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Abstract. We treat the Weierstrass ℘ function associated to a lattice Λ ⊂ C as a
principal value distribution on the torus C/Λ and compute its Fourier coefficients.
The computation of these coefficients for nonzero frequencies is straightforward, but
quite pretty. The “constant term” is more mysterious. It leads to a non-absolutely
convergent doubly infinite series, which we denote σ1. This can be regarded as
a version of an Eisenstein series, though as we discuss in §4 it differs from the
“Eisenstein summation” of the series, as treated in [W]. Material from §3 on the
Fourier series of elliptic functions arising from the Weierstrass zeta function leads
to a formula connecting σ1 with the Eisenstein series treated in [W], and thereby
yields a rapidly convergent approximation to σ1.
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1. Introduction and basic calculations

The Weierstrass ℘-function associated with a lattice Λ = {jω1 + kω2 : j, k ∈ Z}
in the complex plane C is given by

(1.1) ℘Λ(z) =
1
z2

+
∑

0 6=ω∈Λ

( 1
(z − ω)2

− 1
ω2

)
,

which is absolutely convergent on C \ Λ, thanks to

(1.2)
∣∣∣ 1
(z − ω)2

− 1
ω2

∣∣∣ ≤ C
|z|
|ω|3 , for |ω| ≥ 2|z|.

It has the perdiodicity property

(1.3) ℘Λ(z + ω) = ℘Λ(z), ∀ω ∈ Λ.

See, e.g., [T2], §30. We can regard ℘Λ(z) as a distribution on C, in the principal
value sense. Then (∂/∂z)℘Λ is a distribution supported on Λ, which we can identify
as follows.
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Proposition 1.1. We have

(1.4)
∂

∂z
℘Λ = −π

∑

ω∈Λ

∂

∂z
δω.

Proof. By the periodicity (1.3), we see that

(1.5)
∂

∂z
℘Λ(z) =

∑

ω∈Λ

γ(z − ω),

where

(1.6)
γ =

∂

∂z
PV

1
z2

= − ∂

∂z

∂

∂z

1
z
.

As is well known (cf. [T], Chapter 3, (4.53)),

(1.7)
∂

∂z

1
z

= πδ,

so

(1.8) γ = −π
∂

∂z
δ,

yielding (1.4).

Now a Λ-periodic function on C can be regarded as a function on the torus

(1.9) TΛ = C/Λ,

and similarly a Λ-periodic distribution on C can be regarded as an element of
D′(TΛ). Such objects have Fourier series, defined as follows. First, we have the
dual lattice to Λ,

(1.10) Γ = {ν ∈ C : 〈ν, ω〉 ∈ 2πZ, ∀ω ∈ Λ},

where 〈 , 〉 is the standard real inner product on R2 ≈ C, i.e.,

(1.11) 〈ν, ω〉 = Re(νω).

Then the functions eν , defined for ν ∈ Γ by

(1.12) eν(z) = ei〈ν,z〉, z ∈ C,
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satisfy

(1.13) eν(z + ω) = eν(z), ∀ω ∈ Λ,

and form an orthonormal basis for L2(TΛ), with inner product

(1.14) (f, g)L2 =
1

A(Λ)

∫

TΛ

f(z)g(z) dx dy,

with z = x + iy, A(Λ) the area of TΛ. Given u ∈ D′(TΛ), we set

(1.15) û(ν) =
1

A(Λ)
〈u, eν〉, for ν ∈ Γ,

so, if u ∈ L2(TΛ),

(1.16) û(ν) = (u, eν)L2 ,

and we have
‖u‖2L2 =

∑

ν∈Γ

|û(ν)|2,

and

(1.17) u =
∑

ν∈Γ

û(ν)eν ,

with convergence in L2-norm. More generally, if u ∈ D′(TΛ), then (1.17) holds,
with convergence in the topology of D′(TΛ).

Our goal is to obtain a formula for ℘̂Λ(ν), making use of (1.4). To do this,
we want formulas relating the Fourier coefficients û(ν) of u ∈ D′(TΛ) to those of
(∂/∂x)u and (∂/∂y)u, hence of

(1.18)
∂

∂z
u =

1
2

( ∂

∂x
+

1
i

∂

∂y

)
u, and

∂

∂z
u =

1
2

( ∂

∂x
− 1

i

∂

∂y

)
u.

