Zero Sets of Random Sections of Vector Bundles

Michael Taylor
Preliminary Notes

Contents

1. Introduction
2. Formulas for the expected $(n-k)$-dimensional area of $\mathcal{Z}\left(F_{\omega}\right)$
3. The Gaussian measure Γ_{x} on $E_{x} \oplus \mathcal{L}\left(T_{x}, E_{x}\right)$
4. Heat asymptotics and zero set asymptotics
5. Other directions
A. Remarks on $\gamma(n, k)$

1. Introduction

Let M be a compact, n-dimensional Riemannian manifold. Let $E \rightarrow M$ be a smooth, rank k, real vector bundle, such that the fibers E_{x} are equipped with a smoothly varying inner product. Let $L: C^{\infty}(M, E) \rightarrow C^{\infty}(M, E)$ be a strongly elliptic, self adjoint differential operator. We assume L has order 2 and is positive semi-definite (though other assumptions can be used). An example would be $L=$ $-\Delta$, where Δ is the Hodge Laplacian on ℓ-forms, $E_{x}=\Lambda^{\ell} T_{x}^{*}$, and $k=\binom{n}{\ell}$. We will want to restrict attention to cases where $k \leq n$, which would require $\ell \in$ $\{0,1, n-1, n\}$.

The space $L^{2}(M, E)$ has an orthonormal basis $\left\{f_{j}: j \geq 0\right\}$, consisting of eigenfunctions of L :

$$
\begin{equation*}
L f_{j}=\lambda_{j}^{2} f_{j} . \tag{1.1}
\end{equation*}
$$

We take a function $\varphi:[0, \infty) \rightarrow \mathbb{R}$, assumed to be rapidly decreasing at infinity, and form the following random field:

$$
\begin{equation*}
F_{\omega}(x)=\sum_{k \geq 0} \varphi\left(\lambda_{k}\right) X_{k}(\omega) f_{k}(x), \tag{1.2}
\end{equation*}
$$

where $\left\{X_{k}\right\}$ are independent, identically distributed Gaussian random variables, on some auxiliary probability space (Ω, μ), with mean 0 and variance 1 . Note that we can take

$$
\begin{equation*}
\left\|F_{\omega}\right\|_{H^{s}(M)}^{2}=\sum_{k \geq 0}\left(1+\lambda_{k}^{2}\right)^{s} \varphi\left(\lambda_{k}\right)^{2}\left|X_{k}(\omega)\right|^{2}, \tag{1.3}
\end{equation*}
$$

hence

$$
\begin{equation*}
\mathbb{E}\left(\|F\|_{H^{s}(M)}^{2}\right)=\sum_{k \geq 0}\left(1+\lambda_{k}^{2}\right)^{s} \varphi\left(\lambda_{k}\right)^{2}<\infty, \quad \forall s \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

so ω-a.e. F_{ω} is in $C^{\infty}(M, E)$.
Our goal is to study the set

$$
\begin{equation*}
\mathcal{Z}\left(F_{\omega}\right)=\left\{x \in M: F_{\omega}(x)=0\right\} . \tag{1.5}
\end{equation*}
$$

We claim that, for a.e. $\omega \in \Omega$ (and suitable φ), this has Hausdorff dimension $n-k$, and we seek a formula for the expectation of its $(n-k)$-dimensional Hausdorff measure. Once in possession of such a formula, we take a one parameter family of functions φ_{τ} and consider asymptotics in τ.

One key ingredient in our calculation will be the identity

$$
\begin{equation*}
\sum_{k \geq 0} \psi\left(\lambda_{k}\right) f_{k}(x) \otimes f_{k}(x)=K_{\psi}(x, y) \tag{1.6}
\end{equation*}
$$

where $K_{\psi}(x, y)$ is the integral kernel of the operator $\psi(\sqrt{L})$, i.e.,

$$
\begin{equation*}
\psi(\sqrt{L}) g(x)=\int_{M} K_{\psi}(x, y) g(y) d V(y) \tag{1.7}
\end{equation*}
$$

Note that $K_{\psi}(x, y) \in E_{x} \otimes E_{y} \approx \mathcal{L}\left(E_{y}, E_{x}\right)$, the latter isomorphism via the inner product on E_{y}.

