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Preface

This is a text for students with a background in one-variable calculus, who are
ready to tackle calculus in several variables. It is designed for the honors section of
Math 233 at the University of North Carolina.

Chapter 1 presents a brisk review of the basics of calculus in one variable:
definitions and elementary properties of the derivative and integral, the fundamental
theorem of calculus, and power series. One might skim over this introductory
chapter to see if a refresher is needed for some of this material.

Multivariable calculus is done on multidimensional spaces. Chapter 2 intro-
duces algebraic tools useful for this study. We start with a section on n-dimensional
Euclidean space Rn, which has a linear structure, and also a geometric structure,
coming from a dot product. We then take up more general vector spaces, linear
transforms between them, matrix representations of such transformations, and de-
terminants of square matrices. This chapter concludes with a treatment of the cross
product on R3.

Chapter 3 studies curves in Euclidean spaces, i.e., functions γ : I → Rn, where
I is an interval in the real line. We derive a formula for the arclength of a C1 curve,
and discuss parametrizing the curve by arclength. Applying these considerations to
the unit circle centered at the origin in R2 gives rise to the trigonometric functions
cos t and sin t. In §3.2 we define the exponential function, first for real arguments
(et, t ∈ R) and then for complex arguments (ez, z ∈ C). An examination of the
planar curve γ(t) = eit shows that this is a unit speed parametrization of the unit
circle, leading to the Euler identity,

eit = cos t+ i sin t.

Sections 3.3–3.4 present results on curvature, first for planar curves and then for
curves in R3, where also the notion of torsion arises. Calculations of curves with
given curvature (and, in 3D, torsion) lead to an extension of the exponential func-
tion, the matrix exponential.

xi



xii Preface

Chapter 4 studies the derivative of functions of several variables. We define the
derivative of a function F : O → Rm, at a point x in an open set O ⊂ Rn, as a linear
map from Rn to Rm, relate it to partial derivatives, and establish basic properties,
such as the chain rule, for the derivative of a composite map G ◦ F . We consider
higher-order derivatives, and study power series for functions on a set O ⊂ Rn. We
also establish the inverse function theorem, stating that (when m = n) the map F
has a smooth inverse on a neighborhood of x provided its derivative DF (x) is an
invertible linear transformation on Rn (i.e., its determinant is not 0).

Chapter 5 develops integral calculus on domains S ⊂ Rn. We start with S =
R, an n-dimensional rectangle, and give a definition parallel to that of the one-
dimensional integral in §1.2. However, it is important to be able to integrate over
other sets, such as balls and other regions with curvy boundaries. We can take a
rectangle R containing S, and extend our function f from S to R by zero. This
operation makes it crucial that we be able to integrate discontinuous functions, and
the n-dimensional Riemann integral is up to the task. We show that a bounded
function on R is Riemann integrable provided its set of points of discontinuity
has negligible size, in an appropriate sense. Other important results covered in this
chapter include a change of variable formula for multiple integrals and the reduction
of multiple integrals to iterated integrals. We also treat integrals over all of Rn and
integrals of a class of unbounded functions.

Chapter 6 extends the calculus developed in the previous two chapters from
open sets in Euclidean space to smooth surfaces in Rn. These surfaces have coordi-
nate charts, used to perform differential and integral calculus. The inverse function
theorem from Chapter 4 and the change of variable formula for integrals established
in Chapter 5 play a crucial role in doing this analysis on surfaces. Applications in-
clude computation of areas of n-dimensional spheres, and integration over groups
of rotations in Rn (averaging over rotations). In §6.3 we derive important integral
identities known as theorems of Gauss, Green, and Stokes. In §6.4 we introduce a
class of objects more general than surfaces, called manifolds, on which to develop
differential and integral calculus.

This text concludes with several appendices, providing supplementary material
that the reader might find useful. Appendix A develops the real numbers, as ideal
limits of Cauchy sequences of rational numbers. It establishes key properties, such
as completeness of the real number line R and compactness of nonempty, closed,
bounded subsets of R, which lie behind many phenomena important for calculus,
such as existence of maxima and minima, and the intermediate value theorem. It
also presents some basic results on the set C of complex numbers.

Appendix B has some basic results on continuous functions, and on sequences
and series of such functions, including a sufficient condition for uniform convergence
of such a series, known as the Weierstrass M-test, useful for our treatment of power
series.

Appendix C has material on linear algebra, supplementing that presented in
Chapter 2. This includes a treatment of inner product spaces, of which Rn with the
dot product is the example in Chapter 2. It discusses eigenvalues and eigenvectors
of linear transformations on finite-dimensional vector spaces, of particular use in the
characterization of various types of critical points of a smooth, real-valued function
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on a region of Rn, in terms of its matrix of second-order partial derivatives. There is
a treatment of matrix norms, including the operator norm and the Hilbert-Schmidt
norm. This appendix also treats the matrix exponential, extending the treatment
of exponentials of complex numbers given in Chapter 3. This exponential is given
as an infinite series, and material on matrix norms plays a role in showing the series
converges.

Appendix D discusses functions f : O → C (with O open in C) that are C1

and complex differentiable, using Green’s theorem to establish results known as the
Cauchy integral theorem and the Cauchy integral formula, and a corollary known as
Liouville’s theorem. This appendix provides an introduction to the area of complex
analysis, which the reader can pursue further in other texts, such as [17]. One
application appears in the following appendix.

Appendix E treats the fundamental theorem of algebra, which says that each
nonconstant polynomial p(z) = anz

n+· · ·+a0, with coefficients aj ∈ C, vanishes for
some z ∈ C. Two proofs are given, one elementary, and the other using Liouville’s
theorem, established in §D.3.

We follow this introduction with a record of some standard notation that will
be used throughout this text.





Some basic notation

R is the set of real numbers.

C is the set of complex numbers.

Z is the set of integers.

Z+ is the set of integers ≥ 0.

N is the set of integers ≥ 1 (the “natural numbers”).

Q is the set of rational numbers.

x ∈ R means x is an element of R, i.e., x is a real number.

(a, b) denotes the set of x ∈ R such that a < x < b.

[a, b] denotes the set of x ∈ R such that a ≤ x ≤ b.

{x ∈ R : a ≤ x ≤ b} denotes the set of x in R such that a ≤ x ≤ b.

[a, b) = {x ∈ R : a ≤ x < b} and (a, b] = {x ∈ R : a < x ≤ b}.

z = x− iy if z = x+ iy ∈ C, x, y ∈ R.

xv



xvi Some basic notation

Ω denotes the closure of the set Ω.

f : A→ B denotes that the function f takes points in the set A to points
in B. One also says f maps A to B.

x→ x0 means the variable x tends to the limit x0.

f(x) = O(x) means f(x)/x is bounded. Similarly g(ε) = O(εk) means
g(ε)/εk is bounded.

f(x) = o(x) as x→ 0 (resp., x→ ∞) means f(x)/x→ 0 as x tends to the
specified limit.

S = sup
n

|an| means S is the smallest real number that satisfies S ≥ |an| for all n.

If there is no such real number then we take S = +∞.

lim sup
k→∞

|ak| = lim
n→∞

(
sup
k≥n

|ak|
)
.



Chapter 1

Basic one variable calculus

This first chapter provides a review of calculus for functions of one real variable.
Students with a solid background in one-variable calculus might skim this quickly,
to make sure they are familiar with the basic concepts. If there are any gaps, this
chapter is designed to fill them in.

Section 1.1 introduces the derivative, establishes basic identities like the prod-
uct rule and the chain rule, and also obtains some important theoretical results,
such as the Mean Value Theorem and the Inverse Function Theorem. One appli-
cation of the latter is the study of x1/n, for x > 0, which leads more generally to
xr, for x > 0 and r ∈ Q. (Extension to r ∈ R, and beyond, is given in §3.2.)

Section 1.2 brings in the integral, more precisely the Riemann integral. A major
result is the Fundamental Theorem of Calculus, whose proof makes essential use
of the Mean Value Theorem. Another topic is the change of variable formula for
integrals (treated in some exercises).

In §1.3 we treat power series. Topics include term by term differentiation of
power series, and formulas for the remainder when a power series is truncated. An
application of such remainder formulas is made to the study of convergence of the
power series about x = 0 of (1− x)b.

In §1.4 we give a natural extension of the Riemann integral from the class
of bounded (Riemann integrable) functions to a class of unbounded “integrable”
functions. The treatment here is perhaps a desirable alternative to discussions one
sees of “improper integrals.”

1



2 1. Basic one variable calculus

1.1. The derivative

Consider a function f , defined on an interval (a, b) ⊂ R, taking values in R or C.
Given x ∈ (a, b), we say f is differentiable at x, with derivative f ′(x), provided

(1.1.1) lim
h→0

f(x+ h)− f(x)

h
= f ′(x).

We also use the notation

(1.1.2)
df

dx
(x) = f ′(x).

A characterization equivalent to (1.1.1) is

(1.1.3) f(x+ h) = f(x) + f ′(x)h+ r(x, h), r(x, h) = o(h),

where

(1.1.4) r(x, h) = o(h) means
r(x, h)

h
→ 0 as h→ 0.

Clearly if f is differentiable at x then it is continuous at x. We say f is differentiable
on (a, b) provided it is differentiable at each point of (a, b). If also g is defined on
(a, b) and differentiable at x, we have

(1.1.5)
d

dx
(f + g)(x) = f ′(x) + g′(x).

We also have the following product rule:

(1.1.6)
d

dx
(fg)(x) = f ′(x)g(x) + f(x)g′(x).

To prove (1.1.6), note that

f(x+ h)g(x+ h)− f(x)g(x)

h

=
f(x+ h)− f(x)

h
g(x) + f(x+ h)

g(x+ h)− g(x)

h
.

We can use the product rule to show inductively that

(1.1.7)
d

dx
xn = nxn−1,

for all n ∈ N. In fact, this is immediate from (1.1.1) if n = 1. Given that it holds
for n = k, we have

d

dx
xk+1 =

d

dx
(xxk) =

dx

dx
xk + x

d

dx
xk

= xk + kxk

= (k + 1)xk,

completing the induction. We also have

1

h

( 1

x+ h
− 1

x

)
= − 1

x(x+ h)
→ − 1

x2
, as h→ 0,

for x ̸= 0, hence

(1.1.8)
d

dx

1

x
= − 1

x2
, if x ̸= 0.
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From here, we can extend (1.1.7) from n ∈ N to all n ∈ Z (requiring x ̸= 0 if n < 0).

A similar inductive argument yields

(1.1.9)
d

dx
f(x)n = nf(x)n−1f ′(x),

for n ∈ N, and more generally for n ∈ Z (requiring f(x) ̸= 0 if n < 0).

Going further, we have the following chain rule. Suppose f : (a, b) → (α, β) is
differentiable at x and g : (α, β) → R (or C) is differentiable at y = f(x). Form
G = g ◦ f , i.e., G(x) = g(f(x)). We claim

(1.1.10) G = g ◦ f =⇒ G′(x) = g′(f(x))f ′(x).

To see this, write

(1.1.11)

G(x+ h) = g(f(x+ h))

= g(f(x) + f ′(x)h+ rf (x, h))

= g(f(x)) + g′(f(x))(f ′(x)h+ rf (x, h))

+ rg(f(x), f
′(x)h+ rf (x, h)).

Here,

rf (x, h)

h
−→ 0 as h→ 0,

and also
rg(f(x), f

′(x)h+ rf (x, h))

h
−→ 0, as h→ 0,

so the analogue of (1.1.3) applies.

The derivative has the following important connection to maxima and minima.

Proposition 1.1.1. Let f : (a, b) → R. Suppose x ∈ (a, b) and

(1.1.12) f(x) ≥ f(y), ∀ y ∈ (a, b).

If f is differentiable at x, then f ′(x) = 0. The same conclusion holds if f(x) ≤ f(y)
for all y ∈ (a, b).

Proof. Given (1.1.12), we have

(1.1.13)
f(x+ h)− f(x)

h
≤ 0, ∀h ∈ (0, b− x),

and

(1.1.14)
f(x+ h)− f(x)

h
≥ 0, ∀h ∈ (a− x, 0).

If f is differentiable at x, both (1.1.13) and (1.1.14) must converge to f ′(x) as
h→ 0, so we simultaneously have f ′(x) ≤ 0 and f ′(x) ≥ 0. �

We next establish a key result known as the Mean Value Theorem. See Figure
1.1.1 for an illustration.
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Figure 1.1.1. Illustration of the Mean Value Theorem

Theorem 1.1.2. Let f : [a, b] → R. Assume f is continuous on [a, b] and differ-
entiable on (a, b). Then there exists ξ ∈ (a, b) such that

(1.1.15) f ′(ξ) =
f(b)− f(a)

b− a
.

Proof. Let g(x) = f(x)−κ(x−a), where κ denotes the right side of (1.1.15). Then
g(a) = g(b). The result (1.1.15) is equivalent to the assertion that

(1.1.16) g′(ξ) = 0

for some ξ ∈ (a, b). Now g is continuous on the compact set [a, b], so it assumes
both a maximum and a minimum on this set. If g has a maximum at a point
ξ ∈ (a, b), then (1.1.16) follows from Proposition 1.1.1. If not, the maximum must
be g(a) = g(b), and then g must assume a minimum at some point ξ ∈ (a, b). Again
Proposition 1.1.1 implies (1.1.16). �

We use the Mean Value Theorem to produce a criterion for constructing the
inverse of a function. Let

(1.1.17) f : [a, b] −→ R, f(a) = α, f(b) = β.

Assume f is continuous on [a, b], differentiable on (a, b), and

(1.1.18) 0 < γ0 ≤ f ′(x) ≤ γ1 <∞, ∀x ∈ (a, b).
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We can apply Theorem 1.1.2 to f , restricted ot the interval [x1, x2] ⊂ [a, b], to get

(1.1.19) γ0 ≤ f(x2)− f(x1)

x2 − x1
≤ γ1, if a ≤ x1 < x2 ≤ b,

or

(1.1.20) γ0(x2 − x1) ≤ f(x2)− f(x1) ≤ γ1(x2 − x1).

It follows that

(1.1.21) f : [a, b] −→ [α, β] is one-to-one.

The intermediate value theorem implies f : [a, b] → [α, β] is onto. Consequently f
has an inverse

(1.1.22) g : [α, β] −→ [a, b], g(f(x)) = x, f(g(y)) = y,

and (1.1.19) implies

(1.1.23)
1

γ1
≤ g(y2)− g(y1)

y2 − y1
≤ 1

γ0
, if α ≤ y1 < y2 ≤ β.

The following result is known as the Inverse Function Theorem.

Theorem 1.1.3. If f is continuous on [a, b] and differentiable on (a, b), and
(1.1.17)–(1.1.18) hold, then its inverse g : [α, β] → [a, b] is differentiable on (α, β),
and

(1.1.24) g′(y) =
1

f ′(x)
, for y = f(x) ∈ (α, β).

The same conclusion holds if in place of (1.1.18) we have

(1.1.25) −γ1 ≤ f ′(x) ≤ −γ0 < 0, ∀x ∈ (a, b),

except that then β < α.

Proof. Fix y ∈ (α, β), and let x = g(y), so y = f(x). To say that f is differentiable
at x is to say

(1.1.26) lim
ξ→x

f(x)− f(ξ)

x− ξ
= f ′(x).

Now take η = f(ξ), so ξ = g(η), and note from (1.1.19) that

(1.1.27) ξ → x⇐⇒ η → y.

Hence, by (1.1.18)–(1.1.19) and (1.1.23), we have

(1.1.28) lim
η→y

g(y)− g(η)

y − η
=

1

f ′(x)
,

which proves (1.1.24). �

Remark. If one knew that g were differentiable, as well as f , then the identity
(1.1.24) would follow by differentiating g(f(x)) = x, applying the chain rule. How-
ever, an additional argument, such as given above, is necessary to guarantee that
g is differentiable.



6 1. Basic one variable calculus

Theorem 1.1.3 applies to the functions

(1.1.29) pn(x) = xn, n ∈ N.
By (1.1.7), p′n(x) > 0 for x > 0, so (1.1.18) holds when 0 < a < b < ∞. We can
take a↘ 0 and b↗ ∞ and see that

(1.1.30) pn : (0,∞) −→ (0,∞) is invertible,

with differentiable inverse qn : (0,∞) → (0,∞). We use the notation

(1.1.31) x1/n = qn(x), x > 0,

so, given n ∈ N,
(1.1.32) x > 0 =⇒ x = x1/n · · ·x1/n, (n factors).

Given m ∈ Z, n ∈ N, we can set

(1.1.33) xm/n = (x1/n)m, x > 0,

and verify that (x1/kn)km = (x1/n)m for k ∈ N. Thus we have xr defined for all
r ∈ Q, when x > 0. We have

(1.1.34) xr+s = xrxs, for x > 0, r, s ∈ Q.
Applying (1.1.24) to f(x) = xn and g(y) = y1/n, we have

(1.1.35)
d

dy
y1/n =

1

nxn−1
, y = xn, x > 0.

Now xn−1 = y/x = y1−1/n, so we get

(1.1.36)
d

dy
yr = ryr−1, y > 0,

when r = 1/n. Putting this together with (1.1.9) (with m in place of n), we get
(1.1.36) for all r = m/n ∈ Q.

The definition of xr for x > 0 and the identity (1.1.36) can be extended to all
r ∈ R, with some more work. We will find a neat way to do this in §3.2.

We recall another common notation, namely

(1.1.37)
√
x = x1/2, x > 0.

Then (1.1.36) yields

(1.1.38)
d

dx

√
x =

1

2
√
x
.

In regard to this, note that, if we consider

(1.1.39)

√
x+ h−

√
x

h
,

we can multiply numerator and denominator by
√
x+ h+

√
x, to get

(1.1.40)
1√

x+ h+
√
x
,

whose convergence to the right side of (1.1.38) for x > 0 is equivalent to the
statement that

(1.1.41) lim
h→0

√
x+ h =

√
x,
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i.e., to the continuity of x 7→
√
x on (0,∞). Such continuity is a consequence of the

fact that, for 0 < a < b <∞, n = 2,

(1.1.42) pn : [a, b] −→ [an, bn]

is continuous, one-to-one, and onto, so, by the compactness of [a, b], its inverse is
continuous. Thus we have an alternative derivation of (1.1.38).

If I ⊂ R is an interval and f : I → R (or C), we say f ∈ C1(I) if f is
differentiable on I and f ′ is continuous on I. If f ′ is in turn differentiable, we have
the second derivative of f :

(1.1.43)
d2f

dx2
(x) = f ′′(x) =

d

dx
f ′(x).

If f ′ is differentiable on I and f ′′ is continuous on I, we say f ∈ C2(I). Inductively,
we can define higher order derivatives of f, f (k), also denoted dkf/dxk. Here,
f (1) = f ′, f (2) = f ′′, and if f (k) is differentiable,

(1.1.44) f (k+1)(x) =
d

dx
f (k)(x).

If f (k) is continuous on I, we say f ∈ Ck(I).

Sometimes we will run into functions of more than one variable, and will want
to differentiate with respect to each one of them. For example, if f(x, y) is defined
for (x, y) in an open set in R2, we define partial derivatives,

(1.1.45)

∂f

∂x
(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h
,

∂f

∂y
(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h
.

We will not need any more than the definition here. A serious study of the derivative
of a function of several variables is given in Chapter 4.

We end this section with some results on the significance of the second deriva-
tive.

Proposition 1.1.4. Assume f is differentiable on (a, b), x0 ∈ (a, b), and f ′(x0) =
0. Assume f ′ is differentiable at x0 and f ′′(x0) > 0. Then there exists δ > 0 such
that

(1.1.46) f(x0) < f(x) for all x ∈ (x0 − δ, x0 + δ) \ {x0}.
We say f has a local minimum at x0.

Proof. Since

(1.1.47) f ′′(x0) = lim
h→0

f ′(x0 + h)− f ′(x0)

h
,

the assertion that f ′′(x0) > 0 implies that there exists δ > 0 such that the right
side of (1.1.47) is > 0 for all nonzero h ∈ [−δ, δ]. Hence

(1.1.48)
−δ ≤ h < 0 =⇒ f ′(x0 + h) < 0,

0 < h ≤ δ =⇒ f ′(x0 + h) > 0.

This plus the mean value theorem imply (1.1.46). �
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Remark. Similarly,

(1.1.49) f ′′(x0) < 0 =⇒ f has a local maximum at x0.

These two facts constitute the second derivative test for local maxima and local
minima.

Let us now assume that f and f ′ are differentiable on (a, b), so f ′′ is defined
at each point of (a, b). Let us further assume

(1.1.50) f ′′(x) > 0, ∀x ∈ (a, b).

The mean value theorem, applied to f ′, yields

(1.1.51) a < x0 < x1 < b =⇒ f ′(x0) < f ′(x1).

Here is another interesting property.

Proposition 1.1.5. If (1.1.50) holds and a < x0 < x1 < b, then

(1.1.52) f(sx0 + (1− s)x1) < sf(x0) + (1− s)f(x1), ∀ s ∈ (0, 1).

Proof. For s ∈ [0, 1], set

(1.1.53) g(s) = sf(x0) + (1− s)f(x1)− f(sx0 + (1− s)x1).

The result (1.1.52) is equivalent to

(1.1.54) g(s) > 0 for 0 < s < 1.

Note that

(1.1.55) g(0) = g(1) = 0.

If (1.1.54) fails, g must assume a minimum at some point s0 ∈ (0, 1). At such a
point, g′(s0) = 0. A computation gives

g′(s) = f(x0)− f(x0)− (x0 − x1)f
′(sx0 + (1− s)x1),

and hence

(1.1.56) g′′(s) = −(x0 − x1)
2f ′′(sx0 + (1− s)x1).

Thus (1.1.50) ⇒ g′′(s0) < 0. Then (1.1.49) ⇒ g has a local maximum at s0. This
contradiction establishes (1.1.54), hence (1.1.52). �

Remark. The result (1.1.52) implies that, whenever a < x0 < x1 < b, the graph
of y = f(x) over [x0, x1] lies below the chord, i.e., the line segment from (x0, f(x0))
to (x1, f(x1)) in R2. We say f is convex.
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Exercises

For Exercises 1–3, compute the derivative of each of the following functions. Specify
where each of these derivatives are defined.
1.

√
1 + x2,

2. (x2 + x3)−4,

3.
√
1 + x2/(x2 + x3)4.

4. Let f : [0,∞) → R be a C2 function satisfying

(1.1.57) f(x) > 0, f ′(x) > 0, f ′′(x) < 0, for x > 0.

Show that

(1.1.58) x, y > 0 =⇒ f(x+ y) < f(x) + f(y).

5. Apply Exercise 4 to

(1.1.59) f(x) =
x

1 + x
.

Give a direct proof that (1.1.58) holds for f in (1.1.59), without using calculus.

6. If f : I → Rn, we define f ′(x) just as in (1.1.1). If f(x) = (f1(x), . . . , fn(x)),
then f is differentiable at x if and only if each component fj is, and

f ′(x) = (f ′1(x), . . . , f
′
n(x)).

Parallel to (1.1.6), show that if g : I → Rn, then the dot product satisfies

d

dx
f(x) · g(x) = f ′(x) · g(x) + f(x) · g′(x).

7. Establish the following variant of Proposition 1.1.5. Suppose (1.1.50) is weakened
to

(1.1.60) f ′′(x) ≥ 0, ∀x ∈ (a, b).

Show that, in place of (1.1.52), one has

(1.1.61) f(sx0 + (1− s)x1) ≤ sf(x0) + (1− s)f(x1), ∀ s ∈ (0, 1).

Hint. Consider fε(x) = f(x) + εx2.

8. The following is called the generalized mean value theorem. Let f and g be
continuous on [a, b] and differentiable on (a, b). Then there exists ξ ∈ (a, b) such
that

[f(b)− f(a)]g′(ξ) = [g(b)− g(a)]f ′(ξ).

Show that this follows from the mean value theorem, applied to

h(x) = [f(b)− f(a)]g(x)− [g(b)− g(a)]f(x).
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9. Take f : [a, b] → [α, β] and g : [α, β] → [a, b] as in the setting of the Inverse
Function Theorem, Theorem 1.3. Write (1.1.24) as

(1.1.62) g′(y) =
1

f ′(g(y))
, y ∈ (α, β).

Show that
f ∈ C1((a, b)) =⇒ g ∈ C1((α, β)),

i.e., the right side of (1.1.62) is continuous on (α, β). Show inductively that, for
k ∈ N,

f ∈ Ck((a, b)) =⇒ g ∈ Ck((α, β)).

Example. Show that if f ∈ C2((a, b)), then (having shown that g ∈ C1) the right
side of (1.1.62) is C1 and hence

g′′(y) = − 1

f ′(g(y))2
f ′′(g(y))g′(y).

10. Let I ⊂ R be an open interval and f : I → R differentiable. (Do not assume f ′

is continuous.) Assume a, b ∈ I, a < b, and

f ′(a) < u < f ′(b).

Show that there exists ξ ∈ (a, b) such that f ′(ξ) = u.
Hint. Reduce to the case u = 0, so f ′(a) < 0 < f ′(b). Show that then f |[a,b] has a
minimum at a point ξ ∈ (a, b).
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Figure 1.2.1. Upper and lower sums associated to a partition

1.2. The integral

In this section, we introduce the Riemann version of the integral, and relate it to
the derivative. We will define the Riemann integral of a bounded function over an
interval I = [a, b] on the real line. For now, we assume f is real valued. To start,
we partition I into smaller intervals. A partition P of I is a finite collection of
subintervals {Jk : 0 ≤ k ≤ N}, disjoint except for their endpoints, whose union is
I. We can order the Jk so that Jk = [xk, xk+1], where

(1.2.1) x0 < x1 < · · · < xN < xN+1, x0 = a, xN+1 = b.

We call the points xk the endpoints of P. We set

(1.2.2) ℓ(Jk) = xk+1 − xk, maxsize (P) = max
0≤k≤N

ℓ(Jk)

We then set

(1.2.3)

IP(f) =
∑
k

sup
Jk

f(x) ℓ(Jk),

IP(f) =
∑
k

inf
Jk

f(x) ℓ(Jk).

Here,

sup
Jk

f(x) = sup f(Jk), inf
Jk

f(x) = inf f(Jk),
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Figure 1.2.2. Two partitions, Pj , of I and a common refinement, Q ≻ Pj

and we note that if S ⊂ R is bounded, sup S and inf S are defined in §A.2;
cf. (A.2.38) and (A.2.51). We call IP(f) and IP(f) respectively the upper sum
and lower sum of f , associated to the partition P. See Figure 1.2.1 for an illustra-
tion. Note that IP(f) ≤ IP(f). These quantities should approximate the Riemann
integral of f, if the partition P is sufficiently “fine.”

To be more precise, if P and Q are two partitions of I, we say Q refines P,
and write Q ≻ P, if Q is formed by partitioning each interval in P. Equivalently,
Q ≻ P if and only if all the endpoints of P are also endpoints of Q. It is easy to
see that any two partitions have a common refinement; just take the union of their
endpoints, to form a new partition. See Figure 1.2.2. Note also that refining a
partition lowers the upper sum of f and raises its lower sum:

(1.2.4) Q ≻ P =⇒ IQ(f) ≤ IP(f), and IQ(f) ≥ IP(f).

Consequently, if Pj are any two partitions and Q is a common refinement, we have

(1.2.5) IP1
(f) ≤ IQ(f) ≤ IQ(f) ≤ IP2

(f).

Now, whenever f : I → R is bounded, the following quantities are well defined:

(1.2.6) I(f) = inf
P∈Π(I)

IP(f), I(f) = sup
P∈Π(I)

IP(f),

where Π(I) is the set of all partitions of I. We call I(f) the lower integral of f
and I(f) its upper integral. Clearly, by (1.2.5), I(f) ≤ I(f). We then say that f is
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Riemann integrable provided I(f) = I(f), and in such a case, we set

(1.2.7)

∫ b

a

f(x) dx =

∫
I

f(x) dx = I(f) = I(f).

We will denote the set of Riemann integrable functions on I by R(I).

We derive some basic properties of the Riemann integral.

Proposition 1.2.1. If f, g ∈ R(I), then f + g ∈ R(I), and

(1.2.8)

∫
I

(f + g) dx =

∫
I

f dx+

∫
I

g dx.

Proof. If Jk is any subinterval of I, then

sup
Jk

(f + g) ≤ sup
Jk

f + sup
Jk

g, and inf
Jk

(f + g) ≥ inf
Jk

f + inf
Jk

g,

so, for any partition P, we have IP(f + g) ≤ IP(f) + IP(g). Also, using common
refinements, we can simultaneously approximate I(f) and I(g) by IP(f) and IP(g),
and ditto for I(f + g). Thus the characterization (1.2.6) implies I(f + g) ≤ I(f) +
I(g). A parallel argument implies I(f + g) ≥ I(f) + I(g), and the proposition
follows. �

Next, there is a fair supply of Riemann integrable functions.

Proposition 1.2.2. If f is continuous on I, then f is Riemann integrable.

Proof. Any continuous function on a compact interval is bounded and uniformly
continuous (see Propositions A.3.5 and B.1.3). Let ω(δ) be a modulus of continuity
for f, so

(1.2.9) |x− y| ≤ δ =⇒ |f(x)− f(y)| ≤ ω(δ), ω(δ) → 0 as δ → 0.

Then

(1.2.10) maxsize (P) ≤ δ =⇒ IP(f)− IP(f) ≤ ω(δ) · ℓ(I),

which yields the proposition. �

We denote the set of continuous functions on I by C(I). Thus Proposition 1.2.2
says

C(I) ⊂ R(I).

The proof of Proposition 1.2.2 provides a criterion on a partition guaranteeing
that IP(f) and IP(f) are close to

∫
I
f dx when f is continuous. We produce an

extension, giving a condition under which IP(f) and I(f) are close, and IP(f) and
I(f) are close, given f bounded on I. Given a partition P0 of I, set

(1.2.11) minsize(P0) = min{ℓ(Jk) : Jk ∈ P0}.
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Lemma 1.2.3. Let P and Q be two partitions of I. Assume

(1.2.12) maxsize(P) ≤ 1

k
minsize(Q).

Let |f | ≤M on I. Then

(1.2.13)
IP(f) ≤ IQ(f) +

2M

k
ℓ(I),

IP(f) ≥ IQ(f)−
2M

k
ℓ(I).

Proof. Let P1 denote the minimal common refinement of P and Q. Consider on
the one hand those intervals in P that are contained in intervals in Q and on the
other hand those intervals in P that are not contained in intervals in Q. Each
interval of the first type is also an interval in P1. Each interval of the second type
gets partitioned, to yield two intervals in P1. Denote by Pb

1 the collection of such
divided intervals. By (1.2.12), the lengths of the intervals in Pb

1 sum to ≤ ℓ(I)/k.
It follows that

|IP(f)− IP1
(f)| ≤

∑
J∈Pb

1

2Mℓ(J) ≤ 2M
ℓ(I)

k
,

and similarly |IP(f)− IP1
(f)| ≤ 2Mℓ(I)/k. Therefore

IP(f) ≤ IP1
(f) +

2M

k
ℓ(I), IP(f) ≥ IP1

(f)− 2M

k
ℓ(I).

Since also IP1(f) ≤ IQ(f) and IP1
(f) ≥ IQ(f), we obtain (1.2.13). �

The following consequence is sometimes called Darboux’s Theorem.

Theorem 1.2.4. Let Pν be a sequence of partitions of I into ν intervals Jνk, 1 ≤
k ≤ ν, such that

maxsize(Pν) −→ 0.

If f : I → R is bounded, then

(1.2.14) IPν (f) → I(f) and IPν
(f) → I(f).

Consequently,

(1.2.15) f ∈ R(I) ⇐⇒ I(f) = lim
ν→∞

ν∑
k=1

f(ξνk)ℓ(Jνk),

for arbitrary ξνk ∈ Jνk, in which case the limit is
∫
I
f dx.

Proof. As before, assume |f | ≤M . Pick ε > 0. Let Q be a partition such that

I(f) ≤ IQ(f) ≤ I(f) + ε,

I(f) ≥ IQ(f) ≥ I(f)− ε.

Now pick N such that

ν ≥ N =⇒ maxsizePν ≤ εminsizeQ.
Lemma 2.3 yields, for ν ≥ N ,

IPν
(f) ≤ IQ(f) + 2Mℓ(I)ε,

IPν
(f) ≥ IQ(f)− 2Mℓ(I)ε.
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Hence, for ν ≥ N ,

I(f) ≤ IPν
(f) ≤ I(f) + [2Mℓ(I) + 1]ε,

I(f) ≥ IPν
(f) ≥ I(f)− [2Mℓ(I) + 1]ε.

This proves (1.2.14). �

Remark. The sums on the right side of (1.2.15) are called Riemann sums, approx-
imating

∫
I
f dx (when f is Riemann integrable).

Remark. A second proof of Proposition 1.2.1 can readily be deduced from Theorem
1.2.4.

One should be warned that, once such a specific choice of Pν and ξνk has been
made, the limit on the right side of (1.2.15) might exist for a bounded function f
that is not Riemann integrable. This and other phenomena are illustrated by the
following example of a function which is not Riemann integrable. For x ∈ I, set

(1.2.16) ϑ(x) = 1 if x ∈ Q, ϑ(x) = 0 if x /∈ Q,

where Q is the set of rational numbers. Now every interval J ⊂ I of positive length
contains points in Q and points not in Q, so for any partition P of I we have
IP(ϑ) = ℓ(I) and IP(ϑ) = 0, hence

(1.2.17) I(ϑ) = ℓ(I), I(ϑ) = 0.

Note that, if Pν is a partition of I into ν equal subintervals, then we could pick
each ξνk to be rational, in which case the limit on the right side of (1.2.15) would
be ℓ(I), or we could pick each ξνk to be irrational, in which case this limit would
be zero. Alternatively, we could pick half of them to be rational and half to be
irrational, and the limit would be 1

2ℓ(I).

Associated to the Riemann integral is a notion of size of a set S, called content.
If S is a subset of I, define the “characteristic function”

(1.2.18) χS(x) = 1 if x ∈ S, 0 if x /∈ S.

We define “upper content” cont+ and “lower content” cont− by

(1.2.19) cont+(S) = I(χS), cont−(S) = I(χS).

We say S “has content,” or “is contented” if these quantities are equal, which
happens if and only if χS ∈ R(I), in which case the common value of cont+(S) and
cont−(S) is

(1.2.20) m(S) =

∫
I

χS(x) dx.

It is easy to see that

(1.2.21) cont+(S) = inf
{ N∑
k=1

ℓ(Jk) : S ⊂ J1 ∪ · · · ∪ JN
}
,
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where Jk are intervals. Here, we require S to be in the union of a finite collection
of intervals.

There is a more sophisticated notion of the size of a subset of I, called Lebesgue
measure. The key to the construction of Lebesgue measure is to cover a set S by a
countable (either finite or infinite) set of intervals. The outer measure of S ⊂ I is
defined by

(1.2.22) m∗(S) = inf
{∑
k≥1

ℓ(Jk) : S ⊂
∪
k≥1

Jk

}
.

Here {Jk} is a finite or countably infinite collection of intervals. Clearly

(1.2.23) m∗(S) ≤ cont+(S).

Note that, if S = I ∩ Q, then χS = ϑ, defined by (1.2.16). In this case it is easy
to see that cont+(S) = ℓ(I), but m∗(S) = 0. In fact, (1.2.22) readily yields the
following:

(1.2.24) S countable =⇒ m∗(S) = 0.

We point out that we can require the intervals Jk in (1.2.22) to be open. Conse-
quently, since each open cover of a compact set has a finite subcover,

(1.2.25) S compact =⇒ m∗(S) = cont+(S).

See the material at the end of this section for a generalization of Proposition
1.2.2, giving a sufficient condition for a bounded function to be Riemann integrable
on I, in terms of the upper content of its set of discontinuities, in Proposition
1.2.11, and then, in Proposition 1.2.12, a refinement, replacing upper content by
outer measure.

It is useful to note that
∫
I
f dx is additive in I, in the following sense.

Proposition 1.2.5. If a < b < c, f : [a, c] → R, f1 = f
∣∣
[a,b]

, f2 = f
∣∣
[b,c]

, then

(1.2.26) f ∈ R
(
[a, c]

)
⇐⇒ f1 ∈ R

(
[a, b]

)
and f2 ∈ R

(
[b, c]

)
,

and, if this holds,

(1.2.27)

∫ c

a

f dx =

∫ b

a

f1 dx+

∫ c

b

f2 dx.

Proof. Since any partition of [a, c] has a refinement for which b is an endpoint, we
may as well consider a partition P = P1 ∪ P2, where P1 is a partition of [a, b] and
P2 is a partition of [b, c]. Then

(1.2.28) IP(f) = IP1
(f1) + IP2

(f2), IP(f) = IP1
(f1) + IP2

(f2),

so

(1.2.29) IP(f)− IP(f) =
{
IP1(f1)− IP1

(f1)
}
+
{
IP2(f2)− IP2

(f2)
}
.

Since both terms in braces in (1.2.29) are ≥ 0, we have equivalence in (1.2.26). Then
(1.2.27) follows from (1.2.28) upon taking finer and finer partitions, and passing to
the limit. �
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Let I = [a, b]. If f ∈ R(I), then f ∈ R([a, x]) for all x ∈ [a, b], and we can
consider the function

(1.2.30) g(x) =

∫ x

a

f(t) dt.

If a ≤ x0 ≤ x1 ≤ b, then

(1.2.31) g(x1)− g(x0) =

∫ x1

x0

f(t) dt,

so, if |f | ≤M,

(1.2.32) |g(x1)− g(x0)| ≤M |x1 − x0|.
In other words, if f ∈ R(I), then g is Lipschitz continuous on I.

Recall from §1.1 that a function g : (a, b) → R is said to be differentiable at
x ∈ (a, b) provided there exists the limit

(1.2.33) lim
h→0

1

h

[
g(x+ h)− g(x)

]
= g′(x).

When such a limit exists, g′(x), also denoted dg/dx, is called the derivative of g at
x. Clearly g is continuous wherever it is differentiable.

The next result is part of the Fundamental Theorem of Calculus.

Theorem 1.2.6. If f ∈ C([a, b]), then the function g, defined by (1.2.30), is dif-
ferentiable at each point x ∈ (a, b), and

(1.2.34) g′(x) = f(x).

Proof. Parallel to (1.2.31), we have, for h > 0,

(1.2.35)
1

h

[
g(x+ h)− g(x)

]
=

1

h

∫ x+h

x

f(t) dt.

If f is continuous at x, then, for any ε > 0, there exists δ > 0 such that |f(t) −
f(x)| ≤ ε whenever |t − x| ≤ δ. Thus the right side of (1.2.35) is within ε of f(x)
whenever h ∈ (0, δ]. Thus the desired limit exists as h ↘ 0. A similar argument
treats h↗ 0. �

The next result is the rest of the Fundamental Theorem of Calculus.

Theorem 1.2.7. If G is differentiable and G′(x) is continuous on [a, b], then

(1.2.36)

∫ b

a

G′(t) dt = G(b)−G(a).

Proof. Consider the function

(1.2.37) g(x) =

∫ x

a

G′(t) dt.

We have g ∈ C([a, b]), g(a) = 0, and, by Theorem 1.2.6,

(1.2.38) g′(x) = G′(x), ∀ x ∈ (a, b).

Thus f(x) = g(x)−G(x) is continuous on [a, b], and

(1.2.39) f ′(x) = 0, ∀ x ∈ (a, b).
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We claim that (1.2.39) implies f is constant on [a, b]. Granted this, since f(a) =
g(a) − G(a) = −G(a), we have f(x) = −G(a) for all x ∈ [a, b], so the integral
(1.2.37) is equal to G(x)−G(a) for all x ∈ [a, b]. Taking x = b yields (1.2.36). �

The fact that (1.2.39) implies f is constant on [a, b] is a consequence of the
Mean Value Theorem. This was established in §1.1; see Theorem 1.1.2. We repeat
the statement here.

Theorem 1.2.8. Let f : [a, β] → R be continuous, and assume f is differentiable
on (a, β). Then ∃ ξ ∈ (a, β) such that

(1.2.40) f ′(ξ) =
f(β)− f(a)

β − a
.

Now, to see that (1.2.39) implies f is constant on [a, b], if not, ∃ β ∈ (a, b] such
that f(β) ̸= f(a). Then just apply Theorem 1.2.8 to f on [a, β]. This completes the
proof of Theorem 1.2.7.

We now extend Theorems 1.2.6–1.2.7 to the setting of Riemann integrable
functions.

Proposition 1.2.9. Let f ∈ R([a, b]), and define g by (1.2.28). If x ∈ [a, b] and f
is continuous at x, then g is differentiable at x, and g′(x) = f(x).

The proof is identical to that of Theorem 1.2.6.

Proposition 1.2.10. Assume G is differentiable on [a, b] and G′ ∈ R([a, b]). Then
(1.2.36) holds.

Proof. We have

(1.2.41)

G(b)−G(a) =

n−1∑
k=0

[
G
(
a+ (b− a)

k + 1

n

)
−G

(
a+ (b− a)

k

n

)]
=
b− a

n

n−1∑
k=0

G′(ξkn),

for some ξkn satisfying

(1.2.42) a+ (b− a)
k

n
< ξkn < a+ (b− a)

k + 1

n
,

as a consequence of the Mean Value Theorem. Given G′ ∈ R([a, b]), Darboux’s

theorem (Theorem 1.2.4) implies that as n→ ∞ one gets G(b)−G(a) =
∫ b

a
G′(t) dt.

�

Note that the beautiful symmetry in Theorems 1.2.6–1.2.7 is not preserved in
Propositions 1.2.9–1.2.10. The hypothesis of Proposition 1.2.10 requires G to be
differentiable at each x ∈ [a, b], but the conclusion of Proposition 1.2.9 does not yield
differentiability at all points. For this reason, we regard Propositions 1.2.9–1.2.10
as less “fundamental” than Theorems 1.2.6–1.2.7. There are more satisfactory
extensions of the fundamental theorem of calculus, involving the Lebesgue integral,
and a more subtle notion of the “derivative” of a non-smooth function. For this,
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we can point the reader to Chapters 10-11 of the text [14], Measure Theory and
Integration.

So far, we have dealt with integration of real valued functions. If f : I → C,
we set f = f1 + if2 with fj : I → R and say f ∈ R(I) if and only if f1 and f2 are
in R(I). Then

(1.2.43)

∫
I

f dx =

∫
I

f1 dx+ i

∫
I

f2 dx.

There are straightforward extensions of Propositions 1.2.5–1.2.10 to complex valued
functions. Similar comments apply to functions f : I → Rn.

Complementary results on Riemann integrability

Here we provide a condition, more general then Proposition 1.2.2, which guar-
antees Riemann integrability.

Proposition 1.2.11. Let f : I → R be a bounded function, with I = [a, b]. Suppose
that the set S of points of discontinuity of f has the property

(1.2.44) cont+(S) = 0.

Then f ∈ R(I).

Proof. Say |f(x)| ≤M . Take ε > 0. As in (1.2.21), take intervals J1, . . . , JN such

that S ⊂ J1 ∪ · · · ∪ JN and
∑N

k=1 ℓ(Jk) < ε. In fact, fatten each Jk such that S is
contained in the interior of this collection of intervals. Consider a partition P0 of
I, whose intervals include J1, . . . , JN , amongst others, which we label I1, . . . , IK .
Now f is continuous on each interval Iν , so, subdividing each Iν as necessary, hence
refining P0 to a partition P1, we arrange that sup f − inf f < ε on each such
subdivided interval. Denote these subdivided intervals I ′1, . . . , I

′
L. It readily follows

that

(1.2.45)
0 ≤ IP1

(f)− IP1
(f) <

N∑
k=1

2Mℓ(Jk) +

L∑
k=1

εℓ(I ′k)

< 2εM + εℓ(I).

Since ε can be taken arbitrarily small, this establishes that f ∈ R(I). �

With a little more effort, we can establish the following result, which, in light
of (1.2.23), is a bit sharper than Proposition 1.2.11.

Proposition 1.2.12. In the setting of Proposition 1.2.11, if we replace (1.2.44) by

(1.2.46) m∗(S) = 0,

we still conclude that f ∈ R(I).
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Proof. As before, we assume |f(x)| ≤ M and pick ε > 0. This time, take a
countable collection of open intervals {Jk} such that S ⊂ ∪k≥1Jk and

∑
k≥1 ℓ(Jk) <

ε. Now f is continuous at each p ∈ I \ S, so there exists an interval Kp, open (in
I), containing p, such that supKp

f − infKp
f < ε. Now {Jk : k ∈ N} ∪ {Kp :

p ∈ I \ S} is an open cover of I, so it has a finite subcover, which we denote
{J1, . . . , JN ,K1, . . . ,KM}. We have

(1.2.47)

N∑
k=1

ℓ(Jk) < ε, and sup
Kj

f − inf
Kj

f < ε, ∀ j ∈ {1, . . . ,M}.

Let P be the partition of I obtained by taking the union of all the endpoints of Jk
and Kj in (1.2.47). Let us write

P = {Lk : 0 ≤ k ≤ µ}

=
(∪
k∈A

Lk

)
∪
(∪
k∈B

Lk

)
,

where we say k ∈ A provided Lk is contained in an interval of the form Kj for
some j ∈ {1, . . . ,M}, as in (1.2.47). Consequently, if k ∈ B, then Lk ⊂ Jℓ for some
ℓ ∈ {1, . . . , N}, so

(1.2.48)
∪
k∈B

Lk ⊂
N∪
ℓ=1

Jℓ.

We therefore have

(1.2.49)
∑
k∈B

ℓ(Lk) < ε, and sup
Lj

f − inf
Lj

f < ε, ∀ j ∈ A.

It follows that

(1.2.50)
0 ≤ IP(f)− IP(f) <

∑
k∈B

2Mℓ(Lk) +
∑
j∈A

εℓ(Lj)

< 2εM + εℓ(I).

Since ε can be taken arbitrarily small, this establishes that f ∈ R(I). �

Remark. Proposition 1.2.12 is part of the sharp result that a bounded function
f on I = [a, b] is Riemann integrable if and only if its set S of points of disconti-
nuity satisfies (1.2.46). Standard books on measure theory, including [7] and [14],
establish this.

We give an example of a function to which Proposition 1.2.11 applies, and
then an example for which Proposition 1.2.11 fails to apply, but Proposition 1.2.12
applies.

Example 1. Let I = [0, 1]. Define f : I → R by

(1.2.51)
f(0) = 0,

f(x) = (−1)j for x ∈ (2−(j+1), 2−j ], j ≥ 0.
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Then |f | ≤ 1 and the set of points of discontinuity of f is

(1.2.52) S = {0} ∪ {2−j : j ≥ 1}.

It is easy to see that cont+ S = 0. Hence f ∈ R(I).

See Exercises 16-17 below for a more elaborate example to which Proposition 1.2.11
applies.

Example 2. Again I = [0, 1]. Define f : I → R by

(1.2.53)

f(x) = 0 if x /∈ Q,
1

n
if x =

m

n
, in lowest terms.

Then |f | ≤ 1 and the set of points of discontinuity of f is

(1.2.54) S = I ∩Q.

As we have seen below (1.2.23), cont+ S = 1, so Proposition 1.2.11 does not apply.
Nevertheless, it is fairly easy to see directly that

(1.2.55) I(f) = I(f) = 0, so f ∈ R(I).

In fact, given ε > 0, f ≥ ε only on a finite set, hence

(1.2.56) I(f) ≤ ε, ∀ ε > 0.

As indicated below (1.2.23), (1.2.46) does apply to this function, so Proposition
1.2.12 applies. Example 2 is illustrative of the following general phenomenon, which
is worth recording.

Corollary 1.2.13. If f : I → R is bounded and its set S of points of discontinuity
is countable, then f ∈ R(I).

Proof. By virtue of (1.2.24), Proposition 1.2.12 applies. �

Here is another useful sufficient condition condition for Riemann integrability.

Proposition 1.2.14. If f : I → R is bounded and monotone, then f ∈ R(I).

Proof. It suffices to consider the case that f is monotone increasing. Let PN =
{Jk : 1 ≤ k ≤ N} be the partition of I into N intervals of equal length. Note that
supJk

f ≤ infJk+1
f . Hence

(1.2.57)
IPN

(f) ≤
N−1∑
k=1

( inf
Jk+1

f)ℓ(Jk) + (sup
JN

f)ℓ(JN )

≤ IPN
(f) + 2M

ℓ(I)

N
,

if |f | ≤ M . Taking N → ∞, we deduce from Theorem 1.2.4 that I(f) ≤ I(f),
which proves f ∈ R(I). �
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Remark. It can be shown that if f is monotone, then its set of points of disconti-
nuity is countable. Given this, Proposition 1.2.14 is also a consequence of Corollary
1.2.13.

By contrast, the function ϑ in (1.2.16) is discontinuous at each point of I.

We mention some alternative characterizations of I(f) and I(f), which can be
useful. Given I = [a, b], we say g : I → R is piecewise constant on I (and write
g ∈ PK(I)) provided there exists a partition P = {Jk} of I such that g is constant
on the interior of each interval Jk. Clearly PK(I) ⊂ R(I). It is easy to see that, if
f : I → R is bounded,

(1.2.58)

I(f) = inf
{∫

I

f1 dx : f1 ∈ PK(I), f1 ≥ f
}
,

I(f) = sup
{∫

I

f0 dx : f0 ∈ PK(I), f0 ≤ f
}
.

Hence, given f : I → R bounded,

(1.2.59)

f ∈ R(I) ⇔ for each ε > 0, ∃f0, f1 ∈ PK(I) such that

f0 ≤ f ≤ f1 and

∫
I

(f1 − f0) dx < ε.

This can be used to prove

(1.2.60) f, g ∈ R(I) =⇒ fg ∈ R(I),

via the fact that

(1.2.61) fj , gj ∈ PK(I) =⇒ fjgj ∈ PK(I).

In fact, we have the following, which can be used to prove (1.2.60), based on
the identity

2fg = (f + g)2 − f2 − g2.

Proposition 1.2.15. Let f ∈ R(I), and assume |f | ≤M . Let

φ : [−M,M ] → R

be continuous. Then φ ◦ f ∈ R(I).

Proof. We proceed in steps.

Step 1. We can obtain φ as a uniform limit on [−M,M ] of a sequence φν of
continuous, piecewise linear functions. Then φν ◦ f → φ ◦ f uniformly on I. A
uniform limit g of functions gν ∈ R(I) is in R(I) (see Exercise 9). So it suffices to
prove Proposition 1.2.15 when φ is continuous and piecewise linear.

Step 2. Given φ : [−M,M ] → R continuous and piecewise linear, it is an exercise
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to write φ = φ1−φ2, with φj : [−M,M ] → R monotone, continuous, and piecewise
linear. Now φ1 ◦ f, φ2 ◦ f ∈ R(I) ⇒ φ ◦ f ∈ R(I).

Step 3. We now demonstrate Proposition 1.2.15 when φ : [−M,M ] → R is
monotone and Lipschitz. By Step 2, this will suffice. So we assume

−M ≤ x1 < x2 ≤M =⇒ φ(x1) ≤ φ(x2) and φ(x2)− φ(x1) ≤ L(x2 − x1),

for some L <∞. Given ε > 0, pick f0, f1 ∈ PK(I), as in (2.59). Then

φ ◦ f0, φ ◦ f1 ∈ PK(I), φ ◦ f0 ≤ φ ◦ f ≤ φ ◦ f1,

and ∫
I

(φ ◦ f1 − φ ◦ f0) dx ≤ L

∫
I

(f1 − f0) dx ≤ Lε.

This proves φ ◦ f ∈ R(I). �

For another characterization of R(I), we can deduce from (1.2.58) that, if
f : I → R is bounded,

(1.2.62)

I(f) = inf
{∫

I

φ1 dx : φ1 ∈ C(I), φ1 ≥ f
}
,

I(f) = sup
{∫

I

φ0 dx : φ0 ∈ C(I), φ0 ≤ f
}
,

and this leads to the following variant of (1.2.59).

Proposition 1.2.16. Given f : I → R bounded, f ∈ R(I) if and only if for each
ε > 0, there exist φ0, φ1 ∈ C(I) such that

(1.2.63) φ0 ≤ f ≤ φ1, and

∫
I

(φ1 − φ0) dx < ε.

Exercises

1. Let c > 0 and let f : [ac, bc] → R be Riemann integrable. Working directly with
the definition of integral, show that

(1.2.64)

∫ b

a

f(cx) dx =
1

c

∫ bc

ac

f(x) dx.

More generally, show that

(1.2.65)

∫ b−d/c

a−d/c

f(cx+ d) dx =
1

c

∫ bc

ac

f(x) dx.

2. Let f : I × S → R be continuous, where I = [a, b] and S ⊂ Rn. Take φ(y) =
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∫
I
f(x, y) dx. Show that φ is continuous on S.

Hint. If fj : I → R are continuous and |f1(x)− f2(x)| ≤ δ on I, then

(1.2.66)
∣∣∣∫
I

f1 dx−
∫
I

f2 dx
∣∣∣ ≤ ℓ(I)δ.

3. With f as in Exercise 2, suppose gj : S → R are continuous and a ≤ g0(y) <

g1(y) ≤ b. Take φ(y) =
∫ g1(y)

g0(y)
f(x, y) dx. Show that φ is continuous on S.

Hint. Make a change of variables, linear in x, to reduce this to Exercise 2.

4. Let φ : [a, b] → [A,B] be C1 on a neighborhood J of [a, b], with φ′(x) > 0 for all
x ∈ [a, b]. Assume φ(a) = A, φ(b) = B. Show that the identity

(1.2.67)

∫ B

A

f(y) dy =

∫ b

a

f
(
φ(t)

)
φ′(t) dt,

for any f ∈ C([A,B]), follows from the chain rule and the Fundamental Theorem
of Calculus. The identity (1.2.67) is called the change of variable formula for the
integral.
Hint. Replace b by x, B by φ(x), and differentiate.

Going further, using (1.2.62)–(1.2.63), show that f ∈ R([A,B]) ⇒ f ◦φ ∈ R([a, b])
and (1.2.67) holds. (This result contains that of Exercise 1.)

5. Show that, if f and g are C1 on a neighborhood of [a, b], then

(1.2.68)

∫ b

a

f(s)g′(s) ds = −
∫ b

a

f ′(s)g(s) ds+
[
f(b)g(b)− f(a)g(a)

]
.

This transformation of integrals is called “integration by parts.”

6. Let f : (−a, a) → R be a Cj+1 function. Show that, for x ∈ (−a, a),

(1.2.69) f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 + · · ·+ f (j)(0)

j!
xj +Rj(x),

where

(1.2.70) Rj(x) =

∫ x

0

(x− s)j

j!
f (j+1)(s) ds

This is Taylor’s formula with remainder.
Hint. Use induction. If (1.2.69)–(1.2.70) holds for 0 ≤ j ≤ k, show that it holds
for j = k + 1, by showing that

(1.2.71)

∫ x

0

(x− s)k

k!
f (k+1)(s) ds =

f (k+1)(0)

(k + 1)!
xk+1 +

∫ x

0

(x− s)k+1

(k + 1)!
f (k+2)(s) ds.

To establish this, use the integration by parts formula (1.2.68), with f(s) replaced
by f (k+1)(s), and with appropriate g(s). Note that another presentation of (1.2.70)
is

(1.2.72) Rj(x) =
xj+1

(j + 1)!

∫ 1

0

f (j+1)
((

1− t1/(j+1)
)
x
)
dt.
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For another demonstration of (1.2.70), see the proof of Proposition 1.3.4.

7. Assume f : (−a, a) → R is a Cj function. Show that, for x ∈ (−a, a), (1.2.69)
holds, with

(1.2.73) Rj(x) =
1

(j − 1)!

∫ x

0

(x− s)j−1
[
f (j)(s)− f (j)(0)

]
ds.

Hint. Apply (1.2.70) with j replaced by j − 1. Add and subtract f (j)(0) to the
factor f (j)(s) in the resulting integrand.

8. Given I = [a, b], show that

(1.2.74) f, g ∈ R(I) =⇒ fg ∈ R(I),

as advertised in (1.2.60).

9. Assume fk ∈ R(I) and fk → f uniformly on I. Prove that f ∈ R(I) and

(1.2.75)

∫
I

fk dx −→
∫
I

f dx.

10. Given I = [a, b], Iε = [a+ ε, b− ε], assume fk ∈ R(I), |fk| ≤M on I for all k,
and

(1.2.76) fk −→ f uniformly on Iε,

for all ε ∈ (0, (b− a)/2). Prove that f ∈ R(I) and (1.2.75) holds.

11. Use the fundamental theorem of calculus and results of §1.1 to compute

(1.2.77)

∫ b

a

xr dx, r ∈ Q \ {−1},

where −∞ < a < b <∞ if r ∈ N and 0 < a < b <∞ if r /∈ N. See §3.2 for (1.2.77)
with r = −1 (and also for general r ∈ R, even r ∈ C).

12. Use the change of variable result of Exercise 4 to compute

(1.2.78)

∫ 1

0

x
√
1 + x2 dx.

13. We say f ∈ R(R) provided f |[k,k+1] ∈ R([k, k + 1]) for each k ∈ Z, and

(1.2.79)

∞∑
k=−∞

∫ k+1

k

|f(x)| dx <∞.

If f ∈ R(R), we set

(1.2.80)

∫ ∞

−∞
f(x) dx = lim

k→∞

∫ k

−k

f(x) dx.

Formulate and demonstrate basic properties of the integral over R of elements of
R(R).
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14. This exercise discusses the integral test for absolute convergence of an infi-
nite series, which goes as follows. Let f be a positive, monotonically decreasing,
continuous function on [0,∞), and suppose |ak| = f(k). Then

∞∑
k=0

|ak| <∞ ⇐⇒
∫ ∞

0

f(x) dx <∞.

Prove this.
Hint. Use

N∑
k=1

|ak| ≤
∫ N

0

f(x) dx ≤
N−1∑
k=0

|ak|.

15. Use the integral test to show that, if p > 0,

∞∑
k=1

1

kp
<∞ ⇐⇒ p > 1.

Note. Compare Exercise 7 in §A.2. (For now, p ∈ Q+. Results of §3.2 allow one

to take p ∈ R+.) Hint. Use Exercise 11 to evaluate IN (p) =
∫ N

1
x−p dx, for p ̸= −1,

and let N → ∞. See if you can show
∫∞
1
x−1 dx = ∞ without knowing about

logN . Subhint. Show that
∫ 2

1
x−1 dx =

∫ 2N

N
x−1 dx.

In Exercises 16–17, C ⊂ [a, b] is the Cantor set introduced in the exercises for §A.3.
As in (A.3.24), C = ∩j≥0Cj .

16. Show that cont+ Cj = (2/3)j(b− a), and conclude that

cont+ C = 0.

17. Define f : [a, b] → R as follows. We call an interval of length 3−j(b−a), omitted
in passing from Cj−1 to Cj , a “j-interval.” Set

f(x) = 0, if x ∈ C,
(−1)j , if x belongs to a j-interval.

Show that the set of discontinuities of f is C. Hence Proposition 1.2.11 implies
f ∈ R([a, b]).

18. Let fk ∈ R([a, b]) and f : [a, b] → R satisfy the following conditions.

(a) |fk| ≤M <∞, ∀ k,
(b) fk(x) −→ f(x), ∀x ∈ [a, b],

(c) Given ε > 0, there exists Sε ⊂ [a, b] such that

cont+ Sε < ε, and fk → f uniformly on [a, b] \ Sε.
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Show that f ∈ R([a, b]) and∫ b

a

fk(x) dx −→
∫ b

a

f(x) dx, as k → ∞.

Remark. In the Lebesgue theory of integration, there is a stronger result, known
as the Lebesgue dominated convergence theorem. See Exercises 12–14 in §1.4 for
more on this.

19. Recall that one ingredient in the proof of Theorem 1.2.7 was that if f : (a, b) →
R, then
(1.2.81) f ′(x) = 0 for all x ∈ (a, b) =⇒ f is constant on (a, b).

Consider the following approach to proving (1.2.81), which avoids use of the Mean
Value Theorem.
(a) Assume a < x0 < y0 < b and f(x0) ̸= f(y0). Say f(y0) = f(x0) + A(y0 − x0),
and we may as well assume A > 0.
(b) Divide I0 = [x0, y0] into two equal intervals, I0ℓ and I0r, meeting at the midpoint
ξ0 = (x0 + y0)/2. Show that either

f(ξ0) ≥ f(x0) +A(ξ0 − x0) or f(y0) ≥ f(ξ0) +A(y0 − ξ0).

Set I1 = I0ℓ if the former holds; otherwise, set I1 = I0r. Say I1 = [x1, y1].
(c) Inductively, having Ik = [xk, yk], of length 2−k(y0−x0), divide it into two equal
intervals, Ikℓ and Ikr, meeting at the midpoint ξk = (xk + yk)/2. Show that either

f(ξk) ≥ f(xk) +A(ξk − xk) or f(yk) ≥ f(ξk) +A(yk − ξk).

Set Ik+1 = Ikℓ if the former holds; otherwise set Ik+1 = Ikr.
(d) Show that

xk ↗ x, yk ↘ x, x ∈ [x0, y0],

and that, if f is differentiable at x, then f ′(x) ≥ A. Note that this contradicts the
hypothesis that f ′(x) = 0 for all x ∈ (a, b).



28 1. Basic one variable calculus

1.3. Power series

We consider power series, of the form

(1.3.1) f(z) =

∞∑
k=0

akz
k,

with ak ∈ C. We begin with the following result.

Proposition 1.3.1. If the series (1.3.1) converges for some z1 ̸= 0, then either
this series is absolutely convergent for all z ∈ C or there is some R ∈ (0,∞) such
that the series is absolutely convergent for |z| < R and divergent for |z| > R. The
series converges uniformly on

(1.3.2) DS = {z ∈ C : |z| < S},

for each S < R, and f is continuous on DR.

Proof. If (1.3.1) converges for z = z1 ̸= 0, then there exists C <∞ such that

(1.3.3) |akzk1 | ≤ C, ∀ k.

Hence, if |z| = r|z1|, r < 1, we have

(1.3.4)

∞∑
k=0

|akzk| ≤ C

∞∑
k=0

rk =
C

1− r
<∞,

the last identity being the classical geometric series computation. This yields the
first part of Proposition 1.3.1.

To proceed, say the series (1.3.1) converges for all |z| < R, defining f : DR → C.
Take S ∈ (0, R) and then pick T ∈ (S,R). We know there exists C <∞ such that
|akT k| ≤ C for all k. Hence

(1.3.5) z ∈ DS =⇒ |akzk| ≤ C
(S
T

)k
.

Since

(1.3.6)

∞∑
k=0

(S
T

)k
<∞,

the WeierstrassM -test (Proposition B.3.1) applies, to yield uniform convergence on
DS . This yields continuity of f on DS , for all S < R, hence continuity on DR. �

The quantity R described above is called the radius of convergence of the power
series (1.3.1). We now restrict attention to cases where z = t ∈ R, and apply
calculus to the study of such power series. We emphasize that we still allow the
coefficients ak to be complex numbers.

Proposition 1.3.2. Assume ak ∈ C and

(1.3.7) f(t) =

∞∑
k=0

akt
k
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converges for real t satisfying |t| < R. Then f is differentiable on the interval
−R < t < R, and its derivative is given by

(1.3.8) f ′(t) =

∞∑
k=1

kakt
k−1,

the latter series being absolutely convergent for |t| < R.

We first check absolute convergence of the series (1.3.8). Let S < T < R.
Convergence of (1.3.7) implies there exists C <∞ such that

(1.3.9) |ak|T k ≤ C, ∀ k.

Hence, if |t| ≤ S,

(1.3.10) |kaktk−1| ≤ C

S
k
(S
T

)k
,

which readily yields absolute convergence. (See Exercise 1 below.) Hence

(1.3.11) g(t) =

∞∑
k=1

kakt
k−1

is continuous on (−R,R). To show that f ′(t) = g(t), by the fundamental theorem
of calculus, it is equivalent to show

(1.3.12)

∫ t

0

g(s) ds = f(t)− f(0).

The following result implies this.

Proposition 1.3.3. Assume bk ∈ C and

(1.3.13) g(t) =

∞∑
k=0

bkt
k

converges for real t, satisfying |t| < R. Then, for |t| < R,

(1.3.14)

∫ t

0

g(s) ds =

∞∑
k=0

bk
k + 1

tk+1,

the series being absolutely convergent for |t| < R.

Proof. Since, for |t| < R,

(1.3.15)
∣∣∣ bk
k + 1

tk+1
∣∣∣ ≤ R|bktk|,

convergence of the series in (1.3.14) is clear. Next, write

(1.3.16)

g(t) = SN (t) +RN (t),

SN (t) =

N∑
k=0

bkt
k, RN (t) =

∞∑
k=N+1

bkt
k.
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To continue, as in the proof of Proposition 1.3.1, pick S < T < R. There exists
C <∞ such that |bkT k| ≤ C for all k. Hence

(1.3.17) |t| ≤ S ⇒ |RN (t)| ≤ C

∞∑
k=N+1

(S
T

)k
= CεN → 0, as N → ∞.

so

(1.3.18)

∫ t

0

g(s) ds =

N∑
k=0

bk
k + 1

tk+1 +

∫ t

0

RN (s) ds,

and, for |t| ≤ S,

(1.3.19)
∣∣∣∫ t

0

RN (s) ds
∣∣∣ ≤ ∫ t

0

|RN (s)| ds ≤ CRεN .

This gives (1.3.14). �

Remark. The definition of (1.3.14) for t < 0 follows standard convention. More
generally, if a < b and g ∈ R([a, b]), then∫ a

b

g(s) ds = −
∫ b

a

g(s) ds.

More generally, if we have a power series about t0,

(1.3.20) f(t) =

∞∑
k=0

ak(t− t0)
k, for |t− t0| < R,

then f is differentiable for |t− t0| < R and

(1.3.21) f ′(t) =

∞∑
k=1

kak(t− t0)
k−1.

We can then differentiate this power series, and inductively obtain

(1.3.22) f (n)(t) =

∞∑
k=n

k(k − 1) · · · (k − n+ 1)ak(t− t0)
k−n.

In particular,

(1.3.23) f (n)(t0) = n! an.

We can turn (1.3.23) around and write

(1.3.24) an =
f (n)(t0)

n!
.

This suggests the following method of taking a given function and deriving a power
series representation. Namely, if we can, we compute f (k)(t0) and propose that

(1.3.25) f(t) =

∞∑
k=0

f (k)(t0)

k!
(t− t0)

k,

at least on some interval about t0.
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To take an example, consider

(1.3.26) f(t) = (1− t)−r,

with r ∈ Q (but −r /∈ N), and take t0 = 0. (Results of §3.2 will allow us to extend
this analysis to r ∈ R.) Using (1.1.36), we get

(1.3.27) f ′(t) = r(1− t)−(r+1),

for t < 1. Inductively, for k ∈ N,

(1.3.28) f (k)(t) = r(r + 1) · · · (r + k − 1) (1− t)−(r+k).

Hence, for k ≥ 1,

(1.3.29) f (k)(0) = r(r + 1) · · · (r + k − 1) =

k−1∏
ℓ=0

(r + ℓ).

Consequently, we propose that

(1.3.30) (1− t)−r =

∞∑
k=0

ak
k!
tk, |t| < 1,

with

(1.3.31) a0 = 1, ak =

k−1∏
ℓ=0

(r + ℓ), for k ≥ 1.

We can verify convergence of the right side of (1.3.30) by using the ratio test:

(1.3.32)
∣∣∣ak+1t

k+1/(k + 1)!

aktk/k!

∣∣∣ = k + r

k + 1
|t|.

This computation implies that the power series on the right side of (1.3.30) is
absolutely convergent for |t| < 1, yielding a function

(1.3.33) g(t) =

∞∑
k=0

ak
k!
tk, |t| < 1.

It remains to establish that g(t) = (1− t)−r.

We take up this task, on a more general level. Establishing that the series

(1.3.34)

∞∑
k=0

f (k)(t0)

k!
(t− t0)

k

converges to f(t) is equivalent to examining the remainder Rn(t, t0) in the finite
expansion

(1.3.35) f(t) =

n∑
k=0

f (k)(t0)

k!
(t− t0)

k +Rn(t, t0).

The series (1.3.34) converges to f(t) if and only if Rn(t, t0) → 0 as n→ ∞. To see
when this happens, we need a compact formula for the remainder Rn, which we
proceed to derive.
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It seems to clarify matters if we switch notation a bit, and write

(1.3.36) f(x) = f(y) + f ′(y)(x− y) + · · ·+ f (n)(y)

n!
(x− y)n +Rn(x, y).

We now take the y-derivative of each side of (1.3.36). The y-derivative of the left
side is 0, and when we apply ∂/∂y to the right side, we observe an enormous amount
of cancellation. There results the identity

(1.3.37)
∂Rn

∂y
(x, y) = − 1

n!
f (n+1)(y)(x− y)n.

Also,

(1.3.38) Rn(x, x) = 0.

If we concentrate on Rn(x, y) as a function of y and look at the difference quotient
[Rn(x, y)−Rn(x, x)]/(y−x), an immediate consequence of the mean value theorem
is that, if f is real valued,

(1.3.39) Rn(x, y) =
1

n!
(x− y)(x− ξn)

nf (n+1)(ξn),

for some ξn betweeen x and y. This is known as Cauchy’s formula for the remain-
der. If f (n+1) is continuous, we can apply the fundamental theorem of calculus to
(1.3.37)–(1.3.38), and obtain the following integral formula for the remainder in the
power series.

Proposition 1.3.4. If I ⊂ R is an interval, x, y ∈ I, and f ∈ Cn+1(I), then the
remainder Rn(x, y) in (1.3.36) is given by

(1.3.40) Rn(x, y) =
1

n!

∫ x

y

(x− s)nf (n+1)(s) ds.

This works regardless of whether f is real valued. Another derivation of (1.3.40)
arose in the exercise set for §1.2. The change of variable x− s = t(x− y) gives the
integral formula

(1.3.41) Rn(x, y) =
1

n!
(x− y)n+1

∫ 1

0

tnf (n+1)(ty + (1− t)x) dt.

If we think of this integral as 1/(n + 1) times a weighted mean of f (n+1), we get
the Lagrange formula for the remainder,

(1.3.42) Rn(x, y) =
1

(n+ 1)!
(x− y)n+1f (n+1)(ζn),

for some ζn between x and y, provided f is real valued. The Lagrange formula is
shorter and neater than the Cauchy formula, but the Cauchy formula is actually
more powerful. The calculations in (1.3.45)–(1.3.56) below will illustrate this.

Note that, if I(x, y) denotes the interval with endpoints x and y (e.g., (x, y) if
x < y), then (1.3.40) implies

(1.3.43) |Rn(x, y)| ≤
|x− y|
n!

sup
ξ∈I(x,y)

|(x− ξ)nf (n+1)(ξ)|,
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while (1.3.41) implies

(1.3.44) |Rn(x, y)| ≤
|x− y|n+1

(n+ 1)!
sup

ξ∈I(x,y)

|f (n+1)(ξ)|.

In case f is real valued, (1.3.43) also follows from the Cauchy formula (1.3.39) and
(1.3.44) follows from the Lagrange formula (1.3.42).

Let us apply these estimates with f as in (1.3.26), i.e.,

(1.3.45) f(x) = (1− x)−r,

and y = 0. By (1.3.28),

(1.3.46) f (n+1)(ξ) = an+1(1− ξ)−(r+n+1), an+1 =

n∏
ℓ=0

(r + ℓ).

Consequently,

(1.3.47)
f (n+1)(ξ)

n!
= bn(1− ξ)−(r+n+1), bn =

an+1

n!
.

Note that

(1.3.48)
bn+1

bn
=
n+ 1 + r

n+ 1
→ 1, as n→ ∞.

Let us first investigate the estimate of Rn(x, 0) given by (1.3.44) (as in the
Lagrange formula), and see how it leads to a suboptimal conclusion. (The impa-
tient reader might skip (1.3.49)–(1.3.52) and go to (1.3.53).) By (1.3.47), if n is
sufficiently large that r + n+ 1 > 0,

(1.3.49)

sup
ξ∈I(x,0)

|f (n+1)(ξ)|
(n+ 1)!

=
|bn|
n+ 1

if − 1 ≤ x ≤ 0,

|bn|
n+ 1

(1− x)−(r+n+1) if 0 ≤ x < 1.

Thus (1.3.44) implies

(1.3.50)

|Rn(x, 0)| ≤
|bn|
n+ 1

|x|n+1 if − 1 ≤ x ≤ 0,

|bn|
n+ 1

1

(1− x)r

( x

1− x

)n+1

if 0 ≤ x < 1.

Note that, by (1.3.48),

cn =
|bn|
n+ 1

=⇒ cn+1

cn
=

|bn+1|
|bn|

n+ 1

n+ 2
→ 1 as n→ ∞,

so we conclude from the first part of (1.3.50) that

(1.3.51) Rn(x, 0) −→ 0 as n→ ∞, if − 1 < x ≤ 0.

On the other hand, x/(1 − x) is < 1 for 0 ≤ x < 1/2, but not for 1/2 ≤ x < 1.
Hence the factor (x/(1 − x))n+1 decreases geometrically for 0 ≤ x < 1/2, but not
for 1/2 ≤ x < 1. Thus the second part of (1.3.50) yields only

(1.3.52) Rn(x, 0) −→ 0 as n→ ∞, if 0 ≤ x <
1

2
.
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Figure 1.3.1. Power series approximations Sn(t) to
√
1− t, 1 ≤ n ≤ 10

This is what the remainder estimate (1.3.44) yields.

To get the stronger result

(1.3.53) Rn(x, 0) −→ 0 as n→ ∞, for |x| < 1,

we use the remainder estimate (1.3.43) (as in the Cauchy formula). This gives

(1.3.54) |Rn(x, 0)| ≤ |bn| · |x| sup
ξ∈I(x,0)

|x− ξ|n

|1− ξ|n+1+r
,

with bn as in (1.3.47). Now

(1.3.55)

0 ≤ ξ ≤ x < 1 =⇒ x− ξ

1− ξ
≤ x,

−1 < x ≤ ξ ≤ 0 =⇒
∣∣∣x− ξ

1− ξ

∣∣∣ ≤ |x− ξ| ≤ |x|.

The first conclusion holds since it is equivalent to x− ξ ≤ x(1− ξ) = x− xξ, hence
to xξ ≤ ξ. The second conclusion in (1.3.55) holds since ξ ≤ 0 ⇒ 1 − ξ ≥ 1. We
deduce from (1.3.54)–(1.3.55) that

(1.3.56) |x| < 1 =⇒ |Rn(x, 0)| ≤ |bn| · |x|n+1.

Using (1.3.48) then gives the desired conclusion (1.3.53).