With this in mind, we set

(1.19) z = x + iy, ν = α + iβ, x, y, α, β ∈ R,

so 〈ν, z〉 = αx + βy, and

(1.20) eν(z) = ei(αx+βy).
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Hence, for u ∈ D′(TΛ),

(1.21)
∂̂xu(ν) =

1
A(Λ)

〈∂xu, eν〉 = − 1
A(Λ)

〈u, ∂xeν〉 = iαû(ν),

∂̂yu(ν) =
1

A(Λ)
〈∂yu, eν〉 = − 1

A(Λ)
〈u, ∂yeν〉 = iβû(ν).

Hence

(1.22)

∂̂

∂z
u(ν) =

1
2
(iα + β)û(ν) =

i

2
νû(ν),

∂̂

∂z
u(ν) =

1
2
(iα− β)û(ν) =

i

2
νû(ν).

Note that

(1.23) δ̂(ν) =
1

A(Λ)
〈δ, eν〉 =

1
A(Λ)

.

Hence (1.4) yields

(1.24) ν℘̂Λ(ν) = − π

A(Λ)
ν, ν ∈ Γ.

We have the following conclusion.

Proposition 1.2. We have the Fourier coefficients

(1.25) ℘̂Λ(ν) = − π

A(Λ)
ν

ν
, for all nonzero ν ∈ Γ.

It remains to compute

(1.26)

℘̂Λ(0) =
1

A(Λ)
PV

∫

TΛ

℘Λ(z) dx dy

=
1

A(Λ)
lim
ε↘0

∫

TΛ\Dε

℘Λ(x) dx dy,

where Dε = {z ∈ C : dist(z, Λ) < ε}. Understanding this constant term will be a
major focus for the rest of this paper.

In §2 we show that ℘̂Λ(0) = −σ1, where

(1.27)

σ1 = PV
∑

ω∈Λ\0

1
ω2

= lim
R→∞

∑

ω∈ΛR\0

1
ω2

,
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where ΛR is (e.g.) the intersection of Λ with {x + iy : |x|, |y| ≤ R}. This is not
an absolutely convergent series, and convergence in (1.27) is painfully slow. One
goal, finally achieved in §5, will be to obtain an identity for σ1 that allows for fast
computation.

In §3 we consider the Fourier series of functions arising from

(1.28) ζΛ(z) =
1
z

+
∑

ω∈Λ\0

( 1
z − ω

+
1
ω

+
z

ω2

)
.

This is meromorphic with poles at Λ, but it is not Λ-periodic. Rather, we have

(1.29) ζΛ(z + ω)− ζΛ(z) = αΛ(ω), ω ∈ Λ,

for certain constants αΛ(ω). Consequently the functions

(1.30) ζa,Λ(z) = ζΛ(z − a)− ζΛ(z + a)

are Λ-periodic. We show that

(1.31) ζ̂a,Λ(ν) = − 4π

A(Λ)
sin〈ν, a〉

ν
, ν ∈ Γ \ 0,

and then tackle ζ̂a,Λ(0). We show that

(1.32) ζ̂a,Λ(0) = −2σ1a− 2π

A(Λ)
a,

with σ1 as in (1.27). Using this and (1.29), we deduce that

(1.33) αΛ(ω) = σ1ω +
π

A(Λ)
ω, ω ∈ Λ.

In §4 we discuss results from [W] on “Eisenstein summation” of ω−2 over Λ \ 0,
which produces the quantity

(1.34) σ̃1(ω1, ω2) = lim
N→∞

N∑

k=−N

( ∑

j∈Z,(j,k)6=(0,0)

(jω1 + kω2)−2
)
.

One advantage of such summation is that a rapidly convergent expansion is avail-
able; see (4.4). However, we show by examples that σ̃1 differs from σ1.

In §5 we make use of (1.33) to show that

(1.35) σ1 = σ̃1(ω1, ω2)− π

A(Λ)
ω1

ω1
.

