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1. Introduction

Let M be a compact, n-dimensional Riemannian manifold. Let E → M be a
smooth, rank k, real vector bundle, such that the fibers Ex are equipped with a
smoothly varying inner product. Let L : C∞(M, E) → C∞(M,E) be a strongly
elliptic, self adjoint differential operator. We assume L has order 2 and is positive
semi-definite (though other assumptions can be used). An example would be L =
−∆, where ∆ is the Hodge Laplacian on `-forms, Ex = Λ`T ∗x , and k =

(
n
`

)
. We

will want to restrict attention to cases where k ≤ n, which would require ` ∈
{0, 1, n− 1, n}.

The space L2(M, E) has an orthonormal basis {fj : j ≥ 0}, consisting of eigen-
functions of L:

(1.1) Lfj = λ2
jfj .

We take a function ϕ : [0,∞) → R, assumed to be rapidly decreasing at infinity,
and form the following random field:

(1.2) Fω(x) =
∑

k≥0

ϕ(λk)Xk(ω)fk(x),

where {Xk} are independent, identically distributed Gaussian random variables, on
some auxiliary probability space (Ω, µ), with mean 0 and variance 1. Note that we
can take

(1.3) ‖Fω‖2Hs(M) =
∑

k≥0

(1 + λ2
k)sϕ(λk)2|Xk(ω)|2,
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hence

(1.4) E
(
‖F‖2Hs(M)

)
=

∑

k≥0

(1 + λ2
k)sϕ(λk)2 < ∞, ∀ s ∈ R,

so ω-a.e. Fω is in C∞(M, E).
Our goal is to study the set

(1.5) Z(Fω) = {x ∈ M : Fω(x) = 0}.

We claim that, for a.e. ω ∈ Ω (and suitable ϕ), this has Hausdorff dimension n−k,
and we seek a formula for the expectation of its (n − k)-dimensional Hausdorff
measure. Once in possession of such a formula, we take a one parameter family of
functions ϕτ and consider asymptotics in τ .

One key ingredient in our calculation will be the identity

(1.6)
∑

k≥0

ψ(λk)fk(x)⊗ fk(x) = Kψ(x, y),

where Kψ(x, y) is the integral kernel of the operator ψ(
√

L), i.e.,

(1.7) ψ(
√

L)g(x) =
∫

M

Kψ(x, y)g(y) dV (y).

Note that Kψ(x, y) ∈ Ex ⊗ Ey ≈ L(Ey, Ex), the latter isomorphism via the inner
product on Ey.
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2. Formulas for the expected (n− k)-dimensional area of Z(Fω)

Assume Fω ∈ C∞(M, E) and that 0 is a regular value of Fω.

Proposition 2.1. In such a case, the (n − k)-dimensional Hausdorff measure of
Z(Fω) satisfies

(2.1) Hn−kZ(Fω) = lim
ε→0

∫

M

ηε(Fω(x))L(∇Fω(x)) dV (x),

where, for v ∈ Ex,

(2.2)
ηε(v) = V −1

k ε−k if |v| ≤ ε,

0 if |v| > ε,

with Vk the volume of the unit ball in Rk, and, for A ∈ L(Tx, Ex),

(2.3) L(A) = (det AAt)1/2.

Here ∇Fω is defined by a choice of connection on E. Note however that ∇Fω(x0)
is independent of the choice of such a connection for x0 ∈ Z(Fω), so two such
connections yield close results for x close to Z(Fω). Hence the right side of (2.1) is
independent of such a choice.

Proof of Proposition 2.1. Take x0 ∈ Z(Fω) and pick geodesic coordinates centered
at x0. Identify Tx0Z(Fω) with Rn−k and its orthogonal complement Nx0Z(Fω)
with Rk. The key is to identify, to leading order in ε, the k-dimensional measure of

(2.3A) {x ∈ Nx0Z(Fω) : |Fω(x)| ≤ ε},

or equivalently (to leading order) the k-dimensional measure of

(2.3B) {x ∈ Nx0Z(Fω) : |Ax| ≤ ε},

where

(2.3C) A = ∇Fω(x0) : Tx0M −→ Ex0 ,

can be identified with

(2.3D) A : Rn −→ Rk, A = (0 B), B : Rk → Rk,
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and we want to evaluate the k-dimensional volume of

(2.3E) {u ∈ Rk : |Bu| ≤ ε}.

