) u = E(t, X,D)f.

We write

(4) E(t, x, ξ) ∼ E0(t, x, ξ) + E1(t, x, ξ) + · · ·

and obtain the various terms recursively. The PDE (1) requires

(5)
∂

∂t
E(t,X, D) = −L E(t,X, D) = −(L ◦ E)(t,X, D),

where, by the Weyl calculus,

(6) (L ◦ E)(t, x, ξ) ∼ L(x, ξ)E(t, x, ξ) +
∑

j≥1

1
j!
{L,E}j(t, x, ξ).

Recall that

(7) {L,E}j =
(
− i

2

)j{ n∑

k=1

( ∂2

∂yk∂ξk
− ∂2

∂xk∂ηk

)}j

L(x, ξ)E(t, y, η)
∣∣∣
y=x,η=ξ

.

In particular

(8) {L,E}1 = − i

2

∑

k

( ∂L

∂ξk

∂E

∂xk
− ∂L

∂xk

∂E

∂ξk

)

is a multiple of the usual Poisson bracket.
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It is natural to set

(9) E0(t, x, ξ) = e−ta(x,ξ).

Note that the Weyl calculus applied to this term provides a better approximation
than the Kohn-Nirenberg calculus, because

(10) {a, e−ta}1 = 0!

If we plug (4) into (6) and collect the highest order nonvanishing terms, we are led
to define E1(t, x, ξ) as the solution to the ‘transport equation’

(11)
∂E1

∂t
= −aE1 − 1

2
{a,E0}2 − b(x)E0, E1(0, x, ξ) = 0.

Let us set

(12) Ω1(t, x, ξ) = −1
2
{a, e−ta}2 − b(x)e−ta(x,ξ).

Then the solution to (11) is

(13) E1(t, x, ξ) =
∫ t

0

e(s−t)a(x,ξ)Ω1(s, x, ξ)ds.

We turn to the evaluation of the integral (13). Clearly

(14)
∫ t

0

e(s−t)a(x,ξ)b(x)e−sa(x,ξ)ds = tb(x)e−ta(x,ξ).

Now, a straightforward calculation yields

(15) {a, e−sa}2 =
s

2
Q(∇2a)e−sa − s2

4
T (∇a,∇2a)e−sa,

where

(16) Q(∇2a) =
∑

k,`

{
(∂ξk

∂ξ`
a)(∂xk

∂x`
a)− (∂ξk

∂x`
a)(∂xk

∂ξ`
a)

}
,

and

(17)
T (∇a,∇2a) =

∑

k,`

{
(∂ξk

∂ξ`
a)(∂xk

a)(∂x`
a)

+ (∂xk
∂x`

a)(∂ξk
a)(∂ξ`

a)− 2(∂ξk
∂x`

a)(∂xk
a)(∂ξ`

a)
}

.

Therefore

(18)
∫ t

0

e(s−t)a{a, e−sa}2ds =
t2

4
Q(∇2a)e−ta − t3

12
T (∇a,∇2a)e−ta.

We get E1(t, x, ξ) in (13) from (14) and (18).
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Suppose that

(19) a(x, ξ) =
∑

ajk(x)ξjξk,

with ajk = akj . Suppose also that, for some point x0,

(20) ∇x ajk(x0) = 0, ajk(x0) = δjk.

Then, at x0,

(21)

Q(∇2a) =
∑

k,`

(
∂ξk

∂ξ`
a
)(

∂xk
∂x`

a
)

= 2
∑

j,k,`

∂2ajk

∂x2
`

(x0)ξjξk,

and

(22)

T (∇a,∇2a) =
∑

k,`

(
∂xk

∂x`
a
)(

∂ξk
a
)(

∂ξ`
a
)

= 4
∑

j,k,`,m

∂2ajk

∂x`∂xm
(x0)ξjξkξ`ξm.