This allows for a fast computation of σ1.
In Appendix A er define PV variants pΛ and zΛ of ℘Λ and ζΛ, and record ana-

logues of (1.26), (1.29), (1.32), and (1.33) for these functions.
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2. The constant term

Here we look at ℘̂Λ(0), defined by (1.26). We start by noting some cases where
we can say this is zero.

Proposition 2.1. Assume Λ is either a square lattice or a triangular lattice, i.e.,
either

(2.1) ω ∈ Λ ⇐⇒ iω ∈ Λ, or ω ∈ Λ ⇐⇒ eπi/3ω ∈ Λ.

Then ℘̂Λ(0) = 0.

Proof. In such cases, we have ℘Λ(τz) = τ2℘Λ(z), with τ = i or eπi/3, respectively,
and

(2.2)

PV
∫

TΛ

℘Λ(z) dx dy = PV
∫

TΛ

℘Λ(τz) dx dy

= τ2 PV
∫

TΛ

℘Λ(z) dx dy,

which implies this integral is 0.

To proceed, let Ω ⊂ C be the parallelogram with vertices

(2.3) −1
2
(ω1 + ω2),

1
2
(ω1 − ω2),

1
2
(ω1 + ω2),

1
2
(−ω1 + ω2),

where, recall, ω1 and ω2 are generators of Λ. From (1.1) we have

(2.4) PV
∫

TΛ

℘Λ(z) dx dy = PV
∫

Ω

1
z2

dx dy +
∑

0 6=ω∈Λ

∫

Ωω

( 1
z2
− 1

ω2

)
dx dy,

an absolutely convergent series, by (1.2), where

Ωω = Ω + ω.

In particular, if O ⊂ C is a neighborhood of 0 with piecewise smooth boundary,
then

(2.5) PV
∫

TΛ

℘Λ(z) dx dy = lim
R→∞

(
PV

∫

UR

1
z2

dx dy −A(Λ)
∑

0 6=ω∈ΛR

1
ω2

)
,
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where

(2.6) ΛR = Λ ∩RO, UR =
⋃

ω∈ΛR

Ωω,

and A(Λ) = AreaTΛ = Area Ω. Note that

(2.7) PV
∫

UR

1
z2

dx dy − PV
∫

RO

1
z2

dx dy = O(R−1).

Now let us assume that O satisfies the condition

(2.8) PV
∫

O

1
z2

dx dy = 0.

For example, O could be any neighborhood of 0, with piecewise smooth boundary,
satisfying

(2.8) ζO = O, ζ = i or eπi/3.

In particular, O could be a square or a disk, centered at 0. We then have the
following.

Proposition 2.2. If ΛR is given by (2.6) and O contains 0 and satisfies (2.8),
then

(2.10) ℘̂Λ(0) = − lim
R→∞

∑

0 6=ω∈ΛR

1
ω2

.

In connection with (2.10), we mention the quantities

(2.11) σn =
∑

ω∈Λ\0

1
ω2n

.

For n ≥ 2, this is an absolutely convergent series, and these numbers are significant
in the theory of ℘Λ(z). Cf. (31.20)–(31.21) and (31.25)–(31.27) in [T2]. Many
treatments of elliptic function theory say nothing about the case n = 1 of (2.11),
except to remark that then the series is not absolutely convergent. A notable
exception is [W], to which we will return in §4. The calculations above point to the
intrinsic interest of the case n = 1. We write

(2.12) σ1 = PV
∑

ω∈Λ\0

1
ω2

= lim
R→∞

∑

0 6=ω∈ΛR

1
ω2

,

with ΛR as in Proposition 2.2, which then says

(2.13) ℘̂Λ(0) = −σ1.
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3. Fourier series of Weierstrass zetas

The Weierstrass zeta function (not to be confused with the Riemann zeta func-
tion) associated with a lattice Λ ⊂ C is given by

(3.1) ζΛ(z) =
1
z

+
∑

ω∈Λ\0

( 1
z − ω

+
1
ω

+
z

ω2

)
.

See (30.14) of [T2]. The extra terms in the sum serve to make the series absolutely
convergent on C \ Λ, defining a meromorphic function, and we have

(3.2) ζ ′Λ(z) = −℘Λ(z).