Now applying B multiplies volumes of subsets of Rk by a factor of

(2.3F) | detB| = (det AAt)1/2,

so the volume of (2.3E), hence of (2.3B), is Vkεk| detB|−1, and to leading order
this is the volume of (2.3A). The factor L(∇Fω(x)) needs to cancel out the extra
factor of |det B|−1, to leading order, and this leads to (2.3).

Let us denote the integral on the right side of (2.1) by

(2.4) Zε(Fω) =
∫

M

ηε(Fω(x))L(∇Fω(x)) dV (x).

From here, we have

(2.5) EZε(F ) =
∫

M

E
[
ηε(F (x))L(∇F (x))

]
dV (x).

By (1.2),

(2.6)
Gω(x) = (Fω(x),∇Fω(x))

=
∑

k

ϕ(λk)Xk(ω)(fk(x),∇fk(x))

is, for each x, a Gaussian random variable, taking values in Ex ⊕ L(Tx, Ex), with
mean zero. This Gaussian random variable hence induces a Gaussian probability
measure Γx on Ex ⊕ L(Tx, Ex), and

(2.7) E
[
ηε(F (x))L(∇F (x))

]
=

∫

Ex⊕L(Tx,Ex)

ηε(v)L(A) dΓx(v,A).

Later on we will show that this Gaussian measure has the form

(2.8) dΓx(v,A) = cϕ(x)e−γϕ,x(v,A) dv dA,

where γϕ,x(v, A) is a positive definite quadratic form in (v,A). Consequently,

(2.9)

lim
ε→0

E
[
ηε(F (x))L(∇F (x))

]

= cϕ(x)
∫

L(Tx,Ex)

e−γϕ,x(0,A)L(A) dA.
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Combining this with (2.1) and (2.5) gives the following variant of the Kac-Rice
formula:

(2.10) E
[
Hn−kZ(F )

]
=

∫

M

∫

L(Tx,Ex)

cϕ(x)e−γϕ,x(0,A)L(A) dAdV (x).

Our next task, pursued in §§3–4, is to derive information on the integrand on the
right side of (2.10), which will follow from information on the Gaussian measure
(2.8).

Remark. These results can be localized. If U ⊂ M is open and smoothly bounded,
then

(2.11) E
[
Hn−k(U ∩ Z(F ))

]
=

∫

U

∫

L(Tx,Ex)

cϕ(x)e−γϕ,x(0,A)L(A) dAdV (x).
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3. The Gaussian measure Γx on Ex ⊕ L(Tx, Ex)

As seen in §2, for each x ∈ M ,

(3.1) Gω(x) =
∑

k

ϕ(λk)Xk(ω)uk(x), uk(x) = (fk(x),∇fk(x)),

is a Gaussian random variable, taking values in Ex ⊕L(Tx, Ex), with mean 0, and
this random variable then induces a Gaussian probability measure Γx on Ex ⊕
L(Tx, Ex). Our next goal is to see when Γx has the form

(3.1A) dΓx(v,A) = cϕ(x)e−γϕ,x(v,A) dv dA,

and analyze cϕ(x) and γϕ,x(v, A), which is a quadratic form in (v, A). We use the
fact that Γx is uniquely determined by the covariance of Gω(x), which we proceed
to analyze. We have

(3.2)

E(G(x)⊗G(y)) =
∑

j,k

E(Xj , Xk)ϕ(λj)ϕ(λk)uj(x)⊗ uk(y)

=
∑

k

ϕ(λk)2 uk(x)⊗ uk(y).

We can expand out uk(x)⊗ uk(y) as

(3.3) uk(x)⊗ uk(y) =
(

fk(x)⊗ fk(y) fk(x)⊗∇fk(y)
∇fk(x)⊗ fk(y) ∇fk(x)⊗∇fk(y)

)
.

