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Introduction

These worksheets were produced as an aid for the study of Chapter 4, “Calculus”
(plus one section from Chapter 5) in the text for the course, Introduction to Analysis
in One Variable, by M. Taylor. They were designed so that each worksheet covers
the material of one lecture. Each worksheet deals with material in a designated
section of the text, and the idea is that a student can do the exercises in a worksheet,
in consultation with the text, and in that manner master the material in the text.

These worksheets were produced in response to the health crisis of 2020. They
are dated, to correspond to a class meeting three times a week. In addition to
the dated worksheets, there are three supplementary worksheets, covering material
that fills out the development of calculus.
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Worksheet 1, Monday, 03/23

§4.1, The Derivative (review)

1. Take f : [a, b] → R. Define what it means for f to be differentiable at x ∈ (a, b),
with derivative f ′(x).

2. State the product rule, and use it to show that

d

dx
xn = nxn−1, n ∈ N.

3. State the chain rule, and use it to show that

d

dx
f(x)n = nf(x)n−1f ′(x), n ∈ N.

4. State the Mean Value Theorem, and use it to show that, for f : [a, b] → R,

f ′(x) ≡ 0 =⇒ f constant.

What role does the notion of compactness play in the proof of the Mean Value
Theorem?

5. State the Inverse Function Theorem, and use it to show that

d

dx
x1/n =

1

n
x1/n−1, n ∈ N, x > 0.

6. Going further, show that

d

dx
xr = rxr−1, r ∈ Q, x > 0.
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Worksheet 2, Wednesday, 03/25

§4.2, The Integral (part 1)

1. Given f : [a, b] → R, define what it means for f to be Riemann integrable, i.e.,
f ∈ R([a, b]), and define ∫ b

a

f(x) dx,

for f ∈ R([a, b]).

2. What role does uniform continuity play in the proof that

f ∈ C([a, b]) =⇒ f ∈ R([a, b])?

3. State the Darboux theorem, and use it to show that∫ 1

0

(x2 − x) dx = lim
ν→∞

ν∑
k=1

(k2
ν2

− k

ν

)
· 1
ν
.

By the way, how do you know that f(x) = x2 − x is Riemann integrable?

4. Give an example of a bounded function f : [0, 1] → R that is not Riemann
integrable.

5. State the Fundamental Theorem of Calculus. This has two parts. Which part
makes use of the Mean Value Theorem?
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Worksheet 3, Friday, 03/27

§4.2, The Integral (part 2)

1. Given a set S ⊂ I = [a, b], define its outer measure,

m∗(S).

State the Riemann inegrability criterion, Proposition 4.2.12.
Show that

S countable =⇒ m∗(S) = 0.

2. Which of the following classes of functions f : I → R are contained in R(I)?
(a) f : I → R bounded, with at most countably many points of discontinuity,
(b) f : I → R bounded and monotone,
(c) f : I → R discontinuous at each point,
(d) f = gh, g, h ∈ R(I).

3. Let φ : [a, b] → [A,B] be C1 on a neighborhood of [a, b], with φ′(x) > 0 for
x ∈ [a, b]. Assume φ(a) = A, φ(b) = B. Show that the identity∫ B

A

f(y) dy =

∫ b

a

f(φ(t))φ′(t) dt

for each f ∈ C([A,B]), follows from the chain rule and the fundamental theorem
of calculus. This identity is called the change of variable formula for the integral.
Hint. Replace b by x, B by φ(x), and differentiate. Compare the proof of Theorem
4.2.7.

4. Show that, if f, g ∈ C1 on a neighborhood of [a, b], then∫ b

a

f(s)g′(s) ds = −
∫ b

a

f ′(s)g(s) ds+
[
f(b)g(b)− f(a)g(a)].

