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Introduction

I was motivated to put together these notes while enjoying three books on prime
numbers ([D], [J], and [S]) as 2003 Summer reading.

The Prime Number Theorem, giving the asymptotic behavior as x → +∞ of
π(x), the number of primes ≤ x, has for its proof three ingredients:

(I) Formulas for log ζ(s) and ζ ′(s)/ζ(s) as Mellin transforms involving a func-
tion J(x), closely related to π(x), and a more subtly related function, ψ(x).

(II) Information that ζ ′(s)/ζ(s) has on {s : Re s ≥ 1} a singularity only at s = 1.
(III) A Tauberian theorem that yields the asymptotic behavior of J(x) from the

behavior of such a Mellin transform.
Step (I) is achieved by taking the Euler product for ζ(s), applying log, and

following your nose, naturally finding J(x). It is easy to show that J(x) and π(x)
have similar behavior as x → +∞. Taking the s-derivative yields the relation
involving ζ ′(s)/ζ(s), and naturally produces the function ψ(x). Step (II) is more
subtle, though there is a clever and brief proof, largely due to de la Vallée Poussin,
which is commonly presented (and which we will recall in Appendix A). Step (III)
can be handled by a powerful result known as Ikehara’s Tauberian Theorem, though
it is often treated via a variant, slightly weaker and somewhat easier result, known
as the Ingham-Newman theorem. One possibly novel aspect of our treatment (in
§§4–5) it to produce another variant, relying more on real Fourier analysis and the
fact that ζ ′(s)/ζ(s) is C∞ on {s : Re s = 1}, except at s = 1. We came upon
this approach while exploring similarities between arguments to implement step
(III) and arguments used for “precise spectral asymptotics” of elliptic differential
operators.

In §1 we implement step (I), recast step (II) as a statement about the zeros of
ζ(s), state Ikehara’s Tauberian Theorem, and use these results to prove the PNT.
We give the Laplace transform version of Ikehara’s theorem, and using it involves
making a change of variable. In §2 we restate Ikehara’s theorem in Mellin transform
language, allowing one to avoid such a change of variable. Our calculations are done
in terms of the Mellin transform of measures, often atomic measures. We avoid
mention of Dirichlet series. This formalism allows us to avoid summation by parts
arguments, and simply use integration by parts. We consider this an advantage,
though some might regard it as merely a matter of taste.

To be a little more explicit about matters hinted about above, in §§1–2 we go
from

ψ(x) ∼ x, ψ(x) =
∑

p,k;pk≤x

log p

1
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to
J(x) ∼ x

log x
, J(x) =

∑

k≥1

1
k

π(x1/k)

to
π(x) ∼ x

log x
.

It turns out that formulas relating ψ(x) to J(x) bring in naturally

Li(x) =
∫ x

2

dy

log y
,

and that Li(x) is a better approximation to J(x) and π(x) than is x/ log x. In §3
we show how estimates on the error E(x) = ψ(x) − x naturally lead to estimates
on J(x)− Li(x). While we do not produce estimates on E(x) here that imply the
superiority of Li(x), these formulas do serve to make Li(x) look like the natural
candidate.

In §4 we use the results of steps (I) and (II), interpreted as information on
the Fourier transform of a measure H derived from J(x), to produce complete
asymptotic expansions of a class of mollifications of H. In §5 we apply fairly
elementary methods of measure theory and Fourier analysis to derive from this the
asymptotic behavior of J(x) and hence a proof of the PNT.

There is an alternative approach to step (III), involving a much simpler Taube-
rian theorem, at the cost of a more sophisticated Mellin transform and a finer
knowledge of ζ ′(s)/ζ(s) on {s : Re s ≥ 1}. We discuss this in §6, giving a treatment
adapted from Chapter 13 of [A].

We have two appendices. Appendix A contains a proof of the result that ζ(s)
has no zeros on {s : Re s = 1}. Appendix B, not strongly related to the rest of
these notes, gives a calculation of ζ(k) when k is an even integer, as a result of
examining the Fourier series of fk(x) = xk on [−π, π].