We can now conclude that (1.3.30) holds, with ak given by (1.3.31). For another
proof of (1.3.30), see Exercise 14.
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We illustrate this result in Figure 1.3.1, with r = −1/2. This figure shows the
graphs of the approximations

(1.3.57) Sn(t) =

n∑
k=0

akt
k

to

(1.3.58) (1− t)1/2 =

∞∑
k=0

akt
k, a0 = 1, ak+1 =

2k − 1

2k + 2
ak,

for 1 ≤ n ≤ 10. Results established above imply that

(1.3.59) Sn(t) −→ (1− t)1/2, as n→ ∞,

for |t| < 1. In this case, this can be sharpened to yield uniform convergence for
t ∈ [−1, 1]. For t > 0, the sequence Sn(t) is monotonically decreasing. It decreases
to (1 − t)1/2 for t ∈ [0, 1], and to −∞ for t > 1. For t < 0, the terms in the series
(1.3.57) alternate signs, for n ≥ 1. One again has divergence for t < 1, as can be
seen via the ratio test.

Often it is useful to use a substitution of variables in power series. For example,
one can take t = x2 in the power series for f(t) = (1− t)−r to get the power series
for (1 − x2)−r. Just replace tk by x2k in (1.3.30). To take a specific example, we
have

(1.3.60) (1− x2)1/2 =

∞∑
k=0

akx
2k, a0 = 1, ak+1 =

2k − 1

2k + 2
ak.

Figure 1.3.2 shows the graphs of the approximations

(1.3.61) S2n(x) =

n∑
k=0

akx
2k to

√
1− x2,

for 1 ≤ n ≤ 10. As indicated in the graph, this series diverges for |x| > 1. Results
established above for Sn(t) imply

(1.3.62) S2n(x) −→ (1− x2)1/2, as n→ ∞,

for |x| < 1. Again, this can be sharpened to yield uniform convergence for x ∈
[−1, 1].

There are some important examples of power series representations for which
one does not need to use remainder estimates like (1.3.43) or (1.3.44). For example,
we have

(1.3.63)

n∑
k=0

xk =
1− xn+1

1− x
,

if x ̸= 1. The right side tends to 1/(1− x) as n→ ∞, if |x| < 1, so we get

(1.3.64)
1

1− x
=

∞∑
k=0

xk, |x| < 1,
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Figure 1.3.2. Power series approximations S2n(x) to
√
1− x2, 1 ≤ n ≤ 10

without further ado, which is the case r = 1 of (1.3.30)–(1.3.31). We can differen-
tiate (1.3.64) repeatedly to get

(1.3.65) (1− x)−n =

∞∑
k=0

ck(n)x
k, |x| < 1, n ∈ N,

and verify that (1.3.65) agrees with (1.3.30)–(1.3.31) with r = n. However, when
r /∈ Z, such an analysis of Rn(x, 0) as made above seems necessary. (But see
Exercise 14 below.)

Let us also note that we can apply Proposition 1.3.3 to (1.3.64), obtaining

(1.3.66)

∞∑
k=0

xk+1

k + 1
=

∫ x

0

dy

1− y
, |x| < 1.

Material covered in §3.2 will produce another formula for the right side of (1.3.66).

Returning to the integral formula for the remainder Rn(x, y) in (1.3.36), we
record the following variant of Proposition 1.3.4.

Proposition 1.3.5. If I ∈ R is an interval, x, y ∈ I, and f ∈ Cn(I), then

(1.3.67) Rn(x, y) =
1

(n− 1)!

∫ x

y

(x− s)n−1[f (n)(s)− f (n)(y)] ds.
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Proof. Do (1.3.36)–(1.3.40) with n replaced by n− 1, and then write

(1.3.68) Rn−1(x, y) =
f (n)(y)

n!
+Rn(x, y).

�

Remark. An advantage of (1.3.67) over (1.3.40) is that for (1.3.67), we need only
f ∈ Cn(I), rather than f ∈ Cn+1(I).

Exercises

1. Show that (1.3.10) yields the absolute convergence asserted in the proof of
Proposition 1.3.2. More generally, show that, for any n ∈ N, r ∈ (0, 1),

∞∑
k=1

knrk <∞.

Hint. Use the ratio test.

2. A special case of (1.3.20)–(1.3.23) is that, given a polynomial p(t) = ant
n+ · · ·+

a1t+ a0, we have p(k)(0) = k! ak. Apply this to

Pn(t) = (1 + t)n.

Compute P
(k)
n (t) using (1.1.7) repeatedly, then compute P

(k)
n (0), and use this to

establish the binomial formula:

(1.3.69) (1 + t)n =

n∑
k=0

(
n

k

)
tk,

(
n

k

)
=

n!

k!(n− k)!
.

3. Going further, and building on the analysis in (1.3.26)–(1.3.56), show that, for
|t| < 1,

(1.3.70) (1 + t)r =

∞∑
k=0

(
r

k

)
tk,

with

(1.3.71)

(
r

0

)
= 1,

(
r

k

)
=
r(r − 1) · · · (r − k + 1)

k!
, k ∈ N.

The coefficients of tk in (1.3.70), extending those that arise in (1.3.69), are also
called binomial coefficients. Here, we take r ∈ Q, but results of §3.2 will allow us
to extend this result to r ∈ R, and further, to r ∈ C.

4. Find the coefficients in the power series

1√
1− x4

=

∞∑
k=0

bkx
k.
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Show that this series converges to the left side for |x| < 1.
Hint. Take r = 1/2 in (1.3.30)–(1.3.31) and set t = x4.

Now expand ∫ x

0

dy√
1− y4

in a power series in x. Show this holds for |x| < 1.

5. Expand ∫ x

0

dy√
1 + y4

as a power series in x. Show that this holds for |x| < 1.

6. Expand ∫ 1

0

dt√
1 + xt4

as a power series in x. Show that this holds for |x| < 1.

7. Let I ⊂ R be an open interval, x0 ∈ I, and assume f ∈ C2(I) and f ′(x0) = 0.
Use Proposition 1.3.4 to show that

f ′′(x0) > 0 ⇒ f has a local mimimum at x0,

f ′′(x0) < 0 ⇒ f has a local maximum at x0.

Compare the proof of Proposition 1.1.4.

8. Note that
√
2 = 2

√
1− 1

2
.

Expand the right side in a power series, using (1.3.30)–(1.3.31). How many terms

suffice to approximate
√
2 to 12 digits?

9. In the setting of Exercise 8, investigate series that converge faster, such as series
obtained from

√
2 =

3

2

√
1− 1

9

=
10

7

√
1− 1

50
.

10. Apply variants of the methods of Exercises 8–9 to approximate
√
3,

√
5,

√
7,

and
√
1001.

11. Given a rational approximation xn to
√
2, write

√
2 = xn

√
1 + δn, so 1 + δn = 2/x2n.
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Assume |δn| ≤ 1/2. Then set

xn+1 = xn

(
1 +

1

2
δn

)
, 2 = x2n+1(1 + δn+1).

Estimate δn+1. Does the sequence (xn) approach
√
2 faster than a power series?

Apply this method to the last approximation in Exercise 9.

12. Assume F ∈ C([a, b]), g ∈ R([a, b]), F real valued, and g ≥ 0 on [a, b]. Show
that ∫ b

a

g(t)F (t) dt =
(∫ b

a

g(t) dt
)
F (ζ),

for some ζ ∈ (a, b). Show how this result justifies passing from (1.3.41) to (1.3.42).

Hint. If A = minF, B = maxF , and M =
∫ b

a
g(t) dt, show that

AM ≤
∫ b

a

g(t)F (t) dt ≤ BM.

13. Recall that the Cauchy formula (1.3.39) for the remainder Rn(x, y) was obtained
by applying the Mean Value Theorem to the difference quotient

Rn(x, y)−Rn(x, x)

y − x
.

Now apply the generalized mean value theorem, described in Exercise 8 of §1.1,
with

f(y) = R(x, y), g(y) = (x− y)n+1,

to obtain the Lagrange formula (1.3.42).

14. Here is an approach to the proof of (1.3.30) that avoids formulas for the
remainder Rn(x, 0). Set

fr(t) = (1− t)−r, gr(t) =

∞∑
k=0

ak
k!
tk, for |t| < 1,

with ak given by (1.3.31). Show that, for |t| < 1,

f ′r(t) =
r

1− t
fr(t), and (1− t)g′r(t) = rgr(t).

Then show that
d

dt
(1− t)rgr(t) = 0,

and deduce that fr(t) = gr(t).

15. Assume f, g ∈ Ck(I), 0 ∈ I, and write

f(x) =

k∑
i=0

fix
i + o(xk), g(x) =

k∑
j=0

gjx
j + o(xk),

with

fi =
f (i)(0)

i!
, gj =

g(j)(0)

j!
.



40 1. Basic one variable calculus

Show that h(x) = f(x)g(x) satisfies

h(x) =

k∑
i,j=0

figjx
i+j + o(xk),

and deduce that

h(k)(0)

k!
=
∑

i+j=k

figj =
∑

i+j=k

1

i!j!
f (i)(0)g(j)(0).

From this deduce that

dk

dxk
(fg)(0) =

∑
i+j=k

k!

i!j!
f (i)(0)g(j)(0).

Pass from this to the identity

(1.3.72)
dk

dxk
(fg)(x) =

∑
i+j=k

k!

i!j!
f (i)(x)g(j)(x),

for x ∈ I. This identity is called the Leibniz identity.



1.4. Unbounded integrable functions 41

1.4. Unbounded integrable functions

There are lots of unbounded functions we would like to be able to integrate. For
example, consider f(x) = x−1/2 on (0, 1] (defined any way you like at x = 0). Since,
for ε ∈ (0, 1),

(1.4.1)

∫ 1

ε

x−1/2 dx = 2− 2
√
ε,

this has a limit as ε↘ 0, and it is natural to set

(1.4.2)

∫ 1

0

x−1/2 dx = 2.

Sometimes (1.4.2) is called an “improper integral,” but we do not consider that to
be a proper designation. Here, we define a class R#(I) of not necessarily bounded
“integrable” functions on an interval I = [a, b], as follows.

First, assume f ≥ 0 on I, and for A ∈ (0,∞), set

(1.4.3)
fA(x) = f(x) if f(x) ≤ A,

A, if f(x) > A.

We say f ∈ R#(I) provided

(1.4.4)

fA ∈ R(I), ∀A <∞, and

∃ uniform bound

∫
I

fA dx ≤M.

If f ≥ 0 satisfies (1.4.4), then
∫
I
fA dx increases monotonically to a finite limit as

A↗ +∞, and we call the limit
∫
I
f dx:

(1.4.5)

∫
I

fA dx↗
∫
I

f dx, for f ∈ R#(I), f ≥ 0.

We also use the notation
∫ b

a
f dx, if I = [a, b]. If I is understood, we might just

write
∫
f dx. It is valuable to have the following.

Proposition 1.4.1. If f, g : I → R+ are in R#(I), then f + g ∈ R#(I), and

(1.4.6)

∫
I

(f + g) dx =

∫
I

f dx+

∫
I

g dx.

Proof. To start, note that (f + g)A ≤ fA + gA. In fact,

(1.4.7) (f + g)A = (fA + gA)A.

Hence (f + g)A ∈ R(I) and
∫
(f + g)A dx ≤

∫
fA dx+

∫
gA dx ≤

∫
f dx+

∫
g dx, so

we have f + g ∈ R#(I) and

(1.4.8)

∫
(f + g) dx ≤

∫
f dx+

∫
g dx.

On the other hand, if B > 2A, then (f + g)B ≥ fA + gA, so

(1.4.9)

∫
(f + g) dx ≥

∫
fA dx+

∫
gA dx,



42 1. Basic one variable calculus

for all A <∞, and hence

(1.4.10)

∫
(f + g) dx ≥

∫
f dx+

∫
g dx.

Together, (1.4.8) and (1.4.10) yield (1.4.6). �

Next, we take f : I → R and set

(1.4.11)
f = f+ − f−, f+(x) = f(x) if f(x) ≥ 0,

0 if f(x) < 0.

Then we say

(1.4.12) f ∈ R#(I) ⇐⇒ f+, f− ∈ R#(I),

and set

(1.4.13)

∫
I

f dx =

∫
I

f+ dx−
∫
I

f− dx,

where the two terms on the right are defined as in (1.4.5). To extend the additivity,
we begin as follows

Proposition 1.4.2. Assume that g ∈ R#(I) and that gj ≥ 0, gj ∈ R#(I), and

(1.4.14) g = g0 − g1.

Then

(1.4.15)

∫
g dx =

∫
g0 dx−

∫
g1 dx.

Proof. Take g = g+ − g− as in (1.4.11). Then (1.4.14) implies

(1.4.16) g+ + g1 = g0 + g−,

which by Proposition 1.4.1 yields

(1.4.17)

∫
g+ dx+

∫
g1 dx =

∫
g0 dx+

∫
g− dx.

This implies

(1.4.18)

∫
g+ dx−

∫
g− dx =

∫
g0 dx−

∫
g1 dx,

which yields (1.4.15) �

We now extend additivity.

Proposition 1.4.3. Assume f1, f2 ∈ R#(I). Then f1 + f2 ∈ R#(I) and

(1.4.19)

∫
I

(f1 + f2) dx =

∫
I

f1 dx+

∫
I

f2 dx.
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Proof. If g = f1 + f2 = (f+1 − f−1 ) + (f+2 − f−2 ), then

(1.4.20) g = g0 − g1, g0 = f+1 + f+2 , g1 = f−1 + f−2 .

We have gj ∈ R#(I), and then

(1.4.21)

∫
(f1 + f2) dx =

∫
g0 dx−

∫
g1 dx

=

∫
(f+1 + f+2 ) dx−

∫
(f−1 + f−2 ) dx

=

∫
f+1 dx+

∫
f+2 dx−

∫
f−1 dx−

∫
f−2 dx,

the first equality by Proposition 1.4.2, the second tautologically, and the third by
Proposition 1.4.1. Since

(1.4.22)

∫
fj dx =

∫
f+j dx−

∫
f−j dx,

this gives (1.4.19). �

If f : I → C, we set f = f1 + if2, fj : I → R, and say f ∈ R#(I) if and only if
f1 and f2 belong to R#(I). Then we set

(1.4.23)

∫
f dx =

∫
f1 dx+ i

∫
f2 dx.

Similar comments apply to f : I → Rn.

Given f ∈ R#(I), we set

(1.4.24) ∥f∥L1(I) =

∫
I

|f(x)| dx.

We have, for f, g ∈ R#(I), a ∈ C,

(1.4.25) ∥af∥L1(I) = |a| ∥f∥L1(I),

and

(1.4.26)

∥f + g∥L1(I) =

∫
I

|f + g| dx

≤
∫
I

(|f |+ |g|) dx

= ∥f∥L1(I) + ∥g∥L1(I).

Note that, if S ⊂ I,

(1.4.27) cont+(S) = 0 =⇒
∫
I

|χS | dx = 0,

where cont+(S) is defined by (1.2.21). Thus, to get a metric, we need to form
equivalence classes. The set of equivalence classes [f ] of elements of R#(I), where

(1.4.28) f ∼ f̃ ⇐⇒
∫
I

|f − f̃ | dx = 0,
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forms a metric space, with distance function

(1.4.29) D([f ], [g]) = ∥f − g∥L1(I).

However, this metric space is not complete. One needs the Lebesgue integral to
obtain a complete metric space. One can see [7] or [14].

We next show that each f ∈ R#(I) can be approximated in L1 by a sequence
of bounded, Riemann integrable functions.

Proposition 1.4.4. If f ∈ R#(I), then there exist fk ∈ R(I) such that

(1.4.30) ∥f − fk∥L1(I) −→ 0, as k → ∞.

Proof. If we separately approximate Re f and Im f by such sequences, then we
approximate f , so it suffices to treat the case where f is real. Similarly, writing
f = f+ − f−, we see that it suffices to treat the case where f ≥ 0 on I. For such
f , simply take

(1.4.31) fk = fA, A = k,

with fA as in (1.4.3). Then (1.4.5) implies

(1.4.32)

∫
I

fk dx↗
∫
I

f dx,

and Proposition 1.4.3 gives

(1.4.33)

∫
I

|f − fk| dx =

∫
I

(f − fk) dx

=

∫
I

f dx−
∫
I

fk dx

→ 0 as k → ∞.

�

So far, we have dealt with integrable functions on a bounded interval. Now,
we say f : R → R (or C, or Rn) belongs to R#(R) provided f |I ∈ R#(I) for each
closed, bounded interval I ⊂ R and

(1.4.34) ∃A <∞ such that

∫ R

−R

|f | dx ≤ A, ∀R <∞.

In such a case, we set

(1.4.35)

∫ ∞

−∞
f dx = lim

R→∞

∫ R

−R

f dx.

One can similarly define R#(R+).
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Exercises

1. Let f : [0, 1] → R+ and assume f is continuous on (0, 1]. Show that

f ∈ R#([0, 1]) ⇐⇒
∫ 1

ε

f dx is bounded as ε↘ 0.

In such a case, show that ∫ 1

0

f dx = lim
ε→0

∫ 1

ε

f dx.

2. Let a > 0. Define pa : [0, 1] → R by pa = x−a if 0 < x ≤ 1 Set pa(0) = 0. Show
that

pa ∈ R#([0, 1]) ⇐⇒ a < 1.

3. (See §3.2 for a development of log x.) Let b > 0. Define qb : [0, 1/2] → R by

qb(x) =
1

x| log x|b
,

if 0 < x ≤ 1/2. Set qb(0) = 0. Show that

qb ∈ R#([0, 1/2]) ⇐⇒ b > 1.

4. Show that if a ∈ C and if f ∈ R#(I), then

af ∈ R#(I), and

∫
af dx = a

∫
f dx.

Hint. Check this for a > 0, a = −1, and a = i.

5. Show that
f ∈ R(I), g ∈ R#(I) =⇒ fg ∈ R#(I).

Hint. Use (1.2.53). First treat the case f, g ≥ 1, f ≤M . Show that in such a case,

(fg)A = (fAgA)A, and (fg)A ≤MgA.

6. Peek ahead to §3.2 and compute∫ 1

0

log t dt.

Hint. To compute
∫ 1

ε
log t dt, first compute

d

dt
(t log t).

7. Given g ∈ R(I), show that there exist gk ∈ PK(I) such that

∥g − gk∥L1(I) −→ 0.
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Given h ∈ PK(I), show that there exist hk ∈ C(I) such that

∥h− hk∥L1(I) −→ 0.

8. Using Exercise 7 and Proposition 1.4.4, prove the following: given f ∈ R#(I),
there exist fk ∈ C(I) such that

∥f − fk∥L1(I) −→ 0.

9. Recall Exercise 4 of §1.2. If φ : [a, b] → [A,B] is C1, with φ′(x) > 0 for all
x ∈ [a, b], then

(1.4.36)

∫ B

A

f(y) dy =

∫ b

a

f(φ(t))φ′(t) dt,

for each f ∈ C([a, b]), where A = φ(a), B = φ(b). Using Exercise 8, show that
(1.4.36) holds for each f ∈ R#([a, b]).

10. If f ∈ R#(R), so (1.4.34) holds, prove that the limit exists in (1.4.35).

11. Given f(x) = x−1/2(1 + x2)−1 for x > 0, show that f ∈ R#(R+). Show that∫ ∞

0

1

1 + x2
dx√
x
= 2

∫ ∞

0

dy

1 + y4
.

12. Let fk ∈ R#([a, b]), f : [a, b] → R satisfy

(a) |fk| ≤ g, ∀ k, for some g ∈ R#([a, b]),

(b) Given ε > 0, ∃ contented Sε ⊂ [a, b] such that∫
Sε

g dx < ε, and fk → f uniformly on [a, b] \ Sε.

Show that f ∈ R#([a, b]) and∫ b

a

fk(x) dx −→
∫ b

a

f(x) dx, as k → ∞.

13. Let g ∈ R#([a, b]) be ≥ 0. Show that for each ε > 0, there exists δ > 0 such
that

S ⊂ [a, b] contented, contS < δ =⇒
∫
S

g dx < ε.

Hint. With gA defined as in (1.4.3), pick A such that
∫
gA dx ≥

∫
g dx− ε/2. Then

pick δ < ε/2A.

14. Deduce from Exercises 12–13 the following. Let fk ∈ R#([a, b]), f : [a, b] → R
satisfy

(a) |fk| ≤ g, ∀ k, for some g ∈ R#([a, b]),

(b) Given δ > 0, ∃ contented Sδ ⊂ [a, b] such that

contSδ < δ, and fk → f uniformly on [a, b] \ Sδ.
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Show that f ∈ R#([a, b]) and∫ b

a

fk(x) dx −→
∫ b

a

f(x) dx, as k → ∞.

Remark. Compare Exercise 18 of §1.2. As mentioned there, the Lebesgue theory
of integration has a stronger result, known as the Lebesgue dominated convergence
theorem.





Chapter 2

Multidimensional spaces

Multivariable calculus is set in multidimensional spaces. The paradigmatic case
is n-dimensional Euclidean space Rn. We present basic material on this in §2.1.
The space Rn has both a linear structure and a geometric structure, coming from
the dot product, which gives rise to the notion of distance and of convergence of
sequences.

While Rn is the paradigm, it is convenient to consider more general vector
spaces, and we do this in §2.2. We also study linear transformations T : V →
W between two vector spaces. We define the class of finite-dimensional vector
spaces, and show that the dimension of such a vector space is well defined. If
V is a real vector space and dimV = n, then V is isomorphic to Rn. Linear
transformations from Rn to Rm are given by m × n matrices. In Chapter 4, such
linear transformations arise as derivatives of nonlinear maps, and understanding the
behavior of these derivatives is basic to many key results in multivariable calculus,
both in Chapter 4 and in subsequent chapters.

In §2.3 we define the determinant, detA, of an n× n matrix A, and show that
A is invertible if and only if detA ̸= 0. In Chapter 5 we will see the determinant
of the derivative DF (x) of a map F : O → Ω between regions of Rn entering into
the change of variable formula for the integral.

In §2.4 we define the trace of a matrix A ∈ M(n,R) and explore some of its
basic properties, including the Euclidean space structure on M(n,R) that arises
from ⟨A,B⟩ = TrABt. Some exercises relate the trace and the determinant.

Section 2.5 treats the cross product of vectors in R3. Results derived here will
be useful for the study of curves in R3 in §3.4, and for the study of surface area in
§6.1.

49
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2.1. Euclidean spaces

The space Rn, n-dimensional Euclidean space, consists of n-tuples of real numbers:

(2.1.1) x = (x1, . . . , xn) ∈ Rn, xj ∈ R, 1 ≤ j ≤ n.

The number xj is called the jth component of x. Here we discuss some important
algebraic and metric structures on Rn. First, there is addition. If x is as in (2.1.1)
and also y = (y1, . . . , yn) ∈ Rn, we have

(2.1.2) x+ y = (x1 + y1, . . . , xn + yn) ∈ Rn.

Addition is done componentwise. Also, given a ∈ R, we have

(2.1.3) ax = (ax1, . . . , axn) ∈ Rn.

This is scalar multiplication. In (2.1.1), we represent x as a row vector. Sometimes
we want to represent x by a column vector,

(2.1.4) x =

x1...
xn

 .

Then (2.1.2)–(2.1.3) are converted to

(2.1.5) x+ y =

x1 + y1
...

xn + yn

 , ax =

ax1...
axn

 .

We also have the dot product,

(2.1.6) x · y =

n∑
j=1

xjyj = x1y1 + · · ·+ xnyn ∈ R,

given x, y ∈ Rn. The dot product has the properties

(2.1.7)

x · y = y · x,
x · (ay + bz) = a(x · y) + b(x · z),
x · x > 0 unless x = 0.

Note that

(2.1.8) x · x = x21 + · · ·+ x2n.

We set

(2.1.9) |x| =
√
x · x,

which we call the norm of x. Note that (2.1.7) implies

(2.1.10) (ax) · (ax) = a2(x · x),

hence

(2.1.11) |ax| = |a| · |x|, for a ∈ R, x ∈ Rn.
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Taking a cue from the Pythagorean theorem, we say that the distance from x
to y in Rn is

(2.1.12) d(x, y) = |x− y|.
For us, (2.1.9) and (2.1.12) are simply definitions. We do not need to depend on a
derivation of the Pythagorean theorem via classical Euclidean geometry. Significant
properties will be derived below, without recourse to a prior theory of Euclidean
geometry.

A set X equipped with a distance function is called a metric space. One can
find a discussion of metric spaces in general in [15]. Here, we want to show that
the Euclidean distance, defined by (2.1.12), satisfies the “triangle inequality,”

(2.1.13) d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ Rn.

This in turn is a consequence of the following, also called the triangle inequality.

Proposition 2.1.1. The norm (2.1.9) on Rn has the property

(2.1.14) |x+ y| ≤ |x|+ |y|, ∀x, y ∈ Rn.

Proof. We compare the squares of the two sides of (2.1.14). First,

(2.1.15)

|x+ y|2 = (x+ y) · (x+ y)

= x · x+ y · x+ y · x+ y · y
= |x|2 + 2x · y + |y|2.

Next,

(2.1.16) (|x|+ |y|)2 = |x|2 + 2|x| · |y|+ |y|2.
We see that (2.1.14) holds if and only if x·y ≤ |x|·|y|. Thus the proof of Proposition
2.1.1 is finished off by the following result, known as Cauchy’s inequality. �

Proposition 2.1.2. For all x, y ∈ Rn,

(2.1.17) |x · y| ≤ |x| · |y|.

Proof. We start with the chain

(2.1.18) 0 ≤ |x− y|2 = (x− y) · (x− y) = |x|2 + |y|2 − 2x · y,
which implies

(2.1.19) 2x · y ≤ |x|2 + |y|2, ∀x, y ∈ Rn.

If we replace x by tx and y by t−1y, with t > 0, the left side of (2.1.19) is unchanged,
so we have

(2.1.20) 2x · y ≤ t2|x|2 + t−2|y|2, ∀ t > 0.

Now we pick t so that the two terms on the right side of (2.1.20) are equal, namely

(2.1.21) t2 =
|y|
|x|
, t−2 =

|x|
|y|
.

(At this point, note that (2.1.17) is obvious if x = 0 or y = 0, so we will assume
that x ̸= 0 and y ̸= 0.) Plugging (2.1.21) into (2.1.20) gives

(2.1.22) x · y ≤ |x| · |y|, ∀x, y ∈ Rn.



52 2. Multidimensional spaces

This is almost (2.1.17). To finish, we can replace x in (2.1.22) by −x = (−1)x,
getting

(2.1.23) −(x · y) ≤ |x| · |y|,

and together (2.1.22) and (2.1.23) give (2.1.17). �

We now discuss a number of notions and results related to convergence in Rn.
First, a sequence of points (pj) in Rn converges to a limit p ∈ Rn (we write pj → p)
if and only if

(2.1.24) |pj − p| −→ 0,

where | · | is the Euclidean norm on Rn, defined by (2.1.9), and the meaning of
(2.1.24) is that for every ε > 0 there exists N such that

(2.1.25) j ≥ N =⇒ |pj − p| < ε.

If we write pj = (p1j , . . . , pnj) and p = (p1, . . . , pn), then (2.1.24) is equivalent to

(p1j − p1)
2 + · · ·+ (pnj − pn)

2 −→ 0, as j → ∞,

which holds if and only if

|pℓj − pℓ| −→ 0 as j → ∞, for each ℓ ∈ {1, . . . , n}.

That is to say, convergence pj → p in Rn is eqivalent to convergence of each
component.

A set S ⊂ Rn is said to be closed if and only if

(2.1.26) pj ∈ S, pj → p =⇒ p ∈ S.

The complement Rn \ S of a closed set S is open. Alternatively, Ω ⊂ Rn is open if
and only if, given q ∈ Ω, there exists ε > 0 such that Bε(q) ⊂ Ω, where

(2.1.27) Bε(q) = {p ∈ Rn : |p− q| < ε},

so q cannot be a limit of a sequence of points in Rn \ Ω.
An important property of Rn is completeness, a property defined as follows. A

sequence (pj) of points in Rn is called a Cauchy sequence if and only if

(2.1.28) |pj − pk| −→ 0, as j, k → ∞.

Again we see that (pj) is Cauchy in Rn if and only if each component is Cauchy
in R. It is easy to see that if pj → p for some p ∈ Rn, then (2.1.28) holds. The
completeness property is the converse.

Theorem 2.1.3. If (pj) is a Cauchy sequence in Rn, then it has a limit, i.e.,
(2.1.24) holds for some p ∈ Rn.

Proof. Since convergence pj → p in Rn is equivalent to convergence in R of each
component, the result is a consequence of the completeness of R. This is proved in
§A.2. �
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Completeness provides a path to the following key notion of compactness. A
nonempty set K ⊂ Rn is said to be compact if and only if the following property
holds.

(2.1.29)
Each infinite sequence (pj) in K has a subsequence

that converges to a point in K.

It is clear that if K is compact, then it must be closed. It must also be bounded,
i.e., there exists R < ∞ such that K ⊂ BR(0). Indeed, if K is not bounded, there
exist pj ∈ K such that |pj+1| ≥ |pj | + 1. In such a case, |pj − pk| ≥ 1 whenever
j ̸= k, so (pj) cannot have a convergent subsequence. The following converse result
is the n-dimensional Bolzano-Weierstrass theorem.

Theorem 2.1.4. If a nonempty K ⊂ Rn is closed and bounded, then it is compact.

Proof. If K ⊂ Rn is closed and bounded, it is a closed subset of some box

(2.1.30) B = {(x1, . . . , xn) ∈ Rn : a ≤ xk ≤ b, ∀ k}.

Clearly every closed subset of a compact set is compact, so it suffices to show that
B is compact. Now, each closed bounded interval [a, b] in R is compact, as shown
in Appendix A.3, and (by reasoning similar to the proof of Theorem 2.1.3) the
compactness of B follows readily from this. �

We establish some further properties of compact sets K ⊂ Rn, leading to the
important result, Proposition 2.1.8 below.

Proposition 2.1.5. Let K ⊂ Rn be compact. Assume X1 ⊃ X2 ⊃ X3 ⊃ · · · form
a decreasing sequence of closed subsets of K. If each Xm ̸= ∅, then ∩mXm ̸= ∅.

Proof. Pick xm ∈ Xm. If K is compact, (xm) has a convergent subsequence,
xmk

→ y. Since {xmk
: k ≥ ℓ} ⊂ Xmℓ

, which is closed, we have y ∈ ∩mXm. �

Corollary 2.1.6. Let K ⊂ Rn be compact. Assume U1 ⊂ U2 ⊂ U3 ⊂ · · · form an
increasing sequence of open sets in Rn. If ∪mUm ⊃ K, then UM ⊃ K for some M .

Proof. Consider Xm = K \ Um. �

Before getting to Proposition 2.1.8, we bring in the following. Let Q denote
the set of rational numbers, and let Qn denote the set of points in Rn all of whose
components are rational. The set Qn ⊂ Rn has the following “denseness” property:
given p ∈ Rn and ε > 0, there exists q ∈ Qn such that |p− q| < ε. Let

(2.1.31) R = {Br(q) : q ∈ Qn, r ∈ Q ∩ (0,∞)}.

Note thatQ andQn are countable, i.e., they can be put in one-to-one correspondence
with N. Hence R is a countable collection of balls. The following lemma is left as
an exercise for the reader.

Lemma 2.1.7. Let Ω ⊂ Rn be a nonempty open set. Then

(2.1.32) Ω =
∪

{B : B ∈ R, B ⊂ Ω}.
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To state the next result, we say that a collection {Uα : α ∈ A} covers K if
K ⊂ ∪α∈AUα. If each Uα ⊂ Rn is open, it is called an open cover of K. If B ⊂ A
and K ⊂ ∪β∈BUβ , we say {Uβ : β ∈ B} is a subcover. The following is part of the
n-dimensional Heine-Borel theorem.

Proposition 2.1.8. If K ⊂ Rn is compact, then it has the following property.

(2.1.33) Every open cover {Uα : α ∈ A} of K has a finite subcover.

Proof. By Lemma 2.1.7, it suffices to prove the following.

(2.1.34)
Every countable cover {Bj : j ∈ N} of K by open balls

has a finite subcover.

To see this, write R = {Bj : j ∈ N}. Given the cover {Uα}, pass to {Bj : j ∈ J},
where j ∈ J if and only of Bj is contained in some Uα. By (2.1.32), {Bj : j ∈ J}
covers K. If (2.1.34) holds, we have a subcover {Bℓ : ℓ ∈ L} for some finite L ⊂ J .
Pick αℓ ∈ A such that Bℓ ⊂ Uαℓ

. The {Uαℓ
: ℓ ∈ L} is the desired finite subcover

advertised in (2.1.33).

Finally, to prove (2.1.34), we set

(2.1.35) Um = B1 ∪ · · · ∪Bm

and apply Corollary 2.1.6. �

Exercises

1. Identifying z = x+ iy ∈ C with (x, y) ∈ R2 and w = u+ iv ∈ C with (u, v) ∈ R2,
show that the dot product satisfies

z · w = Re zw.

2. Take x, y ∈ Rn. We write

x ⊥ y ⇐⇒ x · y = 0,

and say x and y are orthogonal. Show that

x ⊥ y ⇐⇒ |x+ y|2 = |x|2 + |y|2.

3. Given xν ∈ Rn, we say {xν : 1 ≤ ν ≤ m} is an orthonormal set provided

xν · xµ = δµν = 1 if µ = ν,

0 if µ ̸= ν.

Show that, if {xν : 1 ≤ ν ≤ m} is an orthonormal set, then, for aν ∈ R,

|a1x1 + · · ·+ amxm|2 = a21 + · · ·+ a2m.
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Figure 2.1.1. Right triangle in a circle

4. Assume {uj : 1 ≤ j ≤ m} is an orthonormal set in Rn. Take x ∈ Rn and set

aj = x · uj , y = a1u1 + · · ·+ amum.

Show that

x− y ⊥ uj , ∀ j ∈ {1, . . . ,m}.
See Exercise 9 of §2.2 for a complementary result.

5. Show that the inequality (2.1.14) implies (2.1.13).

6. Let e1, v ∈ Rn and assume |e1| = |v| = 1. Show that

e1 − v ⊥ e1 + v.

Hint. Expand (e1 − v) · (e1 + v).
See Figure 2.1.1 for the geometrical significance of this, when n = 2.

7. Let S1 = {x ∈ R2 : |x| = 1} denote the unit circle in R2, and set e1 = (1, 0) ∈ S1.
Pick a ∈ R such that 0 < a < 1, and set u = (1− a)e1. See Figure 2.1.2. Then pick

v ∈ S1 such that v − u ⊥ e1, and set b = |v − e1|.
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Figure 2.1.2. Geometric construction of b =
√
2a

Show that

(2.1.36) b =
√
2a.

Hint. Note that 1− a = u · e1 = v · e1, hence a = 1− v · e1.
Then expand b2 = (v − e1) · (v − e1).

8. Recall the approach to (2.1.36) in classical Euclidean geometry, using similarity
of triangles, leading to

a

b
=
b

2
.

What is the relevance of Exercise 6 to this?

9. Prove Lemma 2.1.7.

10. Use Proposition 2.1.8 to prove the following extension of Proposition 2.1.5.

Proposition 2.1.9. Let K ⊂ Rn be compact. Assume {Xα : α ∈ A} is a collection
of closed subsets of K. Assume that for each finite set B ⊂ A, ∩α∈BXα ̸= ∅. Then∩

α∈A
Xα ̸= ∅.

Hint. Consider Uα = Rn \Xα.



Exercises 57

11. Let K ⊂ Rn be compact. Show that there exist x0, x1 ∈ K such that

|x0| ≤ |x|, ∀x ∈ K,

|x1| ≥ |x|, ∀x ∈ K.

We say
|x0| = min

x∈K
|x|, |x1| = max

x∈K
|x|.
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2.2. Vector spaces and linear transformations

We have seen in §2.1 how Rn is a vector space, with vector operations given by
(2.1.2)–(2.1.3), for row vectors, and by (2.1.4)–(2.1.5) for column vectors. We could
also use complex numbers, replacing Rn by Cn, and allowing a ∈ C in (2.1.3) and
(2.1.5). We will use F to denote R or C.

Many other vector spaces arise naturally. We define this general notion now.
A vector space over F is a set V , endowed with two operations, that of vector
addition and multiplication by scalars. That is, given v, w ∈ V and a ∈ F, then
v + w and av are defined in V . Furthermore, the following properties are to hold,
for all u, v, w ∈ V, a, b ∈ F. First there are laws for vector addition:

(2.2.1)

Commutative law : u+ v = v + u,

Associative law : (u+ v) + w = u+ (v + w),

Zero vector : ∃ 0 ∈ V, v + 0 = v,

Negative : ∃ − v, v + (−v) = 0.

Next there are laws for multiplication by scalars:

(2.2.2)
Associative law : a(bv) = (ab)v,

Unit : 1 · v = v.

Finally there are two distributive laws:

(2.2.3)
a(u+ v) = au+ av,

(a+ b)u = au+ bu.

It is easy to see that Rn and Cn satisfy all these rules. We will present a number
of other examples below. Let us also note that a number of other simple identities
are automatic consequences of the rules given above. Here are some, which the
reader is invited to verify:

(2.2.4)

v + w = v ⇒ w = 0,

v + 0 · v = (1 + 0)v = v,

0 · v = 0,

v + w = 0 ⇒ w = −v,
v + (−1)v = 0 · v = 0,

(−1)v = −v.

Here are some other examples of vector spaces. Let I = [a, b] denote an interval
in R, and take a non-negative integer k. Then Ck(I) denotes the set of functions
f : I → F whose derivatives up to order k are continuous. We denote by P the set
of polynomials in x, with coefficients in F. We denote by Pk the set of polynomials
in x of degree ≤ k. In these various cases,

(2.2.5) (f + g)(x) = f(x) + g(x), (af)(x) = af(x).

Such vector spaces and certain of their linear subspaces play a major role in the
material developed in these notes.
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Regarding the notion just mentioned, we say a subset W of a vector space V
is a linear subspace provided

(2.2.6) wj ∈W, aj ∈ F =⇒ a1w1 + a2w2 ∈W.

Then W inherits the structure of a vector space.

Linear transformations and matrices

If V and W are vector spaces over F (R or C), a map

(2.2.7) T : V −→W

is said to be a linear transformation provided

(2.2.8) T (a1v1 + a2v2) = a1Tv1 + a2Tv2, ∀ aj ∈ F, vj ∈ V.

We also write T ∈ L(V,W ). In case V = W , we also use the notation L(V ) =
L(V, V ).

Linear transformations arise in a number of ways. For example, an m × n
matrix A with entries in F defines a linear transformation

(2.2.9) A : Fn −→ Fm

by

(2.2.10)

a11 · · · a1n
...

...
am1 · · · amn


b1...
bn

 =

Σa1ℓbℓ
...

Σamℓbℓ

 .

We also have linear transformations on function spaces, such as multiplication
operators

(2.2.11) Mf : Ck(I) −→ Ck(I), Mfg(x) = f(x)g(x),

given f ∈ Ck(I), I = [a, b], and the operation of differentiation:

(2.2.12) D : Ck+1(I) −→ Ck(I), Df(x) = f ′(x).

We also have integration:

(2.2.13) I : Ck(I) −→ Ck+1(I), If(x) =
∫ x

a

f(y) dy.

Note also that

(2.2.14) D : Pk+1 −→ Pk, I : Pk −→ Pk+1,

where Pk denotes the space of polynomials in x of degree ≤ k.

Two linear transformations Tj ∈ L(V,W ) can be added:

(2.2.15) T1 + T2 : V −→W, (T1 + T2)v = T1v + T2v.

Also T ∈ L(V,W ) can be multiplied by a scalar:

(2.2.16) aT : V −→W, (aT )v = a(Tv).

This makes L(V,W ) a vector space.
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We can also compose linear transformations S ∈ L(W,X), T ∈ L(V,W ):

(2.2.17) ST : V −→ X, (ST )v = S(Tv).

For example, we have

(2.2.18) MfD : Ck+1(I) −→ Ck(I), MfDg(x) = f(x)g′(x),

given f ∈ Ck(I). When two transformations

(2.2.19) A : Fn −→ Fm, B : Fk −→ Fn

are represented by matrices, e.g., A as in (2.2.10) and

(2.2.20) B =

b11 · · · b1k
...

...
bn1 · · · bnk

 ,

then

(2.2.21) AB : Fk −→ Fm

is given by matrix multiplication:

(2.2.22) AB =

Σa1ℓbℓ1 · · · Σa1ℓbℓk
...

...
Σamℓbℓ1 · · · Σamℓbℓk

 .

For example,(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
.

Another way of writing (2.2.22) is to represent A and B as

(2.2.23) A = (aij), B = (bij),

and then we have

(2.2.24) AB = (dij), dij =

n∑
ℓ=1

aiℓbℓj .

To establish the identity (2.2.22), we note that it suffices to show the two sides have
the same effect on each ej ∈ Fk, 1 ≤ j ≤ k, where ej is the column vector in Fk

whose jth entry is 1 and whose other entries are 0. First note that

(2.2.25) Bej =

b1j...
bnj

 ,

the jth column in B, as one can see via (2.2.10). Similarly, if D denotes the right
side of (2.2.22), Dej is the jth column of this matrix, i.e.,

(2.2.26) Dej =

Σa1ℓbℓj
...

Σamℓbℓj

 .

On the other hand, applying A to (2.2.25), via (2.2.10), gives the same result, so
(2.2.25) holds.
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Associated with a linear transformation as in (2.2.7) there are two special linear
spaces, the null space of T and the range of T . The null space of T is

(2.2.27) N (T ) = {v ∈ V : Tv = 0},
and the range of T is

(2.2.28) R(T ) = {Tv : v ∈ V }.
Note that N (T ) is a linear subspace of V and R(T ) is a linear subspace of W . If
N (T ) = 0 we say T is injective; if R(T ) = W we say T is surjective. Note that T
is injective if and only if T is one-to-one, i.e.,

(2.2.29) Tv1 = Tv2 =⇒ v1 = v2.

If T is surjective, we also say T is onto. If T is one-to-one and onto, we say it is an
isomorphism. In such a case the inverse

(2.2.30) T−1 :W −→ V

is well defined, and it is a linear transformation. We also say T is invertible, in such
a case.

Basis and dimension

Given a finite set S = {v1, . . . , vk} in a vector space V , the span of S is the set
of vectors in V of the form

(2.2.31) c1v1 + · · ·+ ckvk,

with cj arbitrary scalars, ranging over F = R or C. This set, denoted Span(S) is a
linear subspace of V . The set S is said to be linearly dependent if and only if there
exist scalars c1, . . . , ck, not all zero, such that (2.2.31) vanishes. Otherwise we say
S is linearly independent.

If {v1, . . . , vk} is linearly independent, we say S is a basis of Span(S), and that
k is the dimension of Span(S). In particular, if this holds and Span(S) = V , we
say k = dimV . We also say V has a finite basis, and that V is finite dimensional.

By convention, if V has only one element, the zero element, we say V = 0 and
dimV = 0.

It is easy to see that any finite set S = {v1, . . . , vk} ⊂ V has a maximal subset
that is linearly independent, and such a subset has the same span as S, so Span(S)
has a basis. To take a complementary perspective, S will have a minimal subset
S0 with the same span, and any such minimal subset will be a basis of Span(S).
Soon we will show that any two bases of a finite-dimensional vector space V have
the same number of elements (so dimV is well defined). First, let us relate V to
Fk.

So say V has a basis S = {v1, . . . , vk}. We define a linear transformation

(2.2.32) JS : Fk −→ V

by

(2.2.33) JS(c1e1 + · · ·+ ckek) = c1v1 + · · ·+ ckvk,
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where

(2.2.34) e1 =


1
0
...
0

 , . . . . . . , ek =


0
...
0
1

 .

We say {e1, . . . , ek} is the standard basis of Fk. The linear independence of S is
equivalent to the injectivity of JS and the statement that S spans V is equivalent
to the surjectivity of JS . Hence the statement that S is a basis of V is equivalent
to the statement that JS is an isomorphism, with inverse uniquely specified by

(2.2.35) J−1
S (c1v1 + · · ·+ ckvk) = c1e1 + · · ·+ ckek.

We begin our demonstration that dimV is well defined, with the following
concrete result.

Lemma 2.2.1. If v1, . . . , vk+1 are vectors in Fk, then they are linearly dependent.

Proof. We use induction on k. The result is obvious if k = 1. We can suppose the
last component of some vj is nonzero, since otherwise we can regard these vectors
as elements of Fk−1 and use the inductive hypothesis. Reordering these vectors, we
can assume the last component of vk+1 is nonzero, and it can be assumed to be 1.
Form

wj = vj − vkjvk+1, 1 ≤ j ≤ k,

where vj = (v1j , . . . , vkj)
t. Then the last component of each of the vectors w1, . . . , wk

is 0, so we can regard these as k vectors in Fk−1. By induction, there exist scalars
a1, . . . , ak, not all zero, such that

a1w1 + · · ·+ akwk = 0,

so we have
a1v1 + · · ·+ akvk = (a1vk1 + · · ·+ akvkk)vk+1,

the desired linear dependence relation on {v1, . . . , vk+1}. �

With this result in hand, we proceed.

Proposition 2.2.2. If V has a basis S = {v1, . . . , vk} with k elements and if the
set {w1, . . . , wℓ} ⊂ V is linearly independent, then ℓ ≤ k.

Proof. Take the isomorphism JS : Fk → V described in (2.2.32)–(2.2.33). The hy-
potheses imply that {J−1

S w1, . . . ,J−1
S wℓ} is linearly independent in Fk, so Lemma

2.2.1 implies ℓ ≤ k. �
Corollary 2.2.3. If V is finite-dimensional, any two bases of V have the same
number of elements. If V is isomorphic to W , these spaces have the same dimen-
sion.

Proof. If S (with #S elements) and T are bases of V , we have #S ≤ #T and
#T ≤ #S, hence #S = #T . For the latter part, an isomorphism of V onto W
takes a basis of V to a basis of W . �

The following is an easy but useful consequence.
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Proposition 2.2.4. If V is finite dimensional and W ⊂ V a linear subspace, then
W has a finite basis, and dimW ≤ dimV .

Proof. Suppose {w1, . . . , wℓ} is a linearly independent subset of W . Proposition
2.2.2 implies ℓ ≤ dimV . If this set spansW , we are done. If not, there is an element
wℓ+1 ∈W not in this span, and {w1, . . . , wℓ+1} is a linearly independent subset of
W . Again ℓ + 1 ≤ dimV . Continuing this process a finite number of times must
produce a basis of W . �

A similar argument establishes:

Proposition 2.2.5. Suppose V is finite dimensional,W ⊂ V a linear subspace, and
{w1, . . . , wℓ} a basis ofW . Then V has a basis of the form {w1, . . . , wℓ, u1, . . . , um},
and ℓ+m = dimV .

Having this, we can establish the following result, sometimes called the funda-
mental theorem of linear algebra.

Proposition 2.2.6. Assume V and W are vector spaces, V finite dimensional,
and

(2.2.36) A : V −→W

a linear map. Then

(2.2.37) dimN (A) + dimR(A) = dimV.

Proof. Let {w1, . . . , wℓ} be a basis of N (A) ⊂ V , and complete it to a basis

{w1, . . . , wℓ, u1, . . . , um}
of V . Set L = Span{u1, . . . , um}, and consider

(2.2.38) A0 : L −→W, A0 = A
∣∣
L
.

Clearly w ∈ R(A) ⇒ w = A(a1w1 + · · ·+ aℓwℓ + b1u1 + · · ·+ bmum) = A0(b1u1 +
· · ·+ bmum), so

(2.2.39) R(A0) = R(A).

Furthermore,

(2.2.40) N (A0) = N (A) ∩ L = 0.

Hence A0 : L → R(A0) is an isomorphism. Thus dimR(A) = dimR(A0) =
dimL = m, and we have (2.2.37). �

The following is a significant special case.

Corollary 2.2.7. Let V be finite dimensional, and let A : V → V be linear. Then

A injective ⇐⇒ A surjective ⇐⇒ A isomorphism.

We mention that these equivalences can fail for infinite dimensional spaces. For
example, if P denotes the space of polynomials in x, then Mx : P → P (Mxf(x) =
xf(x)) is injective but not surjective, whileD : P → P (Df(x) = f ′(x)) is surjective
but not injective.
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Next we have the following important characterization of injectivity and sur-
jectivity.

Proposition 2.2.8. Assume V and W are finite dimensional and A : V → W is
linear. Then

(2.2.41) A surjective ⇐⇒ AB = IW , for some B ∈ L(W,V ),

and

(2.2.42) A injective ⇐⇒ CA = IV , for some C ∈ L(W,V ).

Proof. Clearly AB = I ⇒ A surjective and CA = I ⇒ A injective. We establish
the converses.

First assume A : V →W is surjective. Let {w1, . . . , wℓ} be a basis of W . Pick
vj ∈ V such that Avj = wj . Set

(2.2.43) B(a1w1 + · · ·+ aℓwℓ) = a1v1 + · · ·+ aℓvℓ.

This works in (2.2.41).

Next assume A : V → W is injective. Let {v1, . . . , vk} be a basis of V . Set
wj = Avj . Then {w1, . . . , wk} is linearly independent, hence a basis of R(A), and
we then can produce a basis {w1, . . . , wk, u1, . . . , um} of W . Set

(2.2.44) C(a1w1 + · · ·+ akwk + b1u1 + · · ·+ bmum) = a1v1 + · · ·+ akvk.

This works in (2.2.42). �

An m×n matrix A defines a linear transformation A : Fn → Fm, as in (2.2.9)–
(2.2.10). The columns of A are

(2.2.45) aj =

a1j
...

amj

 .

As seen in (2.2.25),

(2.2.46) Aej = aj ,

where e1, . . . , en is the standard basis of Fn. Hence

(2.2.47) R(A) = linear span of the columns of A,

so

(2.2.48) R(A) = Fm ⇐⇒ a1, . . . , an span Fm.

Furthermore,

(2.2.49) A
( n∑
j=1

cjej

)
= 0 ⇐⇒

n∑
j=1

cjaj = 0,

so

(2.2.50) N (A) = 0 ⇐⇒ {a1, . . . , an} is linearly independent.

We have the following conclusion, in case m = n.
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Proposition 2.2.9. Let A be an n × n matrix, defining A : Fn → Fn. Then the
following are equivalent:

(2.2.51)

A is invertible,

The columns of A are linearly independent,

The columns of A span Fn.

Exercises

1. Show that the results in (2.2.4) follow from the basic rules (2.2.1)–(2.2.3).
Hint. To start, add −v to both sides of the identity v + w = v, and take account
first of the associative law in (2.2.1), and then of the rest of (2.2.1). For the second
line of (2.2.4), use the rules (2.2.2) and (2.2.3). Then use the first two lines of
(2.2.4) to justify the third line...

2. Demonstrate the following results for any vector space. Take a ∈ F, v ∈ V .

a · 0 = 0 ∈ V,

a(−v) = −av.

Hint. Feel free to use the results of (2.2.4).

Let V be a vector space (over F) and W,X ⊂ V linear subspaces. We say

(2.2.52) V =W +X

provided each v ∈ V can be written

(2.2.53) v = w + x, w ∈W, x ∈ X.

We say

(2.2.54) V =W ⊕X

provided each v ∈ V has a unique representation (2.2.53).

3. Show that

V =W ⊕X ⇐⇒ V =W +X and W ∩X = 0.

4. Let A : Fn → Fm be defined by an m× n matrix, as in (2.2.9)–(2.2.10).
(a) Show that R(A) is the span of the columns of A.
Hint. See (2.2.25).
(b) Show that N (A) = 0 if and only if the columns of A are linearly independent.

5. Define the transpose of an m × n matrix A = (ajk) to be the n × m matrix
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At = (akj). Thus, if A is as in (2.2.9)–(2.2.10),

(2.2.55) At =

a11 · · · am1

...
...

a1n · · · amn

 .

For example,

A =

1 2
3 4
5 6

 =⇒ At =

(
1 3 5
2 4 6

)
.

Suppose also B is an n× k matrix, as in (2.2.20), so AB is defined, as in (2.2.21).
Show that

(2.2.56) (AB)t = BtAt.

6. Let

A =
(
1 2 3

)
, B =

2
0
2

 .

Compute AB and BA. Then compute AtBt and BtAt.

7. Let P5 be the space of real polynomials in x of degree ≤ 5 and set

T : P5 −→ R3, Tp =
(
p(−1), p(0), p(1)

)
.

Specify R(T ) and N (T ), and verify (2.2.37) for V = P5, W = R3, A = T .

8. Denote the space of m× n matrices with entries in F (as in (2.2.10)) by

(2.2.57) M(m× n,F).

If m = n, denote it by

(2.2.58) M(n,F).

Show that

dimM(m× n,F) = mn,

especially

dimM(n,F) = n2.

9. Assume {uj : 1 ≤ j ≤ n} is an orthonormal set in Rn. Pick x ∈ Rn and set
aj = x · uj . Show that

x = a1u1 + ·+ anun.

We say {uj : 1 ≤ j ≤ n} is an orthonormal basis of Rn.
Hint. Show that this orthonormal set is linearly independent, and deduce that it
spans Rn. Then see Exercise 4 of §2.1.

Given T ∈M(n,R), we say

T ∈ O(n) ⇐⇒ T tT = I,
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or equivalently, if and only if

Tx · Ty = x · y, ∀x, y ∈ Rn.

10. Show that, given T ∈M(n,R),
T ∈ O(n) ⇐⇒ the columns of T form an orthonormal basis of Rn.

11. Given T ∈M(n,R), show that

T ∈ O(n) ⇐⇒ |Tx| = |x|, ∀x ∈ Rn.

Hint. Expand |T (x+ y)|2 = (Tx+ Ty) · (Tx+ Ty).

12. If {uj : 1 ≤ j ≤ n} and {vj : 1 ≤ j ≤ n} are both orthonormal bases of Rn,
show that there is a unique T ∈ O(n) such that

Tuj = vj , ∀j ∈ {1, . . . , n}.

13. Take a peek at §C.1 and show that if V ⊂ Rn is a linear subspace, then V
has an orthonormal basis. Going further, show that Rn has an orthonormal basis
{u1, . . . , un} such that {u1, . . . ud} is a basis of V , where d = dimV .

14. Let {ej : 1 ≤ j ≤ n} denote the standard basis of Rn. Assume n ≥ 3. Let
V ⊂ Rn be a 2-dimensional subspace, with basis {u, v}, |u| = 1. Show that there
exists T ∈ O(n) such that

Tu = e1, T v ∈ Span{e1, e2}.
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2.3. Determinants

Determinants arise in the study of inverting a matrix. To take the 2×2 case, solving
for x and y the system

(2.3.1)
ax+ by = u,

cx+ dy = v

can be done by multiplying these equations by d and b, respectively, and subtracting,
and by multiplying them by c and a, respectively, and subtracting, yielding

(2.3.2)
(ad− bc)x = du− bv,

(ad− bc)y = av − cu.

The factor on the left is

(2.3.3) det

(
a b
c d

)
= ad− bc,

and solving (2.3.2) for x and y leads to

(2.3.4) A =

(
a b
c d

)
=⇒ A−1 =

1

detA

(
d −b
−c a

)
,

provided detA ̸= 0.

We now consider determinants of n × n matrices. Let M(n,F) denote the set
of n× n matrices with entries in F = R or C. We write

(2.3.5) A =

a11 · · · a1n
...

...
an1 · · · ann

 = (a1, . . . , an),

where

(2.3.6) aj =

a1j...
anj


is the jth column of A. The determinant is defined as follows.

Proposition 2.3.1. There is a unique function

(2.3.7) ϑ :M(n,F) −→ F,
satisfying the following three properties:

(a) ϑ is linear in each column aj of A,

(b) ϑ(Ã) = −ϑ(A) if Ã is obtained from A by interchanging two columns,
(c) ϑ(I) = 1.

This defines the determinant:

(2.3.8) ϑ(A) = detA.

If (c) is replaced by

(c′) ϑ(I) = r,
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then

(2.3.9) ϑ(A) = r detA.

The proof will involve constructing an explicit formula for detA by following
the rules (a)–(c). We start with the case n = 3. We have

(2.3.10) detA =

3∑
j=1

aj1 det(ej , a2, a3),

by applying (a) to the first column of A, a1 =
∑

j aj1ej . Here and below, {ej :

1 ≤ j ≤ n} denotes the standard basis of Fn, so ej has a 1 in the jth slot and 0s
elsewhere. Applying (a) to the second and third columns gives

(2.3.11)

detA =

3∑
j,k=1

aj1ak2 det(ej , ek, a3)

=

3∑
j,k,ℓ=1

aj1ak2aℓ3 det(ej , ek, eℓ).

This is a sum of 27 terms, but most of them are 0. Note that rule (b) implies

(2.3.12) detB = 0 whenever B has two identical columns.

Hence det(ej , ek, eℓ) = 0 unless j, k, and ℓ are distinct, that is, unless (j, k, ℓ) is a
permutation of (1, 2, 3). Now rule (c) says

(2.3.13) det(e1, e2, e3) = 1,

and we see from rule (b) that det(ej , ek, eℓ) = 1 if one can convert (ej , ek, eℓ) to
(e1, e2, e3) by an even number of column interchanges, and det(ej , ek, eℓ) = −1 if it
takes an odd number of interchanges. Explicitly,

(2.3.14)

det(e1, e2, e3) = 1, det(e1, e3, e2) = −1,

det(e2, e3, e1) = 1, det(e2, e1, e3) = −1,

det(e3, e1, e2) = 1, det(e3, e2, e1) = −1.

Consequently (2.3.11) yields

(2.3.15)

detA = a11a22a33 − a11a32a23

+ a21a32a13 − a21a12a33

+ a31a12a23 − a31a22a13.

Note that the second indices occur in (1, 2, 3) order in each product. We can
rearrange these products so that the first indices occur in (1, 2, 3) order:

(2.3.16)

detA = a11a22a33 − a11a23a32

+ a13a21a32 − a12a21a33

+ a12a23a31 − a13a22a31.
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Now we tackle the case of general n. Parallel to (2.3.10)–(2.3.11), we have

(2.3.17)

detA =
∑
j

aj1 det(ej , a2, . . . , an) = · · ·

=
∑

j1,...,jn

aj11 · · · ajnn det(ej1 , . . . ejn),

by applying rule (a) to each of the n columns of A. As before, (2.3.12) implies
det(ej1 , . . . , ejn) = 0 unless (j1, . . . , jn) are all distinct, that is, unless (j1, . . . , jn)
is a permutation of the set (1, 2, . . . , n). We set

(2.3.18) Sn = set of permutations of (1, 2, . . . , n).

That is, Sn consists of elements σ, mapping the set {1, . . . , n} to itself,

(2.3.19) σ : {1, 2, . . . , n} −→ {1, 2, . . . , n},
that are one-to-one and onto. We can compose two such permutations, obtaining
the product στ ∈ Sn, given σ and τ in Sn. A permutation that interchanges just
two elements of {1, . . . , n}, say j and k (j ̸= k), is called a transposition, and
labeled (jk). It is easy to see that each permutation of {1, . . . , n} can be achieved
by successively transposing pairs of elements of this set. That is, each element
σ ∈ Sn is a product of transpositions. We claim that

(2.3.20) det(eσ(1)1, . . . , eσ(n)n) = (sgnσ) det(e1, . . . , en) = sgnσ,

where

(2.3.21)
sgnσ = 1 if σ is a product of an even number of transpositions,

− 1 if σ is a product of an odd number of transpositions.

In fact, the first identity in (2.3.20) follows from rule (b) and the second identity
from rule (c).

There is one point to be checked here. Namely, we claim that a given σ ∈ Sn

cannot simultaneously be written as a product of an even number of transpositions
and an odd number of transpositions. If σ could be so written, sgnσ would not
be well defined, and it would be impossible to satisfy condition (b), so Proposition
2.3.1 would fail. One neat way to see that sgnσ is well defined is the following. Let
σ ∈ Sn act on functions of n variables by

(2.3.22) (σf)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

It is readily verified that if also τ ∈ Sn,

(2.3.23) g = σf =⇒ τg = (τσ)f.

Now, let P be the polynomial

(2.3.24) P (x1, . . . , xn) =
∏

1≤j<k≤n

(xj − xk).

One readily has

(2.3.25) (σP )(x) = −P (x), whenever σ is a transposition,

and hence, by (2.3.23),

(2.3.26) (σP )(x) = (sgnσ)P (x), ∀σ ∈ Sn,

and sgnσ is well defined.
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The proof of (2.3.20) is complete, and substitution into (2.3.17) yields the
formula

(2.3.27) detA =
∑
σ∈Sn

(sgnσ)aσ(1)1 · · · aσ(n)n.

It is routine to check that this satisfies the properties (a)–(c). Regarding (b), note

that if ϑ(A) denotes the right side of (2.3.27) and Ã is obtained from A by applying

a permutation τ to the columns of A, so Ã = (aτ(1), . . . , aτ(n)), then

ϑ(Ã) =
∑
σ∈Sn

(sgnσ)aσ(1)τ(1) · · · aσ(n)τ(n)

=
∑
σ∈Sn

(sgnσ)aστ−1(1)1 · · · aστ−1(n)n

=
∑
ω∈Sn

(sgnωτ)aω(1)1 · · · aω(n)n

= (sgn τ)ϑ(A),

the last identity because

sgnωτ = (sgnω)(sgn τ), ∀ω, τ ∈ Sn.

As for the final part of Proposition 2.3.1, if (c) is replaced by (c′), then (2.3.20)
is replaced by

(2.3.28) ϑ(eσ(1), . . . , eσ(n)) = r(sgnσ),

and (2.3.9) follows.

Remark. (2.3.27) is taken as a definition of the determinant by some authors.
While it is a useful formula for the determinant, it is a bad definition, which has
perhaps led to a bit of fear and loathing among math students.

Remark. Here is another formula for sgnσ, which the reader is invited to verify.
If σ ∈ Sn,

sgnσ = (−1)κ(σ),

where
κ(σ) = number of pairs (j, k) such that 1 ≤ j < k ≤ n,

but σ(j) > σ(k).

Note that

(2.3.29) aσ(1)1 · · · aσ(n)n = a1τ(1) · · · anτ(n), with τ = σ−1,

and sgnσ = sgnσ−1, so, parallel to (2.3.16), we also have

(2.3.30) detA =
∑
σ∈Sn

(sgnσ)a1σ(1) · · · anσ(n).

Comparison with (2.3.27) gives

(2.3.31) detA = detAt,
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where A = (ajk) ⇒ At = (akj). Note that the jth column of At has the same
entries as the jth row of A. In light of this, we have:

Corollary 2.3.2. In Proposition 2.3.1, one can replace “columns” by “rows.”

The following is a key property of the determinant, called multiplicativity:

Proposition 2.3.3. Given A and B in M(n,F),
(2.3.32) det(AB) = (detA)(detB).

Proof. For fixed A, apply Proposition 2.3.1 to

(2.3.33) ϑ1(B) = det(AB).

If B = (b1, . . . , bn), with jth column bj , then

(2.3.34) AB = (Ab1, . . . , Abn).

Clearly rule (a) holds for ϑ1. Also, if B̃ = (bσ(1), . . . , bσ(n)) is obtained from B

by permuting its columns, then AB̃ has columns (Abσ(1), . . . , Abσ(n)), obtained by
permuting the columns of AB in the same fashion. Hence rule (b) holds for ϑ1.
Finally, rule (c′) holds for ϑ1, with r = detA, and (2.3.32) follows, �
Corollary 2.3.4. If A ∈M(n,F) is invertible, then detA ̸= 0.

Proof. If A is invertible, there exists B ∈ M(n,F) such that AB = I. Then, by
(2.3.32), (detA)(detB) = 1, so detA ̸= 0. �

The converse of Corollary 2.3.4 also holds. Before proving it, it is convenient to
show that the determinant is invariant under a certain class of column operations,
given as follows.

Proposition 2.3.5. If Ã is obtained from A = (a1, . . . , an) ∈ M(n,F) by adding
caℓ to ak for some c ∈ F, ℓ ̸= k, then

(2.3.35) det Ã = detA.

Proof. By rule (a), det Ã = detA + cdetAb, where Ab is obtained from A by
replacing the column ak by aℓ. Hence A

b has two identical columns, so detAb = 0,
and (2.3.35) holds. �

We now extend Corollary 2.3.4.

Proposition 2.3.6. If A ∈M(n,F), then A is invertible if and only if detA ̸= 0.

Proof. We have half of this from Corollary 2.3.4. To finish, assume A is not
invertible. As seen in §2.2, this implies the columns a1, . . . , an of A are linearly
dependent. Hence, for some k,

(2.3.36) ak +
∑
ℓ ̸=k

cℓaℓ = 0,

with cℓ ∈ F. Now we can apply Proposition 2.3.5 to obtain detA = det Ã, where

Ã is obtained by adding
∑
cℓaℓ to ak. But then the kth column of Ã is 0, so

detA = det Ã = 0. This finishes the proof of Proposition 2.3.6. �



Exercises 73

Further useful facts about determinants arise in the following exercises.

Exercises

1. Show that

(2.3.37) det


1 a12 · · · a1n
0 a22 · · · a2n
...

...
...

0 an2 · · · ann

 = det


1 0 · · · 0
0 a22 · · · a2n
...

...
...

0 an2 · · · ann

 = detA11

where A11 = (ajk)2≤j,k≤n.

Hint. Do the first identity using Proposition 2.3.5. Then exploit uniqueness for
det on M(n− 1,F).

2. Deduce that det(ej , a2, . . . , an) = (−1)j−1 detA1j where Akj is formed by delet-
ing the kth column and the jth row from A.

3. Deduce from the first sum in (2.3.17) that

(2.3.38) detA =

n∑
j=1

(−1)j−1aj1 detA1j .

More generally, for any k ∈ {1, . . . , n},

(2.3.39) detA =

n∑
j=1

(−1)j−kajk detAkj .

This is called an expansion of detA by minors, down the kth column.

4. By definition, the cofactor matrix of A is given by

Cof(A)jk = ckj = (−1)j−k detAkj .

Show that

(2.3.40)

n∑
j=1

ajℓckj = 0, if ℓ ̸= k.

Deduce from this and (5.39) that

(2.3.41) Cof(A)tA = (detA)I.

Hint. Reason as in Exercises 1–3 that the left side of (2.3.40) is equal to

det (a1, . . . , aℓ, . . . , aℓ, . . . , an),

with aℓ in the kth column as well as in the ℓth column. The identity (2.3.41) is
known as Cramer’s formula. Note how this generalizes (2.3.4).
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5. Show that

(2.3.42) det


a11 a12 · · · a1n

a22 · · · a2n
. . .

...
ann

 = a11a22 · · · ann.

Hint. Use (2.3.37) and induction. Alternative: Use (2.3.27). Show that σ ∈
Sn, σ(k) ≤ k ∀ k ⇒ σ(k) ≡ k.

6. Recall that O(n) = {T ∈M(n,R) : T tT = I}. Show that

T ∈ O(n) =⇒ detT = ±1.

We say
SO(n) = {T ∈ O(n) : detT = 1}.

Show that
S, T ∈ SO(n) =⇒ ST, T−1 ∈ SO(n).
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2.4. The trace of a matrix, and the Euclidean structure of M(n,R)

Let A ∈M(n,R) be as in (2.3.5). We define the trace of A as

(2.4.1) TrA =

n∑
j=1

ajj .

If also B = (bjk) ∈M(n,R), we have

(2.4.2) AB = C, cjk =
∑
ℓ

ajℓbℓk,

so

(2.4.3) TrAB =
∑
j,ℓ

ajℓbℓj ,

from which we deduce that

(2.4.4) TrAB = TrBA.

Replacing B by Bt in (2.4.2)–(2.4.3) gives

(2.4.5) TrABt =
∑
j,ℓ

ajℓbjℓ,

which is just the Euclidean dot product on

(2.4.6) M(n,R) ≈ Rn2

.

We denote it by

(2.4.7) ⟨A,B⟩ = TrABt.

Note also that

(2.4.8)

⟨A,B⟩ = ⟨B,A⟩
= TrBAt

= TrAtB.

We denote the corresponding Euclidean norm on A ∈ M(n,R) (called the
Hilbert-Schmidt norm) by ∥A∥HS:

(2.4.9) ∥A∥2HS = ⟨A,A⟩ = TrAAt.

In other words,

(2.4.10) ∥A∥2HS =
∑
j,k

a2jk.

Note that the Cauchy inequality (2.1.17), applied to Rn2

, yields

(2.4.11) |⟨A,B⟩| ≤ ∥A∥HS∥B∥HS.
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Exercises

1. Deduce from (2.4.4) that if B ∈M(n,R) is invertible,
TrB−1AB = TrA.

2. Recall that
O(n) = {T ∈M(n,R) : T tT = I}.

Show that, if A,B ∈M(n,R) and T ∈ O(n), then

⟨A,B⟩ = ⟨TA, TB⟩
= ⟨AT,BT ⟩.

3. Take A ∈M(n,R). Show that, as t→ 0,

det(I + tA) = 1 + tTrA+O(t2).

4. Deduce from the previous exercise that, if B ∈M(n,R) is invertible,
det(B + tA) = (detB)(1 + tTrB−1A) +O(t2).
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2.5. The cross product on R3

If u, v ∈ R3, we define the cross product u× v = Π(u, v) to be the unique bilinear
map Π : R3 × R3 satisfying

(2.5.1)
u× v = −v × u, and

i× j = k, j × k = i, k × i = j,

where {i, j, k} is the standard basis of R3. Here, to say Π is bilinear is to say Π(u, v)
is linear in both u and v.

The following result relates the cross product on R3 to the 3× 3 determinant.
The proof is a straightforward consequence of results of §2.3.

Proposition 2.5.1. If u, v, w ∈ R3, then

(2.5.2) w · (u× v) = det

w1 u1 v1
w2 u2 v2
w3 u3 v3

 .

Note (by Proposition 2.3.1) that the right side of (2.5.2) is linear in u and in v,
and it changes sign when u and v are switched. It remains to check the identity for
{u, v} = {i, j}, {j, k}, and {k, i}, which the reader can do.

We mention that (2.5.2) can be rewritten (symbolically) as

(2.5.3) u× v = det

 i u1 v1
j u2 v2
k u3 v3

 =

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 .

One can also readily check this against the multiplication table in (2.5.1).

It is an important geometrical fact that the cross product is preserved by ro-
tations on R3. To state the result, we say

(2.5.4) T ∈ SO(3)

provided

(2.5.5) T ∈M(3,R), T tT = I, and detT > 0.

Recall §2.2, Exercises 9–14, §2.3, Exercise 6, and §2.4, Exercise 2. We note that
these conditions actually imply

(2.5.6) detT = 1.

Here is the result

Proposition 2.5.2.

(2.5.7) T ∈ SO(3) =⇒ Tu× Tv = T (u× v).

Proof. Multiply the 3×3 matrix in Proposition 2.5.1 on the left by T . The resulting
determinant is unchanged, since detT = 1 On the other hand, the quantity one
gets is

(2.5.8) Tw · (Tu× Tv),

but the fact that T tT = I implies that

(2.5.9) w · (u× v) = Tw · T (u× v).
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The desired identity follows. �

We can apply Proposition 2.5.2 to establish the following useful identity.

Proposition 2.5.3. For all u, v, w, x ∈ R3,

(2.5.10) (u× v) · (w × x) = det

(
u · w v · w
u · x v · x

)
.

Proof. By Proposition 2.5.2 (in concert with Exercise 3 below), it suffices to check
this for

w = i, x = ai+ bj,

in which case w × x = bk. Then the left side of (2.5.10) is

(u× v) · bk = det

0 u · i v · i
0 u · j v · j
b u · k v · k

 .

Meanwhile, the right side of (2.5.10) is

det

(
u · i v · i

au · i+ bu · j av · i+ bv · j

)
= bdet

(
u · i v · i
u · j v · j

)
.

But one sees that the last two right sides are equal. �

In case u = w and v = x, this specializes to the following.

Corollary 2.5.4. If θ is the angle between u and v in R3, then

(2.5.11) |u× v| = |u| |v| | sin θ|.

Proof. From (2.5.10), we have

(2.5.12)
|u× v|2 = det

(
u · u v · u
u · v v · v

)
= |u|2|v|2 − (u · v)2,

a result known as Lagrange’s identity. Since

(2.5.13) u · v = |u| |v| cos θ,

this gives (2.5.11). �

Remark. See §3.2 for a self-contained treatment of the trigonometric functions
sin θ and cos θ.
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Exercises

1. Show that if u, v ∈ R3, then u× v is orthogonal to u and v, i.e.,

u · (u× v) = v · (u× v) = 0.

2. Show that
w · (u× v) = u · (v × w), ∀u, v, w ∈ R3.

3. Suppose w, x ∈ R3, |w| = 1. Show that there exists T ∈ SO(3) such that

Tw = i, Tx ∈ Span{i, j},
where {i, j, k} denotes the standard basis of R3. Discuss how this figures in the
proof of Proposition 2.5.3.
Hint. See Exercise 14 in §2.2. Show that, in that exercise, you can actually take
T ∈ SO(n).

4. Show that κ : R3 → Skew(3), the set of antisymmetric real 3×3 matrices, given
by

(2.5.14) κ(y1, y2, y3) =

 0 −y3 y2
y3 0 −y1
−y2 y1 0


satisfies

(2.5.15) Kx = y × x, K = κ(y).

Show that, with [A,B] = AB −BA,

(2.5.16)
κ(x× y) =

[
κ(x), κ(y)

]
,

Tr
(
κ(x)κ(y)t

)
= 2x · y.

5. Assume {u1, u2, u3} is an orthonormal basis of R3, and form

U = (u1, u2, u3) ∈ O(3).

Show that
U ∈ SO(3) ⇐⇒ u1 = u2 × u3.

Show also that

u1 = u2 × u3 ⇔ u2 = u3 × u1 ⇔ u3 = u1 × u2.





Chapter 3

Curves in Euclidean space

Our transition from one variable to multivariable calculus starts with the consider-
ation of n dependent variables, as functions of one independent variable, that is, a
function γ(t) of t ∈ I ⊂ R, having n components, or as we say a curve.

Section 3.1 starts the study of curves in Euclidean space Rn, with particular
attention to arc length. We derive an integral formula for arc length. We show
that a smooth curve can be reparametrized by arc length, as an application of
the Inverse Function Theorem. We then take a look at the unit circle S1 in R2.
Using the parametrization of part of S1 as (t,

√
1− t2), we obtain a power series

for arc lengths, as an application of material of §1.3 on power series of (1 − x)b,
with b = −1/2, and x replaced by t2. We also bring in the trigonometric functions,
having the property that (cos t, sin t) provides a parametrization of S1 by arc length.