Now, as seen in (1.6),

(3.4)
∑

k

ϕ(λk)2 fk(x)⊗ fk(y) = Kϕ2(x, y),

the integral kernel of ϕ(
√

L)2. It follows that

(3.5) E(G(x)⊗G(x)) =
(

Kϕ2(x, x) ∇2Kϕ2(x, x)
∇1Kϕ2(x, x) ∇1∇2Kϕ2(x, x)

)
,

where ∇1Kψ(x, y) = ∇xKψ(x, y), ∇2Kψ(x, y) = ∇yKψ(x, y), etc. Note that (3.5)
is an element of

(3.6)
End(Ex ⊕ L(Tx, Ex)) ≈ End Ex ⊕ L(L(Tx, Ex), Ex)

⊕ L(Ex,L(Tx, Ex))⊕ EndL(Tx, Ex).
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We proceed from (3.5) to a formula for the Gaussian measure Γx. First, we
place the calculation in a more general setting. Let V be an m-dimensional real
inner product space, (Ω, µ) a probability space, and G : Ω → V a V -valued random
variable, yielding the probability measure G∗µ = Γ on V . Let us assume that G
is a Gaussian random variable with mean zero. As is well known, Γ is a Gaussian
measure, and it is uniquely determined by the covariance

(3.7) E(G⊗G) = C ∈ V ⊗ V ≈ L(V ),

the latter isomorphism given by the inner product on V . Note that C = Ct, and
this operator is positive semidefinite. If C is positive definite, then Γ has the form

(3.8) dΓ(y) = α(C)e−y·Cy dy,

for some positive definite C ∈ L(V ), with α(C) chosen so that the right side of
(3.8) has mass one. Using orthonormal coordinates on V such that C is diagonal,
and computing the Gaussian integrals, via

(3.9)
∫ ∞

−∞
e−y2

dy =
√

π,

we obtain

(3.10) α(C) = π−m/2(det C)1/2.

Now Γ = G∗µ if and only if

(3.11)
∫

V

y ⊗ y dΓ(y) = C.

To calculate

(3.12)
∫

V

e−y·Cyy ⊗ y dy,

we take an orthonormal basis {ej} of V such that Cej = cjej , cj > 0. Then
y ⊗ y =

∑
j,k yjyk ej ⊗ ek, and (3.12) is

(3.13)
∑

j,k

∫

V

e−y·Cyyjyk dy ej ⊗ ek.

Symmetry considerations show that each term for which j 6= k vanishes, and we
are left to calculate

(3.14)
∫

V

e−y·Cyy2
k dy =

∏

j 6=k

( π

cj

)1/2
∫ ∞

−∞
e−cky2

y2 dy,



8

making use of the following consequence of (3.9):

(3.15)
∫ ∞

−∞
e−cy2

dy =
√

π

c
,

for c > 0. Taking the c-derivative of (3.15) yields

(3.16)
∫ ∞

−∞
e−cy2

y2 dy =
√

π

2
c−3/2,

so (3.13)–(3.14) yield

(3.17)

∫

V

e−y·Cyy ⊗ y dy =
∑

k

∏

j 6=k

( π

cj

)1/2
√

π

2c
3/2
k

ek ⊗ ek

=
1
2

πm/2

(detC)1/2

∑

k

c−1
k ek ⊗ ek

=
1
2

πm/2

(detC)1/2

∑

k

C−1ek ⊗ ek.

Using (3.10) and taking into account the isomorphism V ⊗V ≈ L(V ), we have from
(3.11) that

(3.18) C =
1
2
C−1, hence C =

1
2
C−1.

We record the (well known) conclusion.

Lemma 3.1. If G : Ω −→ V is a Gaussian random variable with mean 0 and
covariance C, given by (3.7), and if C is positive definite, then Γ = G∗µ has the
form (3.8), with C given by (3.18) and α(C) by (3.10).

Regarding the condition that C be positive definite, note from (3.7) that, for
v ∈ V ,

(3.19) v · Cv = E(|G · v|2) =
∫

Ω

|G(ω) · v|2 dµ(ω).

