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This text was produced for the second part of a two-part sequence on advanced
calculus, whose aim is to provide a firm logical foundation for analysis, for students
who have had 3 semesters of calculus and a course in linear algebra. The first
part treats analysis in one variable, and the text Introduction to Analysis in One
Variable was written to cover that material. The text at hand treats analysis in
several variables. These two texts can be used as companions, but they are written
so that they can be used independently, if desired.

An introductory chapter treats background for multivariable calculus. This in-
cludes sections on one-variable calculus, on n-dimensional Euclidean space Rn, on
vector spaces and linear transformations, and on determinants. The text pro-
ceeds to material on analysis in several variables, from differential calculus to the
n-dimensional integral, to calculus on n-dimensional surfaces in Rk, and general-
izations known as manifolds.

Topics covered include systems of differential equations, and their relation to vec-
tor fields, differential forms, as a coordinate-independent way to set up integrals,
with numerous applications to such topics as holomorphic and harmonic functions,
and to topological implications, involving “degree theory.” We also study the geom-
etry of surfaces, from geodesics to curvature, relating the latter to degree theory via
Gauss-Bonnet theorems. A chapter on Fourier analysis treats both n-dimensional
Fourier series, the Fourier transform on Rn, and the theory of spherical harmonics
on n-dimensional spheres, as well as Fourier analysis on matrix groups. A final topic
in the appendix previews an extension of degree theory, known as de Rham theory.
Such topics spotlight the unity of the various analytical and geometric aspects of
Advanced Calculus.
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