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Preface

This is a text for students with a background in one-variable calculus, who are
ready to tackle calculus in several variables. It is designed for the honors section of
Math 233 at the University of North Carolina.

Chapter 1 presents a brisk review of the basics of calculus in one variable:
definitions and elementary properties of the derivative and integral, the fundamental
theorem of calculus, and power series. One might skim over this introductory
chapter to see if a refresher is needed for some of this material.

Multivariable calculus is done on multidimensional spaces. Chapter 2 intro-
duces algebraic tools useful for this study. We start with a section on n-dimensional
Euclidean space R™, which has a linear structure, and also a geometric structure,
coming from a dot product. We then take up more general vector spaces, linear
transforms between them, matrix representations of such transformations, and de-
terminants of square matrices. This chapter concludes with a treatment of the cross
product on R3.

Chapter 3 studies curves in Euclidean spaces, i.e., functions v : I — R™, where
I is an interval in the real line. We derive a formula for the arclength of a C* curve,
and discuss parametrizing the curve by arclength. Applying these considerations to
the unit circle centered at the origin in R? gives rise to the trigonometric functions
cost and sint. In §3.2 we define the exponential function, first for real arguments
(e!, t € R) and then for complex arguments (e?, z € C). An examination of the
planar curve () = e shows that this is a unit speed parametrization of the unit
circle, leading to the Euler identity,

t — cost +isint.

ol
Sections 3.3-3.4 present results on curvature, first for planar curves and then for
curves in R?, where also the notion of torsion arises. Calculations of curves with
given curvature (and, in 3D, torsion) lead to an extension of the exponential func-
tion, the matrix exponential.

X1



xii Preface

Chapter 4 studies the derivative of functions of several variables. We define the
derivative of a function F' : O — R at a point = in an open set O C R", as a linear
map from R™ to R™, relate it to partial derivatives, and establish basic properties,
such as the chain rule, for the derivative of a composite map G o F'. We consider
higher-order derivatives, and study power series for functions on a set O C R™. We
also establish the inverse function theorem, stating that (when m = n) the map F'
has a smooth inverse on a neighborhood of = provided its derivative DF(x) is an
invertible linear transformation on R™ (i.e., its determinant is not 0).

Chapter 5 develops integral calculus on domains S C R™. We start with S =
R, an n-dimensional rectangle, and give a definition parallel to that of the one-
dimensional integral in §1.2. However, it is important to be able to integrate over
other sets, such as balls and other regions with curvy boundaries. We can take a
rectangle R containing S, and extend our function f from S to R by zero. This
operation makes it crucial that we be able to integrate discontinuous functions, and
the n-dimensional Riemann integral is up to the task. We show that a bounded
function on R is Riemann integrable provided its set of points of discontinuity
has negligible size, in an appropriate sense. Other important results covered in this
chapter include a change of variable formula for multiple integrals and the reduction
of multiple integrals to iterated integrals. We also treat integrals over all of R™ and
integrals of a class of unbounded functions.

Chapter 6 extends the calculus developed in the previous two chapters from
open sets in Euclidean space to smooth surfaces in R™. These surfaces have coordi-
nate charts, used to perform differential and integral calculus. The inverse function
theorem from Chapter 4 and the change of variable formula for integrals established
in Chapter 5 play a crucial role in doing this analysis on surfaces. Applications in-
clude computation of areas of n-dimensional spheres, and integration over groups
of rotations in R™ (averaging over rotations). In §6.3 we derive important integral
identities known as theorems of Gauss, Green, and Stokes. In §6.4 we introduce a
class of objects more general than surfaces, called manifolds, on which to develop
differential and integral calculus.

This text concludes with several appendices, providing supplementary material
that the reader might find useful. Appendix A develops the real numbers, as ideal
limits of Cauchy sequences of rational numbers. It establishes key properties, such
as completeness of the real number line R and compactness of nonempty, closed,
bounded subsets of R, which lie behind many phenomena important for calculus,
such as existence of maxima and minima, and the intermediate value theorem. It
also presents some basic results on the set C of complex numbers.

Appendix B has some basic results on continuous functions, and on sequences
and series of such functions, including a sufficient condition for uniform convergence
of such a series, known as the Weierstrass M-test, useful for our treatment of power
series.

Appendix C has material on linear algebra, supplementing that presented in
Chapter 2. This includes a treatment of inner product spaces, of which R™ with the
dot product is the example in Chapter 2. It discusses eigenvalues and eigenvectors
of linear transformations on finite-dimensional vector spaces, of particular use in the
characterization of various types of critical points of a smooth, real-valued function
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on a region of R™, in terms of its matrix of second-order partial derivatives. There is
a treatment of matrix norms, including the operator norm and the Hilbert-Schmidt
norm. This appendix also treats the matrix exponential, extending the treatment
of exponentials of complex numbers given in Chapter 3. This exponential is given
as an infinite series, and material on matrix norms plays a role in showing the series
converges.

Appendix D discusses functions f : @ — C (with O open in C) that are C*
and complex differentiable, using Green’s theorem to establish results known as the
Cauchy integral theorem and the Cauchy integral formula, and a corollary known as
Liouville’s theorem. This appendix provides an introduction to the area of complex
analysis, which the reader can pursue further in other texts, such as [17]. One
application appears in the following appendix.

Appendix E treats the fundamental theorem of algebra, which says that each
nonconstant polynomial p(z) = a, 2" +- - -+ao, with coefficients a; € C, vanishes for
some z € C. Two proofs are given, one elementary, and the other using Liouville’s
theorem, established in §D.3.

We follow this introduction with a record of some standard notation that will
be used throughout this text.






Some basic notation

R is the set of real numbers.

C is the set of complex numbers.

Z is the set of integers.

77 is the set of integers > 0.

N is the set of integers > 1 (the “natural numbers”).

Q is the set of rational numbers.

x € R means z is an element of R, i.e., x is a real number.
(a,b) denotes the set of z € R such that a < z < b.

[a,b] denotes the set of x € R such that a <z <b.

{z € R:a <z <b} denotes the set of z in R such that a <z <b.
[a,b) ={r €eR:a <z <b}and (a,b] ={z €R:a <z <b}.
z=x—yifz=ax+iyeC, z,yeR.

XV



xvi Some basic notation

€ denotes the closure of the set .

f A — B denotes that the function f takes points in the set A to points
in B. One also says f maps A to B.

T — xg means the variable z tends to the limit xg.

f(z) = O(x) means f(x)/z is bounded. Similarly g(¢) = O(¥) means
g(g)/e* is bounded.

f(z) = o(x) as © — 0 (resp., © — o0) means f(x)/xz — 0 as = tends to the
specified limit.

S = sup |a,| means S is the smallest real number that satisfies S > |ay,| for all n.

If there is no such real number then we take S = +o0.

limsup |ag| = lim (sup |az|).
k—00 n—oo k>n
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Chapter 1

Basic one variable calculus

This first chapter provides a review of calculus for functions of one real variable.
Students with a solid background in one-variable calculus might skim this quickly,
to make sure they are familiar with the basic concepts. If there are any gaps, this
chapter is designed to fill them in.

Section 1.1 introduces the derivative, establishes basic identities like the prod-
uct rule and the chain rule, and also obtains some important theoretical results,
such as the Mean Value Theorem and the Inverse Function Theorem. One appli-
cation of the latter is the study of /", for 2 > 0, which leads more generally to
a”, for > 0 and r € Q. (Extension to r € R, and beyond, is given in §3.2.)

Section 1.2 brings in the integral, more precisely the Riemann integral. A major
result is the Fundamental Theorem of Calculus, whose proof makes essential use
of the Mean Value Theorem. Another topic is the change of variable formula for
integrals (treated in some exercises).

In §1.3 we treat power series. Topics include term by term differentiation of
power series, and formulas for the remainder when a power series is truncated. An
application of such remainder formulas is made to the study of convergence of the

power series about = = 0 of (1 — x)°.

In §1.4 we give a natural extension of the Riemann integral from the class
of bounded (Riemann integrable) functions to a class of unbounded “integrable”
functions. The treatment here is perhaps a desirable alternative to discussions one
sees of “improper integrals.”

>—‘I



2 1. Basic one variable calculus

1.1. The derivative

Consider a function f, defined on an interval (a,b) C R, taking values in R or C.
Given z € (a,b), we say f is differentiable at z, with derivative f’(z), provided

fx+h) = f(z)

(1.1.1) }lblir%) W = f'(z).
We also use the notation
df
(1.1.2) %(x) = f'(z).
A characterization equivalent to (1.1.1) is
(1.1.3) fl@+h) = f(x)+ f(@)h+r(xh), r(zh)=o(h),
where
(1.1.4) r(z,h) = o(h) means r(@h) —0 as h—0.

h

Clearly if f is differentiable at = then it is continuous at x. We say f is differentiable
on (a,b) provided it is differentiable at each point of (a,b). If also g is defined on
(a,b) and differentiable at x, we have

(115) L@ = @)+ (@),
We also have the following product rule:
(1.1.6) %(fg)(z) = f'(x)g(x) + f(2)d (2).

To prove (1.1.6), note that
flx+h)g(z +h) - f(x)g(x)

h
flx+h)— f(z glx+h)—g(x
@A) @) et o),
h h
We can use the product rule to show inductively that
d
(1.1.7) %x" =na" ",

for all n € N. In fact, this is immediate from (1.1.1) if n = 1. Given that it holds
for n = k, we have

d E+1 _ d k _dx k d i
da:x o d;v(xx )= dacgj dHUdacgU
= 2% + kaF
= (k+1)z*,

completing the induction. We also have

1 1 1 1 1

ror )= e n) w2 S0
for z # 0, hence

1
(1.1.8) o= i 2 #0.
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From here, we can extend (1.1.7) from n € N to all n € Z (requiring z # 0 if n < 0).

A similar inductive argument yields

(1.1.9) ey = nf(@) @),

for n € N, and more generally for n € Z (requiring f(z) # 0 if n < 0).

Going further, we have the following chain rule. Suppose f : (a,b) — (a, ) is
differentiable at = and g : (o, 8) — R (or C) is differentiable at y = f(z). Form
G=gof, ie., G(z)=g(f(z)). We claim

(1.1.10) G=gof=G'(z)=g(f(2)f (2).
To see this, write

Gz +h)=g(f(z+h))

= g(f(z) + f'(x)h + 74 (x, h))
(L.L1) = g(F(@)) + ¢ (F@)(f'(@)h + rs(z. 1))
+rg(f(x), f'(x)h +rs(z,h)).
Here,
rs(x, h) 1
5 —0 as h—0,
and also

Tg(f(x)7 f/(x)h + rf(xa h))
h
so the analogue of (1.1.3) applies.

— 0, ash—0,

The derivative has the following important connection to maxima and minima.

Proposition 1.1.1. Let f : (a,b) — R. Suppose x € (a,b) and

(1.1.12) f@) = fly), Vye(ab).

If f is differentiable at x, then f'(x) = 0. The same conclusion holds if f(z) < f(y)
for all y € (a,b).

Proof. Given (1.1.12), we have
flz+h) = f(z)

(1.1.13) - <0, Vhe(0,b—ux),

and

(1.1.14) w >0, Vhe(a—z,0).

If f is differentiable at z, both (1.1.13) and (1.1.14) must converge to f'(z) as
h — 0, so we simultaneously have f’(z) <0 and f/(z) > 0. O

We next establish a key result known as the Mean Value Theorem. See Figure
1.1.1 for an illustration.
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Figure 1.1.1. Tllustration of the Mean Value Theorem

Theorem 1.1.2. Let [ : [a,b] — R. Assume f is continuous on [a,b] and differ-
entiable on (a,b). Then there exists £ € (a,b) such that

1)~ fla)

(1.1.15) re =121

Proof. Let g(x) = f(x)—k(z—a), where x denotes the right side of (1.1.15). Then
g(a) = g(b). The result (1.1.15) is equivalent to the assertion that

(1.1.16) g€ =0

for some £ € (a,b). Now g is continuous on the compact set [a,d], so it assumes
both a maximum and a minimum on this set. If ¢ has a maximum at a point
¢ € (a,b), then (1.1.16) follows from Proposition 1.1.1. If not, the maximum must
be g(a) = ¢g(b), and then g must assume a minimum at some point £ € (a,b). Again
Proposition 1.1.1 implies (1.1.16). O

We use the Mean Value Theorem to produce a criterion for constructing the
inverse of a function. Let

(1.1.17) fila,b) — R, f(a)=c«, f(b)=2p.
Assume f is continuous on [a, b], differentiable on (a,b), and

(1.1.18) 0<v < fl(z) <71 <0, Vze€(a,b).
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We can apply Theorem 1.1.2 to f, restricted ot the interval [z1, 23] C [a, b], to get
fx2) — f(z1)

(1.1.19) Yo < <7, if a<xz <z <D,
To — T

or

(1.1.20) Yo(w2 — x1) < f(w2) — f(21) < M1(22 — 21).

It follows that

(1.1.21) f:a,b) — [a, B] is one-to-one.

The intermediate value theorem implies f : [a,b] — [«, 5] is onto. Consequently f
has an inverse

(1.1.22) gl Bl — [a,0], g(f(z)) ==z, fl9(y) =y,
and (1.1.19) implies
1 9() —9(y) <L

Mmoo Y2 Yo
The following result is known as the Inverse Function Theorem.

(1.1.23) , i a<y <y < B.

Theorem 1.1.3. If f is continuous on [a,b] and differentiable on (a,b), and
(1.1.17)~(1.1.18) hold, then its inverse g : [a, 8] — [a,b] is differentiable on (o, ),
and

(1.1.24) J0) = Gy Jor v =) € (0.).
The same conclusion holds if in place of (1.1.18) we have
(1.1.25) - < fl(x) L=y <0, VYze((ab),
except that then 8 < .

Proof. Fixy € (o, 8), and let x = g(y), soy = f(z). To say that f is differentiable
at x is to say

flz) = f(©)

. Y
(1.1.26) lim = = ().

Now take n = f(£), so £ = g(n), and note from (1.1.19) that
(1.1.27) o r<—=n—oy.

Hence, by (1.1.18)—(1.1.19) and (1.1.23), we have

. gly) —gln) 1
(1.1.28) T Fa)

which proves (1.1.24). O

REMARK. If one knew that g were differentiable, as well as f, then the identity
(1.1.24) would follow by differentiating ¢(f(z)) = =, applying the chain rule. How-
ever, an additional argument, such as given above, is necessary to guarantee that
g is differentiable.
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Theorem 1.1.3 applies to the functions
(1.1.29) pn(z) =2", neN.

By (1.1.7), pi,(z) > 0 for > 0, so (1.1.18) holds when 0 < a < b < oo. We can
take @ \( 0 and b " co and see that

(1.1.30) Dn ¢ (0,00) — (0,00) is invertible,

with differentiable inverse gy, : (0,00) — (0,00). We use the notation
(1.1.31) 2" =g, (x), x>0,

so, given n € N,

(1.1.32) t>0=az=2z/"..2" (n factors).

Given m € Z,n € N, we can set
(1.1.33) g™/ = (V™ >0,

and verify that (z!/%7)Fm = (21/")™ for k € N. Thus we have 2" defined for all
r € Q, when x > 0. We have

(1.1.34) 2" =2"2%, for x>0, r,s€Q.
Applying (1.1.24) to f(z) = 2™ and g(y) = y'/™, we have

d 1
1.1.35 —ytm =~ y=2" >0
( ) dy nan—1 y=v, 7
Now 2"~ = y/z = ' ~1/" so we get

d

1.1.36 =ry" Y y>0,
( ) dyy =ry" y

when r = 1/n. Putting this together with (1.1.9) (with m in place of n), we get
(1.1.36) for all r = m/n € Q.

The definition of " for > 0 and the identity (1.1.36) can be extended to all
r € R, with some more work. We will find a neat way to do this in §3.2.

We recall another common notation, namely

(1.1.37) Vr=2"% z>0.
Then (1.1.36) yields
1.1.38 -
(1.1.33) V=g
In regard to this, note that, if we consider
(1.1.39) ”Hh VT
we can multiply numerator and denominator by vx + h + /z, to get
1
1.1.40 _,
( ) Ve+h+x

whose convergence to the right side of (1.1.38) for > 0 is equivalent to the
statement that

(1.1.41) hm vV +h =z,
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i.e., to the continuity of z — v/x on (0, 00). Such continuity is a consequence of the
fact that, for 0 < a < b < 00, n =2,

(1.1.42) Dt la,b] — [a™, 1"
is continuous, one-to-one, and onto, so, by the compactness of [a, b], its inverse is
continuous. Thus we have an alternative derivation of (1.1.38).

If ] C Ris an interval and f : I — R (or C), we say f € C*(I) if f is
differentiable on I and f’ is continuous on I. If f’ is in turn differentiable, we have
the second derivative of f:

2
(1.1.43) @) =1"@) = L)
If £’ is differentiable on I and f” is continuous on I, we say f € C%(I). Inductively,
we can define higher order derivatives of f, f(*), also denoted d*f/daz*. Here,
fO = @ = 7 and if f*) is differentiable,

(1.1.44) FEFD(z) = % ) ().

If £ is continuous on I, we say f € C*(I).

Sometimes we will run into functions of more than one variable, and will want
to differentiate with respect to each one of them. For example, if f(z,y) is defined
for (z,y) in an open set in R?, we define partial derivatives,

7(1‘7y) = hm ’
O h—0 h

(1.1.45) a—f(x = fim fl,y+h)— fz,y)
ay Y TS h .

We will not need any more than the definition here. A serious study of the derivative
of a function of several variables is given in Chapter 4.

We end this section with some results on the significance of the second deriva-
tive.

Proposition 1.1.4. Assume f is differentiable on (a,b), xo € (a,b), and f'(zo) =
0. Assume ' is differentiable at xg and f"'(xo9) > 0. Then there exists 6 > 0 such
that

(1.1.46) f(zo) < f(z) forall x € (xog— 06,20+ 9)\ {zo}-

We say [ has a local minimum at xq.

Proof. Since
f(@o + h) — f'(20)
h )
the assertion that f”(xg) > 0 implies that there exists § > 0 such that the right
side of (1.1.47) is > 0 for all nonzero h € [—¢,d]. Hence
-§<h<0= f'(z0+h) <0,
0<h<dé= f'(xzo+h)>0.

(1.1.47) 1" (o) = lim

(1.1.48)

This plus the mean value theorem imply (1.1.46). O



8 1. Basic one variable calculus

REMARK. Similarly,
(1.1.49) J"(x9) < 0= f has a local maximum at x.
These two facts constitute the second derivative test for local maxima and local
minima.
Let us now assume that f and f’ are differentiable on (a,b), so f” is defined
at each point of (a,b). Let us further assume
(1.1.50) /" (x) >0, Vazé€(a,b).
The mean value theorem, applied to f’, yields
(1.1.51) a<wzg <z <b= f(x09) < f'(21).
Here is another interesting property.

Proposition 1.1.5. If (1.1.50) holds and a < x¢g < x1 < b, then

(1.1.52) f(szo+ (L —s)z1) < sf(xo) + (1 —s)f(x1), Vse(0,1).

Proof. For s € [0, 1], set

(1.1.53) g(s) = sf(xo) + (1 —s)f(z1) — f(szo + (1 — 8)x1).

The result (1.1.52) is equivalent to

(1.1.54) g(s) >0 for 0 <s<1.
Note that
(1.1.55) g(0) = g(1) = 0.

If (1.1.54) fails, g must assume a minimum at some point so € (0,1). At such a
point, ¢’(sp) = 0. A computation gives

g'(s) = f(wo) = fzo) — (w0 — x1) f'(sw0 + (1 = 5)z1),

and hence

(1.1.56) g"(s) = —(x0 — 21)2f" (520 + (1 — 8)z1).

Thus (1.1.50) = ¢"(so) < 0. Then (1.1.49) = g has a local mazimum at sg. This
contradiction establishes (1.1.54), hence (1.1.52). O

REMARK. The result (1.1.52) implies that, whenever a < z¢ < z7 < b, the graph
of y = f(x) over [zg, z1] lies below the chord, i.e., the line segment from (xq, f(xo))
to (z1, f(z1)) in R%. We say f is convex.
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.|
Exercises

For Exercises 1-3, compute the derivative of each of the following functions. Specify
where each of these derivatives are defined.

1. V1422,
2. (22 +2%)74

3. V14a2/(z? +23)L

4. Let f:[0,00) — R be a C? function satisfying

(1.1.57) flz)>0, f(x)>0, f'(z)<0, for z>0.
Show that
(1.1.58) z,y>0= f(z+y) < f(z)+ f(y).

5. Apply Exercise 4 to
x

(1.1.59) f@) =1

Give a direct proof that (1.1.58) holds for f in (1.1.59), without using calculus.

6. If f: I — R™, we define f/'(z) just as in (1.1.1). If f(z) = (fi(z),..., fu(2)),
then f is differentiable at x if and only if each component f; is, and

f(@) = (fi(z),..., fu(2)).
Parallel to (1.1.6), show that if g : I — R, then the dot product satisfies

LI g@) = f@) (@) + 1) 9 (@),

7. Establish the following variant of Proposition 1.1.5. Suppose (1.1.50) is weakened
to

(1.1.60) () >0, Vazé€ (a,b).
Show that, in place of (1.1.52), one has
(1.1.61) fszo+ (1 —8)m1) < sf(mo) + (1 —s)f(xz1), Vse(0,1).

Hint. Consider f.(x) = f(z) + ex?.

8. The following is called the generalized mean value theorem. Let f and g be
continuous on [a,b] and differentiable on (a,b). Then there exists £ € (a,b) such
that

[£(0) = F(a)lg'(§) = [9(b) — g(a)f'(&)-

Show that this follows from the mean value theorem, applied to

h(x) = [f(b) = f(a)lg(x) — [9(b) — g(a)]f(x).
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9. Take f : [a,b] — [o, 8] and g : [, 5] — [a,b] as in the setting of the Inverse
Function Theorem, Theorem 1.3. Write (1.1.24) as

oy — L .
g(y)—f,(g(y)), y € (o, B).

(1.1.62)

Show that

feCl((a,b)) = g € C'((e, B)),
i.e., the right side of (1.1.62) is continuous on («, 3). Show inductively that, for
keN,

f € C*((a,0)) = g € C*((a, §))-
Ezample. Show that if f € C?((a,b)), then (having shown that g € C') the right
side of (1.1.62) is C'* and hence

1

9w =  f9(y))?

10. Let I C R be an open interval and f : I — R differentiable. (Do not assume f’
is continuous.) Assume a,b € I, a < b, and

f(a) <u < f'0).
Show that there exists £ € (a,b) such that f/(§) = w.

Hint. Reduce to the case u = 0, so f’(a) < 0 < f'(b). Show that then f|(,; has a
minimum at a point £ € (a, b).

" (9()g' (y).
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Figure 1.2.1. Upper and lower sums associated to a partition

1.2. The integral

In this section, we introduce the Riemann version of the integral, and relate it to
the derivative. We will define the Riemann integral of a bounded function over an
interval I = [a,b] on the real line. For now, we assume f is real valued. To start,
we partition I into smaller intervals. A partition P of I is a finite collection of
subintervals {J; : 0 < k < N}, disjoint except for their endpoints, whose union is
I. We can order the Ji so that Jx = [zk, zr+1], where

(1.2.1) Tro<x1 < <IN <TNy41, To=a, $N+1:b.
We call the points x; the endpoints of P. We set

(1.2.2) 0(Jy) = xp41 — Tk, maxsize (P) = pnax, 0(Jy)

We then set
Ip(f) = Zs;lp f(@) L(Tr),
k k

(1.2.3)
Ip(f) = Y inf f(w) £(Ji)-

k

Here,
sup f(z) = sup f(Jy), inf f(z) =inf f(Jk),

Jk
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Figure 1.2.2. Two partitions, P;, of I and a common refinement, Q > P;

and we note that if S C R is bounded, sup S and inf S are defined in §A.2;
cf. (A.2.38) and (A.2.51). We call Ip(f) and Ip(f) respectively the upper sum
and lower sum of f, associated to the partition P. See Figure 1.2.1 for an illustra-
tion. Note that I»(f) < Ip(f). These quantities should approximate the Riemann
integral of f, if the partition P is sufficiently “fine.”

To be more precise, if P and Q are two partitions of I, we say Q refines P,
and write Q > P, if Q is formed by partitioning each interval in P. Equivalently,
Q > P if and only if all the endpoints of P are also endpoints of Q. It is easy to
see that any two partitions have a common refinement; just take the union of their
endpoints, to form a new partition. See Figure 1.2.2. Note also that refining a
partition lowers the upper sum of f and raises its lower sum:

(1.2.4) Q=P = Io(f) <Ip(f), and Io(f) = Ip(f).
Consequently, if P; are any two partitions and Q is a common refinement, we have
(1.2.5) LIp, (f) < Lo(f) < To(f) < Ipy(f).
Now, whenever f : I — R is bounded, the following quantities are well defined:
1.2.6 I(fy= inf T , I(f)= sup I ,
(126) (=0 To), 1= s Ip()

where II(]) is the set of all partitions of I. We call I(f) the lower integral of f
and I(f) its upper integral. Clearly, by (1.2.5), I(f) < I(f). We then say that f is
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Riemann integrable provided I(f) = I(f), and in such a case, we set
b —
(1.2.7) [ t@yde= [ 5@ de =105 = 1.
T

We will denote the set of Riemann integrable functions on I by R(I).

We derive some basic properties of the Riemann integral.
Proposition 1.2.1. If f, g € R(I), then f + g € R(I), and

(1.2.8) /(erg)d:c:/fder/gdx.

I I I

Proof. If Ji is any subinterval of I, then
sup (f +g) <sup f+supg, and inf(f+g)>inf f+inf g,
J Jk Jk Jk Jk Jk

so, for any partition P, we have Ip(f + g) < Ip(f) + Ip(g). Also, using common
refinements, we can simultaneously approximate I(f) and I(g) by Ip(f) and Ip(g),
and ditto for I(f + g). Thus the characterization (1.2.6) implies I(f +g) < I(f) +

I(g). A parallel argument implies I(f + g) > I(f) + I(g), and the proposition
follows. g

Next, there is a fair supply of Riemann integrable functions.
Proposition 1.2.2. If f is continuous on I, then f is Riemann integrable.
Proof. Any continuous function on a compact interval is bounded and uniformly

continuous (see Propositions A.3.5 and B.1.3). Let w(J) be a modulus of continuity
for f, so

(1.2.9) [z —y| <= |f(z) - fly)| Sw(d), w(d) —=0asd—0.

Then

(1.2.10) masxsize (P) <6 = Ip(f) — Ip(f) <w(8) - £(I),

which yields the proposition. (I

We denote the set of continuous functions on I by C(I). Thus Proposition 1.2.2
says
C(I) Cc R(I).
The proof of Proposition 1.2.2 provides a criterion on a partition guaranteeing
that Ip(f) and Lp(f) are close to [, fdx when f is continuous. We produce an

extension, giving a condition under which I'p(f) and I(f) are close, and I(f) and
I(f) are close, given f bounded on I. Given a partition Py of I, set

(1.2.11) minsize(Py) = min{l(J) : Ji € Po}.
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Lemma 1.2.3. Let P and Q be two partitions of I. Assume

(1.2.12) maxsize(P) < % minsize(Q).
Let |f| <M onI. Then
- - 2M
Ip(f) < Io(f) + = =),

(1.2.13) ot

Ip(f) =2 Lo(f) = 5 —4(1).

Proof. Let P; denote the minimal common refinement of P and Q. Consider on
the one hand those intervals in P that are contained in intervals in Q and on the
other hand those intervals in P that are not contained in intervals in Q. Each
interval of the first type is also an interval in P;. Each interval of the second type
gets partitioned, to yield two intervals in ;. Denote by P? the collection of such
divided intervals. By (1.2.12), the lengths of the intervals in P? sum to < ¢(I)/k.
It follows that o1

To() - Tn (Nl < 3 a0t < 2™,
JeP?

and similarly |I(f) — Lp, (f)| < 2M{(I)/k. Therefore

To() < Tr, () + 26D, Ip() = Ip, () ~ 2200(0)
Since also I'p, (f) < Io(f) and Ip (f) > Io(f), we obtain (1.2.13). O

The following consequence is sometimes called Darboux’s Theorem.

Theorem 1.2.4. Let P, be a sequence of partitions of I into v intervals Jyi, 1 <
k <wv, such that
maxsize(P,) — 0.

If f: 1 — R is bounded, then

(1.2.14) Ip,(f) = I(f) and Ip (f)— L(f).

Consequently,

(1.2.15) FERI) <= 1(f) = lim > f(Em)l(ut),
k=1

for arbitrary &, € Juk, in which case the limit is fI fdx.

Proof. As before, assume |f| < M. Pick € > 0. Let Q be a partition such that

Now pick N such that
v > N =— maxsize P,, < ¢ minsize Q.

Lemma 2.3 yields, for v > N,
Ip,(f)
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Hence, for v > N,

This proves (1.2.14). O

REMARK. The sums on the right side of (1.2.15) are called Riemann sums, approx-
imating || ; fdx (when f is Riemann integrable).

REMARK. A second proof of Proposition 1.2.1 can readily be deduced from Theorem
1.2.4.

One should be warned that, once such a specific choice of P, and &, has been
made, the limit on the right side of (1.2.15) might exist for a bounded function f
that is mot Riemann integrable. This and other phenomena are illustrated by the
following example of a function which is not Riemann integrable. For x € I, set

(1.2.16) He)=11if z€Q, J(z)=0if 2 ¢Q,

where Q is the set of rational numbers. Now every interval J C I of positive length
contains points in Q and points not in Q, so for any partition P of I we have
Ip(¥) =¢(I) and I5(9) = 0, hence

(1.2.17) 1(9)=¢(I), I(W)=0.

Note that, if P, is a partition of I into v equal subintervals, then we could pick
each &, to be rational, in which case the limit on the right side of (1.2.15) would
be ¢(I), or we could pick each &, to be irrational, in which case this limit would
be zero. Alternatively, we could pick half of them to be rational and half to be
irrational, and the limit would be 1¢(I).

Associated to the Riemann integral is a notion of size of a set S, called content.
If S is a subset of I, define the “characteristic function”
(1.2.18) xs(x)=1if €85, 0 if 2 ¢ 5.

b2

We define “upper content” cont™ and “lower content” cont™ by

(1.2.19) cont™(S) = I(xs), cont™(S)=1I(xs).

We say S “has content,” or “is contented” if these quantities are equal, which
happens if and only if x5 € R(I), in which case the common value of cont™(S) and
cont ™ (.9) is

(1.2.20) m(S) = /Xs(x) dzx.
1
It is easy to see that

N
(1.2.21) cont™ (S) = inf{ZE(Jk) L SCU--U JN},
k=1
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where J are intervals. Here, we require S to be in the union of a finite collection
of intervals.

There is a more sophisticated notion of the size of a subset of I, called Lebesgue
measure. The key to the construction of Lebesgue measure is to cover a set S by a
countable (either finite or infinite) set of intervals. The outer measure of S C I is
defined by

(1.2.22) m(8) =wt{ 3" e(): S < [ A}

k>1 k>1
Here {J;} is a finite or countably infinite collection of intervals. Clearly
(1.2.23) m*(S) < cont™(S).

Note that, if S = I N Q, then xys = ¥, defined by (1.2.16). In this case it is easy
to see that cont™(S) = £(I), but m*(S) = 0. In fact, (1.2.22) readily yields the
following:

(1.2.24) S countable = m*(S) =0.

We point out that we can require the intervals Ji in (1.2.22) to be open. Conse-
quently, since each open cover of a compact set has a finite subcover,

(1.2.25) S compact == m*(S) = cont™(9).

See the material at the end of this section for a generalization of Proposition
1.2.2, giving a sufficient condition for a bounded function to be Riemann integrable
on I, in terms of the upper content of its set of discontinuities, in Proposition
1.2.11, and then, in Proposition 1.2.12, a refinement, replacing upper content by
outer measure.

It is useful to note that f ; [ dx is additive in I, in the following sense.
Proposition 1.2.5. Ifa<b<c, f:a,c] >R, f1 = f|[a e fa= f|[b e then

(1.2.26) feR([a,c]) <= f1 € R([a,b]) and f> € R([b,d]),
and, if this holds,

(1.2.27) /acfdm:/abfl dx+/bcf2dx.

Proof. Since any partition of [a, c] has a refinement for which b is an endpoint, we
may as well consider a partition P = Py U P,, where P; is a partition of [a,b] and
P, is a partition of [b, ¢]. Then

(1.2.28) Ip(f) =1Ip,(f1) +Ip,(f2), Lp(f)=Lp, (f1)+ Lp,(f2),

SO

(1.2.29) Ip(f) = Ip(f) = {Ip, (f1) = Lp, (1)} + {Tp.(f2) — Lp,(f2) }-

Since both terms in braces in (1.2.29) are > 0, we have equivalence in (1.2.26). Then
(1.2.27) follows from (1.2.28) upon taking finer and finer partitions, and passing to
the limit. ([
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Let I = [a,b]. If f € R(I), then f € R([a,x]) for all x € [a,b], and we can
consider the function

(1.2.30) ﬂ@:/f@ﬁ.

If a <xp <xy <b, then

(1.231) o)~ glao) = [ (0t
so, if |f] < M,

(1.2.32) l9(z1) — g(2o)| < M|z1 — 20].

In other words, if f € R(I), then g is Lipschitz continuous on I.

Recall from §1.1 that a function g : (a,b) — R is said to be differentiable at
x € (a,b) provided there exists the limit

(1.2.33) Jim %[g(m +h) —g(z)] = ¢'().

When such a limit exists, ¢'(x), also denoted dg/dx, is called the derivative of g at
x. Clearly g is continuous wherever it is differentiable.

The next result is part of the Fundamental Theorem of Calculus.

Theorem 1.2.6. If f € C([a,b]), then the function g, defined by (1.2.30), is dif-
ferentiable at each point x € (a,b), and

(1.2.34) g (z) = f(x).

Proof. Parallel to (1.2.31), we have, for A > 0,

z+h
(1.2.35) %[g(x +h)—g(z)] = %/ f(t)dt.

If f is continuous at z, then, for any € > 0, there exists 6 > 0 such that |f(t) —
f(z)] < e whenever |t — z| < §. Thus the right side of (1.2.35) is within ¢ of f(x)
whenever h € (0,6]. Thus the desired limit exists as h N\, 0. A similar argument
treats h 0. O

The next result is the rest of the Fundamental Theorem of Calculus.

Theorem 1.2.7. If G is differentiable and G’ (x) is continuous on [a,b], then

b
(1.2.36) /(ﬂﬂﬁ:G@—G@)

Proof. Consider the function

(1.2.37) g(z) = /x G'(t) dt.

We have g € C([a,b]), g(a) =0, and, by Theorem 1.2.6,
(1.2.38) g (x)=G'(z), V€ a,b).
Thus f(x) = g(x) — G(z) is continuous on [a, b], and
(1.2.39) f(x)=0, Vaxe/a,b).
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We claim that (1.2.39) implies f is constant on [a,b]. Granted this, since f(a) =
g(a) — G(a) = —G(a), we have f(xr) = —G(a) for all x € [a,b], so the integral
(1.2.37) is equal to G(x) — G(a) for all z € [a,b]. Taking x = b yields (1.2.36). O

The fact that (1.2.39) implies f is constant on [a,b] is a consequence of the
Mean Value Theorem. This was established in §1.1; see Theorem 1.1.2. We repeat
the statement here.

Theorem 1.2.8. Let f : [a, 8] — R be continuous, and assume f is differentiable
on (a,B). Then 3 £ € (a,B) such that

(1.2.40) 1) = $B) = fla)

B8—a

Now, to see that (1.2.39) implies f is constant on [a, b], if not, 3 8 € (a, b] such
that f(8) # f(a). Then just apply Theorem 1.2.8 to f on [a, §]. This completes the
proof of Theorem 1.2.7.

We now extend Theorems 1.2.6-1.2.7 to the setting of Riemann integrable
functions.

Proposition 1.2.9. Let f € R([a,b]), and define g by (1.2.28). If x € [a,b] and f
is continuous at x, then g is differentiable at x, and ¢'(x) = f(z).

The proof is identical to that of Theorem 1.2.6.
Proposition 1.2.10. Assume G is differentiable on [a,b] and G' € R([a,b]). Then
(1.2.36) holds.

Proof. We have

n—1

G(b) — G(a) = Z[G(a+ (b_a>$) —cla+ (b_a)g)}

(1.2.41) h=0
b
gkn
for some &, satisfying
k k+1
(1.2.42) a+(b—a)ﬁ<§;m<a+(b—a) :L_ ,

as a consequence of the Mean Value Theorem. Given G’ € R([a b]) Darboux s

theorem (Theorem 1.2.4) implies that as n — oo one gets G(b f G'(t
D

Note that the beautiful symmetry in Theorems 1.2.6-1.2.7 is not preserved in
Propositions 1.2.9-1.2.10. The hypothesis of Proposition 1.2.10 requires G to be
differentiable at each x € [a, b], but the conclusion of Proposition 1.2.9 does not yield
differentiability at all points. For this reason, we regard Propositions 1.2.9-1.2.10
as less “fundamental” than Theorems 1.2.6-1.2.7. There are more satisfactory
extensions of the fundamental theorem of calculus, involving the Lebesgue integral,
and a more subtle notion of the “derivative” of a non-smooth function. For this,
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we can point the reader to Chapters 10-11 of the text [14], Measure Theory and
Integration.

So far, we have dealt with integration of real valued functions. If f : I — C,
we set f = fi +ifs with f; : I — R and say f € R(I) if and only if f; and fo are
in R(I). Then

(1.2.43) /fd:c:/fld:c+i/f2dx.
I I I

There are straightforward extensions of Propositions 1.2.5-1.2.10 to complex valued
functions. Similar comments apply to functions f: I — R™.

Complementary results on Riemann integrability

Here we provide a condition, more general then Proposition 1.2.2, which guar-
antees Riemann integrability.

Proposition 1.2.11. Let f : I — R be a bounded function, with I = [a,b]. Suppose
that the set S of points of discontinuity of f has the property

(1.2.44) cont™ () = 0.

Then f € R(I).

Proof. Say |f(z)] < M. Take e > 0. As in (1.2.21), take intervals .Jy, ..., Jy such
that S C JyU---UJy and Zgzl £(Jg) < e. In fact, fatten each Jj such that S is
contained in the interior of this collection of intervals. Consider a partition Py of
I, whose intervals include Ji,...,Jy, amongst others, which we label Iy,..., Ik.
Now f is continuous on each interval I,,, so, subdividing each I,, as necessary, hence
refining Py to a partition P;, we arrange that sup f — inf f < & on each such

subdivided interval. Denote these subdivided intervals I7, ..., I} . It readily follows
that

N L
(1.2.45) 0<Ip,(f) = Ip,(f) < ;21\“(%) +I;ee(1,;)
< 2eM +el(I).

Since e can be taken arbitrarily small, this establishes that f € R(I). d

With a little more effort, we can establish the following result, which, in light
of (1.2.23), is a bit sharper than Proposition 1.2.11.

Proposition 1.2.12. In the setting of Proposition 1.2.11, if we replace (1.2.44) by
(1.2.46) m*(S) =0,
we still conclude that f € R(I).
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Proof. As before, we assume |f(z)| < M and pick ¢ > 0. This time, take a
countable collection of open intervals {.J; } such that S C Up>1Ji and >, 4(Jk) <
e. Now f is continuous at each p € I\ S, so there exists an interval Kp: open (in
I), containing p, such that supg, f — infk, f < e. Now {Jp + k € N}U{K, :
p € I\ S} is an open cover of I, so it has a finite subcover, which we denote
{J1y.o s JIn, K1, ..., Kp}. We have

N
(1.2.47) ZE(Jk) <e, and sup f— ilr{lf f<e Vjied{l,...,M}.
k=1 Ki i

Let P be the partition of I obtained by taking the union of all the endpoints of Jj
and K in (1.2.47). Let us write

P={Ly:0<k<pu}
= (U 2)u (U z).
k€A keB
where we say k € A provided Lj is contained in an interval of the form K; for

some j € {1,..., M}, as in (1.2.47). Consequently, if k € B, then L C J, for some
te{l,...,N}, so

N
(1.2.48) U LZrc U 7
(=1

keB
We therefore have
(1.2.49) Zf(Lk) <e, and sup f—inf f<e, VjeA
keB L L
It follows that

0 <Tp(f) = Lp(f) < D 2MU(Ly) + ) el(Ly)

(1.2.50) keB JjEA
<2eM +el(I).
Since € can be taken arbitrarily small, this establishes that f € R([). ]

REMARK. Proposition 1.2.12 is part of the sharp result that a bounded function
f on I = [a,b] is Riemann integrable if and only if its set S of points of disconti-
nuity satisfies (1.2.46). Standard books on measure theory, including [7] and [14],
establish this.

We give an example of a function to which Proposition 1.2.11 applies, and
then an example for which Proposition 1.2.11 fails to apply, but Proposition 1.2.12
applies.

EXAMPLE 1. Let I =[0,1]. Define f: I — R by
(0
(z

1.2.51 0 =0,
(1.2:51) f(x) = (=1)7 for z € 27U+ 279] j > 0.
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Then |f| <1 and the set of points of discontinuity of f is
(1.2.52) S={0yu{279:j>1}.
It is easy to see that cont™ S = 0. Hence f € R([).

See Exercises 16-17 below for a more elaborate example to which Proposition 1.2.11
applies.

EXAMPLE 2. Again I = [0, 1]. Define f: I — R by

fx)=0 if z¢Q,
1.2.53
( ) 1 if z= m, in lowest terms.
n n

Then |f| <1 and the set of points of discontinuity of f is
(1.2.54) S=InQ.

As we have seen below (1.2.23), cont™ S = 1, so Proposition 1.2.11 does not apply.
Nevertheless, it is fairly easy to see directly that

(1.2.55) I(f)=I(f)=0, so feR.).
In fact, given € > 0, f > € only on a finite set, hence
(1.2.56) I(f)<e, Ve>o.

As indicated below (1.2.23), (1.2.46) does apply to this function, so Proposition
1.2.12 applies. Example 2 is illustrative of the following general phenomenon, which
is worth recording.

Corollary 1.2.13. If f : I — R is bounded and its set S of points of discontinuity
is countable, then f € R(I).

Proof. By virtue of (1.2.24), Proposition 1.2.12 applies. |

Here is another useful sufficient condition condition for Riemann integrability.

Proposition 1.2.14. If f : I — R is bounded and monotone, then f € R(I).

Proof. It suffices to consider the case that f is monotone increasing. Let Py =
{Jr : 1 <k < N} be the partition of I into N intervals of equal length. Note that
supy, f <inf;_, f. Hence

Tpy(£) < 3 (jnf D) + (sup HECIn)

(1.2.57)
(1)

if |f| < M. Taking N — oo, we deduce from Theorem 1.2.4 that I(f) < I(f),
which proves f € R(I). O
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REMARK. It can be shown that if f is monotone, then its set of points of disconti-
nuity is countable. Given this, Proposition 1.2.14 is also a consequence of Corollary
1.2.13.

By contrast, the function 9 in (1.2.16) is discontinuous at each point of I.

We mention some alternative characterizations of I(f) and I(f), which can be
useful. Given I = [a,b], we say g : I — R is piecewise constant on I (and write
g € PK(I)) provided there exists a partition P = {Ji} of I such that g is constant
on the interior of each interval Ji. Clearly PK(I) C R(I). It is easy to see that, if
f: I — R is bounded,

I(f) :inf{/fl dr: fi € PK(I), f, > f}a
T

(1.2.58)
I(f) = Sup{/fo dz : fo € PK(I), fo < f}.
7

Hence, given f : I — R bounded,
f€R(I) < for each £ > 0, fy, f1 € PK(I) such that

(1.2.59) fo<f<fi and /(f1 — fo)dz < e.

I

This can be used to prove

(1.2.60) f,g e R(I) = fg € R(I),
via the fact that
(1261) fj,gj S PK(I) — fjgj S PK(I)

In fact, we have the following, which can be used to prove (1.2.60), based on
the identity

2fg=(f+9)° - f* = 4"
Proposition 1.2.15. Let f € R(I), and assume |f| < M. Let
¢:[-M,M] >R
be continuous. Then o f € R(I).

Proof. We proceed in steps.

STEP 1. We can obtain ¢ as a uniform limit on [—M, M] of a sequence ¢, of
continuous, piecewise linear functions. Then ¢, o f — ¢ o f uniformly on 7. A
uniform limit g of functions g, € R(I) is in R(I) (see Exercise 9). So it suffices to
prove Proposition 1.2.15 when ¢ is continuous and piecewise linear.

STEP 2. Given ¢ : [-M, M] — R continuous and piecewise linear, it is an exercise
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to write ¢ = 1 — 9, with ¢; : [-M, M] — R monotone, continuous, and piecewise
linear. Now @1 0 f,gpa0 f € R(I) = po f € R(I).

STEP 3. We now demonstrate Proposition 1.2.15 when ¢ : [-M,M] — R is
monotone and Lipschitz. By Step 2, this will suffice. So we assume
M <z1<x2 <M= (1) < p(x2) and p(z2) — ¢(z1) < L(xo — x1),
for some L < oo. Given € > 0, pick fo, f1 € PK(I), as in (2.59). Then
po fo, pofi €PK(), ¢ofo<pof<polfi,

and
Jori-pomdr<t [(h-fdo<Le
T T
This proves g o f € R(I). O

For another characterization of R(I), we can deduce from (1.2.58) that, if
f: I — R is bounded,

1(f) :inf{/(pldxmpl e C(I), ¢ Zf},

T

I(f) = Sup{/cpod:c 1o € C(I), o < f},
T

and this leads to the following variant of (1.2.59).

(1.2.62)

Proposition 1.2.16. Given f : I — R bounded, f € R(I) if and only if for each
e > 0, there exist g, p1 € C(I) such that

(1.2.63) 0o < f<p1, and /(<p1 — o) dx < e.
1

.|
Exercises

1. Let ¢ > 0 and let f : [ac,bc] — R be Riemann integrable. Working directly with
the definition of integral, show that

b be
(1.2.64) / flex)dr = ! f(x)dx.
a c ac
More generally, show that
b—d/c 1 be
(1.2.65) / flex +d)de = p f(z)dx.
a—d/c ac

2. Let f: I xS — R be continuous, where I = [a,b] and S C R". Take ¢(y) =
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J; f(z,y) dz. Show that ¢ is continuous on S.
Hint. If f; : I — R are continuous and | fi(z) — fo(z)| < ¢ on I, then

(1.2.66) ]/f1 dm—/fg dx’ < U1

1 T
3. With f as in Exercise 2, suppose g; : S — R are continuous and a < go(y) <
g1(y) < b. Take ¢ f‘zl(g/y) f(z,y) dz. Show that ¢ is continuous on S.

Hint. Make a change of variables, linear in x, to reduce this to Exercise 2.

4. Let ¢ : [a,b] — [A, B] be C! on a neighborhood J of [a, b], with ¢'(z) > 0 for all
x € [a,b]. Assume ¢(a) = A, ¢(b) = B. Show that the identity

B b
(1.267) | tway= [ rem)e o

for any f € C([A, B)), follows from the chain rule and the Fundamental Theorem
of Calculus. The identity (1.2.67) is called the change of variable formula for the
integral.

Hint. Replace b by x, B by ¢(z), and differentiate.

Going further, using (1.2.62)—(1.2.63), show that f € R([A4, B]) = fop € R([a,b])
and (1.2.67) holds. (This result contains that of Exercise 1.)

5. Show that, if f and g are C'! on a neighborhood of [a, b], then

(1.2.68) / £(5)d'(5) / £(8)9(s) ds + [f(B)g(b) — F(a)g(a)]-

This transformation of integrals is called “integration by parts.”

6. Let f: (—a,a) — R be a C7*! function. Show that, for x € (—a,a),

" () )
1209 1@ = 10+ O+ T v T gy,
where
(1.2.70) Rj(x):/o (x;!s)f(m)( ) ds

This is Taylor’s formula with remainder.
Hint. Use induction. If (1.2.69)—(1.2.70) holds for 0 < j < k, show that it holds
for j = k + 1, by showing that

(@9 e FED0) i /I (x — )
1.2.71 —_— ds = F— Lokt T k2 (g ds.
(2 [ pe sy s = it [ s 0y
To establish this, use the integration by parts formula (1.2.68), with f(s) replaced

by £+ (s), and with appropriate g(s). Note that another presentation of (1.2.70)
is

2t 040 (1= 6+
(1.2.72) Ril®) = oy f —t )ac) dt.
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For another demonstration of (1.2.70), see the proof of Proposition 1.3.4.

7. Assume f : (—a,a) — R is a C7 function. Show that, for x € (—a,a), (1.2.69)
holds, with

(1.2.73) R;(z) = ﬁ /Ow(z —s)I D (s) — f9(0)] ds.

Hint. Apply (1.2.70) with j replaced by j — 1. Add and subtract fU)(0) to the
factor f\)(s) in the resulting integrand.

8. Given I = [a, b], show that
(1.2.74) f,ge R(I) = fg € R(I),
as advertised in (1.2.60).

9. Assume fx € R(I) and fr — f uniformly on I. Prove that f € R(I) and

(1.2.75) /fk dx—>/fdx.
I I

10. Given I = [a,b], I. = [a +¢&,b—¢], assume f € R(I), |fi| < M on I for all k,
and

(1.2.76) fr — f uniformly on I,
for all € € (0, (b — a)/2). Prove that f € R(I) and (1.2.75) holds.

11. Use the fundamental theorem of calculus and results of §1.1 to compute

b
(1.2.77) / 2" dx, reQ\{-1},
where —co <a<b<ooifreNand0<a <b<ooifr¢N. See §3.2 for (1.2.77)
with 7 = —1 (and also for general r € R, even r € C).

12. Use the change of variable result of Exercise 4 to compute

1
(1.2.78) / vV 1+ 22 dx.
0
13. We say f € R(R) provided f|jxx4+1) € R([k, k + 1]) for each k € Z, and
oo k+1
(1.2.79) > / |f(x)| dz < oco.
k=—o0 'k

If f € R(R), we set

00 k
(1.2.80) /_ f(z)dx = kli_g)lo » f(z)dx.

Formulate and demonstrate basic properties of the integral over R of elements of
R(R).
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14. This exercise discusses the integral test for absolute convergence of an infi-
nite series, which goes as follows. Let f be a positive, monotonically decreasing,
continuous function on [0, 00), and suppose |ai| = f(k). Then

Z|ak|<oo<:>/ f(z)dz < oc.
k=0 0

Prove this.
Hint. Use
N N N-1
Slal< [ f@yde< Y
k=1 0 k=0
15. Use the integral test to show that, if p > 0,
=1
Y —<ooe=p>1
k=1 kP

NoTE. Compare Exercise 7 in §A.2. (For now, p € Q7. Results of §3.2 allow one
to take p € RT.) Hint. Use Exercise 11 to evaluate Iy (p) = le x~Pdx, for p # —1,
and let N — co. See if you can show floo z~ldxr = oo without knowing about

log N. Subhint. Show that [~ 2~V de = [2" 271 du.

In Exercises 16-17, C C [a, ] is the Cantor set introduced in the exercises for §A.3.
As in (A324)7 C= ﬂjZOCj.

16. Show that cont™ C; = (2/3)7(b — a), and conclude that

cont™ C = 0.

17. Define f : [a,b] — R as follows. We call an interval of length 377 (b—a), omitted
in passing from C;_; to C;, a “j-interval.” Set
fl®y=0, if z€C,
(=1)?, if  belongs to a j-interval.

Show that the set of discontinuities of f is C. Hence Proposition 1.2.11 implies
f € R([a, b]).

18. Let fr € R([a,b]) and f : [a,b] — R satisfy the following conditions.
(a)  |fe] <M < o0, VE,
(b)  fu(@) — f(x), Vaelab],
(¢) Given € > 0, there exists Se C [a, b] such that
cont™ S, < e, and fr — f uniformly on [a,b] \ Se.
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Show that f € R([a,b]) and

b b
/fk(x)dx—>/ f(x)dz, as k— oo.

REMARK. In the Lebesgue theory of integration, there is a stronger result, known
as the Lebesgue dominated convergence theorem. See Exercises 12-14 in §1.4 for
more on this.

19. Recall that one ingredient in the proof of Theorem 1.2.7 was that if f : (a,b) —
R, then

(1.2.81) f'(z) =0 for all z € (a,b) = f is constant on (a,b).

Consider the following approach to proving (1.2.81), which avoids use of the Mean
Value Theorem.

(a) Assume a < 29 < yo < b and f(zo) # f(vo0). Say f(yo) = f(zo) + Alyo — z0),
and we may as well assume A > 0.

(b) Divide Iy = [z, yo] into two equal intervals, Iy, and I, meeting at the midpoint
& = (xo + yo)/2. Show that either

f(&0) = f(zo) + A€o — w0) or f(yo) = f(o) + Alyo — &o)-
Set I = Iy if the former holds; otherwise, set Iy = Iy,.. Say Iy = [x1,41].
(c) Inductively, having Iy, = [z, y&], of length 27 (yo — ), divide it into two equal
intervals, Iy and I, meeting at the midpoint £ = (zx + yx)/2. Show that either

f(&) = flar) + A&k — 2k) or f(ye) = f(&) + Alyr — &k)-
Set 1 = Iy if the former holds; otherwise set Iy = Ig,.
(d) Show that
e ST,y T, T € [To, Yo,
and that, if f is differentiable at x, then f’(z) > A. Note that this contradicts the
hypothesis that f'(z) =0 for all z € (a,b).
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1.3. Power series

We consider power series, of the form
(1.3.1) f(z)= Zakzk,
k=0

with a € C. We begin with the following result.

Proposition 1.3.1. If the series (1.3.1) converges for some z1 # 0, then either
this series is absolutely convergent for all z € C or there is some R € (0,00) such
that the series is absolutely convergent for |z| < R and divergent for |z| > R. The
series converges uniformly on

(1.3.2) Dsg={zeC:|z| < S},

for each S < R, and f is continuous on Dg.

Proof. If (1.3.1) converges for z = z; # 0, then there exists C' < oo such that
(1.3.3) larzy| < C, VEk.

Hence, if |z] = r|z1], © < 1, we have

oo o0 C
(1.34) ];)mkzk\ < CI;Jrk =1, <%

the last identity being the classical geometric series computation. This yields the
first part of Proposition 1.3.1.

To proceed, say the series (1.3.1) converges for all |z| < R, defining f : Dr — C.
Take S € (0, R) and then pick T' € (S, R). We know there exists C' < oo such that
lax, T*| < C for all k. Hence

(1.3.5) 2 € Dg = |apz"| < C(;)k
Since
(1.3.6) Z(T) < o0,

k=0

the Weierstrass M-test (Proposition B.3.1) applies, to yield uniform convergence on
Dg. This yields continuity of f on Dg, for all S < R, hence continuity on Dgr. O

The quantity R described above is called the radius of convergence of the power
series (1.3.1). We now restrict attention to cases where z = ¢t € R, and apply
calculus to the study of such power series. We emphasize that we still allow the
coeflicients aj to be complex numbers.

Proposition 1.3.2. Assume a € C and

(1.3.7) &)= aptt
k=0
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converges for real t satisfying |t| < R. Then f is differentiable on the interval
—R <t < R, and its derivative is given by

(1.3.8) F1&) =" kapt*™1,
k=1

the latter series being absolutely convergent for |t| < R.

We first check absolute convergence of the series (1.3.8). Let S < T < R.
Convergence of (1.3.7) implies there exists C' < oo such that

(1.3.9) lag|TF < C, Vk.
Hence, if |t| < S,
C /S\F
k=1 & (2
(1.3.10) Ikat™1] < Sk(T> ,

which readily yields absolute convergence. (See Exercise 1 below.) Hence

(1.3.11) g(t) = kapt* !
k=1

is continuous on (—R, R). To show that f’(¢) = g(¢), by the fundamental theorem
of calculus, it is equivalent to show

t

(1.3.12) / g(s)ds = f(t) — f(0).
0

The following result implies this.

Proposition 1.3.3. Assume by, € C and

(1.3.13) g(t) => bit*
k=0
converges for real t, satisfying |t| < R. Then, for |t| < R,
' - bk g1
(1.3.14) / g(s)ds = it
0 —=k+1

the series being absolutely convergent for |t| < R.

Proof. Since, for |t| < R,

e
1.3.15 Ok +1‘ < Rbpt*|,
(13.15 | < R

convergence of the series in (1.3.14) is clear. Next, write
g(t) = Sn(t) + R (1),
1.3.16 ol >
( ) Sn(t) = Zbktk, Ry (t) = Z bt”.
k=0

k=N+1
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To continue, as in the proof of Proposition 1.3.1, pick S < T < R. There exists
C < oo such that |byT%| < C for all k. Hence

(1.3.17) t|<S=Ryt) <C Y (T) = Ceny =0, as N — oo.
k=N-+1

S0

t N b t
(1.3.18) / g(s)ds = —k gkl +/ Ry (s)ds,
and, for [¢t| < S,

t t

(1.3.19) ‘/ Riv(s) ds| < / R (s)|ds < CRew.