As a result,

(3.3) ζΛ(z + ω)− ζΛ(z) = αΛ(ω), ∀ω ∈ Λ,

but αΛ(ω) is not zero, though of course

(3.4) αΛ(ω + ω′) = αΛ(ω) + αΛ(ω′), ∀ω, ω′ ∈ Λ.

We are led to consider, for a, b ∈ C,

(3.5) ζa,b,Λ(z) = ζΛ(z − a)− ζΛ(z − b),

obtaining a Λ-periodic function on C, meromorphic with poles at (a+Λ)∪ (b+Λ),
all simple, if a− b /∈ Λ. We have, by (1.7),

(3.6)
∂

∂z
ζa,b,Λ = π

∑

ω∈Λ

(δω+a − δω+b).

Parallel to (1.23),

(3.7) δ̂ω+a(ν) =
1

A(Λ)
e−i〈ν,a〉,

so, via (1.22),

(3.8) νζ̂a,b,Λ(ν) = − 2πi

A(Λ)

(
e−i〈ν,a〉 − e−i〈ν,b〉

)
.

This yields the following analogue of Proposition 1.2.
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Proposition 3.1. We have the Fourier coefficients

(3.9) ζ̂a,b,Λ(ν) = − 2πi

A(Λ)
1
ν

(
e−i〈ν,a〉 − e−i〈ν,b〉

)
, ∀ ν ∈ Γ \ 0.

It remains to compute

(3.10) ζ̂a,b,Λ(0) =
1

A(Λ)

∫∫

Ω

ζa,b,Λ(z) dx dy,

where Ω ⊂ C is the period parallelogram, centered at 0, with vertices as in (2.3).
It suffices to do this for b = −a, and from here on we will work with

(3.11)

ζa,Λ(z) = ζa,−a,Λ(z)

=
1

z − a
− 1

z + a
+

∑

ω∈Λ\0

( 1
z − a− ω

− 1
z + a− ω

− 2a

ω2

)
.

In this case, (3.9) becomes

(3.12) ζ̂a,Λ(0) = − 4π

A(Λ)
sin〈ν, a〉

ν
, ∀ ν ∈ Γ \ 0,

and we desire to analyze

(3.13) ζ̂a,Λ(0) =
1

A(Λ)

∫∫

Ω

ζa,Λ(z) dx dy.

One route to this calculation is to apply ∂/∂a and ∂/∂a to ζa,Λ(z), using

(3.14)
∂

∂z
ζΛ = −℘Λ(z),

∂

∂z
ζΛ = π

∑

ω∈Λ

δω.

We get

(3.15)

∂

∂a
ζa,Λ(z) = ℘Λ(z − a) + ℘Λ(z + a),

∂

∂a
ζa,Λ(z) = −π

∑

ω∈Λ

(δω+a + δω−a),

hence

(3.16)

∂

∂a
ζ̂a,Λ(0) =

1
A(Λ)

PV
∫∫

TΛ

(
℘Λ(z − a) + ℘Λ(z + a)

)
dx dy

= 2℘̂Λ(0)
= −2σ1,
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and

(3.17)
∂

∂a
ζ̂a,Λ(0) = − 2π

A(Λ)
.

Writing a = α + iβ, α, β ∈ R, we have

(3.18)
∂

∂α
=

∂

∂a
+

∂

∂a
,

∂

∂β
= i

( ∂

∂a
− ∂

∂a

)
.

Hence

(3.19)

∂

∂α
ζ̂a,Λ(0) = −2σ1 − 2π

A(Λ)
,

∂

∂β
ζ̂a,Λ(0) = i

(
−2σ1 +

2π

A(Λ)

)
.

Now ζ0,Λ ≡ 0, so

(3.20)
ζ̂a,Λ(0) = −

(
2σ1 +

2π

A(Λ)

)
α− i

(
2σ1 − 2π

A(Λ)

)
β

= −2σ1(α + iβ)− 2π

A(Λ)
(α− iβ).

We record the conclusion.