Section 3.2 goes much further into the study of the trigonometric functions.
Actually, it begins with a treatment of the exponential function et, observes that
such treatment extends readily to eat, given a ∈ C, and then establishes that eit

provides a unit speed parametrization of S1. This directly gives Euler’s formula

(3.0.1) eit = cos t+ i sin t,

and provides for a unified treatment of the exponential and trigonometric functions.
We also bring in log as the inverse function to the exponential, and we use the
formula xr = er log x to generalize results of §1.1 on xr from r ∈ Q to r ∈ R, and
further, to r ∈ C.

We next examine curvature, which is a measure of how far a curve is from
being a straight line. If γ : (a, b) → Rn is a smooth curve, parametrized by arc
length, with unit tangent vector T (s) = γ′(s), then γ is a straight line if and only
if T ′(s) ≡ 0, so T ′(s) serves as the “curvature vector.” The case n = 2, treated in
§3.3, leads to

(3.0.2) T ′(s) = κ(s)JT (s), J =

(
0 −1
1 0

)
,

81
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defining the curvature κ(s). We show that the solution can be represented using
the matrix exponential, etJ . General material on the matrix exponential etA, for
A ∈ M(n,R), or A ∈ M(n,C), is given in §C.4. In case A = J , we have the
following variant of the Euler identity:

(3.0.3) etJ = (cos t)I + (sin t)J,

which leads to an explicit solution to (3.0.2), yielding an analysis of planar curves
with constant curvature, as circles.

In §3.4 we look at smooth curves in R3. When parametrized by arc length,
these curves have curvature characterized by the norm of T ′(s). In addition, there
is torsion, τ , measuring whether such a curve is actually contained in some plane.
In this setting, the 2×2 system (3.0.2) is replaced by a 9×9 system, involving both
κ and τ , known as the Frenet-Serret equations. In case κ and τ are constant, this
system is also amenable to solution via the matrix exponential, leading to curves
that are helices.
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3.1. Curves and arc length

The term “curve” is commonly used to refer to a couple of different, but closely
related, objects. In one meaning, a curve is a continuous function from an interval
I ⊂ R to n-dimensional Euclidean space:

(3.1.1) γ : I −→ Rn, γ(t) = (γ1(t), . . . , γn(t)).

We say γ is differentiable provided each component γj is, in which case

(3.1.2) γ′(t) = (γ′1(t), . . . , γ
′
n(t)).

γ′(t) is the velocity of γ, at “time” t, and its speed is the magnitude of γ′(t):

(3.1.3) |γ′(t)| =
√
γ′1(t)

2 + · · ·+ γ′n(t)
2.

We say γ is smooth of class Ck provided each component γj(t) has this property.

One also calls the image of I under the map γ a curve in Rn. If u : J → I is
continuous, one-to-one, and onto, the map

(3.1.4) σ : J −→ Rn, σ(t) = γ(u(t))

has the same image as γ. We say σ is a reparametrization of γ. We usually require
that u be C1, with C1 inverse. If γ is Ck and u is also Ck, so is σ, and the chain
rule gives

(3.1.5) σ′(t) = u′(t)γ′(u(t)).

Let us assume I = [a, b] is a closed, bounded interval, and γ is C1. We want to
define the length of this curve. To get started, we take a partition P of [a, b], given
by

(3.1.6) a = t0 < t1 < · · · < tN = b,

and set

(3.1.7) ℓP(γ) =

N∑
j=1

|γ(tj)− γ(tj−1)|.

See Figure 3.1.1.

We will massage the right side of (3.1.7) into something that looks like a Rie-

mann sum for
∫ b

a
|γ′(t)| dt. We have

(3.1.8)

γ(tj)− γ(tj−1) =

∫ tj

tj−1

γ′(t) dt

=

∫ tj

tj−1

[
γ′(tj) + γ′(t)− γ′(tj)

]
dt

= (tj − tj−1)γ
′(tj) +

∫ tj

tj−1

[
γ′(t)− γ′(tj)

]
dt.

We get

(3.1.9) |γ(tj)− γ(tj−1)| = (tj − tj−1)|γ′(tj)|+ rj ,
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Figure 3.1.1. Approximating ℓ(γ) by ℓP (γ)

with

(3.1.10) |rj | ≤
∫ tj

tj−1

|γ′(t)− γ′(tj)| dt.

Now if γ′ is continuous on [a, b], so is |γ′|, and hence both are uniformly continuous
on [a, b]. We have

(3.1.11) s, t ∈ [a, b], |s− t| ≤ h =⇒ |γ′(t)− γ′(s)| ≤ ω(h),

where ω(h) → 0 as h→ 0. Summing (3.1.9) over j, we get

(3.1.12) ℓP(γ) =

N∑
j=1

|γ′(tj)|(tj − tj−1) +RP ,

with

(3.1.13) |RP | ≤ (b− a)ω(h), if each tj − tj−1 ≤ h.

Since the sum on the right side of (3.1.12) is a Riemann sum, we can apply Theorem
1.2.4 to get the following.

Proposition 3.1.1. Assume γ : [a, b] → Rn is a C1 curve. Then

(3.1.14) ℓP(γ) −→
∫ b

a

|γ′(t)| dt as maxsize P → 0.
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We call this limit the length of the curve γ, and write

(3.1.15) ℓ(γ) =

∫ b

a

|γ′(t)| dt.

Note that if u : [α, β] → [a, b] is a C1 map with C1 inverse, and σ = γ ◦ u, as
in (3.1.4), we have from (3.1.5) that |σ′(t)| = |u′(t)| · |γ′(u(t))|, and the change of
variable formula (1.2.67) for the integral gives

(3.1.16)

∫ β

α

|σ′(t)| dt =
∫ b

a

|γ′(t)| dt,

hence we have the geometrically natural result

(3.1.17) ℓ(σ) = ℓ(γ).

Given such a C1 curve γ, it is natural to consider the length function

(3.1.18) ℓγ(t) =

∫ t

a

|γ′(s)| ds, ℓ′γ(t) = |γ′(t)|.

If we assume also that γ′ is nowhere vanishing on [a, b], Theorem 1.1.3, the inverse
function theorem, implies that ℓγ : [a, b] → [0, ℓ(γ)] has a C1 inverse

(3.1.19) u : [0, ℓ(γ)] −→ [a, b],

and then σ = γ ◦ u : [0, ℓ(γ)] → Rn satisfies

(3.1.20)

σ′(t) = u′(t)γ′(u(t))

=
1

ℓ′γ(s)
γ′(u(t)), for t = ℓγ(s), s = u(t),

since the chain rule applied to u(ℓγ(t)) = t yields u′(ℓγ(t))ℓ
′
γ(t) = 1. Also, by

(4.18), ℓ′γ(s) = |γ′(s)| = |γ′(u(t))|, so

(3.1.21) |σ′(t)| ≡ 1.

Then σ is a reparametrization of γ, and σ has unit speed. We say σ is a reparametriza-
tion by arc length.

We now focus on that most classical example of a curve in the plane R2, the
unit circle

(3.1.22) S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.
We can parametrize S1 away from (x, y) = (±1, 0) by

(3.1.23) γ+(t) = (t,
√
1− t2), γ−(t) = (t,−

√
1− t2),

on the intersection of S1 with {(x, y) : y > 0} and {(x, y) : y < 0}, respec-
tively. Here γ± : (−1, 1) → R2, and both maps are smooth. In fact, we can take
γ± : [−1, 1] → R2, but these functions are not differentiable at ±1. We can also
parametrize S1 away from (x, y) = (0,±1), by

(3.1.24) γℓ(t) = (−
√
1− t2, t), γr(t) = (

√
1− t2, t),

again with t ∈ (−1, 1). Note that

(3.1.25) γ′+(t) = (1,−t(1− t2)−1/2),
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so

(3.1.26) |γ′+(t)|2 = 1 +
t2

1− t2
=

1

1− t2
.

Hence, if ℓ(t) is the length of the image γ+([0, t]), we have

(3.1.27) ℓ(t) =

∫ t

0

1√
1− s2

ds, for 0 < t < 1.

The same formula holds with γ+ replaced by γ−, γℓ, or γr.

We can evaluate the integral (3.1.27) as a power series in t, as follows. As seen
in §1.3,

(3.1.28) (1− r)−1/2 =

∞∑
k=0

ak
k!
rk, for |r| < 1,

where

(3.1.29) a0 = 1, a1 =
1

2
, ak =

(1
2

)(3
2

)
· · ·
(
k − 1

2

)
.

The power series converges uniformly on [−ρ, ρ], for each ρ ∈ (0, 1). It follows that

(3.1.30) (1− s2)−1/2 =

∞∑
k=0

ak
k!
s2k, |s| < 1,

uniformly convergent on [−a, a] for each a ∈ (0, 1). Hence we can integrate (3.1.30)
term by term to get

(3.1.31) ℓ(t) =

∞∑
k=0

ak
k!

t2k+1

2k + 1
, 0 ≤ t < 1.

One can use (3.1.27)–(3.1.31) to get a rapidly convergent infinite series for the
number π, defined as

(3.1.32) π is half the length of S1.

See Exercise 7 in §3.2.
Since S1 is a smooth curve, it can be parametrized by arc length. We will let

C : R → S1 be such a parametrization, satisfying

(3.1.33) C(0) = (1, 0), C ′(0) = (0, 1),

so C(t) traverses S1 counter-clockwise, as t increases. For t moderately bigger than
0, the rays from (0, 0) to (1, 0) and from (0, 0) to C(t) make an angle that, measured
in radians, is t. This leads to the standard trigonometrical functions cos t and sin t,
defined by

(3.1.34) C(t) = (cos t, sin t),

when C is such a unit-speed parametrization of S1. See Figure 3.1.2.

We can evaluate the derivative of C(t) by the following device. Applying d/dt
to the identity

(3.1.35) C(t) · C(t) = 1

and using the product formula gives

(3.1.36) C ′(t) · C(t) = 0.
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Figure 3.1.2. The circle C(t) = (cos t, sin t)

since both |C(t)| ≡ 1 and |C ′(t)| ≡ 1, (3.1.36) allows only two possibilities. Either

(3.1.37) C ′(t) = (sin t,− cos t).

or

(3.1.38) C ′(t) = (− sin t, cos t).

Since C ′(0) = (0, 1), (3.1.37) is not a possibility. This implies

(3.1.39)
d

dt
cos t = − sin t,

d

dt
sin t = cos t.

We will derive further important results on cos t and sin t in §3.2.
One can think of cos t and sin t as special functions arising to analyze the length

of arcs in the circle. Related special functions arise to analyze the length of portions
of a parabola in R2, say the graph of

(3.1.40) y =
1

2
x2.

This curve is parametrized by

(3.1.41) γ(t) =
(
t,
1

2
t2
)
,

so

(3.1.42) γ′(t) = (1, t).
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In such a case, the length of γ([0, t]) is

(3.1.43) ℓγ(t) =

∫ t

0

√
1 + s2 ds.

Methods to evaluate the integral in (4.42) are provided in §3.2. See Exercise 10 of
§3.2.

The study of lengths of other curves has stimulated much work in analysis.
Another example is the ellipse

(3.1.44)
x2

a2
+
y2

b2
= 1,

given a, b ∈ (0,∞). This curve is parametrized by

(3.1.45) γ(t) = (a cos t, b sin t).

In such a case, by (4.38), γ′(t) = (−a sin t, b cos t), so

(3.1.46)
|γ′(t)|2 = a2 sin2 t+ b2 cos2 t

= b2 + η sin2 t, η = a2 − b2,

and hence the length of γ([0, t]) is

(3.1.47) ℓγ(t) = b

∫ t

0

√
1 + σ sin2 s ds, σ =

η

b2
.

If a ̸= b, this is called an elliptic integral, and it gives rise to a more subtle family of
special functions, called elliptic functions. Material on this can be found in Chapter
6 of [17], Introduction to Complex Analysis.

We end this section with a brief discussion of curves in polar coordinates. We
define a map

(3.1.48) Π : R2 −→ R2, Π(r, θ) = (r cos θ, r sin θ).

We say (r, θ) are polar coordinates of (x, y) ∈ R2 if Π(r, θ) = (x, y). See Figure
3.1.3.

Now, Π in (3.1.48) is not bijective, since

(3.1.49) Π(r, θ + 2π) = Π(r, θ), Π(r, θ + π) = Π(−r, θ),
and Π(0, θ) is independent of θ. So polar coordinates are not unique, but we will
not belabor this point. The point we make is that an equation

(3.1.50) r = ρ(θ), ρ : [a, b] → R,

yields a curve in R2, namely (with θ = t)

(3.1.51) γ(t) = (ρ(t) cos t, ρ(t) sin t), a ≤ t ≤ b.

The circle (3.1.34) corresponds to ρ(θ) ≡ 1. Other cases include

(3.1.52) ρ(θ) = a cos θ, −π
2
≤ θ ≤ π

2
,

yielding a circle of diameter a/2 centered at (a/2, 0) (see Exercise 6 below), and

(3.1.53) ρ(θ) = a cos 3θ,

yielding a figure called a three-leaved rose. See Figure 3.1.4.
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Figure 3.1.3. Polar coordinates on R2

To compute the arc length of (3.1.51), we note that, by (3.1.39),

(3.1.54)
x(t) = ρ(t) cos t, y(t) = ρ(t) sin t

⇒ x′(t) = ρ′(t) cos t− ρ(t) sin t, y′(t) = ρ′(t) sin t+ ρ(t) cos t,

hence

(3.1.55)

x′(t)2 + y′(t)2 = ρ′(t)2 cos2 t− 2ρ(t)ρ′(t) cos t sin t+ ρ(t)2 sin2 t

+ ρ′(t)2 sin2 t+ 2ρ(t)ρ′(t) sin t cos t+ ρ(t)2 cos2 t

= ρ′(t)2 + ρ(t)2.

Therefore

(3.1.56) ℓ(γ) =

∫ b

a

|γ′(t)| dt =
∫ b

a

√
ρ(t)2 + ρ′(t)2 dt.

A more systematic treatment of polar coordinates is given in §4.3.
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Figure 3.1.4. Three-leafed rose: r = a cos 3θ

Exercises

1. Let γ(t) = (t2, t3). Compute the length of γ([0, t]).

2. With a, b > 0, the curve

γ(t) = (a cos t, a sin t, bt)

is a helix. Compute the length of γ([0, t]).

3. Let

γ(t) =
(
t,
2
√
2

3
t3/2,

1

2
t2
)
.

Compute the length of γ([0, t]).

4. In case b > a for the ellipse (3.1.45), the length formula (3.1.47) becomes

ℓγ(t) = b

∫ t

0

√
1− β2 sin2 s ds, β2 =

b2 − a2

b2
∈ (0, 1).
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Apply the change of variable x = sin s to this integral (cf. (1.2.46)), and write out
the resulting integral.

5. The second half of (3.1.49) is equivalent to the identity

(cos(θ + π), sin(θ + π)) = −(cos θ, sin θ).

Deduce this from the definition (3.1.32) of π, together with the characterization of
C(t) in (3.1.34) as the unit speed parametrization of S1, satisfying (3.1.33). For a
more general identity, see (3.2.44).

6. The curve defined by (3.1.52) can be written

γ(t) = (a cos2 t, a cos t sin t), −π
2
≤ t ≤ π

2
.

Peek ahead at (3.2.44) and show that

γ(t) =
(a
2
+
a

2
cos 2t,

a

2
sin 2t

)
.

Verify that this traces out a circle of radius a/2, centered at (a/2, 0).

7. Use (3.1.56) to write the arc length of the curve given by (3.1.53) as an integral.
Show this integral has the same general form as (3.1.46)–(3.1.47).

8. Let γ : [a, b] → Rn be a C1 curve. Show that

ℓ(γ) ≥ |γ(b)− γ(a)|,
with strict inequality if there exists t ∈ (a, b) such that γ(t) does not lie on the line
segment from γ(a) to γ(b).
Hint. To get started, show that, in (3.1.7), ℓP(γ) ≥ |γ(b)− γ(a)|.

9. Consider the curve C(t) = (cos t, sin t), discussed in (3.1.33)–(3.1.38). Note that
the length ℓC(t) of C([0, t]) is t, for t > 0. Show that

C
(π
2

)
= (0, 1), C(π) = (−1, 0), C(2π) = (1, 0).

10. In the setting of Exercise 9, compute |C(t)−(1, 0)|. Then deduce from Exercise
8 that, for 0 < t ≤ π/2,

1− cos t <
t2

2
,

hence (multiplying by 1 + cos t),

(3.1.57) sin2 t < t2
1 + cos t

2
.

Hint. sin2 t = 1− cos2 t.

11. Let γ : [a, b] → Rn be a C1 curve, and assume that |γ(t)| ≥ 1 for all t ∈ [a, b].
Set

σ(t) =
1

|γ(t)|
γ(t).
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Figure 3.1.5. tan t = u, and key to estimates (3.1.57) and (3.1.58)

Show that

ℓ(σ) ≤ ℓ(γ).

Hint. Show that

x, y ∈ Rn, |x| ≥ 1, |y| ≥ 1 =⇒
∣∣∣ x|x| − y

|y|

∣∣∣ ≤ |x− y|,

and deduce that ℓP(σ) ≤ ℓP(γ).

12. Consider curves γ, σ : R → R2 given by

γ(u) = (1, u), σ(u) =
1

|γ(u)|
γ(u),

so σ(u) lies on the unit circle centered at the origin. Show that

σ(tan t) = C(t),

where C(t) is as in (3.1.34) and

tan t =
sin t

cos t
.

See Figure 3.1.5.

13. With ℓγ(u) defined to be the length of γ([0, u]) and ℓσ(u) and ℓC(t) similarly
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defined (cf. Exercise 9), deduce from Exercises 11–12 that, for 0 ≤ t < π/2,

(3.1.58) t ≤ tan t.

14. Deduce from Exercises 10 and 13 that, for 0 ≤ t < π/2,

sin t ≤ t ≤ tan t,

and hence

cos t ≤ sin t

t
≤ 1.

Use this to give a demonstration that

(3.1.59) lim
t→0

sin t

t
= 1,

independent of the use of (3.1.39).

15. Use the conclusion of Exercise 14, together with the identity

(1 + cos t)(1− cos t) = sin2 t,

to show that

(3.1.60) lim
t→0

1− cos t

t2
=

1

2
,

independent of the use of (3.1.39).

16. A derivation of the formula for (d/dt) sin t in (3.1.39) often found in calculus
texts goes as follows. One starts with the addition formula

(3.1.61) sin(t+ s) = (cos t)(sin s) + (sin t)(cos s),

and writes
1

h

(
sin(t+ h)− sin t

)
= cos t

sinh

h
− 1− cosh

h
sin t.

Use the results of Exercises 14 and 15 to conclude that

lim
h→0

sin(t+ h)− sin t

h
= cos t.

Remark. See §3.2 for a derivation of (3.1.61) of a different nature than typically
seen in trigonometry texts.

17. Using the formulas (3.1.39) for the derivatives of cos t and sin t, in conjunction
with the formulas (1.3.35)–(1.3.42) for power series, write

(3.1.62)

cos t =

n∑
k=0

(−1)k

(2k)!
t2k + Cb

2n(t) = C2n(t) + Cb
2n(t),

sin t =

n∑
k=0

(−1)k

(2k + 1)!
t2k+1 + Sb

2n+1(t) = S2n+1(t) + Sb
2n+1(t),
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Figure 3.1.6. Power series approximations to sin t

and show that

Cb
2n(t) = ± t2n+1

(2n+ 1)!
sin ξn,

Sb
2n+1(t) = ± t2n+2

(2n+ 2)!
sin ζn,

for some ξn, ζn ∈ [−|t|, |t|]. Deduce that

Cb
2n(t), S

b
2n+1(t) −→ 0, as n→ ∞,

uniformly for t in a bounded set. See Figure 3.1.6 for graphs of sin t and the power
series approximations S1(t), S3(t), and S5(t).

The formula u · v = |u| |v| cos θ

18. Show that
cos : [0, π] −→ [−1, 1],

and that this function is monotone decreasing, one-to-one, and onto.

19. Given nonzero vectors u and v in Rn, we define the angle between them, θ(u, v),
to be the unique number θ ∈ [0, π] such that

(3.1.63) u · v = |u| |v| cos θ,
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Figure 3.1.7. Setting for law of cosines

i.e., such that cos θ = u · v/(|u| |v|). Deduce from Cauchy’s inequality plus Exercise
18 that θ(u, v) is well defined.

20. Show that, if u, v are nonzero vectors in Rn, then

θ(u, v) = θ(Tu, Tv), ∀T ∈ O(n),

and

θ(u, v) = θ(au, bv), ∀ a, b ∈ R \ 0, b
a
> 0.

21. Say{e1, . . . , en} is the standard orthonormal basis of Rn. Take u, v as above.
Then take T ∈ O(n) such that

Tu = |u|e1,
T v = b1e1 + b2e2, bj ∈ R.

(Cf. Exercise 14 of §2.2.) Deduce that

θ(u, v) = θ(e1, b1e1 + b2e2).

22. Assume

y = (cos t)e1 + (sin t)e2, t ∈ [−π, π].
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Show that
θ(e1, y) = |t|.

23. Take u, v ∈ Rn as above. The law of cosines states that

(3.1.64) |u− v|2 = |u|2 + |v|2 − 2|u| |v| cos θ.
See Figure 3.1.7. Show that (3.1.64) is equivalent to (3.1.63).
Hint. Expand (u− v) · (u− v).
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3.2. The exponential and trigonometric functions

The exponential function is one of the central objects of analysis. In this section
we define the exponential function, both for real and complex arguments, and
establish a number of basic properties, including fundamental connections to the
trigonometric functions.

We construct the exponential function to solve the differential equation

(3.2.1)
dx

dt
= x, x(0) = 1.

We seek a solution as a power series

(3.2.2) x(t) =

∞∑
k=0

akt
k.

In such a case, if this series converges for |t| < R, then, by Proposition 1.3.2,

(3.2.3)

x′(t) =

∞∑
k=1

kakt
k−1

=

∞∑
ℓ=0

(ℓ+ 1)aℓ+1t
ℓ,

so for (3.2.1) to hold we need

(3.2.4) a0 = 1, ak+1 =
ak
k + 1

,

i.e., ak = 1/k!, where k! = k(k − 1) · · · 2 · 1. Thus (3.2.1) is solved by

(3.2.5) x(t) = et =

∞∑
k=0

1

k!
tk, t ∈ R.

This defines the exponential function et.

More generally, we can define

(3.2.6) ez =

∞∑
k=0

1

k!
zk, z ∈ C.

The ratio test then shows that the series (3.2.6) is absolutely convergent for all
z ∈ C, and uniformly convergent for |z| ≤ R, for each R <∞. Note that, again by
Proposition 1.3.2,

(3.2.7) eat =

∞∑
k=0

ak

k!
tk

solves

(3.2.8)
d

dt
eat = aeat,

and this works for each a ∈ C.
We claim that eat is the unique solution to

(3.2.9)
dy

dt
= ay, y(0) = 1.
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To see this, compute the derivative of e−aty(t):

(3.2.10)
d

dt

(
e−aty(t)

)
= −ae−aty(t) + e−atay(t) = 0,

where we use the product rule, (3.2.8) (with a replaced by −a) and (3.2.9). Thus
e−aty(t) is independent of t. Evaluating at t = 0 gives

(3.2.11) e−aty(t) = 1, ∀ t ∈ R,
whenever y(t) solves (3.2.9). Since eat solves (3.2.9), we have e−ateat = 1, hence

(3.2.12) e−at =
1

eat
, ∀ t ∈ R, a ∈ C.

Thus multiplying both sides of (3.2.11) by eat gives the asserted uniqueness:

(3.2.13) y(t) = eat, ∀ t ∈ R.

We can draw further useful conclusions from applying d/dt to products of ex-
ponential functions. In fact, let a, b ∈ C; then

(3.2.14)

d

dt

(
e−ate−bte(a+b)t

)
= −ae−ate−bte(a+b)t − be−ate−bte(a+b)t + (a+ b)e−ate−bte(a+b)t

= 0,

so again we are differentiating a function that is independent of t. Evaluation at
t = 0 gives

(3.2.15) e−ate−bte(a+b)t = 1, ∀ t ∈ R.
Again using (3.2.12), we get

(3.2.16) e(a+b)t = eatebt, ∀ t ∈ R, a, b ∈ C,
or, setting t = 1,

(3.2.17) ea+b = eaeb, ∀ a, b ∈ C.

We next record some properties of exp(t) = et for real t. The power series
(3.2.5) clearly gives et > 0 for t ≥ 0. Since e−t = 1/et, we see that et > 0 for all
t ∈ R. Since det/dt = et > 0, the function is monotone increasing in t, and since
d2et/dt2 = et > 0, this function is convex. (See Proposition 1.1.5 and the remark
that follows it.) Note that, for t > 0,

(3.2.18) et = 1 + t+
t2

2
+ · · · > 1 + t↗ +∞,

as t↗ ∞. Hence

(3.2.19) lim
t→+∞

et = +∞.

Since e−t = 1/et,

(3.2.20) lim
t→−∞

et = 0.

As a consequence,

(3.2.21) exp : R −→ (0,∞)
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Figure 3.2.1. Exponential function

is one-to-one and onto, with positive derivative, so there is a smooth inverse

(3.2.22) L : (0,∞) −→ R.

We call this inverse the natural logarithm:

(3.2.23) log x = L(x).

See Figures 3.2.1 and 3.2.2 for graphs of x = et and t = log x.

Applying d/dt to

(3.2.24) L(et) = t

gives

(3.2.25) L′(et)et = 1, hence L′(et) =
1

et
,

i.e.,

(3.2.26)
d

dx
log x =

1

x
.

Since log 1 = 0, we get

(3.2.27) log x =

∫ x

1

dy

y
.
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Figure 3.2.2. Logarithm

An immediate consequence of (3.2.17) (for a, b ∈ R) is the identity

(3.2.28) log xy = log x+ log y, x, y ∈ (0,∞).

We move on to a study of ez for purely imaginary z, i.e., of

(3.2.29) γ(t) = eit, t ∈ R.

This traces out a curve in the complex plane, and we want to understand which
curve it is. Let us set

(3.2.30) eit = c(t) + is(t),

with c(t) and s(t) real valued. First we calculate |eit|2 = c(t)2+s(t)2. For x, y ∈ R,

(3.2.31) z = x+ iy =⇒ z = x− iy =⇒ zz = x2 + y2 = |z|2.

It is elementary that

(3.2.32)
z, w ∈ C =⇒ zw = z w =⇒ zn = zn,

and z + w = z + w.

Hence

(3.2.33) ez =

∞∑
k=0

zk

k!
= ez.
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Figure 3.2.3. The circle eit = c(t) + is(t)

In particular,

(3.2.34) t ∈ R =⇒ |eit|2 = eite−it = 1.

Hence t 7→ γ(t) = eit traces out the unit circle centered at the origin in C. Also

(3.2.35) γ′(t) = ieit =⇒ |γ′(t)| ≡ 1,

so γ(t) moves at unit speed on the unit circle. We have

(3.2.36) γ(0) = 1, γ′(0) = i.

Thus, for moderate t > 0, the arc from γ(0) to γ(t) is an arc on the unit circle,
pictured in Figure 3.2.3, of length

(3.2.37) ℓ(t) =

∫ t

0

|γ′(s)| ds = t.

In other words, γ(t) = eit is the parametrization of the unit circle by arc length,
introduced in (3.1.33). As in (3.1.34), standard definitions from trigonometry give

(3.2.38) cos t = c(t), sin t = s(t).

Thus (3.2.30) becomes

(3.2.39) eit = cos t+ i sin t,
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which is Euler’s formula. The identity

(3.2.40)
d

dt
eit = ieit,

applied to (3.2.39), yields

(3.2.41)
d

dt
cos t = − sin t,

d

dt
sin t = cos t.

Compare the derivation of (3.1.39). We can use (3.2.17) to derive formulas for sin
and cos of the sum of two angles. Indeed, comparing

(3.2.42) ei(s+t) = cos(s+ t) + i sin(s+ t)

with

(3.2.43) eiseit = (cos s+ i sin s)(cos t+ i sin t)

gives

(3.2.44)
cos(s+ t) = (cos s)(cos t)− (sin s)(sin t),

sin(s+ t) = (sin s)(cos t) + (cos s)(sin t).

Further material on the trigonometric functions is developed in the exercises below.

Remark. An alternative approach to Euler’s formula (3.2.39) is to take the power
series for eit, via (3.2.7), and compare it to the power series for cos t and sin t, given
in (3.1.62). This author regards the demonstration via (3.2.33)–(3.2.37), which
yields a direct geometrical description of the curve γ(t) = eit, to be more natural
and fundamental than one via the observation of coincident power series.

For yet another derivation of Euler’s formula, we can set

(3.2.45) cis(t) = cos t+ i sin t,

and use (3.2.41) (relying on the proof in (3.1.39)) to get

(3.2.46)
d

dt
cis(t) = i cis(t), cis(0) = 1.

Then the uniqueness result (3.2.9)–(3.2.13) implies that cis(t) = eit.

Exercises

1. Show that

(3.2.47) |t| < 1 ⇒ log(1 + t) =

∞∑
k=1

(−1)k−1

k
tk = t− t2

2
+
t3

3
− · · · .

Hint. Rewrite (3.2.27) as

log(1 + t) =

∫ t

0

ds

1 + s
,

expand
1

1 + s
= 1− s+ s2 − s3 + · · · , |s| < 1,
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Figure 3.2.4. Regular hexagon, a = eπi/3

and integrate term by term.

2. In §3.1, π was defined to be half the length of the unit circle S1. Equivalently,
π is the smallest positive number such that eπi = −1. Show that

eπi/2 = i, eπi/3 =
1

2
+

√
3

2
i.

Hint. See Figure 3.2.4.

3. Show that

cos2 t+ sin2 t = 1,

and

1 + tan2 t = sec2 t,

where

tan t =
sin t

cos t
, sec t =

1

cos t
.
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4. Show that
d

dt
tan t = sec2 t = 1 + tan2 t,

d

dt
sec t = sec t tan t.

5. Evaluate ∫ y

0

dx

1 + x2
.

Hint. Set x = tan t.

6. Evaluate ∫ y

0

dx√
1− x2

.

Hint. Set x = sin t.

7. Show that
π

6
=

∫ 1/2

0

dx√
1− x2

.

Use (3.1.27)–(3.1.31) to obtain a rapidly convergent infinite series for π.
Hint. Show that sinπ/6 = 1/2. Use Exercise 2 and the identity eπi/6 = eπi/2e−πi/3.
Note that ak in (3.1.29)-(3.1.31) satisfies ak+1 = (k + 1/2)ak. Deduce that

(3.2.48) π =

∞∑
k=0

bk
2k + 1

, b0 = 3, bk+1 =
1

4

2k + 1

2k + 2
bk.

Note that bk ≤ 3 · 4−k. Deduce that

(3.2.49) pi(n) =

n∑
k=0

bk
2k + 1

=⇒ 0 < π − pi(n) <
1

n+ 1
2−2n−1.

In particular,

(3.2.50) π − pi(20) < 10−13.

8. Set

cosh t =
1

2
(et + e−t), sinh t =

1

2
(et − e−t).

Show that
d

dt
cosh t = sinh t,

d

dt
sinh t = cosh t,

and

cosh2 t− sinh2 t = 1.

9. Evaluate ∫ y

0

dx√
1 + x2

.

Hint. Set x = sinh t.
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10. Evaluate ∫ y

0

√
1 + x2 dx.

11. Using Exercise 4, verify that

d

dt
(sec t+ tan t) = sec t(sec t+ tan t),

d

dt
(sec t tan t) = sec3 t+ sec t tan2 t,

= 2 sec3 t− sec t.

12. Next verify that
d

dt
log | sec t| = tan t,

d

dt
log | sec t+ tan t| = sec t.

13. Now verify that ∫
tan t dt = log | sec t|,∫
sec t dt = log | sec t+ tan t|,

2

∫
sec3 t dt = sec t tan t+

∫
sec t dt.

(Here and below, we omit the arbitrary additive constants in indefinite integrals.)
See the next exercise, and also Exercises 40–43 for other approaches to evaluating
these and related integrals.

14. Here is another approach to the evaluation of
∫
sec t dt. We evaluate

I(u) =

∫ u

0

dv√
1 + v2

in two ways.
(a) Using v = sinh y, show that

I(u) =

∫ sinh−1 u

0

dy = sinh−1 u.

(b) Using v = tan t, show that

I(u) =

∫ tan−1 u

0

sec t dt.

Deduce that ∫ x

0

sec t dt = sinh−1(tanx), for |x| < π

2
.
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Deduce from this that

cosh
(∫ x

0

sec t dt
)
= secx,

and hence that

exp
(∫ x

0

sec t dt
)
= secx+ tanx.

Compare these formulas with the analogue in Exercise 13.

15. Show that

Ea
n(t) =

n∑
k=0

ak

k!
tk satisfies

d

dt
Ea

n(t) = aEa
n−1(t).

From this, show that

d

dt

(
e−atEa

n(t)
)
= −a

n+1

n!
tne−at.

16. Use Exercise 15 and the fundamental theorem of calculus to show that∫
tne−at dt = − n!

an+1
Ea

n(t)e
−at

= − n!

an+1

(
1 + at+

a2t2

2!
+ · · ·+ antn

n!

)
e−at.

17. Take a = −i in Exercise 16 to produce formulas for∫
tn cos t dt and

∫
tn sin t dt.

Exercises on xr

We define xr for x > 0 and r ∈ C, as follows:
(3.2.51) xr = er log x.

18. Show that if r = n ∈ N, (3.2.51) yields xn = x · · ·x (n factors).

19. Show that if r = 1/n, x1/n defined by (3.2.51) satisfies

x = x1/n · · ·x1/n (n factors).

21. Show that, for x > 0,

xr+s = xrxs, and (xr)s = xrs, ∀ r, s ∈ C.

22. Show that, given r ∈ C,
d

dx
xr = rxr−1, ∀x > 0.
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22A. For y > 0, evaluate
∫ y

0
cos(log x) dx and

∫ x

0
sin(log x) dx.

Hint. Deduce from (3.2.51) and Euler’s formula that

cos(log x) + i sin(log x) = xi.

Use the result of Exercise 22 to integrate xi.

23. Show that, given r, rj ∈ C, x > 0,

rj → r =⇒ xrj → xr.

24. Given a > 0, compute
d

dx
ax, x ∈ R.

25. Compute
d

dx
xx, x > 0.

26. Prove that

x1/x −→ 1, as x→ ∞.

Hint. Show that
log x

x
−→ 0, as x→ ∞.

Some unbounded integrable functions

27. Given g(s) = 1/
√
1− s2, show that g ∈ R#([−1, 1]), and that∫ 1

−1

ds√
1− s2

= π.

28. Given f(t) = 1/
√
t(1− t), show that f ∈ R#([0, 1]), and that∫ 1

0

dt√
t(1− t)

= π.

Hint. Set t = s2.

The arctangent

29. Show that

tan :
(
−π
2
,
π

2

)
−→ R

is one-to-one and onto, with inverse

tan−1 : R −→
(
−π
2
,
π

2

)
,
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Figure 3.2.5. Power series approximations Sn(x) to tan−1 x

given, via Exercise 5, by

tan−1 x =

∫ x

0

dt

1 + t2
.

30. Use the integral formula above to show that tan−1 x is given by the power series

tan−1 x =

∞∑
k=0

(−1)k
x2k+1

2k + 1
, for |x| ≤ 1.

Show that this series diverges for |x| > 1.

See Figure 3.2.5 for the graphs of tan−1 x over |x| ≤ 3 and of Sn(x) over
|x| ≤ 1.45, where

Sn(x) =

n∑
k=0

(−1)k
x2k+1

2k + 1
,

and 1 ≤ n ≤ 5.
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Making a trig table

These exercises guide the reader who can use a computer or calculator for numerical
work through the following task:

31. Make a table of cos ℓ◦ and sin ℓ◦, for the integers ℓ. Achieve at least 10 digits
of accuracy.

Here ℓ◦ is the same as (π/180)ℓ radians, so, by Euler’s identity,

(3.2.52) cos ℓ◦ + i sin ℓ◦ = eiθℓ , θℓ =
πℓ

180
.

It suffices to compute cos ℓ◦ and sin ℓ◦ for 0 ≤ ℓ ≤ 45, since trigonometric identities
then lead to the computation for other integer values of ℓ.

One approach would be to use the power series for ez, with z = iθℓ. To im-
plement this requires having an accurate numerical evaluation of π. A method of
obtaining this was presented in Exercise 7. Here we want to explore an alterna-
tive approach to the computation of (3.2.52), which does not require a previously
computed evaluation of π. It starts with the following identities:

(3.2.53) eπi/3 =
1

2
(1 + i

√
3), eπi/4 =

√
2

2
(1 + i),

cf. Exercise 2, supplemented by

(3.2.54) e2πi/5 = c5 + is5, c5 =
1

4
(
√
5− 1),

obtained in Exercise 4 of Appendix A.4, which in turn yields

(3.2.55) s5 =
√
1− c25 =

1

4

√
10 + 2

√
5.

In light of this, we formulate the following exercise:

32. Numerically evaluate the real and imaginary parts of

eπi/3, eπi/4, e2πi/5.

Equivalently, numerically evaluate

√
3,

√
3,

√
5,

√
10 + 2

√
5.

The following expands the scope of Exercise 32.

33. Here is a way to approximate
√
a, given a ∈ R+. Suppose you have an

approximation xk to
√
a,

xk −
√
a = δk.

Square this to obtain x2k + a− 2xk
√
a = δ2k, hence

√
a = xk+1 −

δ2k
2xk

, xk+1 =
a+ x2k
2xk

.
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Figure 3.2.6. Special angles θ, at which to evaluate sin θ and cos θ

Then xk+1 is an improved approximation, as long as |δk| < 2xk. One can iterate
this. Try it on

√
2 ≈ 7

5
,

√
3 ≈ 7

4
,

√
5 ≈ 9

4
.

How many iterations does it take to approximate these quantities to 12 digits of
accuracy? Going further, take 10 + 2

√
5 ≈ 14.5, and hence√

10 + 2
√
5 ≈ 3.8.

34. Verify the following identities:

eπi/2e−πi/3 = eπi/6,

eπi/2e−2πi/5 = eπi/10,

eπi/3e−πi/4 = eπi/12,

e2πi/5e−πi/3 = eπi/15.

See Figure 3.2.6 for representations of the relevant angles.

35. Verify also that

eπi/12e−πi/15 = eπi/60,
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and deduce from results of Exercise 34 that

eπi/60 = e2πi/3e−πi/4e−2πi/5

=

√
2

4
(−1 + i

√
3)(1− i)(c5 − is5).

36. Deduce from Exercise 35 that

2
√
2 sin

π

60
= (

√
3 + 1)c5 − (

√
3− 1)s5.

Use this to produce a numerical evaluation of sin(π/60). Similarly, numerically
evaluate cos(π/60).

37. Use the results of Exercises 32–36 to fill in the trig table for sin ℓ◦ and cos ℓ◦,
when ℓ is an integer in {0, . . . , 45} that is divisible by 3.

38. (Application to the evaluation of π.) Use the result of Exercise 36 to produce
a numerical evaluation of

tan
π

60
= α.

Having this result, apply the power series in Exercise 30 to tan−1 α, to evaluate π
to 10 digits of accuracy. How many terms in the power series are needed for this
task?

39. Think about ways to proceed from results of the exercises above to numerically
evaluate

eπi/180 = cos 1◦ + i sin 1◦,

and from there to complete Exercise 31.
One approach. Note that (eπi/180)3 = eπi/60, which is evaluated in Exercise 36. To
evaluate

(1 + a)1/3, given a ∈ C, small,

take 1 + a/3 as a first approximation. Then evaluate

(1 + a)(1 + a/3)−3 = 1 + a1,

with a1 ∈ C, substantially smaller, and iterate, obtaining

(1 + a)1/3 =
(
1 +

a

3

)(
1 +

a1
3

)
· · · .

Alternative. Having evaluated π in Exercise 38, plug this into the power series for
eπi/180.
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Figure 3.3.1. Unit tangent and normal vectors to a parabolic curve

3.3. Curvature of planar curves

The curvature of a curve γ : (a, b) → Rn is a measure of how it is not straight.
Assume γ has non-vanishing velocity. We can parametrize γ by arclength, so we
have the unit tangent vector

(3.3.1) γ′(s) = T (s), ∥T (s)∥ ≡ 1.

Then γ is a straight line if and only if T (s) is constant. Thus a measure of how γ
curves is given by

(3.3.2) T ′(s).

We call this the curvature vector of γ. Note that

(3.3.3) T · T ≡ 1 =⇒ T ′(s) · T (s) = 0,

so T ′(s) is orthogonal to T (s).

Let us now specialize to planar curves, so γ : (a, b) → R2. In such a case, we
apply counterclockwise rotation by 90◦ to T (s) to get a unit normal to γ:

(3.3.4) N(s) = JT (s), J =

(
0 −1
1 0

)
.

(Here we represent vectors in R2 as column vectors.) See Figure 3.3.1 for an illus-
tration of the unit tangent and normal vectors to a parabolic curve at a point.
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In this situation, (3.3.3) implies that T ′(s) is parallel to N(s), say

(3.3.5) T ′(s) = κ(s)N(s),

and we call κ(s) the curvature of γ. Note that, by (3.3.4),

(3.3.6)

N ′(s) = κ(s)JN(s)

= κ(s)J2T (s)

= −κ(s)T (s).

We set up the pair of equations

(3.3.7)
T ′(s) = κ(s)N(s),

N ′(s) = −κ(s)T (s),

as a precursor to the more elaborate Frenet-Serret equations for curves in R3, given
in (3.4.19). However, in the planar case, we can make do with

(3.3.8) T ′(s) = κ(s)JT (s)

as the defining equation for curvature of γ.

This sets us up to consider the following problem. Given a smooth function

(3.3.9) κ : (a, b) −→ R,

see if it determines a unit-speed curve γ : (a, b) → R2 with curvature κ. We should
impose initial conditions: take s0 ∈ (a, b) and specify

(3.3.10) γ(s0) = p0, T (s0) = T0, p0, T0 ∈ R2, ∥T0∥ = 1.

As we will show below, (3.3.8)–(3.3.10) has a unique solution

(3.3.11) T : (a, b) −→ R2.

Furthermore,

(3.3.12)

d

ds
∥T (s)∥2 = 2T ′(s) · T (s)

= 2κ(s)JT (s) · T (s)
= 0,

so

(3.3.13) ∥T (s)∥ = 1, ∀ s ∈ (a, b).

Then we take

(3.3.14) γ(s) = p0 +

∫ s

s0

T (τ) dτ,

to obtain the desired curve.

We will produce a specific formula for the solution to (3.3.8)–(3.3.10). We start
with the case

(3.3.15) κ(s) ≡ κ, real constant.

In this case, the differential equation (3.3.8) becomes

(3.3.16)
dT

ds
= κJT (s).
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Say s0 = 0, so the initial condition is

(3.3.17) T (0) = T0.

This equation is formally similar to the equation (3.2.9), with a ∈ C replaced by
κJ ∈M(2,R). The solution is given in terms of the matrix exponential. In general,
for A ∈M(n,R), or A ∈M(n,C), we set

(3.3.18) etA =

∞∑
k=0

tk

k!
Ak.

A development of the matrix exponential, parallel to that of the exponential of
complex numbers, is presented in §C.2. It follows that the solution to (3.3.16)–
(3.3.17) is

(3.3.19) T (s) = esκJT0.

This leaves us with the task of evaluating the matrix exponential etJ , for t ∈ R.
In view of the similarity

(3.3.20) J2 = −I, i2 = −1,

it is natural to guess that etJ satisfies the following variant of the Euler identity:

(3.3.21) etJ = (cos t)I + (sin t)J, t ∈ R.

This is the case. One way to prove it is the following. Denote the right side of
(3.3.21) by X(t). Then, thanks to (3.1.39), or (3.2.41),

(3.3.22)
X ′(t) = −(sin t)I + (cos t)J

= JX(t),

and X(0) = I. This has the same form as (3.3.16)–(3.3.17), and §C.2 shows that
this leads to X(t) = etJ , hence to (3.3.21).

Returning to (3.3.18), we see that

(3.3.23) T (s) = (cos sκ)T0 + (sin sκ)JT0,

and

(3.3.24) γ(s) = p0 +

∫ s

0

T (τ) dτ.

For example, if

(3.3.25) γ(0) =

(
1

0

)
, T (0) =

(
0

1

)
, κ = 1,

we have

(3.3.26) T (s) =

(
− sin s

cos s

)
,

hence

(3.3.27) γ(s) =

(
1

0

)
+

∫ s

0

(
− sin τ

cos τ

)
dτ =

(
cos s

sin s

)
,

revealing γ as the unit circle.
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We return to (3.3.8), for general smooth functions κ(s). Using the formula

(3.3.28)
d

ds
eα(s)J = α′(s)Jeα(s)J ,

we see that (3.3.8)–(3.3.10) is solved by

(3.3.29) T (s) = eα(s)JT0, α(s) =

∫ s

s0

κ(σ) dσ.

Exercises

1. Consider a curve c(t) in R2 (not necessarily unit speed), with velocity v(t) and
acceleration a(t), given by

v(t) = c′(t), a(t) = v′(t).

Assume v(t) ̸= 0. Take

T (t) =
v(t)

∥v(t)∥
, N(t) = JT (t), s(t) =

∫ t

t0

∥v(τ)∥ dτ,

so s(t) is the arclength parameter. Show that

(3.3.30) a(t) =
d2s

dt2
T (t) + κ(t)

(ds
dt

)2
N(t).

Hint. Differentiate v(t) = (ds/dt)T (t) and use the chain rule dT/dt = (ds/dt)(dT/ds).

2. Deduce from Exercise 1 that

κ
(ds
dt

)2
= a ·N =

a · Jv
∥v∥

,

hence

(3.3.31) κ =
a · Jv
∥v∥3

.

3. Consider the ellipse

γ(t) = (a cos t, b sin t).

Use the results of Exercise 2 to compute its curvature. Verify that, for such an
ellipse,

κ(t) =
ab

|γ(t+ π/2)|3
.

Similarly, compute the curvature of the following curves:

4. Parabola

γ(t) = (t, t2).

5. Sine curve

γ(t) = (t, sin t).
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6. Spiral
γ(t) = (et cos t, et sin t).

7. Find the unit-speed curve γ : (0,∞) → R2 satisfying

γ(1) =

(
0

0

)
, γ′(1) =

(
1

0

)
, κ(s) =

1

s
.

Hint. To compute ∫ s

1

(
cos log σ

sin log σ

)
dσ,

use ∫ s

1

(cos log σ + i sin log σ) dσ

=

∫ s

1

ei log σ dσ =

∫ s

1

σi dσ =
σi+1

i+ 1

∣∣∣s
1
.



3.4. Curvature and torsion of curves in R3 117

3.4. Curvature and torsion of curves in R3

Given a curve c(t) = (x(t), y(t), z(t)) in 3-space, we define its velocity and acceler-
ation by

(3.4.1) v(t) = c′(t), a(t) = v′(t) = c′′(t).

We also define its speed s′(t) and arclength by

(3.4.2) s′(t) = ∥v(t)∥, s(t) =

∫ t

t0

s′(τ) dτ,

assuming we start at t = t0. We define the unit tangent vector to the curve as

(3.4.3) T (t) =
v(t)

∥v(t)∥
.

Henceforth we assume the curve is parametrized by arclength.

We define the curvature κ(s) of the curve and the normal N(s) by

(3.4.4) κ(s) =
∥∥∥dT
ds

∥∥∥, dT

ds
= κ(s)N(s).

Note that

(3.4.5) T (s) · T (s) = 1 =⇒ T ′(s) · T (s) = 0,

so indeed N(s) is orthogonal to T (s). We then define the binormal B(s) by

(3.4.6) B(s) = T (s)×N(s).

For each s, the vectors T (s), N(s) and B(s) are mutually orthogonal unit vectors,
known as the Frenet frame for the curve c(s). Rules governing the cross product
yield

(3.4.7) T (s) = N(s)×B(s), N(s) = B(s)× T (s).

For material on the cross product, see §2.5. The result (3.4.7) follows from (2.5.7);
see Exercise 5 in §2.5. See Figure 3.4.1 for an illustration of a Frenet frame at a
point.

The torsion of a curve measures the change in the plane generated by T (s) and
N(s), or equivalently it measures the rate of change of B(s). Note that, parallel to
(3.4.5),

B(s) ·B(s) = 1 =⇒ B′(s) ·B(s) = 0.

Also, differentiating (3.4.6) and using (3.4.4), we have

(3.4.8) B′(s) = T ′(s)×N(s) + T (s)×N ′(s) = T (s)×N ′(s) =⇒ B′(s) · T (s) = 0.

We deduce that B′(s) is parallel to N(s). We define the torsion by

(3.4.9)
dB

ds
= −τ(s)N(s).

We complement the formulas (3.4.4) and (3.4.9) for dT/ds and dB/ds with one
for dN/ds. Since N(s) = B(s)× T (s), we have

(3.4.10)
dN

ds
=
dB

ds
× T +B × dT

ds
= τN × T + κB ×N,
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Figure 3.4.1. Frenet frame at a point on a 3D curve

or

(3.4.11)
dN

ds
= −κ(s)T (s) + τ(s)B(s).

Together, (3.4.4), (3.4.9) and (3.4.11) are known as the Frenet-Serret formulas.

Example. Pick a, b > 0 and consider the helix

(3.4.12) c(t) = (a cos t, a sin t, bt).

Then v(t) = (−a sin t, a cos t, b) and ∥v(t)∥ =
√
a2 + b2, so we can pick s = t

√
a2 + b2

to parametrize by arc length. We have

(3.4.13) T (s) =
1√

a2 + b2
(−a sin t, a cos t, b),

hence

(3.4.14)
dT

ds
=

1

a2 + b2
(−a cos t,−a sin t, 0).

By (7.4), this gives

(3.4.15) κ(s) =
a

a2 + b2
, N(s) = (− cos t,− sin t, 0).
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Hence

(3.4.16) B(s) = T (s)×N(s) =
1√

a2 + b2
(b sin t,−b cos t, a).

Then

(3.4.17)
dB

ds
=

1

a2 + b2
(b cos t, b sin t, 0),

so, by (3.4.9),

(3.4.18) τ(s) =
b

a2 + b2
.

In particular, for the helix (3.4.12), we see that the curvature and torsion are
constant.

Let us collect the Frenet-Serret equations

(3.4.19)

dT

ds
= κN

dN

ds
= −κT + τB

dB

ds
= − τN

for a smooth curve c(s) in R3, parametrized by arclength, with unit tangent T (s),
normal N(s), and binormal B(s), given by

(3.4.20) N(s) =
1

κ(s)
T ′(s), B(s) = T (s)×N(s),

assuming κ(s) = ∥T ′(s)∥ > 0.

The differential equation (3.4.19) is treated in texts on differential equations.
A treatment can be found in [19]. If κ(s) and τ(s) are given smooth functions on
an interval I = (a, b) and s0 ∈ I, then, given T0, N0, B0 ∈ R3, (3.4.19) has a unique
solution on s ∈ I satisfying

(3.4.21) T (s0) = T0, N(s0) = N0, B(s0) = B0.

We now establish the following.

Proposition 3.4.1. Assume κ and τ are given smooth functions on I, with κ > 0
on I. Assume {T0, N0, B0} is an orthonormal basis of R3, such that B0 = T0×N0.
Then there exists a smooth, unit-speed curve c(s), s ∈ I, for which the solution to
(3.4.19) and (3.4.21) is the Frenet frame.

To construct the curve, take T (s), N(s), and B(s) to solve (3.4.19) and (3.4.21),
pick p ∈ R3 and set

(3.4.22) c(s) = p+

∫ s

s0

T (σ) dσ,

so T (s) = c′(s) is the velocity of this curve. To deduce that {T (s), N(s), B(s)} is
the Frenet frame for c(s), for all s ∈ I, we need to know:

(3.4.23) {T (s), N(s), B(s)} orthonormal, with B(s) = T (s)×N(s), ∀ s ∈ I.
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In order to pursue the analysis further, it is convenient to form the 3 × 3
matrix-valued function

(3.4.24) F (s) = (T (s), N(s), B(s)),

whose columns consist respectively of T (s), N(s), and B(s). Then (3.4.23) is
equivalent to

(3.4.25) F (s) ∈ SO(3), ∀ s ∈ I,

with SO(3) defined as above (2.5.7). The hypothesis on {T0, N0, B0} stated in
Proposition 3.4.1 is equivalent to F0 = (T0, N0, B0) ∈ SO(3). Now F (s) satisfies
the differential equation

(3.4.26) F ′(s) = F (s)A(s), F (s0) = F0,

where

(3.4.27) A(s) =

 0 −κ(s) 0
κ(s) 0 −τ(s)
0 τ(s) 0

 .

Note that

(3.4.28)
dF ∗

ds
= A(s)∗F (s)∗ = −A(s)F (s)∗,

since A(s) in (3.4.27) is skew-adjoint. Hence

(3.4.29)

d

ds
F (s)F (s)∗ =

dF

ds
F (s)∗ + F (s)

dF ∗

ds
= F (s)A(s)F (s)∗ − F (s)A(s)F (s)∗

= 0.

Thus, whenever (3.4.26)–(3.4.27) hold,

(3.4.30) F0F
∗
0 = I =⇒ F (s)F (s)∗ ≡ I,

and we have (3.4.23).

Let us specialize the system (3.4.19), or equivalently (3.4.26), to the case where
κ and τ are constant, i.e.,

(3.4.31) F ′(s) = F (s)A, A =

0 −κ 0
κ 0 −τ
0 τ 0

 ,

with solution

(3.4.32) F (s) = F0 e
(s−s0)A.

We have already seen in that a helix of the form (3.4.12) has curvature κ and torsion
τ , with

(3.4.33) κ =
a

a2 + b2
, τ =

b

a2 + b2
,

and hence

(3.4.34) a =
κ

κ2 + τ2
, b =

τ

κ2 + τ2
.

In (3.4.12), s and t are related by t = s
√
κ2 + τ2.
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We can also see such a helix arise via a direct calculation of esA, which we now
produce. First, a straightforward calculation gives, for A as in (3.4.31),

(3.4.35) det(λI −A) = λ(λ2 + κ2 + τ2),

hence

(3.4.36) Spec(A) = {0,±i
√
κ2 + τ2}.

An inspection shows that we can take

(3.4.37) v1 =
1√

κ2 + τ2

τ0
κ

 , v2 =

0
1
0

 , v3 =
1√

κ2 + τ2

−κ
0
τ

 ,

and then

(3.4.38) Av1 = 0, Av2 =
√
κ2 + τ2 v3, Av3 = −

√
κ2 + τ2 v2.

In particular, with respect to the basis {v2, v3} of V = Span{v2, v3}, A|V has the
matrix representation

(3.4.39) B =
√
κ2 + τ2

(
0 −1
1 0

)
.

We see that

(3.4.40) esAv1 = v1,

while, in light of the calculations giving (3.3.21),

(3.4.41)
esAv2 = (cos s

√
κ2 + τ2)v2 +(sin s

√
κ2 + τ2)v3,

esAv3 = −(sin s
√
κ2 + τ2)v2+(cos s

√
κ2 + τ2)v3.

For general variable κ(s) and τ(s), the system (3.4.26) does not have a neat
closed-form solution. However, here is a class, more general than the case of con-
stant curvature and torsion, where it does. Assume there exist κ0, τ0 ∈ R and a
smooth function β : I → R such that

(3.4.42) κ(s) = β(s)κ0, τ(s) = β(s)τ0.

Then, in (3.4.27),

(3.4.43) A(s) = β(s)A0, A0 =

 0 −κ0 0
κ0 0 −τ0
0 τ0 0

 ,

and, parallel to (3.3.29), a solution to (3.4.26) is given by

(3.4.44) F (s) = F0e
α(s)A0 , α(s) =

∫ s

s0

β(τ) dτ.
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Exercises

1. Consider a curve c(t) in R3, not necessarily parametrized by arclength. Show
that the acceleration a(t) is given by

(3.4.45) a(t) =
d2s

dt2
T + κ

(ds
dt

)2
N.

Hint. Differentiate v(t) = (ds/dt)T (t) and use the chain rule dT/dt = (ds/dt)(dT/ds),
plus (3.4.4).

2. Show that

(3.4.46) κB =
v × a

∥v∥3
.

Hint. Take the cross product of both sides of (3.4.45) with T , and use (3.4.6).

3. In the setting of Exercises 1–2, show that

(3.4.47) κ2τ∥v∥6 = −a · (v × a′).

Deduce from (3.4.46)–(3.4.47) that

(3.4.48) τ =
(v × a) · a′

∥v × a∥2
.

Hint. Proceed from (3.4.46) to

d

dt
(κ∥v∥3)B + κ∥v∥3 dB

dt
=

d

dt
(v × a) = v × a′,

and use dB/dt = −τ(ds/dt)N , as a consequence of (3.4.9). Then dot with a, and
use a ·N = κ∥v∥2, from (3.4.45), to get (3.4.47).

4. Consider the curve c(t) in R3 given by

c(t) = (a cos t, b sin t, t),

where a and b are given positive constants. Compute the curvature, torsion, and
Frenet frame.
Hint. Use (3.4.46) to compute κ and B. Then use N = B × T . Use (3.4.48) to
compute τ .

5. Suppose c and c̃ are two curves, both parametrized by arc length over 0 ≤ s ≤ L,
and both having the same curvature κ(s) > 0 and the same torsion τ(s). Show
that there exit x0 ∈ R3 and A ∈ O(3) such that

c̃(s) = Ac(s) + x0, ∀ s ∈ [0, L].

Hint. To begin, show that if their Frenet frames coincide at s = 0, i.e., T̃ (0) =

T (0), Ñ(0) = N(0), B̃(0) = B(0), then T̃ ≡ T, Ñ ≡ N, B̃ ≡ B.
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6. Suppose c is a curve in R3 with curvature κ > 0. Show that there exists a plane
in which c(t) lies for all t if and only if τ ≡ 0.
Hint. When τ ≡ 0, the plane should be parallel to the orthogonal complement of
B.

7. Let γ : I → R3 be a smooth, unit-speed curve, with curvature and torsion κ, τ .
Assume κ > 0. Take A ∈ O(3), and set

σ(s) = Aγ(s).

Show that the curvature κσ and torsion τσ of σ satisfy κσ(s) = κ(s), and

τσ(s) = ±τ(s), if detA = ±1.

8. Let γ : I → R3 be a unit-speed curve, with Frenet frame (T,N,B). Assume
κ, τ > 0. Set

σ(s) =

∫ s

0

B(t) dt,

also a unit-speed curve. Show that it has the Frenet frame

Tσ = B, Nσ = −N, Bσ = T.

Compute its curvature and torsion.

Curves on the unit sphere in R3

In Exercises 9–12, let γ : I → R3 be a unit-speed curve satisfying

γ(s) · γ(s) ≡ 1, i.e., γ : I −→ S2.

9. Show that

γ(s) · T ′(s) ≡ −1, i.e., κ(s) γ(s) ·N(s) ≡ −1,

and hence the curvature satisfies

κ(s) ≥ 1.

Hint. First show γ · T ≡ 0. Apply d/ds to this.

10. For s ∈ I, set

ν(s) = γ(s)× T (s).

Show that (γ(s), T (s), ν(s)) is an orthonormal basis of R3. Show that, for each
s ∈ I,

(3.4.49) N(s) = a(s)γ(s) + b(s)ν(s),

with

a(s) = N(s) · γ(s) = − 1

κ(s)
.

Hint. Use N · T ≡ 0 and ν · γ ≡ 0.
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11. Deduce that
κ ≡ 1 ⇐⇒ b ≡ 0 ⇐⇒ N ≡ −γ,

hence
κ(s) ≡ 1 ⇐⇒ γ′′(s) ≡ −γ(s).

12. In (3.4.49), show that
b(s) = γ(s) ·B(s).

Deduce that

b′(s) =
τ(s)

κ(s)
.

Hint. Show that b = N · (γ × T ) = γ · (T ×N).



Chapter 4

Multivariable differential
calculus

This chapter develops differential calculus on domains in n-dimensional Euclidean
space Rn.

In §4.1 we define the derivative of a function F : O → Rm, where O is an open
subset of Rn, as a linear map from Rn to Rm. We establish some basic properties,
such as the chain rule. We use the one-dimensional integral as a tool to show that,
if the matrix of first order partial derivatives of F is continuous on O, then F is
differentiable on O.

In §4.2 we consider higher derivatives of functions with additional smoothness.
We discuss two convenient multi-index notations for higher derivatives, and an
alternative multi-linear notation. We derive the Taylor formula with remainder for
the power series of a smooth function F on O ⊂ Rn, producing expressions of this
formula in each of these three notations.

We also look at critical points of a real-valued, smooth function F on O ⊂
Rn, and give conditions that such a critical point gives a local maximum, a local
minimum, or a saddle, in terms of the behavior of the n×n matrix of second-order
partial derivatives of F .

In §4.3 we establish the Inverse Function Theorem, stating that a smooth map
F : O → Rn with an invertible derivative DF (p) has a smooth inverse defined near
q = F (p). We derive the Implicit Function Theorem as a consequence of this. As a
tool in proving the Inverse Function Theorem, we use a fixed point theorem known
as the Contraction Mapping Principle. The inverse and implicit function theorems
will be essential tools in our study of surfaces, in Chapter 6.
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4.1. The derivative

Let O be an open subset of Rn, and F : O → Rm a continuous function. We say
F is differentiable at a point x ∈ O, with derivative L, if L : Rn → Rm is a linear
transformation such that, for y ∈ Rn, small,

(4.1.1) F (x+ y) = F (x) + Ly +R(x, y)

with

(4.1.2)
∥R(x, y)∥

∥y∥
→ 0 as y → 0.

We write (4.1.2) as

(4.1.3) R(x, y) = o(∥y∥).

In (4.1.2), we use the Euclidean norm on Rn and Rm. As seen in §2.1, this norm is
defined by

(4.1.4) ∥x∥ =
(
x21 + · · ·+ x2n

)1/2
for x = (x1, . . . , xn) ∈ Rn. We denote the derivative at x by DF (x) = L, and
rewrite (4.1.1) as

(4.1.5) F (x+ y) = F (x) +DF (x)y +R(x, y).

In particular, if {e1, . . . , en} denotes the standard basis of Rn, and if DF (x)
exists, we have, for h ∈ R small,

(4.1.6) F (x+ hej) = F (x) + hDF (x)ej + o(h),

or equivalently

(4.1.7) DF (x)ej = lim
h→0

1

h

[
F (x+ hej)− F (x)

]
.

This last limit, when it exists, is the partial derivative (compare (1.1.45)):

(4.1.8)
∂F

∂xj
(x) = lim

h→0

1

h

[
F (x+ hej)− F (x)

]
.

Thus, if F is differentiable at x, we have

(4.1.9) DF (x)ej =
∂F

∂xj
(x) =

∂F1/∂xj
...

∂Fm/∂xj

 .

Consequently, with respect to the standard bases of Rn and Rm, DF (x) is simply
the matrix of partial derivatives,

(4.1.10) DF (x) =

(
∂Fj

∂xk

)
=

∂F1/∂x1 · · · ∂F1/∂xn
...

...
∂Fm/∂x1 · · · ∂Fm/∂xn

 ,
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so that, if v = (v1, . . . , vn)
t, (regarded as a column vector) then

(4.1.11) DF (x)v =


∑
k

(∂F1/∂xk)vk

...∑
k

(∂Fm/∂xk)vk

 .

Another handy notation is

(4.1.12) ∂kFj =
∂Fj

∂xk
.

In case n = 1, so F : O → R, the matrix DF (x) has one row,

(4.1.13) F : O → R =⇒ DF (x) = (∂1F · · · ∂nF ).

We typically put in commas and write this as a row vector. It is also common to
use the notation ∇F :

(4.1.14) ∇F (x) = (∂1F (x), . . . , ∂nF (x)).

It will be shown below that F is differentiable whenever all the partial deriva-
tives exist and are continuous on O. In such a case we say F is a C1 function on
O. More generally, F is said to be Ck if all its partial derivatives of order ≤ k exist
and are continuous. If F is Ck for all k, we say F is C∞.

An application of the Fundamental Theorem of Calculus, to functions of each
variable xj separately, yields the following. If we assume F : O → Rm is differ-
entiable in each variable separately, and that each ∂F/∂xj is continuous on O,
then

(4.1.15)

F (x+ y) = F (x) +

n∑
j=1

[
F (x+ zj)− F (x+ zj−1)

]
= F (x) +

n∑
j=1

Aj(x, y)yj ,

Aj(x, y) =

∫ 1

0

∂F

∂xj

(
x+ zj−1 + tyjej

)
dt,

where

z0 = 0, zj = (y1, . . . , yj , 0, . . . , 0) = zj−1 + yjej ,

and {ej} is the standard basis of Rn. Here we have used

F (x+ zj)− F (x+ zj−1) =

∫ 1

0

d

dt
F (x+ zj−1 + tyjej) dt,

and the one-variable chain rule, (1.1.10). Consequently,

(4.1.16)

F (x+ y) = F (x) +

n∑
j=1

∂F

∂xj
(x) yj +R(x, y),

R(x, y) =

n∑
j=1

yj

∫ 1

0

{ ∂F
∂xj

(x+ zj−1 + tyjej)−
∂F

∂xj
(x)
}
dt.
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Now (4.1.16) implies F is differentiable on O, as we stated below (4.1.11). Thus
we have established the following.

Proposition 4.1.1. If O is an open subset of Rn and F : O → Rm is of class C1,
then F is differentiable at each point x ∈ O.

One can use the Mean Value Theorem in place of the fundamental theorem of
calculus and obtain a slightly more general result. See Exercise 2 below for prompts
on how to accomplish this.

Let us give some examples of derivatives. First, take n = 2, m = 1, and set

(4.1.17) F (x) = (sinx1)(sinx2).

Then

(4.1.18) DF (x) = ((cosx1)(sinx2), (sinx1)(cosx2)).

Next, take n = m = 2 and

(4.1.19) F (x) =

(
x1x2
x21 − x22

)
.

Then

(4.1.20) DF (x) =

(
x2 x1
2x1 −2x2

)
.

We can replace Rn and Rm by more general finite-dimensional real vector
spaces, isomorphic to Euclidean space. For example, the space M(n,R) of real

n× n matrices is isomorphic to Rn2

. Consider the function

(4.1.21) S :M(n,R) −→M(n,R), S(X) = X2.

We have

(4.1.22)
(X + Y )2 = X2 +XY + Y X + Y 2

= X2 +DS(X)Y +R(X,Y ),

with R(X,Y ) = Y 2, and hence

(4.1.23) DS(X)Y = XY + Y X.

For our next example, we take

(4.1.24) O = Gℓ(n,R) = {X ∈M(n,R) : detX ̸= 0},
which is open in M(n,R), since det : M(n,R) → R, being a polynomial in the
matrix entries of its argument, is continuous. We consider

(4.1.25) Φ : Gℓ(n,R) −→M(n,R), Φ(X) = X−1,

and compute DΦ(I). We use the following. If, for A ∈M(n,R),
(4.1.26) ∥A∥ = sup{∥Av∥ : v ∈ Rn, ∥v∥ ≤ 1},
then (cf. §C.3)

(4.1.27)

A,B ∈M(n,R) ⇒ ∥A+B∥ ≤ ∥A∥+ ∥B∥
and ∥AB∥ ≤ ∥A∥ · ∥B∥,

so Y ∈M(n,R) ⇒ ∥Y k∥ ≤ ∥Y ∥k.
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Also

(4.1.28)

Sk = I − Y + Y 2 − · · ·+ (−1)kY k

⇒ Y Sk = SkY = Y − Y 2 + Y 3 − · · ·+ (−1)kY k+1

⇒ (I + Y )Sk = Sk(I + Y ) = I + (−1)kY k+1,

hence

(4.1.29) ∥Y ∥ < 1 =⇒ (I + Y )−1 =

∞∑
k=0

(−1)kY k = I − Y + Y 2 − · · · ,

so

(4.1.30) DΦ(I)Y = −Y.
Going further, we see that, given X ∈ Gℓ(n,R), Y ∈M(n,R),

(4.1.31) X + Y = X(I +X−1Y ),

which by (4.1.29) is invertible as long as

(4.1.32) ∥X−1Y ∥ < 1.

One can proceed from here to compute that, for X ∈ Gℓ(n,R),

(4.1.33) DΦ(X)Y = −X−1Y X−1.

See Exercise 7 below.

We return to general considerations, and derive the chain rule for the derivative.
Let F : O → Rm be differentiable at x ∈ O, as above, let U be a neighborhood of
z = F (x) in Rm, and let G : U → Rk be differentiable at z. Consider H = G ◦ F.
We have

(4.1.34)

H(x+ y) = G(F (x+ y))

= G
(
F (x) +DF (x)y +R(x, y)

)
= G(z) +DG(z)

(
DF (x)y +R(x, y)

)
+R1(x, y)

= G(z) +DG(z)DF (x)y +R2(x, y)

with
∥R2(x, y)∥

∥y∥
→ 0 as y → 0.

This establishes the following.

Proposition 4.1.2. Let O ⊂ Rn and U ⊂ Rm be open. Assume F : O → U is
differentiable at x ∈ O and G : U → Rk is differentiable at z = F (x). Then G ◦ F
is differentiable at x, and

(4.1.35) D(G ◦ F )(x) = DG(F (x)) ·DF (x).

Another useful remark is that, by the Fundamental Theorem of Calculus, ap-
plied to φ(t) = F (x+ ty),

(4.1.36) F (x+ y) = F (x) +

∫ 1

0

DF (x+ ty)y dt,

provided F is C1. Compare (4.1.15).
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Exercises

1. Compute DF (x) in each of the following cases:

F (x) = x21 + x1x2,

F (x) =

(
x21
x1x2

)
,

F (x) =

x2x3x1x3
x1x2

 ,

F (x) =

(
x1e

x2 cos x3

cos(x1ex2x3)

)
.

2. Here we provide a path to a strengthening of Proposition 4.1.1. Let O ⊂ Rn be
open, f : O → R. Assume ∂f/∂xj exists on O for each j. Fix x ∈ O and assume
that

(4.1.37)
∂f

∂xj
is continuous at x, for each j.

Task: prove that f is differentiable at x.
Hint. Start as in (4.1.15), with

f(x+ y) = f(x) +

n∑
j=1

{
f(x+ zj)− f(x+ zj−1)

}
,

where z0 = 0, zj = (y1, . . . , yj , 0, . . . , 0) = zj−1 + yjej , zn = y. Deduce from the
mean value theorem that, for each j,

f(x+ zj)− f(x+ zj−1) =
∂f

∂xj
(x+ zj−1 + θjyjej)yj ,

for some θj ∈ (0, 1). Deduce that

f(x+ y) = f(x) +

n∑
j=1

∂f

∂xj
(x)yj +R(x, y),

where

R(x, y) =

n∑
j=1

{ ∂f
∂xj

(x+ zj−1 + θjyjej)−
∂f

∂xj
(x)
}
yj .

Show that the hypothesis (4.1.37) implies that R(x, y) = o(∥y∥).

3. Consider

f(x, y, z, w) = det

(
x y
z w

)
.

Compute ∇f(x, y, z, w).
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4. Let Pk :M(n,R) →M(n,R) be given by Pk(X) = Xk. Show that

DP3(X)Y = Y X2 +XYX +X2Y.

Hint. Expand (X + Y )3 and isolate terms that vanish faster than ∥Y ∥ as Y → 0.

5. In the setting of Exercise 4, show that, for k ≥ 2,

DPk(X)Y =

k−1∑
j=0

XjY Xk−1−j .

6. Let M(n,R) denote the space of real n × n matrices, and let Ω ⊂ M(n,R) be
open. Assume F,G : Ω →M(n,R) are of class C1. Show that H(X) = F (X)G(X)
defines a C1 map H : Ω →M(n,R), and

DH(X)Y =
(
DF (X)Y

)
G(X) + F (X)

(
DG(X)Y

)
.

Use this to produce an inductive approach to Exercise 5.

6A. More generally, if Ω ⊂ Rk is open F,G : Ω → M(n,R), H(x) = F (x)G(x),
show that

DH(x)y =
(
DF (x)y

)
G(x) + F (x)

(
DG(x)y

)
.

7. Let Gl(n,R) ⊂M(n,R) denote the set of invertible matrices. Show that

Φ : Gl(n,R) −→M(n,R), Φ(X) = X−1

is of class C1 and that

DΦ(X)Y = −X−1Y X−1.

Hint. Start with (4.1.31), yielding

(X + Y )−1 = (I +X−1Y )−1X−1,

and apply the series expansion (4.1.29), with Y replaced by X−1Y .

8. Define S,Φ, F : Gℓ(n,R) →M(n,R) by

S(X) = X2, Φ(X) = X−1, F (X) = X−2.

Compute DF (X)Y using each of the following approaches:
(a) Take F (X) = Φ(X)Φ(X) and use the product rule (Exercise 6).
(b) Take F (X) = Φ(S(X)) and use the chain rule.
(c) Take F (X) = S(Φ(X)) and use the chain rule.

9. Identify R2 and C via z = x+ iy. Then multiplication by i on C corresponds to
applying

J =

(
0 −1
1 0

)
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Let O ⊂ R2 be open, f : O → R2 be C1. Say f = (u, v). Regard Df(x, y) as a
2 × 2 real matrix. One says f is holomorphic, or complex-analytic, provided the
Cauchy-Riemann equations hold:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Show that this is equivalent to the condition

Df(x, y) J = J Df(x, y).

10. Proceeding from the identity ex+iy = ex cos y+ iex sin y, derived in §3.2, define
E : R2 → R2 by

E(x, y) =

(
ex cos y

ex sin y

)
.

Compute DE(x, y), as a 2× 2 matrix, and verify that DE(x, y) J = J DE(x, y).

11. Let f be C1 on a region in R2 containing [a, b]× {y}. Show that, as h→ 0,

1

h

[
f(x, y + h)− f(x, y)

]
−→ ∂f

∂y
(x, y), uniformly on [a, b]× {y}.

Hint. Show that the left side is equal to

1

h

∫ h

0

∂f

∂y
(x, y + s) ds,

and use the uniform continuity of ∂f/∂y on [a, b]× [y − δ, y + δ].

12. In the setting of Exercise 11, show that

d

dy

∫ b

a

f(x, y) dx =

∫ b

a

∂f

∂y
(x, y) dx.

Exercises 13–15 deal with properties of the determinant, as a differentiable function
on spaces of matrices.

13. Let M(n,R) be the space of n × n matrices with real coefficients, det :
M(n,R) → R the determinant. Show that, if I is the identity matrix,

D det(I)B = TrB,

i.e.,
d

dt
det(I + tB)|t=0 = TrB.

Hint. Brush up on the exercises in §2.3.