0 0
This gives (1.3.14). O

REMARK. The definition of (1.3.14) for ¢ < 0 follows standard convention. More
generally, if a < b and g € R([a, b]), then

/bag<s>ds= —/abg<s> ds.

More generally, if we have a power series about ¢,

(1.3.20) f@) = i ar(t —to)*, for |t —to| <R,
k=0
then f is differentiable for |t — to| < R and
(1.3.21) )= ikak(t—to)k_l.
k=1
We can then differentiate this power series, and inductively obtain
(1.3.22) f(")(t) = i k(k—1)---(k—n+ Dag(t —to)*".
k=n

In particular,
(1.3.23) F™ (o) = nlay.
We can turn (1.3.23) around and write

_ ™ (o)

n!

(1.3.24) an

This suggests the following method of taking a given function and deriving a power
series representation. Namely, if we can, we compute f*)(to) and propose that

(1.3.25) f(t) = f: I (to) (t —to)*,

at least on some interval about tg.



1.3. Power series 31

To take an example, consider

(1.3.26) f)y=@1-¢7"

with 7 € Q (but —r ¢ N), and take o = 0. (Results of §3.2 will allow us to extend
this analysis to » € R.) Using (1.1.36), we get

(1.3.27) () =r@1 - t),(T+1)7
for t < 1. Inductively, for k € N,
(1.3.28) FR@ =r(r+1)- - (r+k—1)(1—t)~ R,

Hence, for k£ > 1,

(1.3.29) FRO) =r(r+1) - (r+k—1) =[] (r +0).
£=0
Consequently, we propose that
- Wy

1.3.30 (1-1)" — t <1
(13.30) =X M<L
with

k—1
(1.3.31) a=1, ap=][(r+0), for k>1.

£=0

We can verify convergence of the right side of (1.3.30) by using the ratio test:
ap1t* T/ (k+1)! ’ k+r
aptk /k! k41

This computation implies that the power series on the right side of (1.3.30) is
absolutely convergent for [t| < 1, yielding a function

(1.3.32) ‘ 1.

(1.3.33) glt) = %
k=0 "
It remains to establish that g(t) = (1 —¢)~"

We take up this task, on a more general level. Establishing that the series

(1.3.34) i [P(t) (t —to)"

k!
k=0

thot < 1.

converges to f(t) is equivalent to examining the remainder R, (t,to) in the finite
expansion

(1.3.35) ft) = i%@—to)k + R (t, to).
k=0 ’

The series (1.3.34) converges to f(t) if and only if R, (t,t9) — 0 as n — oco. To see
when this happens, we need a compact formula for the remainder R,, which we
proceed to derive.
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It seems to clarify matters if we switch notation a bit, and write

_ , ()
(1.3.36) Fl@)=F@) + F W)@ —y)+-
We now take the y-derivative of each side of (1.3.36). The y-derivative of the left
side is 0, and when we apply 9/9y to the right side, we observe an enormous amount
of cancellation. There results the identity

(:L‘ - y)n + Rn(wvy)

OR 1
n - (n+1) A
(1.3.37) 9y (@,y) = =" ()@ — )"
Also,
(1.3.38) R, (z,z) =0.

If we concentrate on R, (x,y) as a function of y and look at the difference quotient
[Rn(z,y) — Ry (z,2)]/(y —x), an immediate consequence of the mean value theorem
is that, if f is real valued,

(1.3.39) Rn(z,y) = %(w —y)(@ = &)Y (&),

for some &, betweeen x and y. This is known as Cauchy’s formula for the remain-
der. If f(**1 is continuous, we can apply the fundamental theorem of calculus to
(1.3.37)—(1.3.38), and obtain the following integral formula for the remainder in the
power series.

Proposition 1.3.4. If I C R is an interval, z,y € I, and f € C"TL(I), then the
remainder R, (xz,y) in (1.3.36) is given by

(1.3.40) Ry (z,y) = %/(x — 5)" fHD (5) ds.

This works regardless of whether f is real valued. Another derivation of (1.3.40)
arose in the exercise set for §1.2. The change of variable z — s = ¢(x — y) gives the
integral formula

(1.3.41) Rn(z,y) = i'(x —y)ntt /1 " fOFD by + (1 — t)z) dt.
n! 0

If we think of this integral as 1/(n + 1) times a weighted mean of f("*1) we get
the Lagrange formula for the remainder,

1
1.3.42 . = ————(z—y)" T D,
(1.3.42) Rular) = gy = 9" 7D (),
for some (,, between x and y, provided f is real valued. The Lagrange formula is
shorter and neater than the Cauchy formula, but the Cauchy formula is actually
more powerful. The calculations in (1.3.45)—(1.3.56) below will illustrate this.

Note that, if I(x,y) denotes the interval with endpoints = and y (e.g., (z,y) if
x < y), then (1.3.40) implies

.
(1.3.43) Ra(ep)l < 228 sup (@@ — g pe)),
o cel(zy)
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while (1.3.41) implies

|z —y[" ! (n+1)

————— sup [f"T(E)].
M+ ter@y)

In case f is real valued, (1.3.43) also follows from the Cauchy formula (1.3.39) and
(1.3.44) follows from the Lagrange formula (1.3.42).

Let us apply these estimates with f as in (1.3.26), i.e.,
(1.3.45) fly=1-2)7",
and y = 0. By (1.3.28),

(1.3.44) |Rn(2,y)| <

n

(1.3.46) FOE) = anpa (1=~ an g =[] +0).
£=0
Consequently,
f(n+1) (5) _ —(r+n+1) _ An+1
(1.3.47) —a = bn(1 =€) y o bn = YR
Note that

b 1
(1.3.48) _PE T ) as n— oo
bn, n+1

Let us first investigate the estimate of R, (z,0) given by (1.3.44) (as in the
Lagrange formula), and see how it leads to a suboptimal conclusion. (The impa-
tient reader might skip (1.3.49)—(1.3.52) and go to (1.3.53).) By (1.3.47), if n is
sufficiently large that r +n +1 > 0,

(n+1)
SN Bl Lo
¢el@o) (m+1 1l
|0y

n+1

(1.3.49)

(1—az)~ D) jf o<z < 1.

Thus (1.3.44) implies

bn .
|Ry(z,0)] < 0] lz|"T i —1<2<0,
(1.3.50) Al
- lbn| 1 ( x )n+1 0ol
n+1l(1-—2z)" \1-— - ’
Note that, by (1.3.48),
by, n b, 1
Cn = [bn] :>c+1:| nlnt —1 as n — oo,
n+1 Cn [bn| n+2
so we conclude from the first part of (1.3.50) that
(1.3.51) R.(z,0) — 0 as n — o0, if —1 <z <0.

On the other hand, /(1 —z) is < 1 for 0 < z < 1/2, but not for 1/2 < z < 1.
Hence the factor (z/(1 — )" ™! decreases geometrically for 0 < z < 1/2, but not
for 1/2 <z < 1. Thus the second part of (1.3.50) yields only

1
(1.3.52) R,(z,0) — 0 as n— o0, f0 <z < 7
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Figure 1.3.1. Power series approximations S, (t) to V1 —¢, 1 <n <10

This is what the remainder estimate (1.3.44) yields.
To get the stronger result

(1.3.53) R, (z,0) — 0 as n — oo, for |z| <1,
we use the remainder estimate (1.3.43) (as in the Cauchy formula). This gives
_¢n
(1.3.54) R, 0] < ool -Jo] sup —2=E
eer(z,0) 11 =&l

with b, as in (1.3.47). Now
r—§

0<é<r<l = —= <,

1—¢-=

(1.3.55)
—1<x§§§0=>‘%_§’ <|z—¢| < |al.

The first conclusion holds since it is equivalent to x — & < (1 — §) = & — &, hence
to 2 < £. The second conclusion in (1.3.55) holds since £ <0 =1—-¢& > 1. We
deduce from (1.3.54)—(1.3.55) that

(1.3.56) |z| < 1= |Ry(2,0)| < |by] - |z|" T .
Using (1.3.48) then gives the desired conclusion (1.3.53).

We can now conclude that (1.3.30) holds, with a, given by (1.3.31). For another
proof of (1.3.30), see Exercise 14.
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We illustrate this result in Figure 1.3.1, with » = —1/2. This figure shows the
graphs of the approximations

(1.3.57) Sn(t) = axt®
k=0
to
2k —1
1/2 k _ _
(1.3.58) Zakt ap=1, agy1 = T 2ak
for 1 < n < 10. Results established above imply that
(1.3.59) Sp(t) — (1 =12, as n— oo,

for |t| < 1. In this case, this can be sharpened to yield uniform convergence for
t € [-1,1]. For ¢ > 0, the sequence S, (t) is monotonically decreasing. It decreases
to (1 —)/2 for t € [0,1], and to —oo for t > 1. For ¢ < 0, the terms in the series
(1.3.57) alternate signs, for n > 1. One again has divergence for ¢ < 1, as can be
seen via the ratio test.

Often it is useful to use a substitution of variables in power series. For example,
one can take t = 22 in the power series for f(t) = (1 —t)~" to get the power series
for (1 —22)~". Just replace t* by 22¥ in (1.3.30). To take a specific example, we
have

2k — 1
(1.3.60) (1—a?)'/? = Zakx a0 =1, app = 5——ar.

Figure 1.3.2 shows the graphs of the approximations
(1.3.61) Son(x Z apz® to V1 -—x2,

for 1 <n < 10. As indicated in the graph, this series diverges for || > 1. Results
established above for S, (t) imply

(1.3.62) Son(z) — (1 —22)Y2, as n — oo,
for || < 1. Again, this can be sharpened to yield uniform convergence for x €
[—1,1].

There are some important examples of power series representations for which

one does not need to use remainder estimates like (1.3.43) or (1.3.44). For example,
we have

1— anrl

(1.3.63) Zx -

if x # 1. The right side tends to 1/(1 — z) as n — oo, if |z| < 1, so we get

o0
= Zxk, lz] < 1,

k=0

(1.3.64)
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Figure 1.3.2. Power series approximations So,(z) to V1 —z2, 1 <n <10

without further ado, which is the case r = 1 of (1.3.30)—(1.3.31). We can differen-
tiate (1.3.64) repeatedly to get

(1.3.65) (1—2) "= ch(n)xk, || <1, neN,
k=0

and verify that (1.3.65) agrees with (1.3.30)—(1.3.31) with » = n. However, when
r ¢ Z, such an analysis of R,(z,0) as made above seems necessary. (But see
Exercise 14 below.)

Let us also note that we can apply Proposition 1.3.3 to (1.3.64), obtaining

>, gt T dy
1.3.66 = 1.
(1.3.66) > |12 <

Material covered in §3.2 will produce another formula for the right side of (1.3.66).

Returning to the integral formula for the remainder R, (x,y) in (1.3.36), we
record the following variant of Proposition 1.3.4.

Proposition 1.3.5. If I € R is an interval, x,y € I, and f € C"(I), then

(1.3.67) Ry (z,y) = ﬁ /z(x — )" (s) — FM) (y)] ds.
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Proof. Do (1.3.36)—(1.3.40) with n replaced by n — 1, and then write

(n)
(1.3.68) Ry r(my) = n!(y) + Ro(z,y).

O

REMARK. An advantage of (1.3.67) over (1.3.40) is that for (1.3.67), we need only
f € C"(I), rather than f € C"*1(I).

.|
Exercises

1. Show that (1.3.10) yields the absolute convergence asserted in the proof of
Proposition 1.3.2. More generally, show that, for any n € N, r € (0,1),

(oo}

Z Enrk < oo.

k=1
Hint. Use the ratio test.

2. A special case of (1.3.20)—(1.3.23) is that, given a polynomial p(t) = ant™ +-- -+
ait + ag, we have p®)(0) = k!ag. Apply this to

P,(t) = (1+t)™

Compute P,Sk)(t) using (1.1.7) repeatedly, then compute piP (0), and use this to
establish the binomial formula:

(1.3.69) (148" = Zn: (:)tk (Z) = H(n"lk)'

k=0

3. Going further, and building on the analysis in (1.3.26)—(1.3.56), show that, for
t] <1,

(1.3.70) 1+1) = f: <;>tk

k=0
with

(1.3.71) <6) =1, (Z) = T(T_l)"]'d(r_kﬂ), k€ N.

The coefficients of ¢* in (1.3.70), extending those that arise in (1.3.69), are also
called binomial coefficients. Here, we take r € Q, but results of §3.2 will allow us
to extend this result to » € R, and further, to r € C.

4. Find the coefficients in the power series

1 oo
— = Zbkxk
Vi—azt o~
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Show that this series converges to the left side for |z| < 1.
Hint. Take r = 1/2 in (1.3.30)—(1.3.31) and set t = z*.

Now expand

[
0 1—94

in a power series in x. Show this holds for |z| < 1.

5. Expand

|t
0 1494
as a power series in z. Show that this holds for |z| < 1.

6. Expand
Yooat
J, e
as a power series in z. Show that this holds for |z| < 1.

7. Let I C R be an open interval, zo € I, and assume f € C%(I) and f’(xo) = 0.
Use Proposition 1.3.4 to show that

J"(x0) > 0= f has a local mimimum at zo,

1" (x9) < 0= f has a local maximum at x.

Compare the proof of Proposition 1.1.4.

\/izﬂ.

Expand the right side in a power series, using (1.3.30)—(1.3.31). How many terms
suffice to approximate V2 to 12 digits?

8. Note that

9. In the setting of Exercise 8, investigate series that converge faster, such as series
obtained from

3 1
2="24/1-=
Vi=3 9
10 1
= f1——.
7 50

10. Apply variants of the methods of Exercises 8-9 to approximate v/3, v/5, /7,
and +/1001.

11. Given a rational approximation z,, to v/2, write

V2 =1,\/1+40,, so 145, =2/z2.



FExercises 39

Assume |, < 1/2. Then set
1
Tpa1 = xn(l + §6n>, 2= xi+1(1 + Ont1)-
Estimate 6,41. Does the sequence (z,) approach v/2 faster than a power series?

Apply this method to the last approximation in Exercise 9.

12. Assume F € C([a,b]), g € R([a,b]), F real valued, and g > 0 on [a,b]. Show

that ) )
| swrwa= ([ ava)ro.

for some ¢ € (a,b). Show how this result justifies passing from (1.3.41) to (1.3.42).
Hint. f A=min F, B=maxF, and M = f; g(t) dt, show that

b
AM < / g(t)F(t)dt < BM.

13. Recall that the Cauchy formula (1.3.39) for the remainder R, (x,y) was obtained
by applying the Mean Value Theorem to the difference quotient
Ry (z,y) — Ru(z, )
y—a '
Now apply the generalized mean value theorem, described in Exercise 8 of §1.1,
with

fy) = R(z,y), gy) = (z-y"",
to obtain the Lagrange formula (1.3.42).

14. Here is an approach to the proof of (1.3.30) that avoids formulas for the
remainder R, (x,0). Set

o

_r a
fr®)=@=0)7", gi(t) =D Jpt5 for Ji <1,
k=0

with ay, given by (1.3.31). Show that, for |¢t] < 1,
T
Fit) = =T 1), and (1 0gh(8) = 7o, (1)
Then show that p
— (1 =1)"g:(t) =0,

dt
and deduce that f,.(t) = g,(¢).

15. Assume f,g € C*(I), 0 € I, and write

k k
fl@)=>" fiz' +o(z"), glz)=>_ gja’ +o(z"),
i=0 =0

with
f9(0) 99(0)
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Show that h(x) = f(x)g(z) satisfies

k
h(z) = Z figix™ + o(2),
i,5=0
and deduce that

h(’“)(O) 1, .

mo= 2 fwi= 20 099 0),
i+j=k i+j=k

From this deduce that

LU0 = 3 0000,

i+j=k 2
Pass from this to the identity
dr k' 4
(1.3.72) o (f9)(z) = Zk@f@(ﬂc)g(“(m)y
i+j=

for z € I. This identity is called the Leibniz identity.
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1.4. Unbounded integrable functions

There are lots of unbounded functions we would like to be able to integrate. For
example, consider f(x) = =2 on (0, 1] (defined any way you like at 2 = 0). Since,
for e € (0,1),

1
(1.4.1) / 2% dr =2 — 24/,
€
this has a limit as £ \, 0, and it is natural to set
1
(1.4.2) / e V2 de = 2.
0

Sometimes (1.4.2) is called an “improper integral,” but we do not consider that to
be a proper designation. Here, we define a class R* (I) of not necessarily bounded
“integrable” functions on an interval I = [a, b], as follows.

First, assume f > 0 on I, and for A € (0,00), set

fale) = flx) if f(z) <A,

(143) A, if f(z)> A

We say f € R¥(I) provided
fa€R(I), VA<oo, and
(1.4.4) 3 uniform bound / fadz < M.
T

If f > 0 satisfies (1.4.4), then fI fa dx increases monotonically to a finite limit as
A /' 400, and we call the limit [, f da:

(1.4.5) /fAdx/‘/fdx, for feR#(I), f>0.
I I

We also use the notation f;fdm, if I = [a,b]. If I is understood, we might just
write [ fdx. It is valuable to have the following.

Proposition 1.4.1. If f,g: I — R are in R¥(I), then f + g € R¥(I), and

(1.4.6) /(f—|—g)dx:/fdx—|—/gdx.
T T i§

Proof. To start, note that (f + ¢)a < fa + ga. In fact,

(1.4.7) (f+9)a=(fatga)a.

Hence (f+g)a € R(I) and [(f+g)ade < [ fadx+ [gadx < [ fdz+ [gdz, so
we have f + g € R#(I) and

(1.4.8) /(f+g)dx§/fdx+/gdx.

On the other hand, if B > 2A, then (f + g)p > fa + ga, so

(1.4.9) /(f+g)dx2/fAdz+/gAdx,
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for all A < oo, and hence
(1.4.10) /(f+g)dx2/fdx+/gdx.
Together, (1.4.8) and (1.4.10) yield (1.4.6). O

Next, we take f: I — R and set
f=f"=f ff@)="Ff@ i flx)=0,

(14.11) 0 if f(z)<O.
Then we say
(1.4.12) feR* () < fT,f~ € R*(I),

and set

(1.4.13) /fdx:/f+dm—/f_ dx,
I I I

where the two terms on the right are defined as in (1.4.5). To extend the additivity,
we begin as follows

Proposition 1.4.2. Assume that g € R¥(I) and that g; > 0, g; € R¥#(I), and

(1.4.14) g=9go— g1-
Then

(1.4.15) /gdm:/godx—/gl dx.

Proof. Take g =g — ¢~ asin (1.4.11). Then (1.4.14) implies
(1.4.16) g g =g0+97,

which by Proposition 1.4.1 yields

(1.4.17) /g+ da:+/91 dx:/godx+/g’ d.

This implies
(1.4.18) /gJr dr — /g_ dr = /go dx — /g1 dz,
which yields (1.4.15) O

We now extend additivity.
Proposition 1.4.3. Assume fi, fo € R¥(I). Then fi + fo € R¥(I) and

(1.4.19) /(f1+f2)dx:/f1dx+/f2da:.
I I

I
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Proof. If g= f1 + fo = (fl+ —fi)+ (f2+ — f3), then
(1.4.20) 9=90-9g1. Go=f+f a=f+f.
We have g; € R#(I), and then

/(f1+f2)d33=/90d$—/91d13

(14.21) - / i+ ) da — / 7+ fr)de

:/ffrder/fjdo:f/ffdx*/fz_dl’,

the first equality by Proposition 1.4.2, the second tautologically, and the third by
Proposition 1.4.1. Since

(1.4.22) /fj dx:/fj+ dx—/fj_ dz,

this gives (1.4.19). O

Iff:1—=C,weset f=fi+ifs, fj:1—R,andsay f € R#(I) if and only if
f1 and f, belong to R¥(I). Then we set

(1.4.23) /fdx:/flderi/fgd:r.

Similar comments apply to f : I — R™.
Given f € R¥(I), we set

(1.4.24) Il = [ 1£(@)] da.
I

We have, for f,g € R#(I), a € C,

(1.4.25) lafllry = lal ([l n),

and

17 + gl :/|f+g|dx
I

(1.4.26) < /(lfl +|g[) dz

T
= fllcry + llgller oy
Note that, if S C I,
(1.4.27) contt(9) =0 = / Ixs|dx =0,
1

where cont™t(S) is defined by (1.2.21). Thus, to get a metric, we need to form
equivalence classes. The set of equivalence classes [f] of elements of R¥(I), where

(1.4.28) f~f<:>/|fff|d:z;:O,
I
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forms a metric space, with distance function

(1.4.29) D([f],19]) = IIf = gller )

However, this metric space is not complete. One needs the Lebesgue integral to
obtain a complete metric space. One can see [7] or [14].

We next show that each f € R#(I) can be approximated in L! by a sequence
of bounded, Riemann integrable functions.

Proposition 1.4.4. If f € R¥(I), then there exist fr € R(I) such that

(1430) Hf_kaLl(I) — 0, as k — oo.

Proof. If we separately approximate Re f and Im f by such sequences, then we
approximate f, so it suffices to treat the case where f is real. Similarly, writing
f = fT — f~, we see that it suffices to treat the case where f > 0 on I. For such
f, simply take

(1.4.31) fo=fa, A=k,

with fa asin (1.4.3). Then (1.4.5) implies

(1.4.32) /an/jm

and Proposition 1.4.3 gives

/|f fk\dx—/(f fi) da
(1.4.33) /fdac—/fkdl“

—>O as k:—>oo.

O

So far, we have dealt with integrable functions on a bounded interval. Now,
we say f: R — R (or C, or R") belongs to R*(R) provided f|; € R (I) for each
closed, bounded interval I C R and

R
(1.4.34) JA < oo such that / |f|de <A, VR<oo.
-R

In such a case, we set

00 R
(1.4.35) / fdzr= lim / fdx.
— oo R—o0 R

One can similarly define R# (R*).
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.|
Exercises

1. Let f:[0,1] = R" and assume f is continuous on (0, 1]. Show that

1
fER#([O,l])@/ fdx is bounded as &\, 0.

1 1
/ fdzr=lim / fdx.
0 e—=0 e

2. Let a > 0. Define p, : [0,1] = R by p, =27 % if 0 < 2 <1 Set p,(0) = 0. Show
that

In such a case, show that

pa € R7([0,1]) <= a < 1.

3. (See §3.2 for a development of logz.) Let b > 0. Define ¢ : [0,1/2] — R by
1
@(x) =

z|log z|b’
if 0 < x <1/2. Set ¢,(0) = 0. Show that
q € R7([0,1/2]) <= b> 1.

4. Show that if a € C and if f € R#(I), then

afeR# ), and /afdx—a/fdx
Hint. Check this for a >0, a = —1, and a = 1.
5. Show that

feR), ge R*(I) = fg € R¥().
Hint. Use (1.2.53). First treat the case f,g > 1, f < M. Show that in such a case,

(f9)a = (faga)a, and (fg)a < Mga.

6. Peek ahead to §3.2 and compute

1
/ logt dt.
0

Hint. To compute fsl log t dt, first compute

d
= (tlogt).
7 (tlog?)

7. Given g € R(I), show that there exist gr € PK(I) such that

lg — gxllzr ) — 0.
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Given h € PK(I), show that there exist hy, € C(I) such that
||h — thLl(I) — 0.

8. Using Exercise 7 and Proposition 1.4.4, prove the following: given f € R¥(I),
there exist fr € C(I) such that

If = felleray — 0

9. Recall Exercise 4 of §1.2. If ¢ : [a,b] — [A, B] is C!, with ¢/(x) > 0 for all
x € [a, b], then

(1.4.36) /f dy—/f

for each f € C([a,b]), where A = ¢(a), B = ¢(b). Using Exercise 8, show that
(1.4.36) holds for each f € R¥([a,b]).

10. If f € R#(R), so (1.4.34) holds, prove that the limit exists in (1.4.35).

11. Given f(x) =27 '/2(1 +22)~! for z > 0, show that f € R#(R™T). Show that
/°° L de _, [" dy
o 1422z T Jo 14yt
12. Let fr. € R#([a,b]), f: [a,b] — R satisfy
(a) |fel <g, Yk, forsome g€ R¥([a,b]),

(b) Given € > 0, 3 contented S; C [a, b] such that

[ gdx<e, and fr— f uniformly on [a,b]\ S..
Se

Show that f € R¥([a,b]) and

/fk d$—>/f x, as k — oo.

13. Let g € R#([a,b]) be > 0. Show that for each £ > 0, there exists § > 0 such
that

S C [a,b] contented, contS < § = /gdaj <e.

s
Hint. With g4 defined as in (1.4.3), pick A such that [ gadz > [ gdx —e/2. Then
pick 0 < g/2A.

14. Deduce from Exercises 12-13 the following. Let fi € R*([a,b]), f : [a,b] = R
satisfy

(a) |fsl <g, Vk, forsome ge R#([a,b]),
(b) Given § > 0, 3 contented S5 C [a, b] such that
cont Ss <9, and fr — f uniformly on [a,b]\ Ss.
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Show that f € R#([a,b]) and

b b
/fk(x)dx—>/ f(x)dz, as k— oo.

REMARK. Compare Exercise 18 of §1.2. As mentioned there, the Lebesgue theory
of integration has a stronger result, known as the Lebesgue dominated convergence
theorem.
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Chapter 2

Multidimensional spaces

Multivariable calculus is set in multidimensional spaces. The paradigmatic case
is n-dimensional Euclidean space R™. We present basic material on this in §2.1.
The space R™ has both a linear structure and a geometric structure, coming from
the dot product, which gives rise to the notion of distance and of convergence of
sequences.

While R”™ is the paradigm, it is convenient to consider more general vector
spaces, and we do this in §2.2. We also study linear transformations 7' : V —
W between two vector spaces. We define the class of finite-dimensional vector
spaces, and show that the dimension of such a vector space is well defined. If
V is a real vector space and dimV = n, then V is isomorphic to R™. Linear
transformations from R™ to R™ are given by m x n matrices. In Chapter 4, such
linear transformations arise as derivatives of nonlinear maps, and understanding the
behavior of these derivatives is basic to many key results in multivariable calculus,
both in Chapter 4 and in subsequent chapters.

In §2.3 we define the determinant, det A, of an n X n matrix A, and show that
A is invertible if and only if det A # 0. In Chapter 5 we will see the determinant
of the derivative DF(x) of a map F : O —  between regions of R™ entering into
the change of variable formula for the integral.

In §2.4 we define the trace of a matrix A € M(n,R) and explore some of its
basic properties, including the Euclidean space structure on M (n,R) that arises
from (A, B) = Tr AB'. Some exercises relate the trace and the determinant.

Section 2.5 treats the cross product of vectors in R3. Results derived here will
be useful for the study of curves in R? in §3.4, and for the study of surface area in
86.1.
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2.1. Euclidean spaces

The space R", n-dimensional Euclidean space, consists of n-tuples of real numbers:

(2.1.1) z=(21,...,2,) €ER", z;€R, 1<j<n

The number z; is called the jth component of z. Here we discuss some important
algebraic and metric structures on R™. First, there is addition. If = is as in (2.1.1)
and also y = (y1,...,yn) € R™, we have

(2.1.2) r+y=(x1+y1,...,Tn+yn) €R™
Addition is done componentwise. Also, given a € R, we have
(2.1.3) ar = (ax1,...,ax,) € R™.

This is scalar multiplication. In (2.1.1), we represent = as a row vector. Sometimes
we want to represent x by a column vector,

Ty
(2.1.4) T =
Tn
Then (2.1.2)—(2.1.3) are converted to
1+ Y1 ary
(2.1.5) TH+y= , ar =
Tn + Yn axy
We also have the dot product,
(2.1.6) Toy=Y wy;=z1y1+ -+ Tnyn € R,

j=1

given z,y € R™. The dot product has the properties

r-y=y-,

(2.1.7) x-(ay+bz) =alx-y)+b(x-z),
z-x >0 unless z=0.

Note that

(2.1.8) Tox=al 4422

We set

(2.1.9) 2l = V& 3,

which we call the norm of 2. Note that (2.1.7) implies
(2.1.10) (az) - (ax) = a*(x - x),
hence

(2.1.11) lax| =|a| - |z|, for a €R, z € R™
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Taking a cue from the Pythagorean theorem, we say that the distance from x
to y in R" is
(2.1.12) d(z,y) = |z —y|.
For us, (2.1.9) and (2.1.12) are simply definitions. We do not need to depend on a
derivation of the Pythagorean theorem via classical Euclidean geometry. Significant

properties will be derived below, without recourse to a prior theory of Euclidean
geometry.

A set X equipped with a distance function is called a metric space. One can
find a discussion of metric spaces in general in [15]. Here, we want to show that
the Euclidean distance, defined by (2.1.12), satisfies the “triangle inequality,”

(2.1.13) d(z,y) <d(z,z)+d(z,y), Yz,y,zeR"

This in turn is a consequence of the following, also called the triangle inequality.
Proposition 2.1.1. The norm (2.1.9) on R™ has the property

(2.1.14) |z +y| <|z|+y|, Vz,yeR"

Proof. We compare the squares of the two sides of (2.1.14). First,
[z +ylP=(r+y) (z+y)
(2.1.15) =z-zty-c+y-z+y-y
= |z[* + 22y +[y*.

Next,

(2.1.16) (el + [y)? = Jof* + 2la] - [y] + yI*.

We see that (2.1.14) holds if and only if z-y < |z|-|y|. Thus the proof of Proposition
2.1.1 is finished off by the following result, known as Cauchy’s inequality. (]
Proposition 2.1.2. For all x,y € R™,

(2.1.17) |z -yl < |z] - [yl

Proof. We start with the chain

(2.1.18) 0< o -yl =(@-y) (@—y) =l +yI* — 22y,

which implies

(2.1.19) 2 -y < |z|? + |y[*, Va,ye€R™

If we replace x by tz and y by t 1y, with ¢t > 0, the left side of (2.1.19) is unchanged,
so we have

(2.1.20) 21 -y < |z +t73yl?, V> 0.
Now we pick ¢ so that the two terms on the right side of (2.1.20) are equal, namely
(2.1.21) t? = Iyl t72 = M.

|| [yl
(At this point, note that (2.1.17) is obvious if z = 0 or y = 0, so we will assume
that x # 0 and y # 0.) Plugging (2.1.21) into (2.1.20) gives

(2.1.22) x-y<lz|-ly|, Va,yeR"™
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This is almost (2.1.17). To finish, we can replace z in (2.1.22) by —a = (—1)z,
getting

(2.1.23) —(z-y) < |zf - [yl
and together (2.1.22) and (2.1.23) give (2.1.17). O
We now discuss a number of notions and results related to convergence in R™.

First, a sequence of points (p,) in R™ converges to a limit p € R™ (we write p; — p)
if and only if

(2.1.24) Ip; —pl — 0,

where | - | is the Euclidean norm on R”, defined by (2.1.9), and the meaning of
(2.1.24) is that for every € > 0 there exists N such that

(2.1.25) j>N=|p; —pl<e.
If we write p; = (p1j,-..,Pn;) and p = (p1,...,pn), then (2.1.24) is equivalent to
(p1j—p1)? +- 4 (Pnj —pn)* — 0, as j— oo,
which holds if and only if
|pe; —pel — 0 as j — oo, foreach ¢e€{1,...,n}.

That is to say, convergence p; — p in R" is eqivalent to convergence of each
component.

A set S C R™ is said to be closed if and only if
(2.1.26) p; €S, pj >p=peSb.

The complement R™ \ S of a closed set S is open. Alternatively, Q C R™ is open if
and only if, given ¢ € Q, there exists e > 0 such that B.(q) C 2, where

(2.1.27) B.(q) ={peR":|p—q| <e},

so ¢ cannot be a limit of a sequence of points in R™ \ Q.

An important property of R™ is completeness, a property defined as follows. A
sequence (p;) of points in R™ is called a Cauchy sequence if and only if

(2.1.28) lpj —pk| — 0, as j,k— oc.

Again we see that (p;) is Cauchy in R™ if and only if each component is Cauchy
in R. It is easy to see that if p; — p for some p € R”, then (2.1.28) holds. The
completeness property is the converse.

Theorem 2.1.3. If (p;) is a Cauchy sequence in R™, then it has a limit, i.e.,
(2.1.24) holds for some p € R™.

Proof. Since convergence p; — p in R" is equivalent to convergence in R of each
component, the result is a consequence of the completeness of R. This is proved in
8A.2. a
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Completeness provides a path to the following key notion of compactness. A
nonempty set K C R"™ is said to be compact if and only if the following property
holds.

Each infinite sequence (p;) in K has a subsequence

2.1.29
( ) that converges to a point in K.

It is clear that if K is compact, then it must be closed. It must also be bounded,
i.e., there exists R < oo such that K C Bg(0). Indeed, if K is not bounded, there
exist p; € K such that [p;11] > |p;| +1. In such a case, |p; — px| > 1 whenever
j # k, so (p;) cannot have a convergent subsequence. The following converse result
is the n-dimensional Bolzano-Weierstrass theorem.

Theorem 2.1.4. If a nonempty K C R" is closed and bounded, then it is compact.

Proof. If K C R" is closed and bounded, it is a closed subset of some box
(2.1.30) B={(x1,...,2n) € R" :a < x, <b, Vk}.

Clearly every closed subset of a compact set is compact, so it suffices to show that
B is compact. Now, each closed bounded interval [a,b] in R is compact, as shown
in Appendix A.3, and (by reasoning similar to the proof of Theorem 2.1.3) the
compactness of B follows readily from this. O

We establish some further properties of compact sets K C R", leading to the
important result, Proposition 2.1.8 below.

Proposition 2.1.5. Let K C R" be compact. Assume X1 D Xo D X3 D -+ form
a decreasing sequence of closed subsets of K. If each X,, # 0, then Ny X, # 0.

Proof. Pick z,, € X,,. If K is compact, (z,,) has a convergent subsequence,
Ty, — Y. Since {zp, 1 k > €} C X,p,, which is closed, we have y € Ny, Xy, O

Corollary 2.1.6. Let K C R™ be compact. Assume Uy C Uy CUs C -+ form an
increasing sequence of open sets in R™. If U,,Uy,, D K, then Uyy D K for some M.

Proof. Consider X,,, = K \ Up,. |

Before getting to Proposition 2.1.8, we bring in the following. Let Q denote
the set of rational numbers, and let Q™ denote the set of points in R™ all of whose
components are rational. The set Q™ C R"™ has the following “denseness” property:
given p € R™ and € > 0, there exists ¢ € Q™ such that |p — ¢| < e. Let

(2.1.31) R={B(¢):qeQ", reQn(0,00)}.

Note that Q and Q™ are countable, i.e., they can be put in one-to-one correspondence
with N. Hence R is a countable collection of balls. The following lemma is left as
an exercise for the reader.

Lemma 2.1.7. Let Q C R™ be a nonempty open set. Then
(2.1.32) Q=|/{B:BeR, BC}.
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To state the next result, we say that a collection {U, : @ € A} covers K if
K C UqaeaU,. If each U, C R™ is open, it is called an open cover of K. If B C A
and K C UgepUp, we say {Ug : 8 € B} is a subcover. The following is part of the
n-dimensional Heine-Borel theorem.

Proposition 2.1.8. If K C R" is compact, then it has the following property.
(2.1.33) Every open cover {U, : a € A} of K has a finite subcover.

Proof. By Lemma 2.1.7, it suffices to prove the following.

Every countable cover {B; : j € N} of K by open balls

2.1.34
( ) has a finite subcover.

To see this, write R = {B, : j € N}. Given the cover {U,}, pass to {B; : j € J},
where j € J if and only of B, is contained in some U,. By (2.1.32), {B; : j € J}
covers K. If (2.1.34) holds, we have a subcover {By : £ € L} for some finite L C J.
Pick ay € A such that By C U,,. The {U,, : £ € L} is the desired finite subcover
advertised in (2.1.33).

Finally, to prove (2.1.34), we set
(2.1.35) Unp=B1U---UB,,

and apply Corollary 2.1.6. O

.|
Exercises

1. Identifying z = x +iy € C with (z,y) € R? and w = u+iv € C with (u,v) € R?,
show that the dot product satisfies

z-w = Re zw.

2. Take z,y € R". We write
rly<=z-y=0,
and say x and y are orthogonal. Show that

Ly lz+y*=z*+|y>

3. Given z, € R", we say {z, : 1 <v < m} is an orthonormal set provided
Ty Ty =0, =1 if p=uv,
0 if p#w
Show that, if {z, : 1 <v < m} is an orthonormal set, then, for a, € R,

2 2 2
la1zy + -+ amrm P = a2 + -+ a2,
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—e1 0 el

Figure 2.1.1. Right triangle in a circle

4. Assume {u; : 1 < j <m} is an orthonormal set in R™. Take z € R™ and set
a; =T Uj, Y=0a1Ur+ -+ QplUp.
Show that
r—yLlu;, Vjie{l,...,m}.

See Exercise 9 of §2.2 for a complementary result.
5. Show that the inequality (2.1.14) implies (2.1.13).

6. Let e;,v € R™ and assume |e;| = |v| = 1. Show that
eg—vle +w.
Hint. Expand (e; — v) - (e1 + v).
See Figure 2.1.1 for the geometrical significance of this, when n = 2.
7. Let St = {x € R? : |x| = 1} denote the unit circle in R?, and set e; = (1,0) € S*.
Pick a € R such that 0 < a < 1, and set u = (1 —a)e;. See Figure 2.1.2. Then pick

v € S' such that v —u L eg, and set b= |v — e1].
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Figure 2.1.2. Geometric construction of b = v/2a

Show that
(2.1.36) b=2a.

Hint. Notethat 1 —a=wu-e; =v-e1, hencea=1—v-e;.
Then expand b? = (v —e1) - (v — e1).

8. Recall the approach to (2.1.36) in classical Euclidean geometry, using similarity
of triangles, leading to

a
b
What is the relevance of Exercise 6 to this?

V| o

9. Prove Lemma 2.1.7.

10. Use Proposition 2.1.8 to prove the following extension of Proposition 2.1.5.

Proposition 2.1.9. Let K C R™ be compact. Assume {X, : o € A} is a collection
of closed subsets of K. Assume that for each finite set B C A, NoepXa # 0. Then

(] Xa #0.

acA

Hint. Consider U, = R™ \ X,,.
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11. Let K € R™ be compact. Show that there exist zg,z; € K such that
|xo] < |z|, VzeK,
1] > |2, VaeK.

We say
|@ol = min [zf,  |z1| = max |z].
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2.2. Vector spaces and linear transformations

We have seen in §2.1 how R" is a vector space, with vector operations given by
(2.1.2)—(2.1.3), for row vectors, and by (2.1.4)—(2.1.5) for column vectors. We could
also use complex numbers, replacing R” by C", and allowing a € C in (2.1.3) and
(2.1.5). We will use F to denote R or C.

Many other vector spaces arise naturally. We define this general notion now.
A vector space over F is a set V, endowed with two operations, that of vector
addition and multiplication by scalars. That is, given v,w € V and a € F, then
v 4+ w and av are defined in V. Furthermore, the following properties are to hold,
for all u,v,w €V, a,b € F. First there are laws for vector addition:

Commutative law :  u+v =v + u,
Associative law : (v +v) +w =u+ (v + w),
Zero vector: J0e€V, v+0=uv,
Negative: I —wv, v+ (—v) =0.

(2.2.1)

Next there are laws for multiplication by scalars:
Associative law :  a(bv) = (ab)v,

2.2.2
( ) Unit: 1-v=w.

Finally there are two distributive laws:
a(u+v) = au + av,

2.2.
(223) (a +b)u = au + bu.

It is easy to see that R™ and C"™ satisfy all these rules. We will present a number
of other examples below. Let us also note that a number of other simple identities
are automatic consequences of the rules given above. Here are some, which the
reader is invited to verify:
v+w=v=w=0,
v+0-v=(140)v =0,
0-v=0,
v+w=0=w=—v,
v+ (—v=0-v=0,

(2.2.4)

Here are some other examples of vector spaces. Let I = [a, b] denote an interval
in R, and take a non-negative integer k. Then C*(I) denotes the set of functions
f+ 1 — FF whose derivatives up to order k are continuous. We denote by P the set
of polynomials in x, with coefficients in F. We denote by P}, the set of polynomials
in x of degree < k. In these various cases,

(2.2.5) (f+9)(@) = f(x) +9(x), (af)(z)=af(z).

Such vector spaces and certain of their linear subspaces play a major role in the
material developed in these notes.



2.2. Vector spaces and linear transformations 59

Regarding the notion just mentioned, we say a subset W of a vector space V
is a linear subspace provided

(2.2.6) wj €W, aj € F = ajw;i + agwy € W.

Then W inherits the structure of a vector space.

Linear transformations and matrices

If V and W are vector spaces over F (R or C), a map
(2.2.7) T:V-—W
is said to be a linear transformation provided
(2.2.8) T(a1v1 + agv2) = a1Tvr + aeTvae, Vaj €F, v; € V.

We also write T' € L(V,W). In case V = W, we also use the notation L(V) =
LV, V).

Linear transformations arise in a number of ways. For example, an m X n
matrix A with entries in F defines a linear transformation

(2.2.9) A:F" — F™
by
aip - Qin b1 Yaiebe
(2.2.10) : : = :
a;m EE ay;m b.n Eav;uzbz

We also have linear transformations on function spaces, such as multiplication
operators

(2.2.11) My : CH(I) — C*(I), Myg(z) = f(x)g(),
given f € C*¥(I), I = [a,b], and the operation of differentiation:
(2.2.12) D: C*Y(I) — CM(I), Df(x) = f'(x).
We also have integration:

(2.2.13) Z:CH1I) — CFTH(I), If(x)= / f(y) dy.
Note also that

(2.2.14) D :Piy1 — Pr, I:Pp— Piti,

where Py denotes the space of polynomials in z of degree < k.
Two linear transformations T € L(V, W) can be added:

(2215) T1 + TQ V. — VV, (Tl + TQ)U = Tﬂ} + TQ’U.
Also T € L(V, W) can be multiplied by a scalar:
(2.2.16) aT : V. — W, (aT)v = a(Tv).

This makes £(V, W) a vector space.
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We can also compose linear transformations S € L(W, X), T € L(V,W):

(2.2.17) ST:V — X, (ST)v=S(Tv).
For example, we have
(2.2.18) M¢D: C* (1) — C*(I), M;Dg(z) = f(z)d (x),
given f € C*(I). When two transformations
(2.2.19) A:F* —F™, B:FF —F"
are represented by matrices, e.g., A as in (2.2.10) and
bir - bk
(2.2.20) B=1: I
bui o+ bpk
then
(2.2.21) AB:F* — F™
is given by matrix multiplication:
Yarber -+ Baiebey
(2.2.22) AB = : .
Yameber -+ Lamebe

For example,
air a1z (bun b2 _ (a11bin +aisbar  a11biz + arzbro
az1  azz) \bar bao a1b11 + agabor  as1biz + agebas )

Another way of writing (2.2.22) is to represent A and B as

(2.2.23) A= (aij), B=(bij),

and then we have

(2.2.24) AB = (dij), dij = Z aiche;.
=1

To establish the identity (2.2.22), we note that it suffices to show the two sides have
the same effect on each e; € FF 1< j < k, where e; is the column vector in Fk
whose jth entry is 1 and whose other entries are 0. First note that

blj
(2.2.25) Bej=| : |,
b

the jth column in B, as one can see via (2.2.10). Similarly, if D denotes the right
side of (2.2.22), De; is the jth column of this matrix, i.e.,

Zalgbgj
(2.2.26) De; = :
Yamebe;

On the other hand, applying A to (2.2.25), via (2.2.10), gives the same result, so
(2.2.25) holds.
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Associated with a linear transformation as in (2.2.7) there are two special linear
spaces, the null space of T and the range of T'. The null space of T is

(2.2.27) N(T)={veV:Tv=0},
and the range of T is
(2.2.28) R(T)={Tv:veV}

Note that A (T) is a linear subspace of V and R(T) is a linear subspace of W. If
N(T) =0 we say T is injective; if R(T) = W we say T is surjective. Note that T
is injective if and only if T' is one-to-one, i.e.,

(2229) Tvi = Tvy = v1 = vs.

If T is surjective, we also say T is onto. If T is one-to-one and onto, we say it is an
isomorphism. In such a case the inverse

(2.2.30) T W —V

is well defined, and it is a linear transformation. We also say 7T is invertible, in such
a case.

Basis and dimension

Given a finite set S = {v1,..., v} in a vector space V, the span of S is the set
of vectors in V of the form
(2.2.31) 1oy + - + R

with ¢; arbitrary scalars, ranging over F = R or C. This set, denoted Span(S) is a
linear subspace of V. The set S is said to be linearly dependent if and only if there
exist scalars ¢y, ..., ¢k, not all zero, such that (2.2.31) vanishes. Otherwise we say
S is linearly independent.

If {v1,...,vx} is linearly independent, we say S is a basis of Span(.S), and that
k is the dimension of Span(S). In particular, if this holds and Span(S) = V, we
say k = dim V. We also say V has a finite basis, and that V is finite dimensional.

By convention, if V has only one element, the zero element, we say V = 0 and
dimV = 0.

It is easy to see that any finite set S = {v1,...,vr} C V has a maximal subset
that is linearly independent, and such a subset has the same span as S, so Span(5)
has a basis. To take a complementary perspective, S will have a minimal subset
So with the same span, and any such minimal subset will be a basis of Span(S).
Soon we will show that any two bases of a finite-dimensional vector space V have
the same number of elements (so dim V' is well defined). First, let us relate V' to
Fk.

So say V has a basis S = {v1,...,v;}. We define a linear transformation
(2.2.32) Js:FF — Vv
by

(2.2.33) js(C161 + -+ Ckek) = V1 + - -+ CrUE,
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where
1 0
0 :
(2.2.34) er=|.1],--... Jep = | -
: 0
0 1

We say {ei,...,ep} is the standard basis of F¥. The linear independence of S is
equivalent to the injectivity of Jg and the statement that S spans V' is equivalent
to the surjectivity of Js. Hence the statement that S is a basis of V' is equivalent
to the statement that Jg is an isomorphism, with inverse uniquely specified by

(2.2.35) Js (ervr + - 4 cpup) = crer + -+ + cpey.

We begin our demonstration that dimV is well defined, with the following
concrete result.

Lemma 2.2.1. Ifvy,...,vps1 are vectors in F¥, then they are linearly dependent.

Proof. We use induction on k. The result is obvious if £ = 1. We can suppose the
last component of some v; is nonzero, since otherwise we can regard these vectors
as elements of F*~! and use the inductive hypothesis. Reordering these vectors, we
can assume the last component of vy is nonzero, and it can be assumed to be 1.
Form
wj =Vj = VkjOk41, 1< J <k,

where v; = (v1;, ..., vx;)". Then the last component of each of the vectors wy, . .., wy
is 0, so we can regard these as k vectors in F¥~1. By induction, there exist scalars
ay,...,a, not all zero, such that

ajwy + -+ apwg =0,
so we have
aivy + -+ apvg = (@1vp1 + -+ ARV )Vkt1,
the desired linear dependence relation on {v1, ..., vk41}- O

With this result in hand, we proceed.

Proposition 2.2.2. If V has a basis S = {v1,..., v} with k elements and if the
set {wy,...,we} CV is linearly independent, then ¢ < k.

Proof. Take the isomorphism Jg : F¥ — V described in (2.2.32)—(2.2.33). The hy-
potheses imply that {jglwl, ceey jglwg} is linearly independent in F¥, so Lemma
2.2.1 implies ¢ < k. O

Corollary 2.2.3. If V is finite-dimensional, any two bases of V' have the same
number of elements. If V is isomorphic to W, these spaces have the same dimen-
S50M.

Proof. If S (with #S elements) and T are bases of V, we have #S < #T and
#T < #5S5, hence #S = #T. For the latter part, an isomorphism of V onto W
takes a basis of V' to a basis of W. O

The following is an easy but useful consequence.
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Proposition 2.2.4. IfV is finite dimensional and W C V a linear subspace, then
W has a finite basis, and dim W < dim V.

Proof. Suppose {wy,...,w,} is a linearly independent subset of W. Proposition
2.2.2 implies ¢ < dim V. If this set spans W, we are done. If not, there is an element
w41 € W not in this span, and {wy, ..., w1} is a linearly independent subset of
W. Again £+ 1 < dim V. Continuing this process a finite number of times must
produce a basis of W. O

A similar argument establishes:

Proposition 2.2.5. Suppose V is finite dimensional, W C V a linear subspace, and
{wi,...,we} abasis of W. ThenV has a basis of the form {w,...,we,u1,... , Um},
and { +m =dimV.

Having this, we can establish the following result, sometimes called the funda-
mental theorem of linear algebra.

Proposition 2.2.6. Assume V and W are vector spaces, V finite dimensional,
and

(2.2.36) AV —W
a linear map. Then
(2.2.37) dimN(A) + dimR(A) = dim V.

Proof. Let {wy,...,w¢} be a basis of N(A) C V, and complete it to a basis
{wi, ..., we, U, Um b

of V. Set L = Span{us,...,un}, and consider

(2.2.38) Ag: L —W, Ag=A4|,.

Clearly w € R(A) = w = A(aywy + -+ + apwg + biug + -+ + b)) = Ag(brug +
oo 4 by Uy ),y SO

(2.2.39) R(Ap) = R(A).

Furthermore,

(2.2.40) N(Ao) =N(A)NL=0.

Hence Ap : L — R(Ap) is an isomorphism. Thus dimR(A4) = dimR(4y) =
dim L = m, and we have (2.2.37). O

The following is a significant special case.
Corollary 2.2.7. Let V be finite dimensional, and let A:V — V be linear. Then
A injective <= A surjective <= A isomorphism.
We mention that these equivalences can fail for infinite dimensional spaces. For
example, if P denotes the space of polynomials in z, then M, : P — P (M, f(z) =

x f(x)) is injective but not surjective, while D : P — P (D f(x) = f'(z)) is surjective
but not injective.
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Next we have the following important characterization of injectivity and sur-
jectivity.

Proposition 2.2.8. Assume V and W are finite dimensional and A :'V — W is
linear. Then

(2.2.41) A surjective <= AB = Iy, for some B € LW, V),
and
(2.2.42) A injective <= CA = Iy, for some C € LW, V).

Proof. Clearly AB = I = A surjective and CA = I = A injective. We establish
the converses.

First assume A : V' — W is surjective. Let {wy,...,w;} be a basis of W. Pick
v; € V such that Av; = w;. Set

(2.2.43) B(ajwy + - + apwy) = ajv1 + - - + agvg.
This works in (2.2.41).

Next assume A : V — W is injective. Let {vy,...,vr} be a basis of V. Set
w; = Av;. Then {w1,...,wy} is linearly independent, hence a basis of R(A), and
we then can produce a basis {w1, ..., Wk, u1,..., Uy} of W. Set

(2.2.44) Claywy + -+ - + agwg + brug + -+ + bpptty) = a1vy + - -+ + apvg.
This works in (2.2.42). O

An m x n matrix A defines a linear transformation A : F"* — F™, as in (2.2.9)-
(2.2.10). The columns of A are

a1j
(2.2.45) a;j=| :
Amj
As seen in (2.2.25),
(2.2.46) Aej = ajy,
where ey, ..., e, is the standard basis of F". Hence
(2.2.47) R(A) = linear span of the columns of A,
SO
(2.2.48) R(A) =F" <= ay,...,a, span F™.
Furthermore,
n n
(2.2.49) A(Z Cj@j) =0 ZC]'CL]' =0,
j=1 j=1
S0
(2.2.50) N(A) =0<«= {a1,...,a,} is linearly independent.

We have the following conclusion, in case m = n.
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Proposition 2.2.9. Let A be an n X n matriz, defining A : F™ — F™. Then the
following are equivalent:

A is invertible,
(2.2.51) The columns of A are linearly independent,
The columns of A span F".

.|
Exercises

1. Show that the results in (2.2.4) follow from the basic rules (2.2.1)—(2.2.3).

Hint. To start, add —v to both sides of the identity v + w = v, and take account
first of the associative law in (2.2.1), and then of the rest of (2.2.1). For the second
line of (2.2.4), use the rules (2.2.2) and (2.2.3). Then use the first two lines of
(2.2.4) to justify the third line...

2. Demonstrate the following results for any vector space. Take a € F, v € V.
a-0=0¢€V,

a(—v) = —av.

Hint. Feel free to use the results of (2.2.4).

Let V be a vector space (over F) and W, X C V linear subspaces. We say

(2.2.52) V=WwW+X
provided each v € V' can be written

(2.2.53) v=w+z, weW, zeX.
We say

(2.2.54) V=welX

provided each v € V has a unique representation (2.2.53).

3. Show that
V=WoeX+——V=W+X and WnNX =0.

4. Let A:F™ — F™ be defined by an m x n matrix, as in (2.2.9)—(2.2.10).

(a) Show that R(A) is the span of the columns of A.

Hint. See (2.2.25).

(b) Show that M (A) = 0 if and only if the columns of A are linearly independent.

5. Define the transpose of an m x n matrix A = (a;x) to be the n x m matrix
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A" = (ay;). Thus, if A is as in (2.2.9)—(2.2.10),

ai; o Ay
(2.2.55) Al =
A1p Qmn
For example,
1 2
A=|3 4 :>At:<; ; 2)
5 6

Suppose also B is an n x k matrix, as in (2.2.20), so AB is defined, as in (2.2.21).
Show that

(2.2.56) (AB)' = B'A".
6. Let
2
A=(1 2 3), B=|0
2

Compute AB and BA. Then compute A'B! and Bt A’

7. Let P5 be the space of real polynomials in z of degree < 5 and set
T:Ps —>R3u Tp: (p(_1)7p(0)7p(1))
Specify R(T) and N(T), and verify (2.2.37) for V =P5, W =R3 A=T.

8. Denote the space of m x n matrices with entries in F (as in (2.2.10)) by

(2.2.57) M(m x n,F).
If m = n, denote it by

(2.2.58) M(n,F).
Show that

dim M (m x n,F) = mn,

especially )
dim M (n,F) = n”.

9. Assume {uj : 1 < j < n}is an orthonormal set in R™. Pick € R™ and set
a; = x - uj. Show that

r=aiu; + -+ aply,.
We say {u; : 1 < j < n} is an orthonormal basis of R™.
Hint. Show that this orthonormal set is linearly independent, and deduce that it
spans R™. Then see Exercise 4 of §2.1.

Given T € M(n,R), we say
TeO)«—T'T=1,
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or equivalently, if and only if

Tx - Ty=x-y, Vz,yecR™

10. Show that, given T' € M (n,R),
T € O(n) <= the columns of T form an orthonormal basis of R".

11. Given T € M(n,R), show that
TeO(n) < |Tz| =|z|, VzeR™
Hint. Expand |T(z + y)|* = (Tx + Ty) - (Tx + Ty).

12. If {u; : 1 < j < n} and {v; : 1 < j < n} are both orthonormal bases of R,
show that there is a unique 7' € O(n) such that

Tuj =v;, Yje{l,...,n}

13. Take a peek at §C.1 and show that if V' C R"™ is a linear subspace, then V'
has an orthonormal basis. Going further, show that R™ has an orthonormal basis
{u1,...,un} such that {u,...uq} is a basis of V, where d = dim V.

14. Let {e; : 1 < j < n} denote the standard basis of R”. Assume n > 3. Let
V C R™ be a 2-dimensional subspace, with basis {u,v}, |u| = 1. Show that there
exists T' € O(n) such that

Tu=e;, Tv € Span{er,ea}.
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2.3. Determinants

Determinants arise in the study of inverting a matrix. To take the 2 x 2 case, solving
for x and y the system

531 axr + by = u,

(2:3.1) cx+dy=v

can be done by multiplying these equations by d and b, respectively, and subtracting,
and by multiplying them by ¢ and a, respectively, and subtracting, yielding

(ad — be)x = du — bo,

2.3.2
( ) (ad — bc)y = av — cu.
The factor on the left is

a b
(2.3.3) det (c d) = ad — be,
and solving (2.3.2) for z and y leads to

_fa b 1 d —b

T T )

provided det A # 0.

We now consider determinants of n X n matrices. Let M (n,F) denote the set
of n x n matrices with entries in F = R or C. We write

aip -+ Qin
(2.3.5) A=| : : =(a,...,an),
an1 QAnn
where
aij
(2.3.6) aj = :
anj

is the jth column of A. The determinant is defined as follows.
Proposition 2.3.1. There is a unique function

(2.3.7) 9: M(n,F)—F,

satisfying the following three properties:

(a) ¥ is linear in each column a; of A,
(b) ¥(A) = —09(A) if A is obtained from A by interchanging two columns,
(c) 9(I)=1.