Thus C is positive definite unless there is a proper linear subspace V0 ⊂ V such that

(3.20) G(ω) ∈ V0, for µ-a.e. ω ∈ Ω.

In the case of main interest to us, C = Cx is given by (3.5), as a continuous section
of End(E ⊕ L(TM, E)). As long as this is positive definite on Ex ⊕ L(Tx, Ex) for
each x ∈ M , we have the results (2.8)–(2.10). We turn to a closer look at such Cx

in the next section, for ϕ(λ) = e−tλ2/2, and examine asymptotics as t ↘ 0.
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4. Heat asymptotics and zero set asymptotics

Here we assume that the second order operator L has a scalar principal symbol,
equal to that of −∆, where ∆ is the Laplace-Beltrami operator on M . Such holds
when L is the negative of the Hodge Laplacian on `-forms. Then, for t ↘ 0,

(4.1) e−tLu(x) =
∫

M

Kt(x, y)u(y) dV (y),

where Kt(x, y) ∈ L(Ey, Ex) has the form, for x and y close,

(4.1) Kt(x, y) ∼ (4πt)−n/2e−ρ(x,y)/4t
(
A0(x, y) + A1(x, y)t + · · ·

)
,

with Ak ∈ L(Ey, Ex), depending smoothly on x and y, and

(4.8) A0(x, x) = I.

Here,

(4.4) ρ(x, y) = dist(x, y)2.

In particular, if we pick exponential coordinates centered at x,

(4.5) ρ(x, y) = |x− y|2,

the square norm being determined by the inner product on TxM . In such a case,
if we take

(4.6) ϕ(λ) = ϕt(λ) = e−tλ2/2,

then (3.5)–(3.7) give C = Ct,x, with

(4.7) Ct,x =
(

Kt(x, x) ∇2Kt(x, x)
∇1Kt(x, x) ∇1∇2Kt(x, x)

)
.

We have

(4.8) Kt(x, x) ∼ (4πt)−n/2
(
I + A1(x, x)t + · · ·

)
.

Since

(4.9) ∇1e
−|x−y|2/4t = −x− y

2t
e−|x−y|2/4t,



10

we have

(4.10) ∇1Kt(x, x) = (4πt)−n/2
(∇1A0(x, x) + O(t)

)
.

Similarly,

(4.11) ∇2Kt(x, x) = (4πt)−n/2
(∇2A0(x, x) + O(t)

)
.

Furthermore, since

(4.12) ∇1∇2e
−|x−y|2/4t = − (x− y)⊗ (x− y)

4t2
e−|x−y|2/4t +

1
2t

e−|x−y|2/4tI,

we have

(4.13) ∇1∇2K1(x, x) = (4πt)−n/2
( 1

2t
I + O(1)

)
.

Thus, for

(4.14) C̃t,x = (4πt)n/2Ct,x,

we have

(4.15) C̃t,x =
(

I + O(t) ∇2A0(x, x) + O(t)
∇1A0(x, x) + O(t) (2t)−1I + O(1)

)
.

Consequently

(4.16)
(

1
2t

)
C̃t,x =

(
I ∇2A0(x, x)
0 I

)
+ O(t).

It follows that, for t > 0 sufficiently small, C̃t,x is invertible (hence positive definite)
and

(4.17) C̃−1
t,x

(
1

(2t)−1

)
=

(
I β(x)
0 I

)
+ O(t),

with β(x) ∈ L(Ex ⊕ L(Tx, Ex)), depending smoothly on x. Then

(4.18) C̃−1
t,x =

(
I 2tβ(x)
0 2tI

)
+

(
O(t) O(t2)
O(t) O(t2)

)
.

It follows that, when ϕ(λ) = e−tλ2/2, and t > 0 is sufficiently small, then (3.1A)
holds for Γx = Γx,t, rewritten as

(4.19) dΓx,t(v, A) = ct(x)e−γt,x(v,A) dv dA,
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where

(4.20)

γt,x(v, A) = (v,A)Ct,x

(
v

A

)

=
1
2
(v,A)C−1

t,x

(
v

A

)

=
1
2
(4πt)n/2(v, A)C̃−1

t,x

(
v

A

)
,

hence

(4.21) γt,x(0, A) =
1
2
(4πt)n/2

(
2t‖A‖2 + O(t2)

)
.