Such a situation as (20) arises if ajk(x) = gjk(x) comes from a metric tensor
gjk(x), and one uses geodesic normal coordinates centered at x0. Now the Laplace-
Beltrami operator is given by

(23) ∆u = g−
1
2

∑
∂jg

jkg
1
2 ∂k u,

where g = det(gjk). This is symmetric when one uses the Riemannian volume
element dV =

√
g dx1 · · · dxn. To use the Weyl calculus, we want an operator

which is symmetric with respect to the Euclidean volume element dx1 · · · dxn, so
we conjugate ∆ by multiplication by g

1
4 :

(24)
−Lu = g

1
4 ∆

(
g−

1
4 u

)

= g−
1
4

∑
∂jg

jkg
1
2 ∂k

(
g−

1
4 u

)
.

Note that the integral kernel kt
L(x, y) of etL is equal to g

1
4 (x)kt

∆(x, y)g−
1
4 (y); in

particular of course the two kernels coincide on the diagonal x = y. To compare L
with g(X, D), where

(25) g(x, ξ) =
∑

gjk(x, ξ)ξjξk,
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note that

(26) −Lu =
∑

∂jg
jk∂ku + Φ(x)u,

where

(27) Φ(x) =
∑

∂j

(
gjkg

1
2 ∂kg−

1
4
)−

∑
gjkg

1
2
(
∂jg

− 1
4
)(

∂kg−
1
4
)
.

If gjk(x) = ajk(x) satisfies (20), we see that

(28) Φ(x0) =
∑

j

∂2
j g−

1
4 (x0) = −1

4

∑

`

∂2
` g(x0).

Since g(x0 + he`) = det
(
δjk + 1

2h2∂2
` gjk

)
+ O(h3), we have

(29) Φ(x0) = −1
4

∑

j,`

∂2
` gjj(x0).

By comparison, recall from (7.11) that

(30) g(X, D)u = −
∑

∂jg
jk∂ku + Ψ(x)u,

where

(31) Ψ(x) =
1
4

∑
∂j∂kgjk(x).

If x0 is the center of a normal coordinate system, we can express these results
in terms of curvature, using

(32) ∂`∂mgjk(x0) =
1
3
Rj`km(x0) +

1
3
Rjmk`(x0),

in terms of the components of the Riemann curvature tensor. See Spivak, vol.2,
p.193. In particular, we get for (29) and (31):

(33)

Φ(x0) = −1
4

2
3

∑

j,`

Rj`j`(x0) = −1
6
S(x0),

Ψ(x0) = −1
4

1
3

∑

j,k

[
Rjjkk(x0) + Rjkkj(x0)

]
=

1
12

S(x0).

Here S is the scalar curvature of the metric gjk.
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When a(X,D) = g(X, D), we can express the quantities (21)-(22) in terms of
curvature:

(34) Q(∇2g) = 2 · 2
3

∑

j,k,`

Rj`k`(x0)ξjξk =
4
3

∑

j,k

Ricjk(x0)ξjξk,

where Ricjk denotes the components of the Ricci tensor, and

(35) T (∇g,∇2g) = 4 · 2
3

∑

j,k,`,m

Rj`km(x0)ξjξkξ`ξm = 0,

the cancellation here resulting from the antisymmetry of Rj`km in (j, `) and in
(k, m).

Thus the heat kernel for (1) with

(36) Lu = g(X,D)u + b(x)u

is of the form (3)-(4), with E0 = e−tg(x,ξ) and

(37)
E1(t, x, ξ) =

(
−tb(x)− t2

8
Q(∇2g) +

t3

24
T (∇g,∇2g)

)
e−tg

= −
(
tb(x) +

t2

6
Ric(ξ, ξ)

)
e−tg(x,ξ),

at x = x0. Note that g(x0, ξ) = |ξ|2.
Now the integral kernel of Ej(t,X, D) is

(38) Kj(t, x, y) = (2π)−n

∫
Ej

(
t,

x + y

2
, ξ

)
ei(x−y)·ξ dξ.