This defines the determinant:
(2.3.8) 9(A) = det A.
If (¢) is replaced by

(¢) 9(I) =r,
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then
(2.3.9) Y(A) = rdet A.

The proof will involve constructing an explicit formula for det A by following
the rules (a)—(c). We start with the case n = 3. We have

3
(2.3.10) det A = Z a;1 det(ej, az,as),

Jj=1

by applying (a) to the first column of A, a1 = }_;ajie;. Here and below, {e; :
1 < j < n} denotes the standard basis of F", so e; has a 1 in the jth slot and Os
elsewhere. Applying (a) to the second and third columns gives

3
det A = Z ajiai2 det(ej, ex, ag)
j k=1
(2.3.11) "
= Z a;10k20¢3 det(e;, e, eq).
4 k=1

This is a sum of 27 terms, but most of them are 0. Note that rule (b) implies
(2.3.12) det B =0 whenever B has two identical columns.

Hence det(e;, ex,e¢) = 0 unless j, k, and ¢ are distinct, that is, unless (j, k,¢) is a
permutation of (1,2,3). Now rule (c) says

(2313) det(el,eg,eg) = 1,

and we see from rule (b) that det(e;,er,e,) = 1 if one can convert (ej,ex, e;) to
(e1,e2,e3) by an even number of column interchanges, and det(e;, e, e) = —1if it
takes an odd number of interchanges. Explicitly,

det(e1,eq,e3) =1, det(er,es, e2) = —1,
(2.3.14) det(eg, e3,e1) =1, det(eq, e1,e3) = —1,
det(es,er,e2) =1, det(es, ez, e1) = —1.
Consequently (2.3.11) yields
det A = ay1a32a33 — a11a32023
(2.3.15) + (21032013 — 421012033
+ as1012a23 — a31022013.

Note that the second indices occur in (1,2,3) order in each product. We can
rearrange these products so that the first indices occur in (1,2, 3) order:

det A = ajjazass — ajrazzass
(2.3.16) + a13a21a32 — 12621033

+ ai2a23a31 — 13022031 -
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Now we tackle the case of general n. Parallel to (2.3.10)—(2.3.11), we have
det A = Z&jl det(ej,ag, N ,an) =

(2.3.17) '

= Z Q51 Qjn det(ejl, ce ejn),

by applying rule (a) to each of the n columns of A. As before, (2.3.12) implies
det(ej,,...,ej,) = 0 unless (ji,...,Jn) are all distinct, that is, unless (ji,...,jn)

is a permutation of the set (1,2,...,n). We set

(2.3.18) Sp = set of permutations of (1,2,...,n).

That is, S,, consists of elements o, mapping the set {1,...,n} to itself,
(2.3.19) o:{L,2,....,n} — {1,2,...,n},

that are one-to-one and onto. We can compose two such permutations, obtaining
the product o7 € S, given ¢ and 7 in S,,. A permutation that interchanges just
two elements of {1,...,n}, say j and k (j # k), is called a transposition, and
labeled (jk). It is easy to see that each permutation of {1,...,n} can be achieved
by successively transposing pairs of elements of this set. That is, each element
o € 5, is a product of transpositions. We claim that

(2.3.20) det(ey(1)15- - -»€o(n)n) = (sgno)det(er, ..., e,) = sgno,

where

(2.3.21) sgno = 1 if o is a product of an even number of transpositions,

—1 if o is a product of an odd number of transpositions.
In fact, the first identity in (2.3.20) follows from rule (b) and the second identity
from rule (c).

There is one point to be checked here. Namely, we claim that a given o € S,
cannot simultaneously be written as a product of an even number of transpositions
and an odd number of transpositions. If o could be so written, sgn o would not
be well defined, and it would be impossible to satisfy condition (b), so Proposition
2.3.1 would fail. One neat way to see that sgn o is well defined is the following. Let
o € S, act on functions of n variables by

(2.3.22) (0f) (@1, 20) = f(Zo(1) -+ s Ta(n))-

It is readily verified that if also 7 € S,,,

(2.3.23) g=of = r1g=(10)f.

Now, let P be the polynomial

(2.3.24) P(zy,...oxn) = [ (zj— k)
1<j<k<n

One readily has

(2.3.25) (oP)(x) = —P(z), whenever o is a transposition,
and hence, by (2.3.23),
(2.3.26) (oP)(z) = (sgno)P(x), VYo €Sy,

and sgn o is well defined.
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The proof of (2.3.20) is complete, and substitution into (2.3.17) yields the
formula

(2.3.27) det A = Z (sgno)ag(1)1 - Go(nyn-
o€Sy

It is routine to check that this satisfies the properties (a)-(c). Regarding (b), note
that if ¥(A) denotes the right side of (2.3.27) and A is obtained from A by applying

a permutation 7 to the columns of A, so A = (ar(1),.-.,ar(n)), then
I(A) =) (5810)a6(1)r(1) ** Ao(nyr(n)

UESn

= Z (Sgn U)QUT_l(l)l ©Qor—1(n)n
oceS,

= Z (Sgn wT)aw(l)l © o Qu(n)n
weSy

= (sgn7)v(4),

the last identity because
sgnwt = (sgnw)(sgnr), Vw,7 € S,.

As for the final part of Proposition 2.3.1, if (c) is replaced by (c’), then (2.3.20)
is replaced by

(2.3.28) P(ex(1)s- - -»Co(n)) = r(sgn0),
and (2.3.9) follows.

REMARK. (2.3.27) is taken as a definition of the determinant by some authors.
While it is a useful formula for the determinant, it is a bad definition, which has
perhaps led to a bit of fear and loathing among math students.

REMARK. Here is another formula for sgn o, which the reader is invited to verify.
Ifoes,,

sgno = (—1)")

where
k(o) = number of pairs (j, k) such that 1 < j <k <n,
but o(j) > o(k).
Note that
(2.3.29) Og(1)1 " OGo(n)n = A1r(1) """ Anr(n) with 7= 0'717

and sgno = sgno !, so, parallel to (2.3.16), we also have
(2.3.30) det A = Z (sgno)ais(1) - Ano(n)-
oES,

Comparison with (2.3.27) gives
(2.3.31) det A = det A,
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where A = (aj) = A' = (ag;). Note that the jth column of A’ has the same
entries as the jth row of A. In light of this, we have:

Corollary 2.3.2. In Proposition 2.5.1, one can replace “columns” by “rows.”

The following is a key property of the determinant, called multiplicativity:
Proposition 2.3.3. Given A and B in M (n,F),

(2.3.32) det(AB) = (det A)(det B).
Proof. For fixed A, apply Proposition 2.3.1 to
(2.3.33) ¥1(B) = det(AB).

If B= (bi,...,b,), with jth column b;, then

(2.3.34) AB = (Aby, ..., Ab,).

Clearly rule (a) holds for ;. Also, if B = (bo(1), - -+ bs(n)) is obtained from B

by permuting its columns, then AB has columns (Abg(1), .-, Aby(n)), obtained by
permuting the columns of AB in the same fashion. Hence rule (b) holds for ¥;.
Finally, rule (¢’) holds for ¢;, with r = det A, and (2.3.32) follows, O

Corollary 2.3.4. If A € M(n,TF) is invertible, then det A # 0.

Proof. If A is invertible, there exists B € M (n,F) such that AB = I. Then, by
(2.3.32), (det A)(det B) =1, so det A #£ 0. O

The converse of Corollary 2.3.4 also holds. Before proving it, it is convenient to
show that the determinant is invariant under a certain class of column operations,
given as follows.

Proposition 2.3.5. Ifﬁ is obtained from A = (ai,...,a,) € M(n,F) by adding
cay to ay, for some c € F, L # k, then

(2.3.35) det A = det A.

Proof. By rule (a), det A = det A + cdet A?, where A is obtained from A by
replacing the column ay by ay. Hence A® has two identical columns, so det A® = 0,
and (2.3.35) holds. O

We now extend Corollary 2.3.4.
Proposition 2.3.6. If A € M(n,F), then A is invertible if and only if det A # 0.

Proof. We have half of this from Corollary 2.3.4. To finish, assume A is not

invertible. As seen in §2.2, this implies the columns ay,...,a, of A are linearly
dependent. Hence, for some k,
(2.3.36) ap + Z ceag =0,

1k

with ¢, € F. Now we can apply Proposition 2.3.5 to obtain det A = detNE, where
A is obtained by adding > ceay to ar. But then the kth column of A is 0, so
det A = det A = 0. This finishes the proof of Proposition 2.3.6. O
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Further useful facts about determinants arise in the following exercises.

Exercises
1. Show that
1 a2 -+ ain 1 0 - 0
0 age - a 0 azx - a
(2.3.37) det | . . . =det | . . . =det Ay
0 anz -+ apn 0 an2 -+ Gnn

where A11 = (ajk)2<jk<n-

Hint. Do the first identity using Proposition 2.3.5. Then exploit uniqueness for
det on M (n — 1,TF).

2. Deduce that det(ej, as,...,a,) = (—1)77! det A;; where Ag; is formed by delet-
ing the kth column and the jth row from A.

3. Deduce from the first sum in (2.3.17) that
(2.3.38) det A = Zn:(q)j*laﬂ det Ay;.
j=1
More generally, for any k € {1,...,n},
(2.3.39) det A = zn:(—mj—kajk det Ay;.
j=1
This is called an expansion of det]A by minors, down the kth column.

4. By definition, the cofactor matrix of A is given by
Cof(A)jk = cj = (—1)/ 7" det Ay;.
Show that

(2.3.40) > ajer; =0, if (#k.
j=1

Deduce from this and (5.39) that

(2.3.41) Cof(A)' A = (det A)I.

Hint. Reason as in Exercises 1-3 that the left side of (2.3.40) is equal to
det (ar,..., a0, ..., a0, ., an),

with a; in the kth column as well as in the ¢th column. The identity (2.3.41) is
known as Cramer’s formula. Note how this generalizes (2.3.4).
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5. Show that
ail a2 Q1n
a2z -+ G2p
(2342) det . . = 11022 " Apn-
a'nn

Hint. Use (2.3.37) and induction. Alternative: Use (2.3.27). Show that o €
Sp, o(k) <kVk=o(k)=k.

6. Recall that O(n) = {T € M(n,R) : T*T = I'}. Show that
T €O(n) = detT = £1.

We say
SO(n) ={T € O(n) : det T = 1}.
Show that
S, T € SO(n) = ST, T~ € SO(n).
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2.4. The trace of a matrix, and the Euclidean structure of M (n,R)

Let A € M(n,R) be as in (2.3.5). We define the trace of A as
j=1

If also B = (b,i) € M(n,R), we have

(2.4.2) AB=C, cj,= Zajébék,
4
SO
(2.4.3) TrAB = ajby;,
VR4

from which we deduce that
(2.4.4) Tr AB = Tr BA.
Replacing B by B! in (2.4.2)-(2.4.3) gives

(2.4.5) TrAB' = ajebjs,
3.0

which is just the Euclidean dot product on

2

(2.4.6) M(n,R) ~ R™ .

We denote it by

(2.4.7) (A,B) =Tr ABt.
Note also that
<A’ B> = <B7 A>
(2.4.8) = Tr BA'
=Tr A*B.

We denote the corresponding Euclidean norm on A € M(n,R) (called the
Hilbert-Schmidt norm) by || Al|us:

(2.4.9) |All%s = (A, A) = Tr AA".

In other words,

(2.4.10) |All4g = Zaf.k.
gk

Note that the Cauchy inequality (2.1.17), applied to ]R"2, yields
(2.4.11) I(4, B)| < [|Allus||Bllas-
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.|
Exercises

1. Deduce from (2.4.4) that if B € M(n,R) is invertible,
TrB'AB =Tr A.

2. Recall that
O(n) = {T € M(n,R) : T'T = I}.
Show that, if A, B € M(n,R) and T € O(n), then
(A,B) = (TA, TB)
— (AT, BT).

3. Take A € M(n,R). Show that, as t — 0,
det(I +tA) =1+t Tr A+ O(t?).

4. Deduce from the previous exercise that, if B € M(n,R) is invertible,
det(B +tA) = (det B)(1 +tTr B~ A) + O(?).
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2.5. The cross product on R3

If u,v € R?, we define the cross product u x v = II(u,v) to be the unique bilinear
map II : R? x R? satisfying

uXv=-vxu, and
(2.5.1)

iXj=k, jxk=1i, kxi=]},
where {i, j, k} is the standard basis of R3. Here, to say II is bilinear is to say II(u,v)
is linear in both u and wv.

The following result relates the cross product on R? to the 3 x 3 determinant.
The proof is a straightforward consequence of results of §2.3.
Proposition 2.5.1. If u,v,w € R3, then
wy up U1
(2.5.2) w-(uxv)=det | wa us vy
w3 U3 U3

Note (by Proposition 2.3.1) that the right side of (2.5.2) is linear in « and in v,
and it changes sign when u and v are switched. It remains to check the identity for
{u,v} ={i,7},{J, k}, and {k, ¢}, which the reader can do.

We mention that (2.5.2) can be rewritten (symbolically) as

) Uy U1 U2V3 — U3V2
(2.5.3) uxv=det|j wuy vo | =[usvy —uvs
k us U3 U1V2 — U2V

One can also readily check this against the multiplication table in (2.5.1).

It is an important geometrical fact that the cross product is preserved by ro-
tations on R3. To state the result, we say

(2.5.4) T € SO(3)
provided
(2.5.5) TeM(@B3,R), T'T=1I, and detT > 0.

Recall §2.2, Exercises 9-14, §2.3, Exercise 6, and §2.4, Exercise 2. We note that
these conditions actually imply

(2.5.6) detT = 1.

Here is the result

Proposition 2.5.2.
(2.5.7) TeSOB)=TuxTv=T(uxwv).
Proof. Multiply the 3x3 matrix in Proposition 2.5.1 on the left by T'. The resulting

determinant is unchanged, since detT = 1 On the other hand, the quantity one
gets is

(2.5.8) Tw - (Tu x Tv),
but the fact that T¢T = I implies that
(2.5.9) w-(uxv)=Tw- -T(uxwv).



78 2. Multidimensional spaces

The desired identity follows. O

We can apply Proposition 2.5.2 to establish the following useful identity.

Proposition 2.5.3. For all u,v,w,z € R3,

(2.5.10) (uxv).(wxx)zdet(“'w ”'w>.

u-r VT

Proof. By Proposition 2.5.2 (in concert with Exercise 3 below), it suffices to check
this for

w=1, x=ai+bj,
in which case w x & = bk. Then the left side of (2.5.10) is

0
(uxwv)-bk=det |0
b

g 2 g
ST,
SIS
. o

Meanwhile, the right side of (2.5.10) is
u-1 V-1
det(au-i—i—bu-j av-z’+bv~j>

= bdet (“'Z. ”‘?).
u-j v-j
But one sees that the last two right sides are equal. ([

In case u = w and v = x, this specializes to the following.
Corollary 2.5.4. If 0 is the angle between u and v in R>, then

(2.5.11) lu x v = |u] |v] |siné).
Proof. From (2.5.10), we have

|uxv|2=det<u'u v'u>
u-v v-v

(2.5.12)

= |uf*[o? = (u-v)?,

a result known as Lagrange’s identity. Since
(2.5.13) w-v = |u||v|cosb,

this gives (2.5.11). O

REMARK. See §3.2 for a self-contained treatment of the trigonometric functions
sin @ and cos 6.
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.|
Exercises

1. Show that if u,v € R3, then u x v is orthogonal to u and v, i.e.,

u-(uxv)=v-(uxv)=0.

2. Show that
w-(uxv)=u-(vxw), Yuuv,weR>

3. Suppose w,x € R3, |w| = 1. Show that there exists T' € SO(3) such that
Tw =14, Tx € Span{i,j},

where {i,j,k} denotes the standard basis of R3. Discuss how this figures in the
proof of Proposition 2.5.3.
Hint. See Exercise 14 in §2.2. Show that, in that exercise, you can actually take

T € SO(n).

4. Show that x : R® — Skew(3), the set of antisymmetric real 3 x 3 matrices, given
by

0 —uys w2
(2.5.14) K(yy2,y3)=| y3 0  —u
—Y2 W 0
satisfies
(2.5.15) Ke=yxz, K=k(y).

Show that, with [A, B] = AB — BA,
sz x y) = [K(x), K(y)],

(2.5.16) Tr(/g(m)/s(y)t) =2z -y.

5. Assume {u1,ug,u3} is an orthonormal basis of R?, and form
U= (ul,uz,u;;) S 0(3)

Show that
U e 50(3) <= U1 = Uz X U3.
Show also that

Ul = U2 X U3 = U = U3 X U] < U3 = U1 X Ug.
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Chapter 3

Curves in Euclidean space

Our transition from one variable to multivariable calculus starts with the consider-
ation of n dependent variables, as functions of one independent variable, that is, a
function y(¢) of t € I C R, having n components, or as we say a curve.

Section 3.1 starts the study of curves in Euclidean space R", with particular
attention to arc length. We derive an integral formula for arc length. We show
that a smooth curve can be reparametrized by arc length, as an application of
the Inverse Function Theorem. We then take a look at the unit circle St in R2.
Using the parametrization of part of S* as (t,v/1 — t2), we obtain a power series
for arc lengths, as an application of material of §1.3 on power series of (1 — x)°,
with b = —1/2, and z replaced by #2. We also bring in the trigonometric functions,
having the property that (cost, sint) provides a parametrization of S* by arc length.

Section 3.2 goes much further into the study of the trigonometric functions.
Actually, it begins with a treatment of the exponential function ef, observes that
such treatment extends readily to e, given a € C, and then establishes that e
provides a unit speed parametrization of S'. This directly gives Euler’s formula

(3.0.1) et = cost + isint,

and provides for a unified treatment of the exponential and trigonometric functions.
We also bring in log as the inverse function to the exponential, and we use the
formula z" = e"!°8 to generalize results of §1.1 on 2" from 7 € Q to r € R, and
further, to r € C.

We next examine curvature, which is a measure of how far a curve is from
being a straight line. If v : (a,b) — R™ is a smooth curve, parametrized by arc
length, with unit tangent vector T'(s) = 7/(s), then v is a straight line if and only
if T'(s) =0, so T'(s) serves as the “curvature vector.” The case n = 2, treated in
§3.3, leads to

(3.0.2) T'(s) = w(s)JT(s), J= (? _01> ,
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defining the curvature x(s). We show that the solution can be represented using
the matrix exponential, e!/. General material on the matrix exponential e*4, for
A€ M(n,R), or A € M(n,C), is given in §C.4. In case A = J, we have the
following variant of the Euler identity:

(3.0.3) el = (cost)I + (sint)J,

which leads to an explicit solution to (3.0.2), yielding an analysis of planar curves
with constant curvature, as circles.

In §3.4 we look at smooth curves in R?. When parametrized by arc length,
these curves have curvature characterized by the norm of 7”(s). In addition, there
is torsion, 7, measuring whether such a curve is actually contained in some plane.
In this setting, the 2 x 2 system (3.0.2) is replaced by a 9 X 9 system, involving both
k and 7, known as the Frenet-Serret equations. In case x and 7 are constant, this
system is also amenable to solution via the matrix exponential, leading to curves
that are helices.
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3.1. Curves and arc length

The term “curve” is commonly used to refer to a couple of different, but closely
related, objects. In one meaning, a curve is a continuous function from an interval
I C R to n-dimensional Euclidean space:

(3.1.1) v: I —TR" )= (n(t),..., ().

We say « is differentiable provided each component +; is, in which case

(3.1.2) ()= (), ().

v/ (t) is the velocity of ~y, at “time” ¢, and its speed is the magnitude of v/(t):

(3.13) ()] = B2+ 4702

We say « is smooth of class C* provided each component «;(¢) has this property.

One also calls the image of I under the map « a curve in R". If u: J — I is
continuous, one-to-one, and onto, the map

(3.1.4) o:J—R" o) =~u®)

has the same image as v. We say o is a reparametrization of v. We usually require
that v be O, with C! inverse. If v is C* and w is also C*, so is ¢, and the chain
rule gives

(3.1.5) a'(t) = u' (t)y (u(t)).

Let us assume I = [a, b] is a closed, bounded interval, and v is C!. We want to
define the length of this curve. To get started, we take a partition P of [a, b], given
by

(3.1.6) a=ty<ti <---<tny=b,

and set

N
(3.1.7) tp(y) =D Iv(ty) = y(ti—1)l-
j=1

See Figure 3.1.1.
We will massage the right side of (3.1.7) into something that looks like a Rie-
mann sum for f; |/ (t)| dt. We have

() = A(tj1) = / "ty dt

ti—1

(3.1.8) z/j [V () ++'(t) =~ (t;)] dt

tj,1

(-t + [ B0 -] d

tj—1

We get

(3.1.9) [v(t5) = (t-1) = (& — tj-1) 1V ()| + 75,
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¥(tw)

v(t1)

v(to)

Figure 3.1.1. Approximating £(y) by £p ()
with

(3.1.10) VAS/jVNU*V@N%

tj71

Now if v/ is continuous on [a, b], so is |y’|, and hence both are uniformly continuous
on [a,b]. We have

(3.1.11) s,t€la,b], [s—t| <h=|y(t) —7(s)| < w(h),
where w(h) — 0 as h — 0. Summing (3.1.9) over j, we get
N
(3.1.12) tp(v) =D W (tj)I(t; — tj-1) + Rp,
j=1
with
(3.1.13) |Rp| < (b—a)w(h), ifeach t; —tj_1 <h.

Since the sum on the right side of (3.1.12) is a Riemann sum, we can apply Theorem
1.2.4 to get the following.

Proposition 3.1.1. Assume v : [a,b] — R" is a C* curve. Then

b
(3.1.14) Lp(7y) —)/ |Y'(t)|dt as mazsize P — 0.
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We call this limit the length of the curve v, and write

b
(3.1.15) () = / ' (1)) dt.

Note that if u : o, 8] — [a,b] is a C* map with C* inverse, and 0 = 7 o u, as
in (3.1.4), we have from (3.1.5) that |¢’(¢)| = |[u'(¢)] - |7/ (u(t))|, and the change of
variable formula (1.2.67) for the integral gives

] b
(3.1.16) / lo’ (t)] dt = / |7/ (t)] dt,
hence we have the geometrically natural result
(3.1.17) o) =L(7).

Given such a C! curve v, it is natural to consider the length function

(3.1.18) eww:/Nwwnw,euw:ww»

If we assume also that +' is nowhere vanishing on [a, b], Theorem 1.1.3, the inverse
function theorem, implies that £, : [a,b] — [0,£(7)] has a C! inverse

(3.1.19) u: [0,£(y)] — [a, b],

and then o = you: [0,4(y)] — R™ satisfies

o' (t) = u' ()Y (u(t))

(3120) f)//(u(t))7 for t = 67(5)7 s = u(t)v

()
since the chain rule applied to u({,(t)) = t yields u'(¢,(t))€,(t) = 1. Also, by
(4.18), £,(s) = [ (s)] = [7'(u(t))], so
(3.1.21) lo’(t)] = 1.

Then o is a reparametrization of v, and ¢ has unit speed. We say o is a reparametriza-
tion by arc length.

We now focus on that most classical example of a curve in the plane R?, the
unit circle

(3.1.22) St ={(z,y) e R*: 2? + > =1}.
We can parametrize S! away from (x,y) = (£1,0) by
(3.1.23) ) = (VI B), ()= (t,—/T— ),

on the intersection of S* with {(z,y) : ¥y > 0} and {(z,y) : y < 0}, respec-
tively. Here v+ : (—1,1) — R2, and both maps are smooth. In fact, we can take

v+ ¢ [=1,1] = R2, but these functions are not differentiable at +1. We can also
parametrize S away from (z,y) = (0,+1), by
(3.1.24) Ye(t) = (—vV1—-1t2t), () =(V1-1t%t),

again with ¢ € (—1,1). Note that
(3.1.25) V() = (1, —t(1 = %)),
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s0

21
112 1-¢2
Hence, if £(t) is the length of the image v, ([0, ¢]), we have

(3.1.26) V)P =1+

(3.1.27) s, for 0<t<1.

t
1
L) = —d
0= =
The same formula holds with v, replaced by v_, e, or 7.

We can evaluate the integral (3.1.27) as a power series in t, as follows. As seen
in §1.3,

(3.1.28) (1-r)2=%" %r’“, for |r| <1,
k=0 "
where
1 1\ /3 1

(3.1.29) a=1, a=3 a-= (2><§>...(/€_§).
The power series converges uniformly on [—p, p], for each p € (0,1). It follows that

oo
(3.1.30) (1—s%)"1/2 = %s%, ls| < 1,

k=0

uniformly convergent on [—a, a] for each a € (0,1). Hence we can integrate (3.1.30)
term by term to get
gy 1261

131 =% g
(3.1.31) W=2 oy 050

One can use (3.1.27)—(3.1.31) to get a rapidly convergent infinite series for the
number 7, defined as

(3.1.32) 7 is half the length of S*.

See Exercise 7 in §3.2.

Since S! is a smooth curve, it can be parametrized by arc length. We will let
C : R — S! be such a parametrization, satisfying

(3.1.33) C(0) = (1,0), C'(0)=(0,1),
so C(t) traverses S* counter-clockwise, as t increases. For ¢ moderately bigger than
0, the rays from (0,0) to (1,0) and from (0, 0) to C'(¢) make an angle that, measured

in radians, is t. This leads to the standard trigonometrical functions cost¢ and sint,
defined by

(3.1.34) C(t) = (cost,sint),
when C is such a unit-speed parametrization of S*. See Figure 3.1.2.

We can evaluate the derivative of C(t) by the following device. Applying d/d¢t
to the identity

(3.1.35) Ct)y-C(t)=1
and using the product formula gives
(3.1.36) '(t)-C(t) = 0.
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(cost,sint)

Figure 3.1.2. The circle C(t) = (cost,sint)

since both |C(t)] =1 and |C'(¢)| = 1, (3.1.36) allows only two possibilities. Either

(3.1.37) C'(t) = (sint, — cost).

or

(3.1.38) C'(t) = (—sint,cost).

Since C'(0) = (0, 1), (3.1.37) is not a possibility. This implies
d d

(3.1.39) pn cost = —sint, 7 sint = cost.

We will derive further important results on cost and sint in §3.2.

One can think of cost and sint as special functions arising to analyze the length
of arcs in the circle. Related special functions arise to analyze the length of portions
of a parabola in R?, say the graph of

1
(3.1.40) y = ixz.
This curve is parametrized by
1
(3.1.41) () = (t, 5#),

SO

(3.1.42) V() = (1,1).
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In such a case, the length of v([0,¢]) is

t
(3.1.43) 0,(t) :/ V14 s2ds.

0
Methods to evaluate the integral in (4.42) are provided in §3.2. See Exercise 10 of
§3.2.

The study of lengths of other curves has stimulated much work in analysis.
Another example is the ellipse

22 g2
given a,b € (0,00). This curve is parametrized by
(3.1.45) ~(t) = (acost,bsint).

In such a case, by (4.38), v'(t) = (—asint, bcost), so
1Y (t)|? = a®sin®t + b* cos? t

(3.1.46) \ , .,

=b"+nsin“t, n=a" -0,

and hence the length of ([0, t]) is
t
(3.1.47) £,(t) :b/ V14 osin?sds, o= b%
0
If a # b, this is called an elliptic integral, and it gives rise to a more subtle family of

special functions, called elliptic functions. Material on this can be found in Chapter
6 of [17], Introduction to Complex Analysis.

We end this section with a brief discussion of curves in polar coordinates. We
define a map

(3.1.48) II:R? — R?, TI(r,0) = (rcosf,rsind).

We say (r,0) are polar coordinates of (x,y) € R? if II(r,0) = (x,y). See Figure
3.1.3.

Now, IT in (3.1.48) is not bijective, since
(3.1.49) II(r,0 + 27) = 1(r,0), I(r,0 +m)=1(-r0),

and I1(0,0) is independent of 6. So polar coordinates are not unique, but we will
not belabor this point. The point we make is that an equation

(3.1.50) r=p(0), p:la,b =R,

yields a curve in R?, namely (with § = ¢)

(3.1.51) ~v(t) = (p(t) cost, p(t)sint), a <t <b.
The circle (3.1.34) corresponds to p(f) = 1. Other cases include

(3.1.52) p(0) = acosb, —g <6< g,
yielding a circle of diameter a/2 centered at (a/2,0) (see Exercise 6 below), and
(3.1.53) p(0) = acos 30,

yielding a figure called a three-leaved rose. See Figure 3.1.4.
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(rcosf,rsinf)

Figure 3.1.3. Polar coordinates on R2

To compute the arc length of (3.1.51), we note that, by (3.1.39),

x(t) = p(t) cost, y(t) = p(t)sint

3.1.54
( ) = 2'(t) = p'(t) cost — p(t)sint, y'(t) = p'(t)sint + p(t) cost,
hence

(1) + o (1) = p/(t)* cos® t — 2p(t)p(t) costsint + p(t)? sin? t
(3.1.55) +p'(t)*sin® t + 2p(t)p' (t) sint cost + p(t)? cos® t

= p'(t)* + p(t)*.
Therefore
b b

(3.1.56) (= [ Wana= [ owrsrar

A more systematic treatment of polar coordinates is given in §4.3.
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Figure 3.1.4. Three-leafed rose: r = a cos 360

. __________________________________________|]
Exercises
1. Let y(t) = (¢2,t3). Compute the length of ([0, t]).

2. With a,b > 0, the curve
~v(t) = (acost,asint, bt)

is a helix. Compute the length of v([0,t]).

3. Let
272 4y 1
v(t) = (t, —\{t?’/{ 5152).

Compute the length of ([0, ¢]).

4. In case b > a for the ellipse (3.1.45), the length formula (3.1.47) becomes

t b2_a2
Kv(t):b/o \/1—p2%sin?sds, p?= = € (0,1).
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Apply the change of variable 2 = sin s to this integral (cf. (1.2.46)), and write out
the resulting integral.

5. The second half of (3.1.49) is equivalent to the identity
(cos(0 4 m),sin(f + 7)) = —(cos b, sin ).

Deduce this from the definition (3.1.32) of 7, together with the characterization of
C(t) in (3.1.34) as the unit speed parametrization of S, satisfying (3.1.33). For a
more general identity, see (3.2.44).

6. The curve defined by (3.1.52) can be written
v(t) = (acos®t,acostsint), —
Peck ahead at (3.2.44) and show that

~(t) = (g + %cos 2t, gsin 2t).

Verify that this traces out a circle of radius a/2, centered at (a/2,0).

7. Use (3.1.56) to write the arc length of the curve given by (3.1.53) as an integral.
Show this integral has the same general form as (3.1.46)—(3.1.47).

8. Let 7 : [a,b] — R™ be a C! curve. Show that

() = Iy(b) = (a)l,
with strict inequality if there exists ¢ € (a,b) such that y(t) does not lie on the line
segment from y(a) to v(b).
Hint. To get started, show that, in (3.1.7), €p(vy) > |v(b) — v(a)|.

9. Consider the curve C(t) = (cost,sint), discussed in (3.1.33)—(3.1.38). Note that
the length £ (t) of C([0,¢]) is ¢, for ¢ > 0. Show that

c(g) = (0,1), C(r)=(-1,0), C(2r)=(1,0).

10. In the setting of Exercise 9, compute |C(t) — (1,0)|. Then deduce from Exercise
8 that, for 0 < t < 7/2,

2
1-— t< —,
cos 5
hence (multiplying by 1+ cost),
1 t
(3.1.57) sin t < 12 %

Hint. sin®t = 1 — cos? t.

11. Let v : [a,b] — R™ be a C* curve, and assume that |y(¢)| > 1 for all ¢ € [a, b].
Set
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0w =C)

C(t) = (1,0)] < (o) < £(7)

Figure 3.1.5. tant = u, and key to estimates (3.1.57) and (3.1.58)

Show that
(o) < L(y).

Hint. Show that

ey R Ja 2 Ll 2 1= |5 - ] <o ol
€T )

and deduce that ¢p(0) < €p(7y).

12. Consider curves 7,0 : R — R? given by

1
7(“) - (17u)a U(u) - WW(U),

so o(u) lies on the unit circle centered at the origin. Show that
o(tant) = C(t),
where C(t) is as in (3.1.34) and

See Figure 3.1.5.

13. With £, (u) defined to be the length of v([0,u]) and ¢, (u) and ¢c(t) similarly
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defined (cf. Exercise 9), deduce from Exercises 11-12 that, for 0 <t < 7/2,
(3.1.58) t < tant.

14. Deduce from Exercises 10 and 13 that, for 0 <t < 7/2,
sint <t < tant,
and hence
sint

costSTgl.

Use this to give a demonstration that
(3.1.59) lim — =1

independent of the use of (3.1.39).

15. Use the conclusion of Exercise 14, together with the identity
(1+ cost)(1 — cost) = sin’t,
to show that
I—cost 1

independent of the use of (3.1.39).

16. A derivation of the formula for (d/dt)sint in (3.1.39) often found in calculus
texts goes as follows. One starts with the addition formula

(3.1.61) sin(t + s) = (cost)(sin s) + (sint)(cos s),

and writes

1,. , sinh 1—cosh
E(sm(t—I—h)—smt):cost i -

Use the results of Exercises 14 and 15 to conclude that
lim sin(t + h) —sint _
h—0 h

sin t.

cost.

REMARK. See §3.2 for a derivation of (3.1.61) of a different nature than typically
seen in trigonometry texts.

17. Using the formulas (3.1.39) for the derivatives of cost and sint, in conjunction
with the formulas (1.3.35)—(1.3.42) for power series, write

cost = Z ((;;;ft% +C5 (1) = Con(t) + C8 (1),
k=0 ’

} N (—1)F
sint =3 D201 68 (1) = S () + S (8,
2k + 1)!

k=0 ’

(3.1.62)
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S1(t)

S5(t)

Figure 3.1.6. Power series approximations to sint

and show that

b t2n+1 )
C3,(t) = im sin &y,

, P2
Son1(t) = im sin (p,

for some &, ¢, € [—[t], |t|]. Deduce that

an(t), Sgn+1(t) — 0, as n — oo,

sint

S3(t)

uniformly for ¢ in a bounded set. See Figure 3.1.6 for graphs of sint and the power

series approximations Sy (t), S3(t), and Ss(%).
The formula u - v = |u||v| cosé

18. Show that
cos : [0,7] — [-1,1],

and that this function is monotone decreasing, one-to-one, and onto.

19. Given nonzero vectors u and v in R™, we define the angle between them, 0(u, v),

to be the unique number 6 € [0, 7] such that
(3.1.63) u-v = |u||v] cosb,
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Figure 3.1.7. Setting for law of cosines

i.e., such that cosf = u-v/(|u| |v|). Deduce from Cauchy’s inequality plus Exercise
18 that O(u,v) is well defined.

20. Show that, if u,v are nonzero vectors in R", then

O(u,v) = 0(Tu,Tv), VT € O(n),

and ;
O(u,v) = 0(au,bv), Va,beR\0, —>0.
a
21. Say{ei,...,en} is the standard orthonormal basis of R™. Take u,v as above.
Then take T € O(n) such that

Tu = |ules,

Tv =bie; + baea, b; €R.
(Cf. Exercise 14 of §2.2.) Deduce that

O(u,v) = 0(e1,breq + baes).

22. Assume
y = (cost)e; + (sint)ey, t € [—m, 7.
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Show that
e(elay) = |t|

23. Take u,v € R™ as above. The law of cosines states that
(3.1.64) lu —v]? = [u|* + [v]* = 2|u| |v] cosf.

See Figure 3.1.7. Show that (3.1.64) is equivalent to (3.1.63).
Hint. Expand (v — v) - (u — v).
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3.2. The exponential and trigonometric functions

The exponential function is one of the central objects of analysis. In this section
we define the exponential function, both for real and complex arguments, and
establish a number of basic properties, including fundamental connections to the
trigonometric functions.

We construct the exponential function to solve the differential equation

dx

3.2.1 — =z, z(0)=1.
(3:2.1) = 2(0)
We seek a solution as a power series

o0
(3.2.2) z(t) =Y apth.
k=0
In such a case, if this series converges for |t| < R, then, by Proposition 1.3.2,

' (t) = Z kajt® !
k=1

(3.2.3) -
= ¢+ 1)az+1t2,
£=0
so for (3.2.1) to hold we need
ay
(324) ag = ].7 ag4+1 = m,
ie., ar =1/k!, where k! = k(k —1)---2-1. Thus (3.2.1) is solved by
— 1
ot k
(3.2.5) at)=e' =) ot teR
k=0
¢

This defines the exponential function e*.

More generally, we can define
— 1
(3.2.6) =) Ezk, zeC.

The ratio test then shows that the series (3.2.6) is absolutely convergent for all
z € C, and uniformly convergent for |z| < R, for each R < co. Note that, again by
Proposition 1.3.2,

ok
“ a
(3.2.7) et = Htk
k=0
solves
d
(3.2.8) %e“t = ae™,

and this works for each a € C.

We claim that e is the unique solution to

dy
2. — = =1.
(3.2.9) o =y y(0)
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To see this, compute the derivative of e~ y(t):
d
(e (D) = —aey(1) + e ay(t) = 0,

where we use the product rule, (3.2.8) (with a replaced by —a) and (3.2.9). Thus
e~ %y(t) is independent of t. Evaluating at ¢ = 0 gives

(3.2.10)

(3.2.11) e My(t) =1, VteR,

whenever y(t) solves (3.2.9). Since e solves (3.2.9), we have e~ e = 1, hence
1

(3.2.12) P at VtcR, acC.

Thus multiplying both sides of (3.2.11) by % gives the asserted uniqueness:
(3.2.13) y(t) =e™, VteR.

We can draw further useful conclusions from applying d/dt to products of ex-
ponential functions. In fact, let a,b € C; then

i
dt
(3.2.14) — _ae—tebte(a TNl _ pomate=blo(atb)t | (g 4 p)emate=bplath)t

:0’

(9]

—ate—bte(a+b)t)

so again we are differentiating a function that is independent of ¢. Evaluation at
t =0 gives

(3.2.15) e e beatt — 1 v e R,
Again using (3.2.12), we get

(3.2.16) elatb)t — gatebt vy e R q,beC,
or, setting t =1,

(3.2.17) et = ¢%®, Va,beC.

We next record some properties of exp(t) = e! for real t. The power series
(3.2.5) clearly gives e' > 0 for t > 0. Since e™* = 1/e?, we see that ' > 0 for all
t € R. Since de'/dt = e > 0, the function is monotone increasing in ¢, and since
d?et/dt? = et > 0, this function is convex. (See Proposition 1.1.5 and the remark
that follows it.) Note that, for ¢ > 0,

2

t
(3.2.18) et=1+t+§—|—-~->1+t/‘+oo,
as t /' co. Hence
(3.2.19) lim e’ = +oo.
t——+oo

Since e~ = 1/¢t,

(3.2.20) lim e =0.

t——o00
As a consequence,

(3.2.21) exp : R — (0,00)
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//

Figure 3.2.1. Exponential function

is one-to-one and onto, with positive derivative, so there is a smooth inverse
(3.2.22) L:(0,00) — R.

We call this inverse the natural logarithm:

(3.2.23) logz = L(x).

See Figures 3.2.1 and 3.2.2 for graphs of z = ¢! and ¢ = logx.
Applying d/dt to

(3.2.24) L") =t
gives
1
(3.2.25) L'(e")e’ =1, hence L'(e) = oo
i.e.,
d 1

2.2 —1 = —.

(3.2.26) 7y 08T = —

Since log1 = 0, we get

= g
(3.2.27) logac:/ g
1
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t=logx

Figure 3.2.2. Logarithm

An immediate consequence of (3.2.17) (for a,b € R) is the identity
(3.2.28) logzy =logx +logy, x,y € (0,00).

We move on to a study of e* for purely imaginary z, i.e., of
(3.2.29) y(t) =e, teR.

This traces out a curve in the complex plane, and we want to understand which
curve it is. Let us set

(3.2.30) e = c(t) +is(t),
with c(t) and s(t) real valued. First we calculate |e?|? = c(t)? +s(t)%. For x,y € R,
(3.2.31) z=atiy=Z=x—iy= 22=2a>+y* = 2]~

It is elementary that

(3.2.32) _
and z+w=Z+w
Hence
© _k
_ Z 3
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c(t) +is(t)

Figure 3.2.3. The circle e®* = c(t) + is(t)

In particular,
(3.2.34) teR = |¢|2 = ¢fte™ = 1.

Hence t — ~(t) = €' traces out the unit circle centered at the origin in C. Also

(3.2.35) V() =it = |y ()| =1,
so v(t) moves at unit speed on the unit circle. We have
(3.2.36) v(0) =1, ~'(0)=1.

Thus, for moderate ¢ > 0, the arc from (0) to v(¢) is an arc on the unit circle,
pictured in Figure 3.2.3, of length

(3.2.37) o) = /0 I/ (s)] ds = t.

In other words, (t) = e is the parametrization of the unit circle by arc length,
introduced in (3.1.33). As in (3.1.34), standard definitions from trigonometry give
(3.2.38) cost =c(t), sint = s(t).

Thus (3.2.30) becomes

(3.2.39) e = cost +isint,
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which is Euler’s formula. The identity

d . .
(3.2.40) ae" = ie",
applied to (3.2.39), yields
d d
(3.2.41) o cost = —sint, o sint = cost.

Compare the derivation of (3.1.39). We can use (3.2.17) to derive formulas for sin
and cos of the sum of two angles. Indeed, comparing

(3.2.42) et = cos(s + t) + isin(s + t)
with

(3.2.43) e*e™ = (cos s +isins)(cost + isint)
gives

cos(s +t) = (cos s)(cost) — (sin s)(sint),
(32.44) sin(s + t) = (sins)(cost) + (cos s)(sint).

Further material on the trigonometric functions is developed in the exercises below.

REMARK. An alternative approach to Euler’s formula (3.2.39) is to take the power
series for %, via (3.2.7), and compare it to the power series for cost and sin ¢, given
in (3.1.62). This author regards the demonstration via (3.2.33)—(3.2.37), which
yields a direct geometrical description of the curve v(t) = €%, to be more natural
and fundamental than one via the observation of coincident power series.

For yet another derivation of Euler’s formula, we can set
(3.2.45) cis(t) = cost + isint,
and use (3.2.41) (relying on the proof in (3.1.39)) to get

(3.2.46) %Cis(t) =icis(t), cis(0)=1.

Then the uniqueness result (3.2.9)—(3.2.13) implies that cis(t) = e®.

Exercises
1. Show that
(3.2.47) It < 1= 1o (1+t)—iwtk—t e, r
- & B R S T '
Hint. Rewrite (3.2.27) as
lo (1+t)/t ds
& N 0 1“1‘8,
expand
1
=1-s+s -8+, |s| <1,

1+s
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1/2

Figure 3.2.4. Regular hexagon, a = e™%/3

and integrate term by term.

2. In §3.1, m was defined to be half the length of the unit circle S'. Equivalently,
7 is the smallest positive number such that e™ = —1. Show that

. e 1 3
e7r7,/2 _ i, efrz/d =+ £Z

2 2
Hint. See Figure 3.2.4.

3. Show that

cos’t +sin’t =1,
and

1+ tan’t = sec? t,
where
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4. Show that

dt

d
— tant =sec’t = 1 + tan®t,

d
—sect =sect tant.

dt

5. Evaluate

r

Hint. Set x = tant.

6. Evaluate

r

Hint. Set x = sint.

7. Show that

™

6:

dz
1422

dzx
V1—a22

1/2 dr

0 \/1—.’1)2.

Use (3.1.27)—(3.1.31) to obtain a rapidly convergent infinite series for .
Hint. Show that sin7/6 = 1/2. Use Exercise 2 and the identity e™/¢ = e™/2¢=7/3,
Note that a in (3.1.29)-(3.1.31) satisfies ag+1 = (k + 1/2)ay. Deduce that

o0

br 12k+1
2.4 = bo = = - ——b.
(3.2.48) m kzzo 1 T3 ben = gormo b
Note that by < 3-47%. Deduce that
. _ - br : 1 —2n—1
(3.2.49) pi(n) = E 11 = 0 <7 —pi(n) < o 2 .

k=0
In particular,

(3.2.50) 7 — pi(20) < 10713,
8. Set ) .
cosht = i(et +e7 "), sinht = i(et —e ).
Show that
d . d
— cosht =sinht¢, — sinht¢ = cosht,
dt dt
and
cosh®t — sinh? ¢ = 1.
9. Evaluate
/y dx
0o V1+ 2 ’

Hint. Set x = sinht.
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10. Evaluate

y
/ V1+2z2de.
0

11. Using Exercise 4, verify that

d
i(sect + tant) = sect(sect + tant),

d
ﬁ(sect tant) = sec®t +sect tan®t,

= 2sec® t — sect.
12. Next verify that

d, |sect| = tant
— 10, sect| = tan
7 108 ;

d
— log | sect + tant| = sect.
7 log | |

13. Now verify that

/tantdt = log | sect],
/sectdt = log|sect + tant|,

2/sec3tdt:sect tantJr/sectdt.

(Here and below, we omit the arbitrary additive constants in indefinite integrals.)
See the next exercise, and also Exercises 40-43 for other approaches to evaluating
these and related integrals.

14. Here is another approach to the evaluation of [sectdt. We evaluate

I(u) = /u _dv
o V1402
in two ways.
(a) Using v = sinh y, show that

(b) Using v = tant, show that

—1

tan u
I(u) = / sect dt.
0

Deduce that
x
/ sectdt = sinh™!(tanz), for |z| < g
0
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Deduce from this that

cosh (/ sect dt) = secx,
0

xr
exp(/ sectdt) =secx + tanz.
0

and hence that

Compare these formulas with the analogue in Exercise 13.

15. Show that
Es(t) = i ﬁtk satisfies iEa (t) =aE2_1(t)
n ~ k! di n—1 .

From this, show that

d —at ha an+1 n_ —at
a(e En(t)) = t"he .

16. Use Exercise 15 and the fundamental theorem of calculus to show that

!
/t”e‘at dt = —%Eg(t)e_“t

~n! 14 gt a’t? a™t"™N\
——rnH( +a +—2! +--+ o )e .
17. Take a = —:¢ in Exercise 16 to produce formulas for

/t”costdt and /t”sintdt.

Exercises on 2"

We define 2" for > 0 and r € C, as follows:
(3.2.51) x" = erlose,

18. Show that if r = n € N, (3.2.51) yields 2™ = x-- -z (n factors).

19. Show that if » = 1/n, 2'/™ defined by (3.2.51) satisfies

n, . p1l/n

r==z -z (n factors).

21. Show that, for x > 0,

2" =2"2%, and (2")° =2"%, VrseC.

22. Show that, given r € C,

d
%x =rz"" ", Va>0.
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22A. For y > 0, evaluate [ cos(logz)dx and [ sin(log ) dz.
Hint. Deduce from (3.2.51) and Euler’s formula that

cos(log z) 4 isin(log z) = x°.

Use the result of Exercise 22 to integrate x.

23. Show that, given r,r; € C, = > 0,

rp—=>r=z" =2

24. Given a > 0, compute

d

%G/T, reR
25. Compute

d

%l‘x7 x> 0.

26. Prove that
zV/* —5 1, as x — 0.

Hint. Show that
log x
—— — 0, as z — 0.
T

Some unbounded integrable functions
27. Given g(s) = 1/v/1 — 52, show that g € R#([~1,1]), and that
/1 ds
— =
1V 1— 82
28. Given f(t) = 1/4/t(1 —t), show that f € R#([0,1]), and that
/1 dt
—— =
0 VE(l—1t)

Hint. Set t = s°.
The arctangent

29. Show that
s
tan : (—5 —) — R

is one-to-one and onto, with inverse



108 3. Curves in Euclidean space

Y
S4 (.’E)
w/2+ 5a(x)
tan~!x
Si(z)
\ + + \ xT

LV @)

Ss(x)

Figure 3.2.5. Power series approximations Sy (z) to tan— !z

1 /x dt
tan” " x = —_—.
o 1+t

30. Use the integral formula above to show that tan™! z is given by the power series

tan~!lx = 53(—1)]’C e for |z| <1
&= 2k + 1’ -

given, via Exercise 5, by

Show that this series diverges for |x| > 1.

See Figure 3.2.5 for the graphs of tan~!x over |z| < 3 and of S,(x) over
|z| < 1.45, where
n p2k+1

Snl) = Y (-1 .

and 1 <n <5.
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Making a trig table

These exercises guide the reader who can use a computer or calculator for numerical
work through the following task:

31. Make a table of cos/° and sin £°, for the integers ¢. Achieve at least 10 digits
of accuracy.

Here £° is the same as (7/180)¢ radians, so, by Euler’s identity,
¢ 0, = Lg
’ 180°
It suffices to compute cos £° and sin £° for 0 < ¢ < 45, since trigonometric identities
then lead to the computation for other integer values of /.

(3.2.52) cos (° + isinf° = e

One approach would be to use the power series for e*, with z = i6,. To im-
plement this requires having an accurate numerical evaluation of 7. A method of
obtaining this was presented in Exercise 7. Here we want to explore an alterna-
tive approach to the computation of (3.2.52), which does not require a previously
computed evaluation of 7. It starts with the following identities:

a1 . 2
(3.2.53) e™i/3 = F(I+ iv3), em/t= gu +1),

cf. Exercise 2, supplemented by

) 1
(3.2.54) 25 = op + sy, c5 = Z(\/5 —1),
obtained in Exercise 4 of Appendix A.4, which in turn yields

1
(3.2.55) s5=1/1—c2= 1\/10+2\/5.

In light of this, we formulate the following exercise:

32. Numerically evaluate the real and imaginary parts of
e71'1'/3 671'2'/4 e27r72/5'

Equivalently, numerically evaluate

V3, V3, V5, \/10+2V/5.

The following expands the scope of Exercise 32.

33. Here is a way to approximate /a, given a € R*. Suppose you have an
approximation zj to \/a,
T — \/(; = 0.

Square this to obtain % + a — 2x+/a = §7, hence

6,% a +xi
\/(E = Tky1 — g, Tht1 = o .
k k
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/2
27 /5

/3

/4 = 45°
7/6 = 30°
7/10 = 18°
/12 = 15°
/15 = 12°
7/60 = 3°

Figure 3.2.6. Special angles 0, at which to evaluate sin 6 and cos 6

Then x4 is an improved approximation, as long as |0| < 2xp. One can iterate
this. Try it on

7 7 9
2= - 3~ SR —.
V2 5’ V3 4’ V3 4
How many iterations does it take to approximate these quantities to 12 digits of

accuracy? Going further, take 10 + 2v/5 ~ 14.5, and hence

/10 + 25 ~ 3.8.

34. Verify the following identities:
67r'£/2€77ri/3 _ eﬂi/G’
eTi/2=2mi/5 _ omi/10.
67ri/3€77ri/4 — 6772'/12

62ﬂ1/56—ﬂ'z/3 — 67”/15.

See Figure 3.2.6 for representations of the relevant angles.

35. Verify also that
e7r7l/12€771'i/15 — eﬂ'i/607
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and deduce from results of Exercise 34 that
67r7,'/60 _ 62771'/3677”'/4672772'/5

= g(—l +iV3)(1 — i) (cs — iss).

36. Deduce from Exercise 35 that

2v/2 sin % = (V3+1)es — (V3 —1)ss.

Use this to produce a numerical evaluation of sin(7/60). Similarly, numerically
evaluate cos(m/60).

37. Use the results of Exercises 32-36 to fill in the trig table for sin ¢° and cos ¢°,
when ¢ is an integer in {0, ...,45} that is divisible by 3.

38. (Application to the evaluation of 7.) Use the result of Exercise 36 to produce
a numerical evaluation of

t v
an — = Q.
60

Having this result, apply the power series in Exercise 30 to tan™! a, to evaluate 7
to 10 digits of accuracy. How many terms in the power series are needed for this
task?

39. Think about ways to proceed from results of the exercises above to numerically
evaluate

e™/ 180 — ¢0s1° 4+ isin 1°,
and from there to complete Exercise 31.
One approach. Note that (e7/180)3 = ¢mi/60

evaluate

=e , which is evaluated in Exercise 36. To

(14 a)'/3, given a € C, small,
take 1+ a/3 as a first approximation. Then evaluate
(14a)14a/3)2 =1+a,
with a; € C, substantially smaller, and iterate, obtaining

(1+a)1/3:(1+%>(1+%)---.

Alternative. Having evaluated 7 in Exercise 38, plug this into the power series for
eTi/180
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Figure 3.3.1. Unit tangent and normal vectors to a parabolic curve

3.3. Curvature of planar curves

The curvature of a curve v : (a,b) — R™ is a measure of how it is not straight.
Assume ~ has non-vanishing velocity. We can parametrize v by arclength, so we
have the unit tangent vector

(3.3.1) V(s)=T(s), [T(s)l=1.

Then + is a straight line if and only if T'(s) is constant. Thus a measure of how ~y
curves is given by

(3.3.2) T'(s).
We call this the curvature vector of «. Note that
(3.3.3) T-T=1=T'(s)-T(s) =0,

so T'(s) is orthogonal to T'(s).

Let us now specialize to planar curves, so 7 : (a,b) — R?. In such a case, we
apply counterclockwise rotation by 90° to T'(s) to get a unit normal to ~:

(3.3.4) N(s)=JT(s), J= (? 01> :

(Here we represent vectors in R? as column vectors.) See Figure 3.3.1 for an illus-
tration of the unit tangent and normal vectors to a parabolic curve at a point.
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In this situation, (3.3.3) implies that 7"(s) is parallel to N(s), say
(3.3.5) T'(s) = k(s)N(s),
and we call £(s) the curvature of «y. Note that, by (3.3.4),

N'(s) = k(s)JN(s)
(3.3.6) = rk(s)J*T(s)
= —k(s)T(s).
We set up the pair of equations
T'(s) = rk(s)N(s),

(3.3.7) N'(s) = —k(s)T(s),

as a precursor to the more elaborate Frenet-Serret equations for curves in R3, given
in (3.4.19). However, in the planar case, we can make do with

(3.3.8) T'(s) = k(s)JT(s)
as the defining equation for curvature of ~.

This sets us up to consider the following problem. Given a smooth function
(3.3.9) k:(a,b) — R,

see if it determines a unit-speed curve v : (a,b) — R? with curvature x. We should
impose initial conditions: take so € (a,b) and specify

(3.3.10) v(s0) =po, T(s0) =To, po,To € R?, || To|l =1.
As we will show below, (3.3.8)—(3.3.10) has a unique solution
(3.3.11) T: (a,b) — R%

Furthermore,

d 2 _ /
o ITG)7 =2T"(s) - T(s)

(3.3.12) = 2k(s)JT(s) - T(s)
=0,

(3.3.13) IT(s)|| =1, Vsc€(a,b).

Then we take

(3.3.14) ~v(s) = po —|—/ T(7)dr,

to obtain the desired curve.

We will produce a specific formula for the solution to (3.3.8)—(3.3.10). We start
with the case

(3.3.15) k(s) =k, real constant.

In this case, the differential equation (3.3.8) becomes
T

(3.3.16) — =rJT(s).

ds
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Say so = 0, so the initial condition is
(3.3.17) T(0) = Tp.
This equation is formally similar to the equation (3.2.9), with a € C replaced by

kJ € M(2,R). The solution is given in terms of the matriz exponential. In general,
for A € M(n,R), or A€ M(n,C), we set

it
(3.3.18) e = kz'A'
k=0

A development of the matrix exponential, parallel to that of the exponential of

complex numbers, is presented in §C.2. It follows that the solution to (3.3.16)-
(3.3.17) is

(3.3.19) T(s) = ' Ty.

This leaves us with the task of evaluating the matrix exponential ¢!/, for t € R.
In view of the similarity
(3.3.20) JP=—I, i?=-1,
it is natural to guess that e’/ satisfies the following variant of the Euler identity:
(3.3.21) e = (cost)I + (sint)J, tecR.

This is the case. One way to prove it is the following. Denote the right side of
(3.3.21) by X (t). Then, thanks to (3.1.39), or (3.2.41),

X'(t) = —(sint)I + (cost)J
= JX(t)v

and X (0) = I. This has the same form as (3.3.16)—(3.3.17), and §C.2 shows that
this leads to X (¢) = €', hence to (3.3.21).

Returning to (3.3.18), we see that

(3.3.22)

(3.3.23) T(s) = (cossk)Tp + (sin sk)JTo,
and
(3.3.24) ~v(s) = po —|—/ T(r)dr.
0

For example, if

1 0
(3.3.25) 7(0) = (0), T(0) = (1) k=1,
we have

—sins
3.2 T(s) =

(3.3.26) o= ().
hence

(3.3.27) 7(s) = (é) + /0 (;Z:T) dr = (ZTS:D

revealing ~v as the unit circle.
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We return to (3.3.8), for general smooth functions (s). Using the formula
d .. |
(3328) zea(é)J — O/(S)Jeoc(s)J7
s

we see that (3.3.8)—(3.3.10) is solved by

(3.3.29) T(s) = eI Ty, a(s) = / s/{(a)do.