1. The zeta function and the prime number theorem

The zeta function, given for Re s > 1 by

(1.1) ζ(s) =
∞∑

n=1

1
ns

,

is connected to the study of primes via the Euler formula

(1.2) ζ(s) =
∏
p

(
1− 1

ps

)−1

.
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Here and below, p will run over the set of primes. The formula (1.2) can be rewritten

(1.3)

log ζ(s) = −
∑

p

log
(
1− 1

ps

)

=
∑

p

∞∑

k=1

1
k

1
pks

.

This can be rewritten as a Mellin transform, using the counting function

(1.4) π(x) = #{p : p ≤ x},

satisfying

(1.5) π′(x) =
∑

p

δp(x).

We see that if

(1.6) J(x) =
∑

k≥1

1
k

π(x1/k),

then

(1.7) J ′(x) =
∑

k≥1

1
k

∑
p

δpk(x),

and hence (1.3) is equivalent to

(1.8)
log ζ(s) =

∫ ∞

0

J ′(x)x−s dx

= s

∫ ∞

0

J(x)x−s−1 dx.

Thus there is a hope (vaguely realized) of obtaining J(x) via inversion of the Mellin
transform.

We make some comments on the close relationship of π(x) and J(x). Note that
in (1.6) all terms vanish for k so large that x1/k < 2, i.e., the sum is restricted to
k ≤ log2 x. It readily follows that

(1.9)
π(x) < J(x) < π(x) + π(x1/2)

log2 x∑

k=2

1
k

< π(x) + π(x1/2) log(log2 x).
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While we do not make use of it here, it is interesting to know that the relationship
(1.6) can be inverted, to yield

(1.10) π(x) =
∑

n≥1

µ(n)
n

J(x1/n),

where µ is the Möbius function, given by

(1.11)
µ(n) = 0 if n has a repeated prime factor,

(−1)#prime factors otherwise.

At this point we recall some lore on π(x) and on ζ(s). First, there is Chebycheff’s
estimate:

(1.12) C1
x

log x
< π(x) < C2

x

log x
,

which is more elementary than the Prime Number Theorem. (A direct proof of
(1.12) will be contained in results we derive in §4.) Next, ζ(s) is meromorphic on
C, with just one pole, at s = 1. Also ζ(s) has no zeros in {s : Re s > 1}, as a
simple consequence of (1.2). In addition, ζ(s) has no zeros on {s : Re s = 1}. This
result is harder to prove, and lies at the heart of the proofs of Hadamard and de le
Vallée Poussin of the Prime Number Theorem. (We will present what has become
the standard proof of this fact in Appendix A.) Below we will show how the PNT
follows from this fact, together with a certain Tauberian theorem, which we will
also state below.

Let us proceed to take s = 1 + it in (1.8) and rewrite it as a Fourier transform:

(1.13)
log ζ(1 + it)

1 + it
=

∫ ∞

−∞
J(ey)e−y e−ity dy = F̂ (t),

the Fourier transform of

(1.14) F (y) = J(ey)e−y.

Note that F is supported on {y ∈ R : y ≥ log 2}. By (1.9) and (1.12) we have

0 < F (y) ≤ C3

y
,

which does not quite give F ∈ L1(R). This is consistent with the fact that the left
side of (1.13) has a logarithmic singularity at t = 0:

(1.15) F̂ (t) =
log ζ(1 + it)

1 + it
∼ log

1
t
, t → 0.
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By comparison, if we set

(1.16)
G(y) =

1
y
, y ≥ 1,

0, y < 1,

we have Ĝ ∈ C∞(R \ 0) and

(1.17) Ĝ(t) ∼ log
1
t
, t → 0.

Hence the Fourier transform of F −G is continuous on R. This leads one to believe
that F (y)−G(y) is relatively smaller as y →∞, or otherwise put, that

(1.18) J(ey) ∼ ey

y
, y →∞,

i.e.,

(1.19) J(x) ∼ x

log x
, or π(x) ∼ x

log x
, x →∞.

Of course, (1.19) is one version of the PNT. Unfortunately it is not so obvious how
to deduce (1.18)–(1.19) rigorously from (1.15)–(1.17). One way to get asymptotics
for J(x) from knowledge of ζ(s) will be to exploit the following.