In particular, on the diagonal we have

(39) Kj(t, x, x) = (2π)−n

∫
Ej(t, x, ξ) dξ.

We want to compute these quantities, for j = 0, 1, and at x = x0. First,

(40) K0(t, x0, x0) = (2π)−n

∫
e−t|ξ|2 dξ = (4πt)−n/2,

since, as is well known, the Gaussian integral in (40) is equal to (π/t)
n
2 . Next,

(41) (2π)nK1(t, x0, x0) = −tb(x0)
∫

e−t|ξ|2dξ − t2

6

∑
Ricjk(x0)

∫
ξjξke−t|ξ|2dξ.
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We need to compute some more Gaussian integrals. If j 6= k, the integrand is an
odd function of ξj , so the integral vanishes. On the other hand,

(42)

∫
ξ2
j e−t|ξ|2dξ =

1
n

∫
|ξ|2e−t|ξ|2dξ

= − 1
n

d

dt

∫
e−t|ξ|2dξ =

1
2
π

n
2 t−

n
2−1.

Thus

(43) K1(t, x0, x0) = −(4πt)−n/2
(
tb(x0) +

t

12
S(x0)

)
,

since
∑

Ricjj(x) = S(x).
As noted above, the Laplace operator ∆ on scalar functions, when conjugated

by g
1
4 , has the form (36), with

b(x0) = Φ(x0)−Ψ(x0) = −1
4
S(x0).

Thus, for the keat kernel et∆, on scalars, we have

(44) K1(t, x0, x0) = (4πt)−n/2 t

6
S(x0).

These computations may allow for an elementary computation of the index of a
first order elliptic differential operator

(45) D : C∞(M, E0) −→ C∞(M, E1)

between sections of vector bundles Ej over a 2-manifold M. Suppose that, with
respect to choices of local frame fields on an open cover Uν of M,

(46) D∗D = g(X, D) + B0(x), DD∗ = g(X,D) + B1(x),

with Bj sections over Uν of End(Ej). Then, the heat kernel difference satisfies

(47) lim
t→0

KD∗D(t, x, x)−KDD∗(t, x, x) =
1
4π

[
B1(x)−B0(x)

]
, x ∈ Uν .

Hence the difference on the right side is globally well defined, and

(48) Index D =
1
4π

∫

M

Tr
[
B1(x)−B0(x)

]
dV.

We can generalize this, setting

(49) a(x, ξ) = g(x, ξ) + `(x, ξ), `(x, ξ) =
∑

`j(x)ξj .
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Again assume a(x, ξ) is scalar and consider L = a(X, D) + b(x). We have

(50) E0(t, x, ξ) = e−ta(x,ξ) = e−t`(x,ξ) e−tg(x,ξ),

and E1(t, x, ξ) is still given by (11)-(18). A point to keep in mind is that we can
drop `(x, ξ) from the computation involving {a, e−ta}2, altering K1(t, x, x) only by
o(t−

n
2 +1) as t ↘ 0. Thus, mod o(t−

n
2 +1), K1(t, x0, x0) is still given by (44). To get

K0(t, x0, x0), expand e−t`(x,ξ) in (50) in powers of t :

(51) E0(t, x, ξ) ∼
[
1− t`(x, ξ) +

t2

2
`(x, ξ)2 + · · ·

]
e−tg(x,ξ).

When doing the ξ-integral, the term t`(x, ξ) is obliterated, of course, while, by (42),

(52)
t2

2

∫
`(x0, ξ)2e−t|ξ|2 dξ =

1
4
π

n
2 t−

n
2 +1

∑
`j(x0)2.

Hence, in this situation,

(53)
K0(t, x0, x0) + K1(t, x0, x0) =

= (4πt)−
n
2

[
1 + t

(∑
`j(x0)2 − b(x0)− 1

12
S(x0)

)
+ O(t2)

]
.