14. IfA(t) = (ajk(t)) is a smooth curve inM(n,R), use the expansion of (d/dt) detA(t)
as a sum of n determinants, in which the rows of A(t) are successively differentiated,
to show that

d

dt
detA(t) = Tr

(
Cof(A(t))t ·A′(t)

)
,
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and deduce that, for A,B ∈M(n,R),
D det(A)B = Tr

(
Cof(A)t ·B

)
.

Here Cof(A), the cofactor matrix, is defined in Exercise 4 of §2.3.

15. Suppose A ∈M(n,R) is invertible. Using
det(A+ tB) = (detA) det(I + tA−1B),

show that
D det(A)B = (detA)Tr(A−1B).

Comparing this result with that of Exercise 14, establish Cramer’s formula:

(detA)A−1 = Cof(A)t.

Compare the derivation in Exercise 4 of §2.3.

16. Define f(x, y) on R2 by

f(x, y) =
xy√
x2 + y2

, (x, y) ̸= (0, 0),

0, (x, y) = (0, 0).

Show that f is continuous on R2 and smooth on R2 \ (0, 0). Show that ∂f/∂x and
∂f/∂y exist at each point of R2, and are continuous on R2 \ (0, 0), but not on R2.
Show that

∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0.

Show that f is not differentiable at (0, 0).
Hint. Show that f(x, y) is not o(∥(x, y)∥) as (x, y) → (0, 0), by considering f(x, x).

17. Let f, g, h : R2 → R be of class C1, and define F : R2 → R by

F (x) = h(f(x1, x2), g(x1, x2)).

Show that the chain rule implies

∂F

∂xj
= ∂1h(f(x), g(x))

∂f

∂xj
+ ∂2h(f(x), g(x))

∂g

∂xj
.
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4.2. Higher derivatives and power series

For the study of higher order derivatives of a function, the following result is fun-
damental.

Proposition 4.2.1. Assume F : O → Rm is of class C2, with O open in Rn.
Then, for each x ∈ O, 1 ≤ j, k ≤ n,

(4.2.1)
∂

∂xj

∂F

∂xk
(x) =

∂

∂xk

∂F

∂xj
(x).

Proof. It suffices to take m = 1. We label our function f : O → R. For 1 ≤ j ≤ n,
we set

(4.2.2) ∆j,hf(x) =
1

h

(
f(x+ hej)− f(x)

)
,

where {e1, . . . , en} is the standard basis of Rn. The mean value theorem (for func-
tions of xj alone) implies that if ∂jf = ∂f/∂xj exists on O, then, for x ∈ O, h > 0
sufficiently small,

(4.2.3) ∆j,hf(x) = ∂jf(x+ αjhej),

for some αj ∈ (0, 1), depending on x and h. Iterating this, if ∂j(∂kf) exists on O,
then, for x ∈ O, h > 0 sufficiently small,

(4.2.4)

∆k,h∆j,hf(x) = ∂k(∆j,hf)(x+ αkhek)

= ∆j,h(∂kf)(x+ αkhek)

= ∂j∂kf(x+ αkhek + αjhej),

with αj , αk ∈ (0, 1). See Figure 4.2.1 for an illustration, with n = 2, j = 1, k = 2.
For the second identity in (4.2.4), we have used the elementary result

(4.2.5) ∂k∆j,hf = ∆j,h(∂kf).

We deduce the following.

Proposition 4.2.2. If ∂kf and ∂j∂kf exist on O and ∂j∂kf is continuous at
x0 ∈ O, then

(4.2.6) ∂j∂kf(x0) = lim
h→0

∆k,h∆j,hf(x0).

The following identity is also elementary (see Exercise 8):

(4.2.7) ∆k,h∆j,hf = ∆j,h∆k,hf.

Hence we have the following, which readily implies Proposition 4.2.1. �
Corollary 4.2.3. In the setting of Proposition 4.2.2, if also ∂jf and ∂k∂jf exist
on O and ∂k∂jf is continuous at x0, then

(4.2.8) ∂j∂kf(x0) = ∂k∂jf(x0).

We now describe two convenient notations to express higher order derivatives
of a Ck function f : Ω → R, where Ω ⊂ Rn is open. In one, let J be a k-tuple of
integers between 1 and n; J = (j1, . . . , jk). We set

(4.2.9) f (J)(x) = ∂jk · · · ∂j1f(x), ∂j =
∂

∂xj
.
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Figure 4.2.1. ∆2,h∆1,hf(x) = ∂1∂2f(x+ hα)

We set |J | = k, the total order of differentiation. As we have seen in Proposition
4.2.1, ∂i∂jf = ∂j∂if provided f ∈ C2(Ω). It follows that, if f ∈ Ck(Ω), then
∂jk · · · ∂j1f = ∂ℓk · · · ∂ℓ1f whenever {ℓ1, . . . , ℓk} is a permutation of {j1, . . . , jk}.
Thus, another convenient notation to use is the following. Let α be an n-tuple of
non-negative integers, α = (α1, . . . , αn). Then we set

(4.2.10) f (α)(x) = ∂α1
1 · · · ∂αn

n f(x), |α| = α1 + · · ·+ αn.

Note that, if |J | = |α| = k and f ∈ Ck(Ω),

(4.2.11) f (J)(x) = f (α)(x), with αi = #{ℓ : jℓ = i}.

Correspondingly, there are two expressions for monomials in x = (x1, . . . , xn):

(4.2.12) xJ = xj1 · · ·xjk , xα = xα1
1 · · ·xαn

n ,

and xJ = xα provided J and α are related as in (4.2.11). Both these notations are
called “multi-index” notations.

Multivariable power series

We now consider multivariable power series, and derive Taylor’s formula with
remainder for a smooth function F : Ω → R, making use of the multi-index no-
tations introduced above. We will apply the one variable formula derived in §1.3
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(cf. Proposition 1.3.4),

(4.2.13) φ(t) = φ(0) + φ′(0)t+
1

2
φ′′(0)t2 + · · ·+ 1

k!
φ(k)(0)tk + rk(t),

with

(4.2.14) rk(t) =
1

k!

∫ t

0

(t− s)kφ(k+1)(s) ds,

given φ ∈ Ck+1(I), I = (−a, a). (See Exercise 1 below for a reminder.) Let us
assume 0 ∈ Ω, and that the line segment from 0 to x is contained in Ω. We set
φ(t) = F (tx), and apply (4.2.13)–(4.2.14) with t = 1. Applying the chain rule, we
have

(4.2.15) φ′(t) =

n∑
j=1

∂jF (tx)xj .

Differentiating again, we have

(4.2.16) φ′′(t) =
∑
j1,j2

∂j2∂j1F (tx)xj1xj2 .

Inductively, we have

(4.2.17) φ(k)(t) =
∑

j1,...,jk

∂jk · · · ∂j1F (tx)xj1 · · ·xjk =
∑
|J|=k

F (J)(tx)xJ .

Hence, from (4.2.13) with t = 1,

(4.2.18) F (x) = F (0) +
∑
|J|=1

F (J)(0)xJ + · · ·+ 1

k!

∑
|J|=k

F (J)(0)xJ +Rk(x),

or, more briefly,

(4.2.19) F (x) =
∑
|J|≤k

1

|J |!
F (J)(0)xJ +Rk(x),

where

(4.2.20) Rk(x) =
1

k!

∑
|J|=k+1

(∫ 1

0

(1− s)kF (J)(sx) ds
)
xJ .

This gives Taylor’s formula with remainder for F ∈ Ck+1(Ω), in the J-multi-index
notation.

We also want to write the formula in the α-multi-index notation. We have

(4.2.21)
∑
|J|=k

F (J)(tx)xJ =
∑
|α|=k

ν(α)F (α)(tx)xα,

where

(4.2.22) ν(α) = #{J : α = α(J)},
and we define the relation α = α(J) to hold provided the condition (4.2.11) holds,
or equivalently provided xJ = xα. Thus ν(α) is uniquely defined by

(4.2.23)
∑
|α|=k

ν(α)xα =
∑
|J|=k

xJ = (x1 + · · ·+ xn)
k.
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To evaluate ν(α), we can expand (x1 + · · · + xn)
k in terms of xα by a repeated

application of the binomial formula (cf. §1.3, Exercise 2):

(4.2.24)

(x1 + · · ·+ xn)
k =

(
x1 + (x2 + · · ·+ xn)

)k
=
∑
α1≤k

(
k

α1

)
xα1
1 (x2 + · · ·+ xn)

k−α1

=
∑

α1+α2≤k

(
k

α1

)(
k − α1

α2

)
xα1
1 xα2

2 (x3 + · · ·+ xn)
k−α1−α2

= · · ·

=
∑
|α|=k

(
k

α1

)(
k − α1

α2

)
· · ·
(
k − α1 − · · · − αn−1

αn

)
xα1
1 · · ·xαn

n

=
∑
|α|=k

ν(α)xα.

We have ν(α) equal to the product of binomial coefficients given above, i.e., to

k!

α1!(k − α1)!
· (k − α1)!

α2!(k − α1 − α2)!
· · · (k − α1 − · · · − αn−1)!

αn!(k − α1 − · · · − αn)!

=
k!

α1! · · ·αn!
.

In other words, for |α| = k,

(4.2.25) ν(α) =
k!

α!
, where α! = α1! · · ·αn!

Thus the Taylor formula (4.2.19) can be rewritten

(4.2.26) F (x) =
∑
|α|≤k

1

α!
F (α)(0)xα +Rk(x),

where

(4.2.27) Rk(x) =
∑

|α|=k+1

k + 1

α!

(∫ 1

0

(1− s)kF (α)(sx) ds
)
xα.

The formula (4.2.26)–(4.2.27) holds for F ∈ Ck+1. It is significant that (4.2.26),
with a variant of (4.2.27), holds for F ∈ Ck. In fact, for such F , we can apply
(4.2.27) with k replaced by k − 1, to get

(4.2.28) F (x) =
∑

|α|≤k−1

1

α!
F (α)(0)xα +Rk−1(x),

with

(4.2.29) Rk−1(x) =
∑
|α|=k

k

α!

(∫ 1

0

(1− s)k−1F (α)(sx) ds
)
xα.

We can add and subtract F (α)(0) to F (α)(sx) in the integrand above, and obtain
the following.
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Proposition 4.2.4. If F ∈ Ck on a ball Br(0), the formula (4.2.26) holds for
x ∈ Br(0), with

(4.2.30) Rk(x) =
∑
|α|=k

k

α!

(∫ 1

0

(1− s)k−1
[
F (α)(sx)− F (α)(0)

]
ds
)
xα.

Remark. Note that (4.2.30) yields the estimate

(4.2.31) |Rk(x)| ≤
∑
|α|=k

|xα|
α!

sup
0≤s≤1

|F (α)(sx)− F (α)(0)|.

The term corresponding to |J | = 2 in (4.2.19), or |α| = 2 in (4.2.26), is of
particular interest. It is

(4.2.32)
1

2

∑
|J|=2

F (J)(0)xJ =
1

2

n∑
j,k=1

∂2F

∂xk∂xj
(0)xjxk.

We define the Hessian of a C2 function F : O → R as an n× n matrix:

(4.2.33) D2F (y) =

(
∂2F

∂xk∂xj
(y)

)
.

Then the power series expansion of second order about 0 for F takes the form

(4.2.34) F (x) = F (0) +DF (0)x+
1

2
x ·D2F (0)x+R2(x),

where, by (4.2.31),

(4.2.35) |R2(x)| ≤ Cn|x|2 sup
0≤s≤1,|α|=2

|F (α)(sx)− F (α)(0)|.

In all these formulas we can translate coordinates and expand about y ∈ O.
For example, (4.2.34) extends to

(4.2.36) F (x) = F (y) +DF (y)(x− y) +
1

2
(x− y) ·D2F (y)(x− y) +R2(x, y),

with

(4.2.37) |R2(x, y)| ≤ Cn|x− y|2 sup
0≤s≤1,|α|=2

|F (α)(y + s(x− y))− F (α)(y)|.

Example. If we take F (x) as in (4.1.17), so DF (x) is as in (4.1.18), then

D2F (x) =

(
− sinx1 sinx2 cosx1 cosx2
cosx1 cosx2 − sinx1 sinx2

)
.

Extremal problems and critical points

The results (4.2.36)–(4.2.37) are useful for extremal problems, i.e., determining
where a sufficiently smooth function F : O → R has local maxima and local
minima. Clearly if F ∈ C1(O) and F has a local maximum or minimum at x0 ∈ O,
then DF (x0) = 0. (Compare Proposition 1.1.1.) In such a case, we say x0 is a
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Figure 4.2.2. Critical point that is a minimum

critical point of F . To check what kind of critical point x0 is, we look at the n× n
matrix A = D2F (x0), assuming F ∈ C2(O). By Proposition 4.2.1, A is a symmetric
matrix. A basic result in linear algebra, treated in Appendix C.2, is that if A is a
real, symmetric n × n matrix, then Rn has an orthonormal basis of eigenvectors,
{v1, . . . , vn}, satisfying Avj = λjvj ; the real numbers λj are the eigenvalues of A.
We say A is positive definite if all λj > 0, and we say A is negative definite if
all λj < 0. We say A is strongly indefinite if some λj > 0 and another λk < 0.
Equivalently, given a real, symmetric matrix A,

(4.2.38)
A positive definite ⇐⇒ v ·Av ≥ C|v|2,
A negative definite ⇐⇒ v ·Av ≤ −C|v|2,

for some C > 0, all v ∈ Rn, and

(4.2.39)
A strongly indefinite ⇐⇒ ∃ v, w ∈ Rn, nonzero, such that

v ·Av ≥ C|v|2, w ·Aw ≤ −C|w|2,

for some C > 0. In light of (4.2.19)–(4.2.20), we have the following result.

Proposition 4.2.5. Assume F ∈ C2(O) is real valued, O open in Rn. Let x0 ∈ O
be a critical point for F . Then
(i) D2F (x0) positive definite ⇒ F has a local minimum at x0,
(ii) D2F (x0) negative definite ⇒ F has a local maximum at x0,
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Figure 4.2.3. Critical point that is a maximum

(iii) D2F (x0) strongly indefinite ⇒ F has neither a local maximum nor a local
minimum at x0.

In case (iii), we say x0 is a saddle point for F . See Figures 4.2.2–4.2.4 for
illustrations.

The following is a test for positive definiteness.

Proposition 4.2.6. Let A = (aij) be a real, symmetric, n × n matrix. For 1 ≤
ℓ ≤ n, form the ℓ× ℓ matrix Aℓ = (aij)1≤i,j≤ℓ. Then

(4.2.40) A positive definite ⇐⇒ detAℓ > 0, ∀ ℓ ∈ {1, . . . , n}.

Regarding the implication ⇒, note that if A is positive definite, then detA =
detAn is the product of its eigenvalues, all > 0, hence is > 0. Also in this case,
it follows from the hypothesis on the left side of (4.2.40) that each Aℓ must be
positive definite, hence have positive determinant, so we have ⇒.

The implication ⇐ is easy enough for 2 × 2 matrices. If A is symmetric and
detA > 0, then either both its eigenvalues are positive (so A is positive definite) or
both are negative (so A is negative definite). In the latter case, A1 = (a11) must
be negative, so we have ⇐ in this case.

We prove ⇐ for n ≥ 3, using induction. The inductive hypothesis implies that
if detAℓ > 0 for each ℓ ≤ n, then An−1 is positive definite. The next lemma then
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Figure 4.2.4. Critical point that is a saddle

guarantees that A = An has at least n − 1 positive eigenvalues. The hypothesis
that detA > 0 does not allow that the remaining eigenvalue be ≤ 0, so all the
eigenvalues of A must be positive. Thus Proposition 4.2.6 is proven, once we have
the following.

Lemma 4.2.7. In the setting of Proposition 4.2.6, if An−1 is positive definite, then
A = An has at least n− 1 positive eigenvalues.

Proof. Since A is symmetric, Rn has an orthonormal basis v1, . . . , vn of eigenvec-
tors of A; Avj = λjvj . See Appendix C.2. If the conclusion of the lemma is false,
at least two of the eigenvalues, say λ1, λ2, are ≤ 0. Let W = Span(v1, v2), so

w ∈W =⇒ w ·Aw ≤ 0.

Since W has dimension 2, Rn−1 ⊂ Rn satisfies Rn−1 ∩W ̸= 0, so there exists a
nonzero w ∈ Rn−1 ∩W , and then

w ·An−1w = w ·Aw ≤ 0,

contradicting the hypothesis that An−1 is positive definite. �

Remark. Given (4.2.40), we see by taking A 7→ −A that if A is a real, symmetric
n× n matrix,

(4.2.41) A negative definite ⇐⇒ (−1)ℓ detAℓ > 0, ∀ ℓ ∈ {1, . . . , n}.
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Example. Consider the function f : R2 → R defined by

(4.2.42) f(x, y) = (cosx)(cos y).

We have

(4.2.43) ∇f(x, y) = −(sinx cos y, cosx sin y),

which vanishes at the following points:

(4.2.44) (x, y) = (jπ, kπ), (x, y) = ((j + 1
2 )π, (k +

1
2 )π), j, k ∈ Z.

We have

(4.2.45) D2f(x, y) =

(
− cosx cos y sinx sin y
sinx sin y − cosx cos y

)
.

Hence

(4.2.46)

D2f(jπ, kπ) = −(cos jπ)(cos kπ)

(
1 0
0 1

)
= (−1)j+k+1

(
1 0
0 1

)
,

and

(4.2.47)

D2f((j + 1
2 )π, (k +

1
2 )π) = sin(j + 1

2 )π sin(k + 1
2 )π

(
0 1
1 0

)
= (−1)j+k

(
0 1
1 0

)
.

The matrix

(
1 0
0 1

)
has 1 as a double eigenvalue, and the eigenvalues of

(
0 1
1 0

)
are ±1. Hence, for j, k ∈ Z,

(4.2.48)
(jπ, kπ) is a local maximum if j + k is even,

local minimum if j + k is odd,

and

(4.2.49) ((j + 1
2 )π, (k +

1
2 )π) are all saddles.

Further remainder formulas

We return to higher order power series formulas with remainder and comple-
ment Proposition 4.2.4. Let us go back to (4.2.13)–(4.2.14) and note that the
integral in (4.2.14) is 1/(k+1) times a weighted average of φ(k+1)(s) over s ∈ [0, t].
Hence we can write

rk(t) =
1

(k + 1)!
φ(k+1)(θt), for some θ ∈ [0, 1],

if φ is of class Ck+1. This is the Lagrange form of the remainder. If φ is of class
Ck, we can replace k + 1 by k in (4.2.13) and write

(4.2.50) φ(t) = φ(0) + φ′(0)t+ · · ·+ 1

(k − 1)!
φ(k−1)(0)tk−1 +

1

k!
φ(k)(θt)tk,
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for some θ ∈ [0, 1]. Pluging (4.2.50) into (4.2.17) for φ(t) = F (tx) gives

(4.2.51) F (x) =
∑

|J|≤k−1

1

|J |!
F (J)(0)xJ +

1

k!

∑
|J|=k

F (J)(θx)xJ ,

for some θ ∈ [0, 1] (depending on x and on k, but not on J), when F is of class Ck

on a neighborhood Br(0) of 0 ∈ Rn. Similarly, using the α-multi-index notation,
we have, as an alternative to (4.2.28)–(4.2.29),

(4.2.52) F (x) =
∑

|α|≤k−1

1

α!
F (α)(0)xα +

∑
|α|=k

1

α!
F (α)(θx)xα,

for some θ ∈ [0, 1] (depending on x and on |α|, but not on α), if F ∈ Ck(Br(0)).
Note also that

(4.2.53)

1

2

∑
|J|=2

F (J)(θx)xJ =
1

2

n∑
j,k=1

∂2F

∂xk∂xj
(θx)xjxk

=
1

2
x ·D2F (θx)x,

with D2F (y) as in (4.2.33), so if F ∈ C2(Br(0)), we have, as an alternative to
(4.2.34),

(4.2.54) F (x) = F (0) +DF (0)x+
1

2
x ·D2F (θx)x,

for some θ ∈ [0, 1].

Multi-linear alternative to multi-index notation

We next complement the multi-index notations for higher derivatives of a func-
tion F by a multi-linear notation, defined as follows. If k ∈ N, F ∈ Ck(U), and
y ∈ U ⊂ Rn, set

(4.2.55) DkF (y)(u1, . . . , uk) = ∂t1 · · · ∂tkF (y + t1u1 + · · ·+ tkuk)
∣∣∣
t1=···=tk=0

,

for u1, . . . , uk ∈ Rn. For k = 1, this formula is equivalent to the definition of DF
given at the beginning of this section. For k = 2, we have

(4.2.56) D2F (y)(u, v) = u ·D2F (y)v,

with D2F (y) on the right as in (4.2.33). Generally, (4.2.55) defines DkF (y) as a
symmetric, k-linear form in u1, . . . , uk ∈ Rn.

We can relate (4.2.55) to the J-multi-index notation as follows. We start with

(4.2.57) ∂t1F (y + t1u1 + · · ·+ tkuk) =
∑
|J|=1

F (J)(y +Σtjuj)u
J
1 ,

and inductively obtain

(4.2.58) ∂t1 · · · ∂tkF (y+Σtjuj) =
∑

|J1|=···=|Jk|=1

F (J1+···+Jk)(y+Σtjuj)u
J1
1 · · ·uJk

k ,
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hence

(4.2.59) DkF (y)(u1, . . . , uk) =
∑

|J1|=···=|Jk|=1

F (J1+···+Jk)(y)uJ1
1 · · ·uJk

k .

In particular, if u1 = · · · = uk = u,

(4.2.60) DkF (y)(u, . . . , u) =
∑
|J|=k

F (J)(y)uJ .

Hence (4.2.51) yields the multi-linear Taylor formula with remainder

(4.2.61)

F (x) = F (0) +DF (0)x+ · · ·+ 1

(k − 1)!
Dk−1F (0)(x, . . . , x)

+
1

k!
DkF (θx)(x, . . . , x),

for some θ ∈ [0, 1], if F ∈ Ck(Br(0)). In fact, rather than appealing to (4.2.51), we
can note that

φ(t) = F (tx) =⇒ φ(k)(t) = ∂t1 · · · ∂tkφ(t+ t1 + · · ·+ tk)
∣∣∣
t1=···=tk=0

= DkF (tx)(x, . . . , x),

and obtain (4.2.61) directly from (4.2.50). We can also use the notation

(4.2.62) DjF (y)x⊗j = DjF (y)(x, . . . , x),

with j copies of x within the last set of parentheses, and rewrite (4.2.61) as

(4.2.63)

F (x) = F (0) +DF (0)x+ · · ·+ 1

(k − 1)!
Dk−1F (0)x⊗(k−1)

+
1

k!
DkF (θx)x⊗k.

Note how (4.2.61) and (4.2.63) generalize (4.2.54).

Convergent power series and their derivatives

Here we consider functions given by convergent power series, of the form

(4.2.64) F (x) =
∑
α≥0

bαx
α.

We allow bα ∈ C, and take x = (x1, . . . , xn) ∈ Rn, with xα given by (4.2.12). Here
is our first result.

Proposition 4.2.8. Assume there exist y ∈ Rn and C0 <∞ such that

(4.2.65) |yk| = ak > 0, ∀ k, |bαyα| ≤ C0, ∀α.

Then, for each δ ∈ (0, 1), the series (4.2.64) converges absolutely and uniformly on
each set

(4.2.66) Rδ = {x ∈ Rn : |xk| ≤ (1− δ)ak, ∀ k}.

The sum F (x) is continuous on R̃ = {x ∈ Rn : |xk| < ak, ∀ k}.
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Proof. We have

(4.2.67) x ∈ Rδ =⇒ |bαxα| ≤ C0(1− δ)|α|, ∀α,
hence

(4.2.68)

∑
α≥0

|bαxα| ≤ C0

∑
α≥0

(1− δ)|α|

= C0

∑
α1≥0

(1− δ)α1 · · ·
∑
αn≥0

(1− δ)αn

= C0δ
−n <∞.

Thus the power series (4.2.64) is absolutely convergent whenever x ∈ Rδ. We also
have, for each N ∈ N,

(4.2.69) F (x) =
∑

|α|≤N

bαx
α +RN (x),

and, for x ∈ Rδ,

(4.2.70)

|RN (x)| ≤
∑

|α|>N

|bαxα|

≤ C0

∑
|α|>N

(1− δ)|α|

= εN → 0 as N → ∞.

This shows that RN (x) → 0 uniformly for x ∈ Rδ, and completes the proof of
Proposition 4.2.8. �

We next discuss differentiability of power series.

Proposition 4.2.9. In the setting of Proposition 4.2.8, F is differentiable on R̃
and, for each j ∈ {1, . . . , n},

(4.2.71)
∂F

∂xj
(x) =

∑
α≥εj

αjbαx
α−εj , ∀x ∈ R̃.

Here, we set εj = (0, . . . , 1, . . . , 0), with the 1 in the jth slot. It is convenient
to begin the proof of Proposition 4.2.9 with the following.

Lemma 4.2.10. In the setting of Proposition 4.2.8, for each j ∈ {1, . . . , n},

(4.2.72) Gj(x) =
∑
α≥εj

αjbαx
α−εj

is absoletely convergent for x ∈ R̃, uniformly on Rδ for each δ ∈ (0, 1), therefore

defining Gj as a continuous function on R̃.

Proof. Take a = (a1, . . . , an), with aj as in (4.2.65). Given x ∈ Rδ, we have

(4.2.73)

∑
α≥εj

αj |bαxα−εj | ≤
∑
α≥εj

αj(1− δ)|α|−1|bαaα−εj |

≤ C0

aj(1− δ)

∑
α≥0

αj(1− δ)|α|,
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and this is

(4.2.74) ≤Mδ <∞, ∀ δ ∈ (0, 1).

This gives the asserted convergence on Rδ and hence defines the function Gj , con-

tinuous on R̃. �

To prove Proposition 4.2.9, we need to show that

(4.2.75)
∂F

∂xj
= Gj on R̃,

for each j. Let us use the notation

(4.2.76) x̂j = (x1, . . . , xj−1, 0, xj+1, . . . , xn) = x− xjej ,

where ej is the jth standard basis vector of Rn. Now, given x ∈ Rδ, δ ∈ (0, 1), the
uniform convergence of (4.2.72) on Rδ implies

(4.2.77)

∫ xj

0

Gj(x̂j + tej) dt =
∑
α≥εj

αjbα

∫ xj

0

(x̂j + tej)
α−εj dt

=
∑
α≥εj

αjbαα
−1
j xα

=
∑
α≥εj

bαx
α

= F (x)− F (x̂j).

Applying ∂/∂xj to the left side of (4.2.77) and using the fundamental theorem of
calculus then yields (4.2.75) as desired. This gives the identity (4.2.71). Since each

Gj is continuous on R̃, this implies F is differentiable on R̃.

We can iterate Proposition 4.2.9, obtaining ∂k∂jF (x) = ∂kGj(x) as a conver-

gent power series on R̃, etc. In particular, we have the following.

Corollary 4.2.11. In the setting of Proposition 4.2.8, we have F ∈ C∞(R̃).

Exercises

1. Considering the power series

f(x) = f(y) + f ′(y)(x− y) + · · ·+ f (j)(y)

j!
(x− y)j +Rj(x, y),

show that
∂Rj

∂y
= − 1

j!
f (j+1)(y)(x− y)j , Rj(x, x) = 0.

Use this to derive (4.2.13)–(4.2.14).
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We define “big oh” and “little oh” notation:

f(x) = O(x) (as x→ 0) ⇔
∣∣∣f(x)
x

∣∣∣ ≤ C as x→ 0,

f(x) = o(x) (as x→ 0) ⇔ f(x)

x
→ 0 as x→ 0.

2. Let O ⊂ Rn be open and y ∈ O. Show that

f ∈ Ck+1(O) ⇒ f(x) =
∑
|α|≤k

1

α!
f (α)(y)(x− y)α +O(|x− y|k+1),

f ∈ Ck(O) ⇒ f(x) =
∑
|α|≤k

1

α!
f (α)(y)(x− y)α + o(|x− y|k).

3. Assume G : U → O, F : O → Ω. Show that

(4.2.78) F,G ∈ C1 =⇒ F ◦G ∈ C1.

More generally, show that, for k ∈ N,

(4.2.79) F,G ∈ Ck =⇒ F ◦G ∈ Ck.

Hint. Write H = F ◦G, with hℓ(x) = fℓ(g1(x), . . . , gn(x)), and use (4.1.35) to get

(4.2.80) ∂jhℓ(x) =

n∑
k=1

∂kfℓ(g1, . . . , gn)∂jgk.

Show that this yields (4.2.78). To proceed, deduce from (4.2.80) that

(4.2.81)

∂j1∂j2hℓ(x) =

n∑
k1,k2=1

∂k1
∂k2

fℓ(g1, . . . , gn)(∂j1gk1
)(∂j2gk2

)

+

n∑
k=1

∂kfℓ(g1, . . . , gn)∂j1∂j2gk.

Use this to get (4.2.79) for k = 2. Proceeding inductively, show that there exist
constants C(µ, J#, k#) = C(µ, J1, . . . , Jµ, k1, . . . , kµ) such that if F,G ∈ Ck and
|J | ≤ k,

(4.2.82) h
(J)
ℓ (x) =

∑
C(µ, J#, k#)g

(J1)
k1

· · · g(Jµ)
kµ

f
(k1,...,kµ)
ℓ (g1, . . . , gn),

where the sum is over

µ ≤ |J |, J1 + · · ·+ Jµ ∼ J, |Jν | ≥ 1,

and J1 + · · · + Jµ ∼ J means J is a rearrangement of J1 + · · · + Jµ. Show that
(4.2.79) follows from this.

4. Show that the map Φ : Gl(n,R) → Gl(n,R) given by Φ(X) = X−1 is Ck for
each k, i.e., Φ ∈ C∞.
Hint. Start with the material of Exercise 3. Write DΦ(X)Y = −X−1Y X−1 as

∂ℓmΦ(X) =
∂

∂xℓm
Φ(X) = DΦ(X)Eℓm = −Φ(X)EℓmΦ(X),



148 4. Multivariable differential calculus

where X = (xℓm) and Eℓm has just one nonzero entry, at position (ℓ,m). Iterate
this to get

∂ℓ2m2
∂ℓ1m1

Φ(X) = −(∂ℓ2m2
Φ(X))Eℓ1m1

Φ(X)− Φ(X)Eℓ1m1
(∂ℓ2m2

Φ(X)),

and continue.

5. Define g(x, y) on R2 by

g(x, y) =
xy3

x2 + y2
, (x, y) ̸= (0, 0),

0, (x, y) = (0, 0).

Show that g is smooth on R2 \ (0, 0) and class C1 on R2. Show that ∂x∂yg and
∂y∂xg exist at each point of R2, and are continuous on R2 \ (0, 0), but not on R2.
Show that

∂

∂y

∂g

∂x
(0, 0) = 1,

∂

∂x

∂g

∂y
(0, 0) = 0.

6. Use the fact that detX is a polynomial in the matrix entries of X to show
directly that det : M(n,R) → R is continuous, and of class Ck for all k. Use the
continuity of det plus the characterization

Gℓ(n,R) = {X ∈M(n,R) : detX ̸= 0}
to show that Gℓ(n,R) is open in M(n,R).

7. Let Ω ⊂ Rn be open, f, g ∈ Ck(Ω), real valued, 0 ∈ Ω. Write

f(x) =
∑
|β|≤k

fβx
β + o(xk), g(x) =

∑
|γ|≤k

gγx
γ + o(xk),

with

fβ =
f (β)(0)

β!
, gγ =

g(γ)(0)

γ!
.

Show that h(x) = f(x)g(x) satisfies

h(x) =
∑

|β|,|γ|≤k

fβgγx
β+γ + o(xk),

and deduce that, for |α| ≤ k,

h(α)(0)

α!
=

∑
β+γ=α

fβgγ =
∑

β+γ=α

1

β!γ!
f (β)(0)g(γ)(0).

From this, deduce that

∂α(fg)(0) =
∑

β+γ=α

α!

β!γ!
f (β)(0)g(γ)(0).

Pass from this to the identity

(4.2.83) ∂α(fg)(x) =
∑

β+γ=α

α!

β!γ!
f (β)(x)g(γ)(x),

for x ∈ Ω. This identity is called the Leibniz identity.
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8. Let O ⊂ Rn be open. Take K ⊂ O compact, and r > 0 small enough that
x ∈ K, v ∈ Rn, |v| ≤ r ⇒ x+ v ∈ O. For f ∈ C(O), x ∈ K, define

τvf(x) = f(x+ v).

Show that if v, w ∈ Rn, |v|, |w| ≤ r/2, then, for f ∈ C(O), x ∈ K,

(4.2.84) τwτvf(x) = τvτwf(x).

Show that

∆j,hf(x) =
1

h

[
τhej − I

]
f(x).

Deduce from (4.2.84) that, if |h| ≤ r/2, x ∈ K,

∆j,h∆k,hf(x) = ∆k,h∆j,hf(x).

Cf. (4.2.7). Also show that, if f ∈ C1(O),

∂kτvf(x) = τv∂kf(x),

and deduce that (cf. (4.2.5))

∂k∆j,hf(x) = ∆j,h∂kf(x).

9. Consider the following function f : R2 → R:
f(x, y) = (sinx)(sin y).

Find all its critical points, and determine which of these are local maxima, local
minima, and saddle points.

10. Define f : R2 → R by
f(x) = ex1 cosx2.

Compute f (α)(x) for |α| ≤ 3. Then write down

P (x) =
∑
|α|≤3

1

α!
f (α)(0)xα.

11. Attack the computation of P (x) in Exercise 10 using Exercise 7, starting with

ex1 = 1 + x1 +
x21
2

+
x31
3!

+ · · · ,

and a similar expansion of cosx2.

12. Write down the power series about (0, 0) of

F (x, y) =

∫ 1

0

ext

1 + yt
dt.

Hint. Start by multiplying the power series of ext and (1 + yt)−1.

13. Show that, for x = (x1, . . . , xn), with |xj | < 1 for all j,∑
α≥0

xα =
1

1− x1
· · · 1

1− xn
.
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Hint. Write the left side as ∑
α1≥0

xα1
1 · · ·

∑
αn≥0

xαn
n .

14. In this exercise, we take

η = (t, t, . . . , t) ∈ Rn, |t| < 1,

and consider
F (η) =

∑
α≥0

ηα.

(a) Show that, for |t| < 1,

F (η) =
∑
α1≥0

tα1

∑
α2≥0

tα2 · · ·
∑
αn≥0

tαn = (1− t)−n.

(b) Show that

F (η) =
∑
α≥0

t|α| =

∞∑
k=0

dk(n)t
k,

where
dk(n) = #{α = (α1, . . . , αn) : |α| = k}

= dimPk(Rn),

with

Pk(Rn) = space of polynomials in x ∈ Rn, homogeneous of degree k.

(c) Comparing results of (a) and (b), show that

dk(n) = coefficient of tk in fn(t) = (1− t)−n

=
1

k!
f (k)n (0)

=
n(n+ 1) · · · (n+ k − 1)

k!

=

(
n+ k − 1

k

)
.

(d) If Pk(Rn) = space of polynomials in x ∈ Rn of degree ≤ k, show that

dimPk(Rn) = dimPk(Rn+1)

=

(
n+ k

k

)
=

(
n+ k

n

)
=

(k + n)(k + n− 1) · · · (k + 1)

n!
.



4.3. Inverse function and implicit function theorem 151

4.3. Inverse function and implicit function theorem

The Inverse Function Theorem gives a condition under which a function can be
locally inverted. This theorem and its corollary the Implicit Function Theorem are
fundamental results in multivariable calculus. First we state the Inverse Function
Theorem. Here, we assume k ≥ 1.

Theorem 4.3.1. Let F be a Ck map from an open neighborhood Ω of p0 ∈ Rn

to Rn, with q0 = F (p0). Suppose the derivative DF (p0) is invertible. Then there
is a neighborhood U of p0 and a neighborhood V of q0 such that F : U → V is
one-to-one and onto, and F−1 : V → U is a Ck map. (One says F : U → V is a
diffeomorphism.)

First we show that F is one-to-one on a neighborhood of p0, under these hy-
potheses. In fact, we establish the following result, of interest in its own right.

Proposition 4.3.2. Assume Ω ⊂ Rn is open and convex, and let f : Ω → Rn be
C1. Assume that the symmetric part of Df(u) is positive-definite, for each u ∈ Ω.
Then f is one-to-one on Ω.

Proof. Take distinct points u1, u2 ∈ Ω, and set u2−u1 = w. Consider φ : [0, 1] →
R, given by

φ(t) = w · f(u1 + tw).

Then φ′(t) = w·Df(u1+tw)w > 0 for t ∈ [0, 1], so φ(0) ̸= φ(1). But φ(0) = w·f(u1)
and φ(1) = w · f(u2), so f(u1) ̸= f(u2). �

To continue the proof of Theorem 4.3.1, let us set

(4.3.1) f(u) = A
(
F (p0 + u)− q0

)
, A = DF (p0)

−1.

Then f(0) = 0 and Df(0) = I, the identity matrix. We will show that f maps a
neighborhood of 0 one-to-one and onto some neighborhood of 0. We can write

(4.3.2) f(u) = u+R(u), R(0) = 0, DR(0) = 0,

and R is C1. Pick b > 0 such that

(4.3.3) ∥u∥ ≤ 2b =⇒ ∥DR(u)∥ ≤ 1

2
.

Then Df = I +DR has positive definite symmetric part on

B2b(0) = {u ∈ Rn : ∥u∥ < 2b},
so by Proposition 4.3.2,

f : B2b(0) −→ Rn is one-to-one.

We will show that the range f(B2b(0)) contains Bb(0), that is to say, we can solve

(4.3.4) f(u) = v,

given v ∈ Bb(0), for some (unique) u ∈ B2b(0). This is equivalent to u+R(u) = v.

To get the solution, we set

(4.3.5) Tv(u) = v −R(u).
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Then solving (4.3.4) is equivalent to solving

(4.3.6) Tv(u) = u.

We look for a fixed point

(4.3.7) u = K(v) = f−1(v).

Also, we want to show that DK(0) = I, i.e., that

(4.3.8) K(v) = v + r(v), r(v) = o(∥v∥).

(The “little oh” notation was introduced in (4.1.1)–(4.1.2), and studied in Exercise 8
of §4.1.) If we succeed in doing this, it follows that, for y close to q0, G(y) = F−1(y)
is defined. Also, taking

x = p0 + u, y = F (x), v = f(u) = A(y − q0),

as in (4.3.1), we have, via (4.3.8),

G(y) = p0 + u = p0 +K(v)

= p0 +K(A(y − q0))

= p0 +A(y − q0) + o(∥y − q0∥).

Hence G is differentiable at q0 and

(4.3.9) DG(q0) = A = DF (p0)
−1.

A parallel argument, with p0 replaced by a nearby x and y = F (x), gives

(4.3.10) DG(y) = DF (G(y))−1.

Thus our task is to solve (4.3.6). To do this, we use the following general result,
known as the Contraction Mapping Theorem.

Theorem 4.3.3. Let X be a complete metric space, and let T : X → X satisfy

(4.3.11) dist(Tx, Ty) ≤ r dist(x, y),

for some r < 1. (We say T is a contraction.) Then T has a unique fixed point x.
For any y0 ∈ X, T ky0 → x as k → ∞.

Proof. Pick y0 ∈ X and let yk = T ky0. Then dist(yk, yk+1) ≤ rk dist(y0, y1), so

(4.3.12)

dist(yk, yk+m) ≤ dist(yk, yk+1) + · · ·+ dist(yk+m−1, yk+m)

≤
(
rk + · · ·+ rk+m−1

)
dist(y0, y1)

≤ rk
(
1− r

)−1
dist(y0, y1).

It follows that (yk) is a Cauchy sequence, so it converges; yk → x. Since Tyk = yk+1

and T is continuous, it follows that Tx = x, i.e., x is a fixed point. Uniqueness
of the fixed point is clear from the estimate dist(Tx, Tx′) ≤ r dist(x, x′), which
implies dist(x, x′) = 0 if x and x′ are fixed points. This proves Theorem 4.3.3. �

Returning to the task of solving (4.3.6), having b as in (4.3.3), we claim that

(4.3.13)
∥v∥ ≤ b =⇒ Tv : B2∥v∥(0) → Xv

=⇒ Tv : Xv → Xv,
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Figure 4.3.1. Tv : Xv → Xv

where

(4.3.14)
Xv = {u ∈ B2b(0) : ∥u− v∥ ≤ Av},
Av = sup

∥w∥≤2∥v∥
∥R(w)∥.

See Figure 4.3.1. Note from (4.3.2)–(4.3.3) that

(4.3.15) ∥w∥ ≤ 2b =⇒ ∥R(w)∥ ≤ 1

2
∥w∥, and ∥R(w)∥ = o(∥w∥).

Hence

(4.3.16) ∥v∥ ≤ b =⇒ Av ≤ ∥v∥, and Av = o(∥v∥).

In particular, when ∥v∥ ≤ b,

(4.3.17)
∥w − v∥ ≤ Av =⇒ ∥w − v∥ ≤ ∥v∥

=⇒ ∥w∥ ≤ 2∥v∥ ≤ 2b,

which in turn implies w ∈ Xv. In addition,

(4.3.18)
∥u∥ ≤ 2∥v∥ =⇒ ∥R(u)∥ ≤ Av

=⇒ ∥Tv(u)− v∥ ≤ Av,

giving the first implication in (4.3.13). Furthermore, via (4.3.17),

u ∈ Xv =⇒ ∥u∥ ≤ 2∥v∥,
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so

(4.3.19) Xv ⊂ B2∥v∥(0),

and we have the second implication in (4.3.13).

As for the contraction property, given uj ∈ Xb, ∥v∥ ≤ b,

(4.3.20)

∥Tv(u1)− Tv(u2)∥ = ∥R(u2)−R(u1)∥

≤ 1

2
∥u1 − u2∥,

the last inequality by (4.3.3), so the map (4.3.13) is a contraction. Hence, by
Theorem 4.3.3, there is a unique fixed point, u = K(v) ∈ Xv. Also, since u ∈ Xv,

(4.3.21) ∥K(v)− v∥ ≤ Av = o(∥v∥).

Thus we have (4.3.8). This establishes the existence of the inverse function G =
F−1 : V → U , and we have the formula (4.3.10) for the derivative DG. Since G is
differentiable on V , it is certainly continuous, so (4.3.10) implies DG is continuous,
given F ∈ C1(U).

To finish the proof of the Inverse Function Theorem and show that G is Ck if
F is Ck, for k ≥ 2, one uses an inductive argument. See Exercise 6 at the end of
this section for an approach to this last argument.

Thus if DF is invertible on the domain of F, F is a local diffeomorphism.
Stronger hypotheses are needed to guarantee that F is a global diffeomorphism
onto its range. Proposition 4.3.2 provides one tool for doing this. Here is a slight
strengthening.

Corollary 4.3.4. Assume Ω ⊂ Rn is open and convex, and that F : Ω → Rn is
C1. Assume there exist n × n matrices A and B such that the symmetric part of
ADF (u)B is positive definite for each u ∈ Ω. Then F maps Ω diffeomorphically
onto its image, an open set in Rn.

Proof. Exercise. �

We make a comment about solving the equation F (x) = y, under the hypothe-
ses of Theorem 4.3.1, when y is close to q0. The fact that finding the fixed point
for Tv in (4.3.13) is accomplished by taking the limit of T k

v (v) implies that, when
y is sufficiently close to q0, the sequence (xk), defined by

(4.3.22) x0 = p0, xk+1 = xk +DF (p0)
−1
(
y − F (xk)

)
,

converges to the solution x. An analysis of the rate at which xk → x, and F (xk) →
y, can be made by applying F to (4.3.22), yielding

F (xk+1) = F (xk +DF (p0)
−1(y − F (xk))

= F (xk) +DF (xk)DF (p0)
−1(y − F (xk))

+R(xk, DF (p0)
−1(y − F (xk))),
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Figure 4.3.2. Polar coordinates on R2

and hence

(4.3.23)
y − F (xk+1) =

(
I −DF (xk)DF (p0)

−1
)
(y − F (xk))

+ R̃(xk, y − F (xk)),

with ∥R̃(xk, y − F (xk))∥ = o(∥y − F (xk)∥).
It turns out that replacing DF (p0)

−1 by DF (xk)
−1 in (4.3.22) yields a faster

approximation. This method, known as Newton’s method, is described in the
exercises.

We consider some examples of maps to which Theorem 4.3.1 applies. First, we
look at polar coordinates on R2 (previewed in (3.1.48)):

(4.3.24) F : (0,∞)× R −→ R2, F (r, θ) =

(
r cos θ

r sin θ

)
=

(
x(r, θ)

y(r, θ)

)
.

See Figure 4.3.2. We have

(4.3.25) DF (r, θ) =

(
∂rx ∂θx
∂ry ∂θy

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
,

so

(4.3.26) detDF (r, θ) = r cos2 θ + r sin2 θ = r.

Hence DF (r, θ) is invertible for all (r, θ) ∈ (0,∞)× R. Theorem 4.3.1 implies that
each (r0, θ0) ∈ (0,∞)×R has a neighborhood U and (x0, y0) = (r0 cos θ0, r0 sin θ0)
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has a neighborhood V such that F is a smooth diffeomorphism of U onto V . In
this simple situation, it can be verified directly that

(4.3.27) F : (0,∞)× (−π, π) −→ R2 \ {(x, 0) : x ≤ 0}

is a smooth diffeomorphism.

Note that DF (1, 0) = I in (4.3.25). Let us check the domain of applicability of
Proposition 4.3.2. The symmetric part of DF (r, θ) in (4.3.25) is

(4.3.28) S(r, θ) =

(
cos θ 1

2 (1− r) sin θ
1
2 (1− r) sin θ r cos θ

)
.

By Proposition 4.2.6, this is positive definite if and only if

(4.3.29) cos θ > 0,

and

(4.3.30) detS(r, θ) = r cos2 θ − 1

4
(1− r)2 sin2 θ > 0.

Now (4.3.29) holds for θ ∈ (−π/2, π/2), but not on all of (−π, π). Furthermore,
(4.3.30) holds for (r, θ) in a neighborhood of (r0, θ0) = (1, 0), but it does not hold
on all of (0,∞)× (−π/2, π/2). We see that Proposition 4.3.2 does not capture the
full force of the diffeomorphism property of (4.3.27).

We move on to another example. As in §4.1, we can extend Theorem 4.3.1,
replacing Rn by a finite dimensional real vector space, isometric to a Euclidean

space, such as M(n,R) ≈ Rn2

. Consider the matrix exponential

(4.3.31) Exp :M(n,R) −→M(n,R), Exp(X) = eX =

∞∑
k=0

1

k!
Xk.

Smoothness of Exp follows from Corollary 4.2.11. See §C.4 for more. Since

(4.3.32) Exp(Y ) = I + Y +
1

2
Y 2 + · · · ,

we have

(4.3.33) DExp(0)Y = Y, ∀Y ∈M(n,R),

so DExp(0) is invertible. Then Theorem 4.3.1 implies that there exist a neigh-
borhod U of 0 ∈ M(n,R) and a neighborhood V of I ∈ M(n,R) such that
Exp : U → V is a smooth diffeomorphism.

We move from the inverse function theorem to the implicit function theorem.
To motivate the result, we consider the following example. Take a > 0 and consider
the equation

(4.3.34) x2 + y2 = a2, F (x, y) = x2 + y2.

Note that

(4.3.35) DF (x, y) = (2x 2y), DxF (x, y) = 2x, DyF (x, y) = 2y.

The equation (4.3.34) defines y “implicitly” as a smooth function of x if |x| < a.
Explicitly,

(4.3.36) |x| < a =⇒ y =
√
a2 − x2,
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Figure 4.3.3. Functions defined implicitly by x2 + y2 = a2

or alternatively y = −
√
a2 − x2. Similarly, (4.3.34) defines x implicitly as a smooth

function of y if |y| < a; explicitly

(4.3.37) |y| < a =⇒ x =
√
a2 − y2,

or alternatively x = −
√
a2 − y2. See Figure 4.3.3 for an illustration. Now, given

x0 ∈ R, a > 0, there exists y0 ∈ R such that F (x0, y0) = a2 if and only if |x0| ≤ a.
Furthermore,

(4.3.38) given F (x0, y0) = a2, DyF (x0, y0) ̸= 0 ⇔ |x0| < a.

Similarly, given y0 ∈ R, there exists x0 such that F (x0, y0) = a2 if and only if
|y0| ≤ a, and

(4.3.39) given F (x0, y0) = a2, DxF (x0, y0) ̸= 0 ⇔ |x0| < a.

Note also that, whenever (x, y) ∈ R2 and F (x, y) = a2 > 0,

(4.3.40) DF (x, y) ̸= 0,

so either DxF (x, y) ̸= 0 or DyF (x, y) ̸= 0, and, as seen above whenever (x0, y0) ∈
R2 and F (x0, y0) = a2 > 0, we can solve F (x, y) = a2 for either y as a smooth
function of x for x near x0 or for x as a smooth function of y for y near y0.

We move from these observations to the next result, the Implicit Function
Theorem.
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Theorem 4.3.5. Suppose U is a neighborhood of x0 ∈ Rm, V a neighborhood of
y0 ∈ Rℓ, and we have a Ck map

(4.3.41) F : U × V −→ Rℓ, F (x0, y0) = u0.

Assume DyF (x0, y0) is invertible. Then the equation F (x, y) = u0 defines y =
g(x, u0) for x near x0 (satisfying g(x0, u0) = y0) with g a Ck map.

Proof. Consider H : U × V → Rm × Rℓ defined by

(4.3.42) H(x, y) =
(
x, F (x, y)

)
.

(Actually, regard (x, y) and (x, F (x, y)) as column vectors.) We have

(4.3.43) DH =

(
I 0

DxF DyF

)
.

Thus DH(x0, y0) is invertible, so G = H−1 exists, on a neighborhood of (x0, u0),
and is Ck, by the Inverse Function Theorem. Let us set

(4.3.44) G(x, u) = (ξ(x, u), g(x, u)).

Then

(4.3.45)
H ◦G(x, u) = H(ξ(x, u), g(x, u))

= (ξ(x, u), F (ξ(x, u), g(x, u)).

Since H ◦G(x, u) = (x, u), we have ξ(x, u) = x, so

(4.3.46) G(x, u) = (x, g(x, u))

and hence

(4.3.47) H ◦G(x, u) = (x, F (x, g(x, u)),

hence

(4.3.48) F (x, g(x, u)) = u.

Note that G(x0, u0) = (x0, y0), so g(x0, u0) = y0, and g is the desired map. �

Here is an example where Theorem 4.3.5 applies. Set

(4.3.49) F : R4 −→ R2, F (u, v, x, y) =

(
x(u2 + v2)

xu+ yv

)
.

We have

(4.3.50) F (2, 0, 1, 1) =

(
4

2

)
.

Note that

(4.3.51) Du,vF (u, v, x, y) =

(
2xu 2xv
x y

)
,

hence

(4.3.52) Du,vF (2, 0, 1, 1) =

(
4 0
1 1

)
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is invertible, so Theorem 4.3.5 (with (u, v) in place of y and (x, y) in place of x)
implies that the equation

(4.3.53) F (u, v, x, y) =

(
4

2

)
defines smooth functions

(4.3.54) u = u(x, y), v = v(x, y),

for (x, y) near (x0, y0) = (1, 1), satisfying (4.3.53), with (u(1, 1), v(1, 1)) = (2, 0).

Let us next focus on the case ℓ = 1 of Theorem 4.3.5, so

(4.3.55) z = (x, y) ∈ Rn, x ∈ Rn−1, y ∈ R, F (z) ∈ R.
Then DyF = ∂yF . If F (x0, y0) = u0, Theorem 4.3.5 says that if

(4.3.56) ∂yF (x0, y0) ̸= 0,

then one can solve

(4.3.57) F (x, y) = u0 for y = g(x, u0),

for x near x0 (satisfying g(x0, u0) = y0), with g a Ck function. This phenome-
non was illustrated in (4.3.34)–(4.3.38). To generalize the observations involving
(4.3.39)–(4.3.40), we note the following. Set (x, y) = z = (z1, . . . , zn), z0 = (x0, y0).
The condition (4.3.56) is that ∂znF (z0) ̸= 0. Now a simple permutation of variables
allows us to pick j ∈ {1, . . . , n} and modify our assumption to

(4.3.58) ∂zjF (z0) ̸= 0, F (z0) = u0,

and deduce that one can solve

(4.3.59) F (z) = u0, for zj = g(z1, . . . , zj−1, zj+1, . . . , zn).

Let us record this result, changing notation and replacing z by x.

Proposition 4.3.6. Let Ω be a neighborhood of x0 ∈ Rn. Asume we have a Ck

function

(4.3.60) F : Ω −→ R, F (x0) = u0,

and assume

(4.3.61) DF (x0) ̸= 0, i.e., (∂1F (x0), . . . , ∂nF (x0)) ̸= 0.

Then there exists j ∈ {1, . . . , n} such that one can solve F (x) = u0 for

(4.3.62) xj = g(x1, . . . , xj−1, xj+1, . . . , xn),

with (x10, . . . , xj0, . . . , xn0) = x0, for a Ck function g.

Remark. For F : Ω → R, it is common to denote DF (x) by ∇F (x),
(4.3.63) ∇F (x) = (∂1F (x), . . . , ∂nF (x)).

Here is an example to which Proposition 4.3.6 applies. Using the notation
(x, y) = (x1, x2), set

(4.3.64) F : R2 −→ R, F (x, y) = x2 + y2 − x.



160 4. Multivariable differential calculus

Then

(4.3.65) ∇F (x, y) = (2x− 1, 2y),

which vanishes if and only if x = 1/2, y = 0. Hence Proposition 4.3.6 applies if
and only if (x0, y0) ̸= (1/2, 0).

Let us give an example involving a real valued function on M(n,R), namely

(4.3.66) det :M(n,R) −→ R.

As indicated in Exercise 15 of §4.1, if detX ̸= 0,

(4.3.67) D det(X)Y = (detX)Tr(X−1Y ),

so

(4.3.68) detX ̸= 0 =⇒ D det(X) ̸= 0.

We deduce that, if

(4.3.69) X0 ∈M(n,R), detX0 = a ̸= 0,

then, writing

(4.3.70) X = (xjk)1≤j,k≤n,

we can say that there exist µ, ν ∈ {1, . . . , n} such that the equation

(4.3.71) detX = a

has a smooth solution of the form

(4.3.72) xµν = g
(
xαβ : (α, β) ̸= (µ, ν)

)
,

such that, if the argument of g consists of the matrix entries of X0 other than the
µ, ν entry, then the left side of (4.3.72) is the µ, ν entry of X0.

Let us redo the determinant calculation, in case n = 2, taking

(4.3.73) X =

(
x y
z w

)
, detX = Φ(x, y, z, w) = xw − yz.

We have

(4.3.74) ∇Φ(x, y, z, w) = (w,−z,−y, x),
which is nonvanishing whenever X ̸= 0. This is more precise than (4.3.68), which
indeed we can improve in general. If we use Exercise 14 of §4.1 instead of Exercise
15, we get

(4.3.75) D det(X)Y = Tr
(
Cof(X)tY

)
,

so in general we can strengthen (4.3.68) to

(4.3.76) X ∈M(n,R), Cof(X) ̸= 0 =⇒ D det(X) ̸= 0.

We return to the setting of Theorem 4.3.5, with ℓ not necessarily equal to 1.
In notation parallel to that of (4.3.58), we assume F is a Ck map,

(4.3.77) F : Ω −→ Rℓ, F (z0) = u0,

where Ω is a neighborhood of z0 in Rn. We assume

(4.3.78) DF (z0) : Rn −→ Rℓ is surjective.
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Then, upon reordering the variables z = (z1, . . . , zn), we can write z = (x, y), x =
(x1, . . . , xn−ℓ), y = (y1, . . . , yℓ), such that DyF (z0) is invertible, and Theorem 4.3.5
applies. Thus (for this reordering of variables), we have a Ck solution to

(4.3.79) F (x, y) = u0, y = g(x, u0),

satisfying y0 = g(x0, u0), z0 = (x0, y0).

To give one example to which this result applies, we take another look at
F : R4 → R2 in (4.3.49). We have

(4.3.80) DF (u, v, x, y) =

(
2xu 2xv u2 + v2 0
x y u v

)
.

The reader is invited to determine for which (u, v, x, y) ∈ R4 the matrix on the
right side of (4.3.80) has rank 2. See Exercise 14 below.

Here is another example, involving a map defined on M(n,R). Set

(4.3.81) F :M(n,R) −→ R2, F (X) =

(
detX

TrX

)
.

Parallel to (4.3.67), if detX ̸= 0, Y ∈M(n,R),

(4.3.82) DF (X)Y =

(
(detX)Tr(X−1Y )

TrY

)
.

Hence, given detX ̸= 0, DF (X) :M(n,R) → R2 is surjective if and only if

(4.3.83) L :M(n,R) → R2, LY =

(
Tr(X−1Y )

TrY

)
is surjective. This is seen to be the case if and only if X is not a scalar multiple of
the identity I ∈M(n,R). See Exercise 15 below.

Exercises

1. Suppose F : U → Rn is a C2 map, p ∈ U, open in Rn, and DF (p) is invertible.
With q = F (p), define a map N on a neighborhood of p by

(4.3.84) N(x) = x+DF (x)−1
(
q − F (x)

)
.

Show that there exists ε > 0 and C <∞ such that, for 0 ≤ r < ε,

∥x− p∥ ≤ r =⇒ ∥N(x)− p∥ ≤ C r2.

Conclude that, if ∥x1 − p∥ ≤ r with r < min(ε, 1/2C), then xj+1 = N(xj) defines
a sequence converging very rapidly to p. This is the basis of Newton’s method, for
solving F (p) = q for p.
Hint. Apply F to both sides of (2.73).

2. Applying Newton’s method to f(x) = 1/x, show that you get a fast approxima-
tion to division using only addition and multiplication.
Hint. Carry out the calculation of N(x) in this case and notice a “miracle.”
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3. Identify R2 with C via z = x+ iy, as in Exercise 9 of §4.1. Let U ⊂ R2 be open,
F : U → R2 be C1. Assume p ∈ U, DF (p) invertible. If F−1 : V → U is given as
in Theorem 4.3.1, show that F−1 is holomorphic provided F is.

4. Let O ⊂ R be open. We say a function f ∈ C∞(O) is real analytic provided
that, for each x0 ∈ O, we have a convergent power series expansion

(4.3.85) f(x) =
∑
α≥0

1

α!
f (α)(x0)(x− x0)

α,

valid in a neighborhood of x0. Show that we can let x be complex in (4.3.85), and
obtain an extension of f to a neighborhood of O in C. Show that the extended
function is holomorphic, i.e., satisfies the Cauchy-Riemann equations.
Hint. Use Proposition 4.2.9.
Remark. It can be shown that, conversely, any holomorphic function has a power
series expansion. See [17]. For the next exercise, assume this as known.

5. Let O ⊂ R be open, p ∈ O, f : O → R be real analytic, with Df(p) invertible.
Take f−1 : V → U as in Theorem 4.3.1. Show f−1 is real analytic.
Hint. Consider a holomorphic extension F : Ω → C of f and apply Exercise 3.

6. Use (4.3.10) to show that if a C1 diffeomorphism has a C1 inverse G, and if
actually F is Ck, then also G is Ck.
Hint. Use induction on k. Write (4.3.10) as

G(x) = Φ ◦ F ◦G(x),

with Φ(X) = X−1, as in Exercises 3 and 10 of §4.1, G(x) = DG(x),F(x) = DF (x).
Apply Exercise 9 of §4.1 to show that, in general

G,F ,Φ ∈ Cℓ =⇒ G ∈ Cℓ.

Deduce that if one is given F ∈ Ck and one knows that G ∈ Ck−1, then this result
applies to give G = DG ∈ Ck−1, hence G ∈ Ck.

7. Show that there is a neighborhood O of (1, 0) ∈ R2 and there are functions
u, v, w ∈ C1(O) (u = u(x, y), etc.) satisfying the equations

u3 + v3 − xw3 = 0,

u2 + yw2 + v = 1,

xu+ yvw = 1,

for (x, y) ∈ O, and satisfying

u(1, 0) = 1, v(1, 0) = 0, w(1, 0) = 1.

Hint. Define F : R5 → R3 by

F (u, v, w, x, y) =

u3 + v3 − xw3

u2 + yw2 + v
xu+ yvw

 ,
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Then F (1, 0, 1, 1, 0) = (0, 1, 1)t. Evaluate the 3 × 3 matrix Du,v,wF (1, 0, 1, 1, 0).
Compare (4.3.49)–(4.3.54).

8. Consider F : M(n,R) → M(n,R), given by F (X) = X2. Show that F is a
diffeomorphism of a neighborhood of the identity matrix I onto a neighborhood of
I. Show that F is not a diffeomorphism of a neighborhood of(

1 0
0 −1

)
onto a neighborhood of I (in case n = 2).

9. Prove Corollary 4.3.4.

10. Let f : R2 → R3 be a C1 map. Assume f(0) = (0, 0, 0) and

∂f

∂x
(0)× ∂f

∂y
(0) = (0, 0, 1).

Show that there exist neighborhoods O and Ω of 0 ∈ R2 and a C1 map u : Ω → R
such that the image of O under f in R3 is the graph of u over Ω.
Hint. Let Π : R3 → R2 be Π(x, y, z) = (x, y), and consider

φ(x, y) = Π(f(x, y)), φ : R2 → R2.

Show that Dφ(0) : R2 → R2 is invertible, and apply the inverse function theorem.
Then let u be the z-component of f ◦ φ−1.

11. Generalize Exercise 10 to the setting where f : Rm → Rn (m < n) is C1 and

Df(0) : Rm −→ Rn is injective.

Remark. For related results, see the opening paragraphs of §6.1.

12. Let Ω ⊂ Rn be open and contain p0. Assume F : Ω → Rn is continuous and
F (p0) = q0. Assume F is C1 on Ω and DF (x) is invertible for all x ∈ Ω. Finally,
assume there exists R > 0 such that

(4.3.86) x ∈ ∂Ω =⇒ ∥F (x)− q0∥ ≥ R.

See Figure 4.3.4. Show that

(4.3.87) F (Ω) ⊃ BR/2(q0).

Hint. Given y0 ∈ BR/2(q0), use compactness to show that there exists x0 ∈ Ω such
that

∥F (x0)− y0∥ = inf
x∈Ω

∥F (x)− y0∥.

Use the hypothesis (4.3.86) to show that x0 ∈ Ω. If F (x0) ̸= y0, use

F (x0 + tz) = F (x0) + tDF (x0)z + o(∥tz∥),

to produce z ∈ Rn (say DF (x0)z = y0 − F (x0)) such that F (x0 + tz) is closer to
y0 than F (x0) is, for small t > 0. Contradiction.
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Figure 4.3.4. F (Ω) contains BR(q0)

13. Do Exercise 12 with the conclusion (4.3.87) strengthened to

(4.3.88) F (Ω) ⊃ BR(q0).

Hint. It suffices to show that F (Ω) ⊃ BS(q0) for each S < R. Given such S,
produce a diffeomorphism φ : Rn → Rn such that Exercise 12 applies to φ ◦F , and
yields the desired conclusion.

14. In the setting of Exercise 12, take

Ω = Br(p0),

and assume there exists a > 0 such that

v ·DF (x)v ≥ a∥v∥2, ∀x ∈ Ω, v ∈ Rn.

As before, F is assumed continuous on Ω, C1 on Ω, and F (p0) = q0. Adapt the
proof of Proposition 4.3.2 to show that, for x, y ∈ Ω,

(x− y) · [F (x)− F (y)] ≥ a∥x− y∥2,
hence

∥F (x)− F (y)∥ ≥ a∥x− y∥.
Deduce that

x ∈ ∂Ω =⇒ ∥F (x)− q0∥ ≥ ar,
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and conclude that F maps Ω one-one and onto a set

F (Ω) ⊃ Bar(q0).

15. Show that the 2 × 4 matrix D in (4.3.80) has rank 2 whenever v ̸= 0. In case
v = 0, the matrix becomes

D =

(
2xu 0 u2 0
x y u 0

)
.

Determine when this has rank 2.

16. Let u, v ∈ Rn, and define

L : Rm → R2, Ly =

(
u · y
v · y

)
.

Show that L is surjective if and only if u and v are linearly independent. Relate
this to the analysis of (4.3.83).

Hint. Use M(n,R) ≈ Rn2

, with inner product ⟨S, T ⟩ = TrStT . Write L in (4.3.83)
as

LY =

(
⟨U, Y ⟩
⟨V, Y ⟩

)
, U = (X−1)t, V = I.





Chapter 5

Multivariable integral calculus

This central chapter develops integral calculus on domains in Rn, taking up the
multidimensional Riemann integral. The basic definition is quite parallel to the
one-dimensional case, but a number of fundamental results, while parallel in state-
ment to the one-dimensional case, require more elaborate demonstrations in higher
dimensions. This chapter is one of the most demanding in this text, and it is in a
sense the heart of the course.

We start in §5.1 with the integral of a function defined on a cell in Rn, i.e., a
product of n intervals. This is done via partitions of a cell R, and a passage to the
limit as the partitions become finer. When the limit of upper and lower sums of
a bounded function f : R → R exist and coincide, we say f is Riemann integrable
on R, and take the limit to be its integral. Continuous functions on R are seen to
be integrable. If Ω ⊂ Rn is a more general bounded set, and f : Ω → R, we take a
cell R such that Ω ⊂ R and extend f by 0 on R \ Ω. Such a construction makes it
crucial to examine the integrability of discontinuous functions on R. We show that
if f : R → R is bounded and the set of points of discontinuity of f is negligible in
some sense, then f is Riemann integrable. One simple result along these lines is
given in §5.1, and a sharper result along these lines is given later in the chapter.

One central result of §5.1 is the reduction of multiple integrals to iterated
integrals. This reduction is essential for computations, and we illustrate it with
a variety of examples. Another central result is the change of variable formula
for multidimensional integrals. Important special cases include transforming 2D
integrals to polar coordinates, and 3D integrals to spherical polar coordinates. We
illustrate the use of these two results with computations of volumes of balls in Rn,
particularly for n = 2 and 3, but also for higher n. We will find in the next chapter
that the change of variable formula for the integral is a very important ingredient
for developing the integral on surfaces.

In §5.2, we apply methods developed in §5.1 to study mean values of functions
defined on a contented domain O ⊂ Rn, with emphasis on results on the center of
mass of O.

167
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Extending the scope of §5.1, we treat unbounded integrable functions in §5.3.
A key result established here is a monotone convergence theorem.

In §5.4 we introduce the concept of outer measure and sharpen the integrability
condition of §5.1, showing that a sufficient condition that a bounded function be
Riemann integrable is that its set of points of discontinuity have outer measure
zero.
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Figure 5.1.1. Partition of a cell, P1

5.1. The Riemann integral in n variables

We define the Riemann integral of a bounded function f : R → R, where R ⊂ Rn

is a cell, i.e., a product of intervals R = I1 × · · · × In, where Iν = [aν , bν ] are
intervals in R. Recall that a partition of an interval I = [a, b] is a finite collection
of subintervals {Jk : 0 ≤ k ≤ N}, disjoint except for their endpoints, whose union
is I. We can take Jk = [xk, xk+1], where

(5.1.1) a = x0 < x1 < · · · < xN < xN+1 = b.

Now, if one has a partition of each Iν into Jν1 ∪ · · · ∪ Jν,N(ν), then a partition P of
R consists of the cells

(5.1.2) Rα = J1α1
× J2α2

× · · · × Jnαn
,

where 0 ≤ αν ≤ N(ν). See Figure 5.1.1. For such a partition, define

(5.1.3) maxsize (P) = max
α

diamRα,

where (diam Rα)
2 = ℓ(J1α1

)2 + · · ·+ ℓ(Jnαn
)2. Here, ℓ(J) denotes the length of an

interval J. Each cell has n-dimensional volume

(5.1.4) V (Rα) = ℓ(J1α1
) · · · ℓ(Jnαn

).



170 5. Multivariable integral calculus

Figure 5.1.2. Second partition, P2, and common refinement, Q ≻ Pj

Sometimes we use Vn(Rα) for emphasis on the dimension. We also use A(R) for
V2(R), and, of course, ℓ(R) for V1(R).

We set

(5.1.5)

IP(f) =
∑
α

sup
Rα

f(x)V (Rα),

IP(f) =
∑
α

inf
Rα

f(x)V (Rα).

Note that IP(f) ≤ IP(f). These quantities should approximate the Riemann inte-
gral of f, if the partition P is sufficiently “fine.”

To be more precise, if P and Q are two partitions of R, we say Q refines P,
and write Q ≻ P, if each partition of each interval factor Iν of R involved in the
definition of P is further refined in order to produce the partitions of the factors
Iν , used to define Q, via (5.1.2). It is an exercise to show that any two partitions
of R have a common refinement. See Figure 5.1.2. Note also that

(5.1.6) Q ≻ P =⇒ IQ(f) ≤ IP(f), and IQ(f) ≥ IP(f).

Consequently, if Pj are any two partitions of R and Q is a common refinement, we
have

(5.1.7) IP1
(f) ≤ IQ(f) ≤ IQ(f) ≤ IP2(f).
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Now, whenever f : R→ R is bounded, the following quantities are well defined:

(5.1.8) I(f) = inf
P∈Π(R)

IP(f), I(f) = sup
P∈Π(R)

IP(f),

where Π(R) is the set of all partitions of R, as defined above. Clearly, by (5.1.7),
I(f) ≤ I(f).We then say that f is Riemann integrable (on R) provided I(f) = I(f),
and in such a case, we set

(5.1.9)

∫
R

f(x) dV (x) = I(f) = I(f).

We will denote the set of Riemann integrable functions on R by R(R). If dim R = 2,
we will often use dA(x) instead of dV (x) in (5.1.9). For general n, we might also
use simply dx.

We derive some basic properties of the Riemann integral. First, the proof of
the Darboux theorem in §1.2 readily extends, to give:

Proposition 5.1.1. Let Pν be any sequence of partitions of R such that

(5.1.10) maxsize (Pν) = δν → 0.

Then, if f : R→ R is bounded,

(5.1.11) IPν
(f) → I(f), and IPν

(f) → I(f).

Consequently, if ξνα is any choice of one point in each cell Rνα in the partition Pν ,
then, whenever f ∈ R(R),

(5.1.12)

∫
R

f(x) dV (x) = lim
ν→∞

∑
α

f(ξνα) V (Rνα).

This is the multidimensional Darboux theorem. The sums that arise in (5.1.12)
are Riemann sums.

Also, we can extend the proof of additivity of the integral in §1.1, to obtain:

Proposition 5.1.2. If fj ∈ R(R) and cj ∈ R, then c1f1 + c2f2 ∈ R(R), and

(5.1.13)

∫
R

(c1f1 + c2f2) dV = c1

∫
R

f1 dV + c2

∫
R

f2 dV.

Next, we establish an integrability result analogous to Proposition 1.2.2.

Proposition 5.1.3. If f is continuous on R, then f ∈ R(R).

Proof. As in the proof of Proposition 1.2.2, we have that,

(5.1.14) maxsize (P) ≤ δ =⇒ IP(f)− IP(f) ≤ ω(δ) · V (R),

where ω(δ) is a modulus of continuity for f on R. This proves the proposition. �

Content, volume, and integrability

When the number of variables exceeds one, it becomes crucial to identify some
nice classes of discontinuous functions on R that are Riemann integrable. A useful
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tool for this is the following notion of size of a set S ⊂ R, called content. Extending
the notion from §1.2, we define “upper content” cont+ and “lower content” cont−

by

(5.1.15) cont+(S) = I(χS), cont−(S) = I(χS),

where χS is the characteristic function of S.We say S has content, or “is contented,”
if these quantities are equal, which happens if and only if χS ∈ R(R), in which case
the common value of cont+(S) and cont−(S) is

(5.1.16) V (S) =

∫
R

χS(x) dV (s),

which we call the volume of S. For S ⊂ Rn, we might denote this by Vn(S), to
emphasize the dimension. When n = 2, we might denote this quantity by A(S),
and call is the area of S. We mention that, if S = I1×· · ·× In is a cell, it is readily
verified that the definitions in (5.1.5), (5.1.8), and (5.1.15) yield

cont+(S) = cont−(S) = ℓ(I1) · · · ℓ(In),

so the definition of V (S) given by (5.1.16) is consistent with that given in (5.1.4).

An equivalent characterization of upper content is

(5.1.17) cont+(S) = inf
{ N∑
k=1

V (Rk) : S ⊂ R1 ∪ · · · ∪RN

}
,

where Rk are cells contained in R. In a literal translation of (5.1.15) the Rα in
(5.1.17) should be part of a partition P of R, as defined above, but if {R1, . . . , RN}
are any cells in R, they can be chopped up into smaller cells, some perhaps thrown
away, to yield a finite cover of S by cells in a partition of R, so one gets the same
result.

It is an exercise to see that, for any set S ⊂ R,

(5.1.18) cont+(S) = cont+(S),

where S is the closure of S.

We note that, generally, for a bounded function f on R,

(5.1.19) I(f) + I(1− f) = V (R).

This follows directly from (5.1.5). In particular, given S ⊂ R,

(5.1.20) cont−(S) + cont+(R \ S) = V (R).

Using this together with (5.1.18), with S and R \ S switched, we have

(5.1.21) cont−(S) = cont−(
◦
S),

where
◦
S denotes the interior of S. The difference S \

◦
S is called the boundary of S,

and denoted bS.

Note that if S ⊂ R, and P is a partition of R, we can classify each cell in P as

either contained in
◦
S, intersecting bS, or disjoint from S. It follows that

(5.1.22) IP(χS) = IP(χ◦
S
) + IP(χbS).
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Taking partitions P = Pν with maxsize → 0 and applying the Darboux theorem,
we obtain in the limit that

(5.1.23) cont+(S) = cont−(
◦
S) + cont+(bS).

Taking into account (5.1.18) and (5.1.21), we have:

Proposition 5.1.4. If S ⊂ R, then S is contented if and only if cont+(bS) = 0.

If a set Σ ⊂ R has the property that cont+(Σ) = 0, we say that Σ has content
zero, or is a nil set. Clearly Σ is nil if and only if Σ is nil. It follows easily from

Proposition 5.1.2 that, if Σj are nil, 1 ≤ j ≤ K, then
∪K

j=1 Σj is nil.

If S1, S2 ⊂ R and S = S1 ∪ S2, then S = S1 ∪ S2 and
◦
S ⊃

◦
S1 ∪

◦
S2. Hence

bS ⊂ b(S1) ∪ b(S2). It follows then from Proposition 5.1.4 that, if S1 and S2 are
contented, so is S1 ∪ S2. Clearly, if Sj are contented, so are Sc

j = R \ Sj . It follows

that, if S1 and S2 are contented, so is S1 ∩ S2 =
(
Sc
1 ∪ Sc

2

)c
. A family F of subsets

of R is called an algebra of subsets of R provided the following conditions hold:

R ∈ F ,
Sj ∈ F ⇒ S1 ∪ S2 ∈ F , and
S ∈ F ⇒ R \ S ∈ F .