Ikehara Tauberian Theorem. Let w ↗ and consider

(1.20) f(s) =
∫ ∞

0

e−sy dw(y).

Assume f is holomorphic on {s : Re s > 1} and that

(1.21) f(s)− A

s− 1
is continuous on {s : Re s ≥ 1}.

Then

(1.22) e−yw(y) → A as y → +∞.

This result is applicable to what one gets upon applying d/ds to (1.8), i.e.,

(1.23)
−ζ ′(s)

ζ(s)
=

∫ ∞

0

J ′(x)(log x)x−s dx

=
∫ ∞

0

J ′(ey)y e−syey dy.
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This has the form (1.20) with

(1.24)

w(y) =
∫ y

0

xexJ ′(ex) dx

=
∫ ey

0

(log x)J ′(x) dx

=
∑

p,k;pk≤ey

log p.

In other words,

(1.25) w(y) = ψ(ey), ψ(x) =
∑

p,k;pk≤x

log p.

Ikehara’s theorem applies, with A = 1, to give:

(1.26)
ψ(x)

x
→ 1, as x →∞.

Note that

(1.27)
ψ(x) =

∫ x

0

(log y)J ′(y) dy

= (log x)J(x)−
∫ x

0

J(y)
y

dy.

Now the estimate (1.12) implies

(1.28)
J(y)

y
≤ C3

log y
, hence lim

x→∞
1
x

∫ x

0

J(y)
y

dy = 0,

so (1.26) is equivalent to

(1.29) lim
x→∞

log x

x
J(x) = 1, i.e., lim

x→∞
log x

x
π(x) = 1,

the PNT as stated in (1.19).

2. Alternative presentation of the Tauberian argument

Let us use the change of variable w(y) = v(ey) to restate Ikehara’s Tauberian
Theorem:
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Theorem. Let v ↗ and consider

(2.1) f(s) =
∫ ∞

1

x−s dv(x).

Assume f is holomorphic on {s : Re s > 1} and that

(2.2) f(s)− A

s− 1
is continuous on {s : Re s ≥ 1}.

Then

(2.3)
v(x)
x

→ A as x → +∞.

We apply this to

(2.4) −ζ ′(s)
ζ(s)

=
∫ ∞

0

J ′(x)(log x) x−s dx =
∫ ∞

1

x−s dψ(x),

where

(2.5) ψ′(x) = (log x)J ′(x),

i.e.,

(2.6) ψ(x) =
∫ x

0

(log y)J ′(y) dy =
∑

p,k;pk≤x

log p.

The Tauberian theorem yields

(2.7) lim
x→∞

ψ(x)
x

= 1.

As noted in (1.27), integration by parts gives

(2.8) ψ(x) = (log x)J(x)−
∫ x

0

J(y)
y

dy.

Since by Chebycheff’s estimate

(2.9)
J(y)

y
≤ C3

log y
, hence lim

x→∞
1
x

∫ x

0

J(y)
y

dy = 0,

we see that (2.7) is equivalent to

(2.10) lim
x→∞

log x

x
J(x) = lim

x→∞
log x

x
π(x) = 1,
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which is the PNT.
As indicated in the Introduction, we will establish a slightly simpler variant of

Ikehara’s theorem in §§4-5 and show that it yields the PNT.

3. The natural appearance of the logarithmic integral

We have seen in §1 that the asymptotic relation ψ(x) ∼ x is equivalent to
J(x) ∼ x/ log x, hence to π(x) ∼ x/ log x. It turns out that a better approximation
to π(x) is given by the logarithmic integral:

(3.1) Li(x) =
∫ x

2

dy

log y
.

In fact, Li(x) naturally arises to connect ψ(x) to J(x), as we show here. Recall the
relation (1.27) between ψ(x) and J(x), i.e.,

(3.2) ψ′(x) = (log x)J ′(x),

with ψ and J supported on [2,∞). Solving for J ′(x) and integrating by parts gives

(3.3)
J(x) =

∫ x

0

1
log y

ψ′(y) dy

=
ψ(x)
log x

+
∫ x

0

1
(log y)2

ψ(y)
y

dy.