Next, we drop the assumption that `(x, ξ) in (49) be scalar. We still assume
g(x, ξ) defines the metric tensor. There are several changes whose effects on (53)
need to be investigated. In the first place, (10) is no longer quite true. We have

(54) {a, e−ta}1 =
i

2

∑{ ∂a

∂xj

∂

∂ξj
e−ta − ∂a

∂ξj

∂

∂xj
e−ta

}
.

In this case, with a(x, ξ) matrix valued, we have

(55)

∂

∂xj
e−ta = −te−ta Ξ

(
ad(−ta)

)( ∂a

∂xj

)

= −te−ta Ξ
(
ad(−t`)

)( ∂a

∂xj

)
,

where Ξ(z) = (1− e−z)/z, so

(56)

∂

∂xj
e−ta = te−ta

( ∂a

∂xj
+

t

2
[
`,

∂`

∂xj

]
+ · · ·

)

= −t
∂a

∂xj
+ O(t2|ξ|)e−ta + · · · ,
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etc. Hence

(57) {a, e−ta}1 = − i

2
t
∑[ ∂`

∂xj
,

∂`

∂ξj

]
e−ta + · · ·

This is smaller than any of the terms in the transport equation (11) for E1, so it
could be put in a higher transport equation. It does not affect (53).

Another change comes from the following modification of (14):

(58)
∫ t

0

e(s−t)a(x,ξ)b(x)e−sa(x,ξ) ds =
[∫ t

0

e(s−t)`(x,ξ)b(x)e−s`(x,ξ)ds
]
· e−tg(x,ξ).

This time, b(x) and `(x, ξ) may not commute. We can write the right side as

(59)

∫ t

0

es ad `(x,ξ)
[
b(x)

]
ds e−t`(x,ξ)e−tg(x,ξ)

= t
{

b(x)− t

2
(
`(x, ξ)b(x) + b(x)`(x, ξ)

)
+ · · ·

}
e−tg(x,ξ).

Due to the extra power of t with the anticommutator, this does not lead to a change
in (53).

The other change in letting `(x, ξ) be non-scalar is that

(60) `(x, ξ)2 =
∑

j,k

`j(x)`k(x)ξjξk

generally has non-commuting factors, but this also does not affect (53). In conclu-
sion, allowing `(x, ξ) to be non-scalar does not change (53).
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2.2. Applications to 2-D index theory

Consider a first order elliptic differential operator D = A(X,D), with

(1) A(x, ξ) =
∑

Aj(x)ξj + C(x),

a K ×K matrix valued symbol. Assume that

(2)
D∗D = g(X, D) + `0(X,D) + B0(x),

DD∗ = g(X, D) + `1(X,D) + B1(x),

where g(x, ξ) defines a metric tensor, while `j(x, ξ) and Bj(x) are K ×K matrix
valued, and

(3) `ν(x, ξ) =
∑

j

`
(ν)
j (x)ξj .

By (8.53), extended to the non-scalar case, we have

(4) Index D =
1
4π

∫

M

{
Tr

∑

j

[
`
(0)
j (x)2 − `

(1)
j (x)2

]
+ Tr

[
B1(x)−B0(x)

]}
dV.

Of course, the individual terms in the integrand are not generally globally well
defined on M ; only the total is. We want to express these terms directly in terms
of the symbol of D. We have D∗D = L0(X,D) and DD∗ = L1(X, D), with

(5)
L0(x, ξ) = A(x, ξ)∗A(x, ξ) +

i

2
{A∗, A},

L1(x, ξ) = A(x, ξ)A(x, ξ)∗ +
i

2
{A,A∗}.