.|
Exercises

1. Consider a curve c(t) in R? (not necessarily unit speed), with velocity v(t) and
acceleration a(t), given by

Assume v(t) # 0. Take

_ ) = s(t) = t ()| dr
10 = o NO=IT0, )= [ e

so s(t) is the arclength parameter. Show that

(3.3.30) alt) = %T(t) + k() <§>2N(t).

Hint. Differentiate v(t) = (ds/dt)T (t) and use the chain rule dT'/dt = (ds/dt)(dT/ds).

2. Deduce from Exercise 1 that
2 .
m(@> =a~N:L JU,
dt [[v]]

hence

a-Ju
(3.3.31) K= —
[[v]3

3. Consider the ellipse
~(t) = (acost,bsint).
Use the results of Exercise 2 to compute its curvature. Verify that, for such an

ellipse,
ab

0= L P

Similarly, compute the curvature of the following curves:

4. Parabola
’V(t> = (tatz)'
5. Sine curve
~(t) = (¢,sint).
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6. Spiral
y(t) = (e' cost, e’ sint).

7. Find the unit-speed curve v : (0, 00) — R? satisfying

0 1 1
1)= (1) = —
W= (o). Yw=(y) w=3
/ (c.c)slogcf) do,
1 \sinlogo
(coslogo + isinlog o) do

s s 0i+1
:/ e“og"daz/ otdo = -
1 1 7/+1

Hint. To compute

use

—

S

1.
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3.4. Curvature and torsion of curves in R3

Given a curve c(t) = (z(t),y(t), 2(t)) in 3-space, we define its velocity and acceler-
ation by

(3.4.1) v(t) = (t), alt)=2'(t)="(t).
We also define its speed s'(t) and arclength by
t
(3.4.2) sSt)=v@®)], s(t) :/ §'(r)dr,
to
assuming we start at ¢t = ty. We define the unit tangent vector to the curve as
v(t)
(3.4.3) T(t) = .
lo(®)l]

Henceforth we assume the curve is parametrized by arclength.

We define the curvature (s) of the curve and the normal N(s) by

(3.4.4) K(s) = H% I i% — K(s)N(s).

Note that

(3.4.5) T(s) - T(s)=1=T'(s)-T(s) =0,

so indeed N(s) is orthogonal to T'(s). We then define the binormal B(s) by
(3.4.6) B(s) =T(s) x N(s).

For each s, the vectors T'(s), N(s) and B(s) are mutually orthogonal unit vectors,
known as the Frenet frame for the curve ¢(s). Rules governing the cross product
yield

(3.4.7) T(s) = N(s) x B(s), N(s)=B(s)xT(s).
For material on the cross product, see §2.5. The result (3.4.7) follows from (2.5.7);

see Exercise 5 in §2.5. See Figure 3.4.1 for an illustration of a Frenet frame at a
point.

The torsion of a curve measures the change in the plane generated by T'(s) and
N(s), or equivalently it measures the rate of change of B(s). Note that, parallel to
(3.4.5),

B(s) - B(s) =1 = B'(s) - B(s) = 0.
Also, differentiating (3.4.6) and using (3.4.4), we have
(3.4.8) B'(s) =T'(s) x N(s)+T(s) x N'(s) =T(s) x N'(s) = B'(s)-T(s) = 0.
We deduce that B’(s) is parallel to N(s). We define the torsion by
a _
ds

We complement the formulas (3.4.4) and (3.4.9) for dT'/ds and dB/ds with one
for dN/ds. Since N(s) = B(s) x T(s), we have

dN dB

dT
(3410) %—EXT—FBXE:TNXT—FKBXN,

(3.4.9) —r(s)N(s).
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Figure 3.4.1. Frenet frame at a point on a 3D curve

or

(Z—Z: = —k(s)T(s) + 7(s)B(s).

Together, (3.4.4), (3.4.9) and (3.4.11) are known as the Frenet-Serret formulas.

(3.4.11)

ExaMPLE. Pick a,b > 0 and consider the helix
(3.4.12) c(t) = (acost,asint, bt).

Then v(t) = (—asint,acost,b) and ||v(t)|| = Va? + b2, so we can pick s = tva? + b?
to parametrize by arc length. We have

1
(3.4.13) T(s) = ——=(—asint,acost,b),
va? + b2
hence
dT 1
(3414) df = m(—a COS t, —a Sint, O)
s a

By (7.4), this gives
a

N(s) = (—cost,—sint,0).
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Hence
3.4.16 B(s) =T(s) x N(s) = bsint, —bcost,a).
(3.4.16) (5) = 7() x N(5) =~ )
Then

dB 1 .
(3417) E = m(b COSt, bSln t, O),
so, by (3.4.9),

b

In particular, for the helix (3.4.12), we see that the curvature and torsion are
constant.

Let us collect the Frenet-Serret equations
ar
T
dN
T
dB
T
for a smooth curve c(s) in R?, parametrized by arclength, with unit tangent T'(s),
normal N(s), and binormal B(s), given by
1

K(s)

kN
(3.4.19) —KT +78

— 7N

(3.4.20) N(s) = T'(s), B(s)=T(s)x N(s),

assuming x(s) = || T7(s)|| > 0.

The differential equation (3.4.19) is treated in texts on differential equations.
A treatment can be found in [19]. If x(s) and 7(s) are given smooth functions on
an interval I = (a,b) and sq € I, then, given Tp, Ng, Bo € R3, (3.4.19) has a unique
solution on s € I satisfying

(3421) T(So) = T(), N(So) = No, B(So) = Bo.

We now establish the following.

Proposition 3.4.1. Assume k and T are given smooth functions on I, with k > 0
on I. Assume {Ty, No, Bo} is an orthonormal basis of R®, such that By = Ty x Ng.

Then there exists a smooth, unit-speed curve c(s), s € I, for which the solution to
(3.4.19) and (3.4.21) is the Frenet frame.

To construct the curve, take T'(s), N(s), and B(s) to solve (3.4.19) and (3.4.21),
pick p € R? and set

(3.4.22) c(s) =p+ /S T (o) do,

S0

so T'(s) = c/(s) is the velocity of this curve. To deduce that {T'(s), N(s), B(s)} is
the Frenet frame for c(s), for all s € I, we need to know:

(3.4.23) {T'(s),N(s),B(s)} orthonormal, with B(s) =T(s) x N(s), Vse€l.
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In order to pursue the analysis further, it is convenient to form the 3 x 3
matrix-valued function

(3.4.24) F(s) = (T(s), N(s), B(s)),

whose columns consist respectively of T'(s), N(s), and B(s). Then (3.4.23) is
equivalent to

(3.4.25) F(s) € SO3), Vsel,

with SO(3) defined as above (2.5.7). The hypothesis on {7y, Ny, By} stated in
Proposition 3.4.1 is equivalent to Fy = (Tp, No, By) € SO(3). Now F(s) satisfies
the differential equation

(3.4.26) F'(s) = F(s)A(s), F(so)= Fu,

where

(3.4.27) A(s) = | k(s) 0 —7(s)

Note that
dF* * * *

(3.4.28) Fra A(s)*F(s)" = —A(s)F(s)",
since A(s) in (3.4.27) is skew-adjoint. Hence

d . dF dF*

o F(s)F(s)* = gF(S) + F(s) 7
(3.4.29) = F(s)A(s)F(s)" — F(s)A(s)F(s)"

=0.

Thus, whenever (3.4.26)—(3.4.27) hold,
(3.4.30) FoFf =1 = F(s)F(s)* =1,

and we have (3.4.23).

Let us specialize the system (3.4.19), or equivalently (3.4.26), to the case where
k and T are constant, i.e.,

0 —x O
(3.4.31) F'(s)=F(s)A, A=|x 0 -—1],
0 7 0

with solution
(3.4.32) F(s) = Fyels=s0)4,

We have already seen in that a helix of the form (3.4.12) has curvature x and torsion
T, with

a b
4. - —
(3.4.33) praoR T prano
and hence
K T
4.34 - — )
(3.4.34) =2 b K2 4 72

In (3.4.12), s and t are related by t = sv/k2 + 72.
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We can also see such a helix arise via a direct calculation of e*4, which we now
produce. First, a straightforward calculation gives, for A as in (3.4.31),

(3.4.35) det(M — A) = A(\? + k? + 77),
hence
(3.4.36) Spec(A) = {0, £iv k2 + 72}.

An inspection shows that we can take

1 T 0 1 —K
3.4.37 m=——=(0], vo=1|1], v3=——=| 0 |,
( ) YT k21 2 . 2 0 8T /2 1 12 -
and then

(3.4.38) Avi =0, Ave=+VrKZ2+712v3, Avs=—V/KZ+ T209.

In particular, with respect to the basis {vs,v3} of V' = Span{vs,v3}, Aly has the
matrix representation

(3.4.39) B =\/k2 472 (? _01) :
We see that

(3.4.40) e*Avy = vy,

while, in light of the calculations giving (3.3.21),

ey = (cos sm)w +(sin 5\/&24—77'2)1137
Sy = —(sin sm)vfr(cos sx/m)vs'

For general variable k(s) and 7(s), the system (3.4.26) does not have a neat
closed-form solution. However, here is a class, more general than the case of con-
stant curvature and torsion, where it does. Assume there exist kg,79 € R and a
smooth function g : I — R such that

(3.4.42) w(3) = Bls)ro,  7(s) = B(s)mo.
Then, in (3.4.27),

(3.4.41)

0 —Ko 0
(3443) A(S) = B(S)Ao, AO = Ro 0 —70 ,
0 T0 0

and, parallel to (3.3.29), a solution to (3.4.26) is given by

(3.4.44) F(s) = Fpe®®40  o(s) = /S B(r) dr.
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.|
Exercises

1. Consider a curve c(t) in R3, not necessarily parametrized by arclength. Show
that the acceleration a(t) is given by

d%s ds\?

Hint. Differentiate v(t) = (ds/dt)T'(t) and use the chain rule dT'/dt = (ds/dt)(dT'/ds),
plus (3.4.4).

2. Show that
vXa
[[vl|®

Hint. Take the cross product of both sides of (3.4.45) with T', and use (3.4.6).

(3.4.46) kB =

3. In the setting of Exercises 1-2, show that

(3.4.47) w2 7|[0]|® = —a - (v x ).
Deduce from (3.4.46)—(3.4.47) that

(vxa)-a
3.4.48 =
(3449 T oxal?

Hint. Proceed from (3.4.46) to

d B d

L (sllol) B+ wlolP S = S x ) =vxa,

and use dB/dt = —7(ds/dt)N, as a consequence of (3.4.9). Then dot with a, and
use a - N = kl[v||?, from (3.4.45), to get (3.4.47).

4. Consider the curve c(t) in R? given by
c(t) = (a cost, b sint,t),

where a and b are given positive constants. Compute the curvature, torsion, and
Frenet frame.

Hint. Use (3.4.46) to compute x and B. Then use N = B x T. Use (3.4.48) to
compute 7.

5. Suppose ¢ and ¢ are two curves, both parametrized by arc length over 0 < s < L,
and both having the same curvature x(s) > 0 and the same torsion 7(s). Show
that there exit zop € R and A € O(3) such that

é(s) = Ac(s) + o, Vse][0,L].

Hint. To begin, show that if their Frenet frames coincide at s = 0, i.e., T(0) =
T(0), N(0) = N(0), B(0) = B(0), then T=T, N=N, B=B.
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6. Suppose ¢ is a curve in R? with curvature x > 0. Show that there exists a plane
in which ¢(t) lies for all ¢ if and only if 7 = 0.

Hint. When 7 = 0, the plane should be parallel to the orthogonal complement of
B.

7. Let v : I — R? be a smooth, unit-speed curve, with curvature and torsion &, 7.
Assume k > 0. Take A € O(3), and set

o(s) = Av(s).
Show that the curvature s, and torsion 7, of o satisfy k,(s) = k(s), and

To(s) = £7(s), if det A= =+1.

8. Let v : I — R? be a unit-speed curve, with Frenet frame (7, N, B). Assume
Kk, T > 0. Set

o(s) :/ B(t) dt,
0
also a unit-speed curve. Show that it has the Frenet frame
T,=B, N,=-N, B,=T.

Compute its curvature and torsion.
Curves on the unit sphere in R?

In Exercises 9-12, let v : I — R? be a unit-speed curve satisfying

v(s)-y(s) =1, ie., v:I— 5%

9. Show that
v(s)-T'(s) = -1, ie. r(s)y(s) N(s)=-1,
and hence the curvature satisfies
k(s) > 1.
Hint. First show v-T = 0. Apply d/ds to this.

10. For s € I, set

v(s) =7(s) x T(s).
Show that (vy(s),T(s),v(s)) is an orthonormal basis of R3. Show that, for each
sel,

(3.4.49) N(s) = a(s)y(s) + b(s)v(s),
with

Hint. Use N-T =0and v-v=0.
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11. Deduce that

hence

12. In (3.4.49), show that

Deduce that

)
Hint. Show that b=N - (yxT) =+ (T x N).
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Chapter 4

Multivariable differential
calculus

This chapter develops differential calculus on domains in n-dimensional Euclidean
space R™.

In §4.1 we define the derivative of a function F' : O — R™, where O is an open
subset of R”, as a linear map from R" to R™. We establish some basic properties,
such as the chain rule. We use the one-dimensional integral as a tool to show that,
if the matrix of first order partial derivatives of F' is continuous on O, then F' is
differentiable on O.

In §4.2 we consider higher derivatives of functions with additional smoothness.
We discuss two convenient multi-index notations for higher derivatives, and an
alternative multi-linear notation. We derive the Taylor formula with remainder for
the power series of a smooth function F' on O C R"”, producing expressions of this
formula in each of these three notations.

We also look at critical points of a real-valued, smooth function F on O C
R™, and give conditions that such a critical point gives a local maximum, a local
minimum, or a saddle, in terms of the behavior of the n x n matrix of second-order
partial derivatives of F'.

In §4.3 we establish the Inverse Function Theorem, stating that a smooth map
F : O — R™ with an invertible derivative DF'(p) has a smooth inverse defined near
q = F(p). We derive the Implicit Function Theorem as a consequence of this. As a
tool in proving the Inverse Function Theorem, we use a fixed point theorem known
as the Contraction Mapping Principle. The inverse and implicit function theorems
will be essential tools in our study of surfaces, in Chapter 6.

125
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4.1. The derivative

Let O be an open subset of R™, and F' : O — R™ a continuous function. We say
F is differentiable at a point x € O, with derivative L, if L : R™ — R™ is a linear
transformation such that, for y € R™, small,

(4.1.1) F(z+y)=F(z)+ Ly + R(z,y)
with
(4.1.2) IR@ 9y ag 4 0.

[yl
We write (4.1.2) as
(4.1.3) R(z,y) = o([lyl))-

In (4.1.2), we use the Euclidean norm on R™ and R™. As seen in §2.1, this norm is
defined by

(4.1.4) |z = (22 4 +22)"*

for ¢ = (x1,...,2,) € R™. We denote the derivative at « by DF(z) = L, and
rewrite (4.1.1) as

(4.1.5) F(x+y) = F(x) + DF(x)y + R(x,y).

In particular, if {e1,...,e,} denotes the standard basis of R", and if DF(x)
exists, we have, for h € R small,

(4.1.6) F(z + he;) = F(z) + hDF(x)e; + o(h),
or equivalently

1
(4.1.7) DF(x)e; = }111_)1110 7 [F(x + he;) — F(z)].

This last limit, when it exists, is the partial derivative (compare (1.1.45)):
1
(4.1.8) - () = lim — [F(z + he;) — F(x)].

Thus, if F is differentiable at x, we have

8F1/(9.Z‘j
OF
(4.1.9) DF(xz)e; = 87(1‘) =
! OF,/0z;
Consequently, with respect to the standard bases of R™ and R™, DF(x) is simply
the matrix of partial derivatives,
8Fj 8F1/8x1 6F1/8:vn
(4.1.10) DF(x) = o) = : : ;
- : :
g OFy/0x1 - OF, )0z,



4.1. The derivative 127

so that, if v = (v1,...,v,)%, (regarded as a column vector) then
ZI;(@Fl/Bxk)vk
(4.1.11) DF(z)v = :
Zk:(@Fm/axk)Uk
Another handy notation is
OF;
(4.1.12) Ol = T

In case n =1, so F' : O — R, the matrix DF(x) has one row,
(4.1.13) F:0—R= DF(z)=(0hF -+ O F).

We typically put in commas and write this as a row vector. It is also common to
use the notation VF:

(4.1.14) VEF(z) = (01F(2), ..., 0,F(z)).

It will be shown below that F' is differentiable whenever all the partial deriva-
tives exist and are continuous on O. In such a case we say F is a C'! function on
O. More generally, F is said to be C* if all its partial derivatives of order < k exist
and are continuous. If F is C* for all k, we say F is C°.

An application of the Fundamental Theorem of Calculus, to functions of each
variable x; separately, yields the following. If we assume F': O — R™ is differ-
entiable in each variable separately, and that each 0F/Jz; is continuous on O,
then

Flz+y)=F(x)+ Y [F(z+2) - F(z+2_1)]
j=1
(4.1.15) = F(z) + Y Aj(,9)y;,

Jj=1

1
oF

Aj(x,y):/ . (x4 zj—1 + ty;e;) dt,
o 0%j

where
20 =0, zj:(yl,...,yj,O,...,O):zj_1+yjej,
and {e;} is the standard basis of R”. Here we have used

1
d
F($+Zj)—F($+Zj—1):/ b @+ zjm1 + tyze;) di,
0

and the one-variable chain rule, (1.1.10). Consequently,

F(x+ +Za x)y; + R(z,y),

Zyj/{ (x4 zj—1 +tyje;) — gj:(x)}dt

(4.1.16)
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Now (4.1.16) implies F' is differentiable on O, as we stated below (4.1.11). Thus
we have established the following.

Proposition 4.1.1. If O is an open subset of R and F : O — R™ is of class O,
then F is differentiable at each point x € O.

One can use the Mean Value Theorem in place of the fundamental theorem of
calculus and obtain a slightly more general result. See Exercise 2 below for prompts
on how to accomplish this.

Let us give some examples of derivatives. First, take n = 2, m = 1, and set

(4.1.17) F(z) = (sinz)(sinxz).
Then
(4.1.18) DF(z) = ((cosx1)(sinzs), (sinxy)(coszs)).
Next, take n = m = 2 and
1T

4.1.1 F(z) = .
(1.1.19) @ =(,51)
Then

[ X2 Z1
(4.1.20) DF(z) = (%1 2@) .

We can replace R™ and R™ by more general finite-dimensional real vector
spaces, isomorphic to Euclidean space. For example, the space M(n,R) of real
n X n matrices is isomorphic to R"™*. Consider the function
(4.1.21) S:M(n,R) — M(n,R), S(X)= X2
We have

(X+Y) =X’ +XY +YX+Y?
(4.1.22) )
=X+ DS(X)Y + R(X,Y),
with R(X,Y) = Y2, and hence
(4.1.23) DS(X)Y =XY +YX.

For our next example, we take
(4.1.24) O=G{n,R)={X € M(n,R) : det X # 0},

which is open in M(n,R), since det : M(n,R) — R, being a polynomial in the
matrix entries of its argument, is continuous. We consider

(4.1.25) ®:Gl(n,R) — M(n,R), &(X)=X"1
and compute D®(I). We use the following. If, for A € M(n,R),
(4.1.26) [ All = sup{[|Av[| : v € R, ||v]| <1},

then (cf. §C.3)
A,BeM(nR)= A+ B| <Al +|B]
(4.1.27) and [[AB| < [|A] - [|B]],
soY € M(n,R) = |[Y*|| <||Y|".
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Also
Sp=T-Y +Y?—... 4 (=1)FY*

(4.1.28) =YS,=8Y =Y -Y24+V3 ... 4 (—1)Fyrt!
= (T+Y)Sp=Sp(I+Y) =1+ (—1)Fyr+,

hence

(4.1.29) V[<l=I+Y)"' =) (-D)vF=I-y+Y?-
k=0

SO

(4.1.30) DY(I)Y = -Y.

Going further, we see that, given X € G¢(n,R), Y € M(n,R),

(4.1.31) X+Y=XIT+X1Y),

which by (4.1.29) is invertible as long as

(4.1.32) XY < 1.

One can proceed from here to compute that, for X € G4(n,R),

(4.1.33) DO X)Y = -X"'vx—h

See Exercise 7 below.

We return to general considerations, and derive the chain rule for the derivative.
Let F: O — R™ be differentiable at € O, as above, let U be a neighborhood of
z = F(x) in R™, and let G : U — R* be differentiable at z. Consider H = G o F.
We have

H(z+y) = G(F(z +y))

(
(4.1.34) = G(F(z) + DF(2z)y + R(z,y))
= G(2) + DG(z)(DF(z)y + R(z,y)) + Ri(z,y)
= G(z) + DG(2)DF(x)y + Ra(z,y)
with
||R2|(;|’|y)” —0 as y— 0.

This establishes the following.

Proposition 4.1.2. Let O C R"™ and U C R™ be open. Assume F: O — U is
differentiable at x € O and G : U — R¥ is differentiable at z = F(x). Then Go F
is differentiable at x, and

(4.1.35) D(G o F)(z) = DG(F(z)) - DF(x).

Another useful remark is that, by the Fundamental Theorem of Calculus, ap-
plied to ¢(t) = F(z + ty),

(4.1.36) Flzx+y)=F(z)+ /01 DF(x +ty)y dt,

provided F is C'. Compare (4.1.15).
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.|
Exercises

1. Compute DF(z) in each of the following cases:
F(z) = 22 + 2129,

o3
F(Z‘) = | 173 |,
12
xlerg COS I3
F(z) = .
(z) (cos(xlemm)

2. Here we provide a path to a strengthening of Proposition 4.1.1. Let O C R" be
open, f: O — R. Assume 0f/0x; exists on O for each j. Fix 2 € O and assume
that

0

(4.1.37) 97 is continuous at z, for each j.
Ly

Task: prove that f is differentiable at x.

Hint. Start as in (4.1.15), with

fla+ +Z{ z+2) = fl@+2-1)],

where 2o =0, 2z; = (y1,...,¥;,0,...,0) = zj_1 + y;€j, 2, = y. Deduce from the
mean value theorem that, for each j,

f
(z + zj—1 + 05y5€5)y;,

f(l’JFZj)*f(IJij—l):%
J

for some 6; € (0,1). Deduce that
- f
fla+ Z oy (O3 + R(@y),

where

of

of
R(x,y) {81‘ (:E +zj—1+ gjyjej) Ors
J

M:

() fus-
1

4.1.37) implies that R(z,y) = o(||y||)-

J
Show that the hypothesis

—~

3. Consider
_ Ty
f(z,y, z,w) = det (z w) )

Compute V f(z,y, z,w).
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4. Let Py : M(n,R) — M(n,R) be given by Py(X) = X*. Show that
DPy(X)Y =YX? 4+ XY X + X?Y.
Hint. Expand (X + Y)? and isolate terms that vanish faster than |Y]| as Y — 0.

5. In the setting of Exercise 4, show that, for k > 2,

k—1
DP(X)Y = XIY X+ 1,
=0

6. Let M(n,R) denote the space of real n x n matrices, and let Q C M(n,R) be
open. Assume F,G : Q — M(n,R) are of class C'!. Show that H(X) = F(X)G(X)
defines a C* map H : Q — M(n,R), and

DH(X)Y = (DF(X)Y)G(X) + F(X) (DG(X)Y).
Use this to produce an inductive approach to Exercise 5.

6A. More generally, if Q@ C R* is open F,G : Q — M(n,R), H(z) = F(z)G(z),
show that

DH(z)y = (DF(w)y) G(z)+ F(x) (DG(m)y).

7. Let Gl(n,R) C M(n,R) denote the set of invertible matrices. Show that
®:Gl(n,R) — M(n,R), &(X)=X""
is of class C'! and that
DO X)Y = -X"'vyx—1
Hint. Start with (4.1.31), yielding
X+Y) ' =1+xY)'x Y
and apply the series expansion (4.1.29), with Y replaced by X 1Y

8. Define S, ®, F : G¢(n,R) — M(n,R) by
S(X)=X?% ®X)=X"' FX)=X2
Compute DF(X)Y using each of the following approaches:

(a) Take FI(X) = ®(X)®(X) and use the product rule (Exercise 6).
(b) Take F(X) = ®(S(X)) and use the chain rule.
(c) Take F'(X) = S(®(X)) and use the chain rule.

9. Identify R? and C via z = 2 + iy. Then multiplication by i on C corresponds to

applying
0 -1
()
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Let O C R? be open, f : O — R? be C'. Say f = (u,v). Regard Df(z,y) as a
2 x 2 real matrix. One says f is holomorphic, or complex-analytic, provided the
Cauchy-Riemann equations hold:

ou Ov ou ov

5oy By
Show that this is equivalent to the condition

10. Proceeding from the identity e*T% = e” cosy + ie® siny, derived in §3.2, define

E:R?2 - R? by
e’ cosy
B = (Lot
e®siny
Compute DE(z,y), as a 2 X 2 matrix, and verify that DE(z,y) J = J DE(x,y).

11. Let f be C! on a region in R? containing [a, b] x {y}. Show that, as h — 0,

1 0 .
[t ) = )] — Fo), wnitormly on (8] x (1)
Hint. Show that the left side is equal to
1 [hor
A @($7y+3)d57

and use the uniform continuity of df /0y on [a,b] X [y — §,y + 4]

12. In the setting of Exercise 11, show that

b b
d% / Fay) do = / %(x,wda:.

Exercises 13-15 deal with properties of the determinant, as a differentiable function
on spaces of matrices.

13. Let M(n,R) be the space of n x n matrices with real coefficients, det :
M(n,R) — R the determinant. Show that, if I is the identity matrix,

D det(I)B = Tr B,
ie.,

d
a det([+ tB)lt:O = T‘I‘B

Hint. Brush up on the exercises in §2.3.

14. If A(t) = (a;x(t)) is a smooth curve in M (n,R), use the expansion of (d/dt) det A(t)
as a sum of n determinants, in which the rows of A(t) are successively differentiated,
to show that

% det A(t) = Tr(Cof(A(t))t : A’(t)),
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and deduce that, for A, B € M(n,R),
D det(A)B = Tr(Cof(A)" - B).
Here Cof(A), the cofactor matrix, is defined in Exercise 4 of §2.3.

15. Suppose A € M (n,R) is invertible. Using
det(A +tB) = (det A) det(I +tA ' B),
show that
D det(A)B = (det A) Tr(A™'B).
Comparing this result with that of Exercise 14, establish Cramer’s formula:
(det A)A™" = Cof (A)".

Compare the derivation in Exercise 4 of §2.3.

16. Define f(x,y) on R? by

Fla,y) = ——2

Y () #(0,0),
+y

0, (z,y) = (0,0).

Show that f is continuous on R? and smooth on R?\ (0,0). Show that df/dz and
Of /0y exist at each point of R?, and are continuous on R? \ (0, 0), but not on R2.
Show that

of of

5.(0.:0) = 6—y(0,0) =0.

Show that f is not differentiable at (0, 0).
Hint. Show that f(z,y) is not o(||(x,y)]) as (x,y) — (0,0), by considering f(x,x).

T 2

17. Let f,g,h : R? — R be of class C!, and define F : R? — R by

F(.’L‘) = h(f(xlaxQ)ag(mh m2))
Show that the chain rule implies
OF of

e 61h(f(x),g(x))a7j + 02h(f(2), 9(x))

99
al'j.
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4.2. Higher derivatives and power series

For the study of higher order derivatives of a function, the following result is fun-
damental.

Proposition 4.2.1. Assume F : O — R™ is of class C?, with O open in R™.
Then, for each x € O, 1 < j, k<n,
0 OF 0 OF

Proof. It suffices to take m = 1. We label our function f: O — R. For 1 < j < n,
we set

(122) A f@) = 3 (Fo+ heg) = F(z),

where {eq,...,e,} is the standard basis of R™. The mean value theorem (for func-
tions of x; alone) implies that if 0, f = 0f/0x; exists on O, then, for x € O, h >0
sufficiently small,

(4.2.3) Ajnf () = 0;f(a+ ajhe;),

for some a; € (0,1), depending on x and h. Iterating this, if 0,(0k f) exists on O,
then, for z € O, h > 0 sufficiently small,

AppDjnf(z) = Ok(Ajnf)(@ + arheg)
(4.24) = Ajn(0kf)(z + akhey)
= 0;0kf (v + aghey + ajhe;),

with a;,ap € (0,1). See Figure 4.2.1 for an illustration, with n =2, j =1,k = 2.
For the second identity in (4.2.4), we have used the elementary result

(4.2.5) Djnf = Djn(Okf)-
We deduce the following.

Proposition 4.2.2. If Oy f and 0;0rf exist on O and 0;0,f is continuous at
xo € O, then

(4.2.6) 8j8kf(xo) = }lll_r% Ak,hAj7hf(.Z‘0).

The following identity is also elementary (see Exercise 8):
(4.2.7) AkﬁAj}hf = Aj,hAk,hf.
Hence we have the following, which readily implies Proposition 4.2.1. O

Corollary 4.2.3. In the setting of Proposition 4.2.2, if also 0;f and 0,0;f exist
on O and 00; f is continuous at xo, then

We now describe two convenient notations to express higher order derivatives
of a C* function f : Q — R, where Q C R" is open. In one, let J be a k-tuple of
integers between 1 and n; J = (ji,...,Jjr). We set

(4.2.9) f(J) (JJ) =05, -+ 05 f(l‘), 9; = (97%
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(351 + aih, zy + OéQh) =x+ ha

z = (x1,22) h

Figure 4.2.1. Ay 3, Ay, f(x) = 0102 f(x + ha)

We set |J| = k, the total order of differentiation. As we have seen in Proposition
4.2.1, 0;,0;f = 9;0;f provided f € C?(Q). It follows that, if f € C*(f2), then
0j, -0 f = O, -+ O, f whenever {f1,...,0;} is a permutation of {j1,...,7x}.
Thus, another convenient notation to use is the following. Let o be an n-tuple of

non-negative integers, o = (a1, ..., a,). Then we set

(4.2.10) fOz) =00 0% fz), |ol=ai+ -+ ay,.

Note that, if |J| = |a| = k and f € C¥(Q),

(4.2.11) FD(x) = f (), with oy = #{0: j, = i}.
Correspondingly, there are two expressions for monomials in = = (x1,...,x,):
(4.2.12) ol =y wy,, x*=aft 2l

and 2/ = 2% provided J and « are related as in (4.2.11). Both these notations are
called “multi-index” notations.

Multivariable power series

We now consider multivariable power series, and derive Taylor’s formula with
remainder for a smooth function F' : @ — R, making use of the multi-index no-
tations introduced above. We will apply the one variable formula derived in §1.3
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(cf. Proposition 1.3.4),

(4213) () = (0) + 'O + 3" OF + -+ 2P O +re(t),
with
(4.2.14) re(t) = % /0 (t — s)Fp* ) (5) ds,

given ¢ € C**1(I), I = (—a,a). (See Exercise 1 below for a reminder.) Let us
assume 0 € Q, and that the line segment from 0 to z is contained in Q. We set
p(t) = F(tx), and apply (4.2.13)-(4.2.14) with ¢ = 1. Applying the chain rule, we
have

(4.2.15) ¢'(t) = Xn: O F (tw)x;

Differentiating again, we have
(4.2.16) P(t) = 05,05 F(ta)a,x),.
Ji,J2
Inductively, we have
(4.2.17) oM (¢ Z 0j, -~ F(tx)z;, --- Z F (tz)x
Jisesdk |J|=k
Hence, from (4.2.13) with ¢t = 1,
1
(4218)  F(z)=F(0)+ > FY0)2" +--+ = > FY(0)27 + Ry(a),
|J|=1 T J|=k

or, more briefly,

(4.2.19) Flz)= Y WF(J>( )zl + Ry (x),
[JI<k
where
(4.2.20) Rk(x):% > (/ (1= 8)*F)(sz) ds)xJ
CJ)=k+1 70

This gives Taylor’s formula with remainder for F' € Ck¥T1(Q), in the J-multi-index
notation.

We also want to write the formula in the a-multi-index notation. We have

(4.2.21) > PO ()’ = > v(a) P (t)a”
|J|=k la|=k

where

(4.2.22) via)=#{J:a=a(J)},

and we define the relation o = «(J) to hold provided the condition (4.2.11) holds,
or equivalently provided 27/ = 2. Thus v(«) is uniquely defined by

(4.2.23) > = > ol =(x 4tk

|| =k |J|=k
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To evaluate v(a), we can expand (z; + --- + z,)¥ in terms of z® by a repeated
application of the binomial formula (cf. §1.3, Exercise 2):

(581+"'+$n)k= ($1+($2+"'+33n))k

k
=2 <a1)x?1($2+"'+xn)kal

a1 Sk}

k k_al aq oo k—a1—as
2 <a1>( o )aa 252 (s + o+ 2

(4.2.24) a1+oa<k

() () (e e
Z xl ...mnn
a1 [} Qp

|l =k

We have v(a) equal to the product of binomial coefficients given above, i.e., to

k' (k*OZl)! (kfalf"‘foén_l)!
al(k —aq)! aol(k —a; — ag)! aplk—ag — - —ap)!
k!

ol o

In other words, for |a| = &,

k!
(4.2.25) via) = o where a!l = 1! - ay!

Thus the Taylor formula (4.2.19) can be rewritten

(4.2.26) Flz)= Y %F(“)(O)xa+Rk(x),
o<k
where
(4.2.27) Ri(z)= 3 k;l(/ (1= $)FF® (s2) ds)a:o‘.
lal=k+1 0

The formula (4.2.26)—(4.2.27) holds for F' € C**1. It is significant that (4.2.26),
with a variant of (4.2.27), holds for ' € C*. In fact, for such F, we can apply
(4.2.27) with k replaced by k — 1, to get

(4.2.28) Fa)= % $F<a>(0)xa+3k_1(x),
lo]<k—1 "
with
(4.2.29) Ri_1(z) = Z 5(/ (1-— S)k—lF(a)(sx) dS).’L‘a.
laj=k 70

We can add and subtract F(®)(0) to F(®)(sz) in the integrand above, and obtain
the following.
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Proposition 4.2.4. If F € C* on a ball B,(0), the formula (4.2.26) holds for
x € B.(0), with

1
(4.2.30) Ry(z) = Z é(/ (1-— S)kfl [F(O‘)(sx) _ F(a)(o)] ds)xo‘,

|| =k 0
REMARK. Note that (4.2.30) yields the estimate
|

‘ (
4.2.31 Ri(x)| < E —— su F@) (sz) — F@)(0)].
( ) | k( )| = ot 1 0<SI<)1 | ( ) ( )|

The term corresponding to |J| = 2 in (4.2.19), or |a| = 2 in (4.2.26), is of
particular interest. It is

(4.2.32) 1 Z FO0) 2! = 1 i ﬂ(o)m,xk
- 2 2 0x0x; T
|J|=2 j,k=1
We define the Hessian of a C? function F : @ — R as an n x n matrix:
O*F
4.2.33 D?F(y) = :
(4.2.33) =)
Then the power series expansion of second order about 0 for F' takes the form
1
(4.2.34) F(z) = F(0)+ DF(0)z + 37 D?*F(0)x + Ra(z),
where, by (4.2.31),
(4.2.35) |Ry(z)| < Cplz>  sup  |F¥(sz) — F(®(0)|.
0<s<1,|a|=2

In all these formulas we can translate coordinates and expand about y € O.
For example, (4.2.34) extends to

(4236) F(x) = F(y) + DF()(x —y) + 5 (¢ ) - D*F(y)(w — ) + Rola,y),
with
(4.2.37)  |Ra(z,y)| < Culz —y|? S |F) (y+ s(z—y)) — F@(y)|.

EXAMPLE. If we take F'(z) as in (4.1.17), so DF(x) is as in (4.1.18), then

—sinz; sinx COSX1 COSX
D?*F(x) = ! 2 R
COST1 COSX2 —SInxr; SINTy

Extremal problems and critical points

The results (4.2.36)—-(4.2.37) are useful for extremal problems, i.e., determining
where a sufficiently smooth function F' : O — R has local maxima and local
minima. Clearly if F € C'(O) and F has a local maximum or minimum at x¢ € O,
then DF(zg) = 0. (Compare Proposition 1.1.1.) In such a case, we say zo is a
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Figure 4.2.2. Critical point that is a minimum

critical point of F'. To check what kind of critical point xg is, we look at the n x n
matrix A = D?F(x), assuming F' € C?(0). By Proposition 4.2.1, A is a symmetric
matrix. A basic result in linear algebra, treated in Appendix C.2, is that if A is a
real, symmetric n X n matrix, then R™ has an orthonormal basis of eigenvectors,
{v1,...,vn}, satisfying Av; = A;jv;; the real numbers A; are the eigenvalues of A.
We say A is positive definite if all A; > 0, and we say A is negative definite if
all Aj < 0. We say A is strongly indefinite if some A; > 0 and another A\; < 0.
Equivalently, given a real, symmetric matrix A,
A positive definite <= v - Av > C|v|?,

(4.2.38) . . >
A negative definite <= v - Av < —C|vl?,

for some C > 0, all v € R", and
A strongly indefinite <= Jv, w € R™, nonzero, such that
(4.2.39) 9 9
v-Av > Cl|*, w- Aw < —Clwl?,

for some C' > 0. In light of (4.2.19)-(4.2.20), we have the following result.

Proposition 4.2.5. Assume F € C?(0) is real valued, O open in R"™. Let zg € O
be a critical point for F'. Then

(i) D?*F(x) positive definite = F has a local minimum at x,

(ii) D?F(xq) negative definite = F has a local mazimum at xo,
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Figure 4.2.3. Critical point that is a maximum

(iii) D?F(z0) strongly indefinite = F has neither a local mazimum nor a local
minimum at xq.

In case (iii), we say xg is a saddle point for F. See Figures 4.2.2-4.2.4 for
illustrations.

The following is a test for positive definiteness.

Proposition 4.2.6. Let A = (a;j) be a real, symmetric, n x n matriz. For 1 <
¢ <mn, form the £ x £ matriz Ay = (aij)1<i,j<¢- Then

(4.2.40) A positive definite <= det Ay >0, VL€ {l,...,n}.

Regarding the implication =, note that if A is positive definite, then det A =
det A,, is the product of its eigenvalues, all > 0, hence is > 0. Also in this case,
it follows from the hypothesis on the left side of (4.2.40) that each A, must be
positive definite, hence have positive determinant, so we have =.

The implication < is easy enough for 2 x 2 matrices. If A is symmetric and
det A > 0, then either both its eigenvalues are positive (so A is positive definite) or
both are negative (so A is negative definite). In the latter case, A1 = (a11) must
be negative, so we have < in this case.

We prove < for n > 3, using induction. The inductive hypothesis implies that
if det Ay > 0 for each ¢ < n, then A, _1 is positive definite. The next lemma then
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Figure 4.2.4. Critical point that is a saddle

guarantees that A = A,, has at least n — 1 positive eigenvalues. The hypothesis
that det A > 0 does not allow that the remaining eigenvalue be < 0, so all the
eigenvalues of A must be positive. Thus Proposition 4.2.6 is proven, once we have
the following.

Lemma 4.2.7. In the setting of Proposition 4.2.6, if A, _1 is positive definite, then
A=A, has at least n — 1 positive eigenvalues.

Proof. Since A is symmetric, R™ has an orthonormal basis vy, ..., v, of eigenvec-
tors of A; Av; = Ajv;. See Appendix C.2. If the conclusion of the lemma is false,
at least two of the eigenvalues, say A1, A2, are < 0. Let W = Span(vy,vs), so

weW = w-Aw < 0.

Since W has dimension 2, R"~! C R" satisfies R"~* N W # 0, so there exists a
nonzero w € R*~ ' N W, and then

w-Ap_qw=w-Aw <0,

contradicting the hypothesis that A, _; is positive definite. ]

REMARK. Given (4.2.40), we see by taking A — — A that if A is a real, symmetric
n X n matrix,

(4.2.41) A negative definite <= (—1)*det 4, >0, Ve {1,...,n}.
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ExAMPLE. Consider the function f : R?2 — R defined by

(4.2.42) f(z,y) = (cosx)(cosy).
We have
(4.2.43) Vf(z,y) = —(sinz cosy,cosz siny),
which vanishes at the following points:
(4.2.44) (z,y) = (jm, km), (z,y) = (G + 3)m, (k+ H)7), j ke
We have
(4.2.49 D2 fay) = (gl ooy Smrsny ).
Hence
D?f(jm, kr) = —(cos jr)(cos kr) (é (1)>
(4.2.46) | Lo
- (_1)J+k+1 (0 1) ,

and

D?F((j + Yy, (k + 1)) = sinj + L) sin(k + L)z (0 1)
(4.2.47) Lo

= (—1)i+k ((1) (1)> .

The matrix (é ?) has 1 as a double eigenvalue, and the eigenvalues of <(1) é)

are +1. Hence, for j, k € Z,

(jm, km) is a local maximum if j + k is even,

(4.248) local minimum if j + k is odd,
and
(4.2.49) ((j+ 3)m, (k+ 3)m) are all saddles.

Further remainder formulas

We return to higher order power series formulas with remainder and comple-
ment Proposition 4.2.4. Let us go back to (4.2.13)—(4.2.14) and note that the
integral in (4.2.14) is 1/(k + 1) times a weighted average of ¢**+1)(s) over s € [0, 1].
Hence we can write

1

) = G

if ¢ is of class C¥*1. This is the Lagrange form of the remainder. If ¢ is of class
C*k, we can replace k + 1 by k in (4.2.13) and write

e D (9t), for some 6 € [0,1],

(4.2.50) o(t) = (0) + @' (0)t + -+ +

1
(k—1) k=1, 1 (k) K
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for some 6 € [0,1]. Pluging (4.2.50) into (4.2.17) for ¢(t) = F(tx) gives
1 1
— — ) JL ) J
(4.2.51) F(z)= Y |J|!F (027 + > P (0x)a,
T|<k—1 \TI=k

for some 6 € [0,1] (depending on x and on k, but not on J), when F is of class C*
on a neighborhood B,(0) of 0 € R™. Similarly, using the c-multi-index notation,
we have, as an alternative to (4.2.28)—(4.2.29),

1 « (03 1 [e% [e%
(4.2.52) Fz)= Y —!F( J0)z + ) aF< ) (0z)z”,
|a|<k—1 la|=k

for some 6 € [0,1] (depending on z and on |al, but not on «), if F € C*(B,(0)).
Note also that

2
(4.2.53) |J]=2 J

with D?F(y) as in (4.2.33), so if F' € C%(B,(0)), we have, as an alternative to
(4.2.34),

(4.2.54) F(z) = F(0) + DF(0)z + %x - D*F(0z)x,
for some 6 € [0,1].

Multi-linear alternative to multi-index notation

We next complement the multi-index notations for higher derivatives of a func-
tion F' by a multi-linear notation, defined as follows. If k € N, F € C*(U), and
ye U CR", set

(4255) DkF(y)(ula cee ,Uk) = 81:1 e ath(y + tlul + -+ tkuk)

tr=eo=t=0

for uy,...,ur € R™. For k = 1, this formula is equivalent to the definition of DF
given at the beginning of this section. For k = 2, we have
(4.2.56) D?F(y)(u,v) = u- D*F(y)v,
with D2F(y) on the right as in (4.2.33). Generally, (4.2.55) defines D*F(y) as a
symmetric, k-linear form in wq,...,u; € R™.

We can relate (4.2.55) to the J-multi-index notation as follows. We start with

|J|=1

and inductively obtain
(4258) atl e 8th(y + Etjuj) = Z F(‘]1+"'+J’“)(y + Etjuj)ul‘h s uik,

[J1]|="=|Jk]|=1
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hence
(4.2.59) DEF(y) (us, ... up) = S PO gyt
[J1]==]Jx|=1
In particular, if u; = --- = up = u,
(4.2.60) DFF(y)(u,. .. u) = Z F(J)(y)u‘].
|T|=k

Hence (4.2.51) yields the multi-linear Taylor formula with remainder

F(z) = F(0) + DF(0)x +--- + DFYR(0)(x, . .., 2)

1
(4.2.61) (k= 1)!

+%DkF(0x)(x, L),

for some 6 € [0, 1], if F' € C*(B,(0)). In fact, rather than appealing to (4.2.51), we
can note that

o(t) = F(tx) = oM (t) = 0y, - Dy p(t +t1 4+ -+ 11) et
= DFF(tz)(z,. .., x),
and obtain (4.2.61) directly from (4.2.50). We can also use the notation
(4.2.62) DIF(y)2® = DIF(y)(x,...,x),

with j copies of x within the last set of parentheses, and rewrite (4.2.61) as

F(z)=F(0)+DF0)x+--+ DFLF(0)2® k1)

(4.2.63) (k= 1)

1
+EDkF(9x)m®k.

Note how (4.2.61) and (4.2.63) generalize (4.2.54).
Convergent power series and their derivatives

Here we consider functions given by convergent power series, of the form

(4.2.64) F(z) =) baz".

a>0

We allow b, € C, and take x = (z1,...,2,) € R", with % given by (4.2.12). Here
is our first result.

Proposition 4.2.8. Assume there exist y € R™ and Cy < oo such that
(4.2.65) lyp| = ax >0, VEk, |bay®| < Co, Yau

Then, for each § € (0,1), the series (4.2.64) converges absolutely and uniformly on
each set

(4.2.66) Rs={z e R" : |zi| < (1 —0)ak, VE}.

The sum F(z) is continuous on R = {x € R™ : |z}| < ay, Vk}.
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Proof. We have

(4.2.67) z € Rs = |boz®| < Co(1— 8o, Va,
hence
S Pbas® < Co 3 (1 )l
a>0 a>0
(4.2.68) =, Z (1—0)* ... Z (1—5)on
a1>0 an>0
=Cho " < .

Thus the power series (4.2.64) is absolutely convergent whenever x € Rs. We also
have, for each N € N,
(4.2.69) F(z)= > baz®+ Ry(z),
lo|<N
and, for ¢ € Ry,
[Ry(@)] < ) |baz”]
la|>N
(4.2.70) < C Z (1 —g)le
la|>N
=eny —0 as N — .

This shows that Ry(z) — 0 uniformly for z € Rj, and completes the proof of
Proposition 4.2.8. O

We next discuss differentiability of power series.

Proposition 4.2.9. In the setting of Proposition 4.2.8, F is differentiable on R
and, for each j € {1,...,n},
OF

(4.2.71) 7

(z) = Z bz, Vae R.

a>e;

Here, we set ¢; = (0,...,1,...,0), with the 1 in the jth slot. It is convenient
to begin the proof of Proposition 4.2.9 with the following.
Lemma 4.2.10. In the setting of Proposition 4.2.8, for each j € {1,...,n},

(4.2.72) Gj(x) =D abaz®

a>e;

is absoletely convergent for x € é, uniformly on Rg for each ¢ € (0,1), therefore
defining G; as a continuous function on R.

Proof. Take a = (a1, ...,ay), with a; as in (4.2.65). Given = € Rs, we have
S aylbaa® = < S a1 = 8) @ buat |
aze; a>e;

(4.2.73)

= aj(lcoa) > aj(t—a)l

a>0
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and this is
(4.2.74) < Ms < oo, Vée€(0,1).

This gives the asserted convergence on Rs and hence defines the function G, con-
tinuous on R. O

To prove Proposition 4.2.9, we need to show that
oF ~
for each j. Let us use the notation
(4276) /.T\j = (.’1?1, sy Tj—1, O,[L‘j+1, v ,LL’n) =T — Tj€j,

where e; is the jth standard basis vector of R”. Now, given = € Rs, § € (0,1), the
uniform convergence of (4.2.72) on R; implies

/ . Gj(fj—l—tej)dt: Z ajba/ ' (£j+t€j)a_s-7 dt
0 0

a>e;

_ . -1, .«
= g ajbaozj T

(4.2.77) a>e;

Z box®

a>e;

— F(2) - F()).

Applying 0/0z; to the left side of (4.2.77) and using the fundamental theorem of
calculus then yields (4.2.75) as desired. This gives the identity (4.2.71). Since each

G; is continuous on R, this implies F' is differentiable on R.

We can iterate Proposition 4.2.9, obtaining 0,0, F (z) = 0,G;(x) as a conver-
gent power series on R, etc. In particular, we have the following.

Corollary 4.2.11. In the setting of Proposition 4.2.8, we have F' € COO(E).

Exercises
1. Considering the power series
1) )
F@) = 1)+ P ) =)+ -+ T oy 4 Ry
show that
ORj _ 1 .G j _
Ty——ﬁf )z —y), Rj@,z)=0.

Use this to derive (4.2.13)—(4.2.14).
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We define “big oh” and “little oh” notation:
f(z) =0(x) (asm—)O)@‘M’ <C as z—0,
x
f(z)

f(z) =o(x) (as:v—)O)(:)T—)O as x — 0.

2. Let O C R™ be open and y € O. Show that

FeCHO)= fr) = 30 L F ) - y)* + Olle — ylt),

la| <k

feCHO)= f@) = 32 1) - )" +ollr — yl).

la| <k

3. Assume G: U — O, F: O — Q. Show that

(4.2.78) F,GeC'= FoGeC.
More generally, show that, for k € N,
(4.2.79) F,GeCl)= FoGeC"

Hint. Write H = F o G, with hy(z) = fi(g1(2),...,gn(x)), and use (4.1.35) to get
(4.2.80) 8jhg<$) = Z 8]€fg(gl, . ,gn>ajgk.

k=1
Show that this yields (4.2.78). To proceed, deduce from (4.2.80) that

a]dajzhf(x) = Z aklasz@(gla e 7gn)(aj1gk1)(ajzgk2)
k1 k=1

(4.2.81) .
+D Ofelgrs -2 90)05, 05,9k
k=1

Use this to get (4.2.79) for k& = 2. Proceeding inductively, show that there exist
constants C(u, J#, k%) = C(u, J1,...,Ju, ki1,...,k,) such that if F,G € C* and
T <k,

J0) ek, k,
(4282) W (@)=Y O I kg gl g gy ),

where the sum is over
pw<|J, Ji4-Hd~ [ > 1,

and Jy +--- 4+ J, ~ J means J is a rearrangement of J; + --- + J,. Show that
(4.2.79) follows from this.

4. Show that the map ® : GI(n,R) — Gl(n,R) given by &(X) = X! is C* for
each k, i.e., ® € C*.
Hint. Start with the material of Exercise 3. Write D®(X)Y = —X 1Y X! as

Oum®(X) = =2 B(X) = DB(X) By = ~®(X) Eyn®(X),

LTem
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where X = (x,,) and Ey, has just one nonzero entry, at position (¢,m). Iterate
this to get

afzmzaelﬂhq)(X) = _(afzmzq)(X))E51m1q)<X) - q)(X)EZlml (afzmzé(X)L

and continue.

5. Define g(x,y) on R? by

g(z,y) = PN (z,y) # (0,0),

0, (x,y) = (070)

Show that g is smooth on R? \ (0,0) and class C' on R2. Show that 9,0,9 and
0y0,g exist at each point of R?, and are continuous on R? \ (0,0), but not on R?.

Show that
d 0Og 0 0Og

6. Use the fact that det X is a polynomial in the matrix entries of X to show
directly that det : M(n,R) — R is continuous, and of class C* for all k. Use the
continuity of det plus the characterization

GL(n,R) ={X € M(n,R) : det X # 0}
to show that G¢(n,R) is open in M(n,R).

7. Let Q C R™ be open, f,g € C*(), real valued, 0 € Q. Write
f(z) = Z faax? +o(zb), g(zx)= Z 9,27 + o(z"),

IB1<k v <k

with
L1090 g0
T

Show that h(z) = f(x)g(z) satisfies

h(z)= Y fsg,a™7 +o(ab),
1Bl:1vI<k
and deduce that, for |a| <k,

(@)
O S = Y 00600,

| 1~/
al Pl weiy Bivea Bly
From this, deduce that
o al
T (f0) = Y P00 0.
Brv=a T

Pass from this to the identity
a!
(4.2.83) o (fo)@) = D P (@) (@),

Bty=a
for x € Q. This identity is called the Leibniz identity.
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8. Let O C R™ be open. Take K C O compact, and r > 0 small enough that
zeK, veR", jv|<r=z+ve0. For f € C(O), z € K, define

Tof(z) = f(x +0).
Show that if v,w € R", |v|, |w| < r/2, then, for f € C(O), z € K,
(4.2.84) TwTo f(T) = 7T f ().
Show that 1
Ajnfla) =+ [The, — 1] f(2).
Deduce from (4.2.84) that, if |h| <r/2, x € K,
AjnBinf (@) = DpnAjnf ().

Cf. (4.2.7). Also show that, if f € C1(0),

o f(2) = 0Ok f(2),

and deduce that (cf. (4.2.5))
hAjnf(x) = Bjn0kf ().

9. Consider the following function f : R? — R:

f(z,y) = (sinz)(siny).
Find all its critical points, and determine which of these are local maxima, local
minima, and saddle points.

10. Define f : R? — R by
f(x) = €™ cosxa.
Compute f(®)(z) for |a| < 3. Then write down

Pa) =Y % £ (0)2°.

la]<3

11. Attack the computation of P(z) in Exercise 10 using Exercise 7, starting with

2 3

- LIRS
61—1+x1+2+3!+ )

and a similar expansion of coszs.

12. Write down the power series about (0,0) of

1 et
F(x,y) :/ dt
o 1+uyt

Hint. Start by multiplying the power series of e and (1 + yt) 1.

13. Show that, for = (z1,...,x,), with |z;| < 1 for all j,

S e = 1 1
1—x 1—x,
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Hint. Write the left side as

aq «
E z{t E Ty

a120 an>0

14. In this exercise, we take

n=1(t,...,t) eR", |t| <1,

F(n)=>_n"

a>0

and consider

(a) Show that, for |¢| < 1,

F(p)= Yt > %2 > g = (1—1)"

a12>0 az>0 a, >0
(b) Show that
F(p) =t =3 "dp(n)t",
a>0 k=0

where
de(n) = #{a = (a1,...,an) : la| = k}

= dim Pk (Rn),
with

Pr(R™) = space of polynomials in € R™, homogeneous of degree k.

(¢) Comparing results of (a) and (b), show that

d(n) = coefficient of t* in f,(t) = (1 —t)™"

1
= /0

~nn+1)---(n+k—-1)
N k!

(1)

(d) If P*(R") = space of polynomials in 2 € R of degree < k,

dim P*(R™) = dim Py, (R"*1)

_ (n;—k) _ (n:;k)
(k+n)(k+n—1)-(k+1)

n!
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4.3. Inverse function and implicit function theorem

The Inverse Function Theorem gives a condition under which a function can be
locally inverted. This theorem and its corollary the Implicit Function Theorem are
fundamental results in multivariable calculus. First we state the Inverse Function
Theorem. Here, we assume k > 1.

Theorem 4.3.1. Let F be a C* map from an open neighborhood Q of py € R"
to R™, with qo = F(po). Suppose the derivative DF(py) is invertible. Then there
is a neighborhood U of py and a neighborhood V of qo such that F : U — V is
one-to-one and onto, and F~1 : V — U is a C¥ map. (One says F : U =V is a
diffeomorphism.)

First we show that F' is one-to-one on a neighborhood of pg, under these hy-
potheses. In fact, we establish the following result, of interest in its own right.

Proposition 4.3.2. Assume Q@ C R"™ is open and convex, and let f : Q — R™ be
Cl. Assume that the symmetric part of Df(u) is positive-definite, for each u € Q.
Then f is one-to-one on €.

Proof. Take distinct points uy, us € 2, and set ug —u; = w. Consider ¢ : [0,1] —
R, given by
o) =w- f(ug + tw).
Then ¢'(t) = w-D f (ug+tw)w > 0 for t € [0,1], 50 ©(0) # ©(1). But ¢(0) = w- f(uy)
and (1) = w - f(u2), so f(ur) # f(u2). 0
To continue the proof of Theorem 4.3.1, let us set
(4.3.1) f(u) = A(F(po+u) —q), A=DF(po) "

Then f(0) = 0 and Df(0) = I, the identity matrix. We will show that f maps a
neighborhood of 0 one-to-one and onto some neighborhood of 0. We can write

(4.3.2) f(u) =u+ R(u), R(0)=0, DR(0)=0,
and R is C'. Pick b > 0 such that
(4.3.3) |ull <2b=||IDR(u)| <

N |

Then Df = I + DR has positive definite symmetric part on
Bop(0) = {u € R™ : ||u|| < 2b},
so by Proposition 4.3.2,
f: Bap(0) — R™ is one-to-one.
We will show that the range f(Ba,(0)) contains By(0), that is to say, we can solve
(4.3.4) f(u) =,
given v € By(0), for some (unique) u € Bgy(0). This is equivalent to u + R(u) = v.
To get the solution, we set

(4.3.5) Ty(u) =v — R(u).
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Then solving (4.3.4) is equivalent to solving

(4.3.6) T, (u) = u.