Suppose we have

(3.4) ψ(x) = x + E(x).

Then (3.3) yields

(3.5) J(x) =
x

log x
+

∫ x

2

dy

(log y)2
+

E(x)
log x

+
∫ x

2

1
(log y)2

E(y)
y

dy.

We can write this in a more compact form, noting that the same integration by
parts as used in (3.3), with ψ(y) replaced by y, and the integration done over [2,∞),
gives

(3.6) Li(x) =
x

log x
+

∫ x

2

dy

(log y)2
− 2

log 2
.

Hence (3.5) becomes

(3.7) J(x) = Li(x) +
2

log 2
+

E(x)
log x

+
∫ x

2

1
(log y)2

E(y)
y

dy.
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As for the last term on the right side of (3.7), note that, if

(3.8)
|E(y)|
(log y)2

≤ F (x)
(log x)2

, for 2 ≤ y ≤ x,

then

(3.9)
∣∣∣
∫ x

2

1
(log y)2

E(y)
y

dy
∣∣∣ ≤ F (x)

(log x)2

∫ x

2

dy

y
≤ F (x)

log x
.

The result (1.9) is effective in passing from here to a comparison of π(x) and Li(x).
Though we don’t prove it here, it is known that there exists a > 0 such that

(3.10) ψ(x) = x + O(xe−a
√

log x).

Cf. [P]. It then follows from (3.7), (3.9), and (1.9) that

(3.11) π(x) = Li(x) + O(xe−a
√

log x).

Remark. Comparison of (3.3)–(3.7) with the analogous argument on pp. 54–55 of
[P] reinforces my preference of integration by parts over summation by parts.

4. Some elementary asymptotics

Here we will derive some asymptotic expansions that are elementary conse-
quences of the identity

(4.1) −ζ ′(1 + it)
ζ(1 + it)

= Ĥ(t) =
∫ ∞

−∞
H(y)e−ity dy, H(y) = J ′(ey)y.

(Note that H ∈ S ′(R) and suppH ⊂ [log 2,∞).) One consequence of our analysis
will be a self-contained proof of the Chebycheff-type estimate

(4.2) J(x) ≤ C
x

log x
,

though not with Chebycheff’s explicit identification of C.
We begin with the relation

(4.3) (H ∗ β)̂(t) = Ĥ(t)β̂(t),

where

(4.4) H ∗ β(x) =
∫

H(y)β(x− y) dy.
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We choose β to have the following properties:

(4.5) β ∈ S(R), β > 0, β̂(0) = 1, supp β̂ ⊂ [−A,A].

We could insist that A be small and then require rather little knowledge of ζ(s), or
we could allow A to be large. We can say that Ĥ(t)β̂(t) is a compactly supported
distribution on R, with one simple singularity, at t = 0:

(4.6) Ĥ(t)β̂(t)− 1
it + 0

∈ C∞(R).

From this follows a complete asymptotic expansion:

(4.7) H ∗ β(x) ∼ 1 +
∑

ν≥1

ανx−ν , x → +∞.

A change of variable gives

(4.8) H ∗ β(log x) =
∫ ∞

0

J ′(y)(log y) σ
(x

y

) dy

y
,

with

(4.9) σ(x) = β(log x),

and hence we have the asymptotic expansion

(4.10)
∫ ∞

0

J ′(y)(log y) σ
(x

y

) dy

y
∼ 1 +

∑

ν≥1

αν(log x)−ν , x → +∞.

We can obtain some estimates from this, recalling that J ′ is a positive measure
supported on [2,∞). Note that

(4.11) σ ≥ 0,
1
2
≤ x ≤ 1 =⇒ σ(x) ≥ C1 > 0.

We get

(4.12)
∫ 2x

x

J ′(y)(log y)
dy

y
≤ C2, ∀ x > 0,

hence

(4.13)
∫ 2x

x

J ′(y)(log y) dy ≤ 2C2x,
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and then, summing a geometric series, we get

(4.14) ψ(x) =
∫ x

0

J ′(y)(log y) dy ≤ C3x, ∀x ≥ 2.

