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1. Introduction

Let O ⊂ Rn be a connected open set, p ∈ O. Assume

(1.1) u ∈ C2(O \ p), ∆u = 0, u ≥ 0, on O \ p.
Here ∆ = ∂2

1 + · · ·+ ∂2
n is the Laplace operator on Euclidean space Rn. Examples

of such functions include

(1.2)

V (x) = |x− p|2−n, n ≥ 3,

log
1

|x− p|
, n = 2,

the latter holding provided O ⊂ B1(p) (add a constant if O is a larger bounded
planar domain). Bôcher’s theorem says the following.

Theorem 1.1. If u satisfies (1.1), then there exist a function h ∈ C∞(O), har-
monic on O, and a constant A ∈ [0,∞), such that

(1.3) u(x) = AV (x) + h(x),

with V (x) as in (1.2).

Since this result appeared in [B], other proofs have been given, including proofs
in [H], [ABR], and [ABR2]. There have also been extensions, both to variable-
coefficient Laplacians and to higher order operators, in [EP], [KE], [C], and [L]. In
fact, [B] discussed variable coefficients, at least in lower order terms.

Our goal here is to establish a variable coefficient extension of Theorem 1.1, in-
volving generalized Laplace operators whose coefficients possess rather little smooth-
ness. The following is our main result. Set

(1.4) Lu =
∑
j,k

∂j(a
jk(x)∂ku).

We assume the coefficients ajk are real-valued functions, satisfying

(1.5) ajk = akj ,
∑
j,k

ajk(x)ξjξk ≥ λ|ξ|2.
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Theorem 1.2. Let O ⊂ Rn be a connected, open subset, p ∈ O. Assume O is
bounded, with smooth boundary. Assume

(1.6) u ∈ C1(O \ p), Lu = 0, u ≥ 0 on O \ p.

In addition to (1.5), assume the coefficients ajk have the Sobolev space regularity

(1.7)
∇ajk ∈ Hε,n(O), ε > 0, hence

∇ajk ∈ Lr(O), r > n.

Let Vp be given by

(1.8) LVp = −δp on O, Vp

∣∣
∂O = 0.

Then there exist h ∈ C1(O) and A ∈ [0,∞) such that

(1.9) Lh = 0 on O,

and

(1.10) u(x) = AVp(x) + h(x).

Here δp is the unit point mass (“delta function”) supported at p. See §§3–4 for
material on the existence, uniqueness, and positivity of such Vp.

We approach the proof of Theorem 1.2 in stages. We begin in §2 with a short
proof of Theorem 1.1, taking an approach that is designed to extend to variable
coefficient situations. We follow this in §3 with a short proof of Theorem 1.2 in
case the coefficients ajk belong to C∞(O). In §4 we tackle Theorem 1.2 in the case
of low regularity, specified in (1.7).

In outline, our argument goes as follows. First we establish an upper bound on
u that implies u is locally integrable on a neighborhood of p, in fact in Ls for some
s > 1. Using this, we can define Lu as a distribution on O,

(1.11) Lu = µ ∈ D′(O),

satisfying

(1.12) µ ∈ H−2,s(O), suppµ ⊂ {p}.

We combine this information on the support and regularity of µ with the positivity
of u to show that µ = −Aδp, for some A ∈ [0,∞), hence obtaining (1.10). Sub-
stantial technical issues arise in §4, including some local elliptic regularity results,
which we prove in §5. In the course of proving these regularity results, we also show
that Theorem 1.2 holds with the hypothesis (1.7) replaced by

(1.13) ajk ∈ C1(O).
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2. Proof of the classic result

We start the proof of Theorem 1.1 with the following estimate.

Proposition 2.1. Take q ∈ Rn and assume

(2.1) ∆v = 0, v ≥ 0 on BR(q),

where

(2.2) BR(q) = {x ∈ Rn : |x− q| < R}.

Then, for x ∈ BR(q),

(2.3) v(x) ≤ 2v(q)
(
1− |x− q|

R

)−(n−1)

.

Proof. Translating and dilating, we can assume q = 0 and R = 1. So we work on
B = B1(0). Let us temporarily assume also that v ∈ C(B). We have the Poisson
integral formula:

(2.4) v(x) = PI f(x) =
1− |x|2

An−1

∫
Sn−1

f(y)

|x− y|n
dS(y), f = v

∣∣
Sn−1 ,

where Sn−1 = ∂B is the unit sphere in Rn and An−1 is its area. Then

(2.5) |v(x)| ≤ (1− |x|2)
(
max
|y|=1

|x− y|−n
) 1

An−1

∫
Sn−1

f(y) dS(y).

Since min|y|=1 |x− y| = 1− |x| for x ∈ B, this gives

(2.6) |v(x)| ≤ 2v(0)(1− |x|)−(n−1),

for v ∈ C(B) satisfying (2.1). Replacing v(x) by v(ρx) and letting ρ ↗ 1 removes
the extra hypothesis and establishes the proposition.

Returning to Theorem 1.1, take R > 0 such that B2R(p) ⊂ O and apply Propo-
sition 2.1 to u, restricted to BR(q), as q ranges over ∂BR(p). We get the following.
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Lemma 2.2. In the setting of Theorem 1.1, there exists C ∈ (0,∞) such that, for
0 < |x− p| ≤ R,

(2.7) u(x) ≤ C|x− p|−(n−1).

It follows from (2.7) that the restriction of u to Ω = BR(p) satisfies

(2.8) u ∈ Ls(Ω), ∀ s ∈
[
1,

n

n− 1

)
,

hence

(2.9) ∆u = µ ∈ H−2,s(Ω), suppµ ⊂ {p}.

The support condition on µ implies (cf. Proposition 4.5 in Chapter 3 of [T])

(2.10) µ = Pδp,

where P is a constant-coefficient differential operator, and the Ls-Sobolev space
regularity condition in (2.9) implies that P is a first order differential operator.
Consequently, u differs from

(2.11) XV +AV

by a function that is harmonic on Ω, where X is a constant coefficient vector field
and A is a constant, and V has the form (1.2). Since u is real valued, X must be a
real vector field. Rotating coordinates, we can assume X is a multiple of ∂1. Then
a calculation gives

(2.12) ∂1V (x) = cn(x1 − p1)|x− p|−n,

so the hypothesis u ≥ 0 implies X = 0. Then A ≥ 0 in (2.11), and we have that
u−AV is harmonic on a neighborhood of p, hence on all of O. This proves Theorem
1.1.
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3. Variable coefficients, smooth case

As in §1, let O ⊂ Rn be a connected open set, p ∈ O. For simplicity, assume O
is bounded and ∂O is smooth. Assume

(3.1) u ∈ C2(O \ p), Lu = 0, u ≥ 0 on O \ p.