2. Formulas for the expected $(n-k)$-dimensional area of $\mathcal{Z}\left(F_{\omega}\right)$

Assume $F_{\omega} \in C^{\infty}(M, E)$ and that 0 is a regular value of F_{ω}.
Proposition 2.1. In such a case, the ($n-k$)-dimensional Hausdorff measure of $\mathcal{Z}\left(F_{\omega}\right)$ satisfies

$$
\begin{equation*}
\mathcal{H}^{n-k} \mathcal{Z}\left(F_{\omega}\right)=\lim _{\varepsilon \rightarrow 0} \int_{M} \eta_{\varepsilon}\left(F_{\omega}(x)\right) L\left(\nabla F_{\omega}(x)\right) d V(x) \tag{2.1}
\end{equation*}
$$

where, for $v \in E_{x}$,

$$
\begin{array}{cl}
\eta_{\varepsilon}(v)=V_{k}^{-1} \varepsilon^{-k} & \text { if }|v| \leq \varepsilon, \\
0 & \text { if }|v|>\varepsilon, \tag{2.2}
\end{array}
$$

with V_{k} the volume of the unit ball in \mathbb{R}^{k}, and, for $A \in \mathcal{L}\left(T_{x}, E_{x}\right)$,

$$
\begin{equation*}
L(A)=\left(\operatorname{det} A A^{t}\right)^{1 / 2} . \tag{2.3}
\end{equation*}
$$

Here ∇F_{ω} is defined by a choice of connection on E. Note however that $\nabla F_{\omega}\left(x_{0}\right)$ is independent of the choice of such a connection for $x_{0} \in \mathcal{Z}\left(F_{\omega}\right)$, so two such connections yield close results for x close to $\mathcal{Z}\left(F_{\omega}\right)$. Hence the right side of (2.1) is independent of such a choice.

Proof of Proposition 2.1. Take $x_{0} \in \mathcal{Z}\left(F_{\omega}\right)$ and pick geodesic coordinates centered at x_{0}. Identify $T_{x_{0}} \mathcal{Z}\left(F_{\omega}\right)$ with \mathbb{R}^{n-k} and its orthogonal complement $N_{x_{0}} \mathcal{Z}\left(F_{\omega}\right)$ with \mathbb{R}^{k}. The key is to identify, to leading order in ε, the k-dimensional measure of

$$
\begin{equation*}
\left\{x \in N_{x_{0}} \mathcal{Z}\left(F_{\omega}\right):\left|F_{\omega}(x)\right| \leq \varepsilon\right\}, \tag{2.3~A}
\end{equation*}
$$

or equivalently (to leading order) the k-dimensional measure of

$$
\begin{equation*}
\left\{x \in N_{x_{0}} \mathcal{Z}\left(F_{\omega}\right):|A x| \leq \varepsilon\right\}, \tag{2.3~B}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\nabla F_{\omega}\left(x_{0}\right): T_{x_{0}} M \longrightarrow E_{x_{0}} \tag{2.3C}
\end{equation*}
$$

can be identified with

$$
\begin{equation*}
A: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}, \quad A=(0 B), \quad B: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k} \tag{2.3D}
\end{equation*}
$$

and we want to evaluate the k-dimensional volume of

$$
\begin{equation*}
\left\{u \in \mathbb{R}^{k}:|B u| \leq \varepsilon\right\} . \tag{2.3E}
\end{equation*}
$$

Now applying B multiplies volumes of subsets of \mathbb{R}^{k} by a factor of

$$
\begin{equation*}
|\operatorname{det} B|=\left(\operatorname{det} A A^{t}\right)^{1 / 2} \tag{2.3~F}
\end{equation*}
$$

so the volume of $(2.3 \mathrm{E})$, hence of $(2.3 \mathrm{~B})$, is $V_{k} \varepsilon^{k}|\operatorname{det} B|^{-1}$, and to leading order this is the volume of (2.3A). The factor $L\left(\nabla F_{\omega}(x)\right)$ needs to cancel out the extra factor of $|\operatorname{det} B|^{-1}$, to leading order, and this leads to (2.3).