As noted before in (1.27), integration by parts gives

(4.15) ψ(x) = J(x)(log x)−
∫ x

0

J(y)
y

dy,

and the obvious inequality J(y) ≤ y bounds this last integral by x. Thus we have
the Chebycheff-type bound (4.2) on J(x), and ditto for π(x).

5. Further asymptotics

Here we derive further consequences of (4.1), including the PNT, with proofs
that do not invoke Ikehara’s theorem. We look at the following set-up:

(5.1) lim
x→+∞

∫ ∞

−∞
β(x− y) dµ(y) =

∫ ∞

−∞
β(y) dy.

We are working with

(5.2) dµ(y) = J ′(ey)y dy,

i.e., µ([0, x]) = J(ex)e−xx+
∫ x

0
J(ey)e−y(y−1) dy. The main properties we need are

that µ is a positive measure, supported in (1,∞), and µ([0, x]) ≤ Cx. Furthermore,
as shown in §4, for the measure µ we are working with, (5.1) holds whenever
β̂ ∈ C∞0 (R). Note that the existence of β ∈ S(R) such that β > 0 while β̂ ∈ C∞0 (R)
implies

(5.3) µ([x, x + 1]) ≤ C0

for some C0 < ∞, independent of x. We desire to extend the validity of (5.1) to
other classes of functions β.

We proceed in stages, starting with:

Lemma 5.1. The result (5.1) holds whenever β ∈ S(R).

Proof. Fix ϕ ∈ S(R) such that

(5.4)
∫

ϕ(y) dy = 1, ϕ̂ ∈ C∞0 (R),
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and let ϕν(x) = νϕ(νx), for ν ≥ 1, so u 7→ ϕν ∗ u is an approximate identity. Then
we know that (5.1) holds when β is replaced by βν = ϕν ∗ β. We examine the
difference

(5.5)
∫ ∞

−∞
fν(x− y) dµ(y), fν(x) = βν(x)− β(x).

We have βν → β in the S(R)-topology, hence, e.g.,

(5.6) |fν(x)| ≤ ε(ν)
1 + x2

, ε(ν) → 0 as ν →∞.

Now in concert with (5.3) we have

(5.7)
∣∣∣
∫

fν(x− y) dµ(y)
∣∣∣ ≤ C

∞∑

k=0

ε(ν)
1 + k2

.

Taking ν →∞ gives (5.1) in this context.

In particular, (5.1) holds whenever β ∈ C∞0 (R). Next we have:

Lemma 5.2. The result (5.1) holds whenever β is continuous and compactly sup-
ported.

Proof. Again use a mollifier and replace β by βν = ϕν ∗ β, but this time take
ϕ ∈ C∞0 (R), rather than ϕ̂ ∈ C∞0 (R). Then we have (5.1) for β replaced by βν , by
Lemma 5.1, and we can estimate (5.5) this time using

(5.8) |fν(x)| ≤ ε(ν), supp fν ⊂ [A,B],

together with (5.3).

We pass beyond continuity, starting with:

Lemma 5.3. The result (5.1) holds whenever β is the characteristic function of
an interval I = [a, b], with −∞ < a < b < ∞.

Proof. We can produce continuous functions fν and gν , compactly supported, with

(5.9) fν ≤ β ≤ gν ,

∫
(gν − fν) dy <

1
ν

.

Now (5.1) holds with β replaced by fν and with β replaced by gν , so we have

(5.10)

∫
fν(y) dy ≤ lim inf

x→∞

∫
β(x− y) dµ(y)

≤ lim sup
x→∞

∫
β(x− y) dµ(y)

≤
∫

gν(y) dy,

yielding the result.

We are now ready for our main extension of (5.1).
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Proposition 5.4. The result (5.1) holds whenever β has compact support, is bounded,
and Riemann integrable.

Proof. By Lemma 5.3, (5.1) holds for any compactly supported step function. Now
let β satisfy the current hypotheses and take ε > 0. We can find compactly sup-
ported step functions fε and gε such that

(5.11) fε ≤ β ≤ gε,

∫
(gε − fε) dy < ε.

Then an analogue of (5.10) finishes the proof.