Here

(3.2) Lu =
∑
j,k

∂j(a
jk(x)∂ku),

where

(3.3) ajk = akj ∈ C∞(O),
∑
j,k

ajk(x)ξjξk ≥ λ|ξ|2.

Our main object of interest is

(3.4) ajk(x) = g(x)1/2gjk(x),

where G = (gjk) is a smooth metric tensor on O, (gjk) = G−1, and g = detG.
Then Lu = 0 says u is harmonic with respect to the Laplace-Beltrami operator
associated with this metric tensor. An example of (3.1) is

(3.5) Vp(x) = E(x, p),

satisfying

(3.6) LVp = −δp, Vp

∣∣
∂O = 0.

Existence and uniqueness of such Vp is well known in the smooth setting. See
Chapter 5 of [T].

The following result extends Theorem 1.1.

Theorem 3.1. If u satisfies (3.1), then there exist h ∈ C∞(O) satisfying Lh = 0
on O and a constant A ∈ [0,∞) such that

(3.7) u(x) = AVp(x) + h(x),

with Vp(x) as in (3.5)–(3.6).

Ingredients in the proof of Theorem 3.1 are parallel to those used in §2. To
start, assume B3R(p) ⊂ O, and let B be a ball of radius S ∈ [R/2, 2R] such that
B ⊂ B3R(p). The following result parallels Proposition 2.1.
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Proposition 3.2. Take such a ball B = BS(q), and assume

(3.8) Lv = 0, v ≥ 0 on B.

Then there exists C < ∞ such that, for x ∈ B,

(3.9) v(x) ≤ Cv(q)
(
1− |x− q|

S

)−(n−1)

.

Proof. Temporarily assume that also v ∈ C(B). We have a Poisson integral formula:

(3.10) v(x) = PI f(x) =

∫
∂B

pB(x, y)f(y) dS(y), f = v
∣∣
∂B

.

Consequently,

(3.11) v(x) ≤
(
max
y∈∂B

pB(x, y)
) ∫
∂B

f(y) dS(y).

Furthermore, as we discuss below, there are estimates

(3.12) 0 < pB(x, y) ≤ C|x− y|−(n−1), x ∈ B, y ∈ ∂B,

and

(3.13) 0 < α ≤ pB(q, y), y ∈ ∂BS(q).

These two estimates lead from (3.11) to (3.9) when, in addition to (3.8), we have
v ∈ C(B). We can apply such a conclusion, with B replaced by BT (q), and let
T ↗ S to finish the proof of Proposition 3.2 (given the estimates (3.12)–(3.13)).

Before discussing the estimates (3.12)–(3.13), we show how Proposition 3.2 leads
to Theorem 3.1. The next step is to note that Proposition 3.2 leads to the following.
Take R > 0 as described above the statement of Proposition 3.2.

Lemma 3.3. In the setting of Theorem 3.1, there exists C ∈ (0,∞) such that, for
0 < |x− p| ≤ R,

(3.14) u(x) ≤ C|x− p|−(n−1).

To proceed, we have from (3.14) that the restriction of u to Ω = BR(p) satisfies

(3.15) u ∈ Ls(Ω), ∀ s ∈
[
1,

n

n− 1

)
,
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hence

(3.16) Lu = µ ∈ H−2,s(Ω), suppµ ⊂ {p}.

As in §2, this leads to the conclusion that there exist a constant coefficient vector
field X and a constant A such that µ = −Xδp −Aδp, i.e.,

(3.17) Lu = −Xδp −Aδp, on Ω.

We want to compare u with w = XVp + AVp, with Vp given by (3.5)–(3.6). Note
that

(3.18)
Lw = LXVp + LAVp

= −Xδp −Aδp + [L,X]Vp,

where the commutator [L,X] is a differential operator of order 2. We have

(3.19) L(w − u) = [L,X]Vp.

Now a parametrix construction leads to an expansion of Vp(x) for x near p,

(3.20) Vp(x) ∼ c
(∑

j,k

gjk(p)(xj − pj)(xk − pk)
)(2−n)/2

+ · · · ,

whose succeeding terms are progressively less singular at x = p. (This holds if n ≥ 3.
For n = 2, log terms arise.) In particular, L(w−u) is a conormal distribution whose
singularity has (at most) the same order as δp, so w − u has (at most) the same
order of singularity as Vp. Consequently, if X ̸= 0,

(3.21) u(x) = XVp +Rp(x),

where XVp has leading singularity homogeneous of degree −(n− 1) in x− p, while
Rp(x) has leading singularity homogeneous of degree −(n − 2) in x − p (if n > 2,
with a logarighmic singularity for n = 2). An inspection of the application of X to
Vp(x), satisfying (3.20), shows that

(3.22) u(x) ≥ 0 on Ω \ p =⇒ X = 0.

Thus (3.17) becomes

(3.23) Lu = −Aδp,

which leads to the conclusion (3.7), proving Theorem 3.1, given the estimates
(3.12)–(3.13).

In the case of smooth coefficients, a parametrix construction of PI is available,
from which the upper estimate in (3.12) follows. See Chapter 7, §§11 and 12, of
[T]. As for the lower estimates in (3.12) and (3.13), we have the strong maximum
principle. This yields pB(x, y) > 0 for each x ∈ B, y ∈ ∂B. As for the positive
lower bound, uniform in q and S ∈ [R/2, 2R], in (3.13), this then follows from the
continuous dependence of pB(x, y) on these parameters.
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4. Variable coefficients, rough cases

As in §3, let O ⊂ Rn be a connected open set, and assume for simplicity that O
is bounded and ∂O is smooth. Take p ∈ O. Assume

(4.1) u ∈ C1(O \ p), Lu = 0, u ≥ 0 on O \ p.
Here

(4.2) Lu =
∑
j,k

∂j(a
jk(x)∂ku).