Hence

(6)
`0(x, ξ) = A1(x, ξ)∗C(x) + C(x)∗A1(x, ξ) +

i

2
{A∗1, A1}

`1(x, ξ) = A1(x, ξ)C(x)∗ + C(x)A1(x, ξ)∗ +
i

2
{A1, A

∗
1},

where A1(x, ξ) =
∑

Aj(x)ξj , and

(7)
B0(x) = C(x)∗C(x) +

i

2
{C∗, A1}+

i

2
{A∗1, C}

B1(x) = C(x)C(x)∗ +
i

2
{C,A∗1}+

i

2
{A1, C

∗}.
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Suppose that, for a given point x0 ∈ M, we arrange C(x0) = 0. Then

(8)

`0(x0, ξ) =
i

2
{A∗1, A1} =

i

2

∑

j

(∂A∗1
∂ξj

∂A1

∂xj
− ∂A∗1

∂xj

∂A1

∂ξj

)

`1(x0, ξ) =
i

2
{A1, A

∗
1} =

i

2

∑

j

(∂A1

∂ξj

∂A∗1
∂xj

− ∂A1

∂xj

∂A∗1
∂ξj

)
,

and

(9)

B0(x0) =
i

2
{C∗, A1}+

i

2
{A∗1, C} =

i

2

∑

j

(
−∂C∗

∂xj

∂A1

∂ξj
+

∂A∗1
∂ξj

∂C

∂xj

)

B1(x0) =
i

2
{C, A∗1}+

i

2
{A1, C

∗} =
i

2

∑

j

(
− ∂C

∂xj

∂A∗1
∂ξj

+
∂A1

∂ξj

∂C∗

∂xj

)
.

Note that, if A1(x, ξ) is scalar, then `0(x0, ξ) = −`1(x0, ξ), (granted that C(x0) =
0), and their contributions to the integrand in (4) cancel. Also, if A1(x, ξ) is scalar,
B1(x0) = −B0(x0). Thus, at x0, the integrand in (4) is equal to

(10) 2 Tr B1(x0) = − Tr
∑

j

(
Aj

∂C

∂xj
−Aj

∂C∗

∂xj

)
,

in this case. This situation arises for elliptic differential operators on sections of
complex line bundles. In such a case, C(x) is also scalar, and we can rewrite (10)
as

(11) −2 Im
∑

j

Aj
∂C

∂xj
.

Let’s take a look at the operator DL : C∞(M,L) → C∞(M, L⊗ κ), where M is
a Riemann surface, L → M a complex line bundle, with a Hermitian metric and a
metric connection ∇, and, for a vector field X,

(12) 〈DLu,X〉 = ∇Xu + i∇JXu.

Here J is the complex structure on TM. We can assume M has a Riemannian
metric with respect to which J is rotation by 90◦. Pick x0 ∈ M. Use a geodesic
normal coordinate system centered at x0, so the metric tensor gjk satisfies

(13) ∇gjk(x0) = 0.

Let X(x0) = ∂/∂x1 and define X by parallel transport radially from x0 (along
geodesics). Then

(14) X(x) = a1
1(x)

∂

∂x1
+ a2

1(x)
∂

∂x2



NOTES ON THE WEYL CALCULUS 29

with

(15) a1
1(x0) = 1, a2

1(x0) = 0, ∇aj
1(x0) = 0.

Furthermore,

(16) JX(x) = a1
2(x)

∂

∂x1
+ a2

2(x)
∂

∂x2

with

(17) a1
2(x0) = 0, a2

2(x0) = 1, ∇aj
2(x0) = 0.

Next, let ϕ be a local section of L such that ϕ(x0) has norm 1, and ϕ(x) is obtained
from ϕ(x0) by radial parallel translation. Thus

(18) u = vϕ =⇒ ∇∂j u = (∂jv + iθjv)ϕ,

where the connection coefficients satisfy

(19) θj(x0) = 0.

In such a coordinate system, and with respect to such choices, the operator DL

takes the form

(20) DL(vϕ) =
1
i

∑[
Aj

∂v

∂xj
−Ajθjv

]
ϕ⊗ ϑ,

where

(21) Aj = i
(
aj
1 + iaj

2

)

and where ϑ ∈ C∞(U, κ) satisfies

〈X, ϑ〉 = 1, 〈JX, ϑ〉 = i.