We look for a fixed point

(4.3.7) u=K()=f"1).

Also, we want to show that DK (0) = I, i.e., that

(4.3.8) K@w)=v+r(), r) =o(w])-

(The “little oh” notation was introduced in (4.1.1)—(4.1.2), and studied in Exercise 8
of §4.1.) If we succeed in doing this, it follows that, for y close to qo, G(y) = F~1(y)
is defined. Also, taking

z=po+tu, y=F), v=[f(u)=A{y—q),
as in (4.3.1), we have, via (4.3.8),
G(y) =po +u=po+ K(v)

=po+ K(A(y — q))

=po + A(y — q0) + o(lly — qol|)-
Hence G is differentiable at gy and
(4.3.9) DG(qo) = A= DF(po)~*.
A parallel argument, with py replaced by a nearby = and y = F(x), gives
(4.3.10) DG(y) = DF(G(y))™".

Thus our task is to solve (4.3.6). To do this, we use the following general result,
known as the Contraction Mapping Theorem.

Theorem 4.3.3. Let X be a complete metric space, and let T : X — X satisfy
(4.3.11) dist(Txz, Ty) <r dist(z,y),
for some r < 1. (We say T is a contraction.) Then T has a unique fixed point x.
For any yo € X, T*yg — = as k — oo.
Proof. Pick yo € X and let y, = T%yo. Then dist(yx, yrr1) < r* dist(yo, y1), so

dist(yr, Yrrm) < dist(ye, ye41) + -+ dist(Yrrm—1, Yrtm)
(4.3.12) < (P4 R dist(yo, y1)

< rk(l - r)fl dist(yo, y1)-

It follows that (yx) is a Cauchy sequence, so it converges; yr — . Since Tyx = Yg+1
and T is continuous, it follows that Tx = x, i.e., = is a fixed point. Uniqueness
of the fixed point is clear from the estimate dist(Tz,Tz’) < r dist(x,’), which
implies dist(z,2’) = 0 if x and 2’ are fixed points. This proves Theorem 4.3.3. O

Returning to the task of solving (4.3.6), having b as in (4.3.3), we claim that

||’UH < = TU : B2HUH(O> — XU

(4.3.13)
=T, : X, — X,,
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Figure 4.3.1. Ty, : X, — X,

where
X, ={u € Byp(0) : Ju—v| < Ay},
(4.3.14) Ay= s |R(w).
lwl<2]v|
See Figure 4.3.1. Note from (4.3.2)—(4.3.3) that
1
(4.3.15) lwll < 2b = [|R(w)]| < Sllwll, and [[R(w)l| = o(fJw])-
Hence
(4.3.16) ol < b= A, <|v|, and A, = o(||v]]).

In particular, when |jv]| < b,

[w =] <Ay = [[w — o] < vl
(4.3.17)
= [lwll < 2fjv|| < 26,
which in turn implies w € X,,. In addition,

[ull <2[jv]| = [[R(u)]| < Ay

4.3.18
(4.3.18) — | Tu(w) — o] < A,

giving the first implication in (4.3.13). Furthermore, via (4.3.17),

ue Xy = lull <2l
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SO

(4.3.19) X, C B2||UH(O)7
and we have the second implication in (4.3.13).

As for the contraction property, given u; € Xj, |[v|| < b,

1T (ur) = Ty (u2)l| = [ R(uz) — R(u)||

(4.3.20)
< §||U1 — uzl|,

the last inequality by (4.3.3), so the map (4.3.13) is a contraction. Hence, by
Theorem 4.3.3, there is a unique fixed point, u = K(v) € X,,. Also, since u € X,,

(4.3.21) 1K (v) = o < Ay = o([|v]]).

Thus we have (4.3.8). This establishes the existence of the inverse function G =
F~1:V — U, and we have the formula (4.3.10) for the derivative DG. Since G is
differentiable on V, it is certainly continuous, so (4.3.10) implies DG is continuous,
given F € CY(U).

To finish the proof of the Inverse Function Theorem and show that G is C* if
Fis CF, for k > 2, one uses an inductive argument. See Exercise 6 at the end of
this section for an approach to this last argument.

Thus if DF is invertible on the domain of F, F' is a local diffeomorphism.
Stronger hypotheses are needed to guarantee that F is a global diffeomorphism
onto its range. Proposition 4.3.2 provides one tool for doing this. Here is a slight
strengthening.

Corollary 4.3.4. Assume @ C R™ is open and convex, and that F' : Q — R™ is
Ct. Assume there exist n X n matrices A and B such that the symmetric part of
ADF(u) B is positive definite for each u € Q). Then F maps Q diffeomorphically
onto its image, an open set in R™.

Proof. Exercise. O

We make a comment about solving the equation F(z) = y, under the hypothe-
ses of Theorem 4.3.1, when y is close to qg. The fact that finding the fixed point
for T, in (4.3.13) is accomplished by taking the limit of T*(v) implies that, when
y is sufficiently close to qo, the sequence (zy), defined by

(4.3.22) To =po, Tkt1 =2k + DF(po) ' (y — F(xy)),

converges to the solution z. An analysis of the rate at which z; — z, and F(xg) —
y, can be made by applying F' to (4.3.22), yielding

F(xr11) = F(zx + DF(po) " (y — F(x))
= F(xx) + DF (z)DF(po) " (y — F(x1))
+ R(zk, DF (po) ' (y — F(x1))),
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2w F(’I’, '9)

Figure 4.3.2. Polar coordinates on R2

and hence
y — F(zr41) = (I = DF(2x)DF(po) ") (y — F(x))
+ E(xlm y— F(wk)),
with || R(ze, y — F(xx))| = o(lly — F(zx)l])-
It turns out that replacing DF (po)~* by DF(zx)~! in (4.3.22) yields a faster

approximation. This method, known as Newton’s method, is described in the
exercises.

(4.3.23)

We consider some examples of maps to which Theorem 4.3.1 applies. First, we
look at polar coordinates on R? (previewed in (3.1.48)):

0 x(r, 0)
4.3.24 F R—R2, Fro)=( " )=(""").
(13.24) (0.00) x R e I i
See Figure 4.3.2. We have

_ (Opx Ogx\ _ [(cos® —rsinf
(4.3.25) DF(r,0) = (ary 30y) - (sin9 7 cos 0 ) ’

S0
(4.3.26) det DF(r,0) = rcos® 6 4+ rsin® 0 = r.

Hence DF(r,0) is invertible for all (r,0) € (0,00) x R. Theorem 4.3.1 implies that
each (rg, 6p) € (0,00) x R has a neighborhood U and (xq,yo) = (¢ cos g, ¢ sin p)
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has a neighborhood V such that F' is a smooth diffeomorphism of U onto V. In
this simple situation, it can be verified directly that

(4.3.27) F:(0,00) x (=m,m) — R?\ {(x,0) : 2 <0}
is a smooth diffeomorphism.

Note that DF'(1,0) = I in (4.3.25). Let us check the domain of applicability of
Proposition 4.3.2. The symmetric part of DF(r,0) in (4.3.25) is

(4.3.28) S(r,0) = (;(1 ioi)gsme %(1;6;2;1“ 0) .
By Proposition 4.2.6, this is positive definite if and only if
(4.3.29) cos > 0,

and

(4.3.30) det S(r,0) = rcos® 6 — i(l —7)?%sin®6 > 0.

Now (4.3.29) holds for § € (—n/2,7/2), but not on all of (—m, ). Furthermore,
(4.3.30) holds for (r,0) in a neighborhood of (rg,6p) = (1,0), but it does not hold
on all of (0,00) x (—7/2,7/2). We see that Proposition 4.3.2 does not capture the
full force of the diffeomorphism property of (4.3.27).

We move on to another example. As in §4.1, we can extend Theorem 4.3.1,
replacing R™ by a finite dimensional real vector space, isometric to a Euclidean
space, such as M (n,R) ~ R™. Consider the matrix exponential

— 1
(4.3.31) Exp: M(n,R) — M(n,R), Exp(X)=e¥=>" EX’“.
k=0 "
Smoothness of Exp follows from Corollary 4.2.11. See §C.4 for more. Since
1
(4.3.32) Exp(Y)=1+Y + 5Y2 4+
we have
(4.3.33) DExp(0)Y =Y, VY € M(n,R),

so DExp(0) is invertible. Then Theorem 4.3.1 implies that there exist a neigh-
borhod U of 0 € M(n,R) and a neighborhood V of I € M(n,R) such that
Exp: U — V is a smooth diffeomorphism.

We move from the inverse function theorem to the implicit function theorem.

To motivate the result, we consider the following example. Take a > 0 and consider
the equation

(4.3.34) 22 +y?=d? F(x,y) =2? + 9>
Note that
(4.3.35) DF(z,y) = 2z 2y), D.F(z,y)=2z, D,F(z,y)=2y.

The equation (4.3.34) defines y “implicitly” as a smooth function of z if |z| < a.
Explicitly,

(4.3.36) |z] < o =y = vVa? —2?,
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dhY

Figure 4.3.3. Functions defined implicitly by z2 + y? = a?

or alternatively y = —v/a? — 2. Similarly, (4.3.34) defines z implicitly as a smooth
function of y if |y| < a; explicitly

(4.3.37) lyl < a = x = /a? — y?,

or alternatively x = —y/a? — y2. See Figure 4.3.3 for an illustration. Now, given
ro € R, a > 0, there exists yo € R such that F(xq,yo) = a? if and only if |x¢| < a.
Furthermore,

(4.3.38) given F(zo,y0) = a*, Dy,F(z0,y0) # 0 < |70| < a.

Similarly, given yo € R, there exists x¢ such that F(zg,y0) = a? if and only if
lyo| < a, and

(4.3.39) given F(xg,y0) = a®, D.F(xg,y0) # 0 < |2o| < a.
Note also that, whenever (z,y) € R? and F(x,y) = a® > 0,
(4.3.40) DF(z,y) # 0,

so either D, F(x,y) # 0 or DyF(z,y) # 0, and, as seen above whenever (zo,0) €
R? and F(xq,y0) = a®> > 0, we can solve F(z,y) = a? for either y as a smooth
function of x for z near z( or for  as a smooth function of y for y near yg.

We move from these observations to the next result, the Implicit Function
Theorem.
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Theorem 4.3.5. Suppose U is a neighborhood of o € R™, V a neighborhood of
yo € RY, and we have a C* map

(4.3.41) F:UxV —RY  F(xo,y0) = uo.
Assume Dy F(xo,y0) is invertible. Then the equation F(x,y) = ug defines y =
g(z,ug) for x near xo (satisfying g(xo,uo) = yo) with g a C* map.

Proof. Consider H : U x V — R™ x R’ defined by

(4.3.42) H(z,y) = (z, F(z,y)).

(Actually, regard (z,y) and (z, F(x,y)) as column vectors.) We have
1 0

(4.3.43) DH = (DzF DyF> .

Thus DH (z9,0) is invertible, so G = H~! exists, on a neighborhood of (zg,u0),
and is C*, by the Inverse Function Theorem. Let us set

(4.3.44) G(z,u) = ((z,u), g(x,u)).
Then
HoG(z,u) = H(¢(z,u), g(z,u))
a4 — (€. ). F(E(,u). g(z.)
Since H o G(x,u) = (x,u), we have {(z,u) = x, so
(4.3.46) G(z,u) = (z,g9(x,u))
and hence
(4.3.47) HoG(x,u) = (z, F(z,g(z,u)),
hence
(4.3.48) F(z,g(z,u)) = u.
Note that G(zg,u0) = (20, Y0), s0 g(xo, uo) = Yo, and g is the desired map. O

Here is an example where Theorem 4.3.5 applies. Set

2,2
(4.3.49) F:R* 5 R%  Fluv,z,y) = (x(“ v >>.
TU + Yyv
We have
4
(4.3.50) F(2,0,1,1) = (2)
Note that
(4.3.51) Dy F(u,v,z,y) = <2:1cu 23:11) ,
T Y
hence

(4.3.52) Dy F(2,0,1,1) = (‘11 (1))
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is invertible, so Theorem 4.3.5 (with (u,v) in place of y and (z,y) in place of x)
implies that the equation

(4.3.53) Flu,v,2,y) = (;1)

defines smooth functions
(4.3.54) u=u(z,y), v=uv(z,y),
for (x,y) near (zg,yo) = (1,1), satisfying (4.3.53), with (u(1,1),v(1,1)) = (2,0).

Let us next focus on the case £ = 1 of Theorem 4.3.5, so

(4.3.55) z=(r,y) €ER", R yeR, F(z)€R.
Then DyF = 0, F. If F(zo,y0) = uo, Theorem 4.3.5 says that if
(4.3.56) Oy F (z0,y0) # 0,

then one can solve

(4.3.57) F(z,y) =ug for y=g(x,ugp),

for x near zo (satisfying g(xo,ug) = %o), with g a C* function. This phenome-
non was illustrated in (4.3.34)—(4.3.38). To generalize the observations involving
(4.3.39)—(4.3.40), we note the following. Set (x,y) =z = (21,...,21), 20 = (o, Yo)-
The condition (4.3.56) is that 9, F(zo) # 0. Now a simple permutation of variables
allows us to pick j € {1,...,n} and modify our assumption to

(4.3.58) 0., F(20) #0, F(20) = uo,

and deduce that one can solve

(4.3.59) F(z) =ug, for zj =g(z1,...,2j-1,2%j41s- -1 2n)-
Let us record this result, changing notation and replacing z by x.

Proposition 4.3.6. Let Q be a neighborhood of xo € R™. Asume we have a C*
function

(4.3.60) F:Q—R, F(zg)=uo,

and assume

(4.3.61) DF(xg) #0, id.e, (O1F(xg),...,0nF(x0)) #0.
Then there exists j € {1,...,n} such that one can solve F(x) = ug for
(4.3.62) zj=g(T1,. ., Tj=1,Tj41,-- > Tn),

with (210, .-+, Tj0, -+, Tno) = o, for a CF function g.

REMARK. For F: Q — R, it is common to denote DF(x) by VF(z),
(4.3.63) VF(z) = (01F(x),...,0,F(x)).

Here is an example to which Proposition 4.3.6 applies. Using the notation
('Jf,y) = (‘Tlax2)a set
(4.3.64) F:R*> —R, F(z,y)=2"4+y> -
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Then
(4.3.65) VF(z,y) = (2z — 1,2y),

which vanishes if and only if x = 1/2, y = 0. Hence Proposition 4.3.6 applies if
and only if (x,y0) # (1/2,0).
Let us give an example involving a real valued function on M (n,R), namely

(4.3.66) det : M(n,R) — R.

As indicated in Exercise 15 of §4.1, if det X # 0,

(4.3.67) Ddet(X)Y = (det X) Tr(X 1Y),
SO

(4.3.68) det X # 0 = Ddet(X) # 0.
We deduce that, if

(4.3.69) Xo € M(n,R), detXp=a#0,
then, writing

(4.3.70) X = (jk)1<)k<n,

we can say that there exist u,v € {1,...,n} such that the equation
(4.3.71) det X =a

has a smooth solution of the form

(4.3.72) Ty = 9(9Ca5 (o, B) # (1, V))7

such that, if the argument of g consists of the matrix entries of Xy other than the
i, v entry, then the left side of (4.3.72) is the p, v entry of Xj.

Let us redo the determinant calculation, in case n = 2, taking

(4.3.73) X = (sz 3}) , det X = ®(z,y,z,w) = 2w — yz.
We have
(4.3.74) Vo(z,y,z,w) = (w, —z,—y, ),

which is nonvanishing whenever X # 0. This is more precise than (4.3.68), which
indeed we can improve in general. If we use Exercise 14 of §4.1 instead of Exercise
15, we get

(4.3.75) Ddet(X)Y = Tr(Cof(X)'Y),
so in general we can strengthen (4.3.68) to
(4.3.76) X € M(n,R), Cof(X) # 0= Ddet(X) #0.

We return to the setting of Theorem 4.3.5, with £ not necessarily equal to 1.
In notation parallel to that of (4.3.58), we assume F is a C* map,

(4.3.77) F:Q—RY F(z)=uo,
where (Q is a neighborhood of zp in R™. We assume

(4.3.78) DF(z) : R" — R’ is surjective.
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Then, upon reordering the variables z = (21, ..., 2, ), we can write z = (z,y), © =
(1, yZn—r), ¥y = (¥1,--.,Ys), such that D, F(z) is invertible, and Theorem 4.3.5
applies. Thus (for this reordering of variables), we have a C* solution to

(4379) F(ic,y) =Uup, Y= g(CE,Uo),

satisfying yo = g(z0,u0), 20 = (0, ¥0)-
To give one example to which this result applies, we take another look at
F:R* — R? in (4.3.49). We have

2 2
(4.3.80) DF(u,v,x,y)=<2x“ 2wt tv O).

x Y U v
The reader is invited to determine for which (u,v,x,y) € R* the matrix on the
right side of (4.3.80) has rank 2. See Exercise 14 below.

Here is another example, involving a map defined on M (n,R). Set

det X)

(4.3.81) F:M(n,R) —R? F(X)= (TrX

Parallel to (4.3.67), if det X #0, Y € M(n,R),

~((det X) Tr(X 1Y)
(4.3.82) DF(X)Y = ( Ty .
Hence, given det X # 0, DF(X) : M(n,R) — R? is surjective if and only if
Tr(X~'Y)
. 2 _
(4.3.83) L:MnR)—-R* LY ( Y )

is surjective. This is seen to be the case if and only if X is not a scalar multiple of
the identity I € M(n,R). See Exercise 15 below.

.|
Exercises

1. Suppose F : U — R" is a C? map, p € U, open in R", and DF(p) is invertible.
With ¢ = F(p), define a map N on a neighborhood of p by
(4.3.84) N(z) =z + DF(z)"'(q¢ — F(z)).
Show that there exists ¢ > 0 and C < oo such that, for 0 < r < ¢,
o —pll < 7 = [IN@) —pl < C 12

Conclude that, if ||z1 — p|| < r with r < min(e, 1/2C), then ;11 = N(z;) defines
a sequence converging very rapidly to p. This is the basis of Newton’s method, for
solving F'(p) = q for p.

Hint. Apply F' to both sides of (2.73).

2. Applying Newton’s method to f(z) = 1/x, show that you get a fast approxima-
tion to division using only addition and multiplication.
Hint. Carry out the calculation of N(z) in this case and notice a “miracle.”
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3. Identify R? with C via z = x + iy, as in Exercise 9 of §4.1. Let U C R? be open,
F :U — R? be C*. Assume p € U, DF(p) invertible. If F~! : V — U is given as
in Theorem 4.3.1, show that F~! is holomorphic provided F is.

4. Let O C R be open. We say a function f € C°°(0O) is real analytic provided
that, for each z¢ € O, we have a convergent power series expansion

(4.3.85) Fl#) = 32 o F ) (o) — o),

a>0

valid in a neighborhood of zy. Show that we can let  be complex in (4.3.85), and
obtain an extension of f to a neighborhood of @ in C. Show that the extended
function is holomorphic, i.e., satisfies the Cauchy-Riemann equations.

Hint. Use Proposition 4.2.9.

Remark. It can be shown that, conversely, any holomorphic function has a power
series expansion. See [17]. For the next exercise, assume this as known.

5. Let O C R be open, p € O, f: O — R be real analytic, with D f(p) invertible.
Take f~': V — U as in Theorem 4.3.1. Show f~! is real analytic.
Hint. Consider a holomorphic extension F': 2 — C of f and apply Exercise 3.

6. Use (4.3.10) to show that if a C! diffeomorphism has a C'! inverse G, and if
actually F' is C*, then also G is C*.
Hint. Use induction on k. Write (4.3.10) as

G(z) = Do F o Gl(a),
with ®(X) = X!, as in Exercises 3 and 10 of §4.1, G(x) = DG(z), F(x) = DF(x).
Apply Exercise 9 of §4.1 to show that, in general

G,F,®ecC = GeC"

Deduce that if one is given F' € C* and one knows that G € C*~1, then this result
applies to give G = DG € C*~1, hence G € C*.

7. Show that there is a neighborhood O of (1,0) € R? and there are functions
u,v,w € CHO) (u=u(z,y), etc.) satisfying the equations
u® + 02 — zwd =0,
u? +yw?4v=1,
ru + yow = 1,
for (z,y) € O, and satisfying
w(1,00=1, v(1,0)=0, w(1,0)=1.
Hint. Define F : R — R3 by
ud + 03 — zw?
F(u,v,w,z,y) = | v +yw?+v |,
Tu + yvw
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Then F(1,0,1,1,0) = (0,1,1)". Evaluate the 3 x 3 matrix Dy, .,F(1,0,1,1,0).
Compare (4.3.49)—(4.3.54).

8. Consider F : M(n,R) — M(n,R), given by F(X) = X2. Show that F is a
diffeomorphism of a neighborhood of the identity matrix I onto a neighborhood of
I. Show that F' is not a diffeomorphism of a neighborhood of

)

onto a neighborhood of I (in case n = 2).
9. Prove Corollary 4.3.4.

10. Let f:R? — R3 be a C! map. Assume f(0) = (0,0,0) and
9f gy x 2F
Or dy
Show that there exist neighborhoods O and € of 0 € R? and a C! map u: Q — R

such that the image of O under f in R3 is the graph of u over €.
Hint. Let I1: R3 — R? be II(z,y, z) = (,y), and consider

o(x,y) =1(f(z,y)), ¢:R* =R

Show that Dp(0) : R? — R? is invertible, and apply the inverse function theorem.

Then let u be the z-component of f o p~!.

(0) x ==(0) = (0,0,1).

11. Generalize Exercise 10 to the setting where f : R™ — R™ (m < n) is C! and
Df(0): R™ — R" is injective.

REMARK. For related results, see the opening paragraphs of §6.1.

12. Let Q C R” be open and contain py. Assume F : Q — R” is continuous and
F(po) = qo. Assume F is C! on Q and DF(x) is invertible for all x € Q. Finally,
assume there exists R > 0 such that

(4.3.86) x € 00 = ||F(z) — gl > R.
See Figure 4.3.4. Show that

Hint. Given yo € Br/2(qo), use compactness to show that there exists xq € Q such
that

[1F(x0) = yoll = inf [|F(x) = yoll
e
Use the hypothesis (4.3.86) to show that zq € Q. If F(zq) # yo, use
F(xg +1tz) = F(xo) + tDF(x0)z + o(||tz]),

to produce z € R™ (say DF(xg)z = yo — F(x0)) such that F(zq + tz) is closer to
yo than F(xq) is, for small ¢ > 0. Contradiction.
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Figure 4.3.4. F(2) contains Br(qo)

13. Do Exercise 12 with the conclusion (4.3.87) strengthened to

F(OQ)

Hint. Tt suffices to show that F(2) D Bgs(qo) for each S < R. Given such S,
produce a diffeomorphism ¢ : R” — R" such that Exercise 12 applies to ¢ o F', and

yields the desired conclusion.

14. In the setting of Exercise 12, take
Q= B’I" (pO)a
and assume there exists a > 0 such that

v-DF(x)v > aljv|?, Vze€Q, veR™

As before, F is assumed continuous on Q, C' on €, and F(py) = qo.

proof of Proposition 4.3.2 to show that, for z,y € Q,
(z—y)- [F(z) = F(y)] > allz —y|1?,
hence
[F(z) = F(y)ll = allz —yl|.
Deduce that
x € 00 = |F(z) — qo|| > ar,

Adapt the
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and conclude that F maps €2 one-one and onto a set
F(Q) D Bar(qo)-

15. Show that the 2 x 4 matrix D in (4.3.80) has rank 2 whenever v # 0. In case
v = 0, the matrix becomes
D— (qu 0 u? 0>.
z y u O
Determine when this has rank 2.

16. Let u,v € R™, and define
L:R" R, Ly= (”y)
vy
Show that L is surjective if and only if v and v are linearly independent. Relate
this to the analysis of (4.3.83).
Hint. Use M(n,R) =~ R™ | with inner product (S,T) = Tr S'T. Write L in (4.3.83)

B LY = (253) U=(X"H v=I
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Chapter 5

Multivariable integral calculus

This central chapter develops integral calculus on domains in R"™, taking up the
multidimensional Riemann integral. The basic definition is quite parallel to the
one-dimensional case, but a number of fundamental results, while parallel in state-
ment to the one-dimensional case, require more elaborate demonstrations in higher
dimensions. This chapter is one of the most demanding in this text, and it is in a
sense the heart of the course.

We start in §5.1 with the integral of a function defined on a cell in R", i.e., a
product of n intervals. This is done via partitions of a cell R, and a passage to the
limit as the partitions become finer. When the limit of upper and lower sums of
a bounded function f: R — R exist and coincide, we say f is Riemann integrable
on R, and take the limit to be its integral. Continuous functions on R are seen to
be integrable. If Q2 C R™ is a more general bounded set, and f: Q2 — R, we take a
cell R such that Q C R and extend f by 0 on R\ 2. Such a construction makes it
crucial to examine the integrability of discontinuous functions on R. We show that
if f: R — R is bounded and the set of points of discontinuity of f is negligible in
some sense, then f is Riemann integrable. One simple result along these lines is
given in §5.1, and a sharper result along these lines is given later in the chapter.

One central result of §5.1 is the reduction of multiple integrals to iterated
integrals. This reduction is essential for computations, and we illustrate it with
a variety of examples. Another central result is the change of variable formula
for multidimensional integrals. Important special cases include transforming 2D
integrals to polar coordinates, and 3D integrals to spherical polar coordinates. We
illustrate the use of these two results with computations of volumes of balls in R",
particularly for n = 2 and 3, but also for higher n. We will find in the next chapter
that the change of variable formula for the integral is a very important ingredient
for developing the integral on surfaces.

In §5.2, we apply methods developed in §5.1 to study mean values of functions
defined on a contented domain O C R", with emphasis on results on the center of
mass of O.

167
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Extending the scope of §5.1, we treat unbounded integrable functions in §5.3.
A key result established here is a monotone convergence theorem.

In §5.4 we introduce the concept of outer measure and sharpen the integrability
condition of §5.1, showing that a sufficient condition that a bounded function be
Riemann integrable is that its set of points of discontinuity have outer measure
Zero.
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Figure 5.1.1. Partition of a cell, P

5.1. The Riemann integral in n variables

We define the Riemann integral of a bounded function f : R — R, where R C R"
is a cell, i.e., a product of intervals R = I; X --- x I, where I,, = [a,,b,] are
intervals in R. Recall that a partition of an interval I = [a,b] is a finite collection
of subintervals {J; : 0 < k < N}, disjoint except for their endpoints, whose union
is I. We can take Jy = [zg, xr11], where

(5.1.1) a:x0<:v1<-~-<xN<:vN+1:b.

Now, if one has a partition of each I, into J,1 U---UJ, n(,), then a partition P of
R consists of the cells

(5.1.2) Ry = Jiay X Joq, X -+ X Jna,, s
where 0 < o, < N(v). See Figure 5.1.1. For such a partition, define

(5.1.3) masxsize (P) = max diam R,

where (diam R,)? = €(J14,)? + -+ + (Jpa, )?. Here, £(J) denotes the length of an
interval J. Each cell has n-dimensional volume

(5.1.4) V(Ra) = e(Jlocl) o 'E(Jnan)'
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Figure 5.1.2. Second partition, P2, and common refinement, Q > P;

Sometimes we use V,(R,,) for emphasis on the dimension. We also use A(R) for
V2(R), and, of course, £(R) for V1 (R).

We set

Ip(f) = Zs;p f(@)V(Ra),
(5.1.5) o« "
Ip(f) = Y _inf f(2) V(Ra).

[e3%

Note that I(f) < Ip(f). These quantities should approximate the Riemann inte-
gral of f, if the partition P is sufficiently “fine.”

To be more precise, if P and Q are two partitions of R, we say Q refines P,
and write Q > P, if each partition of each interval factor I,, of R involved in the
definition of P is further refined in order to produce the partitions of the factors
I, used to define Q, via (5.1.2). It is an exercise to show that any two partitions
of R have a common refinement. See Figure 5.1.2. Note also that

(5.1.6) Q=P =1o(f) <Ip(f), and I5(f) > Ip(f).

Consequently, if P; are any two partitions of R and Q is a common refinement, we
have

(5.1.7) LIp, (f) < Io(f) < To(f) < Ipy(f).
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Now, whenever f : R — R is bounded, the following quantities are well defined:

(5.1.8) I(f) = pauf Ip(f), I(f)= S Ip(f),

where TI(R) is the set of all partitions of R, as defined above. Clearly, by (5.1.7),
I(f) < I(f). We then say that f is Riemann integrable (on R) provided I(f) = L(f),
and in such a case, we set

(5.1.9) / f(x) dV(x) = T(f) = I(}).
R

We will denote the set of Riemann integrable functions on R by R(R). If dim R = 2,
we will often use dA(x) instead of dV (x) in (5.1.9). For general n, we might also
use simply dzx.

We derive some basic properties of the Riemann integral. First, the proof of
the Darboux theorem in §1.2 readily extends, to give:

Proposition 5.1.1. Let P, be any sequence of partitions of R such that

(5.1.10) maxsize (P,) = §, — 0.
Then, if f: R — R is bounded,
(5.1.11) Ip,(f) = I(f), and Ip (f) = I(f).

Consequently, if €,o is any choice of one point in each cell R, in the partition P,
then, whenever f € R(R),

(5.112) [ @) avi@) = fim 3 £(6un) V(Ro).
R «@

This is the multidimensional Darboux theorem. The sums that arise in (5.1.12)
are Riemann sums.

Also, we can extend the proof of additivity of the integral in §1.1, to obtain:
Proposition 5.1.2. If f; € R(R) and c; € R, then ¢ fi + caf2 € R(R), and
(5113) /(01f1 +02f2) dV = 01/f1 dV+Cg/f2 dVv.

R R R

Next, we establish an integrability result analogous to Proposition 1.2.2.
Proposition 5.1.3. If f is continuous on R, then f € R(R).

Proof. As in the proof of Proposition 1.2.2, we have that,
(5.1.14) maxsize (P) < 6 = Ip(f) — Ip(f) <w(8) - V(R),

where w(d) is a modulus of continuity for f on R. This proves the proposition. [

Content, volume, and integrability

When the number of variables exceeds one, it becomes crucial to identify some
nice classes of discontinuous functions on R that are Riemann integrable. A useful
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tool for this is the following notion of size of a set S C R, called content. Extending
the notion from §1.2, we define “upper content” cont™ and “lower content” cont™
by

(5.1.15) cont™(S) = I(xs), cont™(S) = I(xs),

where Y g is the characteristic function of S. We say .S has content, or “is contented,”

if these quantities are equal, which happens if and only if xs € R(R), in which case
the common value of cont™(S) and cont™(S) is

(5.1.16) V(S) = /XS(x) dv(s),
R

which we call the volume of S. For S C R", we might denote this by V,(5), to
emphasize the dimension. When n = 2, we might denote this quantity by A(S),
and call is the area of S. We mention that, if S = I; x --- x [, is a cell, it is readily
verified that the definitions in (5.1.5), (5.1.8), and (5.1.15) yield

cont™(S) = cont ™ (S) = £(I1) - - £(1,,),
so the definition of V(S) given by (5.1.16) is consistent with that given in (5.1.4).

An equivalent characterization of upper content is
N
(5.1.17) cont ™ (S) :inf{z V(Rg) : SCR1U~~URN},
k=1

where Ry are cells contained in R. In a literal translation of (5.1.15) the R, in
(5.1.17) should be part of a partition P of R, as defined above, but if {R1,..., Ry}
are any cells in R, they can be chopped up into smaller cells, some perhaps thrown
away, to yield a finite cover of S by cells in a partition of R, so one gets the same
result.

It is an exercise to see that, for any set S C R,
(5.1.18) cont™(S) = cont™(S),
where S is the closure of S.
We note that, generally, for a bounded function f on R,
(5.1.19) I(f)+I(1—f)=V(R).
This follows directly from (5.1.5). In particular, given S C R,
(5.1.20) cont™ (S) + cont™(R\ S) = V(R).
Using this together with (5.1.18), with S and R\ S switched, we have

o

(5.1.21) cont™ (S) = cont™ (),

where g’ denotes the interior of S. The difference S\ g‘ is called the boundary of S,
and denoted bS.

Note that if S C R, and P is a partition of R, we can classify each cell in P as
[e]

either contained in S, intersecting bS, or disjoint from S. It follows that

(5.1.22) Ip(xs) = Ip(xs) +Ip(xbs)-



5.1. The Riemann integral in n variables 173

Taking partitions P = P, with maxsize — 0 and applying the Darboux theorem,
we obtain in the limit that

(o]

(5.1.23) cont™(S) = cont™(S) + cont™t(bS).
Taking into account (5.1.18) and (5.1.21), we have:
Proposition 5.1.4. If S C R, then S is contented if and only if cont™ (bS) = 0.

If a set 3 C R has the property that cont™(X) = 0, we say that ¥ has content
zero, or is a nil set. Clearly X is nil if and only if X is nil. It follows easily from
Proposition 5.1.2 that, if 3; are nil, 1 < j < K, then UjK:1 >; is nil.

If 51,80 C Rand S = S;US5, then S = S;US5 and S O S; U S,. Hence
bS C b(S1) Ub(Ss). It follows then from Proposition 5.1.4 that, if Sy and Sy are
contented, so is 51 U Sy. Clearly, if S; are contented, so are S7 = R\ S;. It follows

that, if Sy and S» are contented, so is S; NSy = (SfU SS)C. A family F of subsets
of R is called an algebra of subsets of R provided the following conditions hold:

ReF,
SjE.F:>51USQGJ:, and
SeF=R\SeF

Algebras of sets are automatically closed under finite intersections also. We see
that:

Proposition 5.1.5. The family of contented subsets of R is an algebra of sets.

The following result specifies a useful class of Riemann integrable functions.
For a sharper result, see Proposition 5.4.1.

Proposition 5.1.6. If f : R — R is bounded and the set S of points of discontinuity
of f is a nil set, then f € R(R).

Proof. Suppose |f| < M on R, and take € > 0. Take a partition P of R, and write
P = P'UP”, where cells in P’ do not meet S, and cells in P” do intersect S. Since

cont™(S) = 0, we can pick P so that the cells in P have total volume < . Now f
is continuous on each cell in P’. Further refining the partition if necessary, we can
assume that f varies by < € on each cell in P’. Thus

(5.1.24) Tp(f) - Lp(f) < [V(R) +2M]-.

This proves the proposition. ([
To give an example, suppose K C R is a closed set such that bK is nil. Let

f+ K — R be continuous. Define f: R — R by

f(:t) = f(z) for z €K,

(5.1.25)
0 for z € R\ K.

Then the set of points of discontinuity of fis contained in bK. Hence f € R(R).
We set

(5.1.26) /f dv = /fdv.

K R
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In connection with this, we note the following fact, whose proof is an exercise.
Suppose R and R are cells, with R C R. Suppose that ¢ € R(R) and that g is
defined on R, to be equal to g on R and to be 0 on R\ R. Then

(5.1.27) j e R(R), and./ng:i/ng

R R
This can be shown by an argument involving refining any given pair of partitions
of R and R, respectively, to a pair of partitions Pr and Pz with the property that
each cell in Pg is a cell in Pg.

The following describes an important class of sets S C R™ that have content
Z€ero.

Proposition 5.1.7. Let ¥ C R™ ! be a closed bounded set and let g : ¥ — R be
continuous. Then the graph of g,

& ={(z,9(x)) 1z € T}

is a nil subset of R™.

Proof. Put ¥ in a cell Ry C R""!. Suppose |g| < M on ¥. Take N € ZT and set
e = M/N. Pick a partition Py of Ry, sufficiently fine that g varies by at most ¢
on each set ¥ N R,, for any cell R, € Py. Partition the interval I = [—M, M] into
2N equal intervals J,, of length €. Then {R, x J,} = {Qq.} forms a partition of
Ry x I. Now, over each cell R, € Py, there lie at most 2 cells ()., which intersect
&, so cont™(B) < 2¢ - V(Ry). Letting N — oo, we have the proposition. O

Similarly, for any j € {1,...,n}, the graph of z; as a continuous function of
the complementary variables is a nil set in R™. So are finite unions of such graphs.
Such sets arise as boundaries of many ordinary-looking regions in R™.

Here is a further class of nil sets.

Proposition 5.1.8. Let O C R™ be open and let S C O be a compact nil subset.
Assume f: O — R"™ is a Lipschitz map. Then f(S) is a nil subset of R™.

Proof. The Lipschitz hypothesis on f is that there exists L < oo such that, for
pqe0,

[f(p) = (@)l < Llp —ql.
If we cover S with k cells (in a partition), of total volume < «, each cubical with

edgesize 4, then f(S) is covered by k sets of diameter < L./nd, hence it can be
covered by k cubical cells of edgesize L\/nd, having total volume < (Ly/n)"a. From
this we have the (not very sharp) general bound

(5.1.28) cont® (f(S)) < (Lv/n)" cont®(S),

which proves the proposition. ([l
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Iterated integrals

In evaluating n-dimensional integrals, it is usually convenient to reduce them
to iterated integrals. Such results go under the label of Fubini Theorems. Here is
one simple example of such a result.

Proposition 5.1.9. Let X CR*, Y C R, R=X xY C R" be cells, k+ ¢ =n.
Let f: X xY — R be continuous. Form

(5.1.29) o) = [ 1o dVity).
Y
Then ¢ € C(X), and
(5.1.30) Fav, = | wdv.
Jrm=]

Proof. We know f is uniformly continuous on R. Let w(d) be a modulus of conti-
nuity. If z; € X, we have

[o(en) = plad)] < [ If@r.9) ~ Flaz )] dVelw)
(5.1.31) v
< w(lzy — 22)Ve(Y),
so ( is continuous on X.

To proceed, take € > 0 and pick § > 0 such that w(d) < . Take partitions
X ={X,}of X, Y ={Ys}of Y, and P = {Rup = Xo x Y3} of R= X XY into
cells, such that

(5.1.32) maxsize(P) < 4.
The same upper bound holds for maxsize(X’) and maxsize()).

Let &, € Xo, ng € Y3, and (o3 = (£a,M8) € Rap denote the centers of these
cells. We have

(5.1.33) ’/den =3 (€0 13) Vi(Rap)| < V(R
R o,f
Also, for each «,
(5.1.34) [P(60) = 3 £(€ama) Vil¥)| < VelY)e.
B

Furthermore, by (5.1.31),

(5.1.35) ‘/sode = pléa) Vi(Xa)
X «

S Vi(X)Ve(Y)e.

From (5.1.34)—-(5.1.37), we have

(5.1.36) ‘/apde = F(Easp) V(Xa)V(Yg)’ < 2V, (R)e.
X o,p
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Comparison with (5.1.33) gives
(5.1.37) ‘/den - /(pde’ < 3V(R)e.
R X

Taking ¢ — 0 gives the asserted identity (5.1.30). O
For applications, it is crucial to obtain results parallel to (5.1.30) in cases where
f is not continuous on X x Y. Here is a useful result of this nature.

Theorem 5.1.10. Let ¥ C R*! be a closed, bounded contented set and let gj :
¥ — R be continuous, with go(z) < g1(z) on X. Take

(5.1.38) Q={(z,y) ER":2 €%, goz) <y < qi(a)}.

Then Q is a contented set in R™. If f : Q2 — R is continuous, then

g1(x)
(5.1.39) o(x) =/ fz,y)dy
go(x)
is continuous on X, and
(5.1.40) /den = /cpanfl,
Q )
i.e.,

(5.1.41) / Fdv, = / ( /g g(l(?) Fzy) dy> AV 1 (z).
Q s oLt

Proof. The continuity of ¢ in (5.1.39) is straightforward.

Put Y inacell RC R"1 If A< gy <g1 <B,set I=][AB]. Then Q is
contained in the cell @ = R x I C R". We will work with a partition P = {R,} of
R, with properties to be specified shortly.

Let us note that
(5.1.42) contt(b2) =0 and cont™(bX) = 0.

Since the sets of discontinuities of f (extended by 0 on @\ Q) and of ¢ (extended by
0 on R\ X) lie in these boundaries, it follows that f and ¢ are Riemann integrable,
so both sides of (5.1.40) are well defined. We will prove (5.1.40) by chopping Q
into pieces. We will apply Proposition 5.1.9 to the bulk of these pieces, and show
that the contribution of the remaining pieces is vanishingly small.

Let w(d) be a modulus of continuity for go and g;. Pick € > 0. Then pick
01 > 0 and the partition P so that

(5.1.43) w(d1) <e, and maxsize(P) < d;.

If necessary, shrink §; to be sufficiently small that all the cells in P that intersect
b have

(5.1.44) total (n — 1)-dimensional volume < e.
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Denote by P’ the collection of cells in P that lie in the interior ¥ of 3. We have

(5.1.45) /de -y / ),

Ra€P'R 1

where

(5.1.46) M= max lf]-

We also have

(5.1.47) ‘/godvn —_ /cpan | < M(B - )
R.€P'S

since |p| < M (B — A).
Now, for each R, € P’, take
(5.1.48) A, = max go, B, = I%in 91, Io =[Aa, Bal-

Assume ¢ is so small that each A, < B,. Then, for each R, € P/,

(5.1.49) fdv, — n—1(Ra),
/ Rox1Iy
and
Ba
(5.1.50) T € Ry = ‘gp(m) —/ f(z,y) dy‘ < 2Me.
A

Now Proposition 5.1.9 yields

(5.1.51) / Fav, _/ / f(.y) dy) Va1 (),
R.

Ro X1y
so, by (5.1.50),

(5.1.52) / fav, — /ngVn 1‘ < 2MeVy—1(Ra),
Rox1Iqy Rq

and hence, taking into account (5.1.49),

(5.1.53) ’ 3 ( / Fdv, — /tpan 1)‘ < 4MeV(R).
Ra€P" poxrI R

Therefore, also bringing in (5.1.44), we have

(5.1.54) ’/den —/@an,l‘ < Ke.
Q b
Taking € — 0 yields the asserted identity (5.1.39). (I

REMARK. A little more work allows one to replace the hypothesis go(z) < ¢1(z) in
Theorem 5.1.10 by go(z) < g1(z). We leave this as a task for the reader.
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To present some applications of Theorem 5.1.10, we take the unit disk in R?,
(5.1.55) D= {(x,y) eR*:x € [-1,1], Jy| < V1—22}.
In this case we see from Theorem 5.1.10 that, if f € C(D),
1 V1—z2
(5.1.56) /fdA - / (/ F(a,y) dy) de.
J Ny

In particular, the area of D is given by

(5.1.57) A(D) = /1 2v/1 — 22 da.

The change of variable x = sint gives

/2
(5.1.58) A(D) = 2/ cos® t dt.
—7/2
Using the identity cos 2t = 2cos?t — 1, we obtain
/2
(5.1.59) A(D) = / (14 cos2t)dt =,
—7/2

as the formula for the area of the unit disk D C R2. See Exercise 23 for another
approach.

Extending the last computation, we highlight the general application of Theo-
rem 5.1.10 to the computation of areas and volumes.

Corollary 5.1.11. Take ¥ C R" !, gi X = R, and Q& C R" as in Theorem
5.1.10. Then

(5.1.60) V@) = [ (@) - go(a)
)

Specializing to n = 2 (as we did in (5.1.55)—(5.1.59)), we have for the area
under the curve y = g(z), for continuous g : [a,b] — (0, c0), the formula

(5.1.61) A= /bg(x) dz,

which is familiar from first-year calculus (though, in such a course, one might have
seen a less precise definition of area).

Let us move on to higher dimensional volume, such as the volume of the n-
dimensional ball:

(5.1.62) B"={zeR":|z| <1}
We can apply (5.1.60) to write

(5.1.63) V(B") =2 / V1—[zPdz.
B’nfl

For example,

(5.1.64) V(B®%) = 2/ 1 — |z|2dx,
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where D = B? is the unit disk. In turn, an application of Theorem 5.1.10 gives

1 Vi—z?
(5.1.65) / 1—|z|2de = / V1—22—y?dydx.
—1
D

—V1—z?

Taking a? = 1 — 22, we write the inner integral as

a 1
/ \/aQ—yzdy:aQ/ V1—s2ds
—a -1

™
= —a27

2
using y = as and the computation of (5.1.57). Hence

1
(5.1.67) [ViTiRa=5 [ a-aa=2x
D

-1

(5.1.66)

and we get

(5.1.68) V(B?) = %ﬂ.

Another attack on the integral (5.1.64), using polar coordinates, will be discussed
below.

Another approach to computing V(B™) will arise from the following general-
ization of Theorem 5.1.10.

Proposition 5.1.12. Letn = k+/, and let ¥ C R¥ be a closed, bounded, contented
set. Let gj : ¥ — [0,00) be continuous, and satisfy go(x) < g1(z). Take

(5.1.69) Q={(z,y) eR":z €3, y eR’, go(w) <[yl < g1(a)}-
Then Q is a contented set in R™. If f : Q — R is continuous, then
(5.0.70) o= [ s

go(2)<|y|<g1(z)

is continuous on %, and

(5.1.71) Q/de :/gade.

P

The reader can extend the proof of Theorem 5.1.10 to cover this result.

Before applying Proposition 5.1.11 to V' (B™), we look at a class of 3D domains
to which it applies, namely solids of rotation. Take a continuous function g : [a, b] —
(0,00), and consider

(5.1.72) Q={(z,y,2):a <z <b Vy?>+22<g(zx)}
See Figure 5.1.3. This has the form (5.1.69), with ¥ = [a,b], g0 =0, ¢1(z) = g(x).
If f:Q — R is continuous, then (5.1.70) leads to

(5.1.73) o(z) = / F,y) dy.

ly|<g(z)
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Figure 5.1.3. Area under a curve and solid of revolution

In particular, if f = f(x), then p(z) = f(2)A(Dgy(s)), with
D,={ye R?: |y| < p}, A(D,) = 72,

by (5.1.59), so, for Q as in (5.1.72),
b
(5.1.74) /f(x) dxdydz = 7r/ f(2)g(x)? dz,
Q “
and taking f = 1 gives
b
(5.1.75) V(Q) :w/ g(x)? da.

The ball B? is the solid of revolution one gets with g(z) = V1 — 22, [a,b] =
[—1,1], so (5.1.75) yields an alternative derivation of (5.1.68):

(5.1.76) V(B?) = w/l (1—2?)de = %W.
-1
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Taking up the case B™, we apply Proposition 5.1.12, with ¥ = [-1,1], go =
0, g1(z) = V1 — 22, to obtain, for f € C(B"),

(5.1.77) /de /11( / f(x,y)dy) da.

B ly|<v1-22
In particular,
1
(5.1.78) V(B") = /_1 V(BIL) d,
where
(5.1.79) Bl ={yeR" |y <r}
Scaling gives
(5.1.80) V(B =v(B
so we have the inductive result
1

(5.1.81) V(B™) = B,V(B"™ 1), fB.= / (1 —22)"=D/2 g,

—1

Applying this to n = 3, and using V(B?) = A(D) = m, leads back to (5.1.76). To
go one step further, we have

(5.1.82) V(B*) = B,V (B?),
with

1
pi= [ (-ah s

-1
/2

= 2/ cos* t dt.
0

One can attack this trigonometric integral by taking

2cos’t =1+ cos2t,

(5.1.83)

and squaring it. See Exercise 24 for an alternative approach.

In §6.1 we will give another approach to the calculation of V(B™), tied in with
calculating the area of the sphere S"~!. This will produce a unified formula, for all
n, which involves the Gamma function.

Theorem 5.1.10 and Proposition 5.1.12 are designed to apply to the reduction
of multiple integrals to iterated integrals on some fairly basic domains that one
encounters. One can imagine other types of domains that are not covered by these
two results. Rather than seek further results that apply to continuous integrands
on more elaborate domains €2, we will establish a rather general result in Theo-
rem 5.1.15, after some further useful characterizations of the Riemann integral in
Proposition 5.1.13 and Corollary 5.1.14.
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Other characterizations of I(f) and I(f)

At this point, it is useful to bring in some additional characterizations of I(f)
and I(f). To do this, we introduce two classes of discontinuous functions on a cell
R, which we denote €(R) and PK(R). These are defined as follows.

Given a cell R and f : R — R, bounded, we say
(5.1.84) f € €(R) <= the set of discontinuities of f is nil.
Proposition 5.1.6 implies
(5.1.85) C(R) C R(R).

From the closure of the class of nil sets under finite unions it is clear that €(R) is
closed under sums and products, i.e., that €(R) is an algebra of functions on R.
We will denote by €.(R"™) the set of bounded functions f : R™ — R such that f has
compact support and its set of discontinuities is nil. Any f € €.(R™) is supported

in some cell R, and f’R € ¢(R).
Next, given a cell R C R™ and f: R — R bounded, we say
f € PK(R) <= 3 a partition P of R such that f is constant
(5.1.86) on the interior of each cell R, € P.

The following will prove to be very useful in a number of applications.

Proposition 5.1.13. Given a cell R C R™ and f: R — R bounded,

() :inf{/ng:gePK(R),ng}

(5.1.87) = inf{7gdv L€ C(R), 9> [}
- inf{R/ng g€ C(R), g > f}.
R
Similarly,
1(f) =sup{/ng:g € PK(R), g < [}
(5.1.88) —sup{ [gav:geer) g < f}

Proof. Denote the three quantities on the right side of (5.1.87) by I, (f)jglf),
and I3(f), respectively. The definition of I;(f) is sufficiently close to that of I(f)
in (5.1.8) that the identity
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is apparent. Now I(f) is an inf over a larger class of functions g than that defining
Il (f)’ 50 _ _

I(f) < Ii(f).
On the other hand, I(g) > I(f) for all g involved in defining I5(f), so

B I (f) = I(f),

hence I5(f) = I(f).

Next, I3(f) is an inf over a smaller class of functions g than that defining I (f),
S0

I3(f) = I(f)-
On the other hand, given ¢ > 0 and ¢ € PK(R), one can readily find g € C(R)
such that g > v and fR(g — 1) dV < e. This implies
T3(f) < T(f) + ¢,
for all € > 0, and finishes the proof of (5.1.87). The proof of (5.1.88) is similar. [

Corollary 5.1.14. Given a cell R C R", let f : R — R be bounded. Then f € R(R)
if and only if the following holds. For eache > 0, there exist go,g91 € C(R) satisfying

(5.1.89) g < f<g1, and /(91 —go)dV <e.
R
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More general Fubini-type theorem

We will make use of Proposition 5.1.13 to prove the following result, which
is substantially more general than Theorem 5.1.10 and Proposition 5.1.12. As in
Proposition 5.1.9, let X C R*, Y c R, and R = X xY C R (n = k+ ) be cells.

Theorem 5.1.15. Let f € R(X xY), and assume that, for each x € X,

(5.1.90) 92 (y) = f(x,y) defines g, € R(Y).
Set
(51.91) o(@) = [ Ha) Vil
Y
Then ¢ € R(X), and
(5.1.92) /de - /gpde.
R X
Proof. Pick ¢ > 0 and, using Corollary 5.1.14, take u; € C'(R) such that
(5.1.93) uy < f <, /(u1 — UO) dv, < e.
R
Set
(5.194) 0@ = [we) i), sex
e

Then v; € C(X) and

(5.1.95) Yo(z) < p(x) <yi(z), VaelX.
By Proposition 5.1.9, we have
(5.1.96) /uj dv, = /wj dVy.
R X
Hence, by (5.1.93),
(5197) /(1/)1 — ZZJ()) dVy < e.
X

Hence Corollary 5.1.14 implies that ¢ € R(X), and we see that the two sides of
(5.1.92) differ by a quantity that is < ¢, for all ¢ > 0. Thus identity must hold. O

REMARK. The hypothesis (5.1.90) holds provided that the set of points in Y at
which g, is discontinuous has upper content zero.

REMARK. See Exercise 22 below for an extension of Theorem 5.1.15.



5.1. The Riemann integral in n variables 185

Change of variables

We next take up the change of variables formula for multiple integrals, extend-
ing the one-variable formula discussed in Exercise 4 of §1.2. We begin with a result
on linear changes of variables. The set of invertible real n x n matrices is denoted
Gl(n,R). In (5.1.98) and subsequent formulas, [ fdV denotes [, f dV for some cell
R on which f is supported. The integral is independent of the choice of such a cell;
of. (5.1.27).

Proposition 5.1.16. Let f be a continuous function with compact support in R™.
If A € Gl(n,R), then

(5.1.98) / F(z)dV = | det A] / F(Az) V.

Proof. Let G be the set of elements A € Gi(n,R) for which (5.1.98) is true. Clearly
I €G.Usingdet A=! = (det A)~!, and det AB = (det A)(det B), we can conclude
that G is a subgroup of Gl(n,R), i.e., G is a subset of Gi(n,R) possessing the two
properties (5.1.102)—(5.1.103) listed below.

In more detail, for A € Gl(n,R), f as above, let

(5.199) Ia(f) = [ fadV =1(52). fala) = f(Aa),
Then

(5.1.100) A€ G Ia(f) = |det A|7LI(f),

for all such f. We see that

(5.1.101) Iap(f) = I(fan) = Ip(fa),

SO

A,B€G = I,p(f)=|det B[ I(fa)
(5.1.102) = |det B|"Ydet A| M I(f) = |det AB|7LI(f)
— AB € g.

Applying a similar argument to T4 4-1(f) = I(f), also yields the implication
(5.1.103) AcgG=A"1eqg.

To prove the proposition, it will therefore suffice to show that G contains all
elements of the following 3 forms, since (as shown in the exercises on row reduction
at the end of this section) the method of applying elementary row operations to
reduce a matrix shows that any element of Gl(n,R) is a product of a finite number
of these elements. Here, {ej : 1 < j < n} denotes the standard basis of R", and o
a permutation of {1,...,n}.

Alej = e”(j),
(5.1.104) Agej =cjej, ¢ #0
Aseg = eg +ce1, Aszej =e; for j#2.
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The proofs of (5.1.98) in the first two cases are elementary consequences of the
definition of the Riemann integral, and can be left as exercises.

We show that (5.1.98) holds for transformations of the form As by using Propo-
sition 5.1.9 to reduce it to the case n = 1. Given f € C(R), compactly supported,
and b € R, we clearly have

(5.1.105) /f(x) da::/f(:chb) da.

Now, for the case A = A3, with = (21, 2’), we have

/f(xl + cxo,2")dV,(z) = /(/f(an + cxg,x’)dasl) AV, _1(2)

_ /(/f(xl,x’) A ) AV (),

the second identity by (5.1.105). Thus we get (5.1.98) in case A = As, so the
proposition is proved. (|

(5.1.106)

It is desirable to extend Proposition 5.1.16 to more general Riemann-integrable
functions. Say f € R.(R™) if f has compact support, say in some cell R, and
f € R(R). Also say f € C.(R™) if f is continuous on R"™, with compact support.

Proposition 5.1.17. Given A € Gl(n,R), the identity (5.1.98) holds for all f €
R.(R™).

Proof. We have from Proposition 5.1.13 that, for each v € N; there exist g,, h, €
C.(R™) such that h, < f < g, and, with B= [ fdV,

1 1
B—fg/thVng/gde§B+f.
v v
Now Proposition 5.1.16 applies to g, and h,, so
1 1
(51107) B <|det A /h,,(Ax) AV < B < |det A| /g,,(Ax) V<B+ .

Furthermore, with f4(z) = f(Az), we have h,(Az) < fa(z) < g,(Ax), so (4.44)
gives
1 - 1
(5.1.108) B—=<|det A|I(fa) <|det A|T(fa) < B+ ~,
v v
for all v, and leting v — oo we obtain (5.1.98). O

Corollary 5.1.18. If X C R™ is a compact, contented set and A € Gl(n,R), then
A(X) ={Ax : x € I} is contented, and

(5.1.109) V(A(®)) = |det A| V().
We now extend Proposition 5.1.16 to nonlinear changes of variables.

Proposition 5.1.19. Let O and Q be open in R™, G : O — Q a C* diffeomorphism,
and f a continuous function with compact support in Q. Then

(5.1.110) / Fy)dv(y) = / £(G(x)) | det DG(x)| dV ().
Q O
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Figure 5.1.4. Image of a cell

Proof. It suffices to prove the result under the additional assumption that f > 0,
which we make from here on. Also, using a partition of unity (see §6.6), we can
write f as a finite sum of continuous functions with small supports, so it suffices to
treat the case where f is supported in a cell R C Qand f oG is supported in a cell
R C O. See Figure 5.1.4. Let P = {R,} be a partition of R. Note that for each
R, € P, bG(R,) = G(bR,,), so G(R,,) is contented, in view of Propositions 5.1.4
and 5.1.8.