In the setting of Theorem 1.2, the coefficients ajk are assumed to satisfy (1.5) and
(1.7).

We will want to extend Proposition 3.2 to this setting, which will be harder than
what we did in §3. We start with a cruder estimate, which works in a more general
setting.

Proposition 4.1. Assume B = BS(q) ⊂ O and v ∈ H1,2
loc (B) satisfies

(4.3) Lv = 0, v ≥ 0 on B.

In place of (1.5) and (1.7), assume ajk = akj are real valued and measurable, and
that we have

(4.4) λ|ξ|2 ≤
∑
j,k

ajk(x)ξjξk ≤ Λ|ξ|2,

with 0 < λ ≤ Λ < ∞. Then there exist C and M = M(n,Λ/λ) such that for x ∈ B,

(4.5) v(x) ≤ Cv(q)SM dist(x, ∂B)−M .

Proof. The fact that each v ∈ H1,2
loc (B) satisfying Lv = 0 is continuous (even Hölder

continuous) on B follows from the DeGiorgi-Nash theory (cf. [T], Chapter 14, §9, or
[GT], §8.9). In addition, there is the following Moser Harnack inequality (cf. [GT],
§8.8). If B2ρ(y) ⊂ B, then

(4.6) sup
Bρ(y)

v ≤ C1 inf
Bρ(y)

v, C1 = C1(n,Λ/λ).

Iterating this gives

(4.7) sup
BSν (q)

v ≤ v(q)Cν
1 , Sν = S

(1
2
+

1

4
+ · · ·+ 1

2ν

)
= S(1− 2−ν),

from which (4.5) follows.

Before deriving a result closer to Proposition 3.2, we record a result on the
existence and uniqueness of a positive solution Vp to

(4.8) LVp = −δp on O, Vp

∣∣
∂O = 0.
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Proposition 4.2. Take O and L as above, and assume the coefficients ajk = akj

are real valued and measurable and satisfy (4.4) on O. Then, given p ∈ O, there is
a unique

(4.9) Vp ∈
∩
ε>0

H1,2(O \Bε(p)) ∩H1,1
0 (O)

satisfying (4.8). Furthermore, Vp ≥ 0 on O \ p.

This result is part of Theorem 1.1 in [GW].

We now formulate our extension of Proposition 3.2.

Proposition 4.3. Take B = BS(q) ⊂ O, L, and v as in Proposition 4.1, and add
the hypothesis that

(4.10) ajk ∈ Cα(B), for some α ∈ (0, 1).

Then there exists C = C(n,Λ/λ, ∥ajk∥Cα) < ∞ such that, for x ∈ B,

(4.11) v(x) ≤ Cv(q)Sn−1 dist(x, ∂B)−(n−1).

The proof of Proposition 4.3 is formally parallel to that of Proposition 3.2. We
temporarily assume that also v ∈ C(B). We have a Poisson integral formula,

(4.12) v(x) = PI f(x) =

∫
∂B

pB(x, y)f(y) dS(y), f = v
∣∣
∂B

,

hence

(4.13) v(x) ≤
(
max
y∈∂B

pB(x, y)
) ∫
∂B

f(y) dS(y).

Furthermore, as we will show, there are estimates

(4.14) 0 < pB(x, y) ≤ C|x− y|−(n−1), x ∈ B, y ∈ ∂B,

and

(4.15) 0 < α ≤ pB(q, y), y ∈ ∂BS(q).

These two estimates lead from (4.13) to (4.11) when, in addition to (4.3), we also
have v ∈ C(B). We can then apply such a conclusion, with B replaced by BT (q),
and let T ↗ S to finish the proof of Proposition 4.3.
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The key difference between the proofs of Proposition 3.2 and Proposition 4.3 is
that (4.14) and (4.15) are a bit harder to establish than their counterparts in §3.
For this task, results of [GW] will be useful.

To proceed, we bring in the Green function GB(x, y), defined as follows, in
analogy with (4.9). First, for y ∈ B, there is (under the hypotheses of Proposition
4.3) a unique

(4.16) GB(·, y) ∈ C1+α(B \ y) ∩H1,1
0 (B)

satisfying

(4.17) LGB(·, y) = −δy, GB(·, y)
∣∣
∂B

= 0.

Furthermore, G(x, y) ≥ 0. Also, one has

(4.18) GB(x, y) = GB(y, x),

for x, y ∈ B, and this allows us to extend GB(x, y) to y ∈ ∂B, for x ∈ B. One has
from Theorem 3.3 of [GW] that, for x ∈ B, y ∈ B,

(4.19)

GB(x, y) ≤ K1δ(x)|x− y|−(n−1),

GB(x, y) ≤ K1|x− y|−(n−2),

|∇yGB(x, y)| ≤ K1δ(x)|x− y|−n,

|∇yGB(x, y)| ≤ K1|x− y|−(n−1),

|∇x∇yGB(x, y)| ≤ K1|x− y|−n,

with K1 = K1(n, λ,Λ, ∥ajk∥Cα) and δ(x) = dist(x, ∂B). Furthermore, by part (ii)
of Theorem 3.5 in [GW],

(4.20) |∇yG(x, y1)−∇yG(x, y2)| ≤ K1|y1 − y2|α
2∑

ℓ=1

|x− yℓ|1−n−α.

Now an application of Green’s formula gives, for PI : C(∂B) → C(B), the
formula

(4.21) PI f(x) =

∫
∂B

f(y) ν(y) · A(y)∇yG(x, y) dS(y),

first for f ∈ C1(∂B), then by extension for f ∈ C(∂B). Here ν(y) is the unit
outward pointing normal to ∂B at y, and A(y) = (ajk(y)). In other words,

(4.22) pB(x, y) = ν(y) · A(y)∇yG(x, y),
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for x ∈ B, y ∈ ∂B. Hence the estimates (4.19) yield

(4.23)

pB(x, y) ≤ ΛK1δ(x)|x− y|−n,

pB(x, y) ≤ ΛK1|x− y|−(n−1),

|∇xpB(x, y)| ≤ ΛK1|x− y|−n,

and (4.20) yields

(4.24) |pB(x, y1)− pB(x, y2)| ≤ K1∥ν · A∥Cα |y1 − y2|α
2∑

ℓ=1

|x− yℓ|1−n−α.