Algebras of sets are automatically closed under finite intersections also. We see
that:

Proposition 5.1.5. The family of contented subsets of R is an algebra of sets.

The following result specifies a useful class of Riemann integrable functions.
For a sharper result, see Proposition 5.4.1.

Proposition 5.1.6. If f : R→ R is bounded and the set S of points of discontinuity
of f is a nil set, then f ∈ R(R).

Proof. Suppose |f | ≤M on R, and take ε > 0. Take a partition P of R, and write
P = P ′ ∪P ′′, where cells in P ′ do not meet S, and cells in P ′′ do intersect S. Since
cont+(S) = 0, we can pick P so that the cells in P ′′ have total volume ≤ ε. Now f
is continuous on each cell in P ′. Further refining the partition if necessary, we can
assume that f varies by ≤ ε on each cell in P ′. Thus

(5.1.24) IP(f)− IP(f) ≤
[
V (R) + 2M

]
ε.

This proves the proposition. �

To give an example, suppose K ⊂ R is a closed set such that bK is nil. Let

f : K → R be continuous. Define f̃ : R→ R by

(5.1.25)
f̃(x) = f(x) for x ∈ K,

0 for x ∈ R \K.

Then the set of points of discontinuity of f̃ is contained in bK. Hence f̃ ∈ R(R).
We set

(5.1.26)

∫
K

f dV =

∫
R

f̃ dV.
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In connection with this, we note the following fact, whose proof is an exercise.

Suppose R and R̃ are cells, with R ⊂ R̃. Suppose that g ∈ R(R) and that g̃ is

defined on R̃, to be equal to g on R and to be 0 on R̃ \R. Then

(5.1.27) g̃ ∈ R(R̃), and

∫
R

g dV =

∫
R̃

g̃ dV.

This can be shown by an argument involving refining any given pair of partitions

of R and R̃, respectively, to a pair of partitions PR and PR̃ with the property that
each cell in PR is a cell in PR̃.

The following describes an important class of sets S ⊂ Rn that have content
zero.

Proposition 5.1.7. Let Σ ⊂ Rn−1 be a closed bounded set and let g : Σ → R be
continuous. Then the graph of g,

G =
{(
x, g(x)

)
: x ∈ Σ

}
is a nil subset of Rn.

Proof. Put Σ in a cell R0 ⊂ Rn−1. Suppose |g| ≤ M on Σ. Take N ∈ Z+ and set
ε = M/N. Pick a partition P0 of R0, sufficiently fine that g varies by at most ε
on each set Σ ∩Rα, for any cell Rα ∈ P0. Partition the interval I = [−M,M ] into
2N equal intervals Jν , of length ε. Then {Rα × Jν} = {Qαν} forms a partition of
R0 × I. Now, over each cell Rα ∈ P0, there lie at most 2 cells Qαν which intersect
G, so cont+(G) ≤ 2ε · V (R0). Letting N → ∞, we have the proposition. �

Similarly, for any j ∈ {1, . . . , n}, the graph of xj as a continuous function of
the complementary variables is a nil set in Rn. So are finite unions of such graphs.
Such sets arise as boundaries of many ordinary-looking regions in Rn.

Here is a further class of nil sets.

Proposition 5.1.8. Let O ⊂ Rn be open and let S ⊂ O be a compact nil subset.
Assume f : O → Rn is a Lipschitz map. Then f(S) is a nil subset of Rn.

Proof. The Lipschitz hypothesis on f is that there exists L < ∞ such that, for
p, q ∈ O,

|f(p)− f(q)| ≤ L|p− q|.
If we cover S with k cells (in a partition), of total volume ≤ α, each cubical with
edgesize δ, then f(S) is covered by k sets of diameter ≤ L

√
nδ, hence it can be

covered by k cubical cells of edgesize L
√
nδ, having total volume ≤ (L

√
n)nα. From

this we have the (not very sharp) general bound

(5.1.28) cont+
(
f(S)

)
≤ (L

√
n)n cont+(S),

which proves the proposition. �
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Iterated integrals

In evaluating n-dimensional integrals, it is usually convenient to reduce them
to iterated integrals. Such results go under the label of Fubini Theorems. Here is
one simple example of such a result.

Proposition 5.1.9. Let X ⊂ Rk, Y ⊂ Rℓ, R = X × Y ⊂ Rn be cells, k + ℓ = n.
Let f : X × Y → R be continuous. Form

(5.1.29) φ(x) =

∫
Y

f(x, y) dVℓ(y).

Then φ ∈ C(X), and

(5.1.30)

∫
R

f dVn =

∫
X

φdVk.

Proof. We know f is uniformly continuous on R. Let ω(δ) be a modulus of conti-
nuity. If xj ∈ X, we have

(5.1.31)
|φ(x1)− φ(x2)| ≤

∫
Y

|f(x1, y)− f(x2, y)| dVℓ(y)

≤ ω(|x1 − x2|)Vℓ(Y ),

so φ is continuous on X.

To proceed, take ε > 0 and pick δ > 0 such that ω(δ) < ε. Take partitions
X = {Xα} of X, Y = {Yβ} of Y , and P = {Rαβ = Xα × Yβ} of R = X × Y into
cells, such that

(5.1.32) maxsize(P) ≤ δ.

The same upper bound holds for maxsize(X ) and maxsize(Y).

Let ξα ∈ Xα, ηβ ∈ Yβ , and ζαβ = (ξα, ηβ) ∈ Rαβ denote the centers of these
cells. We have

(5.1.33)
∣∣∣∫
R

f dVn −
∑
α,β

f(ξα, ηβ)Vn(Rαβ)
∣∣∣ ≤ Vn(R)ε.

Also, for each α,

(5.1.34)
∣∣∣φ(ξα)−∑

β

f(ξα, ηβ)Vℓ(Yβ)
∣∣∣ ≤ Vℓ(Y )ε.

Furthermore, by (5.1.31),

(5.1.35)
∣∣∣∫
X

φdVk −
∑
α

φ(ξα)Vk(Xα)
∣∣∣ ≤ Vk(X)Vℓ(Y )ε.

From (5.1.34)–(5.1.37), we have

(5.1.36)
∣∣∣∫
X

φdVk −
∑
α,β

f(ξα, ηβ)V (Xα)V (Yβ)
∣∣∣ ≤ 2Vn(R)ε.
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Comparison with (5.1.33) gives

(5.1.37)
∣∣∣∫
R

f dVn −
∫
X

φdVk

∣∣∣ ≤ 3V (R)ε.

Taking ε→ 0 gives the asserted identity (5.1.30). �

For applications, it is crucial to obtain results parallel to (5.1.30) in cases where
f is not continuous on X × Y . Here is a useful result of this nature.

Theorem 5.1.10. Let Σ ⊂ Rn−1 be a closed, bounded contented set and let gj :
Σ → R be continuous, with g0(x) < g1(x) on Σ. Take

(5.1.38) Ω =
{
(x, y) ∈ Rn : x ∈ Σ, g0(x) ≤ y ≤ g1(x)

}
.

Then Ω is a contented set in Rn. If f : Ω → R is continuous, then

(5.1.39) φ(x) =

∫ g1(x)

g0(x)

f(x, y) dy

is continuous on Σ, and

(5.1.40)

∫
Ω

f dVn =

∫
Σ

φdVn−1,

i.e.,

(5.1.41)

∫
Ω

f dVn =

∫
Σ

(∫ g1(x)

g0(x)

f(x, y) dy

)
dVn−1(x).

Proof. The continuity of φ in (5.1.39) is straightforward.

Put Σ in a cell R ⊂ Rn−1. If A ≤ g0 < g1 ≤ B, set I = [A,B]. Then Ω is
contained in the cell Q = R× I ⊂ Rn. We will work with a partition P = {Rα} of
R, with properties to be specified shortly.

Let us note that

(5.1.42) cont+(bΩ) = 0 and cont+(bΣ) = 0.

Since the sets of discontinuities of f (extended by 0 on Q\Ω) and of φ (extended by
0 on R \Σ) lie in these boundaries, it follows that f and φ are Riemann integrable,
so both sides of (5.1.40) are well defined. We will prove (5.1.40) by chopping Q
into pieces. We will apply Proposition 5.1.9 to the bulk of these pieces, and show
that the contribution of the remaining pieces is vanishingly small.

Let ω(δ) be a modulus of continuity for g0 and g1. Pick ε > 0. Then pick
δ1 > 0 and the partition P so that

(5.1.43) ω(δ1) ≤ ε, and maxsize(P) ≤ δ1.

If necessary, shrink δ1 to be sufficiently small that all the cells in P that intersect
bΣ have

(5.1.44) total (n− 1)-dimensional volume ≤ ε.
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Denote by P ′ the collection of cells in P that lie in the interior
◦
Σ of Σ. We have

(5.1.45)
∣∣∣∫
Ω

f dVn −
∑

Rα∈P′

∫
Rα×I

f dVn

∣∣∣ ≤M(B −A)ε,

where

(5.1.46) M = max
Ω

|f |.

We also have

(5.1.47)
∣∣∣∫
Σ

φdVn−1 −
∑

Rα∈P′

∫
Rα

φdVn−1

∣∣∣ ≤M(B −A)ε,

since |φ| ≤M(B −A).

Now, for each Rα ∈ P ′, take

(5.1.48) Aα = max
Rα

g0, Bα = min
Rα

g1, Iα = [Aα, Bα].

Assume ε is so small that each Aα < Bα. Then, for each Rα ∈ P ′,

(5.1.49)
∣∣∣ ∫
Rα×I

f dVn −
∫

Rα×Iα

f dVn

∣∣∣ ≤ 2MεVn−1(Rα),

and

(5.1.50) x ∈ Rα =⇒
∣∣∣φ(x)− ∫ Bα

Aα

f(x, y) dy
∣∣∣ ≤ 2Mε.

Now Proposition 5.1.9 yields

(5.1.51)

∫
Rα×Iα

f dVn =

∫
Rα

(∫ Bα

Aα

f(x, y) dy
)
dVn−1(x),

so, by (5.1.50),

(5.1.52)
∣∣∣ ∫
Rα×Iα

f dVn −
∫
Rα

φdVn−1

∣∣∣ ≤ 2MεVn−1(Rα),

and hence, taking into account (5.1.49),

(5.1.53)
∣∣∣ ∑
Rα∈P′

( ∫
Rα×I

f dVn −
∫
Rα

φdVn−1

)∣∣∣ ≤ 4MεV (R).

Therefore, also bringing in (5.1.44), we have

(5.1.54)
∣∣∣∫
Ω

f dVn −
∫
Σ

φdVn−1

∣∣∣ ≤ Kε.

Taking ε→ 0 yields the asserted identity (5.1.39). �

Remark. A little more work allows one to replace the hypothesis g0(x) < g1(x) in
Theorem 5.1.10 by g0(x) ≤ g1(x). We leave this as a task for the reader.
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To present some applications of Theorem 5.1.10, we take the unit disk in R2,

(5.1.55) D = {(x, y) ∈ R2 : x ∈ [−1, 1], |y| ≤
√
1− x2}.

In this case we see from Theorem 5.1.10 that, if f ∈ C(D),

(5.1.56)

∫
D

f dA =

∫ 1

−1

(∫ √
1−x2

−
√
1−x2

f(x, y) dy
)
dx.

In particular, the area of D is given by

(5.1.57) A(D) =

∫ 1

−1

2
√
1− x2 dx.

The change of variable x = sin t gives

(5.1.58) A(D) = 2

∫ π/2

−π/2

cos2 t dt.

Using the identity cos 2t = 2 cos2 t− 1, we obtain

(5.1.59) A(D) =

∫ π/2

−π/2

(1 + cos 2t) dt = π,

as the formula for the area of the unit disk D ⊂ R2. See Exercise 23 for another
approach.

Extending the last computation, we highlight the general application of Theo-
rem 5.1.10 to the computation of areas and volumes.

Corollary 5.1.11. Take Σ ⊂ Rn−1, gj : Σ → R, and Ω ⊂ Rn as in Theorem
5.1.10. Then

(5.1.60) V (Ω) =

∫
Σ

[g1(x)− g0(x)] dx.

Specializing to n = 2 (as we did in (5.1.55)–(5.1.59)), we have for the area
under the curve y = g(x), for continuous g : [a, b] → (0,∞), the formula

(5.1.61) A =

∫ b

a

g(x) dx,

which is familiar from first-year calculus (though, in such a course, one might have
seen a less precise definition of area).

Let us move on to higher dimensional volume, such as the volume of the n-
dimensional ball:

(5.1.62) Bn = {x ∈ Rn : |x| ≤ 1}.
We can apply (5.1.60) to write

(5.1.63) V (Bn) = 2

∫
Bn−1

√
1− |x|2 dx.

For example,

(5.1.64) V (B3) = 2

∫
D

√
1− |x|2 dx,
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where D = B2 is the unit disk. In turn, an application of Theorem 5.1.10 gives

(5.1.65)

∫
D

√
1− |x|2 dx =

∫ 1

−1

∫ √
1−x2

−
√
1−x2

√
1− x2 − y2 dy dx.

Taking a2 = 1− x2, we write the inner integral as

(5.1.66)

∫ a

−a

√
a2 − y2 dy = a2

∫ 1

−1

√
1− s2 ds

=
π

2
a2,

using y = as and the computation of (5.1.57). Hence

(5.1.67)

∫
D

√
1− |x|2 dx =

π

2

∫ 1

−1

(1− x2) dx =
2

3
π,

and we get

(5.1.68) V (B3) =
4

3
π.

Another attack on the integral (5.1.64), using polar coordinates, will be discussed
below.

Another approach to computing V (Bn) will arise from the following general-
ization of Theorem 5.1.10.

Proposition 5.1.12. Let n = k+ℓ, and let Σ ⊂ Rk be a closed, bounded, contented
set. Let gj : Σ → [0,∞) be continuous, and satisfy g0(x) ≤ g1(x). Take

(5.1.69) Ω = {(x, y) ∈ Rn : x ∈ Σ, y ∈ Rℓ, g0(x) ≤ |y| ≤ g1(x)}.

Then Ω is a contented set in Rn. If f : Ω → R is continuous, then

(5.1.70) φ(x) =

∫
g0(x)≤|y|≤g1(x)

f(x, y) dy

is continuous on Σ, and

(5.1.71)

∫
Ω

f dVn =

∫
Σ

φdVk.

The reader can extend the proof of Theorem 5.1.10 to cover this result.

Before applying Proposition 5.1.11 to V (Bn), we look at a class of 3D domains
to which it applies, namely solids of rotation. Take a continuous function g : [a, b] →
(0,∞), and consider

(5.1.72) Ω = {(x, y, z) : a ≤ x ≤ b,
√
y2 + z2 ≤ g(x)}.

See Figure 5.1.3. This has the form (5.1.69), with Σ = [a, b], g0 ≡ 0, g1(x) = g(x).
If f : Ω → R is continuous, then (5.1.70) leads to

(5.1.73) φ(x) =

∫
|y|≤g(x)

f(x, y) dy.
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Figure 5.1.3. Area under a curve and solid of revolution

In particular, if f = f(x), then φ(x) = f(x)A(Dg(x)), with

Dρ = {y ∈ R2 : |y| ≤ ρ}, A(Dρ) = πρ2,

by (5.1.59), so, for Ω as in (5.1.72),

(5.1.74)

∫
Ω

f(x) dx dy dz = π

∫ b

a

f(x)g(x)2 dx,

and taking f ≡ 1 gives

(5.1.75) V (Ω) = π

∫ b

a

g(x)2 dx.

The ball B3 is the solid of revolution one gets with g(x) =
√
1− x2, [a, b] =

[−1, 1], so (5.1.75) yields an alternative derivation of (5.1.68):

(5.1.76) V (B3) = π

∫ 1

−1

(1− x2) dx =
4

3
π.
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Taking up the case Bn, we apply Proposition 5.1.12, with Σ = [−1, 1], g0 ≡
0, g1(x) =

√
1− x2, to obtain, for f ∈ C(Bn),

(5.1.77)

∫
Bn

f dVn =

∫ 1

−1

( ∫
|y|≤

√
1−x2

f(x, y) dy
)
dx.

In particular,

(5.1.78) V (Bn) =

∫ 1

−1

V (Bn−1√
1−x2

) dx,

where

(5.1.79) Bn−1
r = {y ∈ Rn−1 : |y| ≤ r}.

Scaling gives

(5.1.80) V (Bn−1
r ) = V (Bn−1)rn−1,

so we have the inductive result

(5.1.81) V (Bn) = βnV (Bn−1), βn =

∫ 1

−1

(1− x2)(n−1)/2 dx.

Applying this to n = 3, and using V (B2) = A(D) = π, leads back to (5.1.76). To
go one step further, we have

(5.1.82) V (B4) = β4V (B3),

with

(5.1.83)

β4 =

∫ 1

−1

(1− x2)3/2 dx

= 2

∫ π/2

0

cos4 t dt.

One can attack this trigonometric integral by taking

2 cos2 t = 1 + cos 2t,

and squaring it. See Exercise 24 for an alternative approach.

In §6.1 we will give another approach to the calculation of V (Bn), tied in with
calculating the area of the sphere Sn−1. This will produce a unified formula, for all
n, which involves the Gamma function.

Theorem 5.1.10 and Proposition 5.1.12 are designed to apply to the reduction
of multiple integrals to iterated integrals on some fairly basic domains that one
encounters. One can imagine other types of domains that are not covered by these
two results. Rather than seek further results that apply to continuous integrands
on more elaborate domains Ω, we will establish a rather general result in Theo-
rem 5.1.15, after some further useful characterizations of the Riemann integral in
Proposition 5.1.13 and Corollary 5.1.14.
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Other characterizations of I(f) and I(f)

At this point, it is useful to bring in some additional characterizations of I(f)
and I(f). To do this, we introduce two classes of discontinuous functions on a cell
R, which we denote C(R) and PK(R). These are defined as follows.

Given a cell R and f : R→ R, bounded, we say

(5.1.84) f ∈ C(R) ⇐⇒ the set of discontinuities of f is nil.

Proposition 5.1.6 implies

(5.1.85) C(R) ⊂ R(R).

From the closure of the class of nil sets under finite unions it is clear that C(R) is
closed under sums and products, i.e., that C(R) is an algebra of functions on R.
We will denote by Cc(Rn) the set of bounded functions f : Rn → R such that f has
compact support and its set of discontinuities is nil. Any f ∈ Cc(Rn) is supported
in some cell R, and f

∣∣
R
∈ C(R).

Next, given a cell R ⊂ Rn and f : R→ R bounded, we say

(5.1.86)
f ∈ PK(R) ⇐⇒ ∃ a partition P of R such that f is constant

on the interior of each cell Rα ∈ P.

The following will prove to be very useful in a number of applications.

Proposition 5.1.13. Given a cell R ⊂ Rn and f : R→ R bounded,

(5.1.87)

I(f) = inf
{∫
R

g dV : g ∈ PK(R), g ≥ f
}

= inf
{∫
R

g dV : g ∈ C(R), g ≥ f
}

= inf
{∫
R

g dV : g ∈ C(R), g ≥ f
}
.

Similarly,

(5.1.88)

I(f) = sup
{∫
R

g dV : g ∈ PK(R), g ≤ f
}

= sup
{∫
R

g dV : g ∈ C(R), g ≤ f
}

= sup
{∫
R

g dV : g ∈ C(R), g ≤ f
}
.

Proof. Denote the three quantities on the right side of (5.1.87) by I1(f), I2(f),
and I3(f), respectively. The definition of I1(f) is sufficiently close to that of I(f)
in (5.1.8) that the identity

I(f) = I1(f)
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is apparent. Now I2(f) is an inf over a larger class of functions g than that defining
I1(f), so

I2(f) ≤ I1(f).

On the other hand, I(g) ≥ I(f) for all g involved in defining I2(f), so

I2(f) ≥ I(f),

hence I2(f) = I(f).

Next, I3(f) is an inf over a smaller class of functions g than that defining I2(f),
so

I3(f) ≥ I(f).

On the other hand, given ε > 0 and ψ ∈ PK(R), one can readily find g ∈ C(R)
such that g ≥ ψ and

∫
R
(g − ψ) dV < ε. This implies

I3(f) ≤ I(f) + ε,

for all ε > 0, and finishes the proof of (5.1.87). The proof of (5.1.88) is similar. �
Corollary 5.1.14. Given a cell R ⊂ Rn, let f : R→ R be bounded. Then f ∈ R(R)
if and only if the following holds. For each ε > 0, there exist g0, g1 ∈ C(R) satisfying

(5.1.89) g0 ≤ f ≤ g1, and

∫
R

(g1 − g0) dV < ε.
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More general Fubini-type theorem

We will make use of Proposition 5.1.13 to prove the following result, which
is substantially more general than Theorem 5.1.10 and Proposition 5.1.12. As in
Proposition 5.1.9, let X ⊂ Rk, Y ⊂ Rℓ, and R = X×Y ⊂ Rn (n = k+ ℓ) be cells.

Theorem 5.1.15. Let f ∈ R(X × Y ), and assume that, for each x ∈ X,

(5.1.90) gx(y) = f(x, y) defines gx ∈ R(Y ).

Set

(5.1.91) φ(x) =

∫
Y

f(x, y) dVℓ(y).

Then φ ∈ R(X), and

(5.1.92)

∫
R

f dVn =

∫
X

φdVk.

Proof. Pick ε > 0 and, using Corollary 5.1.14, take uj ∈ C(R) such that

(5.1.93) u0 ≤ f ≤ u1,

∫
R

(u1 − u0) dVn < ε.

Set

(5.1.94) ψj(x) =

∫
Y

uj(x, y) dVℓ(y), x ∈ X.

Then ψj ∈ C(X) and

(5.1.95) ψ0(x) ≤ φ(x) ≤ ψ1(x), ∀x ∈ X.

By Proposition 5.1.9, we have

(5.1.96)

∫
R

uj dVn =

∫
X

ψj dVk.

Hence, by (5.1.93),

(5.1.97)

∫
X

(ψ1 − ψ0) dVk < ε.

Hence Corollary 5.1.14 implies that φ ∈ R(X), and we see that the two sides of
(5.1.92) differ by a quantity that is ≤ ε, for all ε > 0. Thus identity must hold. �

Remark. The hypothesis (5.1.90) holds provided that the set of points in Y at
which gx is discontinuous has upper content zero.

Remark. See Exercise 22 below for an extension of Theorem 5.1.15.
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Change of variables

We next take up the change of variables formula for multiple integrals, extend-
ing the one-variable formula discussed in Exercise 4 of §1.2. We begin with a result
on linear changes of variables. The set of invertible real n× n matrices is denoted
Gl(n,R). In (5.1.98) and subsequent formulas,

∫
f dV denotes

∫
R
f dV for some cell

R on which f is supported. The integral is independent of the choice of such a cell;
cf. (5.1.27).

Proposition 5.1.16. Let f be a continuous function with compact support in Rn.
If A ∈ Gl(n,R), then

(5.1.98)

∫
f(x) dV = |detA|

∫
f(Ax) dV.

Proof. Let G be the set of elements A ∈ Gl(n,R) for which (5.1.98) is true. Clearly
I ∈ G. Using det A−1 = (det A)−1, and det AB = (det A)(det B), we can conclude
that G is a subgroup of Gl(n,R), i.e., G is a subset of Gl(n,R) possessing the two
properties (5.1.102)–(5.1.103) listed below.

In more detail, for A ∈ Gl(n,R), f as above, let

(5.1.99) IA(f) =

∫
fA dV = I(fA), fA(x) = f(Ax).

Then

(5.1.100) A ∈ G ⇐⇒ IA(f) = |detA|−1I(f),

for all such f . We see that

(5.1.101) IAB(f) = I(fAB) = IB(fA),

so

(5.1.102)

A,B ∈ G =⇒ IAB(f) = |detB|−1I(fA)

= |detB|−1|detA|−1I(f) = |detAB|−1I(f)

=⇒ AB ∈ G.

Applying a similar argument to IAA−1(f) = I(f), also yields the implication

(5.1.103) A ∈ G ⇒ A−1 ∈ G.

To prove the proposition, it will therefore suffice to show that G contains all
elements of the following 3 forms, since (as shown in the exercises on row reduction
at the end of this section) the method of applying elementary row operations to
reduce a matrix shows that any element of Gl(n,R) is a product of a finite number
of these elements. Here, {ej : 1 ≤ j ≤ n} denotes the standard basis of Rn, and σ
a permutation of {1, . . . , n}.

(5.1.104)

A1ej = eσ(j),

A2ej = cjej , cj ̸= 0

A3e2 = e2 + ce1, A3ej = ej for j ̸= 2.
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The proofs of (5.1.98) in the first two cases are elementary consequences of the
definition of the Riemann integral, and can be left as exercises.

We show that (5.1.98) holds for transformations of the form A3 by using Propo-
sition 5.1.9 to reduce it to the case n = 1. Given f ∈ C(R), compactly supported,
and b ∈ R, we clearly have

(5.1.105)

∫
f(x) dx =

∫
f(x+ b) dx.

Now, for the case A = A3, with x = (x1, x
′), we have

(5.1.106)

∫
f(x1 + cx2, x

′) dVn(x) =

∫ (∫
f(x1 + cx2, x

′) dx1

)
dVn−1(x

′)

=

∫ (∫
f(x1, x

′) dx1

)
dVn−1(x

′),

the second identity by (5.1.105). Thus we get (5.1.98) in case A = A3, so the
proposition is proved. �

It is desirable to extend Proposition 5.1.16 to more general Riemann-integrable
functions. Say f ∈ Rc(Rn) if f has compact support, say in some cell R, and
f ∈ R(R). Also say f ∈ Cc(Rn) if f is continuous on Rn, with compact support.

Proposition 5.1.17. Given A ∈ Gl(n,R), the identity (5.1.98) holds for all f ∈
Rc(Rn).

Proof. We have from Proposition 5.1.13 that, for each ν ∈ N, there exist gν , hν ∈
Cc(Rn) such that hν ≤ f ≤ gν and, with B =

∫
f dV ,

B − 1

ν
≤
∫
hν dV ≤ B ≤

∫
gν dV ≤ B +

1

ν
.

Now Proposition 5.1.16 applies to gν and hν , so

(5.1.107) B − 1

ν
≤ | detA|

∫
hν(Ax) dV ≤ B ≤ | detA|

∫
gν(Ax) dV ≤ B +

1

ν
.

Furthermore, with fA(x) = f(Ax), we have hν(Ax) ≤ fA(x) ≤ gν(Ax), so (4.44)
gives

(5.1.108) B − 1

ν
≤ | detA| I(fA) ≤ | detA| I(fA) ≤ B +

1

ν
,

for all ν, and leting ν → ∞ we obtain (5.1.98). �

Corollary 5.1.18. If Σ ⊂ Rn is a compact, contented set and A ∈ Gl(n,R), then
A(Σ) = {Ax : x ∈ Σ} is contented, and

(5.1.109) V
(
A(Σ)

)
= |detA|V (Σ).

We now extend Proposition 5.1.16 to nonlinear changes of variables.

Proposition 5.1.19. Let O and Ω be open in Rn, G : O → Ω a C1 diffeomorphism,
and f a continuous function with compact support in Ω. Then

(5.1.110)

∫
Ω

f(y) dV (y) =

∫
O

f
(
G(x)

)
|detDG(x)| dV (x).
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Figure 5.1.4. Image of a cell

Proof. It suffices to prove the result under the additional assumption that f ≥ 0,
which we make from here on. Also, using a partition of unity (see §6.6), we can
write f as a finite sum of continuous functions with small supports, so it suffices to

treat the case where f is supported in a cell R̃ ⊂ Ω and f ◦G is supported in a cell
R ⊂ O. See Figure 5.1.4. Let P = {Rα} be a partition of R. Note that for each
Rα ∈ P, bG(Rα) = G(bRα), so G(Rα) is contented, in view of Propositions 5.1.4
and 5.1.8.

Let ξα be the center of Rα, and let R̃α = Rα − ξα, a cell with center at the
origin. Then

(5.1.111) G(ξα) +DG(ξα)
(
R̃α

)
= ηα +Hα

is an n-dimensional parallelepiped, each point of which is very close to a point in

G(Rα), if Rα is small enough. To be precise, for y ∈ R̃α,

G(ξα + y) = ηα +DG(ξα)y +Φ(ξα, y)y,

Φ(ξα, y) =

∫ 1

0

[
DG(ξα + ty)−DG(ξα)

]
dt.

See Figure 5.1.5.
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Figure 5.1.5. Cell image closeup

Consequently, given ε > 0, if δ > 0 is small enough and maxsize(P) ≤ δ, then
we have

(5.1.112) ηα + (1 + ε)Hα ⊃ G(Rα),

for all Rα ∈ P. Now, by (5.1.109),

(5.1.113) V (Hα) = |det DG(ξα)|V (Rα).

Hence

(5.1.114) V
(
G(Rα)

)
≤ (1 + ε)n|det DG(ξα)|V (Rα).

Now we have

(5.1.115)

∫
f dV =

∑
α

∫
G(Rα)

f dV

≤
∑
α

sup
Rα

f ◦G(x)V
(
G(Rα)

)
≤ (1 + ε)n

∑
α

sup
Rα

f ◦G(x) |det DG(ξα)|V (Rα).

To see that the first line of (5.1.115) holds, note that fχG(Rα) is Riemann integrable,
by Proposition 5.1.6; note also that

∑
α fχG(Rα) = f except on a set of content
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zero. Then the additivity result in Proposition 5.1.2 applies. The first inequality
in (5.1.115) is elementary; the second inequality uses (5.1.114) and f ≥ 0. If we set

(5.1.116) h(x) = f ◦G(x) |det DG(x)|,

then we have

(5.1.117) sup
Rα

f ◦G(x) |det DG(ξα)| ≤ sup
Rα

h(x) +Mω(δ),

provided |f | ≤ M and ω(δ) is a modulus of continuity for DG. Taking arbitrarily
fine partitions, we get, in the limit δ → 0,

(5.1.118)

∫
Ω

f dV ≤
∫
O

h dV.

If we apply this result, with G replaced by G−1, O and Ω switched, and f
replaced by h, given by (5.1.116), we have

(5.1.119)

∫
O

h dV ≤
∫
Ω

h ◦G−1(y) |detDG−1(y)| dV (y) =

∫
Ω

f dV.

The inequalities (5.1.118) and (5.1.119) together yield the identity (5.1.110). �

We now extend Proposition 5.1.19 to more general Riemann integrable func-
tions. Recall that f ∈ Rc(Rn) if f has compact support, say in some cell R, and
f ∈ R(R). If Ω ⊂ Rn is open and f ∈ Rc(Rn) has support in Ω, we say f ∈ Rc(Ω).
We also say f ∈ Cc(Ω) if f ∈ Cc(Rn) has support in Ω, and we say f ∈ Cc(Ω) if f
is continuous with compact support in Ω.

Theorem 5.1.20. Let O and Ω be open in Rn, G : O → Ω a C1 diffeomorphism.
If f ∈ Rc(Ω), then f ◦G ∈ Rc(O), and (5.1.110) holds.

Proof. The proof is similar to that of Proposition 5.1.17. Given ν ∈ N, we have
from Proposition 5.1.13 that there exist gν , hν ∈ Cc(Ω) such that hν ≤ f ≤ gν and,
with B =

∫
Ω
f dV ,

B − 1

ν
≤
∫
hν dV ≤ B ≤

∫
gν dV ≤ B +

1

ν
.

Then Proposition 5.1.19 applies to hν and gν , so

B − 1

ν
≤
∫
O

hν(G(x))|detDG(x)| dV (x)

≤ B ≤
∫
O

gν(G(x))|detDG(x)| dV (x) ≤ B +
1

ν
.

Now, with fG(x) = f(G(x)), we have hν(G(x)) ≤ fG(x) ≤ gν(G(x)), so

(5.1.120) B − 1

ν
≤ I(fG|detDG|) ≤ I(fG|detDG|) ≤ B +

1

ν
,

for all ν, and letting ν → ∞, we obtain (5.1.110). �



190 5. Multivariable integral calculus

Polar coordinates

The most frequently invoked case of the change of variable formula, in the case
n = 2, involves the following change from Cartesian to polar coordinates:

(5.1.121) x = r cos θ, y = r sin θ.

Thus, take G(r, θ) = (r cos θ, r sin θ). We have

(5.1.122) DG(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)
, det DG(r, θ) = r.

For example, if ρ ∈ (0,∞) and

(5.1.123) Dρ = {(x, y) ∈ R2 : x2 + y2 ≤ ρ2},

then, for f ∈ C(Dρ),

(5.1.124)

∫
Dρ

f(x, y) dA =

∫ ρ

0

∫ 2π

0

f(r cos θ, r sin θ)r dθ dr.

To get this, we first apply Proposition 5.1.19, with O = [ε, ρ] × [0, 2π − ε], then
apply Theorem 5.1.10, then let ε↘ 0.

In case f ≡ 1, we have the formula for the area of the disk Dρ,

(5.1.125) A(Dρ) =

∫ ρ

0

∫ 2π

0

r dr = πρ2,

obtaining, by different means, the area formula derived (for ρ = 1) in (5.1.59).

More generally, if f is a radial function, i.e.,

(5.1.126) f(x, y) = g(r), r =
√
x2 + y2,

then (5.1.124) gives

(5.1.127)

∫
Dρ

f dA =

∫ ρ

0

∫ 2π

0

g(r)r dθ dr

= 2π

∫ ρ

0

g(r)r dr.

We can apply this as follows to the computation of the volume of the unit ball
B3 ⊂ R3, which is given by

(5.1.128) |z| ≤
√

1− x2 − y2, (x, y) ∈ D.

By Theorem 5.1.10,

(5.1.129) V (B3) = 2

∫
D

√
1− x2 − y2 dx dy.

Applying (5.1.127) yields

(5.1.130) V (B3) =
4

3
π,
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recovering (5.1.76), by a third method. The task of going from (5.1.129) to (5.1.130)
constitutes Exercise 6 below.

One can also apply (5.1.124) to non-radial functions. For example, given j, k ∈
Z+,

(5.1.131)

∫
D

xjyk dA =

∫ 1

0

∫ 2π

0

cosj θ sink θ rj+k+1 dθ dr

=
1

j + k + 2

∫ 2π

0

cosj θ sink θ dθ.

One can apply polar coordinates to other regions, such as regions defined in
polar coordinates by

(5.1.132) α(θ) ≤ r ≤ β(θ), θ0 ≤ θ ≤ θ1.

If this defines the region Ω, then

(5.1.133)

∫
Ω

f(x, y) dA =

∫ θ1

θ0

∫ β(θ)

α(θ)

f(r cos θ, r sin θ)r dr dθ.

For example, the disk Da/2 of radius a/2, centered at (a, 0), is defined by

(5.1.134) 0 ≤ r ≤ a cos θ, −π
2
≤ θ ≤ π

2
,

(cf. (3.1.52)), and in this case

(5.1.135)

∫
Da/2

f(x, y) dA =

∫ π/2

−π/2

∫ a cos θ

0

f(r cos θ, r sin θ)r dr dθ.

Note that taking f ≡ 1 yields

(5.1.136)
A(Da/2) =

a2

2

∫ π/2

−π/2

cos2 θ dθ

= π
(a
2

)2
,

the last identity obtained as in (5.1.59).

Spherical polar coordinates on R3

On R3, we have spherical polar coordinates, given by

(5.1.137)
G(ρ, θ, ψ) = (ρ sin θ cosψ, ρ sin θ sinψ, ρ cos θ),

ρ > 0, 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π.

See Figure 5.1.6. We have

(5.1.138) DG(ρ, θ, ψ) =

sin θ cosψ ρ cos θ cosψ −ρ sin θ sinψ
sin θ sinψ ρ cos θ sinψ ρ sin θ cosψ

cos θ −ρ sin θ 0

 .

A calculation, e.g., expanding by minors down the third column, gives

(5.1.139) detDG(ρ, θ, ψ) = ρ2 sin θ.
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Figure 5.1.6. Spherical polar coordinates on R3

Hence, if O ⊂ {(ρ, θ, ψ) : ρ > 0, θ ∈ [0, π], ψ ∈ [0, 2π]}, and Ω = G(O), then

(5.1.140)

∫
Ω

f(x) dV (x) =

∫
O

f(G(ρ, θ, ψ))ρ2 sin θ dρ dθ dψ.

In particular, if B3 = {x ∈ R3 : |x| ≤ 1} is the unit ball in R3,

(5.1.141)

∫
B3

f(x) dV (x) =

∫ 2π

0

∫ π

0

∫ 1

0

f(G(ρ, θ, ψ))ρ2 sin θ dρ dθ dψ.

Taking f ≡ 1 yields the volume formula

(5.1.142) V (B3) =
4

3
π,

recovering (5.1.130), by a fourth method. The tasks of checking (5.1.139) and going
from (5.1.141) to (5.1.142) constitute Exercise 5 below.

Back to integrability

We have seen how Proposition 5.1.13 has been useful. The following result, to
some degree a variant of Proposition 5.1.13, is also useful.
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Lemma 5.1.21. Let F : R → R be bounded, B ∈ R. Suppose that, for each
ν ∈ Z+, there exist Ψν ,Φν ∈ R(R) such that

(5.1.143) Ψν ≤ F ≤ Φν

and

(5.1.144) B − δν ≤
∫
R

Ψν(x) dV (x) ≤
∫
R

Φν(x) dV (x) ≤ B + δν , δν → 0.

Then F ∈ R(R) and

(5.1.145)

∫
R

F (x) dV (x) = B.

Furthermore, if there exist Ψν ,Φν ∈ R(R) such that (5.1.143) holds and

(5.1.146)

∫
R

(Φν(x)−Ψν(x)) dV ≤ δν → 0,

then there exists B such that (5.1.144) holds. Hence F ∈ R(R) and (5.1.145) holds.

We next use Lemma 5.1.21 to establish the following useful result on products
of Riemann integrable functions.

Proposition 5.1.22. Given f1, f2 ∈ R(R), we have f1f2 ∈ R(R).

Proof. It suffices to prove this when fj ≥ 0. Take partitions Pν and functions
ψjν , φjν ≥ 0, constant in the interior of each cell in Pν , such that

0 ≤ ψjν ≤ fj ≤ φjν ≤M,

and ∫
ψjν dV,

∫
φjν dV −→

∫
fj dV.

We apply Lemma 5.1.21 with

F = f1f2, Ψν = ψ1νψ2ν , Φν = φ1νφ2ν .

Note that
Φν −Ψν = φ1ν(φ2ν − ψ2ν) + ψ2ν(φ1ν − ψ1ν)

≤M(φ2ν − ψ2ν) +M(φ1ν − ψ1ν).

Hence (5.1.146) holds, giving F ∈ R(R). �

As a consequence of Proposition 5.1.22, we can make the following construction.
Assume R is a cell and S ⊂ R is a contented set. If f ∈ R(R), we have χSf ∈ R(R),
by Proposition 5.1.22. We define

(5.1.147)

∫
S

f(x) dV (x) =

∫
R

χS(x)f(x) dV (x).

Note how his extends the scope of (5.1.26).
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Integrals over Rn

It is often useful to integrate a function whose support is not bounded. Gener-
ally, given a bounded function f : Rn → R, we say

f ∈ R(Rn)

provided f
∣∣
R
∈ R(R) for each cell R ⊂ Rn, and∫

R

|f | dV ≤ C,

for some C <∞, independent of R. If f ∈ R(Rn), we set

(5.1.148)

∫
Rn

f dV = lim
s→∞

∫
Rs

f dV, Rs = {x ∈ Rn : |xj | ≤ s,∀ j}.

The existence of the limit in (5.1.148) can be established as follows. If M < N ,
then ∫

RN

f dV −
∫

RM

f dV =

∫
RN\RM

f dV,

which is dominated in absolute value by
∫
RN\RM

|f | dV . If f ∈ R(Rn), then aN =∫
RN

|f | dV is a bounded monotone sequence, which hence converges, so∫
RN\RM

|f | dV =

∫
RN

|f | dV −
∫

RM

|f | dV −→ 0, as M,N → ∞.

The following simple but useful result is an exercise.

Proposition 5.1.23. If Kν is any sequence of compact contented subsets of Rn

such that each Rs, for s < ∞, is contained in all Kν for ν sufficiently large, i.e.,
ν ≥ N(s), then, whenever f ∈ R(Rn),

(5.1.149)

∫
Rn

f dV = lim
ν→∞

∫
Kν

f dV.

Change of variables formulas and Fubini’s Theorem extend to this case. For
example, the limiting case of (5.1.124) as ρ→ ∞ is
(5.1.150)

f ∈ C(R2) ∩R(R2) =⇒
∫
R2

f(x, y) dA =

∫ ∞

0

∫ 2π

0

f(r cos θ, r sin θ)r dθ dr.

To see this, use Proposition 5.1.22 with Kν = Dν , defined as in (5.1.123), to write

(5.1.151)

∫
R2

f(x, y) dA = lim
ν→∞

∫
Dν

f(x, y) dA,

and apply (5.1.124) to write the integral on the right as∫ ν

0

∫ 2π

0

f(r cos θ, r sin θ)r dθ dr.
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You get the right side of (5.1.150) in the limit ν → ∞.

The following is a good example. Take f(x, y) = e−x2−y2

. We have

(5.1.152)

∫
R2

e−x2−y2

dA =

∫ ∞

0

∫ 2π

0

e−r2r dθ dr = 2π

∫ ∞

0

e−r2r dr.

Now, methods of §1.2 allow the substitution s = r2, so∫ ∞

0

e−r2r dr =
1

2

∫ ∞

0

e−s ds =
1

2
.

Hence

(5.1.153)

∫
R2

e−x2−y2

dA = π.

On the other hand, Theorem 5.1.10 extends to give

(5.1.154)

∫
R2

e−x2−y2

dA =

∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dy dx

=

(∫ ∞

−∞
e−x2

dx

)(∫ ∞

−∞
e−y2

dy

)
.

Note that the two factors in the last product are equal. We deduce that

(5.1.155)

∫ ∞

−∞
e−x2

dx =
√
π.

We can generalize (5.1.154), to obtain (via (5.1.155))

(5.1.156)

∫
Rn

e−|x|2 dVn =

(∫ ∞

−∞
e−x2

dx

)n

= πn/2.

The integrals (5.1.152)–(5.1.156) are called Gaussian integrals, and their evaluation
has many uses. We shall see some in §6.1.

We record the following additivity result for the integral over Rn, whose proof
is also an exercise.

Proposition 5.1.24. If f, g ∈ R(Rn), then f + g ∈ R(Rn), and

(5.1.157)

∫
Rn

(f + g) dV =

∫
Rn

f dV +

∫
Rn

g dV.
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Exercises

1. Show that any two partitions of a cell R have a common refinement.
Hint. Consider the argument given for the one-dimensional case in §1.2.

2. Write down a proof of the identity (5.1.18), i.e., cont+(S) = cont+(S).

3. Write down the details of the argument giving (5.1.27), on the independence of
the integral from the choice of cell containing K.

4. Write down a direct proof that the transformation formula (5.1.98) holds for
those linear transformations of the form A1 and A2 in (5.1.104).
Hint. A1 and A2 each take a cell to another cell. Relate their volumes.

5. Consider spherical polar coordinates on R3, given by

x = ρ sin θ cosψ, y = ρ sin θ sinψ, z = ρ cos θ,

i.e., take

G(ρ, θ, ψ) =
(
ρ sin θ cosψ, ρ sin θ sinψ, ρ cos θ

)
.

See Figure 5.1.6. Show that

det DG(ρ, θ, ψ) = ρ2 sin θ,

as asserted in (5.1.139). Verify the computation of V (B3) stated in (5.1.142).

6. If B is the unit ball in R3, show that Theorem 5.1.10 implies

V (B) = 2

∫
D

√
1− |x|2 dA(x),

where D = {x ∈ R2 : |x| ≤ 1} is the unit disk. Use polar coordinates, as in
(5.1.121)–(5.1.124), to compute this integral. Compare the result with that of
Exercise 5.

7. Apply Corollary 5.1.18 and the answer to Exercises 5 and 6 to compute the
volume of the ellipsoidal region in R3 defined by

x2

a2
+
y2

b2
+
z2

c2
≤ 1,

given a, b, c ∈ (0,∞).

8. Prove Lemma 5.1.21.

9. If R is a cell and S ⊂ R is a contented set, and f ∈ R(R), we have, via
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Proposition 5.1.22, ∫
S

f(x) dV (x) =

∫
R

χS(x)f(x) dV (x).

Show that, if Sj ⊂ R are contented and they are disjoint (or more generally
cont+(S1 ∩ S2) = 0), then, for f ∈ R(R),∫

S1∪S2

f(x) dV (x) =

∫
S1

f(x) dV (x) +

∫
S2

f(x) dV (x).

10. Establish the convergence result (5.1.149), for all f ∈ R(Rn).

In Exercises 11–13, let DR = {(x, y) ∈ R2 : x2 + y2 ≤ R2}, and compute the
following integrals.

11.
∫∫
DR

(1 + x2 + y2)−1 dx dy.

12.
∫∫
DR

sin(x2 + y2) dx dy.

13.
∫∫
DR

e−(x2+y2) dx dy.

14. Theorem 5.1.10, relating multiple integrals and iterated integrals, played the
following role in the proof of the change of variable formula (5.1.110). Namely, it
was used to establish the identity (5.1.113) for the volume of the parallelepiped Hα,
via an appeal to Corollary 5.1.18, hence to Proposition 5.1.16, whose proof relied
on Theorem 5.1.10.

Try to establish Corollary 5.1.18 directly, without using Theorem 5.1.10, in the
case when Σ is either a cell or the image of a cell under an element of Gl(n,R).

In preparation for the next three exercises, review the proof of Proposition 1.2.15.

15. Assume f ∈ R(R), |f | ≤ M , and let φ : [−M,M ] → R be Lipschitz and
monotone. Show directly from the definition that φ ◦ f ∈ R(R).

16. If φ : [−M,M ] → R is continuous and piecewise linear, show that you can write
φ = φ1 − φ2 with φj Lipschitz and monotone. Deduce that f ∈ R(R) ⇒ φ ◦ f ∈
R(R) when φ is piecewise linear.

17. Assume uν ∈ R(R) and that uν → u uniformly on R. Show that u ∈ R(R).
Deduce that if f ∈ R(R), |f | ≤ M , and ψ : [−M,M ] → R is continuous, then
ψ ◦ f ∈ R(R).

18. Let R ⊂ Rn be a cell and let f, g : R→ R be bounded. Show that

I(f + g) ≤ I(f) + I(g), I(f + g) ≥ I(f) + I(g).
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Hint. Look at the proof of Proposition 1.2.1.

19. Let R ⊂ Rn be a cell and let f : R → R be bounded. Assume that for each
ε > 0, there exist bounded fε, gε such that

f = fε + gε, fε ∈ R(R), I(|gε|) ≤ ε.

Show that f ∈ R(R) and ∫
R

fε dV −→
∫
R

f dV.

Hint. Use Exercise 18.

20. Use the result of Exercise 19 to produce another proof of Proposition 5.1.6.

21. Behind (5.1.108) is the assertion that if R is a cell, g is supported onK ⊂ R, and
|g| ≤ M , then I(|g|) ≤ M cont+(K). Prove this. More generally, if g, h : R → R
are bounded and |g| ≤M , show that I(|gh|) ≤MI(|h|).

22. Establish the following Fubini-type theorem, and compare it with Theorem
5.1.15.

Proposition 5.1.25. Let A ⊂ Rm and B ⊂ Rn be cells, and take f ∈ R(A× B).
For x ∈ A, define fx : B → R by fx(y) = f(x, y). Define Lf , Uf : A→ R by

Lf (x) = I(fx), Uf (x) = I(fx).

Then Lf and Uf belong to R(A), and∫
A×B

f dV =

∫
A

Lf (x) dx =

∫
A

Uf (x) dx.

Hint. Given ε > 0, use Proposition 5.1.13 to take φ,ψ ∈ PK(A×B) such that

φ ≤ f ≤ ψ,

∫
ψ dV −

∫
φdV < ε.

With definitions of φx and ψx analogous to that of fx, show that∫
A×B

φdV =

∫
A

φx dx ≤ I(Lf )

≤ I(Uf ) ≤
∫
A

ψx dx =

∫
A×B

ψ dV.

Deduce that

I(Lf ) = I(Uf ),

and proceed.

23. In Chapter 3 we defined π as half the length of the unit circle, which in turn
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led to

π =

∫ 1

−1

dx√
1− x2

.

See Exercise 27 in §3.2. In (5.1.57), we saw that the area of the unit disk is given
by

A(D) = 2B, B =

∫ 1

−1

√
1− x2 dx.

Take the following route to evaluating B. Use integration by parts to write

B = −
∫ 1

−1

x
d

dx

√
1− x2 dx

=

∫ 1

−1

x2√
1− x2

dx.

In turn, write the last integral as∫ 1

−1

[
1− (1− x2)

] dx√
1− x2

=

∫ 1

−1

dx√
1− x2

−
∫ 1

−1

√
1− x2 dx = π −B,

to conclude that

2B = π,

recovering the formula (5.1.59).

24. In (5.1.82)–(5.1.83), we saw that

V (B4) = β4V (B3), β4 =

∫ 1

−1

(1− x2)3/2 dx.

Take the following route to evaluating β4. Use integration by parts to write

β4 = −
∫ 1

−1

x
d

dx
(1− x2)3/2 dx

= 3

∫ 1

−1

x2(1− x2)3/2 dx.

As in Exercise 23, set x2 = 1− (1− x2) to obtain

β4 = 3

∫ 1

−1

√
1− x2 dx− 3β4,

and proceed to identify β4, hence V (B4).

25. Generalize the recursion in Exercise 24 to treat βn for more general n. Compute
V (B5) and V (B6).

Exercises on row reduction and matrix products
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We consider the following three types of row operations on an n × n matrix
A = (ajk). If σ is a permutation of {1, . . . , n}, let

ρσ(A) = (aσ(j)k).

If c = (c1, . . . , cj), and all cj are nonzero, set

µc(A) = (c−1
j ajk).

Finally, if c ∈ R and µ ̸= ν, define

εµνc(A) = (bjk), bνk = aνk − caµk, bjk = ajk for j ̸= ν.

We relate these operations to left multiplication by matrices Pσ,Mc, and Eµνc,
defined by the following actions on the standard basis {e1, . . . , en} of Rn:

Pσej = eσ(j), Mcej = cjej ,

and
Eµνceµ = eµ + ceν , Eµνcej = ej for j ̸= µ.

1. Show that

A = Pσρσ(A), A =Mcµc(A), A = Eµνcεµνc(A).

2. Show that P−1
σ = Pσ−1 .

3. Show that, if µ ̸= ν, then Eµνc = P−1
σ E21cPσ, for some permutation σ.

4. If B = ρσ(A) and C = µc(B), show that A = PσMcC. Generalize this to
other cases where a matrix C is obtained from a matrix A via a sequence of row
operations.

5. If A is an invertible, real n × n matrix (i.e., A ∈ Gl(n,R)), then the rows of A
form a basis of Rn. Use this to show that A can be transformed to the identity
matrix via a sequence of row operations. Deduce that any A ∈ Gl(n,R) can be
written as a finite product of matrices of the form Pσ,Mc and Eµνc, hence as a
finite product of matrices of the form listed in (5.1.104).
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5.2. Mean values of functions and centers of mass

Let S ⊂ Rn be a contented set, with positive volume. If f ∈ R(S), we define

(5.2.1) AvgS(f) =
1

V (S)

∫
S

f dV,

and call this the average (or mean value) of f over S. If S is understood, we use
the notation Avg(f). Other common notations include

(5.2.2) f = ⟨f⟩ = Avg(f).

If we wish to record the dependence on S, we use, e.g., ⟨f⟩S .
As a variant of (5.2.1), we can place a “mass distribution” µ ≥ 0 on S, satisfying

µ ∈ R(S),
∫
S
µdV > 0,

(5.2.3) AvgS,µ(f) =
1

Mµ(S)

∫
S

fµ dV, Mµ(S) =

∫
S

µdV.

this can be recovered from objects of the form (5.2.1), as

(5.2.4) AvgS,µ(f) =
AvgS(fµ)

AvgS(µ)
,

and we will not dwell upon this generalization.

In our study of (5.2.1), we will particularly be interested in what arises by
taking f(x) = x, which defines the center of mass of S,

(5.2.5) CM(S) ∈ Rn.

In this case, f takes values in Rn. We find it convenient to characterize CM(S) by
the following formula:

(5.2.6)

v · CM(S) = AvgS(v · x)

=
1

V (S)

∫
S

v · x dV, ∀ v ∈ Rn.

To take an example, let us take a, b, c, h ∈ R, a < b, h > 0, and consider the
triangle Tl, with vertices at (a, 0), (b, 0), and (c, h), which is a triangle with base
b− a and height h; see Figure 5.2.1. We see that

(5.2.7)

∫
Tl

y dA =

∫ h

0

(b− a)
(
1− y

h

)
y dy

= (b− a)

∫ h

0

[
y − y2

h

]
dy

=
(b− a)

6
h2,

while A(Tl) = (b− a)h/2, so

(5.2.8) AvgTl
(y) =

h

3
.
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Figure 5.2.1. Triangles and their centers of mass

The calculation (5.2.8) specifies the y-component of CM(Tl). We want to com-
pletely specify this vector. Consider the special case Tr, pictured on the right side
of Figure 5.2.1, with a = −b, c = 0. This is an isosceles triangle, having reflection
symmetry across the y-axis, and it should be intuitively clear that the center of
mass of Tr lies on this axis. This places

(5.2.9) CM(Tr) =
(
0,
h

3

)
.

Our next task is to come up with some mathematical results to back up this intuitive
reasoning.

We can do this based on how CM(S) behaves when certain transformations are
applied to S. First, there is translation:

(5.2.10) τv : Rn −→ Rn, τv(x) = x+ v,

with v ∈ Rn. It is easily verified that

(5.2.11) CM(τv(S)) = CM(S) + v.

Next we consider linear maps,

(5.2.12) A : Rn −→ Rn, A ∈M(n,R).

We will establish the following.
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Proposition 5.2.1. If S ⊂ Rn is a bounded, contented set, of positive volume,
then

(5.2.13) A ∈ Gℓ(n,R) =⇒ CM(A(S)) = A CM(S).

Proof. The change of variable formula gives

(5.2.14)

∫
A(S)

f(x) dV = |detA|
∫
S

f(Ax) dV,

for f ∈ R(A(S)). Applying this to f(x) = v · x, v ∈ Rn, we have

(5.2.15)

∫
A(S)

v · x dV = |detA|
∫
S

v ·AxdV

= |detA|
∫
S

(Atv) · x dV.

Divide both sides by V (A(S)). Since V (A(S)) = |detA|V (S), we obtain

(5.2.16) v · CM(A(S)) = Atv · CM(S), ∀ v ∈ Rn,

which yields (5.2.13). �

The following corollary records how symmetries of a set S help locate its center
of mass.

Corollary 5.2.2. Let S ⊂ Rn be a bounded contented set of positive volume, and
assume A ∈ Gℓ(n,R). Then

(5.2.17) A(S) = S =⇒ A CM(S) = CM(S).

Proposition 5.2.1 and the associated corollary justify the reasoning behind the
computation (5.2.9). It also leads to further results. Note that (5.2.9) is equivalent
to

(5.2.18) CM(Tr) =
1

3
(a1 + a2 + a3),

where {aj : 1 ≤ j ≤ 3} are the three vertices of Tr. This has the following
generalization.

Proposition 5.2.3. Consider

(5.2.19) T ⊂ R2, triangle, with vertices v1, v2, v3,

and area A(T ) > 0. Then

(5.2.20) CM(T ) =
1

3
(v1 + v2 + v3).

Proof. Applying (5.2.11), we can arrange that v1 = a1. Then {a2 − a1, a3 − a1}
and {v2 − v1, v3 − v1} both form bases of R2, so there exists A ∈ Gℓ(2,R) taking
the one basis to the other. In this way we get a transformation

(5.2.21) Xw,A : R2 −→ R2, Xw,A(x) = Ax+ w,

such that

(5.2.22) Xw,Avj = aj , 1 ≤ j ≤ 3.
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It follows that

(5.2.23) Xw,A(T ) = Tr,

and hence, by (5.2.11) and Proposition 5.2.1,

(5.2.24) Xw,A CM(T ) = CM(Tr).

On the other hand, (5.2.22) also implies

(5.2.25) Xw,A
v1 + v2 + v3

3
=
a1 + a2 + a3

3
.

Thus (5.2.20) follows from (5.2.18). �

We move on to other classes of domains, and consider

(5.2.26) Bn
+ = {x ∈ Bn : xn ≥ 0},

where we recall that Bn = {x ∈ Rn : |x| ≤ 1} is the unit ball. We see that
Bn

+ is invariant under rotation about the xn-axis (and, for n = 2, invariant under
reflection about the x2-axis). Hence

(5.2.27) CM(Bn
+) ∈ {(0, y) ∈ Rn : 0 ≤ y ≤ 1}.

Therefore, to compute the center of mass, it suffices to compute AvgBn
+
(xn). We

have

(5.2.28)

∫
Bn

+

xn dV =

∫
Bn−1

(∫ √
1−|x|2

0

xn dxn

)
dx

=
1

2

∫
Bn−1

(1− |x|2) dx.

We specialize to the cases n = 2 and n = 3, keeping in mind that, by previous
calculations,

(5.2.29) A(B2
+) =

π

2
, V (B3

+) =
2π

3
.

For n = 2, the right side of (5.2.28) is

(5.2.30)
1

2

∫ 1

−1

(1− x2) dx =
2

3
,

so

(5.2.31) AvgB2
+
(x2) =

4

3π
, CM(B2

+) =
(
0,

4

3π

)
.

For n = 3, the right side of (5.2.28) is

(5.2.32)

1

2

∫
D

(1− |x|2) dx =
1

2

∫ 2π

0

∫ 1

0

(1− r2)r dr dθ

= π

∫ 1

0

(r − r3) dr

=
π

4
,
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Figure 5.2.2. Pie slice

so

(5.2.33) AvgB3
+
(x3) =

π

4
· 3

2π
=

3

8
, CM(B3

+) =
(
0, 0,

3

8

)
.

See the exercises below for another approach to computing
∫
Bn

+
xn dV . See also

§6.1 for a method of computing

(5.2.34)

∫
Bn−1

φ(|x|) dx,

which is applicable to the right side of (5.2.28), for general n.

Generalizing the regions Bn
+, we take β ∈ (0, π/2] and consider the sets

(5.2.35) Kn
β = {x = (x′, xn) ∈ Bn : xn ≥ (cosβ)|x′|}.

See Figure 5.2.2 for an illustration in the case n = 2. The set K2
β looks like a pie

slice. The reader can imagine that K3
β looks like a sno cone. Note that Kn

π/2 = Bn
+.

Again Kn
β has enough symmetry about the xn-axis that we have

(5.2.36) CM(Kn
β ) ∈ {(0, y) : 0 < y < 1},

so we are left with the task of computing AvgKn
β
(xn). We carry this out for n = 2, 3.
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In case n = 2, we use polar coordinates to write

(5.2.37) A(K2
β) =

∫ π/2+β

π/2−β

∫ 1

0

r dr dθ = β,

and

(5.2.38)

∫
K2

β

x2 dA =

∫ π/2+β

π/2−β

∫ 1

0

r2 sin θ dr dθ

=
1

3
(− cos θ)

∣∣∣π/2+β

π/2−β

=
2

3
sinβ.

Hence

(5.2.39) AvgK2
β
(x2) =

2

3

sinβ

β
, CM(K2

β) =
(
0,

2

3

sinβ

β

)
.

In case n = 3, we use spherical polar coordinates to write

(5.2.40)

∫
K3

β

f dV =

∫ 2π

0

∫ β

0

∫ 1

0

f ρ2 sin θ dρ dθ dψ,

hence

(5.2.41)

V (K3
β) = 2π

∫ β

0

∫ 1

0

ρ2 sin θ dρ dθ

=
2π

3

∫ β

0

sin θ dθ

=
2π

3
(1− cosβ).

In addition,

(5.2.42)

∫
K3

β

x3 dV = 2π

∫ β

0

∫ 1

0

ρ3 cos θ sin θ dρ dθ

=
π

2

∫ β

0

cos θ sin θ dθ

=
π

4

∫ β

0

sin 2θ dθ

=
π

8
(1− cos 2β).

Hence

(5.2.43) AvgK3
β
(x3) =

3

2π
· π
8

1− cos 2β

1− cosβ
=

3

16

1− cos 2β

1− cosβ
.

Using the identity

(5.2.44) 1− cos 2β = 2 sin2 β,
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we can rewrite the last quotient, and conclude that

(5.2.45) CM(K3
β) =

(
0, 0,

3

16

( sinβ

sinβ/2

)2)
.

We have focused on bounded regions, but some unbounded regions have well
defined centers of mass. To take a family of examples, we pick a > 0 and consider

(5.2.46) Ω = {(x, y) ∈ R2 : x ≥ 1, 0 ≤ y ≤ x−a}.

If a > 1, Ω has finite area,

(5.2.47) A(Ω) =

∫ ∞

1

x−a dx =
1

a− 1
.

In such a case,

(5.2.48)

∫
Ω

y dA =

∫ ∞

1

∫ x−a

0

y dy dx

=
1

2

∫ ∞

1

x−2a dx

=
1

2(2a− 1)
.

Now x|Ω is not bounded, so we need an extension of the results developed in §5.1.
Such an extension is given in §5.3, one can peek ahead, or just see what is going
on in the next calculation. For x|Ω to have a finite integral, we will need to tighten
our hypothesis on a to

(5.2.49) a > 2.

Then

(5.2.50)

∫
Ω

x dA = lim
R→∞

∫ R

1

∫ x−a

0

x dy dx

=

∫ ∞

1

x1−a dx

=
1

a− 2
.

We deduce that, as long as a satisfies (5.2.49), the center of mass of the domain Ω
described in (5.2.46) is given by

(5.2.51) CM(Ω) =
(a− 1

a− 2
,

a− 1

2(2a− 1)

)
.

We now bring in a calculation that ties in the center of mass of a region O ⊂ R2

with the volume of the solid of revolution it generates. Here let

O ⊂ {(x, y) ∈ R2 : x > 0}

be a smoothly bounded region, as illustrated in Figure 5.2.3, and let Ω ⊂ R3 be the
solid produced by rotating O about the y-axis in R2, so

(5.2.52) Ω = {(x cos θ, y, x sin θ) : (x, y) ∈ O, θ ∈ [0, 2π]}.
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Figure 5.2.3. Setting for Pappus’s theorem

That is to say, Ω is the image of

(5.2.53) F : O × [0, 2π] −→ R3,

where

(5.2.54) F (x, y, θ) = (x cos θ, y, x sin θ).

A calculation, which we leave to the reader, gives

(5.2.55) detDf(x, y, θ) = x.

Hence

(5.2.56)

V (Ω) =

∫ 2π

0

∫
O

detDF (x, y, θ) dx dy dθ

= 2π

∫
O

x dx dy.

An alternative way to write this is

(5.2.57) V (Ω) = 2π AvgO(x)A(O).

This gives the following result, known as Pappus’s theorem.
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Figure 5.2.4. Triangles and their center of mass

Proposition 5.2.4. Let O ⊂ R2 be as described above, generating the solid of
revolution about the y-axis Ω ⊂ R3. Say

(5.2.58) CM(O) = (x, y).

Then

(5.2.59) V (Ω) = 2πxA(O).

Exercises

1. Let T ⊂ R2 be a triangle, and form T ′ ⊂ T , the triangle whose vertices consist
of the midpoints of the edges of T . Show that

CM(T ′) = CM(T ).

Hint. Use (5.2.20). (See the left half of Figure 5.2.4.)

2. If T ⊂ R2 is a triangle, and v is a vertex, show that CM(T ) lies on the line
segment from v to the midpoint of the edge opposite v. (See the right half of
Figure 5.2.4.)
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Hint. Reduce this to the case where T is isosceles, using reasoning parallel to the
proof of Proposition 5.2.3.

3. Pursue the following approach to computing AvgBn
+
(xn). Start with∫

Bn
+

xn dV =

∫ 1

0

V
(
Bn−1√

1−x2
n

)
xn dxn

= V (Bn−1)

∫ 1

0

xn(1− x2n)
(n−1)/2 dxn.

Use the substitution s = x2n and show that

AvgBn
+
(xn) =

2

n+ 1
· 1

βn
, βn =

V (Bn)

V (Bn−1)
.

In cases n = 2, 3, compare this with the results (5.2.31) and (5.2.33).

4. Extending the scope of Exercise 3, for a ∈ [−1, 1] set

Bn
a+ = {x ∈ Bn : xn ≥ a},

and produce a formula for CM(Bn
a+).

5. For a > 0, set

Pn
a = {x = (x′, xn) ∈ Rn : |x′|2 ≤ xn ≤ a2}.

Compute
CM(Pn

a ), for n = 2, 3.

6. For β ∈ (0, π/2), consider the cone

Cn
β = {x = (x′, xn) : (cosβ)|x′| ≤ xn ≤ 1}.

Compute
CM(Cn

β ), for n = 2, 3.

How does the result depend on β?
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5.3. Unbounded integrable functions

There are lots of unbounded functions we would like to be able to integrate. For
example, consider f(x) = x−1/2 on (0, 1] (defined any way you like at x = 0). Since,
for ε ∈ (0, 1),

(5.3.1)

∫ 1

ε

x−1/2 dx = 2− 2
√
ε,

this has a limit as ε↘ 0, and it is natural to set

(5.3.2)

∫ 1

0

x−1/2 dx = 2.

Sometimes (5.3.2) is called an “improper integral,” but we do not consider that to
be a proper designation. We aim for a treatment of the integral for a natural class
of unbounded functions. To this end, we define a class R#(I) of not necessarily
bounded “integrable” functions on I. The set I will stand for either Rn or a cell in
Rn.

To start, assume f ≥ 0 on I, and for A ∈ (0,∞), set

(5.3.3)
fA(x) = f(x) if f(x) ≤ A,

A, if f(x) > A.

(We hereby abandon the use of fA as in the proof of Proposition 5.1.16.) We say
f ∈ R#(I) provided

(5.3.4)

fA ∈ R(I), ∀A <∞, and

∃ uniform bound

∫
I

fA dV ≤M.

If f ≥ 0 satisfies (5.3.4), then
∫
I
fA dV increases monotonically to a finite limit as

A↗ +∞, and we call the limit
∫
I
f dV :

(5.3.5)

∫
I

fA dV ↗
∫
I

f dV, for f ∈ R#(I), f ≥ 0.

If I is understood, we might just write
∫
f dV .

Remark. If f ∈ R(I) is ≥ 0, then fA ∈ R(I) for all A < ∞. See the easy part of
Exercise 15.

It is valuable to have the following.

Proposition 5.3.1. If f, g : I → R+ are in R#(I), then f + g ∈ R#(I), and

(5.3.6)

∫
I

(f + g) dV =

∫
I

f dV +

∫
I

g dV.

Proof. To start, note that (f + g)A ≤ fA + gA. In fact,

(5.3.7) (f + g)A = (fA + gA)A.
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Hence (f + g)A ∈ R(I) and
∫
(f + g)A dV ≤

∫
fA dV +

∫
gA dV ≤

∫
f dV +

∫
g dV ,

so we have f + g ∈ R#(I) and

(5.3.8)

∫
(f + g) dV ≤

∫
f dV +

∫
g dV.

On the other hand, if B > 2A, then (f + g)B ≥ fA + gA, so

(5.3.9)

∫
(f + g) dV ≥

∫
fA dV +

∫
gA dV,

for all A <∞, and hence

(5.3.10)

∫
(f + g) dV ≥

∫
f dV +

∫
g dV.

Together, (5.3.8) and (5.3.10) yield (5.3.6). �

Next, we take f : I → R and set

(5.3.11)
f = f+ − f−, f+(x) = f(x) if f(x) ≥ 0,

0 if f(x) < 0.

Then we say

(5.3.12) f ∈ R#(I) ⇐⇒ f+, f− ∈ R#(I),

and set

(5.3.13)

∫
I

f dV =

∫
I

f+ dV −
∫
I

f− dV,

where the two terms on the right are defined as in (5.3.5). To extend the additivity,
we begin as follows

Lemma 5.3.2. Assume that g ∈ R#(I) and that gj ≥ 0, gj ∈ R#(I), and

(5.3.14) g = g0 − g1.

Then

(5.3.15)

∫
g dV =

∫
g0 dV −

∫
g1 dV.

Proof. Take g = g+ − g− as in (5.3.11). Then (5.3.14) implies

(5.3.16) g+ + g1 = g0 + g−,

which by Proposition 5.1.24 yields

(5.3.17)

∫
g+ dV +

∫
g1 dV =

∫
g0 dV +

∫
g− dV.

This implies

(5.3.18)

∫
g+ dV −

∫
g− dV =

∫
g0 dV −

∫
g1 dV,

which yields (5.3.15). �

We now extend additivity.
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Proposition 5.3.3. Assume f1, f2 ∈ R#(I). Then f1 + f2 ∈ R#(I) and

(5.3.19)

∫
I

(f1 + f2) dV =

∫
I

f1 dV +

∫
I

f2 dV.

Proof. If g = f1 + f2 = (f+1 − f−1 ) + (f+2 − f−2 ), then

(5.3.20) g = g0 − g1, g0 = f+1 + f+2 , g1 = f−1 + f−2 .

We have gj ∈ R#(I), and then

(5.3.21)

∫
(f1 + f2) dV =

∫
g0 dV −

∫
g1 dV

=

∫
(f+1 + f+2 ) dV −

∫
(f−1 + f−2 ) dV

=

∫
f+1 dV +

∫
f+2 dV −

∫
f−1 dV −

∫
f−2 dV,

the first equality by Lemma 5.3.2, the second tautologically, and the third by Propo-
sition 5.3.1. Since

(5.3.22)

∫
fj dV =

∫
f+j dV −

∫
f−j dV,

this gives (5.3.19). �

If f : I → C, we set f = f1 + if2, fj : I → R, and say f ∈ R#(I) if and only if
f1 and f2 belong to R#(I). Then we set

(5.3.23)

∫
f dV =

∫
f1 dV + i

∫
f2 dV.

Similar comments apply to f : I → Rn.

We next establish a useful result on products.

Proposition 5.3.4. Assume f ∈ R#(Rn), g ∈ R(Rn), and f, g ≥ 0. Then
fg ∈ R#(Rn) and

(5.3.24)

∫
fAg dV ↗

∫
fg dV as A↗ +∞.

Proof. Given the additivity properties just established, it would be equivalent to
prove this with g replaced by g + 1, so we will assume from here that g ≥ 1. Then

(5.3.25) (fg)A = (fAg)A.

By Proposition 5.1.22, fAg|R ∈ R(R) for each cell R. Hence (e.g., by the easy part
of Exercise 15), (fAg)A|R ∈ R(R) for each cell R. Thus

(5.3.26) (fg)A
∣∣
R
∈ R(R).

Now there exists K <∞ such that 1 ≤ g ≤ K, so

(5.3.27) fAg ≤ KfA, hence (fg)A ≤ KfA.

The hypothesis f ∈ R#(Rn) implies there exists M <∞ such that

(5.3.28)

∫
R

fA dV ≤M,
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for all A <∞ and each cell R. Hence, by (5.3.27),

(5.3.29) sup
A

∫
R

(fg)A dV ≤MK,

independent of R. This implies fg ∈ R#(Rn). By definition,

(5.3.30)

∫
(fg)A dV ↗

∫
fg dV, as A↗ +∞.

Meanwhile, clearly fAg ↗ as A↗, so the estimate (5.3.27) implies

(5.3.31)

∫
fAg dV ↗ L, as A↗ +∞,

for some L ∈ R+. It remains to identify the limits in (5.3.30) and (5.3.31). Now
(5.3.25) implies

(5.3.32) (fg)A ≤ fAg, hence

∫
fg dV ≤ L.

Finally, since fAg ≤ fg and fAg ≤ KA, we have

(5.3.33) fAg ≤ (fg)B for B ≥ KA.

This implies

(5.3.34) L ≤ sup
B

∫
(fg)B dV =

∫
fg dV,

and hence we have (5.3.24). �

We now extend the change of variable formula in Theorem 5.1.20 to unbounded
functions. It is convenient to introduce the following notation. Given an open set
Ω ⊂ Rn, we say f ∈ R#

c (Ω) provided f ∈ R#(Rn) and f is supported on a compact
subset of Ω.

Proposition 5.3.5. Let O and Ω be open in Rn, G : O → Ω a C1 diffeomorphism.
If f ∈ R#

c (Ω), then f ◦G ∈ R#
c (O) and

(5.3.35)

∫
Ω

f(y) dV (y) =

∫
O

f(G(x))|detDG(x)| dV (x).

Proof. It suffices to establish this in case f ≥ 0, which we assume from here. Then

(5.3.36)

∫
Ω

fA dV ↗
∫
Ω

f dV.

We set φ = f ◦G and note that fA ◦G = φA. Hence, by Theorem 5.1.20, for each
A ∈ (0,∞),

(5.3.37)

∫
Ω

fA(y) dV (y) =

∫
O

φA(x)|detDG(x)| dV (x).

If f is supported on a compact set K ⊂ Ω, then φA is supported on G−1(K) ⊂ O,
also compact, hence on which |detDG| has a positive lower bound. Hence an upper
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bound on the right side of (5.3.37) implies an upper bound on
∫
φA dV , independent

of A, so φ ∈ R#(Rn). Then Proposition 5.3.4 implies φ|detDG| ∈ R#(Rn) and

(5.3.38)

∫
φA(x)|detDG(x)| dV (x) ↗

∫
φ(x)|detDG(x)| dV (x).

Together (5.3.36)–(5.3.38) yield (5.3.35). �

One also has versions of Proposition 5.3.5 where f need not have compact
support. See Exercise 13 below for an example.

Our next result on a class of elements of R#(I) ties in closely with the example
in (5.3.1). As before, I is either Rn or a cell in Rn.

Proposition 5.3.6. Let f : I → [0,∞) and assume fA ∈ R(I) for each A < ∞.
Assume there are nested contented subsets of I:

(5.3.39) U1 ⊃ U2 ⊃ U3 ⊃ · · · , V (Uν) → 0.

Assume f(1− χUν
) ∈ R(I) for each ν and that there exists C <∞ such that

(5.3.40)

∫
I\Uν

f dV = Jν ≤ C, ∀ ν.

Then f ∈ R#(I) and

(5.3.41) Jν ↗
∫
I

f dV.