This transformation is called integration by parts.
Apply Theorem 4.2.7 to G(x) = f(x)g(x).
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Supplementary Worksheet A, Week ending 03/27

§4.2, Supplements on the integral

1. Use the fundamental theorem of calculus and results of Worksheet 1 to compute∫ b

a

xr dx, r ∈ Q \ {−1},

where −∞ < a < b < ∞ if r ∈ N and 0 < a < b < ∞ otherwise.

2. Use the change of variable formula to compute∫ 1

0

x
√

1 + x2 dx.

3. Use the change of variable formula to show that, for N > 0,∫ 2

1

x−1 dx =

∫ 2N

N

x−1 dx.

4. We say f ∈ R(R) provided f |[−k,k] ∈ R([−k, k]) for each k ∈ N and there exists
A < ∞ such that ∫ k

−k

|f(x)| dx ≤ A, ∀ k.

or equivalently, if and only if

∞∑
k=−∞

∫ k+1

k

|f(x)| dx < ∞.

If f ∈ R(R), we set ∫ ∞

−∞
f(x) dx = lim

k→∞

∫ k

−k

f(x) dx.

Formulate basic properties of the integral over R of elements of R(R), parallel to
properties of the integral over intervals [a, b] given in this section.
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Similarly define R(R+).

5. This exercise discusses the integral test for absolute convergence of an infinite
series, which goes as follows. Let f be a positive, monotonically decreasing, con-
tinuous function on [0,∞), and suppose |ak| = f(k). Then

∞∑
k=0

|ak| < ∞ ⇐⇒
∫ ∞

0

f(x) dx < ∞.

Prove this.
Hint. Use

∞∑
k=1

|ak| ≤
∫ ∞

0

f(x) dx ≤
∞∑
k=0

|ak|.

6. Use the integral test to show that, if p > 0,

∞∑
k=1

1

kp
< ∞ ⇐⇒ p > 1.

For now, take p ∈ Q+. Results of §4.5 allow one to take p ∈ R+.

Hint. Use Exercise 1 to evaluate IN (p) =
∫ N

1
x−p dx, for p ̸= −1, and let N → ∞.

See if you can show that
∫∞
1

x−1 dx = ∞ without knowing about logN , making
use of Exercise 3.
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Worksheet 4, Monday, 03/30

§4.3, Power series (part 1)

1. Given a power series

f(z) =

∞∑
k=0

ak(z − z0)
k,

with ak, z, z0 ∈ C,
(a) Define the radius of convergence R of this series.

For S > 0, set
DS(z0) = {z ∈ C : |z − z0| < S}.

(b) On what disks DS(z0) does the power series above converge uniformly?
(c) How does the result of (b) imply that f is continuous on DR(z0)?

2. In Exercise 1, take z0 = 0 and restrict attention to

f(t) =

∞∑
k=0

akt
k, t ∈ (−R,R).

Still allow ak ∈ C. What can you say about the derivative

f ′(t), t ∈ (−R,R)?

In particular, what power series is it given by? Discuss how to establish this by
integrating a power series

g(t) =
∞∑
k=0

bkt
k

term by term.

3. Give the power series for

f(t) =
1

1− t
, t ∈ (−1, 1),

and write down the power series for f ′(t).
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4. Write down the power series for

1

1 + t
,

1

1− t2
,

1

1 + t2
.

5. State the ratio test. Use it to find the radius of convergence of

e(t) =

∞∑
k=0

tk

k!
.

Find the power series of e′(t).

6. Extend the treatment of power series in Exercise 2 to

f(t) =
∞∑
k=0

ak(t− t0)
k, t ∈ (t0 −R, t0 +R).

Show that, if this holds, then

ak =
f (k)(t0)

k!
.
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Worksheet 5, Wednesday, 04/01

§4.3, Power series (part 2)

1. Taking
f(t) = (1− t)−r, t ∈ (−1, 1), r ∈ Q,

show that if f(t) is given by a convergent power series

∞∑
k=0

bkt
k,

then

bk =
1

k!
r(r + 1) · · · (r + k − 1).