The first (or second) part of (4.23), together with the strong maximum principle,
yields (4.14). We next tackle the

Proof of (4.15). Assume to the contrary that there are balls Bν = BSν
(qν) ⊂ O

and points yν ∈ ∂Bν such that

(4.25) pBν (qν , yν) −→ 0.

It is convenient to apply translations, dilations, and rotations to map BSν (qν) to
BS(q) and yν to y0, so we have Poisson kernels pν(x, y) for solutions to Dirichlet
problems

(4.26) Lνw = 0 on B, w = f on ∂B,

with

(4.27) Lνw =
∑
j,k

∂j(a
jk
ν (x)∂kw),

the solution given by

(4.28) w(x) =

∫
∂B

pν(x, y)f(y) dS(y),

and (with q the center of B and y0 ∈ ∂B fixed)

(4.29) pν(q, y0) −→ 0.

The hypothesis (4.10) then yields

(4.30) ∥ajkν ∥Cα(B) ≤ c0 < ∞, ∀ ν.

Our goal is to show that (4.29) cannot occur.
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To proceed, pick α1 ∈ (0, α) and, passing to a subsequence, assume

(4.31) ajkν −→ ajk0 in Cα1(B)-norm,

with ajk0 ∈ Cα(B), also satisfying (4.4). Say its Poisson kernel is p0(x, y). If we can
show that (after perhaps passing to a further subsequence), as ν → ∞,

(4.32) pν(x, y) −→ p0(x, y), uniformly on K × ∂B,

for each compact K ⊂ B, then (4.29) would imply

(4.33) p0(q, y0) = 0,

which violates the strong maximum principle.
We hence pursue a demonstration of (4.32). To start, we can apply (4.23)–(4.24)

to obtain estimates

(4.34)

pν(x, y) ≤ K2|x− y|−(n−1),

|∇xpν(x, y)| ≤ K2|x− y|−n,

|pν(x, y1)− pν(x, y2)| ≤ K2δ(x)
1−n−α|y1 − y2|α,

valid uniformly in ν, for x ∈ B, y, y1, y2 ∈ ∂B. We can hence apply the Arzela-
Ascoli theorem and, passing to a subsequence, obtain

(4.35) pν(x, y) −→ P (x, y), uniformly on K × ∂B,

for each compact K ⊂ B. In light of this, our task becomes that of showing that

(4.36) P (x, y) = p0(x, y), on B × ∂B.

In preparation for this, let us denote by

(4.37) PIν : C(∂B) −→ C(B), PI0 : C(∂B) −→ C(B)

the solution operators to (4.26) and to its counterpart, with Lνw replaced by

(4.38) L0w =
∑
j,k

∂j(a
jk
0 (x)∂kw),

so PIν f(x) is given by (4.28) and

(4.39) PI0 f(x) =

∫
∂B

p0(x, y)f(y) dS(y).

We have the following key result.
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Lemma 4.4. Given f ∈ C1(∂B),

(4.40) PIν f −→ PI0 f in H1
0 (B).

Proof. Take f = F |∂B , F ∈ C1(B). We have

(4.41) PIν f = F − wν , PI0 f = F − w0,

with

(4.42)
Lνwν = LνF, wν

∣∣
∂B

= 0,

L0w0 = L0F, w0

∣∣
∂B

= 0.

We see that LνF =
∑

j,k ∂ja
jk
ν ∂kF with ajkν ∂kF bounded in C(B), hence

(4.43) LνF bounded in H−1(B),

so

(4.44) wν bounded in H1
0 (B).

Thus

(4.45)
L0(wν − w0) = (L0 − Lν)wν + (Lν − L0)F

→ 0 in H−1(B),

as ν → ∞, so

(4.46) wν −→ w0 in H1
0 (B),

and we have (4.40).

We have from (4.40) that, as ν → ∞,

(4.47)

∫
B

∫
∂B

g(x)pν(x, y)f(y) dS(y) dx

−→
∫
B

∫
∂B

g(x)p0(x, y)f(y) dS(y) dx,

for each f ∈ C1(∂B), g ∈ C1
0 (B). On the other hand, (4.35) readily implies that

(4.48)

∫
B

∫
∂B

pν(x, y)f(y) dS(y) dx

−→
∫
B

∫
∂B

g(x)P (x, y)f(y) dS(y) dx,

for such f and g. Comparing (4.47) and (4.48), we have (4.36), hence (4.32), and
the proof of (4.15) is complete.

At this point, the proof of Proposition 4.3 is complete. Now that we have this,
we can deduce the following analogue of Lemma 3.3.
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Lemma 4.5. Take O ⊂ Rn, p ∈ O, and L as in Theorem 1.2, but replace (1.7)
by the more general hypothesis

(4.49) ajk ∈ Cα(O),

for some α ∈ (0, 1). In particular, let u satisfy

(4.50) u ∈ C1(O \ p), Lu = 0, u ≥ 0 on O \ p.

Assume B2R(p) ⊂ O. Then there exists C < ∞ such that

(4.51) u(x) ≤ C|x− p|−(n−1), for 0 < |x− p| ≤ R.

Given Lemma 4.5, we have, with B = BR(p),

(4.52) u ∈ Ls(B), ∀ s ∈
[
1,

n

n− 1

)
,

hence

(4.53) ∂ku ∈ H−1,s(B),

for all such s. Now, if we strengthen (4.49) to

(4.54) ajk ∈ H1,r(O), r > n,

then multiplication by ajk maps H1,ρ
0 (B) to itself, for ρ ∈ (n, r], so by duality,

(4.55) ajk∂ku ∈ H−1,s(B),

for s as in (4.52). Therefore

(4.56) Lu = µ ∈ H−2,s(B),

for all such s. We have Lu = 0 on B \ p, so

(4.57) suppµ ⊂ {p}.

In view of the structure of distributions supported at {p}, we have the following.

Proposition 4.6. In the setting of Theorem 1.2, there exist a constant coefficient
vector field X and a constant A such that

(4.58) Lu = −Xδp −Aδp.
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We aim to prove that X = 0. Parallel to the analysis in §3, we compare u with

(4.59) w = XVp +AVp,

with Vp as in Proposition 4.2. As long as the coefficients ajk are Hölder continuous,
we have the following parallel to estimates in (4.19):

(4.60)
Vp(x) ≤ C|x− p|−(n−2),

|∇Vp(x)| ≤ C|x− p|−(n−1).