Let us denote the integral on the right side of (2.1) by

$$
\begin{equation*}
Z_{\varepsilon}\left(F_{\omega}\right)=\int_{M} \eta_{\varepsilon}\left(F_{\omega}(x)\right) L\left(\nabla F_{\omega}(x)\right) d V(x) \tag{2.4}
\end{equation*}
$$

From here, we have

$$
\begin{equation*}
\mathbb{E} Z_{\varepsilon}(F)=\int_{M} \mathbb{E}\left[\eta_{\varepsilon}(F(x)) L(\nabla F(x))\right] d V(x) \tag{2.5}
\end{equation*}
$$

By (1.2),

$$
\begin{align*}
G_{\omega}(x) & =\left(F_{\omega}(x), \nabla F_{\omega}(x)\right) \\
& =\sum_{k} \varphi\left(\lambda_{k}\right) X_{k}(\omega)\left(f_{k}(x), \nabla f_{k}(x)\right) \tag{2.6}
\end{align*}
$$

is, for each x, a Gaussian random variable, taking values in $E_{x} \oplus \mathcal{L}\left(T_{x}, E_{x}\right)$, with mean zero. This Gaussian random variable hence induces a Gaussian probability measure Γ_{x} on $E_{x} \oplus \mathcal{L}\left(T_{x}, E_{x}\right)$, and

$$
\begin{equation*}
\mathbb{E}\left[\eta_{\varepsilon}(F(x)) L(\nabla F(x))\right]=\int_{E_{x} \oplus \mathcal{L}\left(T_{x}, E_{x}\right)} \eta_{\varepsilon}(v) L(A) d \Gamma_{x}(v, A) . \tag{2.7}
\end{equation*}
$$

Later on we will show that this Gaussian measure has the form

$$
\begin{equation*}
d \Gamma_{x}(v, A)=c_{\varphi}(x) e^{-\gamma_{\varphi}, x}(v, A) \quad d v d A \tag{2.8}
\end{equation*}
$$

where $\gamma_{\varphi, x}(v, A)$ is a positive definite quadratic form in (v, A). Consequently,

$$
\begin{array}{rl}
\lim _{\varepsilon \rightarrow 0} & \mathbb{E}\left[\eta_{\varepsilon}(F(x)) L(\nabla F(x))\right] \\
& =c_{\varphi}(x) \int_{\mathcal{L}\left(T_{x}, E_{x}\right)} e^{-\gamma_{\varphi, x}(0, A)} L(A) d A \tag{2.9}
\end{array}
$$

Combining this with (2.1) and (2.5) gives the following variant of the Kac-Rice formula:

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{H}^{n-k} \mathcal{Z}(F)\right]=\int_{M} \int_{\mathcal{L}\left(T_{x}, E_{x}\right)} c_{\varphi}(x) e^{-\gamma_{\varphi, x}(0, A)} L(A) d A d V(x) . \tag{2.10}
\end{equation*}
$$

Our next task, pursued in $\S \S 3-4$, is to derive information on the integrand on the right side of (2.10), which will follow from information on the Gaussian measure (2.8).

Remark. These results can be localized. If $U \subset M$ is open and smoothly bounded, then

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{H}^{n-k}(U \cap \mathcal{Z}(F))\right]=\int_{U} \int_{\mathcal{L}\left(T_{x}, E_{x}\right)} c_{\varphi}(x) e^{-\gamma_{\varphi, x}(0, A)} L(A) d A d V(x) . \tag{2.11}
\end{equation*}
$$

3. The Gaussian measure Γ_{x} on $E_{x} \oplus \mathcal{L}\left(T_{x}, E_{x}\right)$

As seen in $\S 2$, for each $x \in M$,

$$
\begin{equation*}
G_{\omega}(x)=\sum_{k} \varphi\left(\lambda_{k}\right) X_{k}(\omega) u_{k}(x), \quad u_{k}(x)=\left(f_{k}(x), \nabla f_{k}(x)\right), \tag{3.1}
\end{equation*}
$$

is a Gaussian random variable, taking values in $E_{x} \oplus \mathcal{L}\left(T_{x}, E_{x}\right)$, with mean 0 , and this random variable then induces a Gaussian probability measure Γ_{x} on $E_{x} \oplus$ $\mathcal{L}\left(T_{x}, E_{x}\right)$. Our next goal is to see when Γ_{x} has the form

$$
\begin{equation*}
d \Gamma_{x}(v, A)=c_{\varphi}(x) e^{-\gamma_{\varphi}, x(v, A)} d v d A \tag{3.1A}
\end{equation*}
$$

and analyze $c_{\varphi}(x)$ and $\gamma_{\varphi, x}(v, A)$, which is a quadratic form in (v, A). We use the fact that Γ_{x} is uniquely determined by the covariance of $G_{\omega}(x)$, which we proceed to analyze. We have

$$
\begin{align*}
\mathbb{E}(G(x) \otimes G(y)) & =\sum_{j, k} \mathbb{E}\left(X_{j}, X_{k}\right) \varphi\left(\lambda_{j}\right) \varphi\left(\lambda_{k}\right) u_{j}(x) \otimes u_{k}(y) \\
& =\sum_{k} \varphi\left(\lambda_{k}\right)^{2} u_{k}(x) \otimes u_{k}(y) . \tag{3.2}
\end{align*}
$$