Show that if

g(t) =
∞∑
k=0

bkt
k,

with bk given as above, then the ratio test implies this power series has radius of
convergence R = 1, so it converges for t ∈ (−1, 1).

2. Given f ∈ Cn+1((a, b)), y ∈ (a, b), write

f(x) = f(y) + f ′(y)(x− y) + · · ·+ f (n)(y)

n!
(x− y)n +Rn(x, y).

Apply d/dy to both sides, and observe massive cancellation, to deduce that

∂Rn

∂y
(x, y) = − 1

n!
f (n+1)(y)(x− y)n, Rn(x, x) = 0.

Observe in §4.3 of the text how applying the fundamental theorem of calculus yields

Rn(x, y) =
1

n!

∫ x

y

(x− s)nf (n+1)(s) ds.

This is called the integral formula for the remainder in the power series for f about
y.
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3. State the Cauchy formula and the Lagrange formula for the remainder Rn(x, y),
defined in Exercise 2.

(a) Which formula is shorter and neater?
(b) Which formula is more powerful?

4. Read the analysis in §4.3 of how one can use the Cauchy formula for the remain-
der to show that the power series produced in Exercise 1 above actually converges
to (1− t)−r, for t ∈ (−1, 1).

See also the last exercise at the end of §4.3 for an alternative approach, avoiding
remainder formulas.

5. Given the results of Exercises 1 and 4, produce power series for

1√
1− t

,
1√

1− t2
,

1√
1 + t

,
1√

1 + t2
, t ∈ (−1, 1).

Hint.

f(t) =
∞∑
k=0

bkt
k =⇒ f(t2) =

∞∑
k=0

bkt
2k.
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Worksheet 6, Friday, 04/03

§4.4, Curves and arc length

1. Let γ : I → Rn be a C1 curve, I = [a, b]. Write down the integral formula for
the length ℓ(γ) of this curve.

2. Suppose u : [α, β] → [a, b] is a C1 map with C1 inverse, and consider the curve

σ = γ ◦ u : [α, β] −→ Rn.

Write down the integral formula for ℓ(σ). Use the change of variable formula for
integrals to show that

ℓ(σ) = ℓ(γ).

We say that σ is a reparametrization of the curve γ.

3. We say that σ is a parametrization by arc length (or a unit speed parametriza-
tion) if

|σ′(t)| ≡ 1.

Discuss the reparametrization of a curve γ by arc length, when γ′ is nowhere vanish-
ing. Highlight the role of the Inverse Function Theorem in this reparametrization.

4. Consider the unit circle

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.

Show that the upper half of this circle is parametrized by

γ+ : (−1, 1) −→ R2, γ+(t) = (t,
√

1− t2).

If ℓ(t) denotes the length of the arc γ+([0, t]), show that

ℓ(t) =

∫ t

0

ds√
1− s2

, for 0 < t < 1.
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5. In the context of Exercise 4 above, make use of Exercise 5 in Worksheet 5 to
write ℓ(t) as a power series

ℓ(t) =
∞∑
k=0

ckt
k, 0 < t < 1.

Write down the coefficients ck.

6. Read the material in §4.4 regarding the unit speed parametrization of the circle
S1 given by

C(t) = (cos t, sin t), C(0) = (1, 0), C ′(0) = (0, 1).

Another approach to this, with deep connections to the exponential function, will
be explored in §4.5.
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Supplementary Worksheet B, Week ending 04/03

§4.4, Supplement on curves and arc length

Recall from Worksheet 6 the introduction of the trigonometric functions cos t and
sin t as providing a unit speed parametrization of the circle S1,

C(t) = (cos t, sin t), C(0) = (1, 0), C ′(0) = (0, 1).

1. Apply d/dt to the identity C(t) · C(t) ≡ 1 to get

C ′(t) · C(t) ≡ 0,

and review the argument in §4.4 leading to

C ′(t) = (− sin t, cos t).