We change variables and rewrite (5.1) as

(5.12) lim
x→∞

∫ ∞

0

J ′(y)(log y)σ
(x

y

) dy

y
=

∫ ∞

0

σ(y)
dy

y
,

with σ(y) = β(log y). By Proposition 5.4 we can say that (5.12) is valid whenever
σ is a bounded, Riemann integrable function with compact support in (0,∞). Let
us consider some examples.

Example 1. Take σ(y) = χ[a,b](y), with 0 < a < b < ∞. We get

lim
x→∞

∫ x/a

x/b

J ′(y)(log y)
dy

y
=

∫ b

a

dy

y
= log

b

a
,

or equivalently

(5.13) lim
x→∞

∫ bx

ax

J ′(y)(log y)
dy

y
= log

b

a
.

Example 2. Take σ(y) = y−1χ[a,b](y). We get

lim
x→∞

1
x

∫ x/a

x/b

J ′(y)(log y) dy =
∫ b

a

dy

y2
=

1
a
− 1

b
,

or equivalently

(5.14) lim
x→∞

1
x

∫ bx

ax

J ′(y)(log y) dy = b− a.

Noting that log x + log a ≤ log y ≤ log x + log b on the interval of integration in
(5.14), we have

(5.15) lim
s→∞

log x

x

∫ bx

ax

J ′(y) dy = b− a.
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In light of the close agreement between J(x) and π(x), this is equivalent to

(5.16) π(bx)− π(ax) ∼ (b− a)
x

log x
,

whenever 0 < a < b < ∞. Note that the left side of (5.16) is equal to the number
of primes in the interval (ax, bx].

Remark 1. We can compare (5.13) with Mertens’s estimate, which is

(5.17)
∫ x

0

J ′(y)(log y)
dy

y
= log x + O(1).

This result is “elementary;” see pp. 90-91 of [J] for a proof. Now (5.17) implies

(5.18)
∫ bx

ax

J ′(y)(log y)
dy

y
= log

b

a
+ O(1),

which does not quite give (5.13). This is a pity, since passing from (5.13) to (5.15)–
(5.16) merely involves the proof of Proposition 5.4, so an elementary proof of (5.13)
would yield an elementary proof of (5.16).

Remark 2. It is simple enough to pass from (5.16) to the standard form of the
PNT, i.e.,

(5.19) π(x) ∼ x

log x
.

To see this, first note that (5.16) is equivalent to

(5.20) π(bx)− π(ax) ∼ L(bx)− L(ax), L(x) =
x

log x
.

For example,

(5.21) π(2k+1)− π(2k) =
(
L(2k+1)− L(2k)

)
(1 + εk),

with εk → 0 as k →∞. Hence

(5.22)
π(2N )
L(2N )

= 1 +
N−1∑

k=1

εk
L(2k+1)− L(2k)

L(2N )
+

1
L(2N )

,

and it is readily verified that the right side of (5.22) tends to 1 as N → ∞. Now
that we have

(5.23) π(2N ) ∼ L(2N ),



15

passing to (5.19) follows readily from this and (5.20).

6. Alternative endgame

In this section, largely following Chapter 13 of [A], we show how the PNT can
be obtained via a study of

(6.1) ψ1(x) =
∫ x

0

ψ(y) dy,

with ψ(x) given by (1.27). Note that suppψ ⊂ [2,∞), so the lower limit of integra-
tion in (6.1) could be changed from 0 to a for any a < 2. We note the elementary
estimate

(6.2) ψ1(x) ≤ Cx2.

The following Tauberian theorem will suffice for the approach taken here.

Lemma 6.1. If we have

(6.3) lim
x→+∞

ψ1(x)
x2

=
1
2
,

then it follows that

(6.4) lim
x→+∞

ψ(x)
x

= 1.

This result is elementary. A short proof is given on pp. 280–281 of [A]. As we
have seen, (6.4) is equivalent to the PNT, so it remains to prove (6.3).