Also,

(4.22)
ct(x) = α(Ct,x) = π−m/2(det Ct,x)1/2

= π−m/2
(1

2
(4πt)n/2

)m/2

(2t + O(t2))ν/2,

with

(4.23)
m = dim Ex ⊕ L(Tx, Ex) = k + nk,

ν = dimL(Tx, Ex) = nk.

In this setting, (2.10) yields

(4.24) E
[Hn−kZ(F )

]
=

∫

M

κ(t, x) dV (x),

where
(4.25)

κ(t, x) = ct(x)
∫

L(Rn,Rk)

e−γt,x(0,A)L(A) dA

= (2π)−m/2(4πt)mn/4(2t + O(t2))
∫

L(Rn,Rk)

e−(4πt)n/2(t‖A‖2+O(t2))L(A) dA.

If we set

(4.26) B = (4πt)n/4t1/2A,
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we get

(4.27)

κ(t, x) = (2π)−m/2(4πt)mn/4(2t + O(t2))ν/2(4πt)−nν/4t−ν/2

×
∫

L(Rn,Rk)

e−(‖B‖2+O(t))(4πt)−nk/4t−k/2L(B) dB

= (2π)−m/22ν/2t−k/2(1 + O(t))
∫

L(Rn,Rk)

e−‖B‖
2
L(B) dB,

which, to leading order, is independent of x. Consequently, with

(4.28) γ(n, k) =
∫

L(Rn,Rk)

e−‖B‖
2
(det BBt)1/2 dB,

we have

(4.29) E
[
Hn−kZ(F )

]
= (2π)−m/22ν/2γ(n, k)t−k/2(Vol M)(1 + O(t)),

as t ↘ 0, when F is given by (1.2) with ϕ(λ) = e−tλ2/2.

Remark. In the formulas above, ‖A‖2 and ‖B‖2 denote the squared Hilbert-
Schmidt norms of these elements of L(Rn,Rk).
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5. Other directions

There are various other matters to investigate, such as:

(1) Wave equation techniques, as in [CH]. These typically require restrictions on
the principal symbol of L.

(2) Pushing heat equation techniques, which are fairly robust, to such situations as
manifolds with boundary, manifolds with rough metrics (and/or rough boundaries),
etc. Also try to push to cases where the principal symbol of L is not scalar.

(3) Replace the single operator L by a family of commuting operators, such as arise
for M = Tn, M = Sn, and other situations.

(4) Take L to be a pseudodifferential operator, such as the Dirichlet-to-Neumann
map, when M = ∂Ω.
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A. Remarks on γ(n, k)

The coefficients γ(n, k) arose in the asymptotic formula (4.29), and were given
by (4.28), which we recall is

(A.1) γ(n, k) =
∫

L(Rn,Rk)

e−‖B‖
2
(det BBt)1/2 dB.

Recall that ‖B‖ denotes the Hilbert-Schmidt norm of B, and we are assuming
1 ≤ k ≤ n. We have the following formulas for the two extreme cases.

First,

(A.2)

γ(n, 1) =
∫

Rn

e−|x|
2 |x| dx

= An−1

∫ ∞

0

e−r2
rn dr

=
1
2
An−1

∫ ∞

0

e−ss(n−1)/2 ds

=
1
2
An−1Γ

(n + 1
2

)

= πn/2 Γ(n+1
2 )

Γ(n
2 )

,

where An−1 denotes the area of the unit sphere Sn−1 ⊂ Rn.
At the other extreme,

(A.3) γ(n, n) =
∫

L(Rn)

e−‖B‖
2 | detB| dB,

and using (15.4.12) of [M], we obtain

(A.4)

γ(n, n) = πn/2
n∏

j=1

Γ( 1+j
2 )

Γ( j
2 )

= πn/2 Γ(n+1
2 )

Γ( 1
2 )

.

I do not have a calculation of γ(n, k) for 1 < k < n, though one might guess a
pattern from (A.2) and (A.4).
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