Using this, compute the derivatives c(k)(t) and s(k)(t), where c(t) = cos t, s(t) =
sin t. Evaluate these at t = 0.

2. Using Exercise 1 above and Exercise 6 of Worksheet 4, show that if cos t and
sin t are given by power series, then

cos t =
∞∑
k=0

(−1)k

(2k)!
t2k, sin t =

∞∑
k=0

(−1)k

(2k + 1)!
t2k+1.

3. Define the “remainder terms” Cb
2n(t) and Sb

2n+1(t) by

cos t =
n∑

k=0

(−1)k

(2k)!
t2k + Cb

2n(t),

sin t =

n∑
k=0

(−1)k

(2k + 1)!
t2k+1 + Sb

2n+1(t).

Use the remainder formulas discussed in Exercises 2–3 of Worksheet 5 to show that

Cb
2n(t) = ± t2n+1

(2n+ 1)!
sin ξn,

Sb
2n+1(t) = ± t2n+2

(2n+ 2)!
sin ζn,
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for some ξn, ζn ∈ [−|t|, |t|]. Deduce that

Cb
2n(t), Sb

2n+1(t) −→ 0, as n → ∞,

uniformly for t in a bounded set. Deduce that cos t and sin t actually are given by
the power series in Exercise 2, for all t ∈ R.

Remark. A completely different approach to such results for cos t and sin t is given
in §4.5; see Worksheet 9. The approach there does not require the use of remainder
formulas.



16

Worksheet 7, Monday, 04/06
Review for Test, W 04/08

Covering §§4.1–4.4 and Selected Parts of Chapters 2–3

1. For x, y ∈ Rn,
(a) define the dot product, x · y,
(b) define the Euclidean norm |x|,
(c) state the triangle inequality,
(d) state Cauchy’s inequality. What is its relevance to the triangle inequality?

2. Define the following concepts:
(a) metric space,
(b) complete metric space,
(c) compact metric space.

3. Let X and Y be metric spaces, and assume X is compact. Take

f : X −→ Y, continuous.

(a) Show that f is uniformly continuous.
(b) Assume f is one-to-one and onto. Show that Y is compact and that

f−1 : Y −→ X is continuous.

4. State the Weierstass M -test, and apply it to

∞∑
k=1

zk

k2
, z ∈ D1(0) = {z ∈ C : |z| ≤ 1}.

5. Review Worksheets 1–6, for material on calculus.
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Worksheet 8, Monday, 04/13

§4.5, Exponential and trigonometric functions (part 1)

1. Use the ratio test to show that

ez =

∞∑
k=0

zk

k!

is absolutely convergent for all z ∈ C. We also denote the sum by exp(z). Deduce
that the series converges uniformly on each disk DR(0), and that exp : C → C is
continuous.

2. Differentiate

eat =
∞∑
k=0

ak

k!
tk

term by term and show that

d

dt
eat = aeat, t ∈ R, a ∈ C.

3. Use the product rule to compute

d

dt
eate−at,

d

dt

[
e(a+b)te−ate−bt

]
.

Show that

e−at =
1

eat
, e(a+b)t = eatebt, ∀ t ∈ R, a, b ∈ C.

4. Show that

et > 0,
d

dt
et > 0, ∀ t ∈ R,

and that
lim

t→+∞
et = +∞, lim

t→−∞
et = 0.

Deduce that
exp : R −→ (0,∞) is one-to-one and onto.
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Use the Inverse Function Theorem to deduce that it has an inverse

L : (0,∞) −→ R,

satisfying

L′(x) =
1

x
, ∀x > 0.

We denote this inverse by

log x = L(x), x > 0.

5. Use the fundamental theorem of calculus to show that

log x =

∫ x

1

dy

y
, x > 0,

hence

log(1 + x) =

∫ x

0

dt

1 + t
, x > −1.

Look at Exercise 4 of Worksheet 4 and integrate the power series for 1/(1+ t) term
by term to ontain a power series for log(1 + x), valid for x ∈ (−1, 1).