Let &, be the center of R, and let Ea = R, — &a, a cell with center at the
origin. Then

(5.1.111) G(&) + DG(Ea) (Ra) = 10 + Ha

is an n-dimensional parallelepiped, each point of which is very close to a point in
G(R.), if R, is small enough. To be precise, for y € R,

G(€a + 1) = Na + DG(EL)Y + ®(Easy)y,

B(&9) = [ [DG(E +t) - DO(E)] dr.

See Figure 5.1.5.
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G(Ra)

& Hotma
&

Figure 5.1.5. Cell image closeup

Consequently, given € > 0, if § > 0 is small enough and maxsize(P) < 4, then
we have

(5.1.112) Ne + (1 +€)Hy D G(Ry),
for all R, € P. Now, by (5.1.109),
(5.1.113) V(Hy) = |det DG(£4)|V(Ry).
Hence
(5.1.114) V(G(Ra)) < (1+¢)"det DG(&4)| V(Ra).
Now we have

/de => / fdv

¥ G(Ra)

(5.1.115) < za;s;f foG(z)V(G(Ra))

<(14+¢e)" Zslgp foG(z)|det DG(&,)| V(Ra)-

To see that the first line of (5.1.115) holds, note that fx (g, ) is Riemann integrable,
by Proposition 5.1.6; note also that ) fxq(r,) = f except on a set of content
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zero. Then the additivity result in Proposition 5.1.2 applies. The first inequality
in (5.1.115) is elementary; the second inequality uses (5.1.114) and f > 0. If we set

(5.1.116) h(z) = f o G(x) |det DG(z)|,

then we have

(5.1.117) sup f o G(z)|det DG(&,)| < sup h(z) + Mw(d),
R, Rq

provided |f| < M and w(d) is a modulus of continuity for DG. Taking arbitrarily
fine partitions, we get, in the limit § — 0,

(5.1.118) Q/fdvg/hczv.

(@]

If we apply this result, with G replaced by G=1, © and Q switched, and f
replaced by h, given by (5.1.116), we have

(5.1.119) /thg/hoG— (y) | det DG /de

o Q
The inequalities (5.1.118) and (5.1.119) together yield the identity (5.1.110). O

We now extend Proposition 5.1.19 to more general Riemann integrable func-
tions. Recall that f € R.(R™) if f has compact support, say in some cell R, and
fER(R). HQ CR"isopen and f € R.(R™) has support in 2, we say f € R.(f2).
We also say f € €.(Q) if f € €.(R™) has support in 2, and we say f € C.(2) if f
is continuous with compact support in .

Theorem 5.1.20. Let O and Q be open in R*, G : O — Q a C' diffeomorphism.
If f € Re(2), then foG € R.(O), and (5.1.110) holds.

Proof. The proof is similar to that of Proposition 5.1.17. Given v € N, we have
from Proposition 5.1.13 that there exist g, h, € C.(Q) such that h, < f < g, and,
with B = [, fdV,

1 1
B——g/hydvgBé/gdeSB+*-
v v

Then Proposition 5.1.19 applies to A, and g,, so

B-— - < x))| det DG(z)|dV (z)
[
<B< / 2))| det DG(x )|dV(x)§B+%.

Now, with fG(x) = f(G(l’)), we have hu(G(x)) < fg(.’ﬂ) < gu(G(x))a S0

(5.1.120) B- % < I(fe|det DG|) < I(fg|det DG|) < B + %

for all v, and letting v — oo, we obtain (5.1.110). O
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Polar coordinates

The most frequently invoked case of the change of variable formula, in the case
n = 2, involves the following change from Cartesian to polar coordinates:

(5.1.121) x=rcosf, y=rsinb.
Thus, take G(r,0) = (r cos @, rsin ). We have

cosf) —rsinf

(5.1.122) DG(r,0) = <sin9 7 cos 6

> , det DG(r,0) =r.

For example, if p € (0, 00) and
(5.1.123) D, ={(z,y) € R? : 2® + y* < p*},
then, for f € C(D,),

P 2m
(5.1.124) /f(x,y) dA:/ / f(rcos@,rsin@)rdodr.
o Jo
DP

To get this, we first apply Proposition 5.1.19, with O = [e, p] x [0,27 — €], then
apply Theorem 5.1.10, then let ¢ \, 0.

In case f = 1, we have the formula for the area of the disk D,

P 2m
(5.1.125) A(D,) = / / rdr = mp?,
0 0

obtaining, by different means, the area formula derived (for p = 1) in (5.1.59).

More generally, if f is a radial function, i.e.,

(5.1.126) fla,y) =g(r), =22 +92
then (5.1.124) gives
P 2m
/fdA:/O /0 g(r)rdfdr
(5.1.127) D,
P
=27 dr.
/0 g(r)rdr

We can apply this as follows to the computation of the volume of the unit ball
B3 C R3, which is given by

(5.1.128) lz2| <V/1—22—9y2, (z,y) €D.

By Theorem 5.1.10,

(5.1.129) V(B?) =2 / VI— 2~ P dedy.
D

Applying (5.1.127) yields

4
(5.1.130) V(B?) = 37
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recovering (5.1.76), by a third method. The task of going from (5.1.129) to (5.1.130)
constitutes Exercise 6 below.

One can also apply (5.1.124) to non-radial functions. For example, given j, k €

7T,
) 1 27 ) )
/zjyk dA:/ / cos’ O sin* 0T+ dp dr

o Jo

(5.1.131) D
1 2T .
= 7/ cos’ B sin” 6 d.
it+Ek+2 )

One can apply polar coordinates to other regions, such as regions defined in
polar coordinates by

(5.1.132) a(@) <r<pB0), 6 <60<06,.
If this defines the region 2, then

01 rB(0)

(5.1.133) /f(ac, y)dA = / f(rcosf,rsinf)rdrdb.
Q 9() 0((9)

For example, the disk D, /, of radius a/2, centered at (a,0), is defined by
(5.1.134) 0<r<acos, —g <0< g
(cf. (3.1.52)), and in this case

/2 acosf
(5.1.135) / flz,y) dA:/ / f(rcos@,rsin@)rdrdb.

D, —7n/2J0

Note that taking f =1 yields

a2 w/2

A(D, o) = — cos? 6 df
27

(5.1.136) /2

-+ (2).

the last identity obtained as in (5.1.59).
Spherical polar coordinates on R?

On R3, we have spherical polar coordinates, given by
G(p,0,v) = (psinf cos v, psinfsin ), p cos ),
p>0, 0<0<m 0<1o<2m.

See Figure 5.1.6. We have

(5.1.137)

sinfcosty pcosfcosy —psinfsiny
(5.1.138) DG(p,0,¢) = | sinfsiny pcosfsiny  psinfcosy
cos 6 —psiné 0

A calculation, e.g., expanding by minors down the third column, gives
(5.1.139) det DG(p,0,%) = p*sin 6.



192 5. Multivariable integral calculus

z3
& G 0y)
p
0, \
To
P
o (pcos b, psin, 0)

Figure 5.1.6. Spherical polar coordinates on R3

Hence, if O C {(p,0,¢) : p > 0,0 € [0,7],9 € [0,27]}, and Q@ = G(O), then

(5.1.140) /f )dV (x /f (p,0,7))p?sin @ dp db do.

In particular, if B3> = {z € R3 : |z| < 1} is the unit ball in R3,
2m
(5.1.141) /f )dV (x / / / F(G(p,0,2))p* sin b dp db dup.

Taking f =1 yields the volume formula
- 4
(5.1.142) V(B?) = 37

recovering (5.1.130), by a fourth method. The tasks of checking (5.1.139) and going
from (5.1.141) to (5.1.142) constitute Exercise 5 below.

Back to integrability

We have seen how Proposition 5.1.13 has been useful. The following result, to
some degree a variant of Proposition 5.1.13, is also useful.
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Lemma 5.1.21. Let F : R — R be bounded, B € R. Suppose that, for each
v € ", there exist ¥, ®, € R(R) such that

(5.1.143) U, <F<®,
and
(5.1.144) B-4, < /\I/,,(x) dV(z) < /@y(x) dV(z) < B+4,, 6,—0.
R R
Then F € R(R) and
(5.1.145) / F(z)dV(z) = B.
R
Furthermore, if there exist ¥, ®, € R(R) such that (5.1.143) holds and
(5.1.146) /(@U(x) -V, (x)dV <4, =0,
R

then there exists B such that (5.1.144) holds. Hence F' € R(R) and (5.1.145) holds.

We next use Lemma 5.1.21 to establish the following useful result on products
of Riemann integrable functions.

Proposition 5.1.22. Given f1, fo € R(R), we have fifa € R(R).

Proof. It suffices to prove this when f; > 0. Take partitions P, and functions
Yju, @ > 0, constant in the interior of each cell in P, such that

ngjygfjgwjuéMv

/d)jy dv, /%dv *)/fj av.

We apply Lemma 5.1.21 with
F= f1f27 \I}V = w1u¢2ua (I)l/ = PP

and

Note that
(bl/ - \I/l/ - SOlV(QOQV - ¢2u) + wQV(@IV - wly)
S M(SOQI/ - w2u) + M(Solu - wlu)~
Hence (5.1.146) holds, giving F' € R(R). O

As a consequence of Proposition 5.1.22, we can make the following construction.
Assume Ris acell and S C R is a contented set. If f € R(R), we have xsf € R(R),
by Proposition 5.1.22. We define

(5.1.147) /f(x) dV(x) :/Xs(z)f(x) dVv(x).
s R

Note how his extends the scope of (5.1.26).
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Integrals over R™

It is often useful to integrate a function whose support is not bounded. Gener-
ally, given a bounded function f : R™ — R, we say

feRR")
provided f|R € R(R) for each cell R C R"™, and
[inav<c
for some C < oo, independent of R. If f € R(R™), we set
(5.1.148) /f av = lim /f dV, Rs={zeR":|z;] <s,Vj}
R’Vl

The existence of the limit in (5.1. 148 can be established as follows. If M < N,

then
/de / fdv = / fav,

RNn\Rwm
which is dominated in absolute Value by fRN\RM |fldV. If f € R(R™), then ay =
/. R |f1dV is a bounded monotone sequence, which hence converges, so

/ |f\dV:/|f|dV—/|f|dV—>O, as M, N — oo,
RN Ry

RN\Ru
The following simple but useful result is an exercise.

Proposition 5.1.23. If K, is any sequence of compact contented subsets of R™
such that each Rs, for s < oo, is contained in all K, for v sufficiently large, i.e.,
v > N(s), then, whenever f € R(R"),

(5.1.149) /f dv = lim [ fdv.

K,

Change of variables formulas and Fubini’s Theorem extend to this case. For
example, the limiting case of (5.1.124) as p — oo is
(5.1.150)

00 27
C(R?) N R(R? dA = 6, rsinf)r df dr.
feCR)NR( ):>R[f(x,y) /0 /0 f(rcosf,rsinf)r r

To see this, use Proposition 5.1.22 with K, = D,,, defined as in (5.1.123), to write

(5.1.151) flz,y)dA = lgrolO f(z,y) dA,
/ /

and apply (5.1.124) to write the integral on the right as

2
/ f(rcos,rsinf)rdfdr.
0
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You get the right side of (5.1.150) in the limit v — co.
The following is a good example. Take f(x,y) = e~ =¥*. We have

o] 2m o)
(5.1.152) /6773271’2 dA = / / e r d dr = 27r/ e r dr.
0 0 0
R2

Now, methods of §1.2 allow the substitution s = r2, so

o0 2 1 [ 1
/ e " rdrzf/ e *ds = —.
0 2 Jo 2

(5.1.153) /e‘wQ_y? dA = .

R2

Hence

On the other hand, Theorem 5.1.10 extends to give

(oo} [ee]
/6_932_?’2 dA = / / e v dy dx
(5.1.154) R? T
= </ e~ da:) (/ eV’ dy) .

Note that the two factors in the last product are equal. We deduce that

(5.1.155) / e~ dz = /7.

— 00

We can generalize (5.1.154), to obtain (via (5.1.155))

(5.1.156) /e*W v, = (/ e dw) = /2,

R

The integrals (5.1.152)—(5.1.156) are called Gaussian integrals, and their evaluation
has many uses. We shall see some in §6.1.

We record the following additivity result for the integral over R™, whose proof
is also an exercise.

Proposition 5.1.24. If f,g € R(R"), then f + g € R(R"), and

(5.1.157) /(f+g)dV :RZde+/ng

R R
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.|
Exercises

1. Show that any two partitions of a cell R have a common refinement.
Hint. Consider the argument given for the one-dimensional case in §1.2.

2. Write down a proof of the identity (5.1.18), i.e., cont™(S) = cont™(S).

3. Write down the details of the argument giving (5.1.27), on the independence of
the integral from the choice of cell containing K.

4. Write down a direct proof that the transformation formula (5.1.98) holds for
those linear transformations of the form A; and Az in (5.1.104).
Hint. Ay and A; each take a cell to another cell. Relate their volumes.

5. Consider spherical polar coordinates on R3, given by
x=p sinf cosy, y=p sinf siny, z=p cosb,
i.e., take
G(p,0,v) = (p sinf cost, p sinf sin, p cos@).
See Figure 5.1.6. Show that
det DG(p,0,1)) = p*sinb,
as asserted in (5.1.139). Verify the computation of V(B?) stated in (5.1.142).

6. If B is the unit ball in R?, show that Theorem 5.1.10 implies

—2/ 12l dA(x),
D

where D = {x € R? : |z| < 1} is the unit disk. Use polar coordinates, as in
(5.1.121)—(5.1.124), to compute this integral. Compare the result with that of
Exercise 5.

7. Apply Corollary 5.1.18 and the answer to Exercises 5 and 6 to compute the

volume of the ellipsoidal region in R3 defined by
2 2 22
2tptash

given a, b, c € (0,00).
8. Prove Lemma 5.1.21.

9. If Ris a cell and S C R is a contented set, and f € R(R), we have, via



FExercises 197

Proposition 5.1.22,

/ f(@)dV(z) = / xs (@) () dV ().
S R

Show that, if S; C R are contented and they are disjoint (or more generally
cont™(S1 N Sg) = 0), then, for f € R(R),

[ t@ave = [ @+ [ i@
Sh Sa

S1US>

10. Establish the convergence result (5.1.149), for all f € R(R™).

In Exercises 11-13, let Dr = {(z,y) € R? : 2% + 4> < R?}, and compute the
following integrals.

1. [[(1+2*+y*)tdaxdy.
Dr

12, [[sin(z? + y?) dz dy.
Dr

13. [f e~ @ +v") dy dy.
Dr

14. Theorem 5.1.10, relating multiple integrals and iterated integrals, played the
following role in the proof of the change of variable formula (5.1.110). Namely, it
was used to establish the identity (5.1.113) for the volume of the parallelepiped H,,
via an appeal to Corollary 5.1.18, hence to Proposition 5.1.16, whose proof relied
on Theorem 5.1.10.

Try to establish Corollary 5.1.18 directly, without using Theorem 5.1.10, in the
case when 3 is either a cell or the image of a cell under an element of GI(n,R).

In preparation for the next three exercises, review the proof of Proposition 1.2.15.

15. Assume f € R(R), |f| < M, and let ¢ : [-M,M] — R be Lipschitz and
monotone. Show directly from the definition that ¢ o f € R(R).

16. If ¢ : [-M, M] — R is continuous and piecewise linear, show that you can write
© = 1 — 2 with ¢; Lipschitz and monotone. Deduce that f € R(R) = ¢o f €
R(R) when ¢ is piecewise linear.

17. Assume u, € R(R) and that u, — w uniformly on R. Show that u € R(R).
Deduce that if f € R(R), |f] < M, and ¢ : [-M,M] — R is continuous, then

Yo feRR).

18. Let R C R™ be a cell and let f,g: R — R be bounded. Show that
I(f+9) <I(f) +1(g), I(f+g) = I(f)+ Llg)-
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Hint. Look at the proof of Proposition 1.2.1.
19. Let R C R™ be a cell and let f : R — R be bounded. Assume that for each
€ > 0, there exist bounded f., g. such that

f=fe+ge, fEER(R)) T(|95D§€
Show that f € R(R) and

ngdV—>R/de.

Hint. Use Exercise 18.
20. Use the result of Exercise 19 to produce another proof of Proposition 5.1.6.

21. Behind (5.1.108) is the assertion that if R is a cell, g is supported on K C R, and
lg] < M, then I(]g|]) < M cont™(K). Prove this. More generally, if g,h : R — R
are bounded and |g| < M, show that I(|gh|) < MI(|h|).

22. Establish the following Fubini-type theorem, and compare it with Theorem
5.1.15.

Proposition 5.1.25. Let A C R™ and B C R™ be cells, and take f € R(A x B).
For x € A, define fy : B— R by fo(y) = f(x,y). Define Ly, Uy : A — R by

Ly(z) =I1(fs), Us(x) = T(f:r)
Then Ly and Uy belong to R(A), and

/ de:/Lf(x)d:c:/Uf(x)dx.

AxB A A

Hint. Given € > 0, use Proposition 5.1.13 to take ¢, 1 € PK(A x B) such that
p<fzv [vav- [pav<e
With definitions of ¢, and 1, analogous to that of f,, show that

/ gpdV:/gpwdel(Lf)

AxB A
ST(Uf)S/l/}wdx: / P dv.
A AxB

Deduce that
I(Ly) = I(Uy),

and proceed.

23. In Chapter 3 we defined 7 as half the length of the unit circle, which in turn
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led to
/1 da
T = e
—1V 1-— ac2
See Exercise 27 in §3.2. In (5.1.57), we saw that the area of the unit disk is given
by

1
A(D) = 2B, B:/ V1—a?de.
-1

Take the following route to evaluating B. Use integration by parts to write

1
B=—- x%\/l—deI
-1

1 2
T
:/ —dx.
—1 \/1—1}2

In turn, write the last integral as

1
dx
1-— 1—:1:2}7
/4[ ( ) V1—a?
1 1
dx
= —_— V1—-22dx =m— B,
[1v1—x2 [1
to conclude that
2B =,

recovering the formula (5.1.59).

24. In (5.1.82)—(5.1.83), we saw that
1

V(BY) = BV(B%), fBi= / (1 22)¥2 d.

-1
Take the following route to evaluating 4. Use integration by parts to write
1
d
ﬂ4=—/ (1— 2232 dx

r—
1 dzx

1
3/ 221 — 22)%/% da.

—1

As in Exercise 23, set 22 = 1 — (1 — 2?) to obtain

1
64:3/ \/1—$2dl‘—3ﬁ4,
-1

and proceed to identify 34, hence V(B*).

25. Generalize the recursion in Exercise 24 to treat 5, for more general n. Compute
V(B®) and V (B°).

Exercises on row reduction and matrix products
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We consider the following three types of row operations on an n X n matrix
A = (aji). If 0 is a permutation of {1,...,n}, let

po(A) = (aa(j)k)‘
If c=(c1,...,¢j), and all ¢; are nonzero, set
pe(A) = (5 ajn).
Finally, if ¢ € R and p # v, define
euve(A) = (bjr), bukr = avk — cauk, bjx = aji for j#wv.

We relate these operations to left multiplication by matrices Py, M., and E,,,
defined by the following actions on the standard basis {eq,...,e,} of R™:

Pyej = ey, Mce; =cjey,

and
E,ce,=e,+ce,, E,ce;=c¢e; for j#pu.

1. Show that
A= Paﬂa(A)v A= MCMC(A)v A= EuuceuVC(A)'

2. Show that Pyl = P, ..
3. Show that, if u # v, then E,,,. = P;lEglch, for some permutation o.

4. If B = p,(A) and C = p.(B), show that A = P,M.C. Generalize this to
other cases where a matrix C is obtained from a matrix A via a sequence of row
operations.

5. If A is an invertible, real n x n matrix (i.e., A € Gl(n,R)), then the rows of A
form a basis of R™. Use this to show that A can be transformed to the identity
matrix via a sequence of row operations. Deduce that any A € Gl(n,R) can be
written as a finite product of matrices of the form P,, M. and E,,., hence as a
finite product of matrices of the form listed in (5.1.104).
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5.2. Mean values of functions and centers of mass

Let S C R™ be a contented set, with positive volume. If f € R(S), we define

(5.2.1) Aves(f) = %5) [rav,
S

and call this the average (or mean value) of f over S. If S is understood, we use
the notation Avg(f). Other common notations include

(5.2.2) f=(f) = Avg(f).

If we wish to record the dependence on S, we use, e.g., (f)s.

As a variant of (5.2.1), we can place a “mass distribution” x> 0 on S, satisfying
peR(S), [¢undV >0,

1
5.2.3 A =—— av, M,(S)= av.
(523) sl = 37 [ ndv. M) = [
S S

this can be recovered from objects of the form (5.2.1), as

Aves(f1)
5.2.4 Avgg  (f) = —=—=,
(324) sl = vgg ()

and we will not dwell upon this generalization.

In our study of (5.2.1), we will particularly be interested in what arises by
taking f(z) = x, which defines the center of mass of S,

(5.2.5) CM(S) € R"™.

In this case, f takes values in R™. We find it convenient to characterize CM(S) by
the following formula:

v - CM(S) = Avgg(v - x)

(5.2.6) __1 / n
V9 v-xdV, VoveR"
s

To take an example, let us take a,b,c,h € R, a < b, h > 0, and consider the

triangle T}, with vertices at (a,0),(b,0), and (¢, h), which is a triangle with base
b — a and height h; see Figure 5.2.1. We see that

/ydA = /Oh(ba)(l — %)ydy

T

(5.2.7) (ba)/oh[yyhz} ay

while A(T;) = (b—a)h/2, so

(5.2.8) Avgr (y) = g
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T

Uy)

1
T
a b ¢

Uy) = (b—a)(h—y)/h

Figure 5.2.1. Triangles and their centers of mass

The calculation (5.2.8) specifies the y-component of CM(T;). We want to com-
pletely specify this vector. Consider the special case T;., pictured on the right side
of Figure 5.2.1, with a = —b, ¢ = 0. This is an isosceles triangle, having reflection
symmetry across the y-axis, and it should be intuitively clear that the center of
mass of T} lies on this axis. This places

h
(5.2.9) CM(T}) = (o, 5)'
Our next task is to come up with some mathematical results to back up this intuitive
reasoning.

We can do this based on how CM(S) behaves when certain transformations are
applied to S. First, there is translation:

(5.2.10) T :R* —R", 7,(z)=z+wv,
with v € R™. It is easily verified that

(5.2.11) CM(1,(5)) = CM(S) + v.
Next we consider linear maps,

(5.2.12) A:R" —R" AeM(n,R).

We will establish the following.
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Proposition 5.2.1. If S C R" is a bounded, contented set, of positive volume,

then

(5.2.13) A € G4(n,R) = CM(A(S)) = A CM(S).

Proof. The change of variable formula gives

(5.2.14) / f@)dV = |det A|/f(Ax) dv,
A(S) s

for f € R(A(S)). Applying this to f(z) = v -z, v € R", we have

/ v~:ch:|detA|/v~Ade
S

(5.2.15) AS)

= |detA|/(Atv) ~xdV.
S

Divide both sides by V(A(S)). Since V(A(S)) = | det A|V(S), we obtain
(5.2.16) v- CM(A(S)) = A'v - CM(S), Vv eR",
which yields (5.2.13). O

The following corollary records how symmetries of a set S help locate its center
of mass.

Corollary 5.2.2. Let S C R™ be a bounded contented set of positive volume, and
assume A € GU(n,R). Then

(5.2.17) A(S) = § = A CM(S) = CM(S).

Proposition 5.2.1 and the associated corollary justify the reasoning behind the
computation (5.2.9). It also leads to further results. Note that (5.2.9) is equivalent
to

1
(5218) CM(TT) == g(al + a9 + (13),
where {a; : 1 < j < 3} are the three vertices of T,. This has the following

generalization.

Proposition 5.2.3. Consider

(5.2.19) T C R2, triangle, with vertices v, vs, vs,
and area A(T) > 0. Then

1
(5.2.20) CM(T) = g(vl + v2 + v3).

Proof. Applying (5.2.11), we can arrange that v;y = a;. Then {as — aj,a3 — a1}
and {vy — v1,v3 — v1} both form bases of R?, so there exists A € G¢(2,R) taking
the one basis to the other. In this way we get a transformation

(5.2.21) Xpa:R2—RY X, a(r)= Az +w,
such that
(5.2.22) Xy avj =aj, 1<j<3.
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It follows that

(5.2.23) Xua(T) =T,
and hence, by (5.2.11) and Proposition 5.2.1,
(5.2.24) Xw,a CM(T) = CM(T;.).

On the other hand, (5.2.22) also implies

(5.2.25) Xya T Z;f Tl _mF ‘;2 +as

Thus (5.2.20) follows from (5.2.18). O

We move on to other classes of domains, and consider
(5.2.26) B! ={x € B" :x, > 0},

where we recall that B® = {x € R" : |z| < 1} is the unit ball. We see that
B? is invariant under rotation about the x,-axis (and, for n = 2, invariant under
reflection about the zqo-axis). Hence

(5.2.27) CM(B?) € {(0,y) e R": 0 <y < 1}.

Therefore, to compute the center of mass, it suffices to compute Avg By (z,). We

have
Vi-lz?
/a:ndV: / (/ xnda:n) dx
0
(5.2.28) B Bt
= % / (1 — |z|?) da.
Bn—l

We specialize to the cases n = 2 and n = 3, keeping in mind that, by previous
calculations,

m 2m
(5.2.29) A(B?) = 5 V(B}) = 5
For n = 2, the right side of (5.2.28) is
1! 2
2. - 1—2?)de ==
(5.2.30) 5 1-atdo=2
S0
4 , 4
(5.2.31) Avgps (22) = 5. CM(B) = (o, g)
For n = 3, the right side of (5.2.28) is
1 1 27 1
7/(1—|m|2)dx:f/ / (1 —r%)rdrdd

D

(5.2.32) - /1(r Y
0

il
4’
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Z2

T

Figure 5.2.2. Pie slice

SO

=3 omm) = (0,0, §).

T 3

See the exercises below for another approach to computing | pn Tn dV. See also
+

§6.1 for a method of computing

(5.2.34) / o(|z|) dz,

BW,—l
which is applicable to the right side of (5.2.28), for general n.
Generalizing the regions B, we take 8 € (0,7/2] and consider the sets
(5.2.35) Kj ={x=(«',2,) € B" : x,, > (cos f)|a']}.

See Figure 5.2.2 for an illustration in the case n = 2. The set Kg looks like a pie
slice. The reader can imagine that K g looks like a sno cone. Note that K /2= Bt.
Again K 5 has enough symmetry about the x,-axis that we have

(5.2.36) CM(Kp) € {(0,y): 0 <y < 1},

so we are left with the task of computing Angg (25,). We carry this out for n = 2, 3.
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In case n = 2, we use polar coordinates to write

77/2+ﬁ 1
(5.2.37) A(K3) :/ / rdrdf =p,
7/2—8 JO
and
w/2403 1
/xgdAz/ / r2sin 6 dr d
w/2—3 JO
Kg
(5238) 1 /243
= —(—cosf
/2=
= —sinf
Hence
_ 2sinf 2y 2 sin 8
(5.2.39) Avess(e2) = 3 =5 COM(K) = (o, 35 )
In case n = 3, we use spherical polar coordinates to write
27 B 1
(5.2.40) /de = / / / fp*sin@dpdb dip,
i o Jo Jo
hence
B8 1
V(Kf;) = 27r/ / p*sin @ dp d
o Jo
B
(5.2.41) _ 21/ sin @ do
3 Jo
2
= g(l — cos f3).
In addition,
B 1
/xng = 271/ / p>cosfsinb dpdo
i o Jo
[P )
(5.2.42) = 5/0 cos @ sin 6 db
B
= z/ sin 26 df
4 Jo
= g(l — cos 23).
Hence
3 m1—cos2p 3 1—cos2p
2.4 A = ==
(5.2:43) Bk} (w3) 2r 8 1—cosf 16 1 —cosf

Using the identity
(5.2.44) 1 —cos2fB =2sin? g,
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we can rewrite the last quotient, and conclude that

(5.2.45) Cwukj)::(oxxiz(sizﬁ2)2)

We have focused on bounded regions, but some unbounded regions have well
defined centers of mass. To take a family of examples, we pick a > 0 and consider

(5.2.46) Q={(z,y) eR?*:2>1,0<y <2}

If a > 1, Q has finite area,

o 1
5.2.47 AQ) = “tdr =
(5247 @=[ ade= =
In such a case,
/ydA:/ / ydy dzx
1 Jo
Q
1 o0
(5.2.48) _ 7/ 220 gy
2.5
B 1
220 1)

Now z|q is not bounded, so we need an extension of the results developed in §5.1.
Such an extension is given in §5.3, one can peek ahead, or just see what is going
on in the next calculation. For z|q to have a finite integral, we will need to tighten
our hypothesis on a to

(5.2.49) a>2.
Then
R T *
/a;dA: lim / / xdy dx
R—oo Jq 0
Q
(5.2.50) :/ 0
1
_ 1
T a—2

We deduce that, as long as a satisfies (5.2.49), the center of mass of the domain 2
described in (5.2.46) is given by
a—1 a-1 )

(5.2.51) CM“D:<Ef§5@5f5

We now bring in a calculation that ties in the center of mass of a region O C R?
with the volume of the solid of revolution it generates. Here let

OC{(x,y) eR?: x>0}

be a smoothly bounded region, as illustrated in Figure 5.2.3, and let Q C R3 be the
solid produced by rotating © about the y-axis in R?, so

(5.2.52) Q={(zcosb,y,xsinb) : (z,y) € O, 6 € [0,27]}.
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(,9)

Figure 5.2.3. Setting for Pappus’s theorem

That is to say, €2 is the image of

(5.2.53) F:0x[0,271] — R3,
where
(5.2.54) F(z,y,0) = (xcosb,y,zsinb).

A calculation, which we leave to the reader, gives
(5.2.55) det Df(z,y,0) = .

Hence

27
V() :/0 /detDF(x,y,G) dx dy de
(@]

= 27r/mdxdy.

o

(5.2.56)

An alternative way to write this is
(5.2.57) V() =27 Avgy(x) A(O).

This gives the following result, known as Pappus’s theorem.
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Figure 5.2.4. Triangles and their center of mass

Proposition 5.2.4. Let O C R? be as described above, generating the solid of
revolution about the y-azis Q C R3. Say

(5.2.58) CM(0) = (z,7).
Then
(5.2.59) V(Q) =27z A(O).

.|
Exercises

1. Let T C R? be a triangle, and form T’ C T, the triangle whose vertices consist
of the midpoints of the edges of T'. Show that

CM(T") = CM(T).
Hint. Use (5.2.20). (See the left half of Figure 5.2.4.)

2. If T C R? is a triangle, and v is a vertex, show that CM(T) lies on the line
segment from v to the midpoint of the edge opposite v. (See the right half of
Figure 5.2.4.)
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Hint. Reduce this to the case where T is isosceles, using reasoning parallel to the
proof of Proposition 5.2.3.

3. Pursue the following approach to computing Avg B (2,,). Start with

1
/:cndV:/ V(B”_ll_ z)xndzn
0 Tn

By

1
- V(BH)/ (1= 22)n=D/2 gy
0

Use the substitution s = 22 and show that
2 1 V(B"™)

ntl 'ﬂfn; Bn = V(Bn—l)'
In cases n = 2,3, compare this with the results (5.2.31) and (5.2.33).

AVgB}; (wn) =

4. Extending the scope of Exercise 3, for a € [—1,1] set
By, ={xeB":x, >a},

and produce a formula for CM(By, ).

5. For a > 0, set
P ={zx= (2 x,) ER": |2/|? <z, < a’}.

Compute
CM(P}), for m=2,3.

6. For 8 € (0,7/2), consider the cone
O = {2 = (&', 00) : (cos B)la’| < 2 < 1},

Compute
CM(Cg), for n=2,3.
How does the result depend on 37
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5.3. Unbounded integrable functions

There are lots of unbounded functions we would like to be able to integrate. For
example, consider f(x) = =2 on (0, 1] (defined any way you like at 2 = 0). Since,
for e € (0,1),

1
(5.3.1) / 2% dr =2 — 24/,
€
this has a limit as € \, 0, and it is natural to set
1
(5.3.2) / 22 dx = 2.
0

Sometimes (5.3.2) is called an “improper integral,” but we do not consider that to
be a proper designation. We aim for a treatment of the integral for a natural class
of unbounded functions. To this end, we define a class R (I) of not necessarily
bounded “integrable” functions on I. The set I will stand for either R™ or a cell in
R™.

To start, assume f > 0 on I, and for A € (0,00), set

fa(z) = f(z) if f(z) <A,
A, if f(z)> A

(We hereby abandon the use of f4 as in the proof of Proposition 5.1.16.) We say
f € R*(I) provided

(5.3.3)

faeRU), VA<oo, and
(5.3.4) 3 uniform bound / fadV < M.
I

If f > 0 satisfies (5.3.4), then [, f4 dV increases monotonically to a finite limit as
A /' 400, and we call the limit [, fdV:

(5.3.5) /fAdV//fdM for feR#*(I), f>0.
T T
If T is understood, we might just write [ fdV.

REMARK. If f € R(I) is > 0, then f4 € R(I) for all A < co. See the easy part of
Exercise 15.

It is valuable to have the following.
Proposition 5.3.1. If f,g: I — R* are in R#(I), then f +g € R¥(I), and
(5.3.6) /(f+g)dV:/de+/ng.
I I I
Proof. To start, note that (f + ¢)a < fa + ga. In fact,
(5.3.7) (f+9)a=(fa+ga)a.
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Hence (f +g)a € R(I) and [(f+g)adV < [ fadV+ [gadV < [ fdV + [gdV,
so we have f + g € R#(I) and

(5.3.8) /(f+g)dV§/de+/ng.

On the other hand, if B > 2A, then (f + g)p > fa + ga, so

(5.3.9) /(f +g)dv > /fA v + /gA av,

for all A < oo, and hence

(5.3.10) /(f+g) av > /de+/ng

Together, (5.3.8) and (5.3.10) yield (5.3.6). O

Next, we take f: I — R and set
f:er*fia f+($):f(l') if f(l’)ZO,

(5:3.11) 0 if f(z)<O0.

Then we say

(5.3.12) feRH(I) = fT,f~ e R*(I),

and set

(5.3.13) fav = [ frav — | f~dv,
Jrw=fro]

where the two terms on the right are defined as in (5.3.5). To extend the additivity,
we begin as follows

Lemma 5.3.2. Assume that g € R*(I) and that g; > 0, g; € R¥(I), and

(5.3.14) g =4go — g1
Then

(5.3.15) /ng:/godV—/91 dv.

Proof. Take g = ¢g" — ¢~ asin (5.3.11). Then (5.3.14) implies
(5.3.16) g ta=g+g,
which by Proposition 5.1.24 yields

(5.3.17) /g+ dV+/g1 de/go dV—l—/g_ dv.

This implies

(5.3.18) /g+ dV—/g_ dV:/godV—/g1 dv,

which yields (5.3.15). O

We now extend additivity.
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Proposition 5.3.3. Assume fi, fo € R¥(I). Then fi + fo € R¥(I) and

(5.3.19) (it f2)dV = [ frdV + [ fodV.
/ [rav]
Proof. If g = f1 + fo = (fi" — fi) + (f5 — f5), then

(5.3.20) g=g0—91. go=ST+1 a=fH+T15
We have g; € R#(I), and then

/(f1+f2)dV:/godV—/g1dV

(5.3.21) - / Ui+ v - / 7+ fr)dv

:/ff“dV+/f2+dV—/fde—/f{dV,

the first equality by Lemma 5.3.2, the second tautologically, and the third by Propo-
sition 5.3.1. Since

(5.3.22) /fj av = /fj+ av — /fj‘ av,
this gives (5.3.19). O

If f:1—C,weset f=fi+ifs, fj:I— R, andsay f € R#(I) if and only if
f1 and f5 belong to R#(I). Then we set

(5.3.23) /de = /f1 av +i/f2 dv.
Similar comments apply to f: I — R™.
We next establish a useful result on products.
Proposition 5.3.4. Assume f € R¥(R"), g € R(R"), and f,g > 0. Then
fg € R*(R") and
(5.3.24) /ngdV/‘/fng as A/ 4oo.

Proof. Given the additivity properties just established, it would be equivalent to
prove this with g replaced by g + 1, so we will assume from here that g > 1. Then
(5.3.25) (f9)a = (fag)a.

By Proposition 5.1.22, fag|r € R(R) for each cell R. Hence (e.g., by the easy part
of Exercise 15), (fag)a|lr € R(R) for each cell R. Thus

(5.3.26) (f9)al, € R(R).
Now there exists K < oo such that 1 < g < K, so
(5.3.27) fag < Kfa, hence (fg)a < Kfa.

The hypothesis f € R¥(R™) implies there exists M < oo such that

(5.3.28) fadV <M,
/
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for all A < co and each cell R. Hence, by (5.3.27),

(5.3.29) sup /(fg)A dV < MK,
4%

independent of R. This implies fg € R#(R"). By definition,
(5.3.30) /(fg)A av /fng, as A /' 4o0.
Meanwhile, clearly fag ' as A 7, so the estimate (5.3.27) implies
(5.3.31) /ngdV ASL, as A 4o,

for some L € RT. It remains to identify the limits in (5.3.30) and (5.3.31). Now
(5.3.25) implies

(5.3.32) (f9)a < fag. hence [ fgav < L.
Finally, since fag < fg and fag < KA, we have
(5.3.33) fag < (fg)p for B> KA.
This implies
(5.3.34) L<sw [(fg)nav = [ fgav.
B
and hence we have (5.3.24). O

We now extend the change of variable formula in Theorem 5.1.20 to unbounded
functions. It is convenient to introduce the following notation. Given an open set
Q CR", wesay f € R¥(Q) provided f € R#(R") and f is supported on a compact
subset of .

Proposition 5.3.5. Let O and Q be open in R", G : O — Q a C* diffeomorphism.
If f € R¥(Q), then foG € R¥(O) and

(5.3.35) /f(y)dV(y):/f(G(:v))|detDG(x)|dV(x).
Q 16)

Proof. It suffices to establish this in case f > 0, which we assume from here. Then

(5.3.36) Q/ fadv S Q/ Fav.

We set ¢ = f oG and note that f4 o G = ¢ 4. Hence, by Theorem 5.1.20, for each
A € (0,00),

(5.3.37) / Faly) dV (y) = / 4(2)] det DG(z)] dV (x).
Q (@)

If f is supported on a compact set K C Q, then ¢4 is supported on G~(K) C O,
also compact, hence on which | det DG| has a positive lower bound. Hence an upper
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bound on the right side of (5.3.37) implies an upper bound on [ ¢4 dV, independent
of A, so ¢ € R*(R"). Then Proposition 5.3.4 implies ¢|det DG| € R¥(R"™) and
(5.3.38) / o4(2)] det DG(z)| dV (z) / ()| det DG()| dV (x).
Together (5.3.36)—(5.3.38) yield (5.3.35). O

One also has versions of Proposition 5.3.5 where f need not have compact
support. See Exercise 13 below for an example.

Our next result on a class of elements of R# (I) ties in closely with the example
in (5.3.1). As before, I is either R™ or a cell in R™.

Proposition 5.3.6. Let f : I — [0,00) and assume fa4 € R(I) for each A < oo.
Assume there are nested contented subsets of I:

(5339) UiDU;DU3D -, V(Uy) — 0.
Assume f(1 — xu,) € R(I) for each v and that there exists C' < 0o such that
(5.3.40) / FdvV =J,<C Vo

U,

Then f € R#(I) and

(5.3.41) J, 2| fav.
/

Proof. The hypothesis (5.3.40) implies J,  J for some J € [0,00). Also, since
0< fa < f, we have

(5.3.42) / fadV <J, Vu,A.
U,

Furthermore,

(5.3.43) / fadV < AV(U,),
Ul/

)

(5.3.44) / FadV < T+ AV(U,), Vi, A,

T

hence

(5.3.45) / FadV <J. VA
T

It follows that f € R*(I) and

(5.3.46) /de <J

1
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On the other hand,
(5.3.47) /de > / Fdv =,
T U,
for each v, so we have (5.3.41). O

Monotone convergence theorem

We aim to establish a circle of results known as monotone convergence the-
orems. Here is the first result (which will be strengthened in Proposition 5.3.9).

Proposition 5.3.7. Let R C R"™ be a cell. Assume fr, € R(R). Then

(5.3.48) Ful2) N\, 0 VaceR:>/fde\O.
R

Proof. It suffices to assume V(R) =1. Say 0 < f; < K on R,soalso 0 < fi < K.
‘We have

(5.3.49) fedV N a,
/

for some a > 0, and we want to show that « = 0. Suppose a > 0. Pick a partition
Py of R such that Ip (fr) > /2. Thus fr > ¢ > 0 for some ¢, € PK(R),
constant on the interior of each cell in Py, with integral > «/2. The contribution
to [ @k dV from the cells on which ¢y < a/4 is < a/4, so the contribution from
the cells on which ¢; > «/4 must be > a/4. Since ¢, < K on R, it follows that
the latter class of cells must have total volume > «o/4K. Consequently, for each k,
there exists Sy C R, a finite union of cells in Py, such that

(5.3.50) V(S)) > % and fy > % on Si.
Then f, > «/4 on Sy, for all £ < k. Hence, with
(5.3.51) O = U Sk,
k>¢
we have
o o
(5.3.52) cont™ (Op) > 7d fo> 1 on Oy.

The hypothesis f; \, 0 on R implies
(5.3.53) O\ 0 asl / oo.

Without loss of generality, we can take Sy open in (5.3.50), hence each Oy is open.
The conclusion of Proposition 5.3.7 is hence a consequence of the following, which
implies that (5.3.52) and (5.3.53) are contradictory. O
Proposition 5.3.8. If Oy C R are open sets, for £ € N, then

(5.3.54) Op \ ) = cont ™ (Oy) \, 0.
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Proof. Assume O, \ 0. If the conclusion of (5.3.54) fails, then

(5.3.55) cont™ (Op) \\ b
for some b > 0. Passing to a subsequence if necessary, we can assume
(5.3.56) cont™(Of) < b+, 5y <27°-107% b,

Then we can pick K; C Oy, a compact union of finitely many cells in a partition of
R, such that

(5.3.57) V(Ky) > b—dy.
We claim that Ny K, # (), which will provide a contradiction.
Place K7 U K5 in a finite union C; of cells, contained in O;. We then have
V(KiNKy) >V (K;)—V(Ci\ Ka)
> b— (201 + d2),

since V(C1 \ K2) = V(C1) — V(K3) < cont (01) — V(K2) < 01 + d2. Next, place
(K1 N K3) U K3 in a finite union Cs of cells, contained in Q3. Then
VIKiNKyNKs) >V(KiNKy)—V(Cy \ K3)

>b— (201 + (52) — (2(52 + d3),

since V(C2 \ K3) = V(C2) — V(K3) < cont™(0Oz) — V(K3) < dz + d3. Proceeding in
this fashion, we get

(5.3.58)

(5.3.59)

k k
(5.3.60) V(ﬂ K4> > b3 (200 +6041) > 0, VE.
=1 =1
Thus, K E= ﬁéf:lK ¢ is a decreasing sequence of nonempty compact sets. Hence
(5.3.61) (10D () Ke #0,
>1 >1
contradicting the hypothesis of (5.3.54). O

Having Proposition 5.3.7, we proceed to the following significant improvement.

Proposition 5.3.9. Assume fi € R¥(R). Then

(5.3.62) feo(z) WO Yz e R = /fk dV N\, 0.
R

Proof. Again we have (5.3.49) for some o« > 0 and again we want to show that
a = 0. For each A € (0,00) and each k € N, form (fx)a, as in (5.3.3). Thus
(f&)a € R(R), and the hypothesis of (5.3.62) implies (fx)a \ 0 as k / oo. Thus,
by Proposition 5.3.7,

(5.3.63) /(fk)A dV 0 as k — oo, foreach A < oc.
R
We note that

(5.3.64) frer1(@) = (frg1)alx) < fu(z) — (fr)a(z)
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for each z € R, k € N. In fact, if fr(z) < A (so fry1(x) < A), both sides of

(5.3.64) are 0, if fr41(z) > A (so fr(x) > A), we get fry1(z) — A < fi(x) — A, and

if frr1(z) < A< fi(x), we get 0 < fr(z) — A. Tt follows that, for each A < oo,

(5.3.65) /[fk — (fr)aldV Ny, as k— oo.

R

However, for each § > 0, there exists A = A(d) < oo such that [, [f1—(f1)a]dV <.

This forces o = 0, and proves Proposition 5.3.9.

Applying Proposition 5.3.9 to fr = g — gk, we have the following.

Corollary 5.3.10. Assume g, gr € R¥(R). Then

(5.3.66) gr(x) SN g(xz) Ve € R—= /g;c dVv /‘/ng.
R R

Finally, we remove the support constraint.

Proposition 5.3.11. Assume g, g, € R*(R"). Then

(5.3.67) ge(z) S g(z) Ve eR" = /gk dV/‘/ng.

Rn R™

Proof. Clearly
(5.3.68) /gk dV Se, and ¢ < /ng.
Rﬂ, Rﬂ,

Now, given € > 0, there is a cell R C R" such that

(5.3.60) / (Il + o)) dV < e,
R7\R

and Corollary 5.3.10 gives
(5.3.70) /g;c av.- /ng.
R R

We deduce that ¢ > [, gdV —¢ for all € > 0, so (4.137) holds.

O

O

In the Lebesgue theory of integration, there is a stronger result. Namely, if
gr are integrable on R™ and gi(z) * g(z) for each x, and if there is a uniform
upper bound fRn gr dr < B < oo, then g is integrable on R™ and the conclusion of

(5.3.67) holds. Such a result can be found in [16].
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.|
Exercises

Given BCR" and f: B — R, we say f € R*(B) provided g € R*(R"), where
g(z) = f(z) for z € B,
0 for z¢ B.

1. Take B = {z € R™ : |z| < 1/2}, and let f : B — R*. Assume f is continuous
on B\ 0. Show that

feR*(B) / fdV is bounded as € 0.

|z|>e
2. With B C R" as in Exercise 1, define ¢, : B — R by

1
®(z) = ——m,
" |log || |”

for 2 # 0. Say ¢,(0) = 0. Show that q, € R*(B) < b > 1.

3. Show that ,
f(@) = |z|"% 1" e R*(R") <= a < n.
4. Compute
log || qv
ol

Hint. See Exercise 6 of §1.4.

5. Compute

/|x|_ae_|“‘2 dx,

R’VL
fora=n—1, n—2.

6. Peek ahead to §6.1 and express the integral in Exercise 5 above in terms of the
Gamma function, for general a < n.

7. Take
T={(zy) eR?:0<y <z <1},
and define
fa:T =R, folz,y) =z~
Determine for which a € Rt we have f, € R#(T), and compute

/;v*“ dz dy,

T
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for such a.

8. Let D = {z € R?: |z| < 1}. Compute
Ja-japyaa

D
for a < 1. Also compute

2(1 — |af?)7 dA,
T129(1 — |z|*) " dA,

23 (1— |z*)~* dA.

U\ D\ U\

Hint. Use symmetries. Show that the last integral is independent of j, and sum
over j.
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5.4. Outer measure and Riemann integrability

Given a bounded set S C R"™, its upper content is defined in (5.1.15) and an equiv-

alent characterization given in (5.1.17). A related quantity is the outer measure of
S, defined by

(5.4.1) m*(S) = inf{z V(Ry): Ry C R cells, 5 C | Rk}.
E>1 k>1
The difference between (5.1.17) and (5.4.1) is that in (5.1.17) we require the cover

of S by cells to be finite and in (5.4.1) we allow any countable cover of S by cells.
Clearly (5.4.1) is an inf over a larger collection of objects than (5.1.17), so

(5.4.2) m*(9) < cont™(9).

We get the same result in (5.4.1) if we require

(5.4.3) scly Ry
k>1

(just expand each Ry by a factor of (14 27¥¢)). Since any open cover of a compact
set has a finite subcover (see Proposition 2.1.8), it follows that

(5.4.4) S compact = m*(S) = cont™(S).

On the other hand, it is readily verified from (5.4.1) that
(5.4.5) S countable == m*(S) = 0.

For example, if R={z € R" : 0 < z; <1, Vj}, then

(5.4.6) m*(RNQ") =0, but contt(RNQ") =1,

the latter result by (5.1.18).

We now establish the following integrability criterion, which sharpens Proposi-
tion 5.1.6.

Proposition 5.4.1. Let f: R — R be bounded, and let S C R be the set of points
of discontinuity of f. Then

(5.4.7) m*(8) =0 = f € R(R).

Proof. Assume |f| < M and pick € > 0. Take a countable collection {Ry} of
cells that are open (in R) such that S C Up>1 Ry and ), -, V(Ry) < e. Now f is
continuous at each p € R\ S, so there exists a cell Rf, op_en (in R), containing p,
such that supps f —infpe f < . Then {Re : ke NJU{RY : pe R\ S} is an
open cover of R. Since R is compact, there is a finite subcover, which we denote
{Ry,...,RNn,RY,... R¥}. We have
N
(5.4.8) ZV(Rk) <e and sup f—inf f<e, Vje{l,...,M}.
# B

k=1 RJ

Recall that R = I; x --- x I, is a product of n closed, bounded intervals. Also
each cell R, and Rf is a product of intervals. For each v € {1,...,n}, take the
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collection of all endpoints in the vth factor of each of these cells, and use these to
form a partition of I,,. Taking products yields a partition P of R. We can write

P={Lp:1<k<u}

(5.4.9) _ (kng) U (kLEJBLk)’

where we say k € A provided Ly is contained in a cell of the form R;% for some
je{l,...,M}, as in (5.4.8). Consequently, if k& € B, then L, C R, for some

te{l,...,N}, so

N
(5.4.10) U Lz c | Re.
keB (=1
‘We therefore have
(5.4.11) Z V(Lg) <e, and sup f—inf f<e, VjeA
keB L Ls

It follows that
0<Tp(f) = Ip(f) <D 2MV(Ly) + Y eV (L;)
(5.4.12) keB jeA
< 2eM +eV(R).

Since € can be taken arbitrarily small, this establishes that f € R(R).

]

REMARK. The condition (5.4.7) is sharp. That is, given f : R — R bounded,
f € R(R) & m*(S) = 0. Proofs of this can be found in standard measure theory

texts, such as [16].
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Chapter 6

Calculus on surfaces

Having developed differential and integral calculus on open sets in n-dimensional
FEuclidean space, we now pursue notions of calculus on a higher level, for surfaces
in R™, and more generally for a class of objects known as “manifolds.”

In §6.1 we define the notion of a smooth m-dimensional surface in R™ and study
properties of these objects. We associate to such a surface a “metric tensor,” and
make use of this to define the integral of functions on a surface. This includes
the study of surface area. Examples include the computation of areas of higher
dimensional spheres. We also explore integration on the group of rotations on R™,
leading to the notion of “averaging over rotations.” In this section, we see that the
inverse function and implicit function theorems from §4.3 are of crucial importance
for differential calculus on surfaces, and the change of variable formula from §5.1 is
crucial for integral calculus on surfaces.

In §6.2 we discuss constrained maxima and minima, that is, extremal points
for a smooth function f : S — R, where S C R" is a smooth surface. We bring in
the method of Lagrange multipliers to find these relative extrema.

In §6.3, we establish some important integral identities due to Gauss, Green,
and Stokes. This class of identities can be thought of as the natural expression
of the fundamental theorem of calculus in several variables. Here they are derived
for domains  C R™ (specializing to n = 2 for Green’s formula and to n = 3 for
Stokes’ formula). They will be studied on a much more general level in the following
chapter.

In §6.4, we introduce a class of objects more general than surfaces, called man-
ifolds. Manifolds can also be endowed with metric tensors. These are called Rie-
mannian manifolds, and one can again define the integral of functions.

We also have a section on polar decomposition of matrices, used to prove that
the set Gl (n,R) of n X n real matrices with positive determinant is connected,
and a section on partitions of unity, useful to localize analysis on an n-dimensional
surface (or manifold) to analysis on an open subset of R™.

223
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Figure 6.1.1. A coordinate chart ¢ and its thickening &

6.1. Surfaces and surface integrals

A smooth m-dimensional surface M C R" is characterized by the following property.
Given p € M, there is a neighborhood U of p in M and a smooth map ¢ : O — U,
from an open set O C R™ bijectively to U, with injective derivative at each point,
and continuous inverse ¢! : U — O. Such a map ¢ is called a coordinate chart on
M. We call U C M a coordinate patch. If all such maps ¢ are smooth of class C*,
we say M is a surface of class CF.

There is an abstraction of the notion of a surface, namely the notion of a
manifold, which we will discuss in §6.4. Examples include projective spaces and
other spaces obtained as quotients of surfaces.

If o : O — U is a C* coordinate chart, such as described above, or more
generally ¢ : O — R" is a C* map with injective derivative, and ¢(zg) = p, we set

(6.1.1) T, M = Range Dy(xo),

a linear subspace of R™ of dimension m, and we denote by IN,M its orthogonal

complement. It is useful to consider the following map. Pick a linear isomorphism
A:R"™™ — N, M, let B"~" C R"™"™ be the unit ball, and define

(6.1.2) D:0OxB" ™ —R", &x,2)=¢)+ Az
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Figure 6.1.2. Coordinate charts

Thus ® is a C* map defined on an open subset of R". We call ® a thickening of .
See Figure 6.1.1 for an illustration, with m = 1, n = 2. Note that

(6.1.3) D®(zq,0) (;’)) = Do(z0)v + Aw,

so D®(x0,0) : R® — R” is surjective, hence bijective, so the Inverse Function
Theorem applies; ® maps some neighborhood of (zg,0) diffeomorphically onto a
neighborhood of p € R"™.

Suppose there is another C* coordinate chart, ¢ : Q — U. Since ¢ and 1) are
by hypothesis one-to-one and onto, it follows that

(6.1.4) F=9ylop:0-0Q

is a well defined map, which is one-to-one and onto. See Figure 6.1.2.

EXAMPLE. Take the unit disk D = {(x,y) € R? : 22 + y? < 1}, and define

(6.1.5) p:D— 8% p(r,y) = (z,y, V1 - 22— y?).
If we take p = (0,0,1), then (6.1.2) becomes

(6.1.6) O(z,y,2) = (z,y, 2+ /1 —a2—y?), ze(-1,1).
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Note that ¢ maps D one-to-one and onto the upper half of S2, i.e., {(x,y,2) € S?:
z > 0}. Similarly one has a map

(6.1.7) Y:D— 8% (u,v) = (V1 —u®—v2u,v),

which takes D one-to-one and onto the hemisphere {(z,y,2) € 5% : x > 0}. If we
take

(6.1.8) O={(z,y)€eD:z>0}, Q={(u,v)€D:v>0}
then
(6.1.9) 0:0—U, ¢v:Q—1U,

where U is the intersection of these two hemishperes, i.e., U = {(z,y,2) € S? : z >
0,z > 0}. In this case, we have F': O — (, defined by F(z,y) = (u,v). We see

that u =y, v =1/1— 122 — 92, so
(6110) F(.’L‘,y) = (y7 \% 1—22%— y2)

Note: if we want p € U, we might take p = (1,0,1)/v/2, and adjust the thickening
map @ accordingly.

1

Returning to generalities, we see from (6.1.4) that F and F~! are continuous.

In fact, we can say more.

Lemma 6.1.1. Under the hypotheses above, F is a C* diffeomorphism.

Proof. It suffices to show that F' and F~! are C* on a neighborhood of zy and
Yo, respectively, where p(zo) = ¥(yo) = p. Let us define a map ¥ in a fashion
similar to (6.1.2). To be precise, we set T M = Range DY(yo), and let N M be
its orthogonal complement. (Shortly we will show that pr = T,M, but we are
not quite ready for that.) Then pick a linear isomorphism B : R*~™ — NPM and
consider

(6.1.11) U: QxR — R", Y(y,z)=1(y) + Bz.

Again, ¥ is a C* diffeomorphism from a neighborhood of (yo,0) onto a neighbor-
hood of p. To be precise, there exist neighborhoods O of (20,0) in O x R*~™ Q
of (yo,0) in Q@ x R"™ and U of p in R" such that

(6.1.12) ®:0—U, and V:Q—U
are C* diffeomorphisms.

It follows that \I/*1~o ®:0 = QisaCk diffeomorphism. Now note that, for
(x,0) € O and (y,0) € 9,

(6.1.13) U1 o &(2,0) = (F(a), ) o W(y,0) = (F~'(y),0).

In fact, to verify the first identity in (6.1.13), we check that
V(F(x),0) = (F(x ))+BO
(6.1.14) =T e @)
= ¢(x)
= ¢(z,0).
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The identities in (6.1.13) imply that F and F~! have the desired regularity. O

Thus, when there are two such coordinate charts, p : O — U, ¢ : Q — U, we
have a C* diffeomorphism F : O — € such that

(6.1.15) p=1oF.
By the chain rule,

(6.1.16) Dy(x) = DY(y) DF(z), y= F(x).