We can expand out $u_{k}(x) \otimes u_{k}(y)$ as

$$
u_{k}(x) \otimes u_{k}(y)=\left(\begin{array}{cc}
f_{k}(x) \otimes f_{k}(y) & f_{k}(x) \otimes \nabla f_{k}(y) \tag{3.3}\\
\nabla f_{k}(x) \otimes f_{k}(y) & \nabla f_{k}(x) \otimes \nabla f_{k}(y)
\end{array}\right) .
$$

Now, as seen in (1.6),

$$
\begin{equation*}
\sum_{k} \varphi\left(\lambda_{k}\right)^{2} f_{k}(x) \otimes f_{k}(y)=K_{\varphi^{2}}(x, y) \tag{3.4}
\end{equation*}
$$

the integral kernel of $\varphi(\sqrt{L})^{2}$. It follows that

$$
\mathbb{E}(G(x) \otimes G(x))=\left(\begin{array}{cc}
K_{\varphi^{2}}(x, x) & \nabla_{2} K_{\varphi^{2}}(x, x) \tag{3.5}\\
\nabla_{1} K_{\varphi^{2}}(x, x) & \nabla_{1} \nabla_{2} K_{\varphi^{2}}(x, x)
\end{array}\right)
$$

where $\nabla_{1} K_{\psi}(x, y)=\nabla_{x} K_{\psi}(x, y), \nabla_{2} K_{\psi}(x, y)=\nabla_{y} K_{\psi}(x, y)$, etc. Note that (3.5) is an element of

$$
\begin{align*}
\operatorname{End}\left(E_{x} \oplus \mathcal{L}\left(T_{x}, E_{x}\right)\right) \approx & \operatorname{End} E_{x} \oplus \mathcal{L}\left(\mathcal{L}\left(T_{x}, E_{x}\right), E_{x}\right) \\
& \oplus \mathcal{L}\left(E_{x}, \mathcal{L}\left(T_{x}, E_{x}\right)\right) \oplus \operatorname{End} \mathcal{L}\left(T_{x}, E_{x}\right) . \tag{3.6}
\end{align*}
$$

We proceed from (3.5) to a formula for the Gaussian measure Γ_{x}. First, we place the calculation in a more general setting. Let V be an m-dimensional real inner product space, (Ω, μ) a probability space, and $G: \Omega \rightarrow V$ a V-valued random variable, yielding the probability measure $G_{*} \mu=\Gamma$ on V. Let us assume that G is a Gaussian random variable with mean zero. As is well known, Γ is a Gaussian measure, and it is uniquely determined by the covariance

$$
\begin{equation*}
\mathbb{E}(G \otimes G)=\mathcal{C} \in V \otimes V \approx \mathcal{L}(V) \tag{3.7}
\end{equation*}
$$

the latter isomorphism given by the inner product on V. Note that $\mathcal{C}=\mathcal{C}^{t}$, and this operator is positive semidefinite. If \mathcal{C} is positive definite, then Γ has the form

$$
\begin{equation*}
d \Gamma(y)=\alpha(C) e^{-y \cdot C y} d y \tag{3.8}
\end{equation*}
$$

for some positive definite $C \in \mathcal{L}(V)$, with $\alpha(C)$ chosen so that the right side of (3.8) has mass one. Using orthonormal coordinates on V such that C is diagonal, and computing the Gaussian integrals, via

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-y^{2}} d y=\sqrt{\pi} \tag{3.9}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\alpha(C)=\pi^{-m / 2}(\operatorname{det} C)^{1 / 2} \tag{3.10}
\end{equation*}
$$

Now $\Gamma=G_{*} \mu$ if and only if

$$
\begin{equation*}
\int_{V} y \otimes y d \Gamma(y)=\mathcal{C} . \tag{3.11}
\end{equation*}
$$