6. For x > 0 and r ∈ C, define
xr = er log x.

Show that
xr+s = xrxs, xnr = (xr)n = (xn)r,

for x > 0, r, s ∈ C, n ∈ Z, and that

d

dx
xr = rxr−1,

Show that the case r = 1/n of xr defined here, for n ∈ N, coincides with x1/n as it
arose in Worksheet 1. Also show that∫ x

1

yr−1 dy =
xr − 1

r
, if x > 0, r ̸= 0.

Pass to the limit r → 0 to recover the formula for log x in Exercise 5.
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Worksheet 9, Wednesday, 04/15

§4.5, Exponential and trigonometric functions (part 2)

1. Given z = x+ iy, x, y ∈ R, show that

|ez|2 = ezez = ez+z = e2x.

2. We aim to analyze the planar curve

γ(t) = eit, t ∈ R.

Show that
|γ(t)| = 1, ∀ t ∈ R,

and that
γ′(t) = ieit, hence |γ′(t)| = 1, ∀ t ∈ R.

Deduce that γ(t) is a unit speed parametrization of the unit circle S1 = {z ∈ C :
|z| = 1}, satisfying

γ(0) = 1, γ′(0) = i.

3. Deduce from the definitions of the trigonometric functions sin t and cos t that

eit = cos t+ i sin t.

This is called Euler’s formula.

4. Deduce from Euler’s formula that

d

dt
eit = ieit

implies
d

dt
cos t = − sin t,

d

dt
sin t = cos t,

and that
ei(s+t) = eiseit
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implies
cos(s+ t) = cos s cos t− sin s sin t,

sin(s+ t) = sin s cos t+ cos s sin t.

Deduce from Euler’s formula that

cos t =
1

2
(eit + e−it), sin t =

1

2i
(eit − e−it).

Also use Euler’s formula to give another derivation of the power series for cos t and
sin t presented in Exercise 2 of Supplementary Worksheet B.

5. Define π to be half the length of the unit circle, or equivalently the smallest
positive number such that

eπi = −1.

Show that

e2πi = 1, eπi/2 = i, eπi/4 =
1 + i√

2
,

eπi/3 =
1

2
+

√
3

2
i, eπi/6 =

√
3

2
+

i

2
.

6. Define the hyperbolic functions

coshu =
1

2
(eu + e−u), sinhu =

1

2
(eu − e−u).

Show that
d

du
coshu = sinhu,

d

du
sinhu = coshu,

and that
cosh2 u− sinh2 u = 1.

Show that
sinh : R −→ R

is one-to-one and onto. Denote its inverse by

sinh−1 : R −→ R.
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Worksheet 10, Friday, 04/17

§4.5, Exponential and trigonometric functions (part 3)

1. Show that
sin :

(
−π

2
,
π

2

)
−→ (−1, 1)

is one-to-one and onto. Denote its inverse by

sin−1 : (−1, 1) −→
(
−π

2
,
π

2

)
.

Making the change of variable s = sin t, show that∫ x

0

ds√
1− s2

= sin−1 x, for |x| < 1.

Deduce from Exercise 5 of Worksheet 9 that sin(π/6) = 1/2, and hence

π

6
=

∫ 1/2

0

ds√
1− s2

.

Referring to Exercises 4–5 of Worksheet 6, obtain from this a rapidly convergent
infinite series for π. Show that

π ≈ 3.1415926535 · · · .

2. Define

tan t =
sin t

cos t
, sec t =

1

cos t
,

for |t| < π/2. Show that

d

dt
tan t = sec2 t,

d

dt
sec t = sec t tan t,

and
1 + tan2 t = sec2 t.

3. Show that
tan :

(
−π

2
,
π

2

)
−→ R
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is one-to-one and onto. Denote its inverse by

tan−1 : R −→
(
−π

2
,
π

2

)
.