Proposition 3.2. We have

(3.21) ζ̂a,Λ(0) = −2σ1a− 2π

A(Λ)
a.

We can relate the term αΛ(ω) in (3.3) to σ1, as follows. From (3.3) we obtain

(3.22) ζa+ω,Λ(z) = ζa,Λ(z)− 2αΛ(ω), ω ∈ Λ,

which gives

(3.23) ζ̂a+ω,Λ(0) = ζ̂a,Λ(0)− 2αΛ(ω).

Now using both (3.21) and its analogue with a replaced by a + ω gives

(3.24) −2σ1(a + ω)− 2π

A(Λ)
(a + ω) = −2σ1a− 2π

A(Λ)
a− 2αΛ(ω),

and cancelling appropriate terms yields the conclusion

(3.25) αΛ(ω) = σ1ω +
π

A(Λ)
ω, ω ∈ Λ.
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In connection with this, we mention that

(3.26) ω ∈ Λ,
ω

2
/∈ Λ =⇒ αΛ(ω) = 2ζΛ

(ω

2

)
.

See [T2], §30. Thus computations of σ1 and of ζΛ(ω/2), for some ω satisfying the
hypotheses of (3.26), are equivalent problems.

If ω1 and ω2 generate Λ and Im(ω2/ω1) > 0, then (3.25) implies

(3.27)

αΛ(ω1)ω2 − αΛ(ω2)ω1 =
π

A(Λ)
(ω1ω2 − ω2ω1)

= 2πi
Im(ω1ω2)

A(Λ)
= 2πi.

This result also follows directly from

(3.28) 2πi =
∫

∂Ω

ζΛ(z) dz = αΛ(ω1)ω2 − αΛ(ω2)ω1,

where Ω is a period parallelogram centered at 0; cf. [T2], §30, Exercise 5. Of course,
the calculation (3.27) loses the contribution of σ1ω to (3.25). On the other hand,
we can complement (3.27) with

(3.29)
αΛ(ω1)ω2 − αΛ(ω2)ω1 = (ω1ω2 − ω2ω1)σ1

= −2iA(Λ)σ1.

This can also be shown directly by applying Green’s theorem to (3.2), i.e., to

∂

∂z
ζΛ(z) = −℘Λ(z),

and using (3.3). Conversely, we can solve (3.27) and (3.29) for αΛ(ω1) and αΛ(ω2),
obtaining another derivation of (3.25), this one not involving the calculations (3.15)–
(3.21).
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4. Eisenstein summation vs PV summation

In [W] there is a discussion of “Eisenstein summation” of ω−2 over Λ \ 0, when
Λ ⊂ C is a lattice generated by (ω1, ω2). This is given by

(4.1) σ̃1(ω1, ω2) = lim
N→∞

N∑

k=−N

( ∑

j∈Z,(j,k)6=(0,0)

(jω1 + kω2)−2
)
,

the inner sum being absolutely convergent for each k. Convergence as N → ∞
is established on pp. 18–19 of [W]. Unlike σ1 in (3.1)–(3.2), this quantity depends
on the choice of generators. As shown on p. 21 of [W], if one has another pair of
generators, (ω′1, ω

′
2), satisfying

(4.2) (ω′1 ω′2) = (ω1 ω2)A, A =
(

a b
c d

)
∈ G`(2,Z), detA = ±1,

then

(4.3) σ̃1(ω′1, ω
′
2) = σ̃1(ω1, ω2)− 2πi

ω1ω′1

(
sgn Im

ω2

ω1

)
c.

By (11) on p. 20 of [W], one has the series

(4.4) σ̃1(ω1, ω2) =
4π2

ω2
1

( 1
12
− 2

∞∑

N=1

γ1(N)qN
)
,

where

(4.5) q = e2πiτ , τ =
ω2

ω1
,

provided Im τ > 0, and

(4.6) γ1(N) =
∑

k|N
k.