We relate ψ1 to the zeta function. As in (2.4), we have

(6.5)
−ζ ′(s)

ζ(s)
=

∫ ∞

1

ψ′(x)x−s dx

= s

∫ ∞

1

ψ(x)x−s−1 dx,

and hence, using (6.1),

(6.6)
−ζ ′(s)

ζ(s)
= s

∫ ∞

1

ψ′1(x)x−s−1 dx

= s(s + 1)
∫ ∞

1

ψ1(x)x−s−2 dx,
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as long as Re s > 1. In other words,

(6.7) − 1
s(s + 1)

ζ ′(s)
ζ(s)

=
∫ ∞

1

ψ1(x)
x2

x−s dx.

We want to produce the Mellin transform of an elementary function to cancel
the singularity of the left side of (6.7) at s = 1, and arrange that the difference be
nicely behaved on {s : Re s = 1}. Using

(6.8)
∫ ∞

1

x−s dx =
1

s− 1
,

valid for Re s > 1, we can see that

(6.9)

1
2

∫ ∞

1

(
1− 1

x

)2

x−s dx =
1
2

∫ ∞

1

(x−s − 2x−s−1 + x−s−2) dx

=
1

(s− 1)s(s + 1)
,

so we achieve such cancellation with

(6.10) − 1
s(s + 1)

(ζ ′(s)
ζ(s)

+
1

s− 1

)
=

∫ ∞

1

[ψ1(x)
x2

− 1
2

(
1− 1

x

)2]
x−s dx.

To simplify notation, let us set

(6.11) Φ(x) =
[ψ1(x)

x2
− 1

2

(
1− 1

x

)2]
χ[1,∞)(x).

We make the change of variable x = ey and set s = 1+ it (so Re s > 1 ⇔ Im t < 0),
and write the right side of (6.10) as

(6.12)
∫ ∞

−∞
Φ(ey)e−ity dy.

Clearly Φ(ey) is bounded, and supported on 0 ≤ y < ∞, so one can pass from
Im t < 0 to t ∈ R, interpreting (6.12) as the Fourier transform of a tempered
distribution, and see that (6.12) is equal to

(6.13) Ξ(t) = − 1
(1 + it)(2 + it)

[ζ ′(1 + it)
ζ(1 + it)

+
1
it

]
.

Fourier inversion (for tempered distributions) implies that the inverse Fourier trans-
form of Ξ is equal to Φ(ey). The following result provides the final key for this
approach to the PNT.
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Lemma 6.2. We have

(6.14) Ξ ∈ L1(R).

Given (6.14), we have limy→+∞ Φ(ey) = 0, by the Riemann-Lebesgue lemma,
which in turn gives (6.3). As for (6.14), the fact that 1/(s − 1) cancels the pole
of ζ ′(s)/ζ(s) at s = 1 plus the fact that ζ(s) has no zeros with Re s = 1 implies
Ξ ∈ C∞(R). The large t behavior of Ξ(t) is a consequence of the following estimate:

(6.15)
∣∣∣ζ
′(1 + it)

ζ(1 + it)

∣∣∣ ≤ C(log |t|)9, t ∈ R, |t| ≥ 2.

This result can also be obtained from (A.1); see [A], pp. 287–288, or [J], pp. 108–109,
for a proof.

A. Zeros of the zeta function

Here we show that ζ(s) 6= 0 when Re s = 1. Our treatment follows [J], pp. 106–
107, though many other sources have similar treatments. We start with:

Lemma A.1. For all σ > 1, t ∈ R,

(A.1) ζ(σ)3 |ζ(σ + it)|4 |ζ(σ + 2it)| ≥ 1.

Proof. Since log |z| = Re log z, (A.1) is equivalent to

(A.2) 3 log ζ(σ) + 4 Re log ζ(σ + it) + Re log ζ(σ + 2it) ≥ 0.

By (1.8) we have

(A.3) log ζ(s) =
∑

n≥1

a(n)
ns

,

with coefficients a(n) ≥ 0 for each n. Thus the left side of (A.2) is equal to

(A.4)
∞∑

n=1

a(n)
nσ

Re(3 + 4n−it + n−2it).

But, with θn = t log n,

(A.5)

Re(3 + 4n−it + n−2it) = 3 + 4 cos θn + cos 2θn

= 2 + 4 cos θn + 2 cos2 θn

= 2(1 + cos θn)2,

which is ≥ 0 for each n, so we have (A.2), as asserted.