We will find it useful to have the following more precise information, established in
Proposition 2.4 of [MT2] (which improves (2.70)–(2.71) of [MT1]). Namely,

(4.61) Vp(x) = Ep(x) + rp(x),

with

(4.62) Ep(x) = cn(p)
(∑

j,k

ajk(p)(xj − pj)(xk − pk)
)−(n−2)/2

,

where (ajk) is the matrix inverse to (ajk), and

(4.63)
|rp(x)| ≤ C|x− p|−(n−2−α),

|∇rp(x)| ≤ C|x− p|−(n−1−α).

To compare u with w, we compare Lu, given by (4.58), with

(4.64)

Lw = LXVp + LAVp

= XLVp +ALVp + [L,X]Vp

= −Xδp −Aδp + [L,X]Vp,

obtaining

(4.65) L(w − u) = [L,X]Vp.

Note that

(4.66) [L,X]Vp =
∑
j,k

∂j(b
jk(x)∂kVp),

with

(4.67) bjk = −Xajk ∈ Lr(O),
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given the hypothesis (1.7). We have from (4.60) that

(4.68) ∂kVp ∈ Ls(O), ∀ s ∈
[
1,

n

n− 1

)
,

so, given r > n,

(4.69) bjk∂kVp ∈ Lσ(O), for some σ > 1,

and we have

(4.70) [L,X]Vp ∈ H−1,σ(O).

To recap, we have

(4.71)
w, u ∈ Ls(B), ∀ s ∈

[
1,

n

n− 1

)
,

L(w − u) ∈ H−1,σ(B).

We bring in the following local elliptic regularity result.

Proposition 4.7. Take L as in Theorem 1.2, B = BR(p), with B2R(p) ⊂ O.
Assume

(4.72) v ∈ Ls(B), ∀ s ∈
[
1,

n

n− 1

)
, Lv ∈ H−1,σ(B),

for some σ ∈ (1, n/(n− 1)). Then

(4.73) v ∈ H1,σ(BR/2(p)).

We will prove this result in §5. Here we apply it to finish the proof of Theorem 1.2.

Noting that Vp ∈ H1,s(O) for all s < n/(n− 1), we see from (4.71) that Propo-
sition 4.7 implies

(4.74) u−XVp ∈ H1,σ(BR/2(p)),

for some σ > 1. Since H1,σ(Rn) ⊂ Lnσ/(n−σ)(Rn), we obtain that

(4.75) u−XVp ∈ Ls1(BR/2(p)), for some s1 >
n

n− 1
.

Meanwhile, by (4.61)–(4.63), we have

(4.76) XVp −XEp = Xrp ∈ Ls1(BR/2(p)), for some s1 >
n

n− 1
.
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so

(4.77) u−XEp ∈ Ls1(BR/2(p)), for some s1 >
n

n− 1
.

On the other hand, it is clear from (4.62) that

(4.78) XEp(x) is homogeneous of degree −(n− 1) in x− p,

so it just fails to belong to Ln/(n−1) on BR/2(p), if X ̸= 0. Consequently, if X ̸= 0,
the singularity of XEp cannot be cancelled by the difference u−XEp, so

(4.79) u ≥ 0 =⇒ XEp ≥ 0 on BR/2(p).

On the other hand, if X ̸= 0, one can rotate coordinates so X is a multiple of ∂1,
and a straightforward computation from (4.62) shows that XEp must change sign.
This proves that

(4.80) X = 0,

and completes the proof of Theorem 1.2, modulo the proof of Proposition 4.7.
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5. Some local elliptic regularity theorems

To recall our setting, we have

(5.1) L =
∑
j,k

∂ja
jk∂k,

where ajk = akj are real valued and satisfy

(5.2) ∇ajk ∈ Hε,n(O), ε > 0,

hence

(5.3) ∇ajk ∈ Lr(O), r > n,

and whereO is an open set in Rn. For current purposes, we may as well takeO = Rn

and assume ajk(x) is constant for |x| large. We make the ellipticity hypothesis

(5.4) λ|ξ|2 ≤
∑
j,k

ajk(x)ξjξk ≤ Λ|ξ|2,

with 0 < λ ≤ Λ < ∞. The content of Proposition 4.7, which we aim to prove here,
is that if B = BR(p) ⊂⊂ O is a ball and

(5.5)
v ∈ Ls(B), Lv ∈ H−1,σ(B), for all s ∈

[
1,

n

n− 1

)
,

and some σ ∈
(
1,

n

n− 1

)
,

then

(5.6) v ∈ H1,σ(BR/2(p)).

Let us note that the analysis in §4 made direct use of (5.3), but not of the stronger
hypothesis (5.2) (except to invoke it in the statement of Proposition 4.7). Hence
one has the conclusion of Theorem 1.2 whenever one has (5.3) and the implication
(5.5) ⇒ (5.6).

To proceed, assume v satisfies (5.5) and take φ ∈ C∞
0 (B) so that φ = 1 on

BR/2(p). Then

(5.7) L(φv) = φLv + (Lφ)v + 2
∑
j,k

(∂jφ)a
jk(∂kv).
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The hypotheses on v in (5.5) imply (Lφ)v ∈ Ls(B) and, given (5.3),

(5.8)
∑
j,k

(∂jφ)a
jk(∂kv) ∈ H1,r ·H−1,s = H−1,s,

provided s = ρ′, n < ρ ≤ r, i.e., provided r′ ≤ s < n/(n − 1), which, by (5.5), we
can take to be the case. We deduce that

(5.9) φv ∈ Ls(B), L(φv) ∈ H−1,σ(B).

In order to establish (5.6), we need only show that (5.9) ⇒ φv ∈ H1,σ(B).
Note that this reduction involved the hypothesis (5.3), but not (5.2). In conclu-

sion, it suffices to prove the following global regularity result:

(5.10) v ∈ Ls(Tn), Lv ∈ H−1,σ(Tn) =⇒ v ∈ H1,σ(Tn),

where we form the flat torus Tn by putting B2R(p) in a box and identifying opposite
faces.