The series (4.4) is typically rapidly convergent. For example, if ω1 = 1, ω2 = ai,
with a > 0, then q = e−2πa, so

(4.7)
a = 1 =⇒ q = e−2π ≈ 1.867433× 10−3,

a = 2 =⇒ q = e−4π ≈ 3.487343× 10−6.
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From these estimates, we can easily see that

(4.8) σ̃1(1, i) 6= 0,

whereas, by Propositions 2.1–2.2, σ1 = 0 for the lattice generated by 1 and i. Let
us pursue this a little further. A direct consequence of (4.1) is that

(4.9) σ̃1(−i, 1) = −σ̃1(1, i),

a result that also follows from (4.4). On the other hand, (4.3) yields

(4.10) σ̃1(−i, 1) = σ̃1(1, i)− 2π.

It follows that

(4.11) σ̃1(1, i) = π.

Further comparison with (4.4), for ω1 = 1, ω2 = i, yields the curious identity

(4.12)
∞∑

N=1

γ1(N)e−2πN =
1
8

(1
3
− 1

π

)
.

A numerical check verifies that both sides are

(4.13) ≈ .00187793 · · · .

We next consider the triangular lattice, with generators

(4.14) ω1 = 1, ω2 = eπi/3 =
1
2

+
√

3
2

i.

Another set of generators is

(4.15) ω′1 = e−πi/3 = 1− ω2, ω′2 = 1,

related to the first set by

(4.16) (e−πi/3 1) = (1 eπi/3)
(

1 1
−1 0

)
.

A direct use of (4.1) gives

(4.17) σ̃1(e−πi/3, 1) = e2πi/3σ̃1(1, eπi/3),
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while (4.3) yields

(4.18) σ̃1(e−πi/3, 1) = σ̃1(1, eπi/3) + 2πieπi/3.

Comparison of (4.17) and (4.18) yields

(4.19) σ̃1(1, eπi/3) =
π

sin π/3
=

2√
3

π.

Again, by Propositions 2.1–2.2, σ1 = 0 for the lattice generated by 1 and eπi/3.
The upshot of these calculations is that the relation between the Eisenstein

summation (4.1) and the PV summation (2.12) of ω−2 over Λ\0 requires elucidation.
In light of the fast approximation (4.4) to (4.1), it is desirable to understand this
relation better.

We will analyze the difference between these two sums in §5. First we collect a
few more useful facts.

The text [W] also studied the variant of ζΛ, given by

(4.20) E1(z) = lim
N→∞

N∑

k=−N

(
lim

M→∞

M∑

j=−M

1
z − jω1 − kω2

)
.

As with (4.1), this depends on the choice of generators {ω1, ω2}, but we suppress
this from the notation here. As noted on p. 16 of [W], we have the periodicity

(4.21) E1(z + jω1) = E1(z).

Furthermore, by (9) on p. 20 of [W], we have, for z close to 0,

E1(z) =
1
z
− σ̃1(ω1, ω2)z −

∞∑

k=2

σkz2k−1.

Meanwhile, ζΛ(z) has a similar form, except that the coefficient of z is 0. It follows
that

(4.22) ζΛ(z) = E1(z) + σ̃1(ω1, ω2)z.

These identities will lead us in §5 to the relation between σ1 and σ̃1(ω2, ω2).
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5. Formula for σ1

We can relate σ1 to σ̃1(ω1, ω2) via (4.21)–(4.22), which yield

(5.1) ζΛ(z + ω1) = ζΛ(z) + σ̃1(ω1, ω2)ω1.

By comparison, we have from (3.3) and (3.25) that

(5.2)
ζΛ(z + ω1) = ζΛ(z) + αΛ(ω1)

= ζΛ(z) + σ1ω1 +
π

A(Λ)
ω1.

This yields the following formula for σ1, which is useful for computation in light of
the expansion (4.4).

Proposition 5.1. If the lattice Λ is generated by ω1 and ω2, then

(5.3) σ1 = σ̃1(ω1, ω2)− π

A(Λ)
ω1

ω1
.