We will assume it known that ζ(s)− 1/(s− 1) is an entire holomorphic function.
Proofs of this fact can be found in [A], [P], [S], Chapter 3 of [T1], and §19 of [T2].
Now for our result:
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Theorem A.2. For all real t 6= 0, ζ(1 + it) 6= 0.

Proof. Suppose t ∈ R \ 0 and ζ(1 + it) = 0. Then

(A.6) lim
σ↘1

ζ(σ + it)
σ − 1

= ζ ′(1 + it).

If Φ(σ) denotes the left side of (A.1), then

(A.7) Φ(σ) =
(
(σ − 1)ζ(σ)

)3
( |ζ(σ + it)|

σ − 1

)4∣∣(σ − 1)ζ(σ + 2it)
∣∣.

Note that

(A.8) lim
σ↘1

(σ − 1)ζ(σ) = 1.

Thus if (A.6) holds we must have limσ↘1 Φ(σ) = 0, contradicting (A.1).

B. Evaluation of ζ(k) via Fourier Series, for k Even

We evaluate ζ(k) inductively, for k even, by studying the Fourier series of

(B.1) fk(x) = xk on S1 = [−π, π].

We have, by Fourier inversion,

(B.2)
∞∑

n=−∞
f̂k(n) = 2πfk(0) = 0,

where

(B.3) f̂k(n) =
∫ π

−π

xke−inx dx.

In particular,

(B.4) f̂k(0) =
∫ π

−π

xk dx =
2πk+1

k + 1
,

if k is even. To evaluate other Fourier coefficients, we recall the following trick. Set

(B.5) Tk(x) =
k∑

j=0

xj

j!
.
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Then T ′k(x) = Tk−1(x), so

(B.6)
d

dx

(
Tk(x)e−x

)
= Tk−1(x)e−x − Tk(x)e−x = −xk

k!
e−x,

and hence

(B.7)
∫

xke−x dx = −k! Tk(x)e−x + C.

Setting x = αy gives

(B.8)
∫

yke−αy dy = − k!
αk+1

Tk(αy)e−αy + C,

and hence, for n 6= 0,

(B.9)
f̂k(n) = − k!

(in)k+1
Tk(inx)e−inx

∣∣∣
π

−π

= (−1)n+1 k!
(in)k+1

[
Tk(inπ)− Tk(−inπ)

]
.

Now, by (B.5), we have

(B.10) Tk(inπ)− Tk(−inπ) = 2
∑

0<j<k;j odd

(inπ)j

j!
.

Note that

(B.11) k even =⇒ f̂k(−n) = f̂k(n).

Since we are assuming k is even, we can put together (B.2), (B.4), and (B.9)–(B.11)
to get

(B.12)

2
k + 1

πk+1 = 4k!
∞∑

n=1

(−1)n

(in)k+1

∑

0<j<k;j odd

(inπ)j

j!

= 4k!
∑

0<j<k;j odd

πj

j!
ij−k−1

∞∑
n=1

(−1)n

nk−j+1
.

Note that in this last double sum j − k− 1 and k− j + 1 are even. Note also that,
for ` ≥ 2,

(B.13)

∞∑
n=1

(−1)n

n`
=

∑
n even

1
n`
−

∑

n odd

1
n`

= 2
∞∑

m=1

1
(2m)`

−
∞∑

n=1

1
n`

= −(1− 21−`)ζ(`).
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Consequently (B.12) gives, for k even,

(B.14)
2

k + 1
πk+1 = 4k!

∑

0<j<k;j odd

πj

j!
ij−k+1 (1− 2j−k)ζ(k − j + 1).

Note that j − k + 1 is even in this sum, so ij−k+1 = ±1.
Take the case k = 2. Then the right side has one term, j = 1. We get

(B.15)
2
3
π3 = 8π

(1
2

)
ζ(2), i.e., ζ(2) =

π2

6
,

a well known formula. From here, (B.14) inductively gives ζ(k), for k even, as a
rational multiple of πk.
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