Proof. The hypothesis (5.3.40) implies Jν ↗ J for some J ∈ [0,∞). Also, since
0 ≤ fA ≤ f , we have

(5.3.42)

∫
I\Uν

fA dV ≤ J, ∀ v,A.

Furthermore,

(5.3.43)

∫
Uν

fA dV ≤ AV (Uν),

so

(5.3.44)

∫
I

fA dV ≤ J +AV (Uν), ∀ ν,A,

hence

(5.3.45)

∫
I

fA dV ≤ J, ∀A.

It follows that f ∈ R#(I) and

(5.3.46)

∫
I

f dV ≤ J.
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On the other hand,

(5.3.47)

∫
I

f dV ≥
∫

I\Uν

f dV = Jν ,

for each ν, so we have (5.3.41). �

Monotone convergence theorem

We aim to establish a circle of results known as monotone convergence the-
orems. Here is the first result (which will be strengthened in Proposition 5.3.9).

Proposition 5.3.7. Let R ⊂ Rn be a cell. Assume fk ∈ R(R). Then

(5.3.48) fk(x) ↘ 0 ∀x ∈ R =⇒
∫
R

fk dV ↘ 0.

Proof. It suffices to assume V (R) = 1. Say 0 ≤ f1 ≤ K on R, so also 0 ≤ fk ≤ K.
We have

(5.3.49)

∫
R

fk dV ↘ α,

for some α ≥ 0, and we want to show that α = 0. Suppose α > 0. Pick a partition
Pk of R such that IPk

(fk) ≥ α/2. Thus fk ≥ φk ≥ 0 for some φk ∈ PK(R),
constant on the interior of each cell in Pk, with integral ≥ α/2. The contribution
to
∫
R
φk dV from the cells on which φk ≤ α/4 is ≤ α/4, so the contribution from

the cells on which φk ≥ α/4 must be ≥ α/4. Since φk ≤ K on R, it follows that
the latter class of cells must have total volume ≥ α/4K. Consequently, for each k,
there exists Sk ⊂ R, a finite union of cells in Pk, such that

(5.3.50) V (Sk) ≥
α

4K
, and fk ≥ α

4
on Sk.

Then fℓ ≥ α/4 on Sk for all ℓ ≤ k. Hence, with

(5.3.51) Oℓ =
∪
k≥ℓ

Sk,

we have

(5.3.52) cont−(Oℓ) ≥
α

4K
, fℓ ≥

α

4
on Oℓ.

The hypothesis fℓ ↘ 0 on R implies

(5.3.53) Oℓ ↘ ∅ as ℓ↗ ∞.

Without loss of generality, we can take Sk open in (5.3.50), hence each Oℓ is open.
The conclusion of Proposition 5.3.7 is hence a consequence of the following, which
implies that (5.3.52) and (5.3.53) are contradictory. �

Proposition 5.3.8. If Oℓ ⊂ R are open sets, for ℓ ∈ N, then

(5.3.54) Oℓ ↘ ∅ =⇒ cont−(Oℓ) ↘ 0.
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Proof. Assume Oℓ ↘ ∅. If the conclusion of (5.3.54) fails, then

(5.3.55) cont−(Oℓ) ↘ b

for some b > 0. Passing to a subsequence if necessary, we can assume

(5.3.56) cont−(Oℓ) ≤ b+ δℓ, δℓ < 2−ℓ · 10−9 · b.

Then we can pick Kℓ ⊂ Oℓ, a compact union of finitely many cells in a partition of
R, such that

(5.3.57) V (Kℓ) ≥ b− δℓ.

We claim that ∩ℓKℓ ̸= ∅, which will provide a contradiction.

Place K1 ∪K2 in a finite union C1 of cells, contained in O1. We then have

(5.3.58)
V (K1 ∩K2) ≥ V (K1)− V (C1 \K2)

≥ b− (2δ1 + δ2),

since V (C1 \K2) = V (C1) − V (K2) ≤ cont−(O1) − V (K2) ≤ δ1 + δ2. Next, place
(K1 ∩K2) ∪K3 in a finite union C2 of cells, contained in O2. Then

(5.3.59)
V (K1 ∩K2 ∩K3) ≥ V (K1 ∩K2)− V (C2 \K3)

≥ b− (2δ1 + δ2)− (2δ2 + δ3),

since V (C2 \K3) = V (C2)− V (K3) ≤ cont−(O2)− V (K3) ≤ δ2 + δ3. Proceeding in
this fashion, we get

(5.3.60) V
( k∩
ℓ=1

Kℓ

)
≥ b−

k∑
ℓ=1

(2δℓ + δℓ+1) > 0, ∀ k.

Thus, K̃k = ∩k
ℓ=1Kℓ is a decreasing sequence of nonempty compact sets. Hence

(5.3.61)
∩
ℓ≥1

Oℓ ⊃
∩
ℓ≥1

Kℓ ̸= ∅,

contradicting the hypothesis of (5.3.54). �

Having Proposition 5.3.7, we proceed to the following significant improvement.

Proposition 5.3.9. Assume fk ∈ R#(R). Then

(5.3.62) fk(x) ↘ 0 ∀x ∈ R =⇒
∫
R

fk dV ↘ 0.

Proof. Again we have (5.3.49) for some α ≥ 0 and again we want to show that
α = 0. For each A ∈ (0,∞) and each k ∈ N, form (fk)A, as in (5.3.3). Thus
(fk)A ∈ R(R), and the hypothesis of (5.3.62) implies (fk)A ↘ 0 as k ↗ ∞. Thus,
by Proposition 5.3.7,

(5.3.63)

∫
R

(fk)A dV ↘ 0 as k → ∞, for each A <∞.

We note that

(5.3.64) fk+1(x)− (fk+1)A(x) ≤ fk(x)− (fk)A(x)
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for each x ∈ R, k ∈ N. In fact, if fk(x) ≤ A (so fk+1(x) ≤ A), both sides of
(5.3.64) are 0, if fk+1(x) ≥ A (so fk(x) ≥ A), we get fk+1(x)−A ≤ fk(x)−A, and
if fk+1(x) < A < fk(x), we get 0 ≤ fk(x)−A. It follows that, for each A <∞,

(5.3.65)

∫
R

[fk − (fk)A] dV ↘ α, as k → ∞.

However, for each δ > 0, there exists A = A(δ) <∞ such that
∫
R
[f1−(f1)A] dV ≤ δ.

This forces α = 0, and proves Proposition 5.3.9. �

Applying Proposition 5.3.9 to fk = g − gk, we have the following.

Corollary 5.3.10. Assume g, gk ∈ R#(R). Then

(5.3.66) gk(x) ↗ g(x) ∀x ∈ R =⇒
∫
R

gk dV ↗
∫
R

g dV.

Finally, we remove the support constraint.

Proposition 5.3.11. Assume g, gk ∈ R#(Rn). Then

(5.3.67) gk(x) ↗ g(x) ∀x ∈ Rn =⇒
∫
Rn

gk dV ↗
∫
Rn

g dV.

Proof. Clearly

(5.3.68)

∫
Rn

gk dV ↗ c, and c ≤
∫
Rn

g dV.

Now, given ε > 0, there is a cell R ⊂ Rn such that

(5.3.69)

∫
Rn\R

(|g|+ |g1|) dV < ε,

and Corollary 5.3.10 gives

(5.3.70)

∫
R

gk dV ↗
∫
R

g dV.

We deduce that c ≥
∫
Rn g dV − ε for all ε > 0, so (4.137) holds. �

In the Lebesgue theory of integration, there is a stronger result. Namely, if
gk are integrable on Rn and gk(x) ↗ g(x) for each x, and if there is a uniform
upper bound

∫
Rn gk dx ≤ B <∞, then g is integrable on Rn and the conclusion of

(5.3.67) holds. Such a result can be found in [16].
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Exercises

Given B ⊂ Rn and f : B → R, we say f ∈ R#(B) provided g ∈ R#(Rn), where

g(x) = f(x) for x ∈ B,

0 for x /∈ B.

1. Take B = {x ∈ Rn : |x| ≤ 1/2}, and let f : B → R+. Assume f is continuous
on B \ 0. Show that

f ∈ R#(B) ⇔
∫

|x|>ε

f dV is bounded as ε↘ 0.

2. With B ⊂ Rn as in Exercise 1, define qb : B → R by

qb(x) =
1

|x|n
∣∣log |x| ∣∣b ,

for x ̸= 0. Say qb(0) = 0. Show that qb ∈ R#(B) ⇔ b > 1.

3. Show that
f(x) = |x|−ae−|x|2 ∈ R#(Rn) ⇐⇒ a < n.

4. Compute ∫
B

log |x|
|x|n−1

dV.

Hint. See Exercise 6 of §1.4.

5. Compute ∫
Rn

|x|−ae−|x|2 dx,

for a = n− 1, n− 2.

6. Peek ahead to §6.1 and express the integral in Exercise 5 above in terms of the
Gamma function, for general a < n.

7. Take
T = {(x, y) ∈ R2 : 0 < y ≤ x ≤ 1},

and define
fa : T → R, fa(x, y) = x−a.

Determine for which a ∈ R+ we have fa ∈ R#(T ), and compute∫
T

x−a dx dy,
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for such a.

8. Let D = {x ∈ R2 : |x| < 1}. Compute∫
D

(1− |x|2)−a dA,

for a < 1. Also compute ∫
D

xj(1− |x|2)−a dA,

∫
D

x1x2(1− |x|2)−a dA,

∫
D

x2j (1− |x|2)−a dA.

Hint. Use symmetries. Show that the last integral is independent of j, and sum
over j.
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5.4. Outer measure and Riemann integrability

Given a bounded set S ⊂ Rn, its upper content is defined in (5.1.15) and an equiv-
alent characterization given in (5.1.17). A related quantity is the outer measure of
S, defined by

(5.4.1) m∗(S) = inf
{∑
k≥1

V (Rk) : Rk ⊂ Rn cells, S ⊂
∪
k≥1

Rk

}
.

The difference between (5.1.17) and (5.4.1) is that in (5.1.17) we require the cover
of S by cells to be finite and in (5.4.1) we allow any countable cover of S by cells.
Clearly (5.4.1) is an inf over a larger collection of objects than (5.1.17), so

(5.4.2) m∗(S) ≤ cont+(S).

We get the same result in (5.4.1) if we require

(5.4.3) S ⊂
∪
k≥1

◦
Rk

(just expand each Rk by a factor of (1+2−kε)). Since any open cover of a compact
set has a finite subcover (see Proposition 2.1.8), it follows that

(5.4.4) S compact =⇒ m∗(S) = cont+(S).

On the other hand, it is readily verified from (5.4.1) that

(5.4.5) S countable =⇒ m∗(S) = 0.

For example, if R = {x ∈ Rn : 0 ≤ xj ≤ 1, ∀ j}, then

(5.4.6) m∗(R ∩Qn) = 0, but cont+(R ∩Qn) = 1,

the latter result by (5.1.18).

We now establish the following integrability criterion, which sharpens Proposi-
tion 5.1.6.

Proposition 5.4.1. Let f : R→ R be bounded, and let S ⊂ R be the set of points
of discontinuity of f . Then

(5.4.7) m∗(S) = 0 =⇒ f ∈ R(R).

Proof. Assume |f | ≤ M and pick ε > 0. Take a countable collection {Rk} of
cells that are open (in R) such that S ⊂ ∪k≥1Rk and

∑
k≥1 V (Rk) < ε. Now f is

continuous at each p ∈ R \ S, so there exists a cell R#
p , open (in R), containing p,

such that supR#
p
f − infR#

p
f < ε. Then {Rk : k ∈ N} ∪ {R#

p : p ∈ R \ S} is an

open cover of R. Since R is compact, there is a finite subcover, which we denote

{R1, . . . , RN , R
#
1 , . . . , R

#
M}. We have

(5.4.8)

N∑
k=1

V (Rk) < ε, and sup
R#

j

f − inf
R#

j

f < ε, ∀ j ∈ {1, . . . ,M}.

Recall that R = I1 × · · · × In is a product of n closed, bounded intervals. Also

each cell Rk and R#
j is a product of intervals. For each ν ∈ {1, . . . , n}, take the
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collection of all endpoints in the νth factor of each of these cells, and use these to
form a partition of Iν . Taking products yields a partition P of R. We can write

(5.4.9)

P = {Lk : 1 ≤ k ≤ µ}

=
(∪
k∈A

Lk

)
∪
(∪
k∈B

Lk

)
,

where we say k ∈ A provided Lk is contained in a cell of the form R#
j for some

j ∈ {1, . . . ,M}, as in (5.4.8). Consequently, if k ∈ B, then Lk ⊂ Rℓ for some
ℓ ∈ {1, . . . , N}, so

(5.4.10)
∪
k∈B

Lk ⊂
N∪
ℓ=1

Rℓ.

We therefore have

(5.4.11)
∑
k∈B

V (Lk) < ε, and sup
Lj

f − inf
Lj

f < ε, ∀ j ∈ A.

It follows that

(5.4.12)
0 ≤ IP(f)− IP(f) <

∑
k∈B

2MV (Lk) +
∑
j∈A

εV (Lj)

< 2εM + εV (R).

Since ε can be taken arbitrarily small, this establishes that f ∈ R(R). �

Remark. The condition (5.4.7) is sharp. That is, given f : R → R bounded,
f ∈ R(R) ⇔ m∗(S) = 0. Proofs of this can be found in standard measure theory
texts, such as [16].



Chapter 6

Calculus on surfaces

Having developed differential and integral calculus on open sets in n-dimensional
Euclidean space, we now pursue notions of calculus on a higher level, for surfaces
in Rn, and more generally for a class of objects known as “manifolds.”

In §6.1 we define the notion of a smoothm-dimensional surface in Rn and study
properties of these objects. We associate to such a surface a “metric tensor,” and
make use of this to define the integral of functions on a surface. This includes
the study of surface area. Examples include the computation of areas of higher
dimensional spheres. We also explore integration on the group of rotations on Rn,
leading to the notion of “averaging over rotations.” In this section, we see that the
inverse function and implicit function theorems from §4.3 are of crucial importance
for differential calculus on surfaces, and the change of variable formula from §5.1 is
crucial for integral calculus on surfaces.

In §6.2 we discuss constrained maxima and minima, that is, extremal points
for a smooth function f : S → R, where S ⊂ Rn is a smooth surface. We bring in
the method of Lagrange multipliers to find these relative extrema.

In §6.3, we establish some important integral identities due to Gauss, Green,
and Stokes. This class of identities can be thought of as the natural expression
of the fundamental theorem of calculus in several variables. Here they are derived
for domains Ω ⊂ Rn (specializing to n = 2 for Green’s formula and to n = 3 for
Stokes’ formula). They will be studied on a much more general level in the following
chapter.

In §6.4, we introduce a class of objects more general than surfaces, called man-
ifolds. Manifolds can also be endowed with metric tensors. These are called Rie-
mannian manifolds, and one can again define the integral of functions.

We also have a section on polar decomposition of matrices, used to prove that
the set Gl+(n,R) of n × n real matrices with positive determinant is connected,
and a section on partitions of unity, useful to localize analysis on an n-dimensional
surface (or manifold) to analysis on an open subset of Rn.

223
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Figure 6.1.1. A coordinate chart φ and its thickening Φ

6.1. Surfaces and surface integrals

A smoothm-dimensional surfaceM ⊂ Rn is characterized by the following property.
Given p ∈M, there is a neighborhood U of p in M and a smooth map φ : O → U,
from an open set O ⊂ Rm bijectively to U, with injective derivative at each point,
and continuous inverse φ−1 : U → O. Such a map φ is called a coordinate chart on
M. We call U ⊂M a coordinate patch. If all such maps φ are smooth of class Ck,
we say M is a surface of class Ck.

There is an abstraction of the notion of a surface, namely the notion of a
manifold, which we will discuss in §6.4. Examples include projective spaces and
other spaces obtained as quotients of surfaces.

If φ : O → U is a Ck coordinate chart, such as described above, or more
generally φ : O → Rn is a Ck map with injective derivative, and φ(x0) = p, we set

(6.1.1) TpM = RangeDφ(x0),

a linear subspace of Rn of dimension m, and we denote by NpM its orthogonal
complement. It is useful to consider the following map. Pick a linear isomorphism
A : Rn−m → NpM , let Bn−m ⊂ Rn−m be the unit ball, and define

(6.1.2) Φ : O ×Bn−m −→ Rn, Φ(x, z) = φ(x) +Az.
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Figure 6.1.2. Coordinate charts

Thus Φ is a Ck map defined on an open subset of Rn. We call Φ a thickening of φ.
See Figure 6.1.1 for an illustration, with m = 1, n = 2. Note that

(6.1.3) DΦ(x0, 0)

(
v
w

)
= Dφ(x0)v +Aw,

so DΦ(x0, 0) : Rn → Rn is surjective, hence bijective, so the Inverse Function
Theorem applies; Φ maps some neighborhood of (x0, 0) diffeomorphically onto a
neighborhood of p ∈ Rn.

Suppose there is another Ck coordinate chart, ψ : Ω → U . Since φ and ψ are
by hypothesis one-to-one and onto, it follows that

(6.1.4) F = ψ−1 ◦ φ : O → Ω

is a well defined map, which is one-to-one and onto. See Figure 6.1.2.

Example. Take the unit disk D = {(x, y) ∈ R2 : x2 + y2 < 1}, and define

(6.1.5) φ : D −→ S2, φ(x, y) = (x, y,
√

1− x2 − y2).

If we take p = (0, 0, 1), then (6.1.2) becomes

(6.1.6) Φ(x, y, z) = (x, y, z +
√

1− x2 − y2), z ∈ (−1, 1).
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Note that φ maps D one-to-one and onto the upper half of S2, i.e., {(x, y, z) ∈ S2 :
z > 0}. Similarly one has a map

(6.1.7) ψ : D −→ S2, ψ(u, v) = (
√
1− u2 − v2, u, v),

which takes D one-to-one and onto the hemisphere {(x, y, z) ∈ S2 : x > 0}. If we
take

(6.1.8) O = {(x, y) ∈ D : x > 0}, Ω = {(u, v) ∈ D : v > 0},
then

(6.1.9) φ : O −→ U, ψ : Ω −→ U,

where U is the intersection of these two hemishperes, i.e., U = {(x, y, z) ∈ S2 : x >
0, z > 0}. In this case, we have F : O → Ω, defined by F (x, y) = (u, v). We see

that u = y, v =
√
1− x2 − y2, so

(6.1.10) F (x, y) = (y,
√

1− x2 − y2).

Note: if we want p ∈ U , we might take p = (1, 0, 1)/
√
2, and adjust the thickening

map Φ accordingly.

Returning to generalities, we see from (6.1.4) that F and F−1 are continuous.
In fact, we can say more.

Lemma 6.1.1. Under the hypotheses above, F is a Ck diffeomorphism.

Proof. It suffices to show that F and F−1 are Ck on a neighborhood of x0 and
y0, respectively, where φ(x0) = ψ(y0) = p. Let us define a map Ψ in a fashion

similar to (6.1.2). To be precise, we set T̃pM = RangeDψ(y0), and let ÑpM be

its orthogonal complement. (Shortly we will show that T̃pM = TpM , but we are

not quite ready for that.) Then pick a linear isomorphism B : Rn−m → ÑpM and
consider

(6.1.11) Ψ : Ω× Rn−m −→ Rn, Ψ(y, z) = ψ(y) +Bz.

Again, Ψ is a Ck diffeomorphism from a neighborhood of (y0, 0) onto a neighbor-

hood of p. To be precise, there exist neighborhoods Õ of (x0, 0) in O × Rn−m, Ω̃

of (y0, 0) in Ω× Rn−m, and Ũ of p in Rn such that

(6.1.12) Φ : Õ −→ Ũ , and Ψ : Ω̃ −→ Ũ

are Ck diffeomorphisms.

It follows that Ψ−1 ◦ Φ : Õ → Ω̃ is a Ck diffeomorphism. Now note that, for

(x, 0) ∈ Õ and (y, 0) ∈ Ω̃,

(6.1.13) Ψ−1 ◦ Φ(x, 0) =
(
F (x), 0

)
, Φ−1 ◦Ψ(y, 0) =

(
F−1(y), 0

)
.

In fact, to verify the first identity in (6.1.13), we check that

(6.1.14)

Ψ(F (x), 0) = ψ(F (x)) +B0

= ψ(ψ−1 ◦ φ(x))
= φ(x)

= Φ(x, 0).
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The identities in (6.1.13) imply that F and F−1 have the desired regularity. �

Thus, when there are two such coordinate charts, φ : O → U, ψ : Ω → U , we
have a Ck diffeomorphism F : O → Ω such that

(6.1.15) φ = ψ ◦ F.

By the chain rule,

(6.1.16) Dφ(x) = Dψ(y)DF (x), y = F (x).

In particular this implies that RangeDφ(x0) = RangeDψ(y0), so TpM in (6.1.1) is
independent of the choice of coordinate chart. It is called the tangent space to M
at p.

Remark. An application of the inverse function theorem related to the proof of
Lemma 6.1.1 can be used to show that if O ⊂ Rm is open, m < n, and φ : O → Rn

is a Ck map such that Dφ(p) : Rm → Rn is injective, (p ∈ O), then there is a

neighborhood Õ of p in O such that the image of Õ under φ is a Ck surface in Rn.
Compare Exercise 11 in §4.3.

Metric tensors

We next define an object called the metric tensor on M . Given a coordinate
chart φ : O → U , there is associated an m×m matrix G(x) =

(
gjk(x)

)
of functions

on O, defined in terms of the inner product of vectors tangent to M :

(6.1.17) gjk(x) = Dφ(x)ej ·Dφ(x)ek =
∂φ

∂xj
· ∂φ
∂xk

=

n∑
ℓ=1

∂φℓ

∂xj

∂φℓ

∂xk
,

where {ej : 1 ≤ j ≤ m} is the standard orthonormal basis of Rm. Equivalently,

(6.1.18) G(x) = Dφ(x)tDφ(x).

We call (gjk) the metric tensor ofM, on U , with respect to the coordinate chart φ :
O → U . Note that this matrix is positive-definite. From a coordinate-independent
point of view, the metric tensor on M specifies inner products of vectors tangent
to M , using the inner product of Rn.

If we take another coordinate chart ψ : Ω → U, we want to compare (gjk) with
H = (hjk), given by

(6.1.19) hjk(y) = Dψ(y)ej ·Dψ(y)ek, i.e., H(y) = Dψ(y)t Dψ(y).

As seen above we have a diffeomorphism F : O → Ω such that (6.1.15)–(6.1.16)
hold. Consequently,

(6.1.20) G(x) = DF (x)tH(y)DF (x), for y = F (x),

or equivalently,

(6.1.21) gjk(x) =
∑
i,ℓ

∂Fi

∂xj

∂Fℓ

∂xk
hiℓ(y).
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Surface integrals

We now define the notion of surface integral onM . If f :M → R is a continuous
function supported on U, we set

(6.1.22)

∫
M

f dS =

∫
O

f ◦ φ(x)
√
g(x) dx,

where

(6.1.23) g(x) = detG(x).

We need to know that this is independent of the choice of coordinate chart φ : O →
U. Thus, if we use ψ : Ω → U instead, we want to show that (6.1.22) is equal to∫
Ω
f ◦ ψ(y)

√
h(y) dy, where h(y) = detH(y). Indeed, since f ◦ ψ ◦ F = f ◦ φ, we

can apply the change of variable formula, Theorem 5.1.20, to get

(6.1.24)

∫
Ω

f ◦ ψ(y)
√
h(y) dy =

∫
O

f ◦ φ(x)
√
h(F (x)) |det DF (x)| dx.

Now, (6.1.20) implies that

(6.1.25)
√
g(x) = |det DF (x)|

√
h(y),

so the right side of (6.1.24) is seen to be equal to (6.1.22), and our surface integral
is well defined, at least for f supported in a coordinate patch. More generally, if
f :M → R has compact support, write it as a finite sum of terms, each supported
on a coordinate patch, and use (6.1.22) on each patch. Using (5.1.13), one readily
verifies that

(6.1.26)

∫
M

(f1 + f2) dS =

∫
M

f1 dS +

∫
M

f2 dS,

if fj :M → R are continuous functions with compact support.

Let us pause to consider the special cases m = 1 and m = 2. For m = 1, we are
considering a curve in Rn, say φ : [a, b] → Rn. Then G(x) is a 1× 1 matrix, namely
G(x) = |φ′(x)|2. If we denote the curve in Rn by γ, rather than M, the formula
(6.1.22) becomes the arc length integral (compare (3.1.15))

(6.1.27)

∫
γ

f ds =

∫ b

a

f ◦ φ(x) |φ′(x)| dx.

In case m = 2, let us consider a surface M ⊂ R3, with a coordinate chart φ : O →
U ⊂M. For f supported in U, an alternative way to write the surface integral is

(6.1.28)

∫
M

f dS =

∫
O

f ◦ φ(x) |∂1φ× ∂2φ| dx1dx2,

where u× v is the cross product of vectors u and v in R3. To see this, we compare
this integrand with the one in (6.1.22). In this case,

(6.1.29) g = det

(
∂1φ · ∂1φ ∂1φ · ∂2φ
∂2φ · ∂1φ ∂2φ · ∂2φ

)
= |∂1φ|2|∂2φ|2 − (∂1φ · ∂2φ)2.
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Recall from (2.5.11) that |u × v| = |u| |v| | sin θ|, where θ is the angle between u
and v. Equivalently, since u · v = |u| |v| cos θ,

(6.1.30) |u× v|2 = |u|2|v|2
(
1− cos2 θ

)
= |u|2|v|2 − (u · v)2.

Thus we see that |∂1φ × ∂2φ| =
√
g, in this case, and (6.1.28) is equivalent to

(6.1.22). See Exercises 15–21 for applications of (6.1.28).

An important class of surfaces is the class of graphs of smooth functions. Let
u ∈ C1(Ω), for an open Ω ⊂ Rn−1, and let M be the graph of z = u(x). The map
φ(x) =

(
x, u(x)

)
provides a natural coordinate system, in which the metric tensor

formula (6.1.17) becomes

(6.1.31) gjk(x) = δjk +
∂u

∂xj

∂u

∂xk
.

If u is C1, we see that gjk is continuous. To calculate g = det(gjk), at a given point
p ∈ Ω, if ∇u(p) ̸= 0, rotate coordinates so that ∇u(p) is parallel to the x1 axis. We
obtain

(6.1.32)
√
g =

(
1 + |∇u|2

)1/2
.

(See Exercise 31 for another take on this formula.) In particular, the (n − 1)-
dimensional volume of the surface M is given by

(6.1.33) Vn−1(M) =

∫
M

dS =

∫
Ω

(
1 + |∇u(x)|2

)1/2
dx.

Particularly important examples of surfaces are the unit spheres Sn−1 in Rn,

(6.1.34) Sn−1 = {x ∈ Rn : |x| = 1}.

Spherical polar coordinates on Rn are defined in terms of a smooth diffeomorphism

(6.1.35) R : (0,∞)× Sn−1 −→ Rn \ 0, R(r, ω) = rω.

Let (hℓm) denote the metric tensor on Sn−1 (induced from its inclusion in Rn)
with respect to some coordinate chart φ : O → U ⊂ Sn−1. Then we have a
coordinate chart Φ : (0,∞) × O → U ⊂ Rn given by Φ(r, y) = rφ(y). Take
y0 = r, y = (y1, . . . , yn−1). In the coordinate system Φ the Euclidean metric tensor
(ejk) is given by

e00 = ∂0Φ · ∂0Φ = φ(y) · φ(y) = 1,

e0j = ∂0Φ · ∂jΦ = φ(y) · ∂jφ(y) = 0, 1 ≤ j ≤ n− 1,

ejk = r2∂jφ · ∂kφ = r2hjk, 1 ≤ j, k ≤ n− 1.

The fact that φ(y)·∂jφ(y) = 0 follows by applying ∂/∂yj to the identity φ(y)·φ(y) ≡
0. To summarize,

(6.1.36)
(
ejk
)
=

(
1

r2hℓm

)
.

Now (6.1.36) yields

(6.1.37)
√
e = rn−1

√
h.
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We therefore have the following result for integrating a function in spherical polar
coordinates.

(6.1.38)

∫
Rn

f(x) dx =

∫
Sn−1

[∫ ∞

0

f(rω)rn−1 dr
]
dS(ω).

See (5.1.137)–(5.1.141) for the case n = 3 (with special coordinates on S2).

We next compute the (n−1)-dimensional area An−1 of the unit sphere Sn−1 ⊂
Rn, using (6.1.38) together with the computation

(6.1.39)

∫
Rn

e−|x|2 dx = πn/2,

from (5.1.156). First note that, whenever f(x) = φ(|x|), (6.1.38) yields

(6.1.40)

∫
Rn

φ(|x|) dx = An−1

∫ ∞

0

φ(r)rn−1 dr.

In particular, taking φ(r) = e−r2 and using (6.1.39), we have

(6.1.41) πn/2 = An−1

∫ ∞

0

e−r2rn−1 dr = 1
2An−1

∫ ∞

0

e−ssn/2−1 ds,

where we used the substitution s = r2 to get the last identity. We hence have

(6.1.42) An−1 =
2πn/2

Γ(n2 )
,

where Γ(z) is Euler’s Gamma function, defined for z > 0 by

(6.1.43) Γ(z) =

∫ ∞

0

e−ssz−1 ds.

We need to complement (6.1.42) with some results on Γ(z) allowing a computation
of Γ(n/2) in terms of more familiar quantities. Of course, setting z = 1 in (6.1.43),
we immediately get

(6.1.44) Γ(1) = 1.

Also, setting n = 1 in (6.1.41), we have

π1/2 = 2

∫ ∞

0

e−r2 dr =

∫ ∞

0

e−ss−1/2 ds,

or

(6.1.45) Γ
(1
2

)
= π1/2.

We can proceed inductively from (6.1.44)-(6.1.45) to a formula for Γ(n/2) for any
n ∈ Z+, using the following.

Lemma 6.1.2. For all z > 0,

(6.1.46) Γ(z + 1) = zΓ(z).
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Proof. We can write

Γ(z + 1) = −
∫ ∞

0

( d
ds
e−s
)
sz ds =

∫ ∞

0

e−s d

ds

(
sz
)
ds,

the last identity by integration by parts. The last expression here is seen to equal
the right side of (6.1.46). �

Consequently, for k ∈ Z+,

(6.1.47) Γ(k) = (k − 1)!, Γ
(
k +

1

2

)
=
(
k − 1

2

)
· · ·
(1
2

)
π1/2.

Thus (6.1.42) can be rewritten

(6.1.48) A2k−1 =
2πk

(k − 1)!
, A2k =

2πk(
k − 1

2

)
· · ·
(
1
2

) .
The rotation group, and averaging over rotations

We discuss another important example of a smooth surface, in the spaceM(n,R)
≈ Rn2

of real n× n matrices, namely

(6.1.49) SO(n) = {T ∈M(n,R) : T tT = I, detT > 0},
(hence detT = 1). To obtain a coordinate system, we bring in the exponential
map,

(6.1.50) Exp :M(n,R) −→M(n,R),

defined by

(6.1.51) Exp(X) = eX =

∞∑
k=0

1

k!
Xk.

As noted in (4.3.31)–(4.3.33), Exp is smooth and

(6.1.52) DExp(0)Y = Y, ∀Y ∈M(n,R),

Hence the Inverse Function Theorem implies that there is a ball Ω centered at 0 in

M(n,R) that is mapped diffeomorphically by Exp onto a neighborhood Ω̃ of I in
M(n,R). Now we have the identities

(6.1.53) ExpXt = (ExpX)t, Exp(−X) = (ExpX)−1,

for all X ∈M(n,R) (see (C.4.7)), and these imply that

(6.1.54) Exp : Skew(n) −→ SO(n),

where

(6.1.55) Skew(n) = {X ∈M(n,R) : Xt = −X}.

Since Exp : Ω → Ω̃ is a diffeomorphism, we have, for X ∈ Ω, A = ExpX ∈ Ω̃,

(6.1.56) A ∈ SO(n) ⇐⇒ X ∈ Skew(n).

Thus there is a neighborhood O of 0 in Skew(n) that is mapped by Exp diffeo-
morphically onto a smooth surface U ⊂ M(n,R), of dimension m = n(n − 1)/2.
Furthermore, U is a neighborhood of I in SO(n).
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For general T ∈ SO(n), we can define maps

(6.1.57) φT : O −→ SO(n), φT (A) = T Exp(A),

and obtain coordinate charts in SO(n), which is consequently a smooth surface of
dimension n(n − 1)/2 in M(n,R). Note that SO(n) is a closed bounded subset of
M(n,R); hence it is compact. We call SO(n) the rotation group on Rn

Note that, by (6.1.52)–(6.1.56), the tangent space to SO(n) at the identity
element I is

(6.1.58) TISO(n) = Skew(n).

Hence, for U ∈ SO(n),

(6.1.59)
TUSO(n) = {UA : A ∈ Skew(n)}

= {ÃU : Ã ∈ Skew(n)}.

We use the inner product on M(n,R) computed componentwise; equivalently,

(6.1.60) ⟨A,B⟩ = Tr (BtA) = Tr (BAt).

See §2.4. This produces a metric tensor on SO(n). The surface integral over SO(n)
has the following important invariance property.

Proposition 6.1.3. Given f ∈ C
(
SO(n)

)
, if we set

(6.1.61) ρT f(X) = f(XT ), λT f(X) = f(TX),

for T,X ∈ SO(n), we have

(6.1.62)

∫
SO(n)

ρT f dS =

∫
SO(n)

λT f dS =

∫
SO(n)

f dS.

Proof. Given T ∈ SO(n), the maps RT , LT : M(n,R) → M(n,R) defined by
RT (X) = XT, LT (X) = TX are easily seen from (6.1.60) to be isometries. Thus
they yield maps of SO(n) to itself which preserve the metric tensor, proving (6.1.62).

�

Since SO(n) is compact, its total volume V
(
SO(n)

)
=
∫
SO(n)

1 dS is finite.

We define the integral with respect to “Haar measure”

(6.1.63)

∫
SO(n)

f(g) dg =
1

V
(
SO(n)

) ∫
SO(n)

f dS.

This is used in many arguments involving “averaging over rotations.”

Extended notion of coordinates

Basic calculus as developed in this text so far has involved maps from one
Euclidean space to another, of the type F : Rn → Rm. It is convenient and useful
to extend our setting to F : V →W , where V andW are general finite-dimensional
real vector spaces. There is the following notion of the derivative.
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Let V and W be as above, and let Ω ⊂ V be open. We say F : Ω → W is
differentiable at x ∈ Ω provided there exists a linear map L : V → W such that,
for y ∈ V small,

(6.1.64) F (x+ y) = F (x) + Ly + r(x, y),

with r(x, y) → 0 faster than y → 0, i.e.,

(6.1.65)
∥r(x, y)∥

∥y∥
−→ 0 as y → 0.

For this to be meaningful, we need norms on V and W . Often these norms come
from inner products. See Appendix C.1 for a discussion of inner product spaces. If
(6.1.64)–(6.1.65) hold, we set DF (x) = L, and call the linear map

DF (x) : V −→W

the derivative of F at x. We say F is C1 if DF (x) is continuous in x. Notions of F
in Ck are produced in analogy with the situation in §4.1. Of course, we can reduce
all this to the setting of §4.1 by picking bases of V and W .

Often such V and W arise as linear subspaces of Rn, such as TpM in (6.1.1),
or V = NpM , mentioned right below that. As noted there, we can take a linear
isomorphism of such V with Rk for some k, and keep working in the context of
maps between such standard Euclidean spaces, as in (6.1.2). However, it can be
convenient to avoid this distraction, and, for example, replace (6.1.2) by

(6.1.66) Φ : O ×NpM −→ Rn, Φ(x, z) = φ(x) + z,

and (6.1.3) by

(6.1.67) DΦ(x0, 0)

(
v

w

)
= Dφ(x0)v + w.

In order to carry out Lemma 6.1.1 in this setting, we want the following version of
the Inverse Function Theorem.

Proposition 6.1.4. Let V and W be real vector spaces, each of dimension n. Let
F be a Ck map from an open neighborhood Ω of p0 ∈ V to W , with q0 = F (p0),
k ≥ 1. Assume the derivative

DF (p0) : V →W is an isomorphism.

Then there exist a neighborhood U of p0 and a neighborhood Ũ of q0 such that

F : U → Ũ is one-to-one and onto, and F−1 : Ũ → U is a Ck map.

While Proposition 6.1.4 is apparently an extension of Theorem 4.3.1, there is
no extra work required to prove it. One can simply take linear isomorphisms A :
Rn → V and B : Rn →W and apply Theorem 4.3.1 to the map G(x) = B−1F (Ax).
Thus Proposition 6.1.4 is not a technical improvement of Theorem 4.3.1, but it is
a useful conceptual extension.

With this in mind, we can define the notion of anm-dimensional surfaceM ⊂ V
(an n-dimensional vector space) as follows. Take a vector space W , of dimension
m. Given p ∈M , we require there to be a neighborhood U of p in M and a smooth
map φ : O → U , from an open set O ⊂ W bijectively to U , with an injective
derivative at each point. We call such a map a coordinate chart. If all such maps
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are smooth of class Ck, we say M is a surface of class Ck. As a further wrinkle, we
could take different vector spaces Wp for different p ∈ M , as long as they all have
dimension m. The reader is invited to formulate the appropriate modification of
Lemma 6.1.1 in this setting.

Submersions

Let V and W be finite dimensional real vector spaces, Ω ⊂ V open, and F :
Ω →W a Ck map, k ≥ 1. We say F is a submersion provided that, for each x ∈ Ω,
DF (x) : V → W is surjective. (This requires dimV ≥ dimW .) We establish the
following Submersion Mapping Theorem, which the reader might recognize as a
variant of the Implicit Function Theorem. In the statement, kerT denotes the null
space

kerT = {v ∈ V : Tv = 0},
if T : V →W is a linear transformation.

Proposition 6.1.5. With V,W , and Ω ⊂ V as above, assume F : Ω →W is a Ck

map, k ≥ 1. Fix p ∈W , and consider

(6.1.68) S = {x ∈ V : F (x) = p}.

Assume that, for each x ∈ S, DF (x) : V → W is surjective. Then S is a Ck

surface in Ω. Furthermore, for each x ∈ S,

(6.1.69) TxS = kerDF (x).

Proof. Given q ∈ S, set Kq = kerDF (q) and define

(6.1.70) Gq : V −→W ⊕Kq, Gq(x) = (F (x), Pq(x− q)),

where Pq is a projection of V onto Kq. Note that

(6.1.71) Gq(q) = (F (q), 0) = (p, 0).

Also

(6.1.72) DGq(x) = (DF (x), Pq), x ∈ V.

We claim that

(6.1.73) DGq(q) = (DF (q), Pq) : V →W ⊕Kq is an isomorphism.

This is a special case of the following general observation. �

Lemma 6.1.6. If A : V → W is a surjective linear map and P is a projection of
V onto kerA, then

(6.1.74) (A,P ) : V −→W ⊕ kerA is an isomorphism.

We postpone the proof of this lemma and proceed with the proof of Proposition
6.1.5. Having (6.1.73), we can apply the Inverse Function Theorem (Proposition
6.1.4) to obtain a neighborhood U of q in V and a neighborhood O of (p, 0) in
W ⊕Kq such that Gq : U → O is bijective, with Ck inverse

(6.1.75) G−1
q : O −→ U, G−1

q (p, 0) = q.
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By (6.1.70), given x ∈ U ,

(6.1.76) x ∈ S ⇐⇒ Gq(x) = (p, v), for some v ∈ Kq.

Hence S∩U is the image under the Ck diffeomorphism G−1
q of O∩{(p, v) : v ∈ Kq}.

Hence S is smooth of class Ck and dimTqS = dimKq. It follows from the chain rule
that TqS ⊂ Kq, so the dimension count yields TqS = Kq. This proves Proposition
6.1.5. Note that we have the following coordinate chart on a neighborhood of q ∈ S:

(6.1.77) ψq(v) = G−1
q (p, v), ψq : Ωq → S,

where Ωq is a neighborhood of 0 in TqS = Kq = kerDF (q).

It remains to prove Lemma 6.1.6. Indeed, given that A : V →W is surjective,
the fundamental theorem of linear algebra implies dimV = dim(W ⊕ kerA), and it
is clear that (A,P ) in (6.1.74) is injective, so the isomorphism property follows.

Remark. In case V = Rn and W = R, DF (x) is typically denoted ∇F (x),
the hypothesis on DF (x) becomes ∇F (x) ̸= 0, and (6.1.69) is equivalent to the
assertion that dimS = n− 1 and, for x ∈ S,

(6.1.78) ∇F (x) ⊥ TxS.

Compare the discussion following Proposition 4.3.6.

Example. Take F : Rn → R to be F (x) = |x|2, so the unit sphere Sn−1 is given
by

(6.1.79) Sn−1 = {x ∈ Rn : F (x) = 1}.
We have

(6.1.80) ∇F (x) = 2x,

so ∇F is nowhere vanishing on Sn−1. Thus (6.1.69) implies that, for x ∈ Sn−1,

(6.1.81) TxS
n−1 = {v ∈ Rn : x · v = 0}.

We bring in another surface, called the tangent bundle of Sn−1,

(6.1.82) TSn−1 = {(x, v) ∈ Rn × Rn : x ∈ Sn−1, v ∈ TxS
n−1}

so, by (6.1.81),

(6.1.83) TSn−1 = {(x, v) ∈ R2n : F (x, v) = (1, 0)t},
where

(6.1.84) F : R2n → R2, F (x, v) =

(
|x|2

x · v

)
.

We see that

(6.1.85) DF (x, v) : R2n −→ R2

is given by the 2n× 2 matrix

(6.1.86) DF (x, v) =

(
2xt 0
vt xt

)
, xt = (x1, . . . , xn).
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We claim that D = DF (x, v) is surjective when (x, v) ∈ TSn−1. To check surjec-
tivity, we examine

(6.1.87)

DDt =

(
2xt 0
vt xt

)(
2x x
0 x

)
=

(
4|x|2 2x · v
2x · v |x|2

)
∈M(2,R).

Hence

(6.1.88) (x, v) ∈ TSn−1 =⇒ DDt =

(
4 0
0 1

)
,

and Proposition 6.1.5 applies. The set TSn−1 is a smooth, (2n − 2)-dimensional
surface.

We next look at a related surface, the unit sphere bundle of Sn−1, defined by

(6.1.89) SSn−1 = {(x, v) ∈ TSn−1 : |v| = 1},

that is,

(6.1.90) SSn−1 = {(x, v) ∈ Rn × Rn : F (x, v) = (1, 1, 0)t},

where

(6.1.91) F : R2n → R3, F (x, v) =

 |x|2
|v|2
x · v

 .

We assume n ≥ 2. We will show that Proposition 6.1.5 applies, to yield that SSn−1

is a smooth (2n− 3)-dimensional surface. Indeed, we have

(6.1.92) DF (x, v) : R2n −→ R3,

given by

(6.1.93) DF (x, v) =

2xt 0
0 2vt

vt xt

 ,

again with xt = (x1, . . . , xn). We claim that D = DF (x, v) is surjective when
(x, v) ∈ SSn−1. To see this, we compute

(6.1.94)

DDt =

2xt 0
0 2vt

vt xt

(2x 0 v
0 2v x

)

=

4|x|2 0 2x · v
0 4|v|2 2x · v

2x · v 2x · v |x|2 + |v|2

 .

Hence

(6.1.95) (x, v) ∈ SSn−1 ⇒ DDt =

4 0 0
0 4 0
0 0 2

 ,
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and we have surjectivity. Proposition 6.1.5 implies that SSn−1 is a smooth surface
of dimension 2n− 3. Note that, for (a, b)t ∈ R2n,

(6.1.96) DF (x, v)

(
a

b

)
=

 2x · a
2v · b

v · a+ x · b

 .

Hence, for (x, v) ∈ SSn−1,

(6.1.97) T(x,v)SS
n−1 =

{(a
b

)
∈ R2n : x · a = v · b = v · a+ x · b = 0

}
,

a linear subspace of R2n whose orthogonal complement is

(6.1.98) N(x,v)SS
n−1 = Span

{(x
0

)
,

(
0

v

)
,

(
v

x

)}
.

Note that, when (x, v) ∈ SSn−1, the three vectors on the right side of (6.1.98) are
mutually orthogonal.

We next illustrate Proposition 6.1.5 with another proof that

(6.1.99) SO(n) ⊂M(n,R)

is a smooth surface, different from the argument involving (6.1.54)–(6.1.57). To get
this, we take

(6.1.100) V =M(n,R), W = Sym(n) = {A ∈M(n,R) : A = At},

and

(6.1.101) F : V −→W, F (X) = XtX.

Now, given X,Y ∈ V , Y small,

(6.1.102) F (X + Y ) = XtX +XtY + Y tX +O(∥Y ∥2),

so

(6.1.103) DF (X)Y = XtY + Y tX.

We claim that

(6.1.104) X ∈ SO(n) =⇒ DF (X) :M(n,R) → Sym(n) is surjective.

Indeed, given A ∈ Sym(n), i.e., A ∈ M(n,R) and At = A, and X ∈ SO(n), we
have

(6.1.105) Y =
1

2
XA =⇒ DF (X)Y = A.

This establishes (6.1.104), so Proposition 6.1.5 applies. Again we conclude that
SO(n) is a smooth surface inM(n,R). By (6.1.69), the tangent space atX ∈ SO(n)
is

(6.1.106) TXSO(n) = kerDF (X) = {Y ∈M(n,R) : XtY + Y tX = 0}.

If we write Y = XB, we see that the defining condition is B +Bt = 0, so

(6.1.107) TXSO(n) = {XB : B ∈ Skew(n)}.
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Riemann integrable functions on a surface

Let M ⊂ Rn be an m-dimensional surface, smooth of class C1. We define
the class Rc(M) of compactly supported Riemann integrable functions as follows,
guided by Proposition 5.1.13. If f : M → R is bounded and has compact support,
we set

(6.1.108)

I(f) = inf
{∫
M

g dS : g ∈ Cc(M), g ≥ f
}
,

I(f) = sup
{∫
M

h dS : h ∈ Cc(M), h ≤ f
}
,

where Cc(M) denotes the set of continuous functions on M with compact support.
Then

(6.1.109) f ∈ Rc(M) ⇐⇒ I(f) = I(f),

and if such is the case, we denote the common value by
∫
M
f dS. It follows readily

from the definition and arguments produced in §5.1 that

(6.1.110)

f1, f2 ∈ Rc(M) =⇒ f1 + f2 ∈ Rc(M) and∫
M

(f1 + f2) dS =

∫
M

f1 dS +

∫
M

f2 dS.

In fact, using (6.1.26) for functions that are continuous onM with compact support,
one obtains from the definition (6.1.108) that, if fj :M → R are bounded and have
compact support,

I(f1 + f2) ≤ I(f1) + I(f2), I(f1 + f2) ≥ I(f1) + I(f2),

which yields (6.1.110). Also one can modify the proof of Proposition 5.1.22 to show
that

(6.1.111) f ∈ Rc(M), u ∈ C(M) =⇒ uf ∈ Rc(M).

Furthermore, if φ : O → U ⊂ M is a coordinate chart and f ∈ Rc(U), then an
application of Proposition 5.1.13 gives

(6.1.112) f ◦ φ ∈ Rc(O), and

∫
M

f dS =

∫
O

f(φ(x))
√
g(x) dx,

with g(x) as in (6.1.22)–(6.1.23). Given any f ∈ Rc(M), we can take a continuous
partition of unity {uj}, write f =

∑
j fj =

∑
j ujf , and use (6.1.110)–(6.1.112) to

express
∫
M
f dS as a sum of integrals over coordinate charts.

If Σ ⊂M has compact closure, then

(6.1.113) cont+ Σ = I(χΣ),

and Σ is contented if and only if χΣ ∈ Rc(M). In such a case, (6.1.113) is the
area of Σ. Given f : M → R, bounded and compactly supported, in parallel with
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(5.1.84) we say

(6.1.114)
f ∈ Cc(M) ⇔ the set Σ of points of discontinuity of f

satisfies cont+ Σ = 0.

We have

(6.1.115) Cc(M) ⊂ Rc(M),

and (again parallel to Proposition 5.1.13) if f :M → R is bounded and compactly
supported,

(6.1.116)

I(f) = inf
{∫
M

g dS : g ∈ Cc(M), g ≥ f
}
,

I(f) = sup
{∫
M

h dS : h ∈ Cc(M), h ≤ f
}
.

One can proceed from here to define the spaces

(6.1.117) R(M), R#(M),

and establish properties of functions in these spaces, in analogy with work in §5.1
on R(Rn) and R#(Rn). We leave such an investigation to the reader.

Exercises

1. The map x : R× R → S2 given by

x(θ, ψ) = (sin θ cosψ, sin θ sinψ, cos θ)

is a smooth map of R × R onto S2. See Figure 6.1.3. Produce the metric tensor
and area element on S2 in these coordinates. Show that∫

S2

f dS =

∫ π

0

∫ 2π

0

f(sin θ sinψ, sin θ sinψ, cos θ) sin θ dψ dθ.

Deduce that

A(S2) = 2π

∫ π

0

sin θ dθ = 4π.

Compare this with the formula (6.1.42) for An−1, with n = 3.

2. Apply (6.1.40) with φ = χ[0,1] to compute the volume of the unit ball Bn =
{x ∈ Rn : |x| ≤ 1}. Compare the result with other approaches to the computation
of V (Bn) given in Chapter 5.

3. Taking the upper half of the sphere Sn to be the graph of xn+1 = (1− |x|2)1/2,
for x ∈ Bn, the unit ball in Rn, deduce from (6.1.33) and (6.1.40) that

An = 2An−1

∫ 1

0

rn−1

√
1− r2

dr = 2An−1

∫ π/2

0

(sin θ)n−1 dθ.
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Figure 6.1.3. Spherical coordinates on S2

Use this to get an alternative derivation of the formula (6.1.48) for An.
Hint. Rewrite this formula as

An = An−1bn−1, bk =

∫ π

0

sink θ dθ.

To analyze bk, you can write, on the one hand,

bk+2 = bk −
∫ π

0

sink θ cos2 θ dθ,

and on the other, using integration by parts,

bk+2 =

∫ π

0

cos θ
d

dθ
sink+1 θ dθ.

Deduce that

bk+2 =
k + 1

k + 2
bk.

4. SupposeM is a surface in Rn of dimension 2, and φ : O → U ⊂M is a coordinate
chart, with O ⊂ R2. Set φjk(x) =

(
φj(x), φk(x)

)
, so φjk : O → R2. Show that the

formula (6.1.22) for the surface integral is equivalent to∫
M

f dS =

∫
O

f ◦ φ(x)
√∑

j<k

(
det Dφjk(x)

)2
dx.



Exercises 241

Hint. Show that the quantity under
√

is equal to (6.1.29).

5. If M is an m-dimensional surface, φ : O → M ⊂ M a coordinate chart, for
J = (j1, . . . , jm) set

φJ(x) =
(
φj1(x), . . . , φjm(x)

)
, φJ : O → Rm.

Show that the formula (6.1.22) is equivalent to∫
M

f dS =

∫
O

f ◦ φ(x)
√ ∑

j1<···<jm

(
det DφJ(x)

)2
dx.

Hint. Reduce to the following. For fixed x0 ∈ O, the quantity under
√

is equal

to g(x) at x = x0, in the case Dφ(x0) =
(
Dφ1(x0), . . . , Dφm(x0), 0, . . . , 0

)
.

6. Let M be the graph in Rn+1 of xn+1 = u(x), x ∈ O ⊂ Rn. Show that, for
p = (x, u(x)) ∈ M, TpM (given as in ((6.1.1)) has a 1-dimensional orthogonal

complement NpM , spanned by (−∇u(x), 1). We set N =
(
1+ |∇u|2

)−1/2
(−∇u, 1),

and call it the (upward-pointing) unit normal to M .

7. Let M be as in Exercise 6, and define N as done there. Show that, for a
continuous function f :M → Rn+1,∫

M

f ·N dS =

∫
O

f
(
x, u(x)

)
·
(
−∇u(x), 1

)
dx.

The left side is often denoted
∫
M
f · dS.

8. Let M be a 2-dimensional surface in R3, covered by a single coordinate chart,
φ : O →M . Suppose f :M → R3 is continuous. Show that, if

∫
M
f · dS is defined

as in Exercise 7, then∫
M

f · dS =

∫
O

f
(
φ(x)

)
· (∂1φ× ∂2φ) dx.

9. Consider a symmetric n×n matrix A = (ajk) of the form ajk = vjvk. Show that
the range of A is the one-dimensional space spanned by v = (v1, . . . , vn) (if this is
nonzero). Deduce that A has exactly one nonzero eigenvalue, namely λ = |v|2. Use
this to give another derivation of (6.1.32) from (6.1.31).
Hint. Show that Aej = vjv, for each j.

10. Let Ω ⊂ Rn be open and u : Ω → R be a Ck map. Fix c ∈ R and consider

S = {x ∈ Ω : u(x) = c}.

Assume S ̸= ∅ and that ∇u(x) ̸= 0 for all x ∈ S.

As seen after Proposition 6.1.5, S is a Ck surface of dimension n − 1, and,
for each p ∈ S, TpS has a 1-dimensional orthogonal complement NpS spanned by
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∇u(p). Assume now that there is a Ck map φ : O → R, with O ⊂ Rn−1 open, such
that u(x′, φ(x′)) = c, and that x′ 7→ (x′, φ(x′)) parametrizes S. Show that∫

S

f dS =

∫
O

f
|∇u|
|∂nu|

dx′,

where the functions in the integrand on the right are evaluated at (x′, φ(x′)).
Hint. Compare the formula in Exercise 6 for N with the fact that ±N = ∇u/|∇u|,
and keep in mind the formula (6.1.33).

In the next exercises, we study Exp tJ = etJ , where

J =

(
0 −1
1 0

)
.

See §C.4 for basic material on the matrix exponential.

11. Show that if v ∈ R2, then

d

dt
∥etJv∥2 = 2etJv · JetJv = 0,

and deduce that ∥etJv|| = ∥v∥ for all v ∈ R2, t ∈ R.

12. Define c(t) and s(t) by

etJ
(
1

0

)
=

(
c(t)

s(t)

)
.

Show that the identity (d/dt)etJ = JetJ implies

c′(t) = −s(t), s′(t) = c(t).

Deduce that (c(t), s(t)) is a unit speed curve, starting at (c(0), s(0)) = (1, 0), with
initial velocity (c′(0), s′(0)) = (0, 1), and tracing out the unit circle x2 + y2 = 1 in
R2. See Figure 6.1.4. Compare the derivation of (3.2.39).

13. Using Exercise 12 and (6.1.27), show that for t > 0, the curve γ : [0, t] → R2

given by γ(τ) = (c(τ), s(τ)) has length t. As discussed in §3.1, in trigonometry the
line segments from (0, 0) to (1, 0) and from (0, 0) to (c(t), s(t)) are said to meet at
an angle, measured in radians, equal to the length of this curve, i.e., to t radians.
Then the geometric definitions of the trigonometric functions cos t and sin t yield

(6.1.118) cos t = c(t), sin t = s(t).

Deduce that

(6.1.119) etJ
(
1

0

)
=

(
cos t

sin t

)
,

and from this, using etJJ = JetJ , that

(6.1.120) etJ =

(
cos t − sin t
sin t cos t

)
= (cos t)I + (sin t)J.

Compare Euler’s formula (3.2.39), and also (3.3.21).
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Figure 6.1.4. Unit circle

14. The following result in linear algebra is established in Proposition C.2.8 of
Appendix C.2.

Proposition. If A : Rn → Rn is orthogonal, so AtA = I, then Rn has an orthonor-
mal basis in which the matrix representation of A consists of blocks(

cj −sj
sj cj

)
, c2j + s2j = 1,

plus perhaps an identity matrix block if 1 is an eigenvalue of A, and a block that
is −I if −1 is an eigenvalue of A.

Use this and (6.1.120) to prove that

(6.1.121) Exp : Skew(n) −→ SO(n) is onto.

,

In the next exercise, T denotes the “inner tube” obtained as follows. Take the circle
in the (y, z)-plane, centered at y = a, z = 0, of radius b, with 0 < b < a. Rotate
this circle about the z-axis. Then T is the surface so swept out. See Figure 6.1.5.
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Figure 6.1.5. Inner tube

15. Define ψ : R2 → R3 by ψ(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ)), with

x(θ, φ) = (a+ b cosφ) cos θ,

y(θ, φ) = (a+ b cosφ) sin θ,

z(θ, φ) = b sinφ.

Show that ψ maps [0, 2π]× [0, 2π] onto T .
Show that |∂θψ × ∂φψ| = b(a+ b cosφ).
Using (6.1.28), show that

Area T = 4π2ab.

16. In the setting of Exercise 15, compute the following integrals.∫
T

x2 dS,

∫
T

y2 dS,

∫
T

z2 dS.

In the next exercise, M is a surface of revolution, obtained by taking the graph of
a function y = f(x), a ≤ x ≤ b (assuming f > 0) and rotating it about the x-axis,
in R3.
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17. Define ψ : [a, b]× R → R3 by ψ(s, t) = (s, f(s) cos t, f(s) sin t).
Show that ψ maps [a, b]× [0, 2π] onto M .

Show that |∂sψ × ∂tψ| = f(s)
√

1 + f ′(s)2.
Using (6.1.28), show that if u :M → R is continuous,∫

M

u dS =

∫ 2π

0

∫ b

a

u
(
s, f(s) cos t, f(s) sin t

)
f(s)

√
1 + f ′(s)2 ds dt.

In particular,

Area M = 2π

∫ b

a

f(s)
√
1 + f ′(s)2 ds.

Remark. As seen in §5.1, if

Ω = {(x, y, z) ∈ R3 : a ≤ x ≤ b, y2 + z2 ≤ f(x)2},

then

VolΩ = π

∫ b

a

f(s)2 ds.

17A. In the setting of Exercise 17, take f(s) = 1/s, a = 1, b > 1. Write down the
integrals for Area M and Vol Ω. Compute the limits of these quantities as b→ ∞.

18. Consider the ellipsoid of revolution Ea, given for a > 0 by

x2

a2
+ y2 + z2 = 1.

Use the method of Exercise 17 to show that

Area Ea = 4π

∫ a

0

√
1− βs2 ds, β =

1

a2
− 1

a4
.

19. Given a, b, c > 0, consider the ellipsoid E(a, b, c), given by

x2

a2
+
y2

b2
+
z2

c2
= 1.

Using (6.1.33), write down a formula for the area of E(a, b, c) as an integral over
the region

Ea,b =
{
(x, y) ∈ R2 :

x2

a2
+
y2

b2
≤ 1
}
.

20. Consider the parabolic curve

γ(t) =
(
t,
t2

2

)
.

Show that the length of γ([0, x]) is

ℓ(x) =

∫ x

0

√
1 + t2 dt.

Evaluate this integral using the substitution t = sinhu.
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21. LetM be the surface of revolution obtained by taking the graph of the function
y = ex, a ≤ x ≤ b, and rotating it about the x-axis in R3. Show that Exercise 17
yields

AreaM = 2π

∫ b

a

es
√
1 + e2s ds.

Taking t = es, show that this is equal to

2π

∫ β

α

√
1 + t2 dt, α = ea, β = eb.

Relate this to Exercise 20.

In the next exercise, M is an n-dimensional “surface of revolution” given by a
smooth map

ψ : [a, b]× Sn−1 −→M ⊂ R× Rn

of the form

ψ(s, ω) = (s, f(s)ω).

A coordinate chart φ : Ω → Sn−1, with Ω open in Rn−1, gives rise to a coordinate
chart

ψ̃ : [a, b]× Ω −→M, ψ̃(s, x) = (s, f(s)φ(x)).

We set x0 = s, x = (x1, . . . , xn−1).

22. Show that, in ψ̃-coordinates, the metric tensor of M takes the form (gjk), for
0 ≤ j, k ≤ n− 1, with the following components:

g00 =
∂ψ̃

∂x0
· ∂ψ̃
∂x0

= 1 + f ′(s)2,

g0j =
∂ψ̃

∂x0
· ∂ψ̃
∂xj

= 0, for 1 ≤ j ≤ n− 1,

gjk =
∂ψ̃

∂xj
· ∂ψ̃
∂xk

= f(s)2hjk, for 1 ≤ j, k ≤ n− 1,

where (hℓm) is the metric tensor of Sn−1 in the φ-coordinates. Otherwise said,

(gjk) =

(
1 + f ′(s)2

f(s)2hℓm

)
.

Compare (6.1.36).

23. In the setting of Exercise 22, deduce that if u :M → R is continuous,∫
M

u dS =

∫ b

a

∫
Sn−1

u(s, f(s)ω)f(s)n−1
√

1 + f ′(s)2 dS(ω) ds.

In particular, with An−1 as in (6.1.40)–(6.1.42),

AreaM = An−1

∫ b

a

f(s)n−1
√
1 + f ′(s)2 ds.
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Note how this generalizes the conclusion of Exercise 17.

24. In the setting of Exercises 22–23, let M = Sn, with f(s) =
√
1− s2. Show that∫

Sn

u(x0) dS(x) = An−1

∫ 1

−1

u(s)(1− s2)(n−2)/2 ds.

25. Let ψ : SO(n) →M(k,R) be continuous and satisfy the following properties:

ψ(gh) = ψ(g)ψ(h), ψ(g−1) = ψ(g)−1,

for all g, h ∈ SO(n). We say ψ is a representation of SO(n) on Rk. Form

P =

∫
SO(n)

ψ(g) dg, P ∈M(k,R),

using the integral (6.1.63) (but here with a matrix valued integrand). Show that

P : Rk −→ V, and v ∈ V ⇒ Pv = v,

where
V = {v ∈ Rk : ψ(g)v = v, ∀ g ∈ SO(n)}.

Thus P is a projection of Rk onto V .
Hint. With h ∈ SO(n) arbitrary, express ψ(h)P as the integral

∫
ψ(hg) dg, and

apply (6.1.62).

26. In the setting of Exercise 25, show that

dimV =

∫
SO(n)

χ(g) dg, χ(g) = Tr ψ(g).

27. Given u ∈ C(Rn), define Au ∈ C(Rn) by

Au(x) =
∫

SO(n)

u(gx) dg.

Show that Au is a radial function, in fact

Au(x) = Su(|x|), with Su(r) = 1

An−1

∫
Sn−1

u(rω) dS(ω).

28. In the setting of Exercise 27, show that if u(x) is a polynomial in x, then Su(r)
is a polynomial in r.
Hint. Show that Au(x) is a polynomial in x. Look at Au(re1).

29. Let M be a C1 surface, K ⊂ M compact. Let φj : Oj → Uj be coordinate

charts on M and assume K ⊂ ∪k
j=1Uj . Take vj ∈ Cc(Uj) such that

∑k
1 vj > 0 on

K.

Let f :M → R be bounded and supported on K. Show that

f ∈ Rc(M) ⇐⇒ (vjf) ◦ φj ∈ Rc(Oj), for each j.
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Here, use the definition (6.1.108)–(6.1.109) for Rc(M) and define Rc(Oj) as in §5.1.

30. Let M ⊂ Rn be a compact, m-dimensional, C1 surface. We define a contented
partition of M to be a finite collection P = {Σk} of contented subsets of M such
that

M =
∪
k

Σk, cont+(Σj ∩ Σk) = 0, ∀ j ̸= k.

We say

maxsizeP = max
k

diam(Σk),

where diamΣk = supx,y∈Σk
∥x−y∥. Establish the following variant of the Darboux

theorem (Proposition 5.1.1).

Proposition. Let Pν = {Σkν : 1 ≤ k ≤ N(ν)} be a sequence of contented
partitions of M such that maxsizePν → 0. Pick points ξkν ∈ Σkν . Then, given
f ∈ R(M), we have ∫

M

f dS = lim
ν→∞

N(ν)∑
k=1

f(ξjν)V (Σkν),

where V (Σkν) =
∫
M
χΣkν

dS is the content of Σkν .

Hint. First treat the case f ∈ C(M). Use the material in (6.1.108)–(6.1.116) to
extend this to f ∈ R(M).

31. We desire to compute detG when G = (gjk) is an m×m matrix given by

gjk = δjk + vjvk.

Compare (6.1.31). In other words,

G = I + T, T = (tjk), tjk = vjvk.

(a) Let v ∈ Rm have components vj . Show that, for w ∈ Rm, Tw = (v · w)v.
(b) Deduce that T has one nonzero eigenvalue, |v|2.
(c) Deduce that one eigenvalue of G is 1+ |v|2, and the other m− 1 eigenvalues are
1.
(d) Deduce that g = detG = 1 + |v|2, so √

g =
√
1 + |v|2. Compare (6.1.32), with

v = ∇u.

Stereographic projection

32. With (x′, xn) ∈ Rn, show that

S(x′, xn) =
1

1− xn
x′

defines a diffeomorphism

S : Sn−1 \ {en} −→ Rn−1,
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Figure 6.1.6. Stereographic projection

with inverse F : Rn−1 → Sn−1 \ {en} given by

F (y) =
1

1 + |y|2
(2y, |y|2 − 1).

The map S is called stereographic projection. See Figure 6.1.6.

33. In the setting of Exercise 32, show that

DF (y)tDF (y) =
4

(1 + |y|2)2
I,

where I is the (n− 1)× (n− 1) identity matrix.

34. Show that if u ∈ C(Sn−1), then∫
Sn−1

u dS =

∫
Rn−1

u(F (x))
( 2

1 + |y|2
)n−1

dy.
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35. Deduce from Exercise 34 that the area of Sn−1 is

An−1 =

∫
Rn−1

( 2

1 + |y|2
)n−1

dy

= An−2

∫ ∞

0

( 2

1 + r2

)n−1

rn−2 dr.

Compare computations in Exercise 3. Compute this last integral in the cases n = 2
and n = 3.

36. Define the alternative stereographic projection

S̃ : Sn−1 \ {−en} −→ Rn−1, S̃(x′, xn) = S(x′,−xn),

and compute F̃ = S̃−1 and

S ◦ S̃−1 : Rn−1 \ 0 −→ Rn−1 \ 0.
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6.2. Constrained maxima and minima – Lagrange multipliers

Here we tackle the following sort of problem. Let M ⊂ Rn be a smooth, m-
dimensional surface, and let f :M → R be a smooth function (say of class C1). We
want to classify the points at which f assumes a maximum or minimum, or more
generally a local maximum or minimum. Still more generally, we want to define
and study the critical points of f . To get oriented, we mention the example

(6.2.1) M = S2 = {x ∈ R3 : |x| = 1}, f(x) = x1x2.

In our general study, we concentrate on the situation where

(6.2.2)
M ⊂ O, open in Rn, g : O → R, smooth,

f = g
∣∣
M
.

Let us take p ∈ M and consider when we can say f has a local maximum or
minimum (or other critical point) at p. Clearly, if we have a coordinate chart

(6.2.3) φ : Ω −→M, φ(x0) = p,

then f has a local max (or min) at p if and only if

(6.2.4) u = f ◦ φ : Ω −→ R

has a local max (or min) at x0. As we know, when this holds,

(6.2.5) Du(x0) = 0.

More generally, we say f has a critical point at p provided (6.2.5) holds. Results
of §6.1 imply that if ψ : Ω0 →M is another coordinate chart, satisfying ψ(y0) = p,
then the condition (6.2.5) holds if and only if

(6.2.6) Dv(y0) = 0, v = f ◦ ψ.

Indeed, we can define

(6.2.7) Df(p) : TpM −→ R

as the unique linear map satisfying

(6.2.8)
Du(x0) = Df(p)Dφ(x0), hence

Dv(y0) = Df(p)Dψ(y0),

making use of the fact that Dφ(x0) and Dψ(y0) are both isomorphisms of Rm onto
TpM , together with (6.1.15)–(6.1.16). We have that

(6.2.9)
f has a critical point at p ∈M

⇐⇒ Df(p) : TpM → R is 0.

In case (6.2.2) holds, the fact that

(6.2.10) f ◦ φ = g ◦ φ

implies

(6.2.11) Df(p) = Dg(p)
∣∣
TpM

,

and we have the following.
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Proposition 6.2.1. Assume M ⊂ O ⊂ Rn and (6.2.2) holds. Take p ∈ M . Then
p is a critical point of f if and only if

(6.2.12) Dg(p)v = 0, ∀ v ∈ TpM.

We now specialize to the following situation. Take O ⊂ Rn, open. Suppose we
have a smooth function

(6.2.13) h : O −→ R, ∇h(x) ̸= 0, ∀x ∈ O.
We take a ∈ R in the image of h and set

(6.2.14) M = {x ∈ O : h(x) = a}.
By Proposition 6.1.5 (and the remark containing (6.1.78)), M is a smooth surface,
of dimension m = n− 1, and, for p ∈M ,

(6.2.15) TpM = {v ∈ Rn : v ⊥ ∇h(p)}.
In this setting, the content of (6.2.12) is that

(6.2.16) v ⊥ ∇g(p), ∀ v ∈ TpM,

which, in concert with (6.2.15), is equivalent to the condition that

(6.2.17) ∇g(p) ∥∇h(p),
that is,

(6.2.18) ∃λ ∈ R such that ∇g(p) = λ∇h(p).
We record the result.

Proposition 6.2.2. Assume M ⊂ O ⊂ Rn is an (n−1)-dimensional surface given
by (6.2.14), with h smooth and satisfying (6.2.13), and take

(6.2.19) g : O −→ R, f = g
∣∣
M
.

Then a point p ∈M is a critical point of f if and only if (6.2.18) holds.

The real number λ connecting the two vectors ∇g(p) and ∇h(p) in (6.2.18) is
called a Lagrange multiplier. The method of finding critical points of f = g|M by
seeking such λ is called the method of Lagrange multipliers.

To illustrate this method, we return to the example presented in (6.2.1). That
is, we take

(6.2.20)
O = R3 \ 0, h(x) = |x|2, M = {x ∈ O : h(x) = 1},

g(x) = x1x2, f = g
∣∣
M
.

Then

(6.2.21)
∇h(x) = 2(x1, x2, x3),

∇g(x) = (x2, x1, 0),

and we seek points x ∈ S2 where these two vectors are parallel. Since n = 3, we
can find them by computing the cross product:

(6.2.22)

1

2
∇h(x)×∇g(x) = det

 i j k
x1 x2 x3
x2 x1 0


= (−x1x3, x2x3, x21 − x22).
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For this to vanish, we require

(6.2.23)
x1 = ±x2, and

either x3 = 0 or x1 = x2 = 0.

Note that if x ∈ S2 and x1 = x2 = 0, then x3 = ±1. Thus we have 6 critical points
of f on S2:

(6.2.24) ±1

2
(
√
2,
√
2, 0), ±1

2
(
√
2,−

√
2, 0), ±(0, 0, 1).

We see that the values of f at these 3 pairs of points are, respectively,

(6.2.25)
1

2
, −1

2
, 0.

In particular, f has its maximum at the first pair of points in (6.2.24) and its
minimum at the second pair of points.

We move to a more general class of examples, namely

(6.2.26)
M = Sn−1 = {x ∈ Rn : h(x) = 1}, h(x) = |x|2,
g(x) = x ·Ax, A = At ∈M(n,R), f = g

∣∣
M
.

In this setting,

(6.2.27) ∇h(x) = 2x, ∇g(x) = 2Ax,

and the Lagrange multiplier condition becomes

(6.2.28) Ax = λx, λ ∈ R, |x| = 1.

In other words, x should be an eigenvector of A. As shown in Proposition C.2.3,
the condition A = At implies Rn has an orthonormal basis of eigenvectors,

(6.2.29) {v1, . . . , vn}, vj · vk = δjk, Avj = λjvj , λ1 ≤ · · · ≤ λn.

Now, if the eigenvalues {λ1, . . . , λn} are all distinct, then f has 2n critical points,

(6.2.30) {±vj : 1 ≤ j ≤ n}, f(vj) = λj .

We have

(6.2.31) min f = λ1, max f = λn.

On the other hand, if λj has multiplicity dj , so

(6.2.32) E(A, λj) = {v ∈ Rn : Av = λjv} has dimension dj ,

then there is a (dj − 1)-dimensional sphere of critical points,

(6.2.33) E(A, λj) ∩ Sn−1, where f = λj .

We note that the example (6.2.1) is a special case of (6.2.26), with n = 3 and

(6.2.34) 2A =

0 1
1 0

0

 .

We now take up an example in which g(x) is a cubic polynomial. Consider

(6.2.35)
M = S2 = {x ∈ R3 : h(x) = 1}, h(x) = |x|2,

g(x) = x1x2x3, f = g
∣∣
M
.
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Here

(6.2.36) ∇h(x) = 2x, ∇g(x) = (x2x3, x1x3, x1x2),

and the Lagrange multiplier condition becomes

(6.2.37)
x1x2x3
xj

= 2λxj , 1 ≤ j ≤ 3.

which implies

(6.2.38) x2x2x3 = 2λx21 = 2λx22 = 2λx23.

This leads to

(6.2.39) λ = 0, or x21 = x22 = x23.

Now,

(6.2.40) λ = 0 =⇒ x2x3 = x1x3 = x1x2 = 0,

and, given x ∈ S2, this implies

(6.2.41) x = ±i, ±j, or ± k (6 critical points),

where (i, j, k) is the standard basis of R3. On the other hand, if x ∈ S2,

(6.2.42) x21 = x22 = x23 =⇒ x2j =
1

3
, ∀ j,

and this implies

(6.2.43) x =
(
±
√
3

3
,±

√
3

3
,±

√
3

3

)
(8 critical points).

Together, (6.2.41) and (6.2.43) give the 14 critical points of f . We have

(6.2.44) min f = −
√
3

9
, max f =

√
3

9
.

Averaging rotations

This class of examples involves a surface of higher codimension, namely

(6.2.45) M = SO(n) ⊂M(n,R),

a surface of dimension n(n − 1)/2 in the n2-dimensional vector space M(n,R).
Suppose we are given

(6.2.46) A1, . . . , AN ∈ SO(n).

We want to identify an element of SO(n) that represents an “average” of these
rotations Aj .

Part of our task is to produce a reasonable definition of “average” in this
context. If we simply average in the vector space M(n,R), we get

(6.2.47)
1

N
A, A = A1 + · · ·+AN .
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However, typically this element ofM(n,R) does not belong to SO(n). To formulate
a notion of average that will work for averaging over sets that are not linear spaces,
we start with the observation that A/N is obtained as the minimizer of

(6.2.48) ψ(X) =

N∑
j=1

∥X −Aj∥2,

if we minimize over all X ∈M(n,R). Here the norm is given by

(6.2.49) ∥T∥2 = ⟨T, T ⟩, ⟨S, T ⟩ = TrStT.

See §2.4. Guided by this, we make the following

Definition. Given S = {A1, . . . , AN} ⊂ SO(n), an element X ∈ SO(n) that
minimizes (6.2.48) over SO(n) is said to be an R-average of S.