Now, if we set

(5.11)

A = (1−∆)1/2, Rj = A−1∂j , w = Av,

B = A−1LA−1 =
∑
j,k

Rja
jkRk,

our task is to show that

(5.12)
w ∈ H−1,s(Tn), ∀ s ∈

[
1,

n

n− 1

)
, Bw ∈ Lσ(Tn),

=⇒ w ∈ Lσ(Tn),

under the hypothesis (5.2).
The operators Rj are pseudodifferential operators, with symbols Rj(x, ξ) =

iξj⟨ξ⟩−1. The operators Aj =
∑

k a
jkRk are pseudodifferential operators with

symbols

(5.13) Aj(x, ξ) = i
∑
k

ajk(x)ξj⟨ξ⟩−1.

Generally, we say a function p(x, ξ) is a symbol in Sm
1,0 provided it is C∞ and

(5.10) |Dβ
xD

α
ξ p(x, ξ)| ≤ Cαβ⟨ξ⟩m−|α|, ∀α, β.

An operator with symbol in Sm
1,0 is said to belong to OPSm

1,0. Thus Rj ∈ OPS0
1,0.

To describe a smaller class, we say p(x, ξ) ∈ Sm
cl provided p(x, ξ) ∈ Sm

1,0 and we
have an asymptotic expansion

(5.14) p(x, ξ) ∼
∑
k≥0

pk(x, ξ),
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with pk(x, ξ) ∈ Sm−k
1,0 homogeneous of degree m− k in ξ, for |ξ| large. To say this

expansion is asymptotic is to say

(5.15) p(x, ξ)−
∑

0≤k<N

pk(x, ξ) ∈ Sm−N
1,0 , ∀N.

An operator with symbol in Sm
cl is said to belong to OPSm

cl . Thus

(5.16) Rj ∈ OPS0
cl.

The symbol Aj(x, ξ) in (5.13) does not fit into this framework unless ajk ∈ C∞.
Instead, we need to consider classes of symbols with limited regularity in x. If X
is a Banach space of functions, we say

(5.17) p(x, ξ) ∈ XSm
1,0 ⇐⇒ ∥Dα

ξ p(·, ξ)∥X ≤ Cα⟨ξ⟩m−|α|, ∀α.

Then we say p(x,D) ∈ OPXSm
1,0. Similarly we say p(x, ξ) ∈ XSm

cl (and p(x,D) ∈
OPXSm

cl ) provided p(x, ξ) ∈ XSm
1,0 and there is an asymptotic expansion of the

form (5.14) with pk(x, ξ) ∈ XSm−k
1,0 , homogeneous of degree m−k in ξ for |ξ| large,

and the difference in (5.15) belongs to XSm−N
1,0 . For Aj(x, ξ) as in (5.13), we have

(5.18) Aj(x, ξ) ∈ H1+ε,nS0
cl

if (5.2) holds, and

(5.19) Aj(x, ξ) ∈ H1,rS0
cl

if (5.3) holds. Another case of interest is

(5.20) ajk ∈ C1(Tn) =⇒ Aj(x, ξ) ∈ C1S0
cl.

Elliptic regularity results in this section will make use of pseudodifferential op-
erators with symbols in such classes, as well as further classes, defined below. We
start with regularity theorems that can be obtained from results on operators in
OPC1S0

cl, established in Chapter 4 of [T2], building on work in [Ca]. As a first
observation, one can use the expansion (4.1.2) of [T2] together with Calderón-
Zygmund theory to obtain that

(5.21)
p(x, ξ) ∈ C1S0

cl =⇒
p(x,D) : Hr,s(Tn) → Hr,s(Tn), ∀ r ∈ [−1, 1], s ∈ (1,∞).

We also have use for the following consequence of Proposition 4.2.A of [T2].
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Proposition 5.1. Let pj(x, ξ) ∈ C1S0
cl, and set

(5.22) q(x, ξ) = p1(x, ξ)p2(x, ξ).

Then q(x, ξ) ∈ C1S0
cl and

(5.23) p1(x,D)p2(x,D) = q(x,D) +R,

with

(5.24) R : Hr,s(Tn) → Hr+1,s(Tn), ∀ r ∈ [−1, 0], s ∈ (1,∞).

Let us apply this to the operator B of (5.11);

(5.25) B =
∑
j

RjAj(x,D),

with Aj(x, ξ) as in (5.13). We see that, with

(5.26) B̃(x, ξ) = −
∑
j,k

ajk(x)ξjξk⟨ξ⟩−2,

we have B̃(x,D) ∈ OPC1S0
cl and

(5.27) B − B̃(x,D) : Hr,s(Tn) → Hr+1,s(Tn), ∀ r ∈ [−1, 0], s ∈ (1,∞).

Now the ellipticity hypothesis (5.4) implies that

(5.28) E(x, ξ) = (1− φ(ξ))B̃(x, ξ)−1 ∈ C1S0
cl,

where φ ∈ C∞
0 (Rn) and φ(ξ) = 1 for |ξ| small. Thus another application of

Proposition 5.1 yields

(5.29) E(x,D)B̃(x,D)− I : Hr,s(Tn) → Hr+1,s(Tn), ∀ r ∈ [−1, 0], s ∈ (1,∞).

In conjunction with (5.27), this gives

(5.30) E(x,D)B − I : Hr.s(Tn) → Hr+1,s(Tn), ∀ r ∈ [−1, 0], s ∈ (1,∞).

This puts us in a position to prove the following global regularity result.
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Proposition 5.2. Take L and B as in (5.1) and (5.11). Assume the ellipticity
condition (5.4), and assume ajk ∈ C1(Tn). Then, for each s, σ ∈ (1,∞),

(5.31) w ∈ H−1,s(Tn), Bw ∈ Lσ(Tn) =⇒ w ∈ Lσ(Tn).

Proof. If w satisfies the hypotheses in (5.31), we apply (5.30) to get

(5.32)
w = E(x,D)Bw mod Ls(Tn)

∈ Lσ(Tn) + Ls(Tn).