To calculate

$$
\begin{equation*}
\int_{V} e^{-y \cdot C y} y \otimes y d y \tag{3.12}
\end{equation*}
$$

we take an orthonormal basis $\left\{e_{j}\right\}$ of V such that $C e_{j}=c_{j} e_{j}, c_{j}>0$. Then $y \otimes y=\sum_{j, k} y_{j} y_{k} e_{j} \otimes e_{k}$, and (3.12) is

$$
\begin{equation*}
\sum_{j, k} \int_{V} e^{-y \cdot C y} y_{j} y_{k} d y e_{j} \otimes e_{k} \tag{3.13}
\end{equation*}
$$

Symmetry considerations show that each term for which $j \neq k$ vanishes, and we are left to calculate

$$
\begin{equation*}
\int_{V} e^{-y \cdot C y} y_{k}^{2} d y=\prod_{j \neq k}\left(\frac{\pi}{c_{j}}\right)^{1 / 2} \int_{-\infty}^{\infty} e^{-c_{k} y^{2}} y^{2} d y \tag{3.14}
\end{equation*}
$$

making use of the following consequence of (3.9):

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-c y^{2}} d y=\sqrt{\frac{\pi}{c}} \tag{3.15}
\end{equation*}
$$

for $c>0$. Taking the c-derivative of (3.15) yields

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-c y^{2}} y^{2} d y=\frac{\sqrt{\pi}}{2} c^{-3 / 2} \tag{3.16}
\end{equation*}
$$

so (3.13)-(3.14) yield

$$
\begin{align*}
\int_{V} e^{-y \cdot C y} y \otimes y d y & =\sum_{k} \prod_{j \neq k}\left(\frac{\pi}{c_{j}}\right)^{1 / 2} \frac{\sqrt{\pi}}{2 c_{k}^{3 / 2}} e_{k} \otimes e_{k} \\
& =\frac{1}{2} \frac{\pi^{m / 2}}{(\operatorname{det} C)^{1 / 2}} \sum_{k} c_{k}^{-1} e_{k} \otimes e_{k} \tag{3.17}\\
& =\frac{1}{2} \frac{\pi^{m / 2}}{(\operatorname{det} C)^{1 / 2}} \sum_{k} C^{-1} e_{k} \otimes e_{k}
\end{align*}
$$

Using (3.10) and taking into account the isomorphism $V \otimes V \approx \mathcal{L}(V)$, we have from (3.11) that

$$
\begin{equation*}
\mathcal{C}=\frac{1}{2} C^{-1}, \quad \text { hence } C=\frac{1}{2} \mathcal{C}^{-1} \tag{3.18}
\end{equation*}
$$

We record the (well known) conclusion.
Lemma 3.1. If $G: \Omega \longrightarrow V$ is a Gaussian random variable with mean 0 and covariance \mathcal{C}, given by (3.7), and if \mathcal{C} is positive definite, then $\Gamma=G_{*} \mu$ has the form (3.8), with C given by (3.18) and $\alpha(C)$ by (3.10).

Regarding the condition that \mathcal{C} be positive definite, note from (3.7) that, for $v \in V$,

$$
\begin{equation*}
v \cdot \mathcal{C} v=\mathbb{E}\left(|G \cdot v|^{2}\right)=\int_{\Omega}|G(\omega) \cdot v|^{2} d \mu(\omega) \tag{3.19}
\end{equation*}
$$

Thus \mathcal{C} is positive definite unless there is a proper linear subspace $V_{0} \subset V$ such that

$$
\begin{equation*}
G(\omega) \in V_{0}, \quad \text { for } \mu \text {-a.e. } \omega \in \Omega \text {. } \tag{3.20}
\end{equation*}
$$

In the case of main interest to us, $\mathcal{C}=\mathcal{C}_{x}$ is given by (3.5), as a continuous section of $\operatorname{End}(E \oplus \mathcal{L}(T M, E))$. As long as this is positive definite on $E_{x} \oplus \mathcal{L}\left(T_{x}, E_{x}\right)$ for each $x \in M$, we have the results (2.8)-(2.10). We turn to a closer look at such \mathcal{C}_{x} in the next section, for $\varphi(\lambda)=e^{-t \lambda^{2} / 2}$, and examine asymptotics as $t \searrow 0$.