In particular this implies that Range Dy(z) = Range D) (yo), so T, M in (6.1.1) is
independent of the choice of coordinate chart. It is called the tangent space to M
at p.

REMARK. An application of the inverse function theorem related to the proof of
Lemma 6.1.1 can be used to show that if O C R™ is open, m < n, and ¢ : O — R"
is a C* map such that Dp(p) : R™ — R™ is injective, (p € O), then there is a
neighborhood O of p in O such that the image of O under @ is a C* surface in R™.
Compare Exercise 11 in §4.3.

Metric tensors

We next define an object called the metric tensor on M. Given a coordinate
chart ¢ : O — U, there is associated an m x m matrix G(z) = (g;x(z)) of functions
on O, defined in terms of the inner product of vectors tangent to M :

Op  dp Z&pe Iy

11 () = Dp(a)e; - D -
(6.1.17) 9ik(x) = Dp(z)e; - Do(x)ex dx;  Oxy « Oz Oz’

where {e; : 1 < j < m} is the standard orthonormal basis of R"™. Equivalently,
(6.1.18) G(z) = Do(x)" Dy(z).

We call (g;x) the metric tensor of M, on U, with respect to the coordinate chart ¢ :
O — U. Note that this matrix is positive-definite. From a coordinate-independent
point of view, the metric tensor on M specifies inner products of vectors tangent
to M, using the inner product of R"™.

If we take another coordinate chart ¢ : Q — U, we want to compare (g;) with
H = (hj), given by

(6.1.19) hir(y) = DY(y)e; - DY (y)ex, ie., H(y) = Dp(y)" Di(y).

As seen above we have a diffecomorphism F' : O —  such that (6.1.15)—(6.1.16)
hold. Consequently,

(6.1.20) G(z) = DF(z)" H(y) DF(z), for y= F(x),

or equivalently,

OF, OF,
(6.1.21) gl Zax 833: oY)
J
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Surface integrals

We now define the notion of surface integral on M. If f : M — R is a continuous
function supported on U, we set

(6.1.22) fdS = [ foop(x)g(x) dz,
fres=freen

where
(6.1.23) g(x) = det G(x).
We need to know that this is independent of the choice of coordinate chart ¢ : O —

U. Thus, if we use ¢ : Q — U instead, we want to show that (6.1.22) is equal to

Jo Fov(y) V/h(y) dy, where h(y) = det H(y). Indeed, since fotoF = fop, we
can apply the change of variable formula, Theorem 5.1.20, to get

©120) [ £out) VA dy= [ fo (@) VAE®D) ldet DF(@)] da.
Q (@)

Now, (6.1.20) implies that

(6.1.25) Vg(x) =|det DF(x)| \/h(y),

so the right side of (6.1.24) is seen to be equal to (6.1.22), and our surface integral
is well defined, at least for f supported in a coordinate patch. More generally, if
f: M — R has compact support, write it as a finite sum of terms, each supported
on a coordinate patch, and use (6.1.22) on each patch. Using (5.1.13), one readily
verifies that

(6.1.26) (fi+ fo)dS= [ frdS+ [ f2dS,
R

if f; : M — R are continuous functions with compact support.

Let us pause to consider the special cases m = 1 and m = 2. For m = 1, we are
considering a curve in R™, say ¢ : [a,b] — R™. Then G(z) is a 1 x 1 matrix, namely
G(z) = |¢'(z)]?. If we denote the curve in R™ by =, rather than M, the formula
(6.1.22) becomes the arc length integral (compare (3.1.15))

b
(6.1.27) /f ds :/ foo(z) |¢ (x)| d.

In case m = 2, let us consider a surface M C R?, with a coordinate chart ¢ : O —
U C M. For f supported in U, an alternative way to write the surface integral is

(6.1.28) /f ds = /f o p(x) |01¢ X Oa¢p| dr1das,
M o

where u x v is the cross product of vectors v and v in R3. To see this, we compare
this integrand with the one in (6.1.22). In this case,

010 Or1p - 0
(6.1.29) g = det (ii . ai:i 8;:2 , azi) = |010]?020]” — (D160 - Dap)?.
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Recall from (2.5.11) that |u x v| = |u| |v| |siné]|, where 8 is the angle between u
and v. Equivalently, since u - v = |u| |v| cos#,
(6.1.30) lu x v]* = [u]v]* (1 = cos®0) = [ul?|v]* — (u-v)>

Thus we see that [01¢ x 02| = /g, in this case, and (6.1.28) is equivalent to
(6.1.22). See Exercises 1521 for applications of (6.1.28).

An important class of surfaces is the class of graphs of smooth functions. Let
u € C1(Q), for an open  C R"™1, and let M be the graph of z = u(z). The map
¢(z) = (z,u(z)) provides a natural coordinate system, in which the metric tensor
formula (6.1.17) becomes
Ou Ou

(6131) gjk(x) = 5jk + 8755363%

If u is C*t, we see that g, is continuous. To calculate g = det(g;x), at a given point
p € Q, if Vu(p) # 0, rotate coordinates so that Vu(p) is parallel to the x; axis. We
obtain

(6.1.32) VI = (14 |Vul?)

(See Exercise 31 for another take on this formula.) In particular, the (n — 1)-
dimensional volume of the surface M is given by

(6.1.33) Vo a(M) = [dS = [ (1+ |Vu(@)?)" da.
[==]

1/2

Particularly important examples of surfaces are the unit spheres S"~1 in R,
(6.1.34) Sl ={r eR™: |z| = 1}.

Spherical polar coordinates on R™ are defined in terms of a smooth diffeomorphism

(6.1.35) R:(0,00) x S" ' — R"\ 0, R(r,w)=rw.

Let (h¢m) denote the metric tensor on S™~! (induced from its inclusion in R™)
with respect to some coordinate chart ¢ : @ — U C S"!. Then we have a
coordinate chart ® : (0,00) x O — U C R” given by ®(r,y) = re(y). Take
Yo=7, Yy = (Y1,...,Yn—1). In the coordinate system ® the Euclidean metric tensor
(ejx) is given by

oo = 00® - o® = p(y) - p(y) = 1,
eoj:60<I>~8j<1>=so(y)'aj<ﬂ(y):07 l<jsn-1
ejr =200 Opp = 1Ry, 1<,k <n—1.

The fact that ¢(y)-0;¢(y) = 0 follows by applying 9/0y; to the identity ¢(y)-p(y) =
0. To summarize,

1
(6.1.36) (e) = < rwm) .
Now (6.1.36) yields

(6.1.37) Ve =r""Vh.
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We therefore have the following result for integrating a function in spherical polar
coordinates.

(6.1.38) / F(z) da = / [ /0 h f(m)rnfldr} dS(w).
i

Sn—1
See (5.1.137)—(5.1.141) for the case n = 3 (with special coordinates on S?).

We next compute the (n — 1)-dimensional area A,,_; of the unit sphere S~ C
R™, using (6.1.38) together with the computation

(6.1.39) /e—W dz = 7"/2,
R’n

from (5.1.156). First note that, whenever f(z) = ¢(|z|), (6.1.38) yields

(6.1.40) /<p(|m|) dr = An_1 /OOO o(r)r™1 dr.
]R'n.

_7-2

In particular, taking ¢(r) = e~"" and using (6.1.39), we have

(6.1.41) 72 = Anfl/ el g = %Anq/ e 5521 (s,
0 0

where we used the substitution s = 72 to get the last identity. We hence have

27.rn/2

I'(g)

(6.1.42) Ap1 =
where I'(z) is Euler’s Gamma function, defined for z > 0 by

(6.1.43) I'(z) :/ e %5t ds.
0

We need to complement (6.1.42) with some results on I'(z) allowing a computation
of I'(n/2) in terms of more familiar quantities. Of course, setting z = 1 in (6.1.43),
we immediately get

(6.1.44) r(1) =1

Also, setting n =1 in (6.1.41), we have
/2 = 2/ e dr :/ e °s 2 ds,
0 0
or

(6.1.45) F(%) — /2,

We can proceed inductively from (6.1.44)-(6.1.45) to a formula for I'(n/2) for any
n € Z*, using the following.

Lemma 6.1.2. For all z > 0,
(6.1.46) L(z+1) =z2I(z2).
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Proof. We can write

*<rd e d
INz+1) = —/0 (ge_s)sz ds = /0 e * g(s’z) ds,
the last identity by integration by parts. The last expression here is seen to equal
the right side of (6.1.46). O

(G

Consequently, for k € ZT,
1 1
= —1)! —) = —Z)...
(6.1.47) k) = (k-1 T(k+ 2) (k )
Thus (6.1.42) can be rewritten
2k 2k
(6148) Azkfl - m, AQk —

The rotation group, and averaging over rotations

We discuss another important example of a smooth surface, in the space M (n, R)
~R" of real n x n matrices, namely

(6.1.49) SO(n) ={T € M(n,R) : T'T = I, detT > 0},

(hence detT = 1). To obtain a coordinate system, we bring in the exponential
map,

(6.1.50) Exp: M(n,R) — M(n,R),
defined by
1
_ X _ Lok
(6.1.51) Exp(X) =¥ = kz X"
=0

As noted in (4.3.31)—(4.3.33), Exp is smooth and
(6.1.52) DExp(0)Y =Y, VY € M(n,R),

Hence the Inverse Function Theorem implies that there is a ball 2 centered at 0 in
M (n,R) that is mapped diffeomorphically by Exp onto a neighborhood € of I in
M(n,R). Now we have the identities

(6.1.53) Exp X' = (Exp X)!, Exp(—X)= (ExpX)~!,
for all X € M(n,R) (see (C.4.7)), and these imply that

(6.1.54) Exp : Skew(n) — SO(n),

where

(6.1.55) Skew(n) = {X € M(n,R) : X' = —X}.

Since Exp : 2 — Qisa diffeomorphism, we have, for X € Q, A =Exp X € (NZ,
(6.1.56) A€ SO(n) <= X € Skew(n).

Thus there is a neighborhood O of 0 in Skew(n) that is mapped by Exp diffeo-
morphically onto a smooth surface U C M(n,R), of dimension m = n(n — 1)/2.
Furthermore, U is a neighborhood of I in SO(n).
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For general T' € SO(n), we can define maps
(6.1.57) or: O — SO(n), ¢r(A) =T Exp(4),

and obtain coordinate charts in SO(n), which is consequently a smooth surface of
dimension n(n — 1)/2 in M(n,R). Note that SO(n) is a closed bounded subset of
M (n,R); hence it is compact. We call SO(n) the rotation group on R™

Note that, by (6.1.52)—(6.1.56), the tangent space to SO(n) at the identity
element I is

(6.1.58) T;SO(n) = Skew(n).
Hence, for U € SO(n),
TySO(n) ={UA: A € Skew(n)}

(6.1.59) IS
={AU : A € Skew(n)}.

We use the inner product on M (n,R) computed componentwise; equivalently,
(6.1.60) (A,B) = Tr (B'A) = Tr (BA").

See §2.4. This produces a metric tensor on SO(n). The surface integral over SO(n)
has the following important invariance property.

Proposition 6.1.3. Given f € C(SO(n)), if we set

(6.1.61) prf(X) = f(XT), Mf(X)=f(TX),
for T, X € SO(n), we have

(6.1.62) / prf dS = / Arf dS = / fds.

SO(n) S0(n) 50(n)
Proof. Given T € SO(n), the maps Rr,Lr : M(n,R) — M(n,R) defined by
Rp(X) = XT, Lp(X) = TX are easily seen from (6.1.60) to be isometries. Thus

they yield maps of SO(n) to itself which preserve the metric tensor, proving (6.1.62).
O

Since SO(n) is compact, its total volume V (SO(n)) = fso 1 dS is finite.
We define the integral with respect to “Haar measure”

6.1.63 )dg = ds.
(6.1.63) / f(g)dg = SO / !
SO(n) SO (n)

This is used in many arguments involving “averaging over rotations.”
Extended notion of coordinates

Basic calculus as developed in this text so far has involved maps from one
Euclidean space to another, of the type F : R® — R™. It is convenient and useful
to extend our setting to F': V. — W, where V and W are general finite-dimensional
real vector spaces. There is the following notion of the derivative.
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Let V and W be as above, and let 2 C V be open. We say F': Q — W is
differentiable at x € Q provided there exists a linear map L : V' — W such that,
for y € V small,

(6.1.64) F(zx +y) = F(x)+ Ly + r(z,y),
with r(z,y) — 0 faster than y — 0, i.e.,

(6.1.65) |T(||$y”y> —50 as y— 0.

For this to be meaningful, we need norms on V and W. Often these norms come

from inner products. See Appendix C.1 for a discussion of inner product spaces. If
(6.1.64)—(6.1.65) hold, we set DF(z) = L, and call the linear map

DF(z):V — W

the derivative of F at z. We say F' is C! if DF(z) is continuous in x. Notions of F
in C* are produced in analogy with the situation in §4.1. Of course, we can reduce
all this to the setting of §4.1 by picking bases of V and W.

Often such V' and W arise as linear subspaces of R, such as T, M in (6.1.1),
or V. = Np,M, mentioned right below that. As noted there, we can take a linear
isomorphism of such V with R* for some k, and keep working in the context of
maps between such standard Euclidean spaces, as in (6.1.2). However, it can be
convenient to avoid this distraction, and, for example, replace (6.1.2) by

(6.1.66) ®:0x N,M —R",  ®(x,2) = p(x) + 2,
and (6.1.3) by

(6.1.67) D®(x0,0) (;’)) = D(x0)v + w.

In order to carry out Lemma 6.1.1 in this setting, we want the following version of
the Inverse Function Theorem.

Proposition 6.1.4. Let V and W be real vector spaces, each of dimension n. Let
F be a C* map from an open neighborhood Q of po € V to W, with qo = F(po),
k > 1. Assume the derivative

DF(po) : V= W s an isomorphism.

Then there exist a neighborhood U of py and a neighborhood U of qo such that
F:U — U is one-to-one and onto, and F~': U — U is a C* map.

While Proposition 6.1.4 is apparently an extension of Theorem 4.3.1, there is
no extra work required to prove it. One can simply take linear isomorphisms A :
R"™ — V and B : R® — W and apply Theorem 4.3.1 to the map G(z) = B~ F(Ax).
Thus Proposition 6.1.4 is not a technical improvement of Theorem 4.3.1, but it is
a useful conceptual extension.

With this in mind, we can define the notion of an m-dimensional surface M C V
(an n-dimensional vector space) as follows. Take a vector space W, of dimension
m. Given p € M, we require there to be a neighborhood U of p in M and a smooth
map ¢ : O — U, from an open set O C W bijectively to U, with an injective
derivative at each point. We call such a map a coordinate chart. If all such maps
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are smooth of class C*, we say M is a surface of class C*. As a further wrinkle, we
could take different vector spaces W), for different p € M, as long as they all have
dimension m. The reader is invited to formulate the appropriate modification of
Lemma 6.1.1 in this setting.

Submersions

Let V and W be finite dimensional real vector spaces, 2 C V open, and F :
QO — W a C* map, k > 1. We say F is a submersion provided that, for each = € €,
DF(x): V — W is surjective. (This requires dim V' > dimW.) We establish the
following Submersion Mapping Theorem, which the reader might recognize as a
variant of the Implicit Function Theorem. In the statement, ker T' denotes the null
space
kerT={v eV :Tv=0},

ifT:V — W is a linear transformation.

Proposition 6.1.5. With V,W, and Q C V as above, assume F : Q — W is a C*
map, k> 1. Fixp e W, and consider

(6.1.68) S={zxeV:F(z)=np}

Assume that, for each x € S, DF(x) : V. — W is surjective. Then S is a C*
surface in Q. Furthermore, for each x € S,

(6.1.69) T.S =ker DF(x).

Proof. Given q € S, set K; = ker DF'(¢) and define

(6.1.70) Gg:V—=WaK, Gyiaz)=(F),P(z—q)),

where P, is a projection of V' onto K,. Note that

(6.1.71) Gyla) = (F(g),0) = (p,0).

Also

(6.1.72) DGy (z) = (DF(x),P,), xze€V.

We claim that

(6.1.73) DG,(q) = (DF(q),P;): V — W & K, is an isomorphism.

This is a special case of the following general observation. O

Lemma 6.1.6. If A:V — W is a surjective linear map and P is a projection of
V onto ker A, then

(6.1.74) (A,P):V — W dker A is an isomorphism.
We postpone the proof of this lemma and proceed with the proof of Proposition
6.1.5. Having (6.1.73), we can apply the Inverse Function Theorem (Proposition

6.1.4) to obtain a neighborhood U of ¢ in V' and a neighborhood O of (p,0) in
W @ K, such that G, : U — O is bijective, with C* inverse

(6.1.75) G;':0—U, G'p0)=q.
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By (6.1.70), given z € U,

(6.1.76) x €8 < Gy(x) = (p,v), for some v € K.

Hence SNU is the image under the C* diffeomorphism G* of ON{(p,v) : v € K}.
Hence S is smooth of class C* and dim 7S = dim K,. It follows from the chain rule

that T,S C K, so the dimension count yields 7,5 = K,. This proves Proposition
6.1.5. Note that we have the following coordinate chart on a neighborhood of ¢ € S:

(6.1.77) Yq(v) = G;l(p7v), Vg : Qg = 5,
where €, is a neighborhood of 0 in T,S = K, = ker DF(q).

It remains to prove Lemma 6.1.6. Indeed, given that A : V — W is surjective,
the fundamental theorem of linear algebra implies dim V' = dim(W @ ker A), and it
is clear that (A, P) in (6.1.74) is injective, so the isomorphism property follows.

REMARK. In case V. = R"™ and W = R, DF(z) is typically denoted VF(x),
the hypothesis on DF(x) becomes VF(z) # 0, and (6.1.69) is equivalent to the
assertion that dimS =n — 1 and, for z € S,

(6.1.78) VF(z) L T,8.

Compare the discussion following Proposition 4.3.6.

EXAMPLE. Take F : R™ — R to be F(x) = |z|?, so the unit sphere S"~! is given
by

(6.1.79) Sl ={z eR™: F(z) = 1}.

We have

(6.1.80) VF(z) = 2z,

so VF is nowhere vanishing on S"~!. Thus (6.1.69) implies that, for z € S"~1,
(6.1.81) T,8" '={veR" :x-v=0}

We bring in another surface, called the tangent bundle of S™~1,
(6.1.82) TS" ' ={(z,v) eR" xR" :z € S" ! v e T, 8" !}
so, by (6.1.81),

(6.1.83) TS" ' = {(x,v) € R*": F(z,v) = (1,0)'},

where

(6.1.84) F:R™ R, F(z,v) = ('”2)
-

We see that

(6.1.85) DF(z,v): R*" — R?

is given by the 2n x 2 matrix

t
(6.1.86) DF(x,v)=<25; ;St)’ 2t = (21,...,20).
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We claim that D = DF(x,v) is surjective when (z,v) € TS"~!. To check surjec-

tivity, we examine
22t 0 (22 =«
t
DD = (vt xt> (0 x)

(6.1.87) a2 2
x x-v
= (296_0 ]2 ) € M(2,R).
Hence
(6.1.88) (z,v) €TS" ' = DD' = (3 (1)) ,

and Proposition 6.1.5 applies. The set T'S™~! is a smooth, (2n — 2)-dimensional
surface.

We next look at a related surface, the unit sphere bundle of S?~!, defined by

(6.1.89) S8 ={(x,v) € TS" " : o] =1},
that is,
(6.1.90) S8t = {(x,v) € R" x R™ : F(z,v) = (1,1,0)"},
where
|z
(6.1.91) F:R*™ 5 R3  F(x,v)= [ [v?
xr-v

We assume n > 2. We will show that Proposition 6.1.5 applies, to yield that SS™!
is a smooth (2n — 3)-dimensional surface. Indeed, we have

(6.1.92) DF(x,v): R*™ — R3,
given by
2280
(6.1.93) DF(z,v)=| 0 20|,
ot 2t
again with z* = (x1,...,2,). We claim that D = DF(z,v) is surjective when

(z,v) € SS™ 1. To see this, we compute

2zt 0
DDt = 0 2t (2‘” 0 ”>

f ¢ 0 2v =z
(6.1.94) v
o 4]x|? 0 2z v
= 0 4fv|? 22 v
2z-v 2z-v |z)*+ |v]?
Hence
4 0 0
(6.1.95) (r,v) € SS"'=DD'=(0 4 0],
0 0 2
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and we have surjectivity. Proposition 6.1.5 implies that SS™~! is a smooth surface
of dimension 2n — 3. Note that, for (a,b)! € R?",

a 2r-a
(6.1.96) DF(z,v) <b) = 20-b
v-a+x-b

Hence, for (z,v) € SS™71,

(6.1.97) T2y SS" 1 = {(Z) eR™:z-a=v-b=v-a+z-b= 0},

a linear subspace of R?” whose orthogonal complement is

(6.1.98) Nip) SS™1 = Span{ (g) (S) (;) }

Note that, when (z,v) € SS™~1, the three vectors on the right side of (6.1.98) are
mutually orthogonal.

We next illustrate Proposition 6.1.5 with another proof that
(6.1.99) SO(n) C M(n,R)

is a smooth surface, different from the argument involving (6.1.54)—(6.1.57). To get
this, we take

(6.1.100) V =M(n,R), W =Sym(n)={4Ae€ M(n,R): A= A"},
and

(6.1.101) F:V—W, FX)=X'X.

Now, given X, Y € V| Y small,

(6.1.102) FX+Y)=X'X+ XY +Y'X +O(|Y ||,

o)

(6.1.103) DF(X)Y = X'Y +Y'X.

We claim that

(6.1.104) X € SO(n) = DF(X): M(n,R) — Sym(n) is surjective.

Indeed, given A € Sym(n), i.e., A € M(n,R) and A® = A, and X € SO(n), we
have

1
(6.1.105) Y = XA= DF(X)Y = A

This establishes (6.1.104), so Proposition 6.1.5 applies. Again we conclude that
SO(n) is a smooth surface in M (n,R). By (6.1.69), the tangent space at X € SO(n)
is

(6.1.106) TxSO(n) =ker DF(X) ={Y € M(n,R) : X'Y +Y'X = 0}.
If we write Y = X B, we see that the defining condition is B + B! = 0, so
(6.1.107) TxSO(n) ={XB: B € Skew(n)}.
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Riemann integrable functions on a surface

Let M C R™ be an m-dimensional surface, smooth of class C'. We define
the class R.(M) of compactly supported Riemann integrable functions as follows,
guided by Proposition 5.1.13. If f : M — R is bounded and has compact support,
we set

1(5) =int{ [ gds g€ C.00), 9 2 £},

M

(6.1.108) l(f)zsup{/hdszheCC(M),héf},
M

where C.(M) denotes the set of continuous functions on M with compact support.
Then

(6.1.109) feR(M) <= 1(f) = I(f),

and if such is the case, we denote the common value by [ a J dS. Tt follows readily
from the definition and arguments produced in §5.1 that

fi,f2€R(M) = f1+ fo € Re(M) and
(6.1.110) (fi+ f2)dS = [ f1dS+ [ f.dS.
[ ms= s |

M

In fact, using (6.1.26) for functions that are continuous on M with compact support,
one obtains from the definition (6.1.108) that, if f; : M — R are bounded and have
compact support,

I(fi + fo) <T(f1) +I(f2), L(fr+ f2) > L(f1) + L(f2),

which yields (6.1.110). Also one can modify the proof of Proposition 5.1.22 to show
that

(6.1.111) fER(M), ue C(M) = uf € R.(M).

Furthermore, if ¢ : O — U C M is a coordinate chart and f € R.(U), then an
application of Proposition 5.1.13 gives

(6.1.112) fopeR(0), and /de:/f(ap(x))\/ng)daz,
M (@]

with g(z) as in (6.1.22)—(6.1.23). Given any f € R.(M), we can take a continuous
partition of unity {u;}, write f =3, f; =>_;u;f, and use (6.1.110)-(6.1.112) to
express | 1 J dS as a sum of integrals over coordinate charts.

If ¥ C M has compact closure, then
(6.1.113) cont™ ¥ = I(xx),

and ¥ is contented if and only if x5 € R.(M). In such a case, (6.1.113) is the
area of X. Given f: M — R, bounded and compactly supported, in parallel with
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(5.1.84) we say
f € €.(M) & the set X of points of discontinuity of f

6.1.114

( ) satisfies cont™ ¥ = 0.
We have

(6.1.115) C(M) C RAM),

and (again parallel to Proposition 5.1.13) if f: M — R is bounded and compactly
supported,

1(5)=int{ [ gds:ge ). 9 1},
(6.1.116) M
I(f) = sup{/hds he (M), h< f}.
M

One can proceed from here to define the spaces
(6.1.117) R(M), R*(M),
and establish properties of functions in these spaces, in analogy with work in §5.1
on R(R") and R#(R"). We leave such an investigation to the reader.

.|
Exercises

1. The map z : R x R — S? given by
2(0,1) = (sinf cos 1, sin O sin ), cos 6)

is a smooth map of R x R onto S2. See Figure 6.1.3. Produce the metric tensor
and area element on S? in these coordinates. Show that

™ 2
/de’:/ / f(sinfsin, sin @ sin 1), cos @) sin 0 di) db.
o Jo

SZ
Deduce that -
A(S?) = 277/ sin 6 df = 4.
0

Compare this with the formula (6.1.42) for A,_;, with n = 3.

2. Apply (6.1.40) with ¢ = x[o,1) to compute the volume of the unit ball B" =
{z € R": |z| < 1}. Compare the result with other approaches to the computation
of V(B™) given in Chapter 5.

3. Taking the upper half of the sphere S™ to be the graph of z,,1 = (1 — |z]?)/2,
for x € B™, the unit ball in R™, deduce from (6.1.33) and (6.1.40) that

1 n—1

.
A, =2A4,_ —
' o V1—1r2

w/2
r=2A,_1 / (sin 6)"~1 do.
0
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Zz3
z(0,%)
0
(]
o (cos ), sin, 0)

Figure 6.1.3. Spherical coordinates on S2
Use this to get an alternative derivation of the formula (6.1.48) for A,,.
Hint. Rewrite this formula as
s
A, = Ap_1bp_1, by = / sin® 0 d6.
0
To analyze by, you can write, on the one hand,
s
brso = by — / sin® @ cos? 0 db,
0
and on the other, using integration by parts,
s
d
b = cos 0 — sin*T1 0 db.
o= [ eos0

Deduce that
k+1

— b
ktr2 "

brt2 =

4. Suppose M is a surface in R™ of dimension 2, and ¢ : O — U C M is a coordinate
chart, with O C R2. Set pji(z) = (p;(2), ¢r(x)), so pjr : O — R?. Show that the

formula (6.1.22) for the surface integral is equivalent to

/f dS:/fogp(x) Z(det Dgojk(x))2 dz.
M O

j<k




FExercises 241

Hint. Show that the quantity under ./ is equal to (6.1.29).

5. If M is an m-dimensional surface, ¢ : O — M C M a coordinate chart, for
J=(J1,.-yJm) set

(pJ(‘r) = (Sajd(x)v"'v(pjm(x))v wJ O —R™.
Show that the formula (6.1.22) is equivalent to

/f ds = /fogo(;r}) Z (det DgoJ(x))2 dx.
M o

J1<-<Jm

Hint. Reduce to the following. For fixed zy € O, the quantity under Ve is equal
to g(x) at = o, in the case Dp(zo) = (Dp1(x0), ..., Dem(w0),0,...,0).

6. Let M be the graph in R"™! of 2,41 = u(x), € O C R™. Show that, for
p = (z,u(z)) € M, T,M (given as in ((6.1.1)) has a 1-dimensional orthogonal

complement N, M, spanned by (—Vu(z),1). We set N = (1+ |Vu|2)71/2(7Vu, 1),
and call it the (upward-pointing) unit normal to M.

7. Let M be as in Exercise 6, and define N as done there. Show that, for a
continuous function f : M — R**1,

/f -NdS = /f(x,u(m)) (=Vu(z),1) da.
M o
The left side is often denoted [,, f - dS.

8. Let M be a 2-dimensional surface in R3, covered by a single coordinate chart,
¢ : O — M. Suppose f: M — R3? is continuous. Show that, if fM f-dS is defined
as in Exercise 7, then

[ o5 = [ (000D - 0ng x o)
M 0

9. Consider a symmetric n x n matrix A = (a;i) of the form a;;, = v;v,. Show that
the range of A is the one-dimensional space spanned by v = (vy,...,v,) (if this is
nonzero). Deduce that A has exactly one nonzero eigenvalue, namely A = |v|?. Use
this to give another derivation of (6.1.32) from (6.1.31).

Hint. Show that Ae; = vj;v, for each j.

10. Let © € R™ be open and u : © — R be a C* map. Fix ¢ € R and consider
S={zeQ:u(x)=c}
Assume S # () and that Vu(z) #0 for all z € S.

As seen after Proposition 6.1.5, S is a C* surface of dimension n — 1, and,
for each p € S, T,,S has a 1-dimensional orthogonal complement N,S spanned by
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Vu(p). Assume now that there is a C*¥ map ¢ : O — R, with O C R"~! open, such
that u(z’, p(z")) = ¢, and that «’ — (2/, p(2')) parametrizes S. Show that

/deZ/f Vel da’,
|Onul
S O

where the functions in the integrand on the right are evaluated at (z’, ¢(z')).
Hint. Compare the formula in Exercise 6 for N with the fact that £ N = Vu/|Vul,
and keep in mind the formula (6.1.33).

In the next exercises, we study ExptJ = e'/, where
0 -1
J= (1 ) ) .

See §C.4 for basic material on the matrix exponential.
11. Show that if v € R?, then

d

— et v|)? = 2w - JetTv =0,

dt

and deduce that ||e!’v|| = ||v|| for all v € R2, t € R.

(1) _ (cl®)
e = .
0 s(t)
Show that the identity (d/dt)e!’ = Je!’ implies
dt)=—s(t), §(t)=c(t).
Deduce that (c(t), s(t)) is a unit speed curve, starting at (¢(0), s(0)) = (1,0), with
initial velocity (¢/(0),s’(0)) = (0,1), and tracing out the unit circle 2% + y? = 1 in
R2. See Figure 6.1.4. Compare the derivation of (3.2.39).

12. Define ¢(t) and s(t) by

13. Using Exercise 12 and (6.1.27), show that for ¢ > 0, the curve v : [0,¢] — R?
given by v(7) = (¢(7), s(7)) has length ¢t. As discussed in §3.1, in trigonometry the
line segments from (0,0) to (1,0) and from (0, 0) to (c(t), s(t)) are said to meet at
an angle, measured in radians, equal to the length of this curve, i.e., to ¢ radians.
Then the geometric definitions of the trigonometric functions cost and sint yield

(6.1.118) cost =c(t), sint = s(t).
Deduce that

1 cost
tJ _
(6.1.119) e (0> = (sint)’

and from this, using e*/.J = Je!’, that

(6.1.120) el = (;Or?f Czlsntt) = (cost)I + (sint)J.

Compare Euler’s formula (3.2.39), and also (3.3.21).
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(cost,sint)

Figure 6.1.4. Unit circle

14. The following result in linear algebra is established in Proposition C.2.8 of
Appendix C.2.

Proposition. If A : R” — R" is orthogonal, so A*A = I, then R™ has an orthonor-
mal basis in which the matrix representation of A consists of blocks

plus perhaps an identity matrix block if 1 is an eigenvalue of A, and a block that
is —I if —1 is an eigenvalue of A.

Use this and (6.1.120) to prove that

(6.1.121) Exp : Skew(n) — SO(n) is onto.

)

In the next exercise, T denotes the “inner tube” obtained as follows. Take the circle
in the (y, z)-plane, centered at y = a,z = 0, of radius b, with 0 < b < a. Rotate
this circle about the z-axis. Then 7T is the surface so swept out. See Figure 6.1.5.
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Figure 6.1.5. Inner tube

15. Define ¢ : R? — R3 by ¥(0, ¢) = (z(8, ), y(0, ), 2(0, ¢)), with
z(0,¢) = (a+ beos ) cosb,
y(0,9) = (a+ bcosp)sinb,
z(0,p) = bsiny

Show that ¢ maps [0, 27] x [0, 27] onto 7.
Show that |9pt) x 0,1| = b(a + bcos ).
Using (6.1.28), show that

AreaT = 4rab.
16. In the setting of Exercise 15, compute the following integrals.

/x2 ds, /y2 ds, /22 ds.
T T T

In the next exercise, M is a surface of revolution, obtained by taking the graph of
a function y = f(z), a <z < b (assuming f > 0) and rotating it about the z-axis,
in R3.
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17. Define ¢ : [a,b] x R — R3 by (s, t) = (s, f(s) cost, f(s)sint).
Show that ¢ maps [a,b] x [0,27] onto M.

Show that |9s¢ x yh| = f(s)\/1+ f'(s)?.

Using (6.1.28), show that if w : M — R is continuous,

2w pb
/udS’ = /0 / u(s, f(s)cost, f(s)sint) f(s)\/1+ f'(s)? dsdt.
M

In particular,
b
Area M = 27r/ F(8)V1+ f'(s)%ds.

REMARK. As seen in §5.1, if
Q={(z,y,2) eER*:a<w < by’ +2° < f(a)},
then
b
Vol Q = 7r/ f(s)*ds.

17A. In the setting of Exercise 17, take f(s) =1/s, a =1, b > 1. Write down the
integrals for Area M and Vol Q2. Compute the limits of these quantities as b — co.

18. Consider the ellipsoid of revolution &,, given for a > 0 by
2
x
- + y2 + 22 =1
a
Use the method of Exercise 17 to show that

Areaé'a:47r/ md& 5:ifi
0

a? at

19. Given a,b,c > 0, consider the ellipsoid £(a, b, ¢), given by
22 2 22
Using (6.1.33), write down a formula for the area of £(a,b,c) as an integral over

the region

3’}2 2
Eay = {(:my) cR?: a—2+Z—2 < 1}.

20. Consider the parabolic curve

t2
W) = (.5)-
Show that the length of v([0, z]) is

E(x)—/oz V14 t2dt.

Evaluate this integral using the substitution ¢ = sinh u.
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21. Let M be the surface of revolution obtained by taking the graph of the function
y = €%, a < x < b, and rotating it about the z-axis in R3. Show that Exercise 17
yields

b
Area M = 27?/ e’\/1+ e2sds.
a

Taking ¢t = e®, show that this is equal to

B
27r/ V1+t2dt, a=e, §=c¢.

Relate this to Exercise 20.

In the next exercise, M is an n-dimensional “surface of revolution” given by a
smooth map
Y :fa,b] x " — M C R x R"
of the form
P(s,w) = (s, f(s)w).
A coordinate chart ¢ : Q — S"~ !, with Q open in R®~!, gives rise to a coordinate
chart
Vila, b x Q— M, P(s,z) = (s, f(s)p(2)).

We set g = s, © = (21,...,Tn_1).

22. Show that, in t-coordinates, the metric tensor of M takes the form (gjk), for
0 <j,k <n—1, with the following components:

oy O

= — ¢ — = 1 / 2
goo 8330 83:0 + f (S) ’
oY oY .
R = f 1<7<n-1
gO] 5x0 8xj 0; or SN 9
b o 5 :
9ik axj axk f(S) h]ka or =~ k =N )

where (hg,) is the metric tensor of S"~1 in the ¢-coordinates. Otherwise said,

(1 + f'(s)?

(gjk) = f(s)zhém) .

Compare (6.1.36).

23. In the setting of Exercise 22, deduce that if u : M — R is continuous,

[ was - / [ s, 16 s VI PR s () ds.

M Sn—1
In particular, with A, _; as in (6.1.40)—(6.1.42),

b
Area M = An_l/ f(8)"I/1+ f/(s)2 ds.



FExercises 247

Note how this generalizes the conclusion of Exercise 17.

24. In the setting of Exercises 22-23, let M = S™, with f(s) = v/1 — s2. Show that

1
/u(a:o)dS(x) = An_l/ u(s)(1 — s%)"=2/2 g,
o —1
25. Let ¢ : SO(n) — M (k,R) be continuous and satisfy the following properties:
b(gh) = v(g9)b(h), (g™ =v(g) ",
for all g, h € SO(n). We say 1 is a representation of SO(n) on R¥. Form
P= [ iy PeMER).
SO(n)
using the integral (6.1.63) (but here with a matrix valued integrand). Show that
P:RF—V, and veV = Pv=u,

where
V={veRF:y(gv=uv, VgeSOMn)}.
Thus P is a projection of R* onto V.
Hint. With h € SO(n) arbitrary, express ¢(h)P as the integral [ (hg)dg, and
apply (6.1.62).

26. In the setting of Exercise 25, show that

dimV = / x(9)dg, x(g) = Tr (g).
SO(n)

27. Given u € C(R"™), define Au € C(R™) by
Au(z) = / u(gzx) dg.

SO(n)
Show that Aw is a radial function, in fact
1
Au(z) = Su(|z|), with Su(r) = " / u(rw) dS(w).
n—1

Sn—1

28. In the setting of Exercise 27, show that if u(z) is a polynomial in z, then Su(r)
is a polynomial in 7.
Hint. Show that Au(x) is a polynomial in z. Look at Au(rey).

29. Let M be a C' surface, K C M compact. Let p; : O; — U; be coordinate

charts on M and assume K C US_,U;. Take v; € C.(U;) such that Z]f v; > 0 on
K.

Let f: M — R be bounded and supported on K. Show that
fER(M) <= (vjf)op; € Re(O;), for each j.
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Here, use the definition (6.1.108)—(6.1.109) for R.(M) and define R.(O;) as in §5.1.

30. Let M C R” be a compact, m-dimensional, C'' surface. We define a contented
partition of M to be a finite collection P = {Xj} of contented subsets of M such
that
M=J%, cont™(T;N%) =0, Vj#k
k
We say
maxsize P = max diam(Xy),

where diam ¥y = sup, ,cx, [[z—y|. Establish the following variant of the Darboux
theorem (Proposition 5.1.1).

Proposition. Let P, = {3, : 1 < k < N(v)} be a sequence of contented
partitions of M such that maxsize P, — 0. Pick points &, € Xg,. Then, given
f e R(M), we have

N(v

)
&) V(Ek),

k=1

/ £dS = lim
V—r 00

M
where V(3r,) = [}, Xz, dS is the content of ¥y, .

Hint. First treat the case f € C(M). Use the material in (6.1.108)-(6.1.116) to
extend this to f € R(M).

31. We desire to compute det G when G = (g;x) is an m x m matrix given by
ik = Ojk + VjUg.
Compare (6.1.31). In other words,
G=I1+T, T=t), tjx=uvvy

(a) Let v € R™ have components v;. Show that, for w € R™, Tw = (v - w)w.
(b) Deduce that T has one nonzero eigenvalue, |v|2.
(c) Deduce that one eigenvalue of G is 1+ |v|?, and the other m — 1 eigenvalues are

1.
(d) Deduce that g = det G =1+ |[v|?, so /g = \/1 + |v]?. Compare (6.1.32), with
v = Vu.

Stereographic projection

32. With (2, z,,) € R", show that

1

’ . '
S(I ,In) - 1 -z,

defines a diffeomorphism

S:5" "\ {e,} — R
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(', )

S, xy)

Figure 6.1.6. Stereographic projection

with inverse F: R"~1 — §n=1\ {¢,} given by

F(y) 2y, |y|* - 1).

IRV
The map S is called stereographic projection. See Figure 6.1.6.
33. In the setting of Exercise 32, show that

4
DF(y)'DF(y) = —— 1,
WIPEW) = ey

where I is the (n — 1) x (n — 1) identity matrix.

34. Show that if u € C(S™~1), then

/udS: /u(F(m))<H2|y|2)n_ldy.

Sn—1 Rn—1
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35. Deduce from Exercise 34 that the area of S?~1 is

A= [ (57m)

Rn—1

=A, 2 /00(72 )n_lrn_Q dr.
o 472

Compare computations in Exercise 3. Compute this last integral in the cases n = 2
and n = 3.

36. Define the alternative stereographic projection
S:8" N\ {—en} — R S, x,) = S, —2),
and compute F=8&8"1and

SoS ' iR\ 0—R*1\0.
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6.2. Constrained maxima and minima — Lagrange multipliers

Here we tackle the following sort of problem. Let M C R™ be a smooth, m-
dimensional surface, and let f : M — R be a smooth function (say of class C*). We
want to classify the points at which f assumes a maximum or minimum, or more
generally a local maximum or minimum. Still more generally, we want to define
and study the critical points of f. To get oriented, we mention the example
(6.2.1) M=5*={zcR: |z| =1}, f(z)=x2.
In our general study, we concentrate on the situation where

M C O, open in R", ¢:0O — R, smooth,
(6.2.2)
f=4qly

Let us take p € M and consider when we can say f has a local maximum or
minimum (or other critical point) at p. Clearly, if we have a coordinate chart

(6.2.3) p:Q— M, ¢(xo)=0p,

then f has a local max (or min) at p if and only if

(6.2.4) u=fop:Q—R

has a local max (or min) at xg. As we know, when this holds,
(6.2.5) Du(xy) = 0.

More generally, we say f has a critical point at p provided (6.2.5) holds. Results
of §6.1 imply that if ¢ : Q9 — M is another coordinate chart, satisfying ¢ (yo) = p,
then the condition (6.2.5) holds if and only if

(6.2.6) Du(yp) =0, v=fo1.
Indeed, we can define
(6.2.7) Df(p): T,M — R

as the unique linear map satisfying
Du(zo) = Df(p)Dy(zp), hence
Du(yo) = Df(p) D¢ (yo),

making use of the fact that Dp(zg) and D (yo) are both isomorphisms of R™ onto
T, M, together with (6.1.15)—(6.1.16). We have that

(6.2.8)

f has a critical point at p € M

(6.2.9) <« Df(p): T,M — R is 0.

In case (6.2.2) holds, the fact that

(6.2.10) fop=gop
implies
(6.2.11) Df(p) = Dg(p)| 7, r-

and we have the following.
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Proposition 6.2.1. Assume M C O C R" and (6.2.2) holds. Take p € M. Then
p is a critical point of f if and only if

(6.2.12) Dg(p)v =0, VveT,M.

We now specialize to the following situation. Take O C R", open. Suppose we
have a smooth function

(6.2.13) h:0—R, Vh(x)#£0, VzeO.
We take a € R in the image of i and set
(6.2.14) M={z€O:h(z)=a}.

By Proposition 6.1.5 (and the remark containing (6.1.78)), M is a smooth surface,
of dimension m =n — 1, and, for p € M,

(6.2.15) T,M={veR":v L Vh(p)}.

In this setting, the content of (6.2.12) is that

(6.2.16) v L Vyg(p), Vv eT,M,

which, in concert with (6.2.15), is equivalent to the condition that
(6.2.17) Vg(p) | Vh(p),

that is,

(6.2.18) 3\ € R such that Vg(p) = AVh(p).

We record the result.

Proposition 6.2.2. Assume M C O C R"™ is an (n—1)-dimensional surface given
by (6.2.14), with h smooth and satisfying (6.2.13), and take

(6.2.19) g:0—R, f=g|,.
Then a point p € M is a critical point of f if and only if (6.2.18) holds.
The real number A connecting the two vectors Vg(p) and Vh(p) in (6.2.18) is

called a Lagrange multiplier. The method of finding critical points of f = g|y by
seeking such A is called the method of Lagrange multipliers.

To illustrate this method, we return to the example presented in (6.2.1). That
is, we take

O=R*\0, h(z)=lz]*, M={xcO:h(z)=1},

(6.2.20)

g(z) = mze, f=gl,,
Then
(6.2.21) Vh(z) = 2(x1,x2, 73),

Vg(:v) - (1’2,1‘1,0),

and we seek points z € S? where these two vectors are parallel. Since n = 3, we
can find them by computing the cross product:

) i Gk
=Vh(z) x Vg(z) =det | z1 22 x3
(6.2.22) 2 v = 0

= (=123, ToT3, T2 — 23).
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For this to vanish, we require
r1 = x5, and

(6.2.23) either z3 =0 or 1 = x5 = 0.

Note that if z € S? and 2; = x5 = 0, then 23 = £1. Thus we have 6 critical points
of f on S2:

1 1
(6.2.24) ii(\@, V2,0), 15(\/5, —v2,0), +(0,0,1).

We see that the values of f at these 3 pairs of points are, respectively,
1 1
(6.2.25) 5 3 O
In particular, f has its maximum at the first pair of points in (6.2.24) and its
minimum at the second pair of points.

We move to a more general class of examples, namely
(6.2.26) M=8""1 ={zeR":h(z) =1}, h(z)=|z
- g(z) =z Az, A= A'"c M(n,R), f:g’M.

In this setting,

(6.2.27) Vh(z) =2z, Vg(z)=2Azx,
and the Lagrange multiplier condition becomes
(6.2.28) Ar =Xz, MeR, |z|=1.

In other words, x should be an eigenvector of A. As shown in Proposition C.2.3,
the condition A = A? implies R”™ has an orthonormal basis of eigenvectors,

(6.2.29) {vi,.. o0}, vy o =0k, Avy = XNju;, A < <A
Now, if the eigenvalues {\1,..., A\, } are all distinct, then f has 2n critical points,
(6.2.30) {£v; :1<j<n}, flv;) =]
We have
(6.2.31) min f=XA;, max f = \,.
On the other hand, if A\; has multiplicity d;, so
(6.2.32) E(A,\j) ={v € R" : Av = \;v} has dimension d;,
then there is a (d; — 1)-dimensional sphere of critical points,
(6.2.33) E(AN) NS where f=)\;.
We note that the example (6.2.1) is a special case of (6.2.26), with n = 3 and
01
(6.2.34) 24=(1 0
0

We now take up an example in which g(x) is a cubic polynomial. Consider
M=58={zecR: hix)=1}, h(z)=|z?

(6.2.35)
9(x) = T17273, f:g‘M~
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Here
(6.2.36) Vh(z) =2z, Vg(z)= (z223, 7173, T122),

and the Lagrange multiplier condition becomes

(6.2.37) DT _oxgy, 1<j<3.
Zj
which implies
(6.2.38) ToToxs = 2Mx7 = 2 x5 = 2\z2.
This leads to
(6.2.39) A=0, or z?=ux2=2a2
Now,
(6.2.40) A=0= 2913 = 2173 = 122 = 0,

and, given x € S2, this implies

(6.2.41) x = =i, £4, or £k (6 critical points),

where (i, j, k) is the standard basis of R3. On the other hand, if x € S2,

(6.2.42) 1] =23 =13 =} = 3 v j,

and this implies

LV3 V3LV
3 3 3

Together, (6.2.41) and (6.2.43) give the 14 critical points of f. We have

(6.2.44) min f = —§7 max f = @

(6.2.43) x= ( ) (8 critical points).

Averaging rotations

This class of examples involves a surface of higher codimension, namely
(6.2.45) M =50(n) C M(n,R),

a surface of dimension n(n — 1)/2 in the n2-dimensional vector space M (n,R).
Suppose we are given

(6.2.46) A1,..., Ay € SO(n).
We want to identify an element of SO(n) that represents an “average” of these
rotations A;.

Part of our task is to produce a reasonable definition of “average” in this
context. If we simply average in the vector space M (n,R), we get

1
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However, typically this element of M (n,R) does not belong to SO(n). To formulate
a notion of average that will work for averaging over sets that are not linear spaces,
we start with the observation that A/N is obtained as the minimizer of

N
(6:248) U0 = D IX - 4,

if we minimize over all X € M(n,R). Here the norm is given by
(6.2.49) |T||? = (T, T), (S,T)=TrS'T.
See §2.4. Guided by this, we make the following

Definition. Given S = {4;,...,Ax} C SO(n), an element X € SO(n) that
minimizes (6.2.48) over SO(n) is said to be an R-average of S.

Certainly (6.2.48) has a minimum over SO(n), though the minimizer might not
be unique. If the minimizer is unique, we say it is the R-average.

We tackle the problem of characterizing R-averages of sets of elements of SO(n).
To analyze (6.2.48), write

1 — A, = Te(X* — A% (X — 4,)
(6.2.50) =Tr(X'X — X'A; — ALX + ALA;))
=2n—2Tr A§X,
using X'X = ALA; = I. Hence we have

(6.2.51) $(X)=2nN —2Tr A'X, A=A + - + An.

Thus the problem of minimizing (6.2.48) over SO(n) is equivalent to the following
problem:

(6.2.52) Maximize Tr A’ X over X € SO(n).
The function we want to maximize is
(6.2.53) v:50(n) — R, pX)= TrA'X.

More generally, we look for the critical points of ¢. By Proposition 6.2.1, X €
SO(n) is a critical point of ¢ if and only if

(6.2.54) Do(X)V =0, VYV eTxSO(n).
By (6.1.59), or (6.1.107),
(6.2.55) TxSO(n) ={XB: B € Skew(n)}.

Now we have
(6.2.56) Do(X)V =Tt A'V.
Since Skew(n) and

(6.2.57) Sym(n) = {A € M(n,R) : A" = A}
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are orthogonal complements in M (n, R) with respect to the inner product (A4, B) =
Tr A*B, we see that

X € S0(n) is a critical point of ¢
(6.2.58) e TrA'XB=0, VB e Skew(n)
—AXe Sym(n).
To proceed, we will discuss further the case
(6.2.59) det A > 0.

In such a case, it is shown in §6.5 that there are unique matrices
Q €P(n)={PeSym(n):z-Px >0, Ve € R"\ 0},

(6.2.60) U € S0,

such that

(6.2.61) A=UQ,
SO

(6.2.62) A'X = QU'X.

Noting that X,U € SO(n) = U'X € SO(n), we bring in the following.

Lemma 6.2.3. Given Q € P(n), T € SO(n),
(6.2.63) TrQT < TrQ,
with equality if and only if T = 1.

Proof. It follows from Proposition C.2.3 that R™ has an orthonormal basis vq, ..., v,
consisting of eigenvectors of @), Qu; = A\;jv;, A; > 0. Then
(6.2.64) TrQT = vi-QTv; = > Nuvj-Tu;.

J J

We have v; - Tw; < 1, with equality if and only if Tv; = v;, given T' € SO(n). This
yields (6.2.63). O

Thus we can solve our minimization problem, under the hypothesis (6.2.59).

Corollary 6.2.4. Given A; in (6.2.46) and A in (6.2.47), if det A > 0, then there
is a unique X € SO(n) minimizing ¥ over SO(n). It is given by

(6.2.65) X=U=A4Q ",
with Q and U specified in (6.2.61). Hence X in (6.2.65) is the R-average of {A; :
1<j<N}
Other cases that arise, in addition to (6.2.59), are
(6.2.66) det A< 0, detA=0.

See §A.2 of [20] for a discussion of minimizers for ¢ over SO(n) (which might not
be unique) in these cases.
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Exercises

1. Find the point on the paraboloid M C R? given by w3 = 2?7 + 23 that is closest
to the point (1,0,0).

2. The last equivalence in (6.2.58) uses the fact that we have an orthogonal direct
sum
M(n,R) = Sym(n) @ Skew(n).

Prove this.
Hint. For orthogonality, take S € Sym(n), A € Skew(n), and compare

(5,A) = Tr SA = Tr AS
with
TrSA = Tr(SA)" = Tr A*S".
For the decomposition, write 7' = (T + T%)/2 + (T'—T") /2.

3. With ¢(X) as in (6.2.48), show that, for arbitrary X € M(n,R),
D(X) = N|X|? =24, X) + > |14
Lo 12 2
= N||x - A - IR+ D142,
and if you minimize over X € M (n,R), the minimum is achieved at

1_
XfﬁA.

4. Produce explicit subsets {A1,..., Ay} C SO(3) such that A = A; + -+ + Ax
satisfies o
det A > 0,

det A < 0,
det A = 0.

See if you can come up with variants of Corollary 6.2.4 that cover the latter two
cases.

Given a smooth surface M C R™, p € M, denote the orthogonal complement of
T,M in R™ by
N,M = (T, M)*.

5. In the setting of Proposition 6.2.1, show that p € M is a critical point of f = g|us
if and only if
Vg(p) € NyM.
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6. Show that, for X € SO(n), the orthogonal complement of Tx SO(n) is
NxSO(n) ={XS:8 e Sym(n)}.
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6.3. Formulas of Gauss, Green, and Stokes

In this section we establish the following integral identity, known as the Gauss
divergence theorem, and obtain from it formulas of Green and Stokes. Here is the
first result.

Theorem 6.3.1. Let Q C R™ be a bounded open set, with a C' smooth boundary
00. Denote by N(x) the outward-pointing unit normal vector to 00 at x € ON. If
F is a smooth vector field on Q, then

(6.3.1) /(divF) dx = /N - FdS.
Q o0
Here div F' denotes the divergence of the vector field F', given by
3.2 divF=—+. -+ —
(6.3.2) iv o0, 4+ 4 oz’
it F=(f1,..., fn)

To get started, for each p € 99, there is a neighborhood U of p in R™, a rotation
of coordinate axes, and a C'* function u : © — R, defined on an open set O C R" 1,
such that

(6.3.3) QNU={zeR":z, =u(z), 2’ € O} N,
where x = (2/,2,), 2’ = (1,...,2,-1). We will obtain Theorem 6.3.1 from the
following.

Proposition 6.3.2. In the setting of Theorem 6.5.1, if f € CY(Q) and e is an
element of R™,

(6.3.4) /e-Vf(a:) do = /(e~N)de.

Q o0

In fact, taking {e;} to be the standard orthonormal basis of R™, replacing e by
e; and f by f;, and summing, we have (6.3.1) as a consequence of (6.3.4).

To prove (6.3.4), after applying a partition of unity (see §6.6), we may as well
suppose [ is supported in such a set U as appears in (6.3.3). In such a case,

(6.3.5) N = (14 |Vu|?)"V2(=Vu,1).
Thus we have
/%d:c:/( / 8nf(:17/,:z:n)dzn)dx'
Q O zn<u(z')
(6.3.6) — [ @' e a’
(@]
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The first identity in (6.3.6) follows from Theorem 5.1.10, the second identity from
the Fundamental Theorem of Calculus, and the third identity from the identification

(6.3.7) dS = (14 |Vul?)'/2 da’,
established in (6.1.32). We use the standard basis {ei,...,e,} of R".

Such an argument works when e, is replaced by any constant vector e with the
property that we can represent 9Q2 N U as the graph of a function y,, = u(y’), with
the y,-axis parallel to e. In particular, it works for e = e, +ae;, for 1 <j<n—1
and for |a| sufficiently small. Thus we have

(6.3.8) /(enJraej) -Vf(z)ds = /(en+aej) -N fdS.
Q a0

If we subtract (6.3.6) from this and divide the result by a, we obtain (6.3.4) for
e = e;, for all j, and hence (6.3.4) holds in general. The proof of Proposition 6.3.2,
and hence of Theorem 6.3.1, is complete. (]

We next specialize Theorem 6.3.1 to the case n = 2, and derive a classical Green
theorem. If Q C R? is a smoothly bounded open set, its boundary € consists of a
finite number of simple closed curves, of the form v : [a,b] — R2. We parametrize
each such curve so that the unit tangent satisfies

V(1) = IN(@), @ =~(1),

(6.3.9) T(z) =

where, as in §3.3,

(6.3.10) J= (2 _01) :

See Figure 6.3.1.
NOTE. Here we take the opposite sign convention from what was used in §3.3.
There we took N = JT.

Replacing F' by JF in (6.3.1), we have

/dleF dw—/N JF ds
Q

—/F~Tds.

o0
If v is a boundary curve, we have from (6.3.9) and (6.1.27) (or (3.1.15)) that

(6.3.12) /F -Tds = /b F(y(t)) -+ (t) dt.

v

(6.3.11)

Now the integral on the right side of (6.3.12) can be cast as a path integral
(or line integral), which we define as follows, in the n-dimensional setting. If v :
[a,b] — R™ is a C* curve, we set

b
(6.3.13) /f1 dry + -+ fnday, z/ F(y(t)) -~/ () dt,
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Figure 6.3.1. Smoothly bounded planar domain

for F'=(f1,..., fn)
With this notation, the identity (6.3.11) can be written as

f: Ofr _
Q 19}9)

Switching notation to (x1,x2) = (z,y) and (f1, f2) = (f,g), we have the following
standard presentation of Green’s theorem.