If s ≥ σ, we have the conclusion in (5.31). If s < σ (and s < n) we have

(5.33) w ∈ Ls(Tn) ⊂ H−1,s1(Tn), s1 = s
n

n− s
,

by the Sobolev embedding result H1,s(Tn) ⊂ Lns/(n−s)(Tn). If s ≥ n, we have
w ∈ H−1,s1(Tn) for all s1 ∈ (1,∞). Now, the argument leading to (5.32) gives

(5.34) w ∈ Lσ(Tn) + Ls1(Tn).

Iterating this eventually gives w ∈ Lσ(Tn).

Translating back to the study of L, we have the following.

Corollary 5.3. In the setting of Proposition 5.2, for each s, σ ∈ (1,∞),

(5.35) v ∈ Ls(Tn), Lv ∈ H−1,σ(Tn) =⇒ v ∈ H1,σ(Tn).

Remark. If we use the hypothesis (5.5), we can arrange that s > σ, and skip the
second part of the proof of Proposition 5.2, but it is of natural interest to record
the sharper result here.

Note that if we replace the hypotheses in (5.35) by

(5.36) v ∈ Ls(B), Lv ∈ H−1,σ(B),

then, taking φ as in ((5.7), we have
∑

j,k(∂φ)a
jk(∂kv) ∈ H−1,s, given ajk ∈ C1,

hence φv ∈ Ls(B) and L(φv) ∈ H−1,σ(B), provided σ ≤ s. With this in hand, we
can prove the following.

Proposition 5.4. Take L as in (5.1), with ajk = akj ∈ C1(O), and assume the
ellipticity condition (5.4). Then, for σ, s ∈ (1,∞),

(5.37) v ∈ Ls
loc(O), Lv ∈ H−1,σ

loc (O) =⇒ v ∈ H1,σ
loc (O).

Proof. The localization described above, in conjunction with Corollary 5.3, yields
(5.37) provided σ ≤ s. If σ > s, we have v ∈ H1,s

loc (O), hence

(5.38) v ∈ Ls1
loc(O),

with s1 = ns/(n − s) if s < n, s1 = ∞ if s ≥ n. Replacing the first hypothesis on
v by this condition, and iterating the argument, as necessary, gives the conclusion.

We now take up the proof of (5.5) ⇒ (5.6), or rather the following refinement.
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Proposition 5.5. Take L as in (5.1). Assume the ellipticity condition (5.4), and
the regularity condition (5.2)–(5.3), i.e.,

(5.39) ajk ∈ H1+ε,n(Tn) ⊂ H1,r(Tn),

with ε > 0, r > n. Take

(5.40) s > r′.

Then, for σ ∈ (1,∞),

(5.41) v ∈ Ls(Tn), Lv ∈ H−1,σ(Tn) =⇒ v ∈ H1,σ(Tn).

We approach this with a sequence of reductions, starting with the following.

Lemma 5.6. To prove Proposition 5.5, it suffices to establish it for

(5.42) 1 < σ < 1 + γ,

for some γ > 0.

Proof. Indeed, suppose v ∈ Ls(Tn) and Lv ∈ H−1,τ (Tn), with τ ≥ 1 + γ. If we
have (5.41) for σ satisfying (5.42), we have v ∈ H1,σ(Tn). On the other hand, the
following implication holds, for 1 < σ < τ < ∞:

(5.43) v ∈ H1,σ(Tn), Lv ∈ H−1,τ (Tn) =⇒ v ∈ H1,τ (Tn).

In fact, this implication holds under the following much more general “regularity”
condition on the coefficients:

(5.44) ajk ∈ L∞ ∩ vmo(Tn).

See Proposition 1.10 in Chapter 3 of [T3]. This establishes the lemma.

For another reduction, let us take

(5.45) L1v =
∑
j,k

∂j(a
jk∂kv)− v,

so, manifestly, we have an isomorphism

(5.46) L1 : H1,2 ≈−→ H−1,2(Tn).

Suppose v satisfies the hypotheses of (5.41). Then

(5.47) L1v ∈ H−1,σ(Tn) + Ls(Tn) ⊂ H−1,σ(Tn),

if σ satisfies (5.42), since Ls(Tn) ⊂ H−1,σ(Tn) as long as (5.40) and (5.42) hold,
with γ taken small enough. Therefore, to prove Proposition 5.5, it suffices to prove
the following variant.
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Proposition 5.7. Take L and s as in Proposition 5.5 and L1 as in (5.45). Then,
for σ ∈ (1,∞),

(5.48) v ∈ Ls(Tn), L1v ∈ H−1,σ(Tn) =⇒ v ∈ H1,σ(Tn).

We can make a further reduction of this result, using the fact that, for such L1,
the isomorphism (5.46) generalizes to

(5.49) L1 : H1,σ(Tn)
≈−→ H−1,σ(Tn), ∀σ ∈ (1,∞).

In fact, this holds with the regularity hypothesis (5.39) replaced by (5.44). See
Proposition 1.9 in Chapter 3 of [T3]. When this holds and v satisfies the hypotheses
of (5.48), in particular L1v = f ∈ H1,σ(Tn), we can subtract off v1 ∈ H1,σ(Tn)
such that L1v1 = f , and reduce Proposition 5.7 to the following.

Lemma 5.8. Take L and s as in Proposition 5.5 and L1 as in (5.45). Assume

(5.50) v ∈ Ls(Tn), L1v = 0.

Then

(5.51) v ∈ H1,σ(Tn),

for some (hence each) σ ∈ (1,∞), hence v = 0.

Parallel to Proposition 5.2, we want to rephrase Lemma 5.8 in terms involving
a zero-order pseudodifferential operator, namely

(5.52) B1 = A−1L1A
−1 = B −A2.

The translated result becomes the following. For s as in (5.40),

(5.53) w ∈ H−1,s(Tn), B1w = 0

implies

(5.54) w ∈ Lσ(Tn),

for some σ ∈ (1,∞), hence each σ ∈ (1,∞). (And this in turn leads to w = 0.)

Remark. There is no harm in placing an upper bound on s, so we will strengthen
(5.40) to the hypothesis that

(5.55) r′ < s <
n

n− 1
.
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To tackle the demonstration that (5.53) ⇒ (5.54), we treat B1 as an elliptic
pseudodifferential operator with rough symbol, though the details are necessarily
different from those arising in the proof of Proposition 5.2. This time we have
(5.18), or, equally pertinent for current purposes,

(5.56) Aj(x, ξ) ∈ H1+ε,nS0
1,0.