4. Heat asymptotics and zero set asymptotics

Here we assume that the second order operator L has a scalar principal symbol, equal to that of $-\Delta$, where Δ is the Laplace-Beltrami operator on M. Such holds when L is the negative of the Hodge Laplacian on ℓ-forms. Then, for $t \searrow 0$,

$$
\begin{equation*}
e^{-t L} u(x)=\int_{M} K_{t}(x, y) u(y) d V(y) \tag{4.1}
\end{equation*}
$$

where $K_{t}(x, y) \in \mathcal{L}\left(E_{y}, E_{x}\right)$ has the form, for x and y close,

$$
\begin{equation*}
K_{t}(x, y) \sim(4 \pi t)^{-n / 2} e^{-\rho(x, y) / 4 t}\left(A_{0}(x, y)+A_{1}(x, y) t+\cdots\right) \tag{4.1}
\end{equation*}
$$

with $A_{k} \in \mathcal{L}\left(E_{y}, E_{x}\right)$, depending smoothly on x and y, and

$$
\begin{equation*}
A_{0}(x, x)=I . \tag{4.8}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\rho(x, y)=\operatorname{dist}(x, y)^{2} . \tag{4.4}
\end{equation*}
$$

In particular, if we pick exponential coordinates centered at x,

$$
\begin{equation*}
\rho(x, y)=|x-y|^{2}, \tag{4.5}
\end{equation*}
$$

the square norm being determined by the inner product on $T_{x} M$. In such a case, if we take

$$
\begin{equation*}
\varphi(\lambda)=\varphi_{t}(\lambda)=e^{-t \lambda^{2} / 2} \tag{4.6}
\end{equation*}
$$

then (3.5)-(3.7) give $\mathcal{C}=\mathcal{C}_{t, x}$, with

$$
\mathcal{C}_{t, x}=\left(\begin{array}{cc}
K_{t}(x, x) & \nabla_{2} K_{t}(x, x) \tag{4.7}\\
\nabla_{1} K_{t}(x, x) & \nabla_{1} \nabla_{2} K_{t}(x, x)
\end{array}\right) .
$$

We have

$$
\begin{equation*}
K_{t}(x, x) \sim(4 \pi t)^{-n / 2}\left(I+A_{1}(x, x) t+\cdots\right) . \tag{4.8}
\end{equation*}
$$

Since

$$
\begin{equation*}
\nabla_{1} e^{-|x-y|^{2} / 4 t}=-\frac{x-y}{2 t} e^{-|x-y|^{2} / 4 t} \tag{4.9}
\end{equation*}
$$

we have

$$
\begin{equation*}
\nabla_{1} K_{t}(x, x)=(4 \pi t)^{-n / 2}\left(\nabla_{1} A_{0}(x, x)+O(t)\right) \tag{4.10}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\nabla_{2} K_{t}(x, x)=(4 \pi t)^{-n / 2}\left(\nabla_{2} A_{0}(x, x)+O(t)\right) \tag{4.11}
\end{equation*}
$$

Furthermore, since

$$
\begin{equation*}
\nabla_{1} \nabla_{2} e^{-|x-y|^{2} / 4 t}=-\frac{(x-y) \otimes(x-y)}{4 t^{2}} e^{-|x-y|^{2} / 4 t}+\frac{1}{2 t} e^{-|x-y|^{2} / 4 t} I, \tag{4.12}
\end{equation*}
$$

we have

$$
\begin{equation*}
\nabla_{1} \nabla_{2} K_{1}(x, x)=(4 \pi t)^{-n / 2}\left(\frac{1}{2 t} I+O(1)\right) \tag{4.13}
\end{equation*}
$$

Thus, for

$$
\begin{equation*}
\widetilde{\mathcal{C}}_{t, x}=(4 \pi t)^{n / 2} \mathcal{C}_{t, x}, \tag{4.14}
\end{equation*}
$$

we have

$$
\widetilde{\mathcal{C}}_{t, x}=\left(\begin{array}{cc}
I+O(t) & \nabla_{2} A_{0}(x, x)+O(t) \tag{4.15}\\
\nabla_{1} A_{0}(x, x)+O(t) & (2 t)^{-1} I+O(1)
\end{array}\right) .
$$

Consequently

$$
\left(\begin{array}{ll}
1 & \tag{4.16}\\
& 2 t
\end{array}\right) \widetilde{\mathcal{C}}_{t, x}=\left(\begin{array}{cc}
I & \nabla_{2} A_{0}(x, x) \\
0 & I
\end{array}\right)+O(t) .
$$