Certainly (6.2.48) has a minimum over SO(n), though the minimizer might not
be unique. If the minimizer is unique, we say it is the R-average.

We tackle the problem of characterizing R-averages of sets of elements of SO(n).
To analyze (6.2.48), write

(6.2.50)

∥X −Aj∥2 = Tr(Xt −At
j)(X −Aj)

= Tr(XtX −XtAj −At
jX +At

jAj)

= 2n− 2TrAt
jX,

using XtX = At
jAj = I. Hence we have

(6.2.51) ψ(X) = 2nN − 2TrA
t
X, A = A1 + · · ·+AN .

Thus the problem of minimizing (6.2.48) over SO(n) is equivalent to the following
problem:

(6.2.52) Maximize TrA
t
X over X ∈ SO(n).

The function we want to maximize is

(6.2.53) φ : SO(n) −→ R, φ(X) = TrA
t
X.

More generally, we look for the critical points of φ. By Proposition 6.2.1, X ∈
SO(n) is a critical point of φ if and only if

(6.2.54) Dφ(X)V = 0, ∀V ∈ TXSO(n).

By (6.1.59), or (6.1.107),

(6.2.55) TXSO(n) = {XB : B ∈ Skew(n)}.

Now we have

(6.2.56) Dφ(X)V = TrA
t
V.

Since Skew(n) and

(6.2.57) Sym(n) = {A ∈M(n,R) : At = A}
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are orthogonal complements inM(n,R) with respect to the inner product ⟨A,B⟩ =
TrAtB, we see that

(6.2.58)

X ∈ SO(n) is a critical point of φ

⇐⇒ TrA
t
XB = 0, ∀B ∈ Skew(n)

⇐⇒ A
t
X ∈ Sym(n).

To proceed, we will discuss further the case

(6.2.59) detA > 0.

In such a case, it is shown in §6.5 that there are unique matrices

(6.2.60)
Q ∈ P(n) = {P ∈ Sym(n) : x · Px > 0, ∀x ∈ Rn \ 0},
U ∈ SO(n),

such that

(6.2.61) A = UQ,

so

(6.2.62) A
t
X = QU tX.

Noting that X,U ∈ SO(n) ⇒ U tX ∈ SO(n), we bring in the following.

Lemma 6.2.3. Given Q ∈ P(n), T ∈ SO(n),

(6.2.63) TrQT ≤ TrQ,

with equality if and only if T = I.

Proof. It follows from Proposition C.2.3 that Rn has an orthonormal basis v1, . . . , vn
consisting of eigenvectors of Q, Qvj = λjvj , λj > 0. Then

(6.2.64) TrQT =
∑
j

vj ·QTvj =
∑
j

λjvj · Tvj .

We have vj · Tvj ≤ 1, with equality if and only if Tvj = vj , given T ∈ SO(n). This
yields (6.2.63). �

Thus we can solve our minimization problem, under the hypothesis (6.2.59).

Corollary 6.2.4. Given Aj in (6.2.46) and A in (6.2.47), if detA > 0, then there
is a unique X ∈ SO(n) minimizing ψ over SO(n). It is given by

(6.2.65) X = U = AQ−1,

with Q and U specified in (6.2.61). Hence X in (6.2.65) is the R-average of {Aj :
1 ≤ j ≤ N}.

Other cases that arise, in addition to (6.2.59), are

(6.2.66) detA < 0, detA = 0.

See §A.2 of [20] for a discussion of minimizers for ψ over SO(n) (which might not
be unique) in these cases.



Exercises 257

Exercises

1. Find the point on the paraboloid M ⊂ R3 given by x3 = x21 + x22 that is closest
to the point (1, 0, 0).

2. The last equivalence in (6.2.58) uses the fact that we have an orthogonal direct
sum

M(n,R) = Sym(n)⊕ Skew(n).

Prove this.
Hint. For orthogonality, take S ∈ Sym(n), A ∈ Skew(n), and compare

⟨S,A⟩ = TrSA = TrAS

with

TrSA = Tr(SA)t = TrAtSt.

For the decomposition, write T = (T + T t)/2 + (T − T t)/2.

3. With ψ(X) as in (6.2.48), show that, for arbitrary X ∈M(n,R),

ψ(X) = N∥X∥2 − 2⟨A,X⟩+
∑

∥Aj∥2

= N
∥∥∥X − 1

N
A
∥∥∥2 − 1

N
∥A∥2 +

∑
∥Aj∥2,

and if you minimize over X ∈M(n,R), the minimum is achieved at

X =
1

N
A.

4. Produce explicit subsets {A1, . . . , AN} ⊂ SO(3) such that A = A1 + · · · + AN

satisfies
detA > 0,

detA < 0,

detA = 0.

See if you can come up with variants of Corollary 6.2.4 that cover the latter two
cases.

Given a smooth surface M ⊂ Rn, p ∈ M , denote the orthogonal complement of
TpM in Rn by

NpM = (TpM)⊥.

5. In the setting of Proposition 6.2.1, show that p ∈M is a critical point of f = g|M
if and only if

∇g(p) ∈ NpM.
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6. Show that, for X ∈ SO(n), the orthogonal complement of TXSO(n) is

NXSO(n) = {XS : S ∈ Sym(n)}.



6.3. Formulas of Gauss, Green, and Stokes 259

6.3. Formulas of Gauss, Green, and Stokes

In this section we establish the following integral identity, known as the Gauss
divergence theorem, and obtain from it formulas of Green and Stokes. Here is the
first result.

Theorem 6.3.1. Let Ω ⊂ Rn be a bounded open set, with a C1 smooth boundary
∂Ω. Denote by N(x) the outward-pointing unit normal vector to ∂Ω at x ∈ ∂Ω. If
F is a smooth vector field on Ω, then

(6.3.1)

∫
Ω

(divF ) dx =

∫
∂Ω

N · F dS.

Here divF denotes the divergence of the vector field F , given by

(6.3.2) divF =
∂f1
∂x1

+ · · ·+ ∂fn
∂xn

,

if F = (f1, . . . , fn).

To get started, for each p ∈ ∂Ω, there is a neighborhood U of p in Rn, a rotation
of coordinate axes, and a C1 function u : O → R, defined on an open set O ⊂ Rn−1,
such that

(6.3.3) Ω ∩ U = {x ∈ Rn : xn = u(x′), x′ ∈ O} ∩ U,

where x = (x′, xn), x
′ = (x1, . . . , xn−1). We will obtain Theorem 6.3.1 from the

following.

Proposition 6.3.2. In the setting of Theorem 6.3.1, if f ∈ C1(Ω) and e is an
element of Rn,

(6.3.4)

∫
Ω

e · ∇f(x) dx =

∫
∂Ω

(e ·N)f dS.

In fact, taking {ej} to be the standard orthonormal basis of Rn, replacing e by
ej and f by fj , and summing, we have (6.3.1) as a consequence of (6.3.4).

To prove (6.3.4), after applying a partition of unity (see §6.6), we may as well
suppose f is supported in such a set U as appears in (6.3.3). In such a case,

(6.3.5) N = (1 + |∇u|2)−1/2(−∇u, 1).

Thus we have

(6.3.6)

∫
Ω

∂f

∂xn
dx =

∫
O

( ∫
xn≤u(x′)

∂nf(x
′, xn) dxn

)
dx′

=

∫
O

f(x′, u(x′)) dx′

=

∫
∂Ω

(en ·N)f dS.
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The first identity in (6.3.6) follows from Theorem 5.1.10, the second identity from
the Fundamental Theorem of Calculus, and the third identity from the identification

(6.3.7) dS = (1 + |∇u|2)1/2 dx′,

established in (6.1.32). We use the standard basis {e1, . . . , en} of Rn.

Such an argument works when en is replaced by any constant vector e with the
property that we can represent ∂Ω ∩U as the graph of a function yn = ũ(y′), with
the yn-axis parallel to e. In particular, it works for e = en + aej , for 1 ≤ j ≤ n− 1
and for |a| sufficiently small. Thus we have

(6.3.8)

∫
Ω

(en + aej) · ∇f(x) ds =
∫
∂Ω

(en + aej) ·N f dS.

If we subtract (6.3.6) from this and divide the result by a, we obtain (6.3.4) for
e = ej , for all j, and hence (6.3.4) holds in general. The proof of Proposition 6.3.2,
and hence of Theorem 6.3.1, is complete. �

We next specialize Theorem 6.3.1 to the case n = 2, and derive a classical Green
theorem. If Ω ⊂ R2 is a smoothly bounded open set, its boundary ∂Ω consists of a
finite number of simple closed curves, of the form γ : [a, b] → R2. We parametrize
each such curve so that the unit tangent satisfies

(6.3.9) T (x) =
1

|γ′(t)|
γ′(t) = JN(x), x = γ(t),

where, as in §3.3,

(6.3.10) J =

(
0 −1
1 0

)
.

See Figure 6.3.1.
Note. Here we take the opposite sign convention from what was used in §3.3.
There we took N = JT .

Replacing F by JF in (6.3.1), we have

(6.3.11)

∫
Ω

(div JF ) dx =

∫
∂Ω

N · JF ds

= −
∫
∂Ω

F · T ds.

If γ is a boundary curve, we have from (6.3.9) and (6.1.27) (or (3.1.15)) that

(6.3.12)

∫
γ

F · T ds =
∫ b

a

F (γ(t)) · γ′(t) dt.

Now the integral on the right side of (6.3.12) can be cast as a path integral
(or line integral), which we define as follows, in the n-dimensional setting. If γ :
[a, b] → Rn is a C1 curve, we set

(6.3.13)

∫
γ

f1 dx1 + · · ·+ fn dxn =

∫ b

a

F (γ(t)) · γ′(t) dt,



6.3. Formulas of Gauss, Green, and Stokes 261

Figure 6.3.1. Smoothly bounded planar domain

for F = (f1, . . . , fn).

With this notation, the identity (6.3.11) can be written as

(6.3.14)

∫
Ω

( ∂f2
∂x1

− ∂f1
∂x2

)
dx1 dx2 =

∫
∂Ω

f1 dx1 + f2 dx2.

Switching notation to (x1, x2) = (x, y) and (f1, f2) = (f, g), we have the following
standard presentation of Green’s theorem.

Proposition 6.3.3. If Ω ⊂ R2 is a smoothly bounded open set, and f, g ∈ C1(Ω),
then

(6.3.15)

∫
Ω

(∂g
∂x

− ∂f

∂y

)
dx dy =

∫
∂Ω

f dx+ g dy.

Remarks. See Appendix D for applications of Green’s theorem to the study of
complex differentiable functions.
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Figure 6.3.2. Set-up for the Stokes formula

We move to the Stokes formula. To formulate this, we bring in the notion of
the curl of a vector field F = (f, g, h) on an open set O in R3. We set

(6.3.16)
curlF = det

 i j k
∂x ∂y ∂z
f g h


= (∂yh− ∂zg, ∂zf − ∂xh, ∂xg − ∂yf).

Here {i, j, k} denotes the standard basis of R3. To give a special case, which strongly
ties in with Green’s formula, suppose O contains the planar domain

(6.3.17) U = {(x, y, 0) : (x, y) ∈ Ω},

where Ω ⊂ R2 is a smoothly bounded open set. Then

(6.3.18) (curlF ) · k =
∂g

∂x
− ∂f

∂y
,

and Green’s formula (6.3.15) can be written

(6.3.19)

∫
U

(curlF ) · k dA =

∫
∂U

(F · T ) ds.

Now let S ⊂ R3 be a smooth surface, and let M ⊂ S be a smoothly bounded
subset. Assume there is a smooth unit normal field N on S. Parametrize the
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boundary curves that make up ∂M so that the unit tangent T (x) at each x ∈ ∂M
satisfies

(6.3.20) T (x)×N(x) = ν(x) is the outward pointing normal to ∂M in S.

See Figure 6.3.2. Here is the Stokes formula.

Proposition 6.3.4. If F is a C1 vector field on a neighbprhood O of M in R3,
then

(6.3.21)

∫
M

(curlF ) ·N dS =

∫
∂M

(F · T ) ds.

We begin by treating the following special case. Assume M is the graph in R3

of a smooth function

(6.3.22) z = u(x, y), (x, y) ∈ O,
where O is a smoothly bounded open set in R2. In such a case, we take

(6.3.23) N = (1 + |∇u|2)−1/2
(
−∂u
∂x
,−∂u

∂y
, 1
)
,

at (x, y, z) = (x, y, u(x, y)) ∈M . Also,

(6.3.24) dS = (1 + |∇u|2)1/2 dx dy,
so

(6.3.25)

∫
M

(curlF ) ·N dS =

∫
O

[(∂F3

∂y
− ∂F2

∂z

)(
−∂u
∂x

)
+
(∂F1

∂z
− ∂F3

∂x

)(
−∂u
∂y

)
+
(∂F3

∂x
− ∂F1

∂y

)]
dx dy,

where ∂Fj/∂x, etc., are evaluated at (x, y, z) = (x, y, u(x, y)). On the other hand,
if

(6.3.26) σ(t) = (x(t), y(t)), a ≤ t ≤ b,

parametrizes a boundary curve of ∂O, then

(6.3.27) γ(t) = (x(t), y(t), u(x(t), y(t)))

parametrizes the corresponding boundary curve of M , and we have

(6.3.28)

∫
∂M

(F · T ) ds =
∫ b

a

F (σ(t), u(σ(t))) · γ′(t) dt

=

∫
∂O

(
F̃1 + F̃3

∂u

∂x

)
dx+

(
F̃2 + F̃3

∂u

∂y

)
dy,

where

(6.3.29) F̃j(x, y) = Fj(x, y, u(x, y)).

Now apply Green’s theorem, with

(6.3.30) f = F̃1 + F̃3
∂u

∂x
, g = F̃2 + F̃3

∂u

∂y
.
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One verifies that ∂xg − ∂yf is equal to the integrand on the right side of (6.3.25)
(see Exercise 7 below). This implies that the right sides of (6.3.25) and (6.3.28) are
equal, and we have (6.3.21) for this class of surfaces.

A similar argument works when M is the graph in R3 of a smooth function

(6.3.31) y = v(x, z), or x = w(y, z),

over smoothly bounded open sets in the (x, z)-plane or the (y, z)-plane, respectively.
Now, in the general case of Proposition 6.3.4, one can use a partition of unity to
write F as a finite sum of vector fields supported in portions ofM for which (6.3.22)
or one of the cases in (6.3.31) can be arranged. In this fashion we have Proposition
6.3.4 in general.

We return to the setting of Theorem 6.3.1 and obtain some further integral
identities. First we apply (6.3.1) with F replaced by uX, where X is a vector field
and u is real valued. We have the following “derivation” identity:

(6.3.32) div uX = udivX +X · ∇u,
which follows easily from (6.3.2). Theorem 6.3.1 gives

(6.3.33)

∫
Ω

(divX)u dV +

∫
Ω

X · ∇u dV =

∫
∂Ω

(N ·X)u dS.

Replacing u by uv and using the derivation identity ∇(uv) = v∇u+ u∇v, we have

(6.3.34)

∫
Ω

[
(X · ∇u)v + u(X · ∇v)

]
dV = −

∫
Ω

(divX)uv dV +

∫
∂Ω

(N ·X)uv dS.

It is useful to apply (6.3.33) to a gradient vector field X. Applying div to
X = ∇v defines the Laplace operator:

(6.3.35) ∆v = div∇v =
∂2v

∂x21
+ · · ·+ ∂2v

∂x2n
.

Now setting X = ∇v in (6.3.33), we have X ·N = N ·∇v, which we call the normal
derivative of v, and denote ∂v/∂ν. Hence

(6.3.36)

∫
Ω

u(∆v) dV = −
∫
Ω

(∇u · ∇v) dV +

∫
∂Ω

u
∂v

∂ν
dS.

If we interchange the roles of u and v and subtract, we have

(6.3.37)

∫
Ω

u(∆v) dV =

∫
Ω

(∆u)v dV +

∫
∂Ω

[
u
∂v

∂ν
− ∂u

∂ν
v
]
dS.

Formulas (6.3.36)–(6.3.37) are also called Green formulas. Applications are brought
up in the exercises below.



Exercises 265

Exercises

1. Let X and Y be smooth vector fields on an open set Ω ⊂ R3. Show that

Y · curlX −X · curlY = div(X × Y ).

2. In the setting of Exercise 1, assume Ω is compact and smoothly bounded, and
that X and Y are C1 on Ω. Show that∫

Ω

X · curlY dx =

∫
Ω

Y · curlX dx,

provided either X is normal to ∂Ω or X is parallel to Y on ∂Ω.

3. Show that, with x = rω ∈ Rn, ω ∈ Sn−1,

u(x) = f(|x|) =⇒ ∆u(rω) = f ′′(r) +
n− 1

r
f ′(r).

4. We say f ∈ C2(Ω) is harmonic on Ω ⊂ Rn if ∆f = 0 on Ω. Show that

|x|−(n−2) is harmonic on Rn \ 0.
In case n = 2, show that

log |x| is harmonic on R2 \ 0.

In Exercise 5, we take n ≥ 3 and consider

Gf(x) =
1

Cn

∫
Rn

f(y)

|x− y|n−2
dy

=
1

Cn

∫
Rn

f(x− y)

|y|n−2
dy,

with Cn = −(n− 2)An−1.

5. Assume f ∈ C2
0 (Rn). Let Ωε = Rn \ Bε, where Bε = {x ∈ Rn : |x| < ε}. Verify

that

Cn∆Gf(0) = lim
ε→0

∫
Ωε

∆f(x) · |x|2−n dx

= lim
ε→0

∫
Ωε

[∆f(x) · |x|2−n − f(x)∆|x|2−n] dx

= − lim
ε→0

∫
∂Ωε

[
ε2−n ∂f

∂r
− (2− n)ε1−nf

]
dS

= −(n− 2)An−1f(0),
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using (6.3.37) for the third identity. Use this to show that

∆Gf(x) = f(x).

6. Work out the analogue of Exercise 5 in case n = 2 and

Gf(x) =
1

2π

∫
R2

f(y) log |x− y| dy.

7. For f and g given by (6.3.30), compute ∂g/∂x and ∂f/∂y, and verify that∫
O

(∂g
∂x

− ∂f

∂y

)
dx dy

is equal to the right side of (6.3.25). Ingredients in the calculation include

∂

∂x
Fj(x, y, u(x, y)) =

∂Fj

∂x
(x, y, u(x, y)) +

∂Fj

∂z
(x, y, u(x, y))

∂u

∂x
,

and the counterpart for the application of ∂/∂y. Another ingredient involves the
identity

∂2u

∂x ∂y
=

∂2u

∂y ∂x
.
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6.4. Projective spaces, quotient surfaces, and manifolds

Real projective space Pn−1 is obtained from the sphere Sn−1 by identifying each
pair of antipodal points:

(6.4.1) Pn−1 = Sn−1/ ∼,

where

(6.4.2) x ∼ y ⇐⇒ x = ±y,

for x, y ∈ Sn−1 ⊂ Rn. More generally, if M ⊂ Rn is an m-dimensional surface,
smooth of class Ck, satisfying

(6.4.3) 0 /∈M, x ∈M ⇒ −x ∈M,

we define

(6.4.4) P(M) =M/ ∼,

using the equivalence relation (6.4.2). Note that M has the metric space structure
d(x, y) = ∥x− y∥, and then P(M) becomes a metric space with metric

(6.4.5) d([x], [y]) = min{d(x′, y′) : x′ ∈ [x], y′ ∈ [y]},

or, in view of (6.4.2),

(6.4.6) d([x], [y]) = min{d(x, y), d(x,−y)}.

Here, x ∈ M and [x] ∈ P(M) is its associated equivalence class. The map x 7→ [x]
is a continuous map

(6.4.7) ρ :M −→ P(M).

It has the following readily established property.

Lemma 6.4.1. Each p ∈ P(M) has an open neighborhood U ⊂ P(M) such that
ρ−1(U) = U0 ∪U1 is the disjoint union of two open subsets of M , and, for j = 0, 1,
ρ : Uj → U is a homeomorphism, i.e., it is continuous, one-to-one, and onto, with
continuous inverse.

Given p ∈ P(M), {p0, p1} = ρ−1(p), let U0 be a neighborhood of p0 in M
for which there is a Ck coordinate chart φ0 : O → U0 (O ⊂ Rm open). Then
φ1(x) = −φ0(x) gives a coordinate chart φ1 : O → U1 onto a neighborhood U1 of
p1 ∈ M . If U0 is picked small enough, U0 and U1 are disjoint. The projection ρ
maps U0 and U1 homeomorphically onto a neighborhood U of p in P(M), and we
have “coordinate charts”

(6.4.8) ρ ◦ φj : O −→ U.

In fact, ρ ◦ φ1 = ρ ◦ φ0. If ψ0 : Ω → U0 is another Ck coordinate chart, then, as
in Lemma 6.1.1, we have a Ck diffeomorphism F : O → Ω such that ψ0 ◦ F = φ0.
Similarly ψ1 ◦ F = φ1, with ψ1(x) = −ψ0(x), and we have ρ ◦ ψj ◦ F = ρ ◦ φj .

The structure just placed on the “quotient surface” P(M) makes it a manifold,
an object we now define.
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Given a metric space X, we say X has the structure of a Ck manifold of
dimension m provided the following conditions hold. First, for each p ∈ X, we have
an open neighborhood Up of p in X, an open set Op ⊂ Rm, and a homeomorphism

(6.4.9) φp : Op −→ Up.

Next, if also q ∈ X and Upq = Up ∩ Uq ̸= ∅, then the homeomorphism from
Opq = φ−1

p (Upq) to Oqp = φ−1
q (Upq),

(6.4.10) Fpq = φ−1
q ◦ φp

∣∣
Opq

,

is a Ck diffeomorphism. As before, we call the maps φp : Op → Up ⊂ X coordinate
charts on X.

A metric tensor on a Ck manifold X is defined by positive-definite, symmetric
m×m matrices Gp ∈ Ck−1(Op), satisfying the compatibility condition

(6.4.11) Gp(x) = DFpq(x)
tGq(y)DFpq(x),

for

(6.4.12) x ∈ Opq ⊂ Op, y = Fpq(x) ∈ Oqp ⊂ Oq.

We then set

(6.4.13) gp = detGp ∈ Ck−1(Op),

satisfying

(6.4.14)
√
gp(x) = |detDFpq(x)|

√
gq(y),

for x and y as in (6.4.12). If f : X → R is a continuous function supported in Up,
we set

(6.4.15)

∫
X

f dS =

∫
Op

f(φp(x))
√
gp(x) dx.

As in (6.1.24)–(6.1.25), this leads to a well defined integral
∫
X
f dS for f ∈ Cc(X),

obtained by writing f as a finite sum of continuous functions supported on various
coordinate patches Up. From here we can develop the class of functions Rc(X) and
their integrals over X, in a fashion parallel to that done above when X is a surface
in Rn.

The quotient surfaces P(M) are examples of Ck manifolds as defined above.
They get natural metric tensors with the property that ρ in (6.4.7) is a local isom-
etry. In such a case,

(6.4.16)

∫
P(M)

f dS =
1

2

∫
M

f ◦ ρ dS.

Another important quotient manifold is the “flat torus”

(6.4.17) Tn = Rn/Zn.

Here the equivalence relation on Rn is x ∼ y ⇔ x − y ∈ Zn. Natural local coor-
dinates on Tn are given by the projection ρ : Rn → Tn, restricted to sufficiently
small open sets in Rn. The quotient Tn gets a natural metric tensor for which ρ is
a local isometry.
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Given two Ck manifolds X and Y , a continuous map ψ : X → Y is said to
be smooth of class Ck provided that for each p ∈ X, there are neighborhoods U

of p and Ũ of q = ψ(p), and coordinate charts φ1 : O → U, φ2 : Õ → Ũ , such

that φ−1
2 ◦ ψ ◦ φ1 : O → Õ is a Ck map. We say ψ is a Ck diffeomorphism if it is

one-to-one and onto and ψ−1 : Y → X is a Ck map. If X is a Ck manifold and
M ⊂ Rn a Ck surface, a Ck diffeomorphism ψ : X →M is called a Ck embedding
of X into Rn.

Here is an embedding of Tn into R2n:

(6.4.18) ψ(x) =

n∑
j=1

(cos 2πxj)ej +

n∑
j=1

(sin 2πxj)en+j .

A priori, ψ : Rn → R2n, but ψ(x) = ψ(y) whenever x − y ∈ Zn, so this naturally
induces a smooth map Tn → R2n, which can be seen to be an embedding.

If M ⊂ Rn is an m-dimensional surface satisfying (6.4.3), an embedding of
P(M) into M(n,R) can be constructed via the map

(6.4.19) ψ : Rn −→M(n,R), ψ(x) = xxt.

Note that

(6.4.20) x =

x1...
xn

 =⇒ xxt =

 x21 · · · x1xj · · · x1xn
...

...
...

xnx1 · · · xnxj · · · x2n

 .

We need a couple of lemmas.

Lemma 6.4.2. For ψ as in (6.4.19), x, y ∈ Rn,

(6.4.21) ψ(x) = ψ(y) ⇐⇒ x = ±y.

Proof. The map ψ is characterized by ψ(x)ej = xjx, where x is as in (6.4.20) and
{ej} is the standard basis of Rn. It follows that if x ̸= 0, ψ(x) has exactly one
nonzero eigenvalue, namely |x|2, and ψ(x)x = |x|2x. Thus ψ(x) = ψ(y) implies
that |x|2 = |y|2 and that x and y are parallel. Thus x = ay and a = ±1. �

Lemma 6.4.3. In the setting of Lemma 6.4.2, if x ̸= 0,

(6.4.22) Dψ(x) : Rn −→M(n,R) is injective.

Proof. A calculation gives

(6.4.23) Dψ(x)v = xvt + vxt.

Thus, if v ∈ kerDψ(x),

(6.4.24) xvt = −vxt.

Both sides are rank 1 elements of M(n,R). The range of the left side is spanned
by x and that of the right side is spanned by v, so v = ax for some a ∈ R. Then
(6.4.24) becomes

(6.4.25) axxt = −axxt,

which implies a = 0 if x ̸= 0. �
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Remark. Here is a refinement of Lemma 6.4.3. Using the inner product onM(n,R)
given by (6.1.60), we can calculate

(6.4.26) ⟨Dψ(x)v,Dψ(x)v⟩ = 2
(
|x|2|v|2 + (x · v)2

)
.

Lemmas 6.4.2 and 6.4.3 imply that if M ⊂ Rn is an m-dimensional surface
satisfying (6.4.3), then ψ|M yields an embedding of P(M) into M(n,R). Denote
the image surface by M#. As we see from (6.4.26), this embedding is not typically
an isometry. However, if M = Sn−1 and v is tangent to Sn−1 at x, then v · x = 0,
and (6.4.26) implies that in this case the embedding of Pn−1 into M(n,R) is an
isometry, up to a factor of 2.

It is the case that if X is any Ck manifold that is a countable union of compact
sets, then X can be embedded into Rn for some n. In case X is compact, this is
not very hard to prove, using local coordinate charts and smooth cutoffs, and the
interested reader might take a crack at it. If X is provided with a metric tensor, this
embedding might not preserve this metric tensor. If it does, one calls is an isometric
embedding. It is the case that any such manifold has an isometric embedding into
Rn for some n (if k is sufficiently large). This result is the famous Nash embedding
theorem, and its proof is quite difficult. For X compact and C∞, a proof is given
in Chapter 14 of [18].

Exercises

1. In case n = 3, show that the map ψ : M → M(3,R) given by (6.4.19)–(6.4.20)
is equivalent to

ψ# :M → R6, ψ#(x) = (xjxk : 1 ≤ j ≤ k ≤ 3).

Deduce that

ψb : S2 → R5, ψb(x) = (x21 − x22, x
2
1 − x23, x1x2, x2x3, x3x1)

has image that is diffeomorphic to P2.
Hint. x21 + x22 + x23 ≡ 1 on S2.

2. The map

x : R× R −→ S2,

given by

x(θ, ψ) = (sin θ cosψ, sin θ sinψ, cos θ),

is a smooth map of R×R onto S2, giving spherical coordinates. See Figure 6.1.3.

Show that this gives rise to a diffeomorphism

x : (0, π)× R/2πZ −→ S2 \ {±e3}.
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3. Compose the map x of Exercise 2 with the map, given by Exericse 1, of S2 onto
a surface in R5 that is diffeomorphic to P2.
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6.5. Polar decomposition of matrices

We define the spaces Sym(n) and P(n) by

(6.5.1)
Sym(n) = {A ∈M(n,R) : A = At},

P(n) = {A ∈ Sym(n) : x ·Ax > 0, ∀x ∈ Rn \ 0}.

It is easy to show that P(n) is an open, convex subset of the linear space Sym(n).
We aim to prove the following result.

Proposition 6.5.1. Given A ∈ Gl+(n,R), there exist unique U ∈ SO(n) and
Q ∈ P(n) such that

(6.5.2) A = UQ.

The representation (6.5.2) is called the polar decomposition of A. Note that

(6.5.3) (UQ)tUQ = QU tUQ = Q2,

so if the identity (6.5.2) were to hold, we would have

(6.5.4) AtA = Q2.

Note also that

(6.5.5) A ∈ Gl(n,R) =⇒ AtA ∈ P(n),

since x ·AtAx = (Ax) · (Ax) = |Ax|2.
To prove Proposition 6.5.1, we bring in the following basic result of linear

algebra. See Appendix C.2.

Proposition 6.5.2. Given B ∈ Sym(n), there is an orthonormal basis of Rn con-
sisting of eigenvectors of B, with eigenvalues λj ∈ R. Equivalently, there exists
V ∈ SO(n) such that

(6.5.6) B = V DV −1,

with

(6.5.7) D =

λ1 . . .

λn

 ,

λj ∈ R.

If B ∈ P(n), then each λj > 0. We can then set

(6.5.8) Q = V


λ
1/2
1

. . .

λ
1/2
n

V −1,

and obtain the following.

Corollary 6.5.3. Given B ∈ P(n), there is a unique Q ∈ P(n) satisfying

(6.5.9) Q2 = B.

We say Q = B1/2.
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To obtain the decomposition (6.5.2), we set

(6.5.10) Q = (AtA)1/2, U = AQ−1.

Note that

(6.5.11) U tU = Q−1AtAQ−1 = Q−1Q2Q−1 = I,

and (detU)(detQ) = detA > 0, so detU > 0, and hence U ∈ SO(n), as desired.
By (6.5.4) and Corollary 6.5.3, the factor Q ∈ P(n) in (6.5.2) is unique, and hence
so is the factor U .

We can use Proposition 6.5.1 to prove the following.

Proposition 6.5.4. The set Gl+(n,R) is connected. In fact, given A ∈ Gl+(n,R),
there is a smooth path γ : [0, 1] → Gl+(n,R) such that γ(0) = I and γ(1) = A.

Proof. To start, we have that

(6.5.12) Exp : Skew(n) −→ SO(n) is onto.

See Exercise 14 below for this (or Corollary C.2.9). Hence, with A = UQ as in
(6.5.2), we have a smooth path α(t) = Exp(tS), α : [0, 1] → SO(n), such that
α(0) = I and α(1) = U . Since P(n) is a convex subset of Sym(n), we can take
β(t) = (1− t)I+ tQ, obtaining a smooth path β : [0, 1] → P(n), such that β(0) = I
and β(1) = Q. Then

(6.5.13) γ(t) = α(t)β(t)

does the trick. �

Exercises

1. Establish the following counterpart to Proposition 6.5.1. Set

Gl−(n,R) = {A ∈M(n,R) : detA < 0},
O−(n) = {U ∈ O(n) : detU = −1}.

Proposition. Given A ∈ Gl−(n,R), there exist unique U ∈ O−(n) and Q ∈ P(n)
such that A = UQ.
Hint. As in the proof of Proposition 6.5.1, take AtA = Q2.
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6.6. Partitions of unity

In the text we have made occasional use of partitions of unity, and we include some
material on this topic here. We begin by defining and constructing a continuous
partition of unity on a compact metric space, subordinate to a open cover {Uj : 1 ≤
j ≤ N} of X. By definition, this is a family of continuous functions φj : X → R
such that

(6.6.1) φj ≥ 0, suppφj ⊂ Uj ,
∑
j

φj = 1.

To construct such a partition of unity, we do the following. First, it can be
shown that there is an open cover {Vj : 1 ≤ j ≤ N} of X and open sets Wj such
that

(6.6.2) V j ⊂Wj ⊂W j ⊂ Uj .

Given this, let ψj(x) = dist (x,X\Wj). Then ψj is continuous, supp ψj ⊂W j ⊂ Uj ,

and ψj is strictly positive on V j . Hence Ψ =
∑

j ψj is continuous and strictly
positive on X, and we see that

(6.6.3) φj(x) = Ψ(x)−1ψj(x)

yields such a partition of unity.

We indicate how to construct the sets Vj and Wj used above, starting with V1
and W1. Note that the set K1 = X \ (U2 ∪ · · · ∪ UN ) is a compact subset of U1.
Assume it is nonempty; otherwise just throw U1 out and relabel the sets Uj . Now
set

V1 = {x ∈ U1 : dist (x,K1) <
1
3dist (x,X \ U1)},

and

W1 = {x ∈ U1 : dist (x,K1) <
2
3dist (x,X \ U1)}.

To construct V2 and W2, proceed as above, but use the cover {U2, . . . , UN , V1}.
Continue until done.

Given a smooth compact surface M (perhaps with boundary), covered by co-
ordinate patches Uj (1 ≤ j ≤ N), one can construct a smooth partition of unity on
M , subordinate to this cover. The main additional tool for this is the construction
of a function ψ ∈ C∞

0 (Rn) such that

(6.6.4) ψ(x) = 1 for |x| ≤ 1

2
, ψ(x) = 0 for |x| ≥ 1.

One way to get this is to start with the function on R given by

(6.6.5)
f0(x) = e−1/x for x > 0,

0 for x ≤ 0.

It is an exercise to show that

f0 ∈ C∞(R).
Now the function

f1(x) = f0(x)f0(
1
2 − x)

belongs to C∞(R) and is zero outside the interval [0, 1/2]. See Figure 6.6.1.
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Figure 6.6.1. The bump function f1(x) = f0(x)f0(1/2− x)

Hence the function

f2(x) =

∫ x

−∞
f1(s) ds

belongs to C∞(R), is zero for x ≤ 0, and equals some positive constant (say C2)
for x ≥ 1/2. Then

ψ(x) =
1

C2
f2(1− |x|)

is a function on Rn with the desired properties.

With this function in hand, to construct the smooth partition of unity men-
tioned above is an exercise we recommend to the reader.





Appendix A

Foundational material on the
real numbers

One foundation for a course in analysis is a solid understanding of the real number
system. This appendix provides a development of R. It presupposes an under-
standing of basic algebraic results on the set Q of rational numbers, and derives
the structure of R from there.

Section A.1 deals with infinite sequences, including convergent sequences and
“Cauchy sequences.” This prepares the way for §A.2. Here we construct the set R
of real numbers, as “ideal limits” of rational numbers. We extend basic algebraic
results from Q to R. Furthermore, we establish the result that R is “complete,”
i.e., Cauchy sequences always have limits in R.

Section A.3 establishes further metric properties of R and various subsets, with
an emphasisis on the notion of compactness. The completeness property established
in §A.2 plays a crucial role here.

Section A.4 introduces the set C of complex numbers and establishes basic al-
gebraic and metric properties of C. While some introductory treatments of analysis
avoid complex numbers, we embrace them, and consider their use in basic analysis
too precious to omit.
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A.1. Infinite sequences

In this section, we discuss infinite sequences. For now, we deal with sequences of
rational numbers, but we will not explicitly state this restriction below. In fact,
once the set of real numbers is constructed in §A.2, the results of this section will
be seen to hold also for sequences of real numbers.

Definition. A sequence (aj) is said to converge to a limit a provided that, for any
n ∈ N, there exists K(n) such that

(A.1.1) j ≥ K(n) =⇒ |aj − a| < 1

n
.

We write aj → a, or a = lim aj , or perhaps a = limj→∞ aj .

Here, we define the absolute value |x| of x by

(A.1.2)
|x| = x if x ≥ 0,

−x if x < 0.

The absolute value function has various simple properties, such as |xy| = |x| ·
|y|, which follow readily from the definition. One basic property is the triangle
inequality:

(A.1.3) |x+ y| ≤ |x|+ |y|.
In fact, if either x and y are both positive or they are both negative, one has equality
in (A.1.3). If x and y have opposite signs, then |x + y| ≤ max(|x|, |y|), which in
turn is dominated by the right side of (A.1.3).

Proposition A.1.1. If aj → a and bj → b, then

(A.1.4) aj + bj → a+ b,

and

(A.1.5) ajbj → ab.

If furthermore, bj ̸= 0 for all j and b ̸= 0, then

(A.1.6) aj/bj → a/b.

Proof. To see (A.1.4), we have, by (A.1.3),

(A.1.7) |(aj + bj)− (a+ b)| ≤ |aj − a|+ |bj − b|.
To get (A.1.5), we have

(A.1.8)
|ajbj − ab| = |(ajbj − abj) + (abj − ab)|

≤ |bj | · |aj − a|+ |a| · |b− bj |.
The hypotheses imply |bj | ≤ B, for some B, and hence the criterion for convergence
is readily verified. To get (A.1.6), we have

(A.1.9)
∣∣∣aj
bj

− a

b

∣∣∣ ≤ 1

|b| · |bj |
{
|b| · |a− aj |+ |a| · |b− bj |

}
.

The hypotheses imply 1/|bj | ≤ M for some M, so we also verify the criterion for
convergence in this case. �
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We next define the concept of a Cauchy sequence.

Definition. A sequence (aj) is a Cauchy sequence provided that, for any n ∈ N,
there exists K(n) such that

(A.1.10) j, k ≥ K(n) =⇒ |aj − ak| ≤
1

n
.

It is clear that any convergent sequence is Cauchy. On the other hand, we have:

Proposition A.1.2. Each Cauchy sequence is bounded.

Proof. Take n = 1 in the definition above. Thus, if (aj) is Cauchy, there is a K
such that j, k ≥ K ⇒ |aj − ak| ≤ 1. Hence, j ≥ K ⇒ |aj | ≤ |aK |+ 1, so, for all j,

|aj | ≤M, M = max
(
|a1|, . . . , |aK−1|, |aK |+ 1

)
.

�

Now, the arguments proving Proposition A.1.1 also establish:

Proposition A.1.3. If (aj) and (bj) are Cauchy sequences, so are (aj + bj) and
(ajbj). Furthermore, if, for all j, |bj | ≥ c for some c > 0, then (aj/bj) is Cauchy.

The following proposition is a bit deeper than the first three.

Proposition A.1.4. If (aj) is bounded, i.e., |aj | ≤ M for all j, then it has a
Cauchy subsequence.

Proof. We may as well assume M ∈ N. Now, either aj ∈ [0,M ] for infinitely
many j or aj ∈ [−M, 0] for infinitely many j. Let I1 be any one of these two
intervals containing aj for infinitely many j, and pick j(1) such that aj(1) ∈ I1.
Write I1 as the union of two closed intervals, of equal length, sharing only the
midpoint of I1. Let I2 be any one of them with the property that aj ∈ I2 for
infinitely many j, and pick j(2) > j(1) such that aj(2) ∈ I2. Continue, picking

Iν ⊂ Iν−1 ⊂ · · · ⊂ I1, of length M/2ν−1, containing aj for infinitely many j, and
picking j(ν) > j(ν − 1) > · · · > j(1) such that aj(ν) ∈ Iν . See Figure A.1.1 for an
illustration of a possible scenario. Setting bν = aj(ν), we see that (bν) is a Cauchy
subsequence of (aj), since, for all k ∈ N,

|bν+k − bν | ≤M/2ν−1.

�

Here is a significant variant of Proposition A.1.4.

Proposition A.1.5. Each bounded monotone sequence (aj) is Cauchy.

Proof. To say (aj) is monotone is to say that either (aj) is increasing, i.e., aj ≤
aj+1 for all j, or that (aj) is decreasing, i.e., aj ≥ aj+1 for all j. For the sake of
argument, assume (aj) is increasing.

By Proposition A.1.4, there is a subsequence (bν) = (aj(ν)) that is Cauchy.
Thus, given n ∈ N, there exists K(n) such that

(A.1.11) µ, ν ≥ K(n) =⇒ |aj(ν) − aj(µ)| <
1

n
.
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Figure A.1.1. Nested intervals containing aj for infinitely many j

Now, if ν0 ≥ K(n) and k ≥ j ≥ j(ν0), pick ν1 such that j(ν1) ≥ k. Then

aj(ν0) ≤ aj ≤ ak ≤ aj(ν1),

so

(A.1.12) k ≥ j ≥ j(ν0) =⇒ |aj − ak| <
1

n
.

�

Second proof. Again, we assume (aj) is increasing. If (aj) is not Cauchy, then
there exists n ∈ N such that, for each j,

(A.1.13) aℓ > aj +
1

n
, for some ℓ > j.

Hence there exist jν , kν ↗ ∞ such that

(A.1.14) jν < kν < jν+1 < kν+1 < · · · ,
and

(A.1.15) akν
− ajν >

1

n
, ∀ ν.

It follows that

(A.1.16) akν > a1 +
ν

n
, ∀ ν ∈ N,
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which contradicts the hypothesis that (aj) is bounded. �
We give a few simple but basic examples of convergent sequences.

Proposition A.1.6. If |a| < 1, then aj → 0.

Proof. Set b = |a|; it suffices to show that bj → 0. Consider c = 1/b > 1, hence
c = 1 + y, y > 0. We claim that

cj = (1 + y)j ≥ 1 + jy,

for all j ≥ 1. In fact, this clearly holds for j = 1, and if it holds for j = k, then

ck+1 ≥ (1 + y)(1 + ky) > 1 + (k + 1)y.

Hence, by induction, the estimate is established. Consequently,

bj <
1

jy
,

so the appropriate analogue of (A.1.1) holds, with K(n) = Kn, for any integer
K > 1/y. �

Proposition A.1.6 enables us to establish the following result on geometric se-
ries.

Proposition A.1.7. If |x| < 1 and

(A.1.17) aj = 1 + x+ · · ·+ xj ,

then

(A.1.18) aj →
1

1− x
.

Proof. Note that xaj = x+ x2 + · · ·+ xj+1, so (1− x)aj = 1− xj+1, i.e.,

aj =
1− xj+1

1− x
.

The conclusion follows from Proposition A.1.6. �

Note in particular that

(A.1.19) 0 < x < 1 =⇒ 1 + x+ · · ·+ xj <
1

1− x
.

It is an important mathematical fact that not every Cauchy sequence of rational
numbers has a rational number as limit. We give one example here. Consider the
sequence

(A.1.20) aj =

j∑
ℓ=0

1

ℓ!
.

Then (aj) is increasing, and

an+j − an =

n+j∑
ℓ=n+1

1

ℓ!
<

1

n!

( 1

n+ 1
+

1

(n+ 1)2
+ · · ·+ 1

(n+ 1)j

)
,
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since (n+ 1)(n+ 2) · · · (n+ j) > (n+ 1)j . Using (A.1.19), we have

(A.1.21) an+j − an <
1

(n+ 1)!

1

1− 1
n+1

=
1

n!
· 1
n
.

Hence (aj) is Cauchy. Taking n = 2, we see that

(A.1.22) j > 2 =⇒ 2 1
2 < aj < 2 3

4 .

Proposition A.1.8. The sequence (A.1.20) cannot converge to a rational number.

Proof. Assume aj → m/n with m,n ∈ N. By (A.1.22), we must have n > 2. Now,
write

(A.1.23)
m

n
=

n∑
ℓ=0

1

ℓ!
+ r, r = lim

j→∞
(an+j − an).

Multiplying both sides of (A.1.23) by n! gives

(A.1.24) m(n− 1)! = A+ r · n!
where

(A.1.25) A =

n∑
ℓ=0

n!

ℓ!
∈ N.

Thus the identity (A.1.23) forces r · n! ∈ N, while (A.1.21) implies

(A.1.26) 0 < r · n! ≤ 1/n.

This contradiction proves the proposition. �

Exercises

1. Show that

lim
k→∞

k

2k
= 0,

and more generally for each m ∈ N,

lim
k→∞

km

2k
= 0.

Hint. See Exercise 3.

2. Show that

lim
k→∞

2k

k!
= 0,

and more generally for each b ∈ N,

lim
k→∞

bk

k!
= 0.

3. Suppose a sequence (aj) has the property that there exist

r < 1, K ∈ N
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such that

j ≥ K =⇒
∣∣∣aj+1

aj

∣∣∣ ≤ r.

Show that aj → 0 as j → ∞. How does this result apply to Exercises 1 and 2?

4. If (aj) satisfies the hypotheses of Exercise 3, show that there exists M <∞ such
that

k∑
j=1

|aj | ≤M, ∀ k.

Remark. This yields the ratio test for infinite series.

5. Show that you get the same criterion for convergence if (A.1.1) is replaced by

j ≥ K(n) =⇒ |aj − a| < 5

n
.

Generalize, and note the relevance for the proof of Proposition A.1.1. Apply the
same observation to the criterion (A.1.10) for (aj) to be Cauchy.
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A.2. The real numbers

We think of a real number as a quantity that can be specified by a process of
approximation arbitrarily closely by rational numbers. Thus, we define an element
of R as an equivalence class of Cauchy sequences of rational numbers, where we
define

(A.2.1) (aj) ∼ (bj) ⇐⇒ aj − bj → 0.

Proposition A.2.1. This is an equivalence relation.

Proof. This is a straightforward consequence of Proposition A.1.1. In particular,
to see that

(A.2.2) (aj) ∼ (bj), (bj) ∼ (cj) =⇒ (aj) ∼ (cj),

just use (A.1.4) of Proposition A.1.1 to write

aj − bj → 0, bj − cj → 0 =⇒ aj − cj → 0.

�

We denote the equivalence class containing a Cauchy sequence (aj) by [(aj)].
We then define addition and multiplication on R to satisfy

(A.2.3)
[(aj)] + [(bj)] = [(aj + bj)],

[(aj)] · [(bj)] = [(ajbj)].

Proposition A.1.3 states that the sequences (aj + bj) and (ajbj) are Cauchy if (aj)
and (bj) are. To conclude that the operations in (A.2.3) are well defined, we need:

Proposition A.2.2. If Cauchy sequences of rational numbers are given which sat-
isfy (aj) ∼ (a′j) and (bj) ∼ (b′j), then

(A.2.4) (aj + bj) ∼ (a′j + b′j),

and

(A.2.5) (ajbj) ∼ (a′jb
′
j).

The proof is a straightforward variant of the proof of parts (A.1.4)-(A.1.5)
in Proposition A.1.1, with due account taken of Proposition A.1.2. For example,
ajbj−a′jb′j = ajbj−ajb′j+ajb′j−a′jb′j , and there are uniform bounds |aj | ≤ A, |b′j | ≤
B, so

|ajbj − a′jb
′
j | ≤ |aj | · |bj − b′j |+ |aj − a′j | · |b′j |
≤ A|bj − b′j |+B|aj − a′j |.

There is a natural injection

(A.2.6) Q ↪→ R, a 7→ [(a, a, a, . . . )],

whose image we identify with Q. This map preserves addition and multiplication.

If x = [(aj)], we define

(A.2.7) −x = [(−aj)].
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For x ̸= 0, we define x−1 as follows. First, to say x ̸= 0 is to say there exists n ∈ N
such that |aj | ≥ 1/n for infinitely many j. Since (aj) is Cauchy, this implies that
there exists K such that |aj | ≥ 1/2n for all j ≥ K. Now, if we set αj = aK+j , we
have (αj) ∼ (aj); we propose to set

(A.2.8) x−1 = [(α−1
j )].

We claim that this is well defined. First, by Proposition A.1.3, (α−1
j ) is Cauchy.

Furthermore, if for such x we also have x = [(bj)], and we pick K so large that also
|bj | ≥ 1/2n for all j ≥ K, and set βj = bK+j , we claim that

(A.2.9) (α−1
j ) ∼ (β−1

j ).

Indeed, we have

(A.2.10) |α−1
j − β−1

j | = |βj − αj |
|αj | · |βj |

≤ 4n2|βj − αj |,

so (A.2.9) holds.

It is now a straightforward exercise to verify the basic algebraic properties of
addition and multiplication in R, given that these results hold in Q. We state the
result.

Proposition A.2.3. Given x, y, z ∈ R, the following algebraic properties hold.

x+ y = y + x,

(x+ y) + z = x+ (y + z),

x+ 0 = x,

x+ (−x) = 0,

x · y = y · x,
(x · y) · z = x · (y · z),

x · 1 = x,

x · 0 = 0,

x · (−1) = −x,
x · (y + z) = x · y + x · z.

Furthermore,
x ̸= 0 =⇒ x · x−1 = 1.

We define x− y = x+ (−y) and, if y ̸= 0, x/y = x · y−1.

We now define an order relation on R, assuming it is known on Q. Take
x ∈ R, x = [(aj)]. From the discussion above of x−1, we see that, if x ̸= 0, then
one and only one of the following holds. Either, for some n,K ∈ N,

(A.2.11) j ≥ K =⇒ aj ≥
1

2n
,

or, for some n,K ∈ N,

(A.2.12) j ≥ K =⇒ aj ≤ − 1

2n
.
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If (aj) ∼ (bj) and (A.2.11) holds for aj , it also holds for bj (perhaps with different
n and K), and ditto for (A.2.12). If (A.2.11) holds, we say x ∈ R+ (and we say
x > 0), and if (A.2.12) holds we say x ∈ R− (and we say x < 0). Clearly x > 0 if
and only if −x < 0. It is also clear that the map Q ↪→ R in (A.2.6) preserves the
order relation.

Thus we have the disjoint union

(A.2.13) R = R+ ∪ {0} ∪ R−, R− = −R+.

Also,

(A.2.14) x, y ∈ R+ =⇒ x+ y, xy ∈ R+.

We define

(A.2.15) x < y ⇐⇒ y − x ∈ R+.

If x = [(aj)] and y = [(bj)], we see from (A.2.11)–(A.2.12) that

(A.2.16)

x < y ⇐⇒ for some n,K ∈ N,

j ≥ K ⇒ bj − aj ≥
1

n

(
i.e., aj ≤ bj −

1

n

)
.

The relation (A.2.15) can also be written y > x. Similarly we define x ≤ y and
y ≤ x, in the obvious fashions.

The following results are straightforward.

Proposition A.2.4. For elements of R, we have

(A.2.17) x1 < y1, x2 < y2 =⇒ x1 + x2 < y1 + y2,

(A.2.18) x < y ⇐⇒ −y < −x,

(A.2.19) 0 < x < y, a > 0 =⇒ 0 < ax < ay,

(A.2.20) 0 < x < y =⇒ 0 < y−1 < x−1.

Proof. The results (A.2.17) and (A.2.19) follow from (A.2.14); consider, for exam-
ple, a(y−x). The result (A.2.18) follows from (A.2.13). To prove (A.2.20), first we
see that x > 0 implies x−1 > 0, as follows: if −x−1 > 0, the identity x·(−x−1) = −1
contradicts (A.2.14). As for the rest of (A.2.20), the hypotheses imply xy > 0, and
multiplying both sides of x < y by a = (xy)−1 gives the result, by (A.2.19). �

As in (A.1.2), define |x| by

(A.2.21)
|x| = x if x ≥ 0,

−x if x < 0.

Note that

(A.2.22) x = [(aj)] =⇒ |x| = [(|aj |)].
It is straightforward (compare (A.1.3)) to verify

(A.2.23) |xy| = |x| · |y|, |x+ y| ≤ |x|+ |y|.

We now show that R has the Archimedean property.
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Proposition A.2.5. Given x ∈ R, there exists k ∈ Z such that

(A.2.24) k − 1 < x ≤ k.

Proof. It suffices to prove (A.2.24) assuming x ∈ R+. Otherwise, work with −x.
Say x = [(aj)] where (aj) is a Cauchy sequence of rational numbers. By Proposition
A.1.2, there exists M ∈ Q such that |aj | ≤ M for all j. We also have M ≤ ℓ for
some ℓ ∈ N. Hence the set S = {ℓ ∈ N : ℓ ≥ x} is nonempty. Then taking k to be
the smallest element of S gives (A.2.24). �

Proposition A.2.6. Given any real ε > 0, there exists n ∈ N such that ε > 1/n.

Proof. Using Proposition A.2.5, pick n > 1/ε and apply (A.2.20). Alternatively,
use the reasoning given above (A.2.8). �

We are now ready to consider sequences of elements of R.

Definition. A sequence (xj) converges to x if and only if, for any n ∈ N, there
exists K(n) such that

(A.2.25) j ≥ K(n) =⇒ |xj − x| < 1

n
.

In this case, we write xj → x, or x = lim xj .

The sequence (xj) is Cauchy if and only if, for any n ∈ N, there exists K(n)
such that

(A.2.26) j, k ≥ K(n) =⇒ |xj − xk| <
1

n
.

We note that it is typical to phrase the definition above in terms of picking any
real ε > 0 and demanding that, e.g., |xj − x| < ε, for large j. The equivalence of
the two definitions follows from Proposition A.2.6.

As in Proposition A.1.2, we have that every Cauchy sequence is bounded.

Next, the proof of Proposition A.1.1 extends to the present case, yielding:

Proposition A.2.7. If xj → x and yj → y, then

(A.2.27) xj + yj → x+ y,

and

(A.2.28) xjyj → xy.

If furthermore yj ̸= 0 for all j and y ̸= 0, then

(A.2.29) xj/yj → x/y.

It is clear that, if each xj ∈ Q, then the notion that (xj) is Cauchy given above
coincides with that in §A.1. If also x ∈ Q, the notion that xj → x also coincides
with that given in §A.1. Here is another natural but useful observation.

Proposition A.2.8. If each aj ∈ Q, and x ∈ R, then

(A.2.30) aj → x⇐⇒ x = [(aj)].
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Proof. First assume x = [(aj)]. In particular, (aj) is Cauchy. Now, given m, we
have from (A.2.16) that

(A.2.31)
|x− ak| <

1

m
⇐⇒ ∃K,n such that j ≥ K ⇒ |aj − ak| <

1

m
− 1

n

⇐= ∃K such that j ≥ K ⇒ |aj − ak| <
1

2m
.

On the other hand, since (aj) is Cauchy, for each m ∈ N, there exists K(m) such
that

(A.2.32) j, k ≥ K(m) ⇒ |aj − ak| <
1

2m
.

Hence, by (A.2.31),

(A.2.33) k ≥ K(m) =⇒ |x− ak| <
1

m
.

This shows that x = [(aj)] ⇒ aj → x.

For the converse, if aj → x, then (aj) is Cauchy, so we have [(aj)] = y ∈ R.
The previous argument implies aj → y. But

(A.2.34) |x− y| ≤ |x− aj |+ |aj − y|, ∀ j,
so x = y. Thus aj → x⇒ x = [(aj)]. �

So far, statements made about R have emphasized similarities of its properties
with corresponding properties of Q. The crucial difference between these two sets
of numbers is given by the following result, known as the completeness property.

Theorem A.2.9. If (xj) is a Cauchy sequence of real numbers, then there exists
x ∈ R such that xj → x.

Proof. Take xj = [(ajℓ : ℓ ∈ N)] with ajℓ ∈ Q. Using (A.2.30), take aj,ℓ(j) = bj ∈ Q
such that

(A.2.35) |xj − bj | ≤ 2−j .

Then (bj) is Cauchy, since |bj − bk| ≤ |xj − xk|+ 2−j + 2−k. Now, let

(A.2.36) x = [(bj)].

It follows that

(A.2.37) |xj − x| ≤ |xj − bj |+ |x− bj | ≤ 2−j + |x− bj |,
which tends to 0, again by (A.2.30). Hence xj → x. �

If we combine Theorem A.2.9 with the argument behind Proposition A.1.4, we
obtain the following important result, known as the Bolzano-Weierstrass Theorem.

Theorem A.2.10. Each bounded sequence of real numbers has a convergent sub-
sequence.

Proof. If |xj | ≤M, the proof of Proposition A.1.4 applies without change to show
that (xj) has a Cauchy subsequence. By Theorem A.2.9, that Cauchy subsequence
converges. �
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Similarly, adding Theorem A.2.9 to the argument behind Proposition A.1.5
yields:

Proposition A.2.11. Each bounded monotone sequence (xj) of real numbers con-
verges.

A related property of R can be described in terms of the notion of the “supre-
mum” of a set.

Definition. If S ⊂ R, one says that x ∈ R is an upper bound for S provided x ≥ s
for all s ∈ S, and one says

(A.2.38) x = sup S

provided x is an upper bound for S and further x ≤ x′ whenever x′ is an upper
bound for S. One also says x is the least upper bound of S, and writes x = lubS.

For some sets, such as S = Z, there is no x ∈ R satisfying (A.2.38). However,
there is the following result, known as the supremum property.

Proposition A.2.12. If S is a nonempty subset of R that has an upper bound,
then there is a real x = sup S.

Proof. We use an argument similar to the one in the proof of Proposition A.1.4.
Let x0 be an upper bound for S, pick s0 in S, and consider

I0 = [s0, x0] = {y ∈ R : s0 ≤ y ≤ x0}.
If x0 = s0, then already x0 = sup S. Otherwise, I0 is an interval of nonzero length,
L = x0 − s0. In that case, divide I0 into two equal intervals, having in common
only the midpoint; say I0 = Iℓ0 ∪ Ir0 , where Ir0 lies to the right of Iℓ0.

Let I1 = Ir0 if S ∩ Ir0 ̸= ∅, and otherwise let I1 = Iℓ0. Note that S ∩ I1 ̸= ∅. Let
x1 be the right endpoint of I1, and pick s1 ∈ S ∩ I1. Note that x1 is also an upper
bound for S.

Continue, constructing

Iν ⊂ Iν−1 ⊂ · · · ⊂ I0,

where Iν has length 2−νL, such that the right endpoint xν of Iν satisfies

(A.2.39) xν ≥ s, ∀ s ∈ S,

and such that S ∩ Iν ̸= ∅, so there exist sν ∈ S such that

(A.2.40) xν − sν ≤ 2−νL.

The sequence (xν) is bounded and monotone (decreasing) so, by Proposition A.2.11,
it converges; xν → x. By (A.2.39), we have x ≥ s for all s ∈ S, and by (6.34) we
have x− sν ≤ 2−νL. Hence x satisfies (A.2.38). �

We turn to infinite series
∑∞

k=0 ak, with ak ∈ R. We say this series converges
if and only if the sequence of partial sums

(A.2.41) Sn =

n∑
k=0

ak



290 A. Foundational material on the real numbers

converges:

(A.2.42)

∞∑
k=0

ak = A⇐⇒ Sn → A as n→ ∞.

The following is a useful condition guaranteeing convergence.

Proposition A.2.13. The infinite series
∑∞

k=0 ak converges provided

(A.2.43)

∞∑
k=0

|ak| <∞,

i.e., there exists B <∞ such that
∑n

k=0 |ak| ≤ B for all n.

Proof. The triangle inequality (the second part of (A.2.23)) gives, for ℓ ≥ 1,

(A.2.44)

|Sn+ℓ − Sn| =
∣∣∣ n+ℓ∑
k=n+1

ak

∣∣∣
≤

n+ℓ∑
k=n+1

|ak|,

and we claim this tends to 0 as n → ∞, uniformly in ℓ ≥ 1, provided (A.2.43)
holds. In fact, if the right side of (A.2.44) fails to go to 0 as n → ∞, there exists
ε > 0 and infinitely many nν → ∞ and ℓν ∈ N such that

(A.2.45)

nν+ℓν∑
k=nν+1

|ak| ≥ ε.

We can pass to a subsequence and assume nν+1 > nν + ℓν . Then

(A.2.46)

nν+ℓν∑
k=n1+1

|ak| ≥ νε,

for all ν, contradicting the bound by B that follows from (A.2.43). Thus (A.2.43)
⇒ (Sn) is Cauchy. Convergence follows, by Theorem A.2.9. �

Alternative presentation. Set

Tn =

n∑
k=0

|ak|.

The hypothesis (A.2.43) implies that (Tn) is a bounded monotone sequence. Then
Proposition A.2.11 implies (Tn) is a Cauchy sequence. But (A.2.44) precisely says

|Sn+ℓ − Sn| ≤ |Tn+ℓ − Tn|.
�

When (A.2.43) holds, we say the series
∑∞

k=0 ak is absolutely convergent.

The following result on alternating series gives another sufficient condition for
convergence.
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Proposition A.2.14. Assume ak > 0, ak ↘ 0. Then

(A.2.47)

∞∑
k=0

(−1)kak

is convergent.

Proof. Denote the partial sums by Sn, n ≥ 0. We see that, for m ∈ N,

(A.2.48) S2m+1 ≤ S2m+3 ≤ S2m+2 ≤ S2m.

Iterating this, we have, as m→ ∞,

(A.2.49) S2m ↘ α, S2m+1 ↗ β, β ≤ α,

and

(A.2.50) S2m − S2m+1 = a2m+1,

hence α = β, and convergence is established. �

Here is an example:

∞∑
k=0

(−1)k

k + 1
= 1− 1

2
+

1

3
− 1

4
+ · · · is convergent.

This series is not absolutely convergent (cf. Exercise 6 below). Using Exercise 1 of
§3.2 and an additional argument, one can show the sum is log 2.

Exercises

1. Verify Proposition A.2.3.

2. If S ⊂ R, we say that x ∈ R is a lower bound for S provided x ≤ s for all s ∈ S,
and we say

(A.2.51) x = inf S,

provided x is a lower bound for S and further x ≥ x′ whenever x′ is a lower bound
for S. Mirroring Proposition A.2.12, show that if S ⊂ R is a nonempty set that has
a lower bound, then there is a real x = inf S.

3. Given a real number ξ ∈ (0, 1), show it has an infinite decimal expansion, i.e.,
there exist bk ∈ {0, 1, . . . , 9} such that

(A.2.52) ξ =

∞∑
k=1

bk · 10−k.

Hint. Start by breaking [0, 1] into ten subintervals of equal length, and picking one
to which ξ belongs.
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4. Show that if 0 < x < 1, then xn → 0 as n→ ∞ (as in Proposition A.1.6), and

(A.2.53)

∞∑
k=0

xk =
1

1− x
<∞.

Hint. We have
n∑

k=0

xk =
1− xn+1

1− x
, x ̸= 1.

The series (A.2.53) is called a geometric series.

5. Assume ak > 0 and ak ↘ 0. Show that

(A.2.54)

∞∑
k=1

ak <∞ ⇐⇒
∞∑
k=0

bk <∞,

where

(A.2.55) bk = 2ka2k .

Hint. Use the following observations:

1

2
b2 +

1

2
b3 + · · · ≤ (a3 + a4) + (a5 + a6 + a7 + a8) + · · · , and

(a3 + a4) + (a5 + a6 + a7 + a8) + · · · ≤ b1 + b2 + · · · .

6. Deduce from Exercise 5 that the harmonic series 1 + 1
2 + 1

3 + 1
4 + · · · diverges,

i.e.,

(A.2.56)

∞∑
k=1

1

k
= ∞.

7. Deduce from Exercises 4–5 that

(A.2.57) p > 1 =⇒
∞∑
k=1

1

kp
<∞.

To start, take p ∈ N. See §1.1 to define kp for p ∈ Q, and §3.2 to define kp for
p ∈ R.

8. Given a, b ∈ R \ 0, k ∈ Z, show that

aj+k = ajak, ajk = (aj)k, (ab)j = ajbj , ∀ j, k ∈ Z.

9. Given k ∈ N, show that, for xj ∈ R,

xj → x =⇒ xkj → xk.

Hint. Use Proposition A.2.7.

10. Given xj , x, y ∈ R, show that

xj ≥ y ∀ j, xj → x =⇒ x ≥ y.



Exercises 293

11. Given the alternating series
∑

(−1)kak as in Proposition A.2.14 (with ak ↘ 0),
with sum S, show that, for each N ,

N∑
k=0

(−1)kak = S + rN , |rN | ≤ |aN+1|.

12. Generalize Exercises 3–4 of §A.1 as follows. Suppose a sequence (aj) in R has
the property that there exist r < 1 and K ∈ N such that

j ≥ K =⇒
∣∣∣aj+1

aj

∣∣∣ ≤ r.

Show that there exists M <∞ such that
k∑

j=1

|aj | ≤M, ∀k ∈ N.

Conclude that
∑∞

k=1 ak is convergent. This is the ratio test for convergence.

13. Show that, for each x ∈ R,
∞∑
k=1

1

k!
xk

is convergent.

14. Let (bj) be a Cauchy sequence of rational numbers, y = [(bj)], c ∈ Q. Show
that

|bj | ≤ c ∀ j =⇒ |y| ≤ c.

15. Produce an alternative presentation of the proof of the implication

x = [(aj)] =⇒ aj → x

in Proposition A.2.8 along the following lines.
Show that, for each k,

x− ak = [(bj)],

with
bj = aj+k − ak.

Then, using Exercise 14, deduce that, if

|aℓ − ak| ≤
1

m
, ∀ k, ℓ ≥ K(m),

then

k ≥ K(m) =⇒ |x− ak| ≤
1

m
.
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A.3. Metric properties of R

We discuss a number of notions and results related to convergence in R. Recall
that a sequence of points (pj) in R converges to a limit p ∈ R (we write pj → p) if
and only if for every ε > 0 there exists N such that

(A.3.1) j ≥ N =⇒ |pj − p| < ε.

A set S ⊂ R is said to be closed if and only if

(A.3.2) pj ∈ S, pj → p =⇒ p ∈ S.

The complement R \ S of a closed set S is open. Alternatively, Ω ⊂ R is open if
and only if, given q ∈ Ω, there exists ε > 0 such that Bε(q) ⊂ Ω, where

(A.3.3) Bε(q) = {p ∈ R : |p− q| < ε},

so q cannot be a limit of a sequence of points in R \ Ω.
In particular, the interval

(A.3.4) [a, b] = {x ∈ R : a ≤ x ≤ b}

is closed, and the interval

(A.3.5) (a, b) = {x ∈ R : a < x < b}

is open.

We define the closure S of a set S ⊂ R to consist of all points p ∈ R such that
Bε(p)∩S ̸= ∅ for all ε > 0. Equivalently, p ∈ S if and only if there exists an infinite
sequence (pj) of points in S such that pj → p. For example, the closure of the
interval (a, b) is the interval [a, b].

An important property of R is completeness, which we recall is defined as
follows. A sequence (pj) of points in R is called a Cauchy sequence if and only if

(A.3.6) |pj − pk| −→ 0, as j, k → ∞.

It is easy to see that if pj → p for some p ∈ R, then (A.3.6) holds. The completeness
property is the converse, given in Theorem A.2.9, which we recall here.

Theorem A.3.1. If (pj) is a Cauchy sequence in R, then it has a limit.

Completeness provides a path to the following key notion of compactness. A
nonempty set K ⊂ R is said to be compact if and only if the following property
holds.

(A.3.7)
Each infinite sequence (pj) in K has a subsequence

that converges to a point in K.

It is clear that ifK is compact, then it must be closed. It must also be bounded, i.e.,
there exists R <∞ such that K ⊂ BR(0). Indeed, if K is not bounded, there exist
pj ∈ K such that |pj+1| ≥ |pj |+1. In such a case, |pj − pk| ≥ 1 whenever j ̸= k, so
(pj) cannot have a convergent subsequence. The following converse statement is a
key result.

Theorem A.3.2. If a nonempty K ⊂ R is closed and bounded, then it is compact.
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Clearly every nonempty closed subset of a compact set is compact, so Theorem
A.3.2 is a consequence of:

Proposition A.3.3. Each closed bounded interval I = [a, b] ⊂ R is compact.

Proof. This is a direct consequence of the Bolzano-Weierstrass theorem, Theorem
A.2.10. �

Let K ⊂ R be compact. Since K is bounded from above and from below, we
have well defined real numbers

(A.3.8) b = supK, a = infK,

the first by Proposition A.2.12, and the second by a similar argument (cf. Exercise
2 of §A.2). Since a and b are limits of elements of K, we have a, b ∈ K. We use the
notation

(A.3.9) b = maxK, a = minK.

We next discuss continuity. If S ⊂ R, a function

(A.3.10) f : S −→ R

is said to be continuous at p ∈ S provided

(A.3.11) pj ∈ S, pj → p =⇒ f(pj) → f(p).

If f is continuous at each p ∈ S, we say f is continuous on S, and write f ∈ C(S).

Clearly f(x) = x defines f ∈ C(R). The following result provides an arsenal of
continuous functions.

Proposition A.3.4. Given S ⊂ R,

(A.3.12) f, g ∈ C(S) =⇒ f + g, fg ∈ C(S).

The proof is a simple application of Proposition A.2.7. As a consequence, we see
that each polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a0, aj ∈ R

is continuous on R.
The following two results give important connections between continuity and

compactness.

Proposition A.3.5. If K ⊂ R is compact and f : K → R is continuous, then
f(K) is compact.

Proof. If (qk) is an infinite sequence of points in f(K), pick pk ∈ K such that
f(pk) = qk. If K is compact, we have a subsequence pkν → p in K, and then
qkν

→ f(p) in R. �

This leads to the second connection.
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Proposition A.3.6. If K ⊂ R is compact and f : K → R is continuous, then
there exists p ∈ K such that

(A.3.13) f(p) = max
x∈K

f(x),

and there exists q ∈ K such that

(A.3.14) f(q) = min
x∈K

f(x).

Proof. Since f(K) is compact, we have well defined numbers

(A.3.15) b = max f(K), a = min f(K), a, b ∈ f(K).

So take p, q ∈ K such that f(p) = b and f(q) = a. �

The next result is called the intermediate value theorem.

Proposition A.3.7. Take a, b, c ∈ R, a < b. Let f : [a, b] → R be continuous.
Assume

(A.3.16) f(a) < c < f(b).

Then there exists x ∈ (a, b) such that f(x) = c.

Proof. Let

(A.3.17) S = {y ∈ [a, b] : f(y) ≤ c}.

Then a ∈ S. Also, if f(yj) ≤ c and yj → y, then f(y) ≤ c. Hence S is a nonempty,
closed (hence compact) subset of [a, b]. Note that b /∈ S. Take

(A.3.18) x = maxS.

Then a < x < b and f(x) ≤ c. If f(x) < c, then there exists ε > 0 such that
x + ε < b and f(y) < c for x ≤ y < x + ε. Thus x + ε ∈ S, contradicting
(A.3.18). �

Returning to the issue of compactness, we establish some further properties of
compact sets K ⊂ R, leading to the important result, Proposition A.3.11 below.

Proposition A.3.8. Let K ⊂ R be compact. Assume X1 ⊃ X2 ⊃ X3 ⊃ · · · form
a decreasing sequence of closed subsets of K. If each Xm ̸= ∅, then ∩mXm ̸= ∅.

Proof. Pick xm ∈ Xm. If K is compact, (xm) has a convergent subsequence,
xmk

→ y. Since {xmk
: k ≥ ℓ} ⊂ Xmℓ

, which is closed, we have y ∈ ∩mXm. �

Corollary A.3.9. Let K ⊂ R be compact. Assume U1 ⊂ U2 ⊂ U3 ⊂ · · · form an
increasing sequence of open sets in R. If ∪mUm ⊃ K, then UM ⊃ K for some M .

Proof. Consider Xm = K \ Um. �

Before getting to Proposition A.3.11, we bring in the following. Let Q denote
the set of rational numbers. The set Q ⊂ R has the following “denseness” property:
given p ∈ R and ε > 0, there exists q ∈ Q such that |p− q| < ε. Let

(A.3.19) R = {Brj (qj) : qj ∈ Q, rj ∈ Q ∩ (0,∞)}.



Exercises 297

Now one can show that the set Q is countable, i.e., it can be put in one-to-one
correspondence with N. Similar reasoning shows that R is a countable collection
of open intervals. The following lemma is left as an exercise for the reader.

Lemma A.3.10. Let Ω ⊂ R be a nonempty open set. Then

(A.3.20) Ω =
∪

{B : B ∈ R, B ⊂ Ω}.

To state the next result, we say that a collection {Uα : α ∈ A} covers K if
K ⊂ ∪α∈AUα. If each Uα ⊂ R is open, it is called an open cover of K. If B ⊂ A
and K ⊂ ∪β∈BUβ , we say {Uβ : β ∈ B} is a subcover. This result is part of the
Heine-Borel theorem.

Proposition A.3.11. If K ⊂ R is compact, then it has the following property.

(A.3.21) Every open cover {Uα : α ∈ A} of K has a finite subcover.

Proof. By Lemma A.3.10, it suffices to prove the following.

(A.3.22)
Every countable cover {Bj : j ∈ N} of K by open intervals

has a finite subcover.

For this, we set

(A.3.23) Um = B1 ∪ · · · ∪Bm

and apply Corollary A.3.9. �

Exercises

1. Consider a polynomial p(x) = xn + an−1x
n−1 + · · · + a1x + a0. Assume each

aj ∈ R and n is odd. Use the intermediate value theorem to show that p(x) = 0 for
some x ∈ R.

We describe the construction of a Cantor set. Take a closed, bounded interval
[a, b] = C0. Let C1 be obtained from C0 by deleting the open middle third interval,
of length (b − a)/3. At the jth stage, Cj is a disjoint union of 2j closed intervals,
each of length 3−j(b − a). Then Cj+1 is obtained from Cj by deleting the open
middle third of each of these 2j intervals. We have C0 ⊃ C1 ⊃ · · · ⊃ Cj ⊃ · · · , each
a closed subset of [a, b].

2. Show that

(A.3.24) C =
∩
j≥0

Cj

is nonempty, and compact. This is the Cantor set.

3. Suppose C is formed as above, with [a, b] = [0, 1]. Show that points in C are
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precisely those of the form

(A.3.25) ξ =

∞∑
j=0

bj 3
−j , bj ∈ {0, 2}.

4. If p, q ∈ C (and p < q), show that the interval [p, q] must contain points not in
C. One says C is totally disconnected.

5. If p ∈ C, ε > 0, show that (p − ε, p + ε) contains infinitely many points in C.
Given that C is closed, one says C is perfect.

6. Show that Card(C) = Card(R).
Hint. With ξ as in (A.3.25) show that

ξ 7→ η =

∞∑
j=0

(bj
2

)
2−j

maps C onto [0, 1].

Remark. At this point, we mention the
Continuum Hypothesis. If S ⊂ R is uncountable, then CardS = CardR.
This hypothesis has been shown not to be amenable to proof or disproof, from the
standard axioms of set theory. See [5]. However, there is a large class of sets for
which the conclusion holds. For example, it holds whenever S ⊂ R is uncountable
and compact. See Chapter 2 of [15] for further results along this line.