Making the change of variable s = tan t, show that∫ x

0

ds

1 + s2
= tan−1 x, x ∈ R.

Deduce from Exercise 6 of Worksheet 7 that tan(π/6) = 1/
√
3, and hence

π

6
=

∫ 1/
√
3

0

ds

1 + s2
.

Integrate the power series for 1/(1 + s2) (valid for |s| < 1) term by term to obtain
another rapidly convergent infinite series for π. With this in hand, again obtain an
approximation to π of the form indicated in Exercise 1.

For a numerical approximation of
√
3, one can use

√
3 =

√
4− 1 = 2

√
1− 1

4
, or

√
3 =

√
49

16
− 1

16
=

7

4

√
1− 1

49
,

and a power series expansion of (1− x)1/2, or Newton’s method, treated in §5.5.

4. In this exercise, we evaluate

I(u) =

∫ u

0

dv√
1 + v2

in two ways.
(a) Using v = sinh y, show that

I(u) = sinh−1 u.

(b) Using v = tan t, show that

I(u) =

∫ tan−1 u

0

sec t dt.

Deduce that ∫ x

0

sec t dt = sinh−1(tanx), for |x| < π

2
.
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Deduce from this that

cosh
(∫ x

0

sec t dt
)
= secx,

hence

exp
(∫ x

0

sec t dt
)
= secx+ tanx.

5. Parametrize the parabola y = x2/2 by

γ(v) = (v, v2/2),

and show that the length of the parabolic arc γ([0, u]) is given by

L(u) =

∫ u

0

√
1 + v2 dv.

Using v = sinh y, show that

L(u) =

∫ sinh−1 u

0

cosh2 y dy.

Show that 2 cosh2 y = 1 + cosh 2y, hence

2L(u) = sinh−1 u+
1

2
sinh 2(sinh−1 u).

Show that sinh 2y = 2 sinh y cosh y, hence

2L(u) = sinh−1 u+ u cosh(sinh−1 u)

= sinh−1 u+ u
√
1 + u2.

6. For the integral L(u) in Exercise 5, use v = tan t, to write

L(u) =

∫ x

0

sec3 t dt, u = tanx.

Deduce from Exercise 5 that

2

∫ x

0

sec3 t dt = sinh−1(tanx) + tanx
√

1 + tan2 x

= sinh−1(tanx) + secx tanx.
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Supplementary Worksheet C, Week ending 04/17

§4.6, Unbounded integrable functions

1. Given I = [a, b], f : I → R, define what it means for f to belong to R#(I), and
define ∫

I

f dx,

for f ∈ R#(I),
(a) first for f : I → R+,
(b) then for general f : I → R.

2. Let f : [0, 1] → R+ and assume f is continuous on (0, 1]. Show that

f ∈ R#([0, 1]) ⇐⇒
∫ 1

ε

f dx is bounded as ε ↘ 0.

In such a case, show that ∫ 1

0

f dx = lim
ε↘0

∫ 1

ε

f dx.

3. Let a > 0. Define pa : [0, 1] → R+ by pa(x) = x−a if 0 < x ≤ 1. Set pa(0) = 0.
Show that

pa ∈ R#([0, 1]) ⇐⇒ a < 1.

4. Compute ∫ 1

0

log t dt.

Hint. To compute
∫ 1

ε
log t dt, first compute

d

dt
(t log t).
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5. Given g(s) = 1/
√
1− s2, show that g ∈ R#([−1, 1]) and that∫ 1

−1

ds√
1− s2

= π.

Relate this to the arclength of the unit circle. See Worksheet 6, Exercise 4, and
Worksheet 10, Exercise 1.

6. Given f(t) = 1/
√

t(1− t), show that f ∈ R#([0, 1]) and that∫ 1

0

dt√
t(1− t)

= π.

Hint. Set t = s2.
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Worksheet 11, Monday, 04/20

§5.4, Fourier series (part 1)

1. Given f ∈ C(T1), or more generally f ∈ R(T1), k ∈ Z, define

f̂(k).