We apply a “symbol smoothing” to write

(5.57) Aj(x, ξ) = A#
j (x, ξ) +Ab

j(x, ξ).

This process is described in §1.3 of [T2] and in §8 of Chapter 1 in [T3]. It follows
from Proposition 8.2 of the latter reference that we can pick δ ∈ (0, 1) (subject to
the condition (5.63) below), and achieve the decomposition (5.57), with

(5.58) A#
j (x, ξ) ∈ S0

1,δ,

and

(5.59) Ab
j(x, ξ) ∈ H1+ε,nS−εδ

1,δ .

Regarding the symbol classes arising in (5.58)–(5.59), for m ∈ R, δ ∈ [0, 1), we
say

(5.60) p(x, ξ) ∈ Sm
1,δ ⇐⇒ |Dβ

xD
α
ξ p(x, ξ)| ≤ Cαβ⟨ξ⟩m−|α|+δ|β|,

for all α, β. Such classes were introduced in classical work of Hörmander. Regarding
the operator class OPSm

1,δ, one has, for m ∈ R, δ ∈ [0, 1),

(5.61) p#(x, ξ) ∈ Sm
1,δ =⇒ p#(x,D) : Hs+m,p → Hs,p, ∀ s ∈ R, p ∈ (1,∞).

Also, OPSm
1,δ has a complete symbol calculus, reviewed in Chapter 0 of [T2].

Going further, we say

(5.62)
p(x, ξ) ∈ Hτ,qSm

1,δ ⇔ |Dα
ξ p(x, ξ)| ≤ Cα⟨ξ⟩m−|α|,

∥Dα
ξ p(·, ξ)∥Hτ,q ≤ Cα⟨ξ⟩m−|α|+δτ .

Here we take q ∈ (1,∞) and assume (1 − δ)τ > n/q, which in the setting (5.57)–
(5.59) requires

(5.63) (1− δ)(1 + ε) > 1.

This latter class of symbols was introduced in [Ma], which also established the
following Sobolev-space mapping properties (Theorem 2.2 of [Ma]):
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Proposition A. Given p(x, ξ) ∈ Hτ,qSm
1,δ, δ ∈ [0, 1), (1−δ)τ > n/q, q, p ∈ (1,∞),

s,m ∈ R, we have

(5.64) p(x,D) : Hs+m,p −→ Hs,p,

for

(5.65) n
(1
p
+

1

q
− 1

)+

− (1− δ)τ < s ≤ τ − n
(1
q
− 1

p

)+

.

In particular, if

(5.66) q ≥ p and q ≥ p′, i.e., q′ ≤ p ≤ q,

then (5.64) holds for

(5.67) −(1− δ)τ < s ≤ τ.

We will use symbol smoothing and Proposition A to prove the implication (5.53)
⇒ (5.54). Alternatively, at this point we could deduce this implication from The-
orem 9 of [Ma2]. However, showing that Theorem 9 applies would involve some of
the same steps as taken below, so we take this slightly longer path.

If we apply Proposition A to Ab
j(x, ξ), satisfying (5.59), then we would take

q = n, p = s, and the condition (5.66) would become

(5.68)
n

n− 1
≤ s ≤ n,

which is not consistent with our need to allow s < n/(n − 1). Thus we need to
refine our approach a bit.

To proceed, we refine the inclusion H1+ε,n ⊂ H1,r in (5.39) to

(5.69) H1+ε,n(Tn) ⊂ H1+γ,r(Tn), r > n, γ > 0.

Then we have

(5.70) Aj(x, ξ) ∈ H1+γ,rS0
1,0,

which leads to a decomposition of the form (5.57) with

(5.71) Ab
j(x, ξ) ∈ H1+γ,rS−µδ

1,δ , µ = 1 + γ − n

r
> γ.

The condition (1− δ)τ > n/q for applicability of Proposition A becomes

(5.72) (1− δ)(1 + γ) >
n

r
.



27

Given this, we can apply Proposition A to get

(5.73) Ab
j(x,D) : Hν−µδ,s(Tn) −→ Hν,s(Tn),

provided

(5.74) −(1− δ)(1 + γ) < ν ≤ 1 + γ,

assuming (per (5.66)) that

(5.75) r′ ≤ s ≤ r.

Since

(5.76) r > n =⇒ r′ <
n

n− 1
,

this allows applicability to s in the range (r′, n/(n− 1)).
Considering how we want to apply this result, we now see how to choose δ. We

choose δ > 0, depending on γ > 0, so that

(5.77) (1− δ)(1 + γ) > 1,

which in turn implies (5.72), and also implies that (5.73) holds for

(5.78) −1 ≤ ν < 1 + γ.

We now tackle the demonstration that (5.53) ⇒ (5.54). Write

(5.79) B1 = B#
1 +Bb

1,

with

(5.80) B#
1 =

∑
j

RjA
#
j (x,D) ∈ OPS0

1,δ, elliptic,

and

(5.81) Bb
1 =

∑
j

RjA
b
j(x,D) +A−2.

We have from (5.73)–(5.74) that

(5.82) Bb
1 : Hν−µδ,s(Tn) −→ Hν,s(Tn),

for ν in the range (5.78), s satisfying (5.75).
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Now take w satisfying (5.53), so

(5.83) w ∈ H−1,s(Tn) and B#
1 w = −Bb

1w.

Given (5.80), we can construct

(5.84) E# ∈ OPS0
1,δ such that E#B#

1 − I ∈ OPS−∞.

Thus (5.82) implies

(5.85) w = −E#Bb
1w, mod C∞(Tn).

From (5.82) we have

(5.86)

w ∈ H−1,s(Tn) ⇒ E#Bb
1w ∈ H−1+µδ,s(Tn)

⇒ w ∈ H−1+µδ,s(Tn) ⇒ E#Bb
1w ∈ H−1+2µδ,s(Tn)

⇒ · · ·
⇒ w ∈ H1,s(Tn),

for s satisfying (5.55). This is well more regularity than is needed for the conclusion
in (5.50), though of course it leads to the same ultimate conclusion, namely w = 0.

This completes the proof of Lemma 5.8, hence of Proposition 5.7, and therefore
of Theorem 1.2.
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