Then D∗
L : C∞(M,L⊗ κ) → C∞(M,L) is given by

(22) D∗
L(w ϕ⊗ ϑ) =

1
i

∑
g−

1
2

[
Aj

∂

∂xj
+ (∂jAj + Ajθj)

](
g

1
2 w

)
ϕ.

Now we want to take adjoints using L2(U, dx) rather than L2(U,
√

gdx), so we
conjugate by g

1
4 , and replace DL by

(23) D̃L =
1
i

∑[
g

1
4 Aj

∂

∂xj

(
g−

1
4 v

)−Ajθjv
]
.



30 BY MICHAEL E. TAYLOR

Thus we are in the situation of considering an operator of the form (1), with Aj

given by (21) and

(24) C(x) =
∑[ i

2
∂Aj

∂xj
−Ajθj − 1

4
g−1 ∂g

∂xj
Aj

]
.

Thus C(x0) = 0, by (15)-(19), while

(25) ∂kC(x0) =
∑

j

[
−Aj(∂kθj) +

i

2
∂k∂jAj − 1

4
Aj(∂k∂jg)

]
.

Now ∂kθj(x0) is given by the curvature of ∇ on L :

(26)
∂θj

∂xk
(x0) =

1
2
Fjk(x0).

Meanwhile, via (8.32), ∂k∂jAj can be expressed in terms of the Riemannian curva-
ture:

(27) ∂j∂ka`
m(x0) = −1

6
R`jmk − 1

6
R`kmj ,

and of course so can ∂k∂jg(x0). Consequently, at x0, the formula (11) for the inte-
grand in (4) becomes

(28)
2
i
F12 +

1
2
S(x0).

Note that 1
2S = K, the Gauss curvature. Thus the formula (4) becomes

(29)

Index DL =
1
4π

∫

M

(2
i
F12 + K

)
dV

=
1

2πi

∫

M

ωL +
1
4π

∫

M

K dV,

where ωL is the curvature form of L. We have the identities

(30)
1

2πi

∫

M

ωL = c1(L)[M ],
1
4π

∫

M

K dV =
1
2
χ(M),

the latter being the Gauss-Bonnet theorem.
Now, if L → M is a holomorphic line bundle, then 1

2DL has the same principal
symbol, hence the same index, as

∂L : C∞(M,L) −→ C∞(M, L⊗ κ).
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Hence we obtain the Riemann-Roch formula:

(31) Index ∂L = c1(L)[M ] +
1
2
χ(M).

We finish with a comment on the Gauss-Bonnet formula; χ(M) is the index of

(32) d + δ : Λ0M ⊕ Λ2M −→ Λ1M,

if dim M = 2. If M is oriented, both Λ1M and (Λ0 ⊕ Λ2)M get structures of
complex line bundles via the Hodge ∗ operator; use

(33) J = ∗ on Λ1, J = −∗ : Λ0 → Λ2, J = ∗ : Λ2 → Λ0.

It follows easily that (d + δ)J = J(d + δ), so we get a C-linear differential operator

(34) ϑ : ΛeM −→ ΛoM,

where Λe = Λ0 ⊕ Λ2, Λo = Λ1, regarded as complex line bundles, so

Index ϑ =
1
2

Index (d + δ).

Ker ϑ is a one dimensional complex vector space:

Ker ϑ = span (1) = span (∗1).

The cokernel of d+δ in (32) consists of the space H1(M) of (real) harmonic 1-forms.
This is invariant under ∗, so it becomes a complex vector space:

(35) dimCH1(M) =
1
2

dimRH1(M) = g.

Thus

(36) Index ϑ =
1
2
(2− 2g) = 1− g.

When one applies an analysis parallel to that above, leading to (29), one gets

(37) Index ϑ =
1
4π

∫

M

K dV.

Putting together (36) and (37), we have the Gauss-Bonnet formula, for a compact
oriented surface.
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