2. Define what it means to say
f ∈ A(T1).

3. Assuming
∞∑

k=−∞

|f̂(k)| < ∞,

set

g(θ) =
∞∑

k=−∞

f̂(k)eikθ.

Show that g ∈ C(T1) and

ĝ(k) = f̂(k), ∀ k ∈ Z.

4. Two forms of the Fourier inversion formula are given in Proposition 5.4.1 and
Proposition 5.4.5. State them.

5. Read the treatment of the Stone-Weierstrass theorem in §5.3 and describe how
it leads to the result that the set of finite linear combinations of

eikθ, k ∈ Z

is dense in C(T1). Describe how this result leads to the proof that

u ∈ C(T1), û(k) = 0 ∀ k =⇒ u = 0,
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and how this leads to a proof of Proposition 5.4.1, i.e., to the proof that

f = g,

given continuous f ∈ A(T1) and g as in Exercise 3.

6. Consider the function on T1 defined by

f(θ) = |θ|, −π ≤ θ ≤ π.

Compute f̂(k) for k ∈ Z and verify that f ∈ A(T1). Evaluate both sides of the
resulting Fourier inversion formula

f(θ) =

∞∑
k=−∞

f̂(k)eikθ

at θ = 0, and use the resulting identity to show that

∞∑
k=1

1

k2
=

π2

6
.
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Worksheet 12, Wednesday, 04/22

§5.4, Fourier series (part 2)

1. Two forms of the Plancherel identity

∑
k

|f̂(k)|2 =
1

2π

∫
T1

|f(θ)|2 dθ

are given, in Proposition 5.4.3 and Proposition 5.4.5. State them.

2. Consider the function f on T1 defined by

f(θ) = 0 for − π ≤ θ < 0,

1 for 0 ≤ θ < π.

Compute f̂(k) for each k ∈ Z. Evaluate the two sides of the Plancherel identity in
this case, and use this to give another proof that

∞∑
k=1

1

k2
=

π2

6
.

3. Record the Plancherel identity for the function f given by Exercise 6 of Work-
sheet 11. Use this to establish that

∞∑
k=1

1

k4
=

π4

90
.

4. Given f ∈ R(T1), N ∈ N, set

SNf(θ) =
∑

|k|≤N

f̂(k)eikθ.

Show that

SNf(θ) =

∫
T1

f(φ)DN (θ − φ) dφ,
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where

DN (θ) =
1

2π

N∑
k=−N

eikθ.

Write DN (θ) as (1/2π)e−iNθ times a geometric series, and sum the geometric series
to obtain

DN (θ) =
1

2π

sin(N + 1/2)θ

sin θ/2
.

5. Show that Proposition 5.4.10 implies

SNf(θ) −→ f(θ), as N → ∞,

for f as in Exercise 2, as long as

−π < θ < 0 or 0 < θ < π.

Take θ = π/2 and deduce from this the identity

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .
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Worksheet 13, Friday, 04/24

Review of Course

Task: make sure you are on top of each of the following topics.

1. Real numbers are defined as equivalence classes of Cauchy sequences of rational
numbers.

2. R,C, and Rn are complete metric spaces.
Nonempty, closed bounded subsets of R,C, and Rn are compact.
Intervals in R are connected.
Such phenomena are worthy of study on more general classes of metric spaces.

3. Continuous functions on a metric space X have a number of special properties:
Uniform continuity, maxima and minima achieved, etc., when X is compact.
Intermediate value theorem when X is connected.
Pathwise connected metric spaces are connected.

4. Uniform limits of continuous functions are continuous.

5. The Weierstrass M-test is a key result about infinite series of Rn-valued functions.
It gives a sufficient condition for uniform convergence.

6. Power series with radius of convergence R converge uniformly on DS(0) for each
S < R. The limit is continuous on DR(0).

7. And then there’s calculus! See Worksheets 1–12.