Proposition 6.3.3. If Q C R? is a smoothly bounded open set, and f,g € C1(Q),
then

(6.3.15) /(% . %) dz dy = /fdx +gdy.
o0

REMARKS. See Appendix D for applications of Green’s theorem to the study of
complex differentiable functions.
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Figure 6.3.2. Set-up for the Stokes formula

We move to the Stokes formula. To formulate this, we bring in the notion of
the curl of a vector field F' = (f, g, h) on an open set O in R3. We set

ik
curl F'=det | 0, Oy O.
(6.3.16) f g h

= (ayh - azgv azf - aa:ha amg - 8yf)

Here {i, j, k} denotes the standard basis of R3. To give a special case, which strongly
ties in with Green’s formula, suppose O contains the planar domain

(6317) U= {(I,y,O) : (:Cay> € Q}7
where 2 C R? is a smoothly bounded open set. Then
dg of
6.3.1 \F) - k=—— —
(6.3.18) (curl F) 9 Oy’

and Green’s formula (6.3.15) can be written
(6.3.19) /(curl F)-kdA = /(F -T)ds.
U ou

Now let S C R3 be a smooth surface, and let M C S be a smoothly bounded
subset. Assume there is a smooth unit normal field N on S. Parametrize the
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boundary curves that make up OM so that the unit tangent T'(z) at each x € OM
satisfies

(6.3.20) T(x) x N(z) =v(x) is the outward pointing normal to M in S.
See Figure 6.3.2. Here is the Stokes formula.

Proposition 6.3.4. If F is a C' wvector field on a neighbprhood O of M in R3,
then

(6.3.21) /(curlF) -NdS = /(F -T)ds.

M oM

We begin by treating the following special case. Assume M is the graph in R3
of a smooth function

(6322) z = u(x, y)a (35, y) € 67

where O is a smoothly bounded open set in R2. In such a case, we take
Ju Ou

6.3.23 N=(1 B Al (St |

(6.3.23) (4 IvuP) 2 (50 =501

at (z,y,2) = (z,y,u(z,y)) € M. Also,
(6.3.24) dS = (1+|Vul>)Y/2 dz dy,

SO

lomtey s = [[(2508) (2. (08 08y

(6.3.25) o 7 ¥ ° Y
(8F3 OF;

e a—y)} dzx dy,

where 0F;/0x, etc., are evaluated at (z,y, z) = (z,y,u(x,y)). On the other hand,
if

(6.3.26) o(t) = (z(t),y(t)), a<t<b,
parametrizes a boundary curve of 90, then
(6.3.27) V() = (@(t), y(t), u(x(t),y(1)))

parametrizes the corresponding boundary curve of M, and we have

b
[ 1yds= [ Fo),ulow)) v

(6.3.28) oM 5 5
~  ~Ou ~ ~Ou
= /(F1 + Fg%) dx + (F2 + Fg@) dy,
00

where
(6.3.29) Fy(w,y) = Fj(x,y,u(z,y)).
Now apply Green’s theorem, with

~  ~0u ~  ~0u
6.3.30 =F + F3— =F + F3—.
( ) f=htho, g=h+F 9y
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One verifies that 0,9 — 0y f is equal to the integrand on the right side of (6.3.25)
(see Exercise 7 below). This implies that the right sides of (6.3.25) and (6.3.28) are
equal, and we have (6.3.21) for this class of surfaces.

A similar argument works when M is the graph in R? of a smooth function
(6.3.31) y=v(z,2), or z=uwy,z),

over smoothly bounded open sets in the (x, z)-plane or the (y, z)-plane, respectively.
Now, in the general case of Proposition 6.3.4, one can use a partition of unity to
write I’ as a finite sum of vector fields supported in portions of M for which (6.3.22)
or one of the cases in (6.3.31) can be arranged. In this fashion we have Proposition
6.3.4 in general.

We return to the setting of Theorem 6.3.1 and obtain some further integral
identities. First we apply (6.3.1) with F' replaced by uX, where X is a vector field
and u is real valued. We have the following “derivation” identity:

(6.3.32) divuX =udivX + X - Vu,

which follows easily from (6.3.2). Theorem 6.3.1 gives

(6.3.33) / (div X)udV + / X - Vudv = / (N - X)uds.
Q Q aQ

Replacing u by wv and using the derivation identity V(uv) = vVu + uVv, we have

(6.3.34) /[(X -Vu)v 4+ u(X - V)| dV = — /(div X)uvdV + /(N - X)uv dS.
Q Q oQ
It is useful to apply (6.3.33) to a gradient vector field X. Applying div to
X = Vv defines the Laplace operator:
, 0%v 0%
Now setting X = Vv in (6.3.33), we have X - N = N - Vo, which we call the normal
derivative of v, and denote dv/dv. Hence

(6.3.36) /u(Av) dv = — /(Vu - Vo) dV + /u% ds.
Q Q o0
If we interchange the roles of v and v and subtract, we have
v Ou
(6.3.37) /u(Av)dV - /(Au)v dv+/{u$ - 51}} ds.
Q Q o0

Formulas (6.3.36)—(6.3.37) are also called Green formulas. Applications are brought
up in the exercises below.
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.|
Exercises

1. Let X and Y be smooth vector fields on an open set Q C R3. Show that
Y curlX — X - curlY = div(X x Y).

2. In the setting of Exercise 1, assume Q is compact and smoothly bounded, and
that X and Y are C! on . Show that

/X ~curlY dx = /Y -curl X dz,
Q Q
provided either X is normal to 02 or X is parallel to Y on 0.

3. Show that, with z = rw € R®, w € §"71,
n—1

f'(r).

u(x) = f(|lz]) = Au(rw) = f(r) +

4. We say f € C?(Q) is harmonic on  C R™ if Af = 0 on Q. Show that

n—2)

|x\_( is harmonic on R"™\ 0.

In case n = 2, show that

log |z| is harmonic on R?\ 0.

In Exercise 5, we take n > 3 and consider

_ 1 /)
61 =, |
Rn

L [ flz-y)
= —_— 7d s
Cy, / g2 Y
Rn
with Cn = —(n — 2)An71-

5. Assume f € CZ(R™). Let Q. = R™\ Be, where B. = {x € R" : |z| < &}. Verify
that

CaAGS(0) = lim /Af(x) a2 do
Q

=lim [[Af(x)-[2]*7" = f(z)Al2]*™"] dz
Q.

2-n0f

o 1-n
o (2—n)e " f|dS

= — lim {6
e—0

9.
=—(n—2)A,_1f(0),
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using (6.3.37) for the third identity. Use this to show that
AGf(x) = f(z).

6. Work out the analogue of Exercise 5 in case n = 2 and

Gf() = 5= [ ) logle -yl dy.
RQ

7. For f and g given by (6.3.30), compute dg/dz and Jf/dy, and verify that
og Of
o

is equal to the right side of (6.3.25). Ingredients in the calculation include

0 OF; OF; U
Sy, 9) = 22 g, ) + O (o u(a, ) o
and the counterpart for the application of 9/0y. Another ingredient involves the
identity

0%u 0%u

0rdy Oyox’
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6.4. Projective spaces, quotient surfaces, and manifolds

Real projective space P"~! is obtained from the sphere S"~! by identifying each
pair of antipodal points:

(6.4.1) Prl =877~
where
(6.4.2) T~y <=z =1y,

for z,y € S"~' C R™. More generally, if M C R" is an m-dimensional surface,
smooth of class CF, satisfying

(6.4.3) 0¢M, zeM=—zeclM,
we define
(6.4.4) P(M) = M/ ~,

using the equivalence relation (6.4.2). Note that M has the metric space structure
d(z,y) = ||z — yl|, and then P(M) becomes a metric space with metric

(6.4.5) d([z], [y]) = min{d(a',y") : 2’ € [z], ¥/ € [y]},
or, in view of (6.4.2),

(6.4.6) d([z], [y]) = min{d(z,y), d(z, —y)}.

Here, x € M and [z] € P(M) is its associated equivalence class. The map z — [z]
is a continuous map

(6.4.7) p: M — P(M).
It has the following readily established property.

Lemma 6.4.1. Each p € P(M) has an open neighborhood U C P(M) such that
p~H(U) = Uy UUy is the disjoint union of two open subsets of M, and, for j = 0,1,
p:U; = U is a homeomorphism, i.e., it is continuous, one-to-one, and onto, with
continuous inverse.

Given p € P(M), {po,p1} = p *(p), let Uy be a neighborhood of py in M
for which there is a C* coordinate chart ¢g : O — Uy (O C R™ open). Then
v1(z) = —po(x) gives a coordinate chart @1 : O — U; onto a neighborhood Uy of
p1 € M. If Uy is picked small enough, Uy and U; are disjoint. The projection p
maps Uy and U; homeomorphically onto a neighborhood U of p in P(M), and we
have “coordinate charts”

(6.4.8) pop;: O —U.

In fact, po 1 = po . If g : Q — Up is another C* coordinate chart, then, as
in Lemma 6.1.1, we have a C* diffeomorphism F : @ — Q such that 1y o F' = ¢q.
Similarly 91 o F' = 1, with ¢1 (z) = —o(x), and we have pop; o F' = po ;.

The structure just placed on the “quotient surface” P(M) makes it a manifold,
an object we now define.



268 6. Calculus on surfaces

Given a metric space X, we say X has the structure of a C* manifold of
dimension m provided the following conditions hold. First, for each p € X, we have
an open neighborhood U, of p in X, an open set O, C R™, and a homeomorphism

(6.4.9) wp: Op — Up.

Next, if also ¢ € X and Uy, = U, NU; # 0, then the homeomorphism from
Opg = @5 (Upg) to Ogp = 97 (Upq),

(6.4.10) Fpy = (pq_l o (pp|opq,

is a C* diffeomorphism. As before, we call the maps ¢, : O, — U, C X coordinate
charts on X.

A metric tensor on a C* manifold X is defined by positive-definite, symmetric
m x m matrices G, € C*~1(0,), satisfying the compatibility condition

(6.4.11) Gp(z) = Dqu(x)th(y)Dqu(x)7

for

(6.4.12) € Opg COp, y=Fy(z) e Oy CO,.
We then set

(6.4.13) gp = det G, € C*¥71(0,),
satisfying

(6.4.14) gp(@) = |det DFyq(2)|4/ 94(y),

for  and y as in (6.4.12). If f: X — R is a continuous function supported in U,
we set

(6.4.15) [ as = [ sea)fao ds
X o,

As in (6.1.24)-(6.1.25), this leads to a well defined integral [, fdS for f € Ce(X),
obtained by writing f as a finite sum of continuous functions supported on various
coordinate patches U,. From here we can develop the class of functions R.(X) and
their integrals over X, in a fashion parallel to that done above when X is a surface
in R™.

The quotient surfaces P(M) are examples of C* manifolds as defined above.
They get natural metric tensors with the property that p in (6.4.7) is a local isom-
etry. In such a case,

(6.4.16) / de:%/fopdS.

P(M) M

Another important quotient manifold is the “flat torus”
(6.4.17) ™ = R"/Z".
Here the equivalence relation on R" is ¢ ~ y < x —y € Z™. Natural local coor-
dinates on T™ are given by the projection p : R™ — T", restricted to sufficiently

small open sets in R™. The quotient T™ gets a natural metric tensor for which p is
a local isometry.
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Given two C* manifolds X and Y, a continuous map 1 : X — Y is said to
be smooth of class C* provided that for each p € X, there are neighborhoods U
of p and U of q = ¥(p), and coordinate charts ¢ : O — U, g : 0 — U, such
that @2 opoyp; : O — Ois a C* map. We say v is a C* diffeomorphism if it is
one-to-one and onto and ¢! : Y — X is a C¥ map. If X is a C* manifold and
M C R" a C* surface, a C* diffeomorphism 1 : X — M is called a C* embedding
of X into R™.
Here is an embedding of T™ into R?":
n n
(6.4.18) P(zx) = Z(COS 2nzj)e; + Z Sin 27z ;) eny .
j=1 j=1
A priori, ¢ : R® — R?" but 9(x) = 1 (y) whenever x — y € Z", so this naturally
induces a smooth map T — R2", which can be seen to be an embedding.
If M C R™ is an m-dimensional surface satisfying (6.4.3), an embedding of
P(M) into M(n,R) can be constructed via the map

(6.4.19) ¥ :R" — M(n,R), (z) =z’
Note that
x1 3 maxy o 1T,
(6.4.20) z=|: | =2t =
Tn, TpT1 e Tpxy o T2

We need a couple of lemmas.

Lemma 6.4.2. For v as in (6.4.19), x,y € R",

(6.4.21) P(z) =Y(y) <= = ty.

Proof. The map v is characterized by ¢ (z)e; = xjz, where x is as in (6.4.20) and
{e;} is the standard basis of R™. It follows that if = # 0, ¥(x) has exactly one

nonzero eigenvalue, namely |z|?, and ¢ (z)x = |z[?x. Thus (z) = ¥ (y) implies
that |z|?> = |y|? and that  and y are parallel. Thus = ay and a = £1. O

Lemma 6.4.3. In the setting of Lemma 6.4.2, if x # 0,
(6.4.22) Diy(x) : R" — M(n,R) is injective.

Proof. A calculation gives

(6.4.23) Dy(z)v = zv* + va'.
Thus, if v € ker Dy (z),
(6.4.24) ot = —val.

Both sides are rank 1 elements of M (n,R). The range of the left side is spanned
by z and that of the right side is spanned by v, so v = ax for some a € R. Then
(6.4.24) becomes

(6.4.25) arr’ = —arx?,
which implies a = 0 if z # 0. O
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REMARK. Here is a refinement of Lemma 6.4.3. Using the inner product on M (n, R)
given by (6.1.60), we can calculate

(6.4.26) (D(z)v, DYp(2)v) = 2(|z*[v]* + (z - v)?).

Lemmas 6.4.2 and 6.4.3 imply that if M C R"™ is an m-dimensional surface
satisfying (6.4.3), then |y yields an embedding of P(M) into M(n,R). Denote
the image surface by M#. As we see from (6.4.26), this embedding is not typically
an isometry. However, if M = S™~! and v is tangent to S?~! at 2, then v -2 = 0,
and (6.4.26) implies that in this case the embedding of P"~! into M(n,R) is an
isometry, up to a factor of 2.

It is the case that if X is any C* manifold that is a countable union of compact
sets, then X can be embedded into R™ for some n. In case X is compact, this is
not very hard to prove, using local coordinate charts and smooth cutoffs, and the
interested reader might take a crack at it. If X is provided with a metric tensor, this
embedding might not preserve this metric tensor. If it does, one calls is an isometric
embedding. It is the case that any such manifold has an isometric embedding into
R™ for some n (if k is sufficiently large). This result is the famous Nash embedding
theorem, and its proof is quite difficult. For X compact and C*°, a proof is given
in Chapter 14 of [18].

.|
Exercises

1. In case n = 3, show that the map ¢ : M — M (3,R) given by (6.4.19)—(6.4.20)
is equivalent to

M =R, gF(x) = (wap 01 < j <k <3).
Deduce that
Yl 8% 5 RS, YP(x) = (2 — 23, 2% — 22 xy30, wox3, w37)
has image that is diffeomorphic to P2.

Hint. 22 + 23 + 23 =1 on S°.

2. The map
z:RxR— 52
given by
x(6,1) = (sin d cos 1), sin O sin 1), cos §),
is a smooth map of R x R onto S2, giving spherical coordinates. See Figure 6.1.3.

Show that this gives rise to a diffeomorphism

x:(0,7) x R/27Z — 5%\ {+e3}.
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3. Compose the map = of Exercise 2 with the map, given by Exericse 1, of S? onto
a surface in R® that is diffeomorphic to P2.
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6.5. Polar decomposition of matrices

We define the spaces Sym(n) and P(n) by
Sym(n) = {A € M(n,R): A= A"},
P(n)={AeSym(n):z-Ax >0, Yz € R"\ 0}.

It is easy to show that P(n) is an open, convex subset of the linear space Sym(n).
We aim to prove the following result.

(6.5.1)

Proposition 6.5.1. Given A € Gl (n,R), there exist uniqgue U € SO(n) and
Q € P(n) such that

(6.5.2) A=UQ.
The representation (6.5.2) is called the polar decomposition of A. Note that
(6.5.3) UQ'UQ=QU'UQ = Q"
so if the identity (6.5.2) were to hold, we would have
(6.5.4) AtA = Q2.
Note also that
(6.5.5) A€ Gl(n,R) = A'A € P(n),

since x - A'Az = (Ax) - (Az) = |Az|>
To prove Proposition 6.5.1, we bring in the following basic result of linear
algebra. See Appendix C.2.

Proposition 6.5.2. Given B € Sym(n), there is an orthonormal basis of R™ con-
sisting of eigenvectors of B, with eigenvalues A\; € R. FEquivalently, there exists
V € SO(n) such that

(6.5.6) B=VDV~!
with
A1
(6.5.7) D= ,
An
Aj €R.

If B € P(n), then each A\; > 0. We can then set
1/2
A
(6.5.8) Q=V v

and obtain the following.

Corollary 6.5.3. Given B € P(n), there is a unique Q € P(n) satisfying
(6.5.9) Q*=B.

We say Q = B'/2.
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To obtain the decomposition (6.5.2), we set

(6.5.10) Q= (AAY?2 U=4AQ7 "
Note that
(6.5.11) UlU = Q1A' AQ ' = Q7 'Q*Q ' =1,

and (detU)(det Q) = det A > 0, so detU > 0, and hence U € SO(n), as desired.
By (6.5.4) and Corollary 6.5.3, the factor @ € P(n) in (6.5.2) is unique, and hence
so is the factor U.

We can use Proposition 6.5.1 to prove the following.
Proposition 6.5.4. The set Gl (n,R) is connected. In fact, given A € Gly(n,R),
there is a smooth path «y : [0,1] = Gl (n,R) such that v(0) = I and (1) = A.
Proof. To start, we have that
(6.5.12) Exp : Skew(n) — SO(n) is onto.
See Exercise 14 below for this (or Corollary C.2.9). Hence, with A = UQ as in
(6.5.2), we have a smooth path a(t) = Exp(tS), a : [0,1] — SO(n), such that
«(0) = I and a(l) = U. Since P(n) is a convex subset of Sym(n), we can take
B(t) = (1—t)I +1tQ, obtaining a smooth path §: [0,1] — P(n), such that 3(0) = I
and $(1) = Q. Then
(6.5.13) A1) = a()B(1)
does the trick. O

.|
Exercises

1. Establish the following counterpart to Proposition 6.5.1. Set
Gl_(n,R)={A € M(n,R) : det A < 0},
O~ (n) ={U € O(n) : detU = —1}.
Proposition. Given A € GI_(n,R), there exist unique U € O~ (n) and Q € P(n)

such that A =UQ.
Hint. As in the proof of Proposition 6.5.1, take A*A = Q2.
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6.6. Partitions of unity

In the text we have made occasional use of partitions of unity, and we include some
material on this topic here. We begin by defining and constructing a continuous
partition of unity on a compact metric space, subordinate to a open cover {U, : 1 <
j < N} of X. By definition, this is a family of continuous functions ¢, : X — R
such that

(6.6.1) 0; >0, suppp; CU;, Y ;=1
J

To construct such a partition of unity, we do the following. First, it can be
shown that there is an open cover {V; : 1 < j < N} of X and open sets W, such
that
(662) Vj C Wj C Wj C Uj.

Given this, let ¢;(x) = dist (z, X \W;). Then 1); is continuous, supp ¢; C W, C Uy,
and ; is strictly positive on Vj. Hence ¥ = > j 1; is continuous and strictly
positive on X, and we see that

(6.6.3) oj(z) = V(z) " ';(2)
yields such a partition of unity.

We indicate how to construct the sets V; and W; used above, starting with V;
and Wj. Note that the set K1 = X \ (UsU---UUy) is a compact subset of Uj.
Assume it is nonempty; otherwise just throw U; out and relabel the sets U;. Now
set

Vi = {z € Uy : dist (z, K1) < gdist (z, X \ U1)},
and

Wi = {z € Uy : dist (z, K1) < Zdist (z, X \ U1)}.
To construct V5 and Wa, proceed as above, but use the cover {Us,...,Un,Vi}.
Continue until done.

Given a smooth compact surface M (perhaps with boundary), covered by co-
ordinate patches U; (1 < j < N), one can construct a smooth partition of unity on
M, subordinate to this cover. The main additional tool for this is the construction
of a function ¢ € C§°(R™) such that

1
(6.6.4) P(x) =1 for |z| < 2 P(xz) =0 for |z|>1.
One way to get this is to start with the function on R given by

fol@)=e " for x>0,

(6.6.5)
0 for = <0.

It is an exercise to show that
fo € C°(R).
Now the function
fi(z) = fo(f)fo(% — )
belongs to C*°(R) and is zero outside the interval [0,1/2]. See Figure 6.6.1.
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fo(z) fi(z)

L
1/2

o
—
~
[\
1

Figure 6.6.1. The bump function fi(z) = fo(z)fo(1/2 — x)

Hence the function "
fa(x) = / fi(s)ds

belongs to C*°(R), is zero for < 0, and equals some positive constant (say Co)
for x > 1/2. Then

1
= — 1 —_
v@) = & f(1= 2]
is a function on R™ with the desired properties.

With this function in hand, to construct the smooth partition of unity men-
tioned above is an exercise we recommend to the reader.
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Appendix A

Foundational material on the
real numbers

One foundation for a course in analysis is a solid understanding of the real number
system. This appendix provides a development of R. It presupposes an under-
standing of basic algebraic results on the set Q of rational numbers, and derives
the structure of R from there.

Section A.1 deals with infinite sequences, including convergent sequences and
“Cauchy sequences.” This prepares the way for §A.2. Here we construct the set R
of real numbers, as “ideal limits” of rational numbers. We extend basic algebraic
results from Q to R. Furthermore, we establish the result that R is “complete,”
i.e., Cauchy sequences always have limits in R.

Section A.3 establishes further metric properties of R and various subsets, with
an emphasisis on the notion of compactness. The completeness property established
in §A.2 plays a crucial role here.

Section A.4 introduces the set C of complex numbers and establishes basic al-
gebraic and metric properties of C. While some introductory treatments of analysis
avoid complex numbers, we embrace them, and consider their use in basic analysis
too precious to omit.

277
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A.1. Infinite sequences

In this section, we discuss infinite sequences. For now, we deal with sequences of
rational numbers, but we will not explicitly state this restriction below. In fact,
once the set of real numbers is constructed in §A.2, the results of this section will
be seen to hold also for sequences of real numbers.

Definition. A sequence (a;) is said to converge to a limit a provided that, for any
n € N, there exists K (n) such that

1
(A.1.1) j>Kn) =la; —a| < -

We write a; — a, or a = lim a;, or perhaps a = lim;_, ., a;.

Here, we define the absolute value |z| of z by
|z| = « if >0,

(A.1.2) —x if x <0.

The absolute value function has various simple properties, such as |zy| = |z| -
lyl, which follow readily from the definition. One basic property is the triangle
inequality:

(A.1.3) [z 4yl < ||+ [yl.

In fact, if either x and y are both positive or they are both negative, one has equality
in (A.1.3). If z and y have opposite signs, then |z + y| < max(|x|,|y|), which in
turn is dominated by the right side of (A.1.3).

Proposition A.1.1. Ifa; — a and b; — b, then

(A.14) a; +b; — a+b,
and

(A.1.5) a;b; — ab.

If furthermore, b; # 0 for all j and b # 0, then
(A.1.6) a;/b; — a/b.

Proof. To see (A.1.4), we have, by (A.1.3),
(A.1.7) [(aj +b;) — (a+b)| < [a; —al + |b; —b].
To get (A.1.5), we have

ajb; — ab| = |(a;b; — ab;) + (ab; — ab
(A18) |a;bj —abl = [(a;b; — abj) + (ab; — ab)|
< |bj] - |aj — al +fa] - [b = bj].

The hypotheses imply |b;| < B, for some B, and hence the criterion for convergence
is readily verified. To get (A.1.6), we have

a; a 1
A9 J_f‘<7 b - la—a; b —bj|}.
The hypotheses imply 1/]b;] < M for some M, so we also verify the criterion for
convergence in this case. O



A.1. Infinite sequences 279

We next define the concept of a Cauchy sequence.

Definition. A sequence (a;) is a Cauchy sequence provided that, for any n € N,
there exists K (n) such that

1
(A.1.10) Ji k> K(n) = |a; —ag| < —

It is clear that any convergent sequence is Cauchy. On the other hand, we have:

Proposition A.1.2. Fach Cauchy sequence is bounded.

Proof. Take n = 1 in the definition above. Thus, if (a;) is Cauchy, there is a K
such that j,k > K = |a; — ax| < 1. Hence, j > K = |a;| < |ax|+ 1, so, for all j,
la;| < M, M =max(|a1],...,|lax-1], |ax|+1).

d

Now, the arguments proving Proposition A.1.1 also establish:

Proposition A.1.3. If (a;) and (b;) are Cauchy sequences, so are (a; + b;) and
(a;bj). Furthermore, if, for all j, |bj| > ¢ for some ¢ > 0, then (a;/b;) is Cauchy.

The following proposition is a bit deeper than the first three.

Proposition A.1.4. If (a;) is bounded, i.e., |a;| < M for all j, then it has a
Cauchy subsequence.

Proof. We may as well assume M € N. Now, either a; € [0, M] for infinitely
many j or a; € [—M,0] for infinitely many j. Let I; be any one of these two
intervals containing a; for infinitely many j, and pick j(1) such that a;;) € .
Write I; as the union of two closed intervals, of equal length, sharing only the
midpoint of I;. Let I be any one of them with the property that a; € I for
infinitely many j, and pick j(2) > j(1) such that a;) € I. Continue, picking
I, c 1,4 C--- C I, of length M/2"~! containing a; for infinitely many j, and
picking j(v) > j(v — 1) > --- > j(1) such that a;.) € I,. See Figure A.1.1 for an
illustration of a possible scenario. Setting b, = a;(,, we see that (b,) is a Cauchy
subsequence of (a;), since, for all k € N,

bysx — by < M/2"7 1.

Here is a significant variant of Proposition A.1.4.
Proposition A.1.5. Fach bounded monotone sequence (a;) is Cauchy.
Proof. To say (a;) is monotone is to say that either (a;) is increasing, i.e., a; <
a;11 for all j, or that (a;) is decreasing, i.e., a; > a;41 for all j. For the sake of
argument, assume (a;) is increasing.

By Proposition A.1.4, there is a subsequence (b,) = (a;(,)) that is Cauchy.
Thus, given n € N, there exists K (n) such that

1
(A.1.11) w,v > K(n) = |aj(l,) — aj(#)| < o
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Figure A.1.1. Nested intervals containing a; for infinitely many j

Now, if vy > K(n) and k > j > j(vp), pick vy such that j(v1) > k. Then
Tj(vo) S @5 < Ok < (o),

SO

1
(A.1.12) k>j>j(v)=la; —ak| < e

O

Second proof. Again, we assume (a;) is increasing. If (a;) is not Cauchy, then
there exists n € N such that, for each 7,

(A.1.13) ag > aj + %, for some £ > j.
Hence there exist j,,k, /* oo such that

(A.1.14) v <ky <Jop1 <kpp1 <---,
and

(A.1.15) Uk, — a5, > —, Y.

It follows that
(A.1.16) ak, >a1—|—%, Vv eN,
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which contradicts the hypothesis that (a;) is bounded. O

We give a few simple but basic examples of convergent sequences.
Proposition A.1.6. If |a|] < 1, then a’ — 0.
Proof. Set b = |al; it suffices to show that ' — 0. Consider ¢ = 1/b > 1, hence
c=14+vy, y > 0. We claim that
= (1+y) =21+ jy,
for all 7 > 1. In fact, this clearly holds for j = 1, and if it holds for j = k, then
> +y) A+ ky) > 1+ (k+ 1y

Hence, by induction, the estimate is established. Consequently,

; 1
Vo< —,
JY
so the appropriate analogue of (A.1.1) holds, with K(n) = Kn, for any integer
K>1/y. O

Proposition A.1.6 enables us to establish the following result on geometric se-
ries.

Proposition A.1.7. If |z| < 1 and

then
A.1.18 P — .
( ) % 1-2z

Proof. Note that za; =z + 2%+ -+ 2/ so (1 —2)a; =1 — 29t ie,
1— g+t

i

The conclusion follows from Proposition A.1.6. (]

Note in particular that

; 1
(A.1.19) 0<x<1:>1+x+~-~+x3<17.

It is an important mathematical fact that not every Cauchy sequence of rational
numbers has a rational number as limit. We give one example here. Consider the
sequence

i
1

(A.1.20) aj =y ik
=0 "

Then (a;) is increasing, and

n+j

Z 1 < 1 ( 1 n 1 T 1 )
Ui — = = e
n o Pt o " nl\n+1  (n+1)2 (n+1)i/)’
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since (n+1)(n+2)---(n+j) > (n+ 1)7. Using (A.1.19), we have

1 1 1 1
(A121) a7t+j — ap < = —_— —,

n+1)1—-—-—-2 nl n
n+1

Hence (a;) is Cauchy. Taking n = 2, we see that
(A.1.22) j>2=24 <a; <2%.
Proposition A.1.8. The sequence (A.1.20) cannot converge to a rational number.

Proof. Assume a; — m/n with m,n € N. By (A.1.22), we must have n > 2. Now,

write
n

1
(A.1.23) n Sogr = lim (ane - an):

n ] — 00
=0 I

Multiplying both sides of (A.1.23) by n! gives

(A.1.24) mn—1)!=A+r-n!
where
"l
(A.1.25) A:Z% eN.
=0 "
Thus the identity (A.1.23) forces r - n! € N, while (A.1.21) implies
(A.1.26) 0<r-nl<1/n.
This contradiction proves the proposition. O

.|
Exercises

1. Show that f
lim — =
Fsoo 2k 0
and more generally for each m € N,
kjm
lim — =0.
Koo 2
Hint. See Exercise 3.
2. Show that
2k
lim — =
oo K 0,
and more generally for each b € N,
bk
lim — =0.
Koo k!

3. Suppose a sequence (a;) has the property that there exist
r<l, KeN
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such that
Jj> K=

di+1 ‘ <r
a;
Show that a; — 0 as j — co. How does this result apply to Exercises 1 and 27

4. If (a;) satisfies the hypotheses of Exercise 3, show that there exists M < oo such

that
k

> lajl <M, Vk.
j=1
REMARK. This yields the ratio test for infinite series.

5. Show that you get the same criterion for convergence if (A.1.1) is replaced by

)
jZK(n):>|aj—a|<ﬁ.

Generalize, and note the relevance for the proof of Proposition A.1.1. Apply the
same observation to the criterion (A.1.10) for (a;) to be Cauchy.
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A.2. The real numbers

We think of a real number as a quantity that can be specified by a process of
approximation arbitrarily closely by rational numbers. Thus, we define an element
of R as an equivalence class of Cauchy sequences of rational numbers, where we
define

(AQ].) (aj) ~ (bj) — aj — bj — 0.

Proposition A.2.1. This is an equivalence relation.

Proof. This is a straightforward consequence of Proposition A.1.1. In particular,
to see that

(A.2.2) (a;) ~ (bj), (bj) ~ (¢j) == (a5) ~ (¢)),
just use (A.1.4) of Proposition A.1.1 to write
(lj—bj—>0, bj—cj—>0:>aj—cj—>0.
]

We denote the equivalence class containing a Cauchy sequence (a;) by [(a;)].
We then define addition and multiplication on R to satisfy

[(aj)] + [(6;)] = [(aj + ;)]
[(a;)] - [(b;)] = [(a;b;)].

Proposition A.1.3 states that the sequences (a; + b;) and (a;b;) are Cauchy if (a;)
and (b;) are. To conclude that the operations in (A.2.3) are well defined, we need:

(A.2.3)

Proposition A.2.2. If Cauchy sequences of rational numbers are given which sat-
isfy (a;) ~ (a;) and (bj) ~ (b}), then

(A.2.4) (aj +bj) ~ (a} + b)),
and
(A25) (ajbj) ~ (a;b;)

The proof is a straightforward variant of the proof of parts (A.1.4)-(A.1.5)
in Proposition A.1.1, with due account taken of Proposition A.1.2. For example,
a;jbj—ajb = ajb;—a;b’+a;b’—a}b’, and there are uniform bounds |a;| < A, [b}| <
B, so

|a;b; — ajb| < |aj| - |b; — b3 + la; — aj] - |b]
S Albj — b;l + B|aj — a;|

There is a natural injection
(A.2.6) Q—=R, aw~ |[(a,a,a,...)],
whose image we identify with Q. This map preserves addition and multiplication.

If z = [(a;)], we define

(A.2.7) —z = [(—ay)]-
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For  # 0, we define ! as follows. First, to say = # 0 is to say there exists n € N
such that |a;| > 1/n for infinitely many j. Since (a;) is Cauchy, this implies that
there exists K such that |a;| > 1/2n for all j > K. Now, if we set a; = ax+;, we
have (¢;) ~ (a;); we propose to set

(A.2.8) a1 = [(a7h).

J
We claim that this is well defined. First, by Proposition A.1.3, (aj_l) is Cauchy.
Furthermore, if for such  we also have z = [(b;)], and we pick K so large that also
|bj| > 1/2n for all j > K, and set 3; = bx;, we claim that

(A.2.9) ()~ (8; 1)

Indeed, we have

(A.2.10) ot =gty = Bzl s )
CHREA
so (A.2.9) holds.
It is now a straightforward exercise to verify the basic algebraic properties of
addition and multiplication in R, given that these results hold in Q. We state the
result.

Proposition A.2.3. Given x,y,z € R, the following algebraic properties hold.

T+y=y+zx,
@ty +z=2+W+2),
r+0=uz,
x4+ (—z) =0,
r-Yy=y-z,
(:Ey)z:ac(yz),
z-1l=u,
z-0=0,
z-(=1) = —ux,

z-(y+z)=z-y+z-z

Furthermore,
r#£0=z- 271 =1

We define z —y =z + (—y) and, if y #0, z/y =x -y~ L.

We now define an order relation on R, assuming it is known on Q. Take
z € R, = [(a;)]. From the discussion above of 27!, we see that, if z # 0, then
one and only one of the following holds. Either, for some n, K € N,

1
A2.11 i > K= aqa; > —
( ) J = a‘] - 271’
or, for some n, K € N,

1
A.2.12 > K =a; < ——.
( ) j - a’] — 2n
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If (a;j) ~ (b;) and (A.2.11) holds for a;, it also holds for b; (perhaps with different
n and K), and ditto for (A.2.12). If (A.2.11) holds, we say x € RT (and we say
x > 0), and if (A.2.12) holds we say z € R~ (and we say x < 0). Clearly z > 0 if
and only if —x < 0. It is also clear that the map Q@ — R in (A.2.6) preserves the
order relation.

Thus we have the disjoint union

(A.2.13) R=RtU{0}UR", R~ =-R%
Also,

(A.2.14) z,y €ERT = 2z +y, 2y € RT.
We define

(A.2.15) r<y<=y—zeRt

If z = [(a;)] and y = [(b;)], we see from (A.2.11)-(A.2.12) that

x < y <= for some n, K € N,
(A.2.16) e Loy »<b‘—l
Jj=> K = b aj = (1.e.7 a; < b; n)
The relation (A.2.15) can also be written y > x. Similarly we define z < y and
y < z, in the obvious fashions.

The following results are straightforward.

Proposition A.2.4. For elements of R, we have

(A.2.17) 1 <Y1, To < Yo = x1 + T2 < Y1 + Y2,
(A.2.18) <y <= —y < —zx,

(A.2.19) 0<z<y, a>0=0<azr <ay,
(A.2.20) O<zr<y=0<y l<al

Proof. The results (A.2.17) and (A.2.19) follow from (A.2.14); consider, for exam-
ple, a(y — x). The result (A.2.18) follows from (A.2.13). To prove (A.2.20), first we
see that x > 0 implies x~! > 0, as follows: if —z~! > 0, the identity z-(—2~1) = —1
contradicts (A.2.14). As for the rest of (A.2.20), the hypotheses imply xy > 0, and
multiplying both sides of z < y by a = (zy)~! gives the result, by (A.2.19). O

Asin (A.1.2), define |z| by

|z] = = if >0,

(A-2.21) —z if x<0.
Note that
(A.2.22) z = [(a;)] = || = [(|a;])]-

It is straightforward (compare (A.1.3)) to verify
(A.2.23) eyl = |zl - [yl, |z +yl < lz[+|y|.

We now show that R has the Archimedean property.
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Proposition A.2.5. Given x € R, there exists k € Z such that
(A.2.24) E-1<z<k.

Proof. It suffices to prove (A.2.24) assuming € RT. Otherwise, work with —z.
Say x = [(a;)] where (a;) is a Cauchy sequence of rational numbers. By Proposition
A.1.2, there exists M € Q such that |a;| < M for all j. We also have M < ¢ for
some £ € N. Hence the set S = {£ € N: ¢ > 2} is nonempty. Then taking k to be
the smallest element of S gives (A.2.24). O

Proposition A.2.6. Given any real € > 0, there exists n € N such that € > 1/n.

Proof. Using Proposition A.2.5, pick n > 1/¢ and apply (A.2.20). Alternatively,
use the reasoning given above (A.2.8). O

We are now ready to consider sequences of elements of R.

Definition. A sequence (x;) converges to z if and only if, for any n € N, there
exists K (n) such that

1
(A.2.25) j>Kn) =z —z| < —.

n
In this case, we write ; — x, or z = lim z;.

The sequence (z;) is Cauchy if and only if, for any n € N, there exists K(n)
such that
1
(A.2.26) k> K(n) = |z; —zg| < e

We note that it is typical to phrase the definition above in terms of picking any
real ¢ > 0 and demanding that, e.g., |x; — 2| < ¢, for large j. The equivalence of
the two definitions follows from Proposition A.2.6.

As in Proposition A.1.2, we have that every Cauchy sequence is bounded.

Next, the proof of Proposition A.1.1 extends to the present case, yielding:
Proposition A.2.7. Ifz; = x and y; — y, then

(A.2.27) T +y; = +y,
and

(A.2.28) TjyY; — TY.

If furthermore y; # 0 for all j and y # 0, then
(A.2.29) xj/y; = x/y.

It is clear that, if each z; € Q, then the notion that (x;) is Cauchy given above
coincides with that in §A.1. If also = € Q, the notion that x; — x also coincides
with that given in §A.1. Here is another natural but useful observation.

Proposition A.2.8. If each a; € Q, and v € R, then

(A.2.30) a; = ¢ <=z = [(a;)].
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Proof. First assume = = [(a;)]. In particular, (a;) is Cauchy. Now, given m, we
have from (A.2.16) that

1 1 1
|z —ap] < — <= 3JK,nsuch that j > K = |a; —ax| < — — —
(A.2.31) m men

1
<= 3K such that j > K = |a; — ax| < o
m

On the other hand, since (a;) is Cauchy, for each m € N, there exists K (m) such
that

. 1
(A.2.32) g k> K(m)=la; —agl < e

Hence, by (A.2.31),
1
(A.2.33) E>K(m) = |z —ai| < —

This shows that z = [(a;)] = a; — =.
For the converse, if a; — z, then (a;) is Cauchy, so we have [(a;)] =y € R.
The previous argument implies a; — y. But

(A.2.34) [z =yl <o —aj|+]a; —yl, Vi
so x =y. Thus a; —» z = = = [(a,)]. O
So far, statements made about R have emphasized similarities of its properties

with corresponding properties of Q. The crucial difference between these two sets
of numbers is given by the following result, known as the completeness property.

Theorem A.2.9. If (z;) is a Cauchy sequence of real numbers, then there exists
x € R such that x; — x.

Proof. Take x; = [(aj¢ : £ € N)] with aj, € Q. Using (A.2.30), take a; ¢;y = b; € Q
such that

(A.2.35) lzj —bj| <279,

Then (b;) is Cauchy, since |b; — bg| < |z; — 2| + 277 + 27F. Now, let

(A.2.36) z = [(b;)].

It follows that

(A.2.37) |2 — @ < |y —bj| + [ —bj| <277 + |z — byl

which tends to 0, again by (A.2.30). Hence z; — . O

If we combine Theorem A.2.9 with the argument behind Proposition A.1.4, we
obtain the following important result, known as the Bolzano-Weierstrass Theorem.

Theorem A.2.10. Fach bounded sequence of real numbers has a convergent sub-
sequence.

Proof. If |z;| < M, the proof of Proposition A.1.4 applies without change to show
that (z;) has a Cauchy subsequence. By Theorem A.2.9, that Cauchy subsequence
converges. 0
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Similarly, adding Theorem A.2.9 to the argument behind Proposition A.1.5
yields:

Proposition A.2.11. Each bounded monotone sequence (x;) of real numbers con-
verges.

A related property of R can be described in terms of the notion of the “supre-
mum” of a set.

Definition. If S C R, one says that € R is an upper bound for S provided =z > s
for all s € S, and one says

(A.2.38) x=sup S

provided z is an upper bound for S and further x < 2’ whenever z’ is an upper
bound for S. One also says z is the least upper bound of S, and writes z = lub S.

For some sets, such as S = Z, there is no = € R satisfying (A.2.38). However,
there is the following result, known as the supremum property.

Proposition A.2.12. If S is a nonempty subset of R that has an upper bound,
then there is a real x = sup S.

Proof. We use an argument similar to the one in the proof of Proposition A.1.4.
Let g be an upper bound for S, pick sp in S, and consider

Io = [s0,x0]) ={y € R:50 <y < o}

If g = sg, then already zo = sup S. Otherwise, I is an interval of nonzero length,
L = xg — sg. In that case, divide Iy into two equal intervals, having in common
only the midpoint; say Iy = I§ U I§, where I} lies to the right of I§.

Let I, = I} if SN I} # 0, and otherwise let I; = I§. Note that SN I; # . Let
x1 be the right endpoint of I7, and pick s; € SN I;. Note that z; is also an upper
bound for S.

Continue, constructing
I, Ccl,_,C--Cl,
where I, has length 277 L, such that the right endpoint x, of I,, satisfies

(A.2.39) r,>s, VseS,
and such that SN I, # (), so there exist s, € S such that
(A.2.40) x, — 8, <27VL.

The sequence () is bounded and monotone (decreasing) so, by Proposition A.2.11,
it converges; z, — x. By (A.2.39), we have x > s for all s € S, and by (6.34) we
have & — s, < 27" L. Hence z satisfies (A.2.38). O

We turn to infinite series ZZOZO ay, with a;, € R. We say this series converges
if and only if the sequence of partial sums

(A.2.41) Sn= a
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converges:
00

(A.2.42) Zak:A<:>Sn—>A as n — oo.
k=0
The following is a useful condition guaranteeing convergence.

Proposition A.2.13. The infinite series Z;’;O ax converges provided

(A.2.43) Z lak| < oo,
k=0

i.e., there exists B < co such that Y ,_,|ax| < B for all n.

Proof. The triangle inequality (the second part of (A.2.23)) gives, for £ > 1,
n+4

|Sn+€ - Sn| - ‘ Z ak:’
k=n-+1
n-+4

D il

k=n+1

(A.2.44)

IN

and we claim this tends to 0 as n — oo, uniformly in ¢ > 1, provided (A.2.43)
holds. In fact, if the right side of (A.2.44) fails to go to 0 as n — oo, there exists
€ > 0 and infinitely many n,, — oo and ¢, € N such that

ny,+Ly,

(A.2.45) > anl > e

k=n,+1

We can pass to a subsequence and assume n,41 > n, + ¢,. Then

ny+4y
(A.2.46) > an| > ve,

k=ni1+1
for all v, contradicting the bound by B that follows from (A.2.43). Thus (A.2.43)
= () is Cauchy. Convergence follows, by Theorem A.2.9. a

Alternative presentation. Set

T, = |axl-

k=0
The hypothesis (A.2.43) implies that (7)) is a bounded monotone sequence. Then
Proposition A.2.11 implies (T},) is a Cauchy sequence. But (A.2.44) precisely says
|Sn+é - Sn| < |Tn+€ - Tn|
(I

When (A.2.43) holds, we say the series > p-  ai is absolutely convergent.

The following result on alternating series gives another sufficient condition for
convergence.
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Proposition A.2.14. Assume ap > 0, ar \(0. Then

(A.2.47) i(—l)kak

k=0
is convergent.
Proof. Denote the partial sums by S,,, n > 0. We see that, for m € N,
(A.2.48) Som+1 < Soma3 < Somya < Sopm.

Iterating this, we have, as m — oo,

(A.2.49) Som @, Somi1 /B, B<a,

and

(A.2.50) Som — Sam+1 = G2m+1,

hence a = 3, and convergence is established. O

Here is an example:

i (—1)* NS N O . ¢
= — = - — = 1S convergent.
2 ki1 273 1 e

This series is not absolutely convergent (cf. Exercise 6 below). Using Exercise 1 of
§3.2 and an additional argument, one can show the sum is log 2.

.|
Exercises

1. Verify Proposition A.2.3.

2. If S C R, we say that z € R is a lower bound for S provided x < s for all s € S,
and we say

(A.2.51) z = inf S,

provided z is a lower bound for S and further z > 2’ whenever 2’ is a lower bound
for S. Mirroring Proposition A.2.12, show that if S C R is a nonempty set that has
a lower bound, then there is a real x = inf S.

3. Given a real number £ € (0,1), show it has an infinite decimal expansion, i.e.,
there exist by € {0,1,...,9} such that

(A.2.52) §=> bp-107F
k=1

Hint. Start by breaking [0, 1] into ten subintervals of equal length, and picking one
to which £ belongs.
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4. Show that if 0 < 2 < 1, then 2™ — 0 as n — oo (as in Proposition A.1.6), and

(A.2.53) > ak =
k=0

Hint. We have

< 00.

n+1

Zx 1Ifac , x#1.

The series (A.2.53) is called a geometrlc series.

5. Assume ag > 0 and ag \, 0. Show that

o0 o0
(A.2.54) D ap <oo= Y by < oo,
where
(A.2.55) b = 2% aqn.

Hint. Use the following observations:

*bQJr b3+ < (a3 +a4) + (as +as +ar +ag) +---, and
(a3+a4)+(a5+a6+a7+a8)+-~-§b1+b2+~--

6. Deduce from Exercise 5 that the harmonic series 1 + % + % + % + - -+ diverges,
ie.,
(A.2.56) Lo

2. 2 2

7. Deduce from Exercises 4-5 that

(A.2.57) p>1:>2—<oo

To start, take p € N. See §1.1 to deﬁne kp for p € Q, and §3.2 to define kP for
peR.

8. Given a,b € R\ 0, k € Z, show that

P =dld*, o = (), (b)) =d'V, Vi, ke

9. Given k € N, show that, for z; € R,
z; = =k - 2k
Hint. Use Proposition A.2.7.

10. Given z;,z,y € R, show that
z; >2yvVi, T, T =22>Y.
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11. Given the alternating series > (—1)*a;, as in Proposition A.2.14 (with aj N\, 0),
with sum S, show that, for each IV,
N

Y (“DFar=S+rn,  |ral < lanial.
k=0

12. Generalize Exercises 34 of §A.1 as follows. Suppose a sequence (a;) in R has
the property that there exist » < 1 and K € N such that

o
sz:’J—“’gr.
a;

Show that there exists M < oo such that
k
> lajl <M, VkeN.
j=1

Conclude that >"7~, ax is convergent. This is the ratio test for convergence.

13. Show that, for each x € R,

| —

:L‘k

x>

oo
k=1
is convergent.

14. Let (b;) be a Cauchy sequence of rational numbers, y = [(b;)], ¢ € Q. Show
that
bjl <c Vi= |yl <c

15. Produce an alternative presentation of the proof of the implication
z=|(a;)] = a; >z
in Proposition A.2.8 along the following lines.
Show that, for each k,
z —ar = [(b))];
with
bj = Qj4+k — Qk-
Then, using Exercise 14, deduce that, if

1
lag — ap| < —, Yk, 0> K(m),
m
then

1
E>K(m) = |z —ag| < —
m
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A.3. Metric properties of R

We discuss a number of notions and results related to convergence in R. Recall
that a sequence of points (p;) in R converges to a limit p € R (we write p; — p) if
and only if for every € > 0 there exists N such that

(A.3.1) j>N=|p;—p|<e.

A set S C R is said to be closed if and only if
(A.3.2) p; €S, pj+p=peS.

The complement R \ S of a closed set S is open. Alternatively, Q C R is open if
and only if, given ¢ € Q, there exists € > 0 such that B.(q) C 2, where

(A.3.3) Be(q)={peR:|p—ql <e},
so ¢ cannot be a limit of a sequence of points in R \ Q.

In particular, the interval

(A.3.4) [a,b] ={z €eR:a <z <b}
is closed, and the interval

(A.3.5) (a,b)={z eR:a<z<b}
is open.

We define the closure S of a set S C R to consist of all points p € R such that
B.(p)NS # 0 for all £ > 0. Equivalently, p € S if and only if there exists an infinite
sequence (p;) of points in S such that p; — p. For example, the closure of the
interval (a, b) is the interval [a, b].

An important property of R is completeness, which we recall is defined as
follows. A sequence (p;) of points in R is called a Cauchy sequence if and only if

(A.3.6) lpj —pk| — 0, as j,k— occ.

It is easy to see that if p; — p for some p € R, then (A.3.6) holds. The completeness
property is the converse, given in Theorem A.2.9, which we recall here.

Theorem A.3.1. If (p;) is a Cauchy sequence in R, then it has o limit.

Completeness provides a path to the following key notion of compactness. A
nonempty set K C R is said to be compact if and only if the following property
holds.

A3z Each infinite sequence (p;) in K has a subsequence
(A-3.7) that converges to a point in K.

It is clear that if K is compact, then it must be closed. It must also be bounded, i.e.,
there exists R < oo such that K C Bg(0). Indeed, if K is not bounded, there exist
p; € K such that [p;41| > |p;| + 1. In such a case, |p; — pr| > 1 whenever j # k, so
(pj) cannot have a convergent subsequence. The following converse statement is a
key result.

Theorem A.3.2. If a nonempty K C R is closed and bounded, then it is compact.
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Clearly every nonempty closed subset of a compact set is compact, so Theorem
A.3.2 is a consequence of:

Proposition A.3.3. Fach closed bounded interval I = [a,b] C R is compact.

Proof. This is a direct consequence of the Bolzano-Weierstrass theorem, Theorem
A.2.10. ]

Let K C R be compact. Since K is bounded from above and from below, we
have well defined real numbers
(A.3.8) b=supK, a=infK,

the first by Proposition A.2.12, and the second by a similar argument (cf. Exercise
2 of §A.2). Since a and b are limits of elements of K, we have a,b € K. We use the
notation

(A.3.9) b=max K, a=minK.

We next discuss continuity. If S C R, a function
(A.3.10) f:S—R
is said to be continuous at p € S provided
(A.3.11) pj €S, pj = p= f(p;) = f(p)

If f is continuous at each p € S, we say f is continuous on S, and write f € C(S).

Clearly f(x) = z defines f € C(R). The following result provides an arsenal of
continuous functions.

Proposition A.3.4. Given S C R,
(A.3.12) f9€C(S) = f+g, fgeC(9).

The proof is a simple application of Proposition A.2.7. As a consequence, we see
that each polynomial

P(&) = ana™ +ap_12" "+ +ag, a; €R

is continuous on R.

The following two results give important connections between continuity and
compactness.

Proposition A.3.5. If K C R is compact and f : K — R is continuous, then
f(K) is compact.

Proof. If (gx) is an infinite sequence of points in f(K), pick pr € K such that
flpr) = qx. If K is compact, we have a subsequence py, — p in K, and then
ar, — f(p) in R. O

This leads to the second connection.
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Proposition A.3.6. If K C R is compact and f : K — R is continuous, then
there exists p € K such that

(A.3.13) f(p) = max f(z),
and there exists ¢ € K such that
(A.3.14) f(g) = min f(=).

Proof. Since f(K) is compact, we have well defined numbers
(A.3.15) b=max f(K), a=minf(K), a,be f(K).
So take p,q € K such that f(p) =b and f(q) = a. O

The next result is called the intermediate value theorem.

Proposition A.3.7. Take a,b,c € R, a < b. Let f : [a,b] = R be continuous.
Assume

(A.3.16) fla) < e < f(b).
Then there exists x € (a,b) such that f(x) = c.

Proof. Let
(A.3.17) S={ye€lab]: fly) <c}.

Then a € S. Also, if f(y;) < c and y; — y, then f(y) < c. Hence S is a nonempty,
closed (hence compact) subset of [a,b]. Note that b ¢ S. Take

(A.3.18) z = maxS.

Then a < z < b and f(z) < e. If f(z) < ¢, then there exists ¢ > 0 such that
x+e <band fly) < cforz <y < xz+e Thus z+¢ € 5, contradicting
(A.3.18). O

Returning to the issue of compactness, we establish some further properties of
compact sets K C R, leading to the important result, Proposition A.3.11 below.

Proposition A.3.8. Let K C R be compact. Assume X1 D Xo D X3 D -+ form
a decreasing sequence of closed subsets of K. If each X, # 0, then Ny X, # 0.

Proof. Pick z,, € X,,. If K is compact, (z,,) has a convergent subsequence,
Ty, — Y. Since {zp, 1 k > £} C X,p,, which is closed, we have y € Ny, X, O
Corollary A.3.9. Let K C R be compact. Assume Uy C Uy C Us C -+ form an
increasing sequence of open sets in R. If U, Uy, D K, then Uy D K for some M.
Proof. Consider X,,, = K\ U,,. a

Before getting to Proposition A.3.11, we bring in the following. Let Q denote
the set of rational numbers. The set Q C R has the following “denseness” property:
given p € R and € > 0, there exists ¢ € Q such that |p — ¢| < e. Let

(A.3.19) R ={B;(qj) :q; €Q, r; € QN (0,00)}.
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Now one can show that the set Q is countable, i.e., it can be put in one-to-one
correspondence with N. Similar reasoning shows that R is a countable collection
of open intervals. The following lemma is left as an exercise for the reader.

Lemma A.3.10. Let Q C R be a nonempty open set. Then
(A.3.20) Q= J{B:BeR, BCQ}

To state the next result, we say that a collection {U, : @ € A} covers K if
K C UgenU,. If each U, C R is open, it is called an open cover of K. If BC A
and K C UgepUp, we say {Ug : B € B} is a subcover. This result is part of the
Heine-Borel theorem.

Proposition A.3.11. If K C R is compact, then it has the following property.
(A.3.21) Every open cover {U, : a € A} of K has a finite subcover.

Proof. By Lemma A.3.10, it suffices to prove the following.

Every countable cover {B; : j € N} of K by open intervals

A.3.22
( ) has a finite subcover.

For this, we set
(A.3.23) Upn=B1U---UB,
and apply Corollary A.3.9. O

.|
Exercises

1. Consider a polynomial p(z) = 2" + ap,_12" "1 + -+ + a;x + ag. Assume each
a; € R and n is odd. Use the intermediate value theorem to show that p(z) = 0 for
some z € R.

We describe the construction of a Cantor set. Take a closed, bounded interval
[a,b] = Cy. Let C; be obtained from Cy by deleting the open middle third interval,
of length (b — a)/3. At the jth stage, C; is a disjoint union of 27 closed intervals,
each of length 377(b — a). Then C;j1; is obtained from C; by deleting the open
middle third of each of these 27 intervals. We have Co DCy D --- D C; D---,each
a closed subset of [a, b].

2. Show that
(A.3.24) c=(¢

720

is nonempty, and compact. This is the Cantor set.

3. Suppose C is formed as above, with [a,b] = [0,1]. Show that points in C are
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precisely those of the form

(A.3.25) €= b;377, b;e{0,2}.
j=0

4. If p,q € C (and p < q), show that the interval [p, ¢] must contain points not in
C. One says C is totally disconnected.

5. If p € C, € > 0, show that (p — ,p + ¢) contains infinitely many points in C.
Given that C is closed, one says C is perfect.

6. Show that Card(C) = Card(R).
Hint. With £ as in (A.3.25) show that

fon=2(3)
=0
maps C onto [0, 1].

REMARK. At this point, we mention the

Continuum Hypothesis. If S C R is uncountable, then Card .S = Card R.

This hypothesis has been shown not to be amenable to proof or disproof, from the
standard axioms of set theory. See [5]. However, there is a large class of sets for
which the conclusion holds. For example, it holds whenever S C R is uncountable
and compact. See Chapter 2 of [15] for further results along this line.

7. Show that Proposition A.3.7 implies the existence of kth roots of each element
of RT.

8. In the setting of Proposition A.3.7 (the intermediate value theorem), in which
f:[a,b] = R is continuous and f(a) < ¢ < f(b), consider the following.

(a) Divide I = [a,b] into two equal intervals I, and I, meeting at the midpoint
ap = (a+b)/2. Select Iy = I it f(ag) > ¢, 1 = L. if f(ao) < c. Say Iy = [z1, 1]
Note that f(z1) <e¢, f(y1) > c.

(b) Divide I; into two equal intervals I, and Iy,., meeting at the midpoint (z; +
Y1)/2 = aq. Select Iy = Iy if f(aq) > ¢, Iy = I1, if f(an) < ¢. Say Iy = [x2,y2].
Note that f(z2) <e¢, f(y2) > c.

(c) Continue. Having I}, = [xx,yx], of length 27%(b — a), with f(z1) < ¢, f(yx