One readily verifies that (5.3) is consistent with (4.11) and (4.19), plus the
observation that σ1 = 0 for both lattices involved there. We can also recover
the formula (4.3) from (5.3), as follows. If {ω′1, ω′2} also generate Λ, then

(5.4) σ1 = σ̃1(ω′1, ω
′
2)−

π

A(Λ)
ω′1
ω′1

,

so

(5.5)
σ̃1(ω1, ω2)− σ̃1(ω′1, ω

′
2) =

π

A(Λ)

(ω1

ω1
− ω′1

ω′1

)

=
2πi

ω1ω′1

Im(ω1ω
′
1)

A(Λ)
,

which is equivalent to (4.3).
To end this section, we discuss the numerical calculation of σ1 in the special case

of the lattice with generators

(5.6) ω1 = 1, ω2 = 2i.

In such a case, we have A(Λ) = 2, so

(5.7) σ1 = σ̃1(1, 2i)− π

2
,
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and furthermore (4.4) holds with ω1 = 1, q = e−4π. Since γ1(1) = 1, γ1(2) =
3, γ1(3) = 4, we have

(5.8) σ̃1(1, 2i) ≈ π2

3
(1− 24q − 72q2 − 96q3),

with an error less than 10−20. A double precision calculation in C on a Mac gives
(in the blink of an eye)

(5.9) σ1 ≈ 1.7187964545059,

most likely accurate to at least 12 digits after the decimal point.
By contrast, one can take the approximation from (2.12),

(5.10) σ1 = lim
R→∞

SR, SR =
∑

ω∈ΛR\0

1
ω2

,

with

(5.11) ΛR = {j + 2ki : |j| ≤ R, |2k| ≤ R}.

A C program on a Mac yields

(5.12)

S4000 = 1.718671
S8000 = 1.718734

S16000 = 1.718765.

These figures indicate an error in SR that is O(R−1), as one would expect from
(2.7). The calculation of S16000 took about half a billion floating point operations,
and was performed in a handful of seconds. As we can see from (5.9), it differs
from σ1 by about .00003. Increasing the accuracy of SR by k digits would require
102k times as many operations. Clearly the brute force approach to summing (5.10)
would not yield 12 digits of accuracy, even after running for many years. Therefore
the formulas (5.3) and (4.4) are especially welcome.
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A. PV variants of ℘Λ and ζΛ

As [W] treated “Eisenstein sum” variants of ℘Λ and ζΛ, we are motivated to
introduce “PV” variants of these functions. Now that we have seen that

(A.1) lim
R→∞

∑

ω∈ΛR\0

1
ω2

= PV
∑

ω∈Λ\0

1
ω2

= σ1

exists, given

(A.2) ΛR = Λ ∩RO,

with O as described in §2, if we further require that O = −O, e.g., by requiring

(A.3) O = iO,

we can write

(A.4)
℘Λ(z) = pΛ(z)− σ1,

ζΛ(z) = zΛ(z) + σ1z,

where we define

(A.5) pΛ(z) = lim
R→∞

∑

ω∈ΛR

1
(z − ω)2

= PV
∑

ω∈Λ

1
(z − ω)2

,

and

(A.6) zΛ(z) = lim
R→∞

∑

ω∈ΛR

1
z − ω

= PV
∑

ω∈Λ

1
z − ω

.

Given these definitions of pΛ and zΛ, (3.3) and (3.25) are equivalent to

(A.7) zΛ(z + ω)− zΛ(z) = βΛ(ω) =
π

A(Λ)
ω, ω ∈ Λ,

Proposition 3.2 is equivalent to the formula

(A.8) ẑa,Λ(0) = − 2π

A(Λ)
a,

for the Fourier coefficient at 0 of the elliptic function

(A.9)
za,Λ(z) = zΛ(z − a)− zΛ(z + a)

= ζa,Λ(z) + 2aσ1,

and Proposition 2.2 is equivalent to

(A.10) p̂Λ(0) = 0.

Note that the formulas (A.7), (A.8), and (A.10) have a simpler form than their
counterparts for ζΛ and ℘Λ.



18

References

[T] M. Taylor, Partial Differential Equations, Vols. 1–3, Springer-Verlag, New
York, 1996 (2nd ed., 2011).

[T2] M. Taylor, Introduction to Complex Analysis, Lecture Notes, available at
http://www.unc.edu/math/Faculty/met/complex.html

[W] A. Weil, Elliptic Functions according to Eisenstein and Kronecker, Springer-
Verlag, New York, 1976.