It follows that, for $t>0$ sufficiently small, $\widetilde{\mathcal{C}}_{t, x}$ is invertible (hence positive definite) and

$$
\widetilde{\mathcal{C}}_{t, x}^{-1}\left(\begin{array}{cc}
1 & \tag{4.17}\\
& (2 t)^{-1}
\end{array}\right)=\left(\begin{array}{cc}
I & \beta(x) \\
0 & I
\end{array}\right)+O(t)
$$

with $\beta(x) \in \mathcal{L}\left(E_{x} \oplus \mathcal{L}\left(T_{x}, E_{x}\right)\right)$, depending smoothly on x. Then

$$
\widetilde{\mathcal{C}}_{t, x}^{-1}=\left(\begin{array}{cc}
I & 2 t \beta(x) \tag{4.18}\\
0 & 2 t I
\end{array}\right)+\left(\begin{array}{cc}
O(t) & O\left(t^{2}\right) \\
O(t) & O\left(t^{2}\right)
\end{array}\right) .
$$

It follows that, when $\varphi(\lambda)=e^{-t \lambda^{2} / 2}$, and $t>0$ is sufficiently small, then (3.1A) holds for $\Gamma_{x}=\Gamma_{x, t}$, rewritten as

$$
\begin{equation*}
d \Gamma_{x, t}(v, A)=c_{t}(x) e^{-\gamma_{t, x}(v, A)} d v d A \tag{4.19}
\end{equation*}
$$

where

$$
\begin{align*}
\gamma_{t, x}(v, A) & =(v, A) C_{t, x}\binom{v}{A} \\
& =\frac{1}{2}(v, A) \mathcal{C}_{t, x}^{-1}\binom{v}{A} \tag{4.20}\\
& =\frac{1}{2}(4 \pi t)^{n / 2}(v, A) \widetilde{\mathcal{C}}_{t, x}^{-1}\binom{v}{A},
\end{align*}
$$

hence

$$
\begin{equation*}
\gamma_{t, x}(0, A)=\frac{1}{2}(4 \pi t)^{n / 2}\left(2 t\|A\|^{2}+O\left(t^{2}\right)\right) . \tag{4.21}
\end{equation*}
$$

Also,

$$
\begin{align*}
c_{t}(x)=\alpha\left(C_{t, x}\right) & =\pi^{-m / 2}\left(\operatorname{det} C_{t, x}\right)^{1 / 2} \\
& =\pi^{-m / 2}\left(\frac{1}{2}(4 \pi t)^{n / 2}\right)^{m / 2}\left(2 t+O\left(t^{2}\right)\right)^{\nu / 2} \tag{4.22}
\end{align*}
$$

with

$$
\begin{align*}
m & =\operatorname{dim} E_{x} \oplus \mathcal{L}\left(T_{x}, E_{x}\right)=k+n k, \\
\nu & =\operatorname{dim} \mathcal{L}\left(T_{x}, E_{x}\right)=n k . \tag{4.23}
\end{align*}
$$

In this setting, (2.10) yields

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{H}^{n-k} \mathcal{Z}(F)\right]=\int_{M} \kappa(t, x) d V(x) \tag{4.24}
\end{equation*}
$$

where

$$
\begin{align*}
\kappa(t, x) & =c_{t}(x) \int_{\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)} e^{-\gamma_{t, x}(0, A)} L(A) d A \tag{4.25}\\
& =(2 \pi)^{-m / 2}(4 \pi t)^{m n / 4}\left(2 t+O\left(t^{2}\right)\right) \int_{\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)} e^{-(4 \pi t)^{n / 2}\left(t\|A\|^{2}+O\left(t^{2}\right)\right)} L(A) d A .
\end{align*}
$$

If we set

$$
\begin{equation*}
B=(4 \pi t)^{n / 4} t^{1 / 2} A \tag{4.26}
\end{equation*}
$$

we get

$$
\begin{align*}
\kappa(t, x)= & (2 \pi)^{-m / 2}(4 \pi t)^{m n / 4}\left(2 t+O\left(t^{2}\right)\right)^{\nu / 2}(4 \pi t)^{-n \nu / 4} t^{-\nu / 2} \\
& \times \int_{\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)} e^{-\left(\|B\|^{2}+O(t)\right)}(4 \pi t)^{-n k / 4} t^{-k / 2} L(B) d B \tag{4.27}\\
= & (2 \pi)^{-m / 2} 2^{\nu / 2} t^{-k / 2}(1+O(t)) \int_{\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)} e^{-\|B\|^{2}} L(B) d B,
\end{align*}
$$