7. Show that Proposition A.3.7 implies the existence of kth roots of each element
of R+.

8. In the setting of Proposition A.3.7 (the intermediate value theorem), in which
f : [a, b] → R is continuous and f(a) < c < f(b), consider the following.

(a) Divide I = [a, b] into two equal intervals Iℓ and Ir, meeting at the midpoint
α0 = (a+ b)/2. Select I1 = Iℓ if f(α0) ≥ c, I1 = Ir if f(α0) < c. Say I1 = [x1, y1].
Note that f(x1) < c, f(y1) ≥ c.

(b) Divide I1 into two equal intervals I1ℓ and I1r, meeting at the midpoint (x1 +
y1)/2 = α1. Select I2 = I1ℓ if f(α1) ≥ c, I2 = I1r if f(α1) < c. Say I2 = [x2, y2].
Note that f(x2) < c, f(y2) ≥ c.

(c) Continue. Having Ik = [xk, yk], of length 2−k(b − a), with f(xk) < c, f(yk) ≥
c, divide Ik into two equal intervals Ikℓ and Ikr, meeting at the midpoint αk =
(xk + yk)/2. Select Ik+1 = Ikℓ if f(αk) ≥ c, Ik+1 = Ikr if f(αk) < c. Again,
Ik+1 = [xk+1, yk+1] with f(xk+1) < c and f(yk+1) ≥ c.



Exercises 299

(d) Show that there exists x ∈ (a, b) such that

xk ↗ x, yk ↘ x, and f(x) = c.

This method of approximating a solution to f(x) = c is called the bisection method.
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Figure A.4.1. Addition in the complex plane

A.4. Complex numbers

A complex number is a number of the form

(A.4.1) z = x+ iy, x, y ∈ R,

where the new object i has the property

(A.4.2) i2 = −1.

We denote the set of complex numbers by C. We have R ↪→ C, identifying x ∈ R
with x+ i0 ∈ C.

We define addition and multiplication in C as follows. Suppose w = a + ib,
a, b ∈ R. We set

(A.4.3)
z + w = (x+ a) + i(y + b),

zw = (xa− yb) + i(xb+ ya).

See Figures A.4.1 and A.4.2 for illustrations of these operations.

It is routine to verify various commutative, associative, and distributive laws
of arithmetic. If z ̸= 0, i.e., either x ̸= 0 or y ̸= 0, we can set

(A.4.4) z−1 =
1

z
=

x

x2 + y2
− i

y

x2 + y2
,

and verify that zz−1 = 1.
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Figure A.4.2. Multiplication by i in C

For some more notation, for z ∈ C of the form (A.4.1), we set

(A.4.5) z = x− iy, Re z = x, Im z = y.

We say z is the complex conjugate of z, Re z is the real part of z, and Im z is the
imaginary part of z.

We next discuss the concept of the magnitude (or absolute value) of an element
z ∈ C. If z has the form (A.4.1), we take a cue from the Pythagorean theorem,
giving the Euclidean distance from z to 0, and set

(A.4.6) |z| =
√
x2 + y2.

Note that

(A.4.7) |z|2 = z z.

With this notation, (A.4.4) takes the compact (and clear) form

(A.4.8) z−1 =
z

|z|2
.

We have

(A.4.9) |zw| = |z| · |w|,
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for z, w ∈ C, as a consequence of the identity (readily verified from the definition
(A.4.5))

(A.4.10) zw = z · w.
In fact, |zw|2 = (zw)(zw) = z w z w = zzww = |z|2|w|2. This extends the first
part of (A.2.23) from R to C. The extension of the second part also holds, but it
requires a little more work. The following is the triangle inequality in C.

Proposition A.4.1. Given z, w ∈ C,

(A.4.11) |z + w| ≤ |z|+ |w|.

Proof. We compare the squares of each side of (A.4.11). First,

(A.4.12)

|z + w|2 = (z + w)(z + w)

= |z|2 + |w|2 + wz + zw

= |z|2 + |w|2 + 2Re zw.

Now, for any ζ ∈ C, Re ζ ≤ |ζ|, so Re zw ≤ |zw| = |z| · |w|, so (A.4.12) is

(A.4.13) ≤ |z|2 + |w|2 + 2|z| · |w| = (|z|+ |w|)2,
and we have (A.4.11). �

We now discuss matters related to convergence in C. Parallel to the real case,
we say a sequence (zj) in C converges to a limit z ∈ C (and write zj → z) if and
only if for each ε > 0 there exists N such that

(A.4.14) j ≥ N =⇒ |zj − z| < ε.

Equivalently,

(A.4.15) zj → z ⇐⇒ |zj − z| → 0.

It is easily seen that

(A.4.16) zj → z ⇐⇒ Re zj → Re z and Im zj → Im z.

The set C also has the completeness property, given as follows. A sequence (zj)
in C is said to be a Cauchy sequence if and only if

(A.4.17) |zj − zk| → 0, as j, k → ∞.

It is easy to see (using the triangle inequality) that if zj → z for some z ∈ C, then
(A.4.17) holds. Here is the converse:

Proposition A.4.2. If (zj) is a Cauchy sequence in C, then it has a limit.

Proof. If (zj) is Cauchy in C, then (Re zj) and (Im zj) are Cauchy in R, so, by
Theorem A.2.9, they have limits. �

We turn to infinite series
∑∞

k=0 ak, with ak ∈ C. We say this converges if and
only if the sequence of partial sums

(A.4.18) Sn =

n∑
k=0

ak
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converges:

(A.4.19)

∞∑
k=0

ak = A⇐⇒ Sn → A as n→ ∞.

The following is a useful condition guaranteeing convergence. Compare Proposition
A.2.13.

Proposition A.4.3. The infinite series
∑∞

k=0 ak converges provided

(A.4.20)

∞∑
k=0

|ak| <∞,

i.e., there exists B <∞ such that
∑n

k=0 |ak| ≤ B for all n.

Proof. The triangle inequality gives, for ℓ ≥ 1,

(A.4.21)

|Sn+ℓ − Sn| =
∣∣∣ n+ℓ∑
k=n+1

ak

∣∣∣
≤

n+ℓ∑
k=n+1

|ak|,

which tends to 0 as n→ ∞, uniformly in ℓ ≥ 1, provided (A.4.20) holds (cf. (A.2.45)–
(A.2.46)). Hence (A.4.20) ⇒ (Sn) is Cauchy. Convergence then follows, by Propo-
sition A.4.2. �

As in the real case, if (A.4.20) holds, we say the infinite series
∑∞

k=0 ak is
absolutely convergent.

An example to which Proposition A.4.3 applies is the following power series,
giving the exponential function ez:

(A.4.22) ez =

∞∑
k=0

zk

k!
, z ∈ C.

Compare Exercise 13 of §A.2. The exponential function is explored in depth in §3.2
of Chapter 3.

We turn to a discussion of polar coordinates on C. Given a nonzero z ∈ C, we
can write

(A.4.23) z = rω, r = |z|, ω =
z

|z|
.

Then ω has unit distance from 0. If the ray from 0 to ω makes an angle θ with the
positive real axis, we have

(A.4.24) Reω = cos θ, Imω = sin θ,

by definition of the trigonometric functions cos and sin. Hence

(A.4.25) z = r cis θ,

where

(A.4.26) cis θ = cos θ + i sin θ.
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If also

(A.4.27) w = ρ cisφ, ρ = |w|,

then

(A.4.28) zw = rρ cis(θ + φ),

as a consequence of the identity

(A.4.29) cis(θ + φ) = (cis θ)(cisφ),

which in turn is equivalent to the pair of trigonometric identities

(A.4.30)
cos(θ + φ) = cos θ cosφ− sin θ sinφ,

sin(θ + φ) = cos θ sinφ+ sin θ cosφ.

There is another way to write (A.4.25), using the classical Euler identity

(A.4.31) eiθ = cos θ + i sin θ.

Then (A.4.25) becomes

(A.4.32) z = r eiθ.

The identity (A.4.29) is equivalent to

(A.4.33) ei(θ+φ) = eiθeiφ.

We give a self-contained derivation of (A.4.31) (and also of (A.4.30) and (A.4.33))
in Chapter 3, §§3.1–3.2. The analysis there includes a precise description of what
“angle θ” means.

We next define closed and open subsets of C, and discuss the notion of com-
pactness. A set S ⊂ C is said to be closed if and only if

(A.4.34) zj ∈ S, zj → z =⇒ z ∈ S.

The complement C \ S of a closed set S is open. Alternatively, Ω ⊂ C is open if
and only if, given q ∈ Ω, there exists ε > 0 such that Bε(q) ⊂ Ω, where

(A.4.35) Bε(q) = {z ∈ C : |z − q| < ε},

so q cannot be a limit of a sequence of points in C \ Ω. We define the closure S of
a set S ⊂ C to consist of all points p ∈ C such that Bε(p) ∩ S ̸= ∅ for all ε > 0.
Equivalently, p ∈ S if and only if there exists an infinite sequence (pj) of points in
S such that pj → p.

Parallel to (A.3.7), we say a nonempty set K ⊂ C is compact if and only if the
following property holds.

(A.4.36)
Each infinite sequence (pj) in K has a subsequence

that converges to a point in K.

As in §A.3, if K ⊂ C is compact, it must be closed and bounded. Parallel to
Theorem A.3.2, we have the converse.

Proposition A.4.4. If a nonempty K ⊂ C is closed and bounded, then it is com-
pact.
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Proof. Let (zj) be a sequence in K. Then (Re zj) and (Im zj) are bounded, so
Theorem A.2.10 implies the existence of a subsequence such that Re zjν and Im zjν
converge. Hence the subsequence (zjν ) converges in C. Since K is closed, the limit
must belong to K. �

If S ⊂ C, a function

(A.4.37) f : S −→ C
is said to be continuous at p ∈ S provided

(A.4.38) pj ∈ S, pj → p =⇒ f(pj) → f(p).

If f is continuous at each p ∈ S, we say f is continuous on S. The following result
has the same proof as Proposition A.3.5.

Proposition A.4.5. If K ⊂ C is compact and f : K → C is continuous, then
f(K) is compact.

Then the following variant of Proposition A.3.6 is straightforward.

Proposition A.4.6. If K ⊂ C is compact and f : K → C is continuous, then
there exists p ∈ K such that

(A.4.39) |f(p)| = max
z∈K

|f(z)|,

and there exists q ∈ K such that

(A.4.40) |f(q)| = min
z∈K

|f(z)|.

There are also straightforward extensions to K ⊂ C of Propositions A.3.8–
A.3.11. We omit the details.

Exercises

We define π as the smallest positive number such that

cisπ = −1.

See Chapter 4, §§3.1–3.2 for more on this matter.

1. Show that

ω = cis
2π

n
=⇒ ωn = 1.

For this, use (A.4.29). In conjunction with (A.4.25)–(A.4.28) and the existence of
nth roots of positive real numbers, use this to prove the following:

Given a ∈ C, a ̸= 0, n ∈ N, there exist z1, . . . , zn ∈ C
such that znj = a.

2. Compute (1
2
+

√
3

2
i
)3
,
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and verify that

(A.4.41) cos
π

3
=

1

2
, sin

π

3
=

√
3

2
.

3. Find z1, . . . , zn such that

(A.4.42) znj = 1,

explicitly in the form a+ ib (not simply as cis(2πj/n)), in case

(A.4.43) n = 3, 4, 6, 8.

Hint. Use (A.4.41), and also the fact that the equation u2j = i has solutions

(A.4.44) u1 =
1√
2
+

i√
2
, u2 = −u1.

4. Take the following path to finding the 5 solutions to

(A.4.45) z5j = 1.

One solution is z1 = 1. Since z5 − 1 = (z− 1)(z4 + z3 + z2 + z+1), we need to find
4 solutions to z4 + z3 + z2 + z + 1 = 0. Write this as

(A.4.46) z2 + z + 1 +
1

z
+

1

z2
= 0,

which, for

(A.4.47) w = z +
1

z
,

becomes

(A.4.48) w2 + w − 1 = 0.

Use the quadratic formula to find 2 solutions to (A.4.48). Then solve (A.4.47), i.e.,
z2 − wz + 1 = 0, for z. Use these calculations to show that

cos
2π

5
=

√
5− 1

4
.

The roots zj of (A.4.45) form the vertices of a regular pentagon. See Figure A.4.3.

5. Take the following path to explicitly finding the real and imaginary parts of a
solution to

z2 = a+ ib.

Namely, with x = Re z, y = Im z, we have

x2 − y2 = a, 2xy = b,

and also
x2 + y2 = ρ =

√
a2 + b2,

hence

x =

√
ρ+ a

2
, y =

b

2x
,

as long as a+ ib ̸= −|a|.
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Figure A.4.3. Regular pentagon, a = (
√
5− 1)/4.

6. Taking a cue from Exercise 4 of §A.2, show that

(A.4.49)
1

1− z
=

∞∑
k=0

zk, for z ∈ C, |z| < 1.

7. Show that

1

1− z2
=

∞∑
k=0

z2k, for z ∈ C, |z| < 1.

8. Produce a power series series expansion in z, valid for |z| < 1, for

1

1 + z2
.

9. Consider the unit circle S1 = {z ∈ C : |z| = 1}. Show that

φ(x) =
x+ i

x− i

defines

φ : R −→ S1 \ {1}, one-one and onto,
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with inverse ψ, given by

ψ(ω) =
ω + 1

ω − 1
i, ω ∈ S1 \ {1}.

10. Set
Q[i] = {x+ iy : x, y ∈ Q},
S1
Q = S1 ∩Q[i] = {x+ iy : x, y ∈ Q, x2 + y2 = 1}.

Show that
φ : Q −→ S1

Q \ {1}, one-one and onto,

with inverse ψ, as in Exercise 9.

11. A triple (j, k, ℓ) of positive integers is called a Pythagorean triple if

j2 + k2 = ℓ2.

Show that for each such triple, there is a unique m/n ∈ Q such that

φ
(m
n

)
=
j

ℓ
+
k

ℓ
i.

Use this to produce a formula that yields all Pythagorean triples.



Appendix B

Sequences and series of
continuous functions

Here we consider sequences of functions

(B.0.1) fj : X −→ Rn,

where X is a subset of Rk, and produce results on convergence of such sequences,
and on series

(B.0.2)

∞∑
k=0

fk.

We pay particular attention to sequences and series of continuous functions. These
results are useful in the development of calculus, for example in results on the
Riemann integral and on power series.

Section B.1 gives basic information on continuous functions f : X → Rn. Some
of this extends material from §A.3, which took n = 1 and X ⊂ R. In addition, we
define the notion of uniform continuity, and show that each continuous function f
is uniformly continuous when X is compact.

In §B.2 we discuss convergence fj → f of functions on X, with emphasis on the
notion of uniform convergence. We show that if each fj is continuous and fj → f
uniformly, then f is continuous.

In §B.3 we consider infinite series (B.0.2), and establish a sufficient condition
for uniform convergence known as the Weierstrass M-test. It follows from §B.2
that, if this condition is satisfied and each fj is continuous, so is the sum.

309
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B.1. Continuous functions

Here we discuss continuity, extending the treatment in in §A.3. Let X ⊂ Rk. A
function

(B.1.1) f : X −→ Rn

is said to be continuous at p ∈ X provided

(B.1.2) pj ∈ X, pj → p =⇒ f(pj) → f(p).

An equivalent condition is the following: given ε > 0, there exists δ = δ(p) > 0
such that

(B.1.3) x ∈ X, |x− p| < δ =⇒ |f(x)− f(p)| < ε.

If f is continuous at each point p ∈ X, we say f is continuous on X, and write
f ∈ C(X,Rn).

There are some important connections between continuity and compactness.
The following two results extend Propositions A.3.5–A.3.6.

Proposition B.1.1. If X ⊂ Rk is compact and f : X → Rn is continuous, then
f(X) is compact.

Proposition B.1.2. If X ⊂ Rk is compact and f : X → Rn is continuous, then
there exists p ∈ X such that

(B.1.4) |f(p)| = max
x∈X

|f(x)|,

and there exists q ∈ X such that

(B.1.5) |f(q)| = min
x∈K

|f(x)|.

The proofs are similar to their analogues in §A.3.
Going further, we say f : X → Rn is uniformly continuous provided that, given

ε > 0, there exists δ > 0 (independent of p) such that

(B.1.6) x, p ∈ X, |x− p| < δ =⇒ |f(x)− f(p)| < ε.

Uniform continuity is a very important concept, useful for example in the study of
the Riemann integral. An example of a bounded continuous function that is not
uniformly continuous is

(B.1.7) f :
(
0,

1

4

]
−→ R, f(x) = sin

1

x
.

See Figure B.1.1. In light of this, it is useful to have the following.

Proposition B.1.3. If X ⊂ Rk is compact and f : X → Rn is continuous, then f
is uniformly continuous.

Proof. If f is not uniformly continuous, then there exists ε0 > 0 such that, for
each ℓ ∈ N, there are

(B.1.8)
xℓ, yℓ ∈ X such that |xℓ − yℓ| < 2−ℓ, but

|f(xℓ)− f(yℓ)| ≥ ε0.



B.1. Continuous functions 311

Figure B.1.1. Graph of y = sin 1/x

Since X is compact, (xℓ) and (yℓ) have convergent subsequences. We hence have

(B.1.9) xℓν → x, yℓν → y, and x = y.

The continuity of f then implies

(B.1.10) f(xℓν ) → f(x), f(yℓν ) → f(y),

and then (B.1.8) gives

(B.1.11) |f(x)− f(y)| ≥ ε0,

contradicting the fact that x = y. �
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B.2. Sequences of functions: uniform convergence

Let X ⊂ Rk and suppose fj , f : X → Rn. We say fj → f pointwise on X provided
fj(x) → f(x) as j → ∞ for each x ∈ X. A stronger type of convergence is uniform
convergence. We say fj → f uniformly on X provided

(B.2.1) sup
x∈X

|fj(x)− f(x)| −→ 0, as j → ∞.

An equivalent characterization is that, for each ε > 0, there exists K ∈ N such that

(B.2.2) j ≥ K =⇒ |fj(x)− f(x)| ≤ ε, ∀x ∈ X.

A significant property of uniform convergence is that passing to the limit pre-
serves continuity.

Proposition B.2.1. If fj : X → Rn is continuous for each j and fj → f uni-
formly, then f : X → Rn is continuous.

Proof. Fix p ∈ X and take ε > 0. Pick K ∈ N such that (B.2.2) holds. Then pick
δ > 0 such that

(B.2.3) |x− p| < δ =⇒ |fK(x)− fK(p)| < ε,

which can be done since fK : X → Rn is continuous. Together, (B.2.2) and (B.2.3)
imply

(B.2.4)

|x− p| < δ ⇒ |f(x)− f(p)|
≤ |f(x)− fK(x)|+ |fK(x)− fK(p)|+ |fK(p)− f(p)|
≤ 3ε.

Thus f is continuous at p, for each p ∈ X. �

We next consider Cauchy sequences of functions fj : X → Rn. To say (fj) is
Cauchy at x is simply to say that (fj(x)) is a Cauchy sequence in Rn. We say (fj)
is uniformly Cauchy provided

(B.2.5) sup
x∈X

|fj(x)− fk(x)| −→ 0, as j, k → ∞.

An equivalent characterization is that, for each ε > 0, there exists K ∈ N such that

(B.2.6) j, k ≥ K =⇒ |fj(x)− fk(x)| ≤ ε, ∀x ∈ X.

Since, as seen in Chapter 2, Rn is complete, each Cauchy sequence (fj) will have a
limit f : X → Rn. We have the following.

Proposition B.2.2. Assume fj : X → Rn. If (fj) is uniformly Cauchy, then (fj)
converges uniformly to a limit f : X → Rn.

Proof. We have already seen that there exists f : X → Rn such that fj(x) → f(x)
for each x ∈ X. To finish the proof, take ε > 0 and pick K ∈ N such that (B.2.6)
holds. Then taking k → ∞ yields

(B.2.7) j ≥ K =⇒ |fj(x)− f(x)| ≤ ε, ∀x ∈ X,

yielding the uniform convergence. �
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If, in addition, each fj : X → Rn is continuous, we can put Propositions B.2.1
and B.2.2 together. We leave this to the reader.



314 B. Sequences and series of continuous functions

B.3. Series of functions: the Weierstrass M-test

We move from sequences to series. Again we assume X ⊂ Rk and

(B.3.1) fj : X −→ Rn,

for some n ∈ N. We look at the infinite series

(B.3.2)

∞∑
k=0

fk(x),

and seek conditions for convergence, which is the same as convergence of the se-
quence of partial sums

(B.3.3) Sj(x) =

j∑
k=0

fk(x).

We have convergence at x ∈ X provided

(B.3.4)

∞∑
k=0

|fk(x)| <∞,

i.e., provided there exists Bx <∞ such that

(B.3.5)

j∑
k=0

|fk(x)| ≤ Bx, ∀ j ∈ N.

In such a case, we say the series (B.3.2) converges absolutely at x. We say (B.3.2)
converges uniformly on X if and only if (Sj) converges uniformly on X. The
following sufficient condition for uniform convergence is called the Weierstrass M-
test.

Proposition B.3.1. Assume there exist Mk such that |fk(x)| ≤Mk, for all x ∈ X,
and

(B.3.6)

∞∑
k=0

Mk <∞.

Then the series (B.3.2) converges uniformly on X, to a limit S : X → Rn.

Proof. This proof is similar to that of Proposition A.2.13, but we review it. We
have

(B.3.7)

|Sm+ℓ(x)− Sm(x)| ≤
∣∣∣ m+ℓ∑
k=m+1

fk(x)
∣∣∣

≤
m+ℓ∑

k=m+1

|fk(x)|

≤
m+ℓ∑

k=m+1

Mk.

Now (B.3.6) implies σm =
∑m

k=0Mk is uniformly bounded, so (by Proposition
A.2.11), σm ↗ β for some β ∈ R+. Hence

(B.3.8) |Sm+ℓ(x)− Sm(x)| ≤ σm+ℓ − σm ≤ β − σm → 0, as m→ ∞,
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independent of ℓ ∈ N and x ∈ X. Thus (Sj) is uniformly Cauchy on X, and uniform
convergence follows by Proposition B.2.2. �

Bringing in Proposition B.2.1, we have the following.

Corollary B.3.2. In the setting of Proposition B.3.1, if also each fk : X → Rn is
continuous, so is the limit S.





Appendix C

Supplementary material on
linear algebra

Chapter 2 introduced some topics in linear algebra needed for the subsequent devel-
opment of multivariable calculus, starting with Euclidean space Rn and proceeding
to more general vector spaces, and then to linear transformations and determinants.
Here we provide some complementary material that is also of occasional use in the
text.

Section C.1 deals with inner product spaces, of which Rn equipped with the dot
product is a standard example. We consider both real and complex inner product
spaces. Contact with Euclidean space is made through the existence of orthonormal
bases (via the Gramm-Schmidt construction). We define the adjoint of a linear map
between inner product spaces, T : V → W , and use this to define self-adjoint and
unitary transformations, and investigate some of their properties. These results
will play a role in §C.2.

Section C.2 deals with eigenvalues and eigenvectors of a linear transformation
T : V → V . It includes results on the existence of an orthonormal basis of eigenvec-
tors when T is self adjoint or unitary, or more generally normal. These results have
a number of uses in the text, including the discussion of various types of critical
points (local max., local min., saddles) of real-valued smooth functions.

Section C.3 deals with matrix norms, filling out material introduced on §2.4.
We define an inner product

⟨A,B⟩ = TrAB∗,

for A,B ∈ M(n,F), F = R or C, where if B = (bjk), then B∗ = (bkj). More
generally, this inner product is defined for A,B ∈ L(V,W ), where V and W are
finite-dimensional inner product spaces. The associated norm on A, denoted ∥A∥HS,
is the Hilbert-Schmidt norm. There is also an operator norm,

∥A∥ = sup{∥Tv∥ : ∥v∥ ≤ 1},

and we discuss significant interplays between these two norms.

317
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Section C.4 deals with the matrix exponential,

etA =

∞∑
k=0

tk

k!
Ak, A ∈M(n,C),

which generalizes the exponential of complex numbers from §3.2. This arises in the
treatment of curvature equations, in §§3.3–3.4, and has further roles in subsequent
chapters. Results on matrix norms from §C.3 allow us to establish convergence of
the defining series for etA.
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C.1. Inner product spaces

Here we look at norms and inner products on vector spaces other than Rn. Gen-
erally, as discussed in §2.2, a complex vector space V is a set on which there are
operations of vector addition:

(C.1.1) f, g ∈ V =⇒ f + g ∈ V,

and multiplication by an element of C (called scalar multiplication):

(C.1.2) a ∈ C, f ∈ V =⇒ af ∈ V,

satisfying the following properties. For vector addition, we have

(C.1.3) f + g = g + f, (f + g) + h = f + (g + h), f + 0 = f, f + (−f) = 0.

For multiplication by scalars, we have

(C.1.4) a(bf) = (ab)f, 1 · f = f.

Furthermore, we have two distributive laws:

(C.1.5) a(f + g) = af + ag, (a+ b)f = af + bf.

These properties are readily verified for the function spaces mentioned above.

An inner product on a complex vector space V assigns to elements f, g ∈ V the
quantity (f, g) ∈ C, in a fashion that obeys the following three rules:

(C.1.6)

(a1f1 + a2f2, g) = a1(f1, g) + a2(f2, g),

(f, g) = (g, f),

(f, f) > 0 unless f = 0.

A vector space equipped with an inner product is called an inner product space.
For example,

(C.1.7) (f, g) =
1

2π

∫
S1

f(θ)g(θ) dθ

defines an inner product on C(S1), and also on R(S1), where we identify two
functions that differ only on a set of upper content zero. Similarly,

(C.1.8) (f, g) =

∫ ∞

−∞
f(x)g(x) dx

defines an inner product on R(R) (where, again, we identify two functions that
differ only on a set of upper content zero).

As another example, in we define ℓ2 to consist of sequences (ak)k∈Z such that

(C.1.9)

∞∑
k=−∞

|ak|2 <∞.

An inner product on ℓ2 is given by

(C.1.10)
(
(ak), (bk)

)
=

∞∑
k=−∞

akbk.
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Given an inner product on V , one says the object ∥f∥ defined by

(C.1.11) ∥f∥ =
√

(f, f)

is the norm on V associated with the inner product. Generally, a norm on V is a
function f 7→ ∥f∥ satisfying

∥af∥ = |a| · ∥f∥, a ∈ C, f ∈ V,(C.1.12)

∥f∥ > 0 unless f = 0,(C.1.13)

∥f + g∥ ≤ ∥f∥+ ∥g∥.(C.1.14)

The property (C.1.14) is called the triangle inequality. A vector space equipped
with a norm is called a normed vector space. We can define a distance function on
such a space by

(C.1.15) d(f, g) = ∥f − g∥.

If ∥f∥ is given by (C.1.11), from an inner product satisfying (C.1.6), it is clear
that (C.1.12)–(C.1.13) hold, but (C.1.14) requires a demonstration. Note that

(C.1.16)

∥f + g∥2 = (f + g, f + g)

= ∥f∥2 + (f, g) + (g, f) + ∥g∥2

= ∥f∥2 + 2Re(f, g) + ∥g∥2,

while

(C.1.17) (∥f∥+ ∥g∥)2 = ∥f∥2 + 2∥f∥ · ∥g∥+ ∥g∥2.

Thus to establish (C.1.17) it suffices to prove the following, known as Cauchy’s
inequality.

Proposition C.1.1. For any inner product on a vector space V , with ∥f∥ defined
by (C.1.11),

(C.1.18) |(f, g)| ≤ ∥f∥ · ∥g∥, ∀ f, g ∈ V.

Proof. We start with

(C.1.19) 0 ≤ ∥f − g∥2 = ∥f∥2 − 2Re(f, g) + ∥g∥2,

which implies

(C.1.20) 2Re(f, g) ≤ ∥f∥2 + ∥g∥2, ∀ f, g ∈ V.

Replacing f by af for arbitrary a ∈ C of absolute velue 1 yields 2Re a(f, g) ≤
∥f∥2 + ∥g∥2, for all such a, hence

2|(f, g)| ≤ ∥f∥2 + ∥g∥2, ∀ f, g ∈ V.

Replacing f by tf and g by t−1g for arbitrary t ∈ (0,∞), we have

(C.1.21) 2|(f, g)| ≤ t2∥f∥2 + t−2∥g∥2, ∀ f, g ∈ V, t ∈ (0,∞).

If we take t2 = ∥g∥/∥f∥, we obtain the desired inequality (C.1.18). This assumes
f and g are both nonzero, but (C.1.18) is trivial if f or g is 0. �
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An inner product space V is called a Hilbert space if it is a complete metric
space, i.e., if every Cauchy sequence (fν) in V has a limit in V . The space ℓ2 has
this completeness property, but C(S1), with inner product (C.1.7), does not, nor
does R(S1). Appendix A.2 describes a process of constructing the completion of
the space Q. When applied to an incomplete inner product space, it produces a
Hilbert space. When this process is applied to C(S1), the completion is the space
L2(S1). An alternative construction of L2(S1) uses the Lebesgue integral. For this
approach, one can consult Chapter 4 of [16].

For the rest of this appendix, we confine attention to finite-dimensional inner
product spaces.

If V is a finite-dimensional inner product space, a basis {u1, . . . , un} of V is
called an orthonormal basis of V provided

(C.1.22) (uj , uk) = δjk, 1 ≤ j, k ≤ n,

i.e.,

(C.1.23) ∥uj∥ = 1, j ̸= k ⇒ (uj , uk) = 0.

In such a case we see that

(C.1.24)
v = a1u1 + · · ·+ anun, w = b1u1 + · · ·+ bnun

=⇒ (v, w) = a1b1 + · · ·+ anbn.

It is often useful to construct orthonormal bases. The construction we now describe
is called the Gramm-Schmidt construction.

Proposition C.1.2. Let {v1, . . . , vn} be a basis of V , an inner product space. Then
there is an orthonormal basis {u1, . . . , un} of V such that

(C.1.25) Span{uj : j ≤ ℓ} = Span{vj : j ≤ ℓ}, 1 ≤ ℓ ≤ n.

Proof. To begin, take

(C.1.26) u1 =
1

∥v1∥
v1.

Now define the linear transformation P1 : V → V by P1v = (v, u1)u1 and set

ṽ2 = v2 − P1v2 = v2 − (v2, u1)u1.

We see that (ṽ2, u1) = (v2, u1) − (v2, u1) = 0. Also ṽ2 ̸= 0 since u1 and v2 are
linearly independent. Hence we set

(C.1.27) u2 =
1

∥ṽ2∥
ṽ2.

Inductively, suppose we have an orthonormal set {u1, . . . , um} with m < n and
(C.1.25) holding for 1 ≤ ℓ ≤ m. Then define Pm : V → V by

(C.1.28) Pmv = (v, u1)u1 + · · ·+ (v, um)um,

and set

(C.1.29)
ṽm+1 = vm+1 − Pmvm+1

= vm+1 − (vm+1, u1)u1 − · · · − (vm+1, um)um.



322 C. Supplementary material on linear algebra

We see that

(C.1.30) j ≤ m⇒ (ṽm+1, uj) = (vm+1, uj)− (vm+1, uj) = 0.

Also, since vm+1 /∈ Span{v1, . . . , vm} = Span{u1, . . . , um}, it follows that ṽm+1 ̸= 0.
Hence we set

(C.1.31) um+1 =
1

∥ṽm+1∥
ṽm+1.

This completes the construction. �

Example. Take V = P2, with basis {1, x, x2}, and inner product given by

(C.1.32) (p, q) =

∫ 1

−1

p(x)q(x) dx.

The Gramm-Schmidt construction gives first

(C.1.33) u1(x) =
1√
2
.

Then

ṽ2(x) = x,

since by symmetry (x, u1) = 0. Now
∫ 1

−1
x2 dx = 2/3, so we take

(C.1.34) u2(x) =

√
3

2
x.

Next

ṽ3(x) = x2 − (x2, u1)u1 = x2 − 1

3
,

since by symmetry (x2, u2) = 0. Now
∫ 1

−1
(x2 − 1/3)2 dx = 8/45, so we take

(C.1.35) u3(x) =

√
45

8

(
x2 − 1

3

)
.

Let V be an n-dimensional inner product space, W ⊂ V an m-dimensional
linear subspace. By Proposition C.1.2, W has an orthonormal basis

{w1, . . . , wm}.

We know from §2.2 that V has a basis of the form

(C.1.36) {w1, . . . , wm, v1, . . . , vℓ}, ℓ+m = n.

Applying Proposition C.1.2 again gives the following.

Proposition C.1.3. If V is an n-dimensional inner product space and W ⊂ V an
m-dimensional linear subspace, with orthonormal basis {w1, . . . , wm}, then V has
an orthonormal basis of the form

(C.1.37) {w1, . . . , wm, u1, . . . , uℓ}, ℓ+m = n.
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We see that, if we define the orthogonal complement of W in V as

(C.1.38) W⊥ = {v ∈ V : (v, w) = 0, ∀w ∈W},
then

(C.1.39) W⊥ = Span{u1, . . . , uℓ}.
In particular,

(C.1.40) dimW + dimW⊥ = dimV.

In the setting of Proposition C.1.3, we can define PW ∈ L(V ) by

(C.1.41) PW v =

m∑
j=1

(v, wj)wj , for v ∈ V,

and see that PW is uniquely defined by the properties

(C.1.42) PWw = w, ∀w ∈W, PWu = 0, ∀u ∈W⊥.

We call PW the orthogonal projection of V onto W . Note the appearance of such
orthogonal projections in the proof of Proposition C.1.2, namely in (C.1.28).

Another object that arises in the setting of inner product spaces is the adjoint,
defined as follows. If V and W are finite-dimensional inner product spaces and
T ∈ L(V,W ), we define the adjoint

(C.1.43) T ∗ ∈ L(W,V ), (v, T ∗w) = (Tv,w).

If V and W are real vector spaces, we also use the notation T t for the adjoint, and
call it the transpose. In case V =W and T ∈ L(V ), we say

(C.1.44) T is self-adjoint ⇐⇒ T ∗ = T,

and

(C.1.45)
T is unitary (if F = C), or orthogonal (if F = R)

⇐⇒ T ∗ = T−1.
.

The following gives a significant connection between adjoints and orthogonal
complements.

Proposition C.1.4. Let V be an n-dimensional inner product space, W ⊂ V a
linear subspace. Take T ∈ L(V ). Then

(C.1.46) T :W →W =⇒ T ∗ :W⊥ →W⊥.

Proof. Note that

(C.1.47) (w, T ∗u) = (Tw, u) = 0, ∀w ∈W, u ∈W⊥,

if T :W →W . This shows that T ∗u ⊥W for all u ∈W⊥, and we have (C.1.46). �

In particular,

(C.1.48) T = T ∗, T :W →W =⇒ T :W⊥ →W⊥.
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C.2. Eigenvalues and eigenvectors

Let T : V → V be linear. If there is a nonzero v ∈ V such that

(C.2.1) Tv = λjv,

for some λj ∈ F, we say λj is an eigenvalue of T , and v is an eigenvector. Let
E(T, λj) denote the set of vectors v ∈ V such that (C.2.1) holds. It is clear that
E(T, λj) (the λj-eigenspace of T ) is a linear subspace of V and

(C.2.2) T : E(T, λj) −→ E(T, λj).

The set of λj ∈ F such that E(T, λj) ̸= 0 is denoted Spec(T ). Clearly λj ∈ Spec(T )
if and only if T − λjI is not injective, so, if V is finite dimensional,

(C.2.3) λj ∈ Spec(T ) ⇐⇒ det(λjI − T ) = 0.

We call KT (λ) = det(λI − T ) the characteristic polynomial of T .

If F = C, we can use the fundamental theorem of algebra, which says every
non-constant polynomial with complex coefficients has at least one complex root.
(See Appendix E for a proof of this result.) This proves the following.

Proposition C.2.1. If V is a finite-dimensional complex vector space and T ∈
L(V ), then T has at least one eigenvector in V .

Remark. If V is real and KT (λ) does have a real root λj , then there is a real
λj-eigenvector.

Sometimes a linear transformation has only one eigenvector, up to a scalar
multiple. Consider the transformation A : C3 → C3 given by

(C.2.4) A =

2 1 0
0 2 1
0 0 2

 .

We see that det(λI −A) = (λ− 2)3, so λ = 2 is a triple root. It is clear that

(C.2.5) E(A, 2) = Span{e1},

where e1 = (1, 0, 0)t is the first standard basis vector of C3.

If one is given T ∈ L(V ), it is of interest to know whether V has a basis of
eigenvectors of T . The following result is useful.

Proposition C.2.2. Assume that the characteristic polynomial of T ∈ L(V ) has
k distinct roots, λ1, . . . , λk, with eigenvectors vj ∈ E(T, λj), 1 ≤ j ≤ k. Then
{v1, . . . , vk} is linearly independent. In particular, if k = dimV , these vectors form
a basis of V .

Proof. We argue by contradiction. If {v1, . . . , vk} is linearly dependent, take a
minimal subset that is linearly dependent and (reordering if necessary) say this set
is {v1, . . . , vm}, with Tvj = λjvj , and

(C.2.6) c1v1 + · · ·+ cmvm = 0,
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with cj ̸= 0 for each j ∈ {1, . . . ,m}. Applying T − λmI to (C.2.6) gives

(C.2.7) c1(λ1 − λm)v1 + · · ·+ cm−1(λm−1 − λm)vm−1 = 0,

a linear dependence relation on the smaller set {v1, . . . , vm−1}. This contradiction
proves the proposition. �

Here is another important class of transformations that have a full complement
of eigenvectors.

Proposition C.2.3. Let V be an n-dimensional inner product space, T ∈ L(V ).
Assume T is self-adjoint, i.e., T = T ∗. The V has an orthonormal basis of eigen-
vectors of T .

Proof. First, assume V is a complex vector space (F = C). Proposition C.2.1 im-
plies that there exists an eigenvector v1 of T . LetW = Span{v1}. Then Proposition
C.1.4 gives

(C.2.8) T :W⊥ −→W⊥,

and dimW⊥ = n− 1. The proposition then follows by induction on n. �

If V is a real vector space (F = R), then the characteristic polynomial det(λI−
T ) has a complex root, say λ1 ∈ C. Denote by Ṽ the complexification of V .

The transformation T extends to T ∈ L(Ṽ ), as a self-adjoint transformation on

this complex inner product space. Hence there exists nonzero v1 ∈ Ṽ such that
Tv1 = λ1v1. We now take note of the following.

Proposition C.2.4. If T = T ∗, every eigenvalue of T is real.

Proof. Say Tv1 = λ1v1, v1 ̸= 0. Then

(C.2.9)
λ1∥v1∥2 = (λ1v1, v1) = (Tv1, v1)

= (v1, T v1) = (v1, λv1) = λ1∥v1∥2.

Hence λ1 = λ1, so λ1 is real. �

Returning to the proof of Proposition C.2.3 when V is a real inner product
space, we see that the (complex) root λ1 of det(λI−T ) must in fact be real. Hence
λ1I−T : V → V is not injective, so there exists a λ1-eigenvector v1 ∈ V . Induction
on n, as in the argument above, finishes the proof.

Here is a useful general result on orthogonality of eigenvectors.

Proposition C.2.5. Let V be an inner product space, T ∈ L(V ). If

(C.2.10) Tu = λu, T ∗v = µv, λ ̸= µ,

then

(C.2.11) u ⊥ v.

Proof. We have

(C.2.12) λ(u, v) = (Tu, v) = (u, T ∗v) = µ(u, v).

�
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As a corollary, it T = T ∗, then

Tu = λu, Tv = µv, λ ̸= µ⇒ u ⊥ v.

Our next goal is to extend Proposition C.2.3 to a broader class of transforma-
tions. Given T ∈ L(V ), where V is an n-dimensional complex inner product space,
we say T is normal if T and T ∗ commute, i.e., TT ∗ = T ∗T . Equivalently, taking

(C.2.13) T = A+ iB, A = A∗, B = B∗,

we have

(C.2.14) T normal ⇐⇒ AB = BA.

Generally, for A,B ∈ L(V ), we see that

(C.2.15) BA = AB =⇒ B : E(A, λj) → E(A, λj).

Thus, in the setting of (C.2.13), we can find an orthonormal basis of each space
E(A, λ), λ ∈ SpecA, consisting of eigenvectors of B, to get an orthonormal basis
of V consisting of vectors that are simultaneously eigenvectors of A and B, hence
eigenvectors of T . This establishes the following.

Proposition C.2.6. Let V be an n-dimensional complex inner product space, T ∈
L(V ) a normal transformation. Then V has an orthonormal basis of eigenvectore
of T .

Note that if T has the form (C.2.13)–(C.2.14) and λ = a+ ib, a, b ∈ R, then

(C.2.16)
E(T, λ) = E(A, a) ∩ E(B, b)

= E(T ∗, λ).

We deduce from Proposition C.2.5 the following.

Proposition C.2.7. In the setting of Proposition C.2.6, with T normal,

(C.2.17) λ ̸= µ =⇒ E(T, λ) ⊥ E(T, µ).

An important class of normal operators is the class of unitary operators, defined
in §C.1. We recall that if V is an inner product space and T ∈ L(V ), then

(C.2.18) T is unitary ⇐⇒ T ∗ = T−1.

We write T ∈ U(V ), if V is a complex inner product space. We see from (C.2.16)
(or directly) that

(C.2.19)
T ∈ U(V ), λ ∈ SpecT =⇒ λ = λ−1

=⇒ |λ| = 1.

We deduce that if T ∈ U(V ), then V has an orthonormal basis of eigenvectors of
T , each eigenvalue being a complex number of absolute value 1.

If V is a real n-dimensional inner product space and (C.2.18) holds, we say T
is an orthogonal transformation, and write T ∈ O(V ). In such a case, V typically
does not have an orthonormal basis of eigenvectors of T . However, V does have an
orthonormal basis with respect to which such an orthogonal transformation has a
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special structure, as we proceed to show. To get it, we construct the complexification
of V ,

(C.2.20) VC = {u+ iv : u, v ∈ V },

which has a natural structure of a complex n-dimensional vector space, with a Her-
mitian inner product. A transformation T ∈ O(V ) has a unique C-linear extension
to a transformation on VC, which we continue to denote by T , and this extended
transformation is unitary on VC. Hence VC has an orthonormal basis of eigenvectors
of T . Say u+ iv ∈ VC is such an eigenvector,

(C.2.21) T (u+ iv) = e−iθ(u+ iv), eiθ /∈ {1,−1}.

Writing eiθ = c+ is, c, s ∈ R, we have

(C.2.22)
Tu+ iTv = (c− is)(u+ iv)

= cu+ sv + i(−su+ cv),

hence

(C.2.23)
Tu = cu+ sv,

Tv = −su+ cv.

In such a case, applying complex conjugation to (C.2.21) yields

T (u− iv) = eiθ(u− iv),

and eiθ ̸= e−iθ if eiθ /∈ {1,−1}, so Proposition C.2.7 yields

(C.2.24) u+ iv ⊥ u− iv,

hence

(C.2.25)

0 = (u+ iv, u− iv)

= (u, u)− (v, v) + i(v, u) + i(u, v)

= |u|2 − |v|2 + 2i(u, v),

or equivalently

(C.2.26) |u| = |v| and u ⊥ v.

Now

Span{u, v} ⊂ V

has an (n−2)-dimensional orthogonal complement, on which T acts, and an induc-
tive argument gives the following.

Proposition C.2.8. Let V be a n-dimensional real inner product space, T : V → V
an orthogonal transformation. Then V has an orthonormal basis in which the
matrix representation of T consists of blocks

(C.2.27)

(
cj −sj
sj cj

)
, c2j + s2j = 1,

plus perhaps an identity matrix block if 1 ∈ SpecT , and a block that is −I if
−1 ∈ SpecT .

This result has the following consequence, advertised in Exercise 14 of §6.1.
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Corollary C.2.9. For each integer n ≥ 2,

(C.2.28) Exp : Skew(n) −→ SO(n) is onto.

As in §6.1 we leave the proof as an exercise for the reader. The key is to use the
Euler-type identity

(C.2.29) J =

(
0 −1
1 0

)
=⇒ eθJ =

(
cos θ − sin θ
sin θ cos θ

)
.

In cases when T is a linear transform on an n-dimensional complex vector space
V , and V does not have a basis of eigenvectors of T , it is useful to have the concept
of a generalized eigenspace, defined as

(C.2.30) GE(T, λj) = {v ∈ V : (t− λjI)
kv = 0 for some k}.

If λj is an eigenvalue of T , nonzero elements of GE(T, λj) are called generalized
eigenvectors. Clearly E(T, λj) ⊂ GE(T, λj). Also T : GE(T, λj) → GE(T, λj).
Furthermore, one has the following.

Proposition C.2.10. If µ ̸= λj, then

(C.2.31) T − µI : GE(T, λj)
≈−→ GE(T, λj).

It is useful to know the following.

Proposition C.2.11. If W is an n-dimensional complex vector space, and T ∈
L(V ), then W has a basis of generalized eigenvectors of T .

We will not give a proof of this result here. A proof can be found in Chapter
2, §7 of [19], and also in [20].
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C.3. Matrix norms

Let V and W be inner product spaces, of dimension n and m, respectively. They
can be real or complex. If T ∈ L(V,W ), we define

(C.3.1) ∥T∥ = sup{∥Tv∥ : ∥v∥ ≤ 1}.

Equivalently, ∥T∥ is the smallest quantity K such that

(C.3.2) ∥Tv∥ ≤ K∥v∥, ∀ v ∈ V.

To see the equivalence, note that (C.3.2) holds if and only if ∥Tv∥ ≤ K for all v
such that ∥v∥ = 1. We call ∥T∥ the operator norm of T . The fact that the unit ball
in V is compact guarantees that ∥T∥ is well defined. We will make some explicit
estimates below.

If also S :W → X, another inner product space, then

(C.3.3) ∥STv∥ ≤ ∥S∥ ∥TV ∥ ≤ ∥S∥ ∥T∥ ∥v∥, ∀ v ∈ V,

and hence

(C.3.4) ∥ST∥ ≤ ∥S∥ ∥T∥.

In particular, we have by induction that

(C.3.5) T ∈ L(V ) =⇒ ∥T k∥ ≤ ∥T∥k, ∀ k ∈ N.

This will be useful when we discuss the matrix exponential, in §C.4.
We turn to the notion of the trace of a transformation T ∈ L(V ). We start

with A = (ajk) ∈M(n,F), and as in §2.4 we set

(C.3.6) TrA =

n∑
j=1

ajj .

Note that is also B = (bjk) ∈M(n,F), then

(C.3.7)

AB = C = (cjk), cjk =
∑
ℓ

ajℓbℓk,

BA = D = (djk), djk =
∑
ℓ

bjℓaℓk,

and hence

(C.3.8) TrAB =
∑
j,ℓ

ajℓbℓj = TrBA.

Hence, if B is invertible,

(C.3.9) TrB−1AB = TrABB−1 = TrA.

Now, if T ∈ L(V ), we can choose a basis S = {v1, . . . , vn} of V , and set up an
isomorphism JS : Fn → V , and define

(C.3.10) TrT = TrA, A = J−1
S TJS .

It follows from (C.3.9) that this is independent of the choice of basis of V .
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Next we recall from §C.1 the notion of the adjoint of T ∈ L(V,W ), the map
T ∗ ∈ L(W,V ) satisfying

(C.3.11) (Tv,w) = (v, T ∗w), ∀ v ∈ V, w ∈W.

If {v1, . . . , vn} is an orthonormal basis of V and {w1, . . . , wm} an orthonormal basis
of W , then

(C.3.12) A = (aij), aij = (Tvj , wi)

is the matrix representation of T , and the matrix representation of T ∗ is

(C.3.13) A∗ = (aji).

Now we define the Hilbert-Schmidt norm of T ∈ L(V,W ) when V and W are
finite-dimensional inner product spaces. Namely, we set

(C.3.14) ∥T∥2HS = TrT ∗T = TrTT ∗.

In terms of the matrix representation (C.3.12) of T , we have

(C.3.15) T ∗T = (bjk), bjk =
∑
ℓ

aℓjaℓk,

hence

(C.3.16) ∥T∥2HS =
∑
j

bjj =
∑
j,k

|ajk|2.

Equivalently, using an arbitrary orthonormal basis {v1, . . . , vn} of V , we have

(C.3.17) ∥T∥2HS =

n∑
j=1

∥Tvj∥2.

If also {w1, . . . , wm} is an orthonormal basis of W , then

(C.3.18)

∥T∥2HS =
∑
j,k

|(Tvj , wk)|2 =
∑
j,k

|(vj , T ∗wk)|2

=
∑
k

∥T ∗wk∥2.

This gives ∥T∥HS = ∥T ∗∥HS. Also the right side of (C.3.18) is clearly independent
of the choice of orthonormal basis {v1, . . . , vn} of V . Of course, we already know
that the right side of (C.3.14) is independent of such a choice of basis.

Using (C.3.17), we can show that the operator norm of ∥T∥ is dominated by
the Hilbert-Schmidt norm:

(C.3.19) ∥T∥ ≤ ∥T∥HS.

In fact, pick a unit v1 ∈ V such that ∥Tv1∥ is maximized over {v : ∥v∥ ≤ 1}, extend
this to an orthonormal basis {v1, . . . , vn}, and use

(C.3.20) ∥T∥2 = ∥Tv1∥2 ≤
n∑

j=1

∥Tvj∥2 = ∥T∥2HS.

Also we can dominate each term on the right side of (C.3.17) by ∥T∥2, so
(C.3.21) ∥T∥HS ≤

√
n ∥T∥, n = dimV.
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Another consequence of (C.3.17)–(C.3.19) is

(C.3.22) ∥ST∥HS ≤ ∥S∥ ∥T∥HS ≤ ∥S∥HS∥T∥HS,

for S as in (C.3.3). In particular, parallel to (C.3.5), we have

(C.3.23) T ∈ L(V ) =⇒ ∥T k∥HS ≤ ∥T∥kHS, ∀ k ∈ N.

Exercises

Here V and W are finite-dimensional inner product spaces.

1. Let S, T ∈ L(V,W ). Show that

∥S + T∥ ≤ ∥S∥+ ∥T∥, ∥S + T∥HS ≤ ∥S∥HS + ∥T∥HS.

2. Show that, if T ∈ L(V ), k ∈ N,
∥T k∥HS ≤ ∥T∥k−1∥T∥HS.

3. Suppose A ∈ L(V ) and ∥A∥ < 1. Show that

(I −A)−1 = I +A+A2 + · · ·+Ak + · · · ,
a convergent series.

4. Show that, for any real θ, the matrix

A =

(
cos θ − sin θ
sin θ cos θ

)
has operator norm 1. Compute its Hilbert-Schmidt norm.

5. Show that, for T ∈ L(V ),

∥T∥ = sup{|(Tu, v)| : ∥u∥, ∥v∥ ≤ 1}.
Show that

∥T ∗∥ = ∥T∥ and ∥T ∗T∥ = ∥T∥2.
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C.4. The matrix exponential

Given A ∈ M(n,R) or M(n,C), the matrix exponential Exp(tA) = etA is con-
structed to solve the differential equation

(C.4.1)
d

dt
etA = AetA, e0A = I.

Trying a power series representation and arguing as in §3.2 yields a solution which
we take to define etA:

(C.4.2) etA =

∞∑
k=0

tk

k!
Ak.

Note that we then also have

(C.4.3)
d

dt
etA = etAA.

We claim that this solution is unique, i.e., if X : R →M(n,C) solves

(C.4.4) X ′(t) = AX(t), X(0) = I,

then X(t) = etA. To see this, note that

(C.4.5)

d

dt
e−tAX(t) = e−tAX ′(t)− e−tAAX(t)

= e−tAAX(t)− e−tAAX(t)

= 0,

so e−tAX(t) is independent of t. Taking t = 0 gives

(C.4.6) e−tAX(t) = I, ∀ t ∈ R.

This holds for each solution to (C.4.4), in particular for etA, so

(C.4.7) e−tAetA = I, ∀ t ∈ R.

Hence we can multiply each side of (C.4.6) on the left by etA, to get the desired
result.

Continuing along this line, we can compute

(C.4.8)
d

dt
e(s+t)Ae−tA = 0,

to get e(s+t)Ae−tA = esA, hence

(C.4.9) e(s+t)A = esAetA, ∀ s, t ∈ R, A ∈M(n,C).

A related identity is

(C.4.10) et(A+B) = etAetB , provided AB = BA,

given A,B ∈M(n,C). To see this, we compute that

(C.4.11)
d

dt
et(A+B)e−tBe−tA = 0,

provided

(C.4.12) e−tBA = Ae−tB ,
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which holds provided AB = BA. The desired identity (C.4.10) then follows from
(C.4.11).

The matrix exponential plays an important role in the study of n × n linear
systems of differential equations. For more on this, see Chapter 3 of [19].

If A(t) is a smooth function of t with values in M(n,C), one does not always
have an explicit formula for solutions to

(C.4.13)
d

dt
X(t) = A(t)X(t), X(0) = I,

though there is a body of results on this sort of system of ODE, which can be found
in [19]. On the other hand, one does have a neat formula in the special case that

(C.4.14) A(t1)A(t2) = A(t2)A(t1), ∀ tj .

We can get this by observing that if B(t) is a smooth function of t with values in
M(n,C), and if

(C.4.15) B(t1)B(t2) = B(t2)B(t1), ∀ tj ,

then, thanks to (C.4.10), we have

(C.4.16)
d

dt
eB(t) = B′(t)eB(t).

Hence a solution to (C.4.13) is given by

(C.4.17) X(t) = eB(t), B(t) =

∫ t

0

A(τ) dτ,

provided (C.4.14) holds.

Exercises

1. Use results of §C.3 to show that, for A ∈M(n,F),∥∥∥m+n∑
k=m

tk

k!
Ak
∥∥∥ ≤

m+n∑
k=m

|t|k

k!
∥A∥k.

Use the ratio test and the WeierstrassM -test to show that the infinite series (C.4.2)
converges for all t ∈ R, uniformly on |t| ≤ R, for each R <∞.

2. Show that (C.4.15) implies (C.4.16).
Hint. Start with

eB(t+h) − eB(t) =
[
eB(t+h)−B(t) − I

]
eB(t),

and plug in the power series for

eY , Y = B(t+ h)−B(t) = hB′(t) + o(h).
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3. Show that, for A ∈M(n,C), λ ∈ C,
Av = λv =⇒ etAv = etλv.

4. Show that

(A− λI)2v = 0 =⇒ etAv = etλ
[
I + t(A− λI)

]
v.

Extend this calculation to the setting where

(A− λI)kv = 0.

Hint. Start by showing that etA = et(λI+(A−λI))v = etλet(A−λI), via (C.4.10).



Appendix D

Green’s theorem and complex
differentiable functions

Let f be a complex valued C1 function on a region Ω ⊂ R2. We identify R2 and C,
via z = x + iy, and write f(z) = f(x, y). We say f is holomorphic on Ω provided
it is complex differentiable, in the sense that

(D.0.1) lim
h→0

1

h

[
f(z + h)− f(z)

]
exists,

for each z ∈ Ω. When this limit exists, we denote it f ′(x), or df/dz. An equivalent
condition (given f ∈ C1) is that f satisfies the Cauchy-Riemann equation

(D.0.2)
∂f

∂x
=

1

i

∂f

∂y
.

In such a case,

(D.0.3) f ′(z) =
∂f

∂x
(z) =

1

i

∂f

∂y
(z).

Note that f(z) = z has this property, but f(z) = z does not. The following is a
convenient tool for producing more holomorphic functions.

Lemma D.0.1. If f and g are holomorphic on Ω, so is fg.

Proof. We have

(D.0.4)
∂

∂x
(fg) =

∂f

∂x
g + f

∂g

∂x
,

∂

∂y
(fg) =

∂f

∂y
g + f

∂g

∂y
,

so if f and g satisfy the Cauchy-Riemann equation, so does fg. �

Note that

(D.0.5)
d

dz
(fg) = f ′(z)g(z) + f(z)g′(z).

335
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Using this lemma, we can inductively show that if k ∈ N, then zk is holomorphic
on C, and

(D.0.6)
d

dz
zk = kzk−1.

We can also treat 1/z:

(D.0.7)
d

dz

1

z
= lim

h→0

1

h

( 1

z + h
− 1

z

)
= lim

h→0

1

h

−h
z(z + h)

= − 1

z2
.

Then we can verify (D.0.6) for all k ∈ Z (z ∈ C \ 0 if k < 0).

Here is another important example.

Lemma D.0.2. The exponential function ez is holomorphic on C, and

(D.0.8)
d

dz
ez = ez.

Proof. Write ez = ex+iy = exeiy. Then

(D.0.9)
∂

∂x
exeiy = exeiy,

∂

∂y
exeiy = iexeiy,

so the Cauchy-Riemann equation holds and we have (D.0.8). �

Our goal in this appendix is to show how Green’s theorem can be used to
establish results about holomorphic functions on domains in C. The first result is
the Cauchy integral theorem, established in §D.1. This is followed in §D.2 by the
Cauchy integral formula, and in §D.3 by Liouville’s theorem, which will be applied
in Appendix E.

Material here gives a taste of results in the important area of complex function
theory. For more on this, the reader can look at [17].
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D.1. The Cauchy integral theorem

Let Ω ⊂ C be a smoothly bounded open set, with closure Ω. The Cauchy integral
theorem says the following.

Theorem D.1.1. Assume f : Ω → C is C1, and holomorphic on Ω. Then

(D.1.1)

∫
∂Ω

f(z) dz = 0.

Proof. Here dz = dx+ idy, so

(D.1.2)

∫
∂Ω

f(z) dz =

∫
∂Ω

f dx+ if dy.

Recall that Green’s theorem gives

(D.1.3)

∫
∂Ω

f dx+ g dy =

∫
Ω

(∂g
∂x

− ∂f

∂y

)
dx dy.

We apply this with g = if . We see that (D.1.2) is equal to the left side of (D.1.3),
with g = if . In this case, the right side of (D.1.3) is equal to

(D.1.4)

∫
Ω

(
i
∂f

∂x
− ∂f

∂y

)
dx dy = 0,

by the Cauchy-Riemann equation for f . �
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D.2. The Cauchy integral formula

As in §D.1, let Ω ⊂ C be a smoothly bounded open set, with closure Ω. The Cauchy
integral formula is the following.

Theorem D.2.1. Assume f : Ω → C is C1, and holomorphic on Ω. Then

(D.2.1) f(z0) =
1

2πi

∫
∂Ω

f(z)

z − z0
dz,

for each z0 ∈ Ω.

Proof. Pick ε0 > 0 so small that Dε0(z0) ⊂ Ω. For ε ∈ (0, ε0), let Ωε = Ω\Dε(z0).
Then

(D.2.2) g(z) =
f(z)

z − z0
is holomorphic on Ωε,

and C1 on Ωε, so Theorem D.1.1 implies

(D.2.3)

∫
∂Ωε

g(z) dz = 0,

hence

(D.2.4)

∫
∂Ω

f(z)

z − z0
dz =

∫
∂Dε(z0)

f(z)

z − z0
dz.

Parametrizing ∂Dε(z0) by γ(t) = z0 + εeit, so γ′(t) = iεeit, we see that the right
side of (D.2.4) is equal to

(D.2.5)

∫ 2π

0

f(z0 + εeit)

εeit
iεeit dt = i

∫ 2π

0

f(z0 + εeit) dt,

and taking the limit ε→ 0 gives (D.2.1). �

It is useful to change labels, and write (D.2.1) as

(D.2.6) f(z) =
1

2πi

∫
∂Ω

f(ζ)

z − ζ
dζ, z ∈ Ω.

Now it is natural to regard z as a variable and take the z-derivative. Parallel to
(D.0.7), we have

(D.2.7)
d

dz

1

ζ − z
=

1

(ζ − z)2
,

and (D.2.6) yields

(D.2.8) f ′(z) =
1

2πi

∫
∂Ω

f(ζ)

(ζ − z)2
dζ, z ∈ Ω.

We see from (D.2.8) that f ′ is holomorphic on Ω. We can keep this up, obtaining
inductively that

(D.2.9) f (n)(z) =
n!

2πi

∫
∂Ω

f(ζ)

(ζ − z)n+1
dζ, z ∈ Ω.
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D.3. Liouville’s theorem

The following consequence of the Cauchy integral formula is known as Liouville’s
theorem.

Theorem D.3.1. Let f : C → C be holomorphic. If f is bounded, i.e.,

(D.3.1) |f(z)| ≤M <∞, ∀ z ∈ C,
then f is constant.

Proof. We will show that the hypothesis (D.3.1) implies that f ′ is identically zero,
which implies that f is constant. To see this, apply (D.2.8) with Ω = DR(z).
Parametrizing ∂DR(z) by γ(t) = z +Reit, we have

(D.3.2)

f ′(z) =
1

2πi

∫
∂DR(z)

f(ζ)

(ζ − z)2
dζ

=
1

2πR

∫ 2π

0

f(z +Reit) dt,

hence

(D.3.3) |f ′(z)| ≤ M

R
.

Taking R→ ∞ yields

(D.3.4) |f ′(z)| = 0, ∀ z ∈ C,
and we are done. �





Appendix E

Polynomials and the
fundamental theorem of
algebra

The polynomial

(E.0.1) p(x) = x2 + 1, x ∈ R,
clearly has no real root. The complex number i =

√
−1 was introduced to provide

such a root. Then there is a factorization

(E.0.2) z2 + 1 = (z + i)(z − i), z ∈ C.
It was then established that one need go no further to produce roots of polynomials.
The fundamental theorem of algebra asserts that every nonconstant polynomial

(E.0.3) p(z) = anz
n + an−1z

n−1 + · · ·+ a0,

with aj ∈ C, n ≥ 1, an ̸= 0, vanishes for some z ∈ C. Furthermore, such a
polynomial has a factorization into linear factors. This result is of use in Appendix
C, to produce eigenvalues of matrices, which in turn is useful for the study of
Hessian matrices in Chapter 3.

We give two proofs of the fundamental theorem of algebra, one in §E.1 that
is elementary, in the sense that it does not use Green’s theorem, and a second in
§E.2, which uses Liouville’s theorem, established in §D.3 as a consequence of the
Cauchy integral theorem.
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E.1. Elementary proof of the fundamental theorem of algebra

The following result is the fundamental theorem of algebra.

Theorem E.1.1. If P (z) is a nonconstant polynomial (with complex coefficients),
then p(z) must have a complex root.

Proof. We have, for some n ≥ 1, an ̸= 0,

(E.1.1)
p(z) = anz

n + · · ·+ a1z + a0

= anz
n
(
1 +O(z−1)

)
, |z| → ∞,

which implies

(E.1.2) lim
|z|→∞|

|p(z)| = ∞.

Picking R ∈ (0,∞) such that

(E.1.3) inf
|z|≥R

|p(z)| > |p(0)|,

we deduce that

(E.1.4) inf
|z|≤R

|p(z)| = inf
z∈C

|p(z)|.

Since DR = {z : |z| ≤ R} is compact and p is continuous, there exists z0 ∈ DR

such that

(E.1.5) |p(z0)| = inf
z∈C

|p(z)|.

The theorem hence follows from the following result. �
Lemma E.1.2. If p(z) is a nonconstant polynomial and (E.1.5) holds, then p(z0) =
0.

Proof. Suppose to the contrary that

(E.1.6) p(z0) = a ̸= 0.

We can write

(E.1.7) p(z0 + ζ) = a+ q(ζ),

where q(ζ) is a (nonconstant) polynomial in ζ, satisfying q(0) = 0. Hence, for some
k ≥ 1 and b ̸= 0, we have q(ζ) = bζk + · · ·+ bnζ

n, i.e.,

(E.1.8) q(ζ) = bζk +O(ζk+1), ζ → 0,

so, uniformly on S1 = {ω ∈ C : |ω = 1},
(E.1.9) p(z0 + εω) = a+ bωkεk +O(εk+1), ε↘ 0.

Pick ω ∈ S1 such that

(E.1.10)
b

|b|
ωk = − a

|a|
,

which is possible since a ̸= 0 and b ̸= 0. In more detail, since −(a/|a|)(|b|, b) ∈ S1,
Euler’s identity implies

− a

|a|
|b|
b

= eiθ,
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for some θ ∈ R, so we can take
ω = eiθ/k.

Given (E.1.10),

(E.1.11) p(z0 + εω) = a
(
1−

∣∣∣ b
a

∣∣∣εk)+O(εk+1),

which contradicts (E.1.5) for ε > 0 small enough. Thus (E.1.6) is impossible. This
proves Lemma E.1.2, hence Theorem E.1.1. �

Now that we have shown that p(z) in (E.1.1) must have one root, we can show
that it has n roots (counting multiplicity).

Proposition E.1.3. For a polynomial p(z) of degree n as in (E.1.1), there exist
r1, . . . , rn ∈ C such that

(E.1.12) p(z) = an(z − r1) · · · (z − rn).

Proof. We have shown that p(z) has one root, call it r1. Dividing p(z) by z − r1,
we have

(E.1.13) p(z) = (z − r1)p̃(z) + q,

where p̃(z) = azn−1 + · · ·+ ã0 and q is a polynomial of degree < 1, i.e., a constant.
Setting z = r1 in (E.1.13) yields q = 0, so

(E.1.14) p(z) = (z − r1)p̃(z).

Since p̃(z) is apolynomial of degree n − 1, the result (E.1.12) follows by induction
on n. �

The numbers rj , 1 ≤ j ≤ n in (E.1.12) are called the roots of p(z). If k of them
coincide (say with rℓ) we say rℓ is a root of multiplicity k. If rℓ is distinct from rj
for all j ̸= ℓ, we say rℓ is a simple root.
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E.2. Proof via Liouville’s theorem

Here we use Liouville’s theorem to give a second proof of the fundamental theorem
of algebra. So take a polynomial

(E.2.1) p(z) = anz
n + · · ·+ a1z + a0, an ̸= 0, n ≥ 1.

We will continue to make use of (E.1.2), i.e.,

(E.2.2) lim
|z|→∞

|p(z)| = ∞.

Now suppose

(E.2.3) p(z) ̸= 0, ∀ z ∈ C.
Set

(E.2.4) f(z) =
1

p(z)
, z ∈ C.

Then f(z) is holomorphic on C; one checks that

(E.2.5) f ′(z) = − p′(z)

p(z)2
.

However, (E.2.2) implies |f(z)| → 0 as |z| → ∞, hence f is bounded. Then
Liouville’s theorem implies f is constant. This is clearly not possible, so we have a
contradiction to (E.2.3). This completes the second proof of Theorem E.1.1.
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absolute value, 278, 301
absolutely convergent series, 290, 303
acceleration, 117
addition, 284, 300
adjoint, 323, 330
algebra of sets, 173
alternating series, 290
angle, 304
antipodal points, 267
arc length, 85, 89, 228
Archimedean property, 286
arclength, 117
arctangent, 107
area, 172, 230
area under a curve, 178
average, 201
averaging over rotations, 232
averaging rotations, 254

basis, 61
binomial coefficients, 37
binomial formula, 37
binormal, 117
bisection method, 299
Bolzano-Weierstrass theorem, 53, 288,

295
boundary, 172
bounded sequence, 279

calculus, 1
Cantor set, 26, 297
Cauchy integral formula, 338
Cauchy integral theorem, 337
Cauchy remainder formula, 32, 39

Cauchy sequence, 52, 279, 284, 287, 294

Cauchy’s inequality, 51, 320

Cauchy-Riemann equation, 335

Cauchy-Riemann equations, 132, 162

cell, 169

center of mass, 201

chain rule, 3, 24, 129, 227

change of variable formula, 24, 85, 185,
186, 194, 214, 228

characteristic function, 15, 172

characteristic polynomial, 324

circle, 85

cis, 102, 303

closed set, 52, 294, 304

closure, 172, 294

cofactor matrix, 73, 133

column vector, 50, 60

compact, 53

compact set, 294, 304

completeness property, 52, 288, 294

complex analytic, 132

complex conjugate, 301

complex differentiable, 335

complex number, 300

complexification, 327

connected, 273

content, 15, 172

continuous, 126, 171, 310

continuous function, 13, 295

continuum hypothesis, 298

contraction mapping theorem, 152

convergence, 52

convergent power series, 144
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convergent sequence, 278, 287
convergent series, 289
convex, 8, 98
coordinate chart, 224
cos, 86, 101, 242, 303
cosh, 104, 106
Cramer’s formula, 73, 133
critical point, 138, 149, 251
cross product, 77, 117, 228
curl, 262
curvature, 113, 117
curvature vector, 112
curve, 83, 117, 228

Darboux theorem, 14, 18, 171, 248
definition vs. formula, 71
derivative, 2, 29, 126, 233
det, 68
determinant, 68, 132
diffeomorphism, 151, 226, 269
differentiability of power series, 145
differentiable, 2, 126, 233
differential equation, 97
dimension, 61
distance, 51
div, 259
divergence, 259
divergence theorem, 259
dominated convergence theorem, 27, 47
dot product, 50

eigenspace, 324
eigenvalue, 272, 324
eigenvector, 272, 324
ellipse, 88
ellipsoid, 196
embedding, 269
equivalence class, 284
Euclidean metric tensor, 229
Euclidean space, 50, 128
Euler identity, 102, 107, 114, 304
Euler’s formula, 242, 328, 342
Exp, 156, 231, 243, 327
exp, 98
expansion by minors, 73
exponential function, 97, 303, 336
exponential map, 231
extremal problem, 138

fixed point, 152
flat torus, 268
Frenet frame, 117

Frenet-Serret equations, 119
Fubini’s theorem, 175, 184, 194, 198
fundamental theorem of algebra, 324,

342
fundamental theorem of calculus, 17,

24, 29, 127
fundamental theorem of linear algebra,

63, 235

Gl+(n,R), 272, 273
Gamma function, 219, 230
Gauss formula, 259
Gaussian integral, 195
generalized eigenspace, 328
generalized mean value theorem, 9, 39
geometric series, 292
Gl(n,R), 128
global diffeomorphism, 154
Gramm-Schmidt construction, 321
Green formulas, 264
Green’s theorem, 261

Haar measure, 232
harmonic, 265
Heine-Borel theorem, 54, 297
Hessian, 138
Hilbert space, 321
Hilbert-Schmidt norm, 75
holomorphic, 132, 162, 335

imaginary part, 301
implicit function theorem, 157, 234
improper integral, 41
infimum, 291
infinite decimal expansion, 291
infinite series, 289
injective, 61
inner product, 227, 319
inner tube, 243
integral, 11
integral remainder formula, 32
integral test, 26
integration by parts, 24, 231
interior, 172
intermediate value theorem, 296
interval, 11, 294
inverse, 61
inverse function theorem, 5, 10, 151,

225, 231, 233
invertible, 65, 72
isometric embedding, 270
isomorphism, 61
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iterated integral, 175

Lagrange multiplier, 252
Lagrange remainder formula, 32, 39,

142
Lagrange’s identity, 78
Laplace operator, 264
law of cosines, 96
least upper bound, 289
Lebesgue integral, 44
Lebesgue measure, 16
Leibniz identity, 40, 148
length, 85
limit, 278
line integral, 260
linear transformation, 59, 126
linearly dependent, 61
linearly independent, 61
Liouville’s theorem, 339
Lipschitz, 174
Lipschitz continuous, 17
local diffeomorphism, 154
local maximum, 8, 38, 139, 149
local minimum, 7, 38, 139, 149
log, 99
logarithm, 99
lower content, 172

M(n,F), 66, 68
M(n,R), 231
manifold, 267
matrix, 59
matrix exponential, 114, 156, 242, 332
matrix multiplication, 60
max, 295
maximum, 3
maxsize, 11, 169
mean value, 201
mean value theorem, 4, 18, 27, 134
metric space, 51
metric tensor, 227, 268
min, 295
minimum, 3
minsize, 13
monotone convergence theorem, 216
monotone function, 21
monotone sequence, 279
multi-index notation, 135
multi-linear notation, 143
multi-linear Taylor formula, 144
multiplication, 284, 300
multiplicativity, 72

negative definite, 139
Newton method miracle, 161
Newton’s method, 155, 161
nil set, 173
norm, 50, 126, 320
normal, 117
normal derivative, 264
normal transformation, 326
null space, 61

O(n), 66
open set, 52, 126, 294, 304
operator norm, 329
order relation, 286
orthogonal, 54, 79
orthogonal complement, 323
orthogonal projection, 323
orthogonal transformation, 326
orthonormal, 54
orthonormal basis, 66, 227, 272, 321
outer measure, 16, 221

Pappus’s theorem, 208
parabola, 87
parametrization by arc length, 85
partial derivative, 7, 126
partition, 11, 169
partition of unity, 274
path integral, 260
perfect set, 298
permutation, 70
pi, 86, 103, 104, 199, 305
piecewise constant function, 22
PK, 182
polar coordinates, 88, 155, 190, 206
polar decomposition, 272
polynomial, 59
positive definite, 139
power series, 28, 97
power series remainder formula, 31
product rule, 2
projection, 247
projective space, 267
Pythagorean theorem, 51
Pythagorean triple, 308

quotient surface, 267

R-average, 255
radius of convergence, 28
range, 61
ratio test, 37, 97, 283, 293
real analytic, 162
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real number, 284
real part, 301
regular pentagon, 306
reparametrization, 83
representation, 247
Riemann integrability criterion, 221
Riemann integrable, 13, 171, 238
Riemann integral, 11, 169
Riemann sum, 15, 83, 171
rotation group, 232
row operation, 185, 200
row reduction, 185
row vector, 50

saddle point, 140, 149
sec, 103, 106
second derivative, 7
self-adjoint, 323
sequence, 278
sin, 86, 101, 242, 303
sinh, 104, 106, 245
Skew(n), 231, 243, 327
SO(n), 74, 231, 243, 327
SO(3), 77
solid of rotation, 179
span, 61
Spec, 324
speed, 83, 117
sphere, 229, 230
sphere bundle, 236
spherical coordinates, 270
spherical polar coordinates, 191, 196,

206, 229
stereographic projection, 249
Stokes formula, 263
submersion, 234
submersion mapping theorem, 234
subsequence, 279
supremum, 289
supremum property, 289
surface, 224
surface integral, 228
surface of revolution, 246
surjective, 61
Sym(n), 237, 255, 272

tan, 92, 103, 106
tangent bundle, 235
tangent space, 227
tangent vector, 112, 117
Taylor formula with remainder, 136
Taylor’s formula with remainder, 24

torsion, 117
totally disconnected, 298
Tr, 75
trace, 75
transpose, 66
triangle inequality, 51, 278, 302, 320
trig table, 109
trigonometric function, 97
trigonometric identities, 304

unbounded integrable function, 41, 211
uniform convergence, 312
uniformly continuous, 310
unit normal, 112
unitary, 323
upper content, 172

vector space, 58, 128, 319
velocity, 83, 117
volume, 169, 172, 229
volume of a ball, 196, 239

Weierstrass M-test, 28, 314