which, to leading order, is independent of x. Consequently, with

$$
\begin{equation*}
\gamma(n, k)=\int_{\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)} e^{-\|B\|^{2}}\left(\operatorname{det} B B^{t}\right)^{1 / 2} d B \tag{4.28}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{H}^{n-k} \mathcal{Z}(F)\right]=(2 \pi)^{-m / 2} 2^{\nu / 2} \gamma(n, k) t^{-k / 2}(\operatorname{Vol} M)(1+O(t)), \tag{4.29}
\end{equation*}
$$

as $t \searrow 0$, when F is given by (1.2) with $\varphi(\lambda)=e^{-t \lambda^{2} / 2}$.
Remark. In the formulas above, $\|A\|^{2}$ and $\|B\|^{2}$ denote the squared HilbertSchmidt norms of these elements of $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)$.

5. Other directions

There are various other matters to investigate, such as:
(1) Wave equation techniques, as in $[\mathrm{CH}]$. These typically require restrictions on the principal symbol of L.
(2) Pushing heat equation techniques, which are fairly robust, to such situations as manifolds with boundary, manifolds with rough metrics (and/or rough boundaries), etc. Also try to push to cases where the principal symbol of L is not scalar.
(3) Replace the single operator L by a family of commuting operators, such as arise for $M=\mathbb{T}^{n}, M=S^{n}$, and other situations.
(4) Take L to be a pseudodifferential operator, such as the Dirichlet-to-Neumann map, when $M=\partial \Omega$.

A. Remarks on $\gamma(n, k)$

The coefficients $\gamma(n, k)$ arose in the asymptotic formula (4.29), and were given by (4.28), which we recall is

$$
\begin{equation*}
\gamma(n, k)=\int_{\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)} e^{-\|B\|^{2}}\left(\operatorname{det} B B^{t}\right)^{1 / 2} d B . \tag{A.1}
\end{equation*}
$$

Recall that $\|B\|$ denotes the Hilbert-Schmidt norm of B, and we are assuming $1 \leq k \leq n$. We have the following formulas for the two extreme cases.

First,

$$
\begin{align*}
\gamma(n, 1) & =\int_{\mathbb{R}^{n}} e^{-|x|^{2}}|x| d x \\
& =A_{n-1} \int_{0}^{\infty} e^{-r^{2}} r^{n} d r \\
& =\frac{1}{2} A_{n-1} \int_{0}^{\infty} e^{-s} s^{(n-1) / 2} d s \tag{A.2}\\
& =\frac{1}{2} A_{n-1} \Gamma\left(\frac{n+1}{2}\right) \\
& =\pi^{n / 2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)},
\end{align*}
$$

where A_{n-1} denotes the area of the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$.
At the other extreme,

$$
\begin{equation*}
\gamma(n, n)=\int_{\mathcal{L}\left(\mathbb{R}^{n}\right)} e^{-\|B\|^{2}}|\operatorname{det} B| d B \tag{A.3}
\end{equation*}
$$

and using (15.4.12) of [M], we obtain

$$
\begin{align*}
\gamma(n, n) & =\pi^{n / 2} \prod_{j=1}^{n} \frac{\Gamma\left(\frac{1+j}{2}\right)}{\Gamma\left(\frac{j}{2}\right)} \tag{A.4}\\
& =\pi^{n / 2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}
\end{align*}
$$

I do not have a calculation of $\gamma(n, k)$ for $1<k<n$, though one might guess a pattern from (A.2) and (A.4).

References

[BGM] M. Berger, P. Gauduchon, and E. Mazet, Le Spectre d'une Variété Riemannienne, LNM \#194, Springer-Verlag, New York, 1971.
[CH] Y. Canzani and B. Hanin, Scaling limit for the kernel of the spectral projector and remainder estimates in the pointwise Weyl law, Preprint, 2014.
[M] M. Mehta, Random Matrices (3rd ed.), Elsevier Academic Press, San Diego CA, 2004.
[N] L. Nicolaescu, On the Kac-Rice formula, Lecture Notes, 2014.
[Z] S. Zelditch, Real and complex zeros of Riemannian random waves, Contemp. Math. 484 (2009), 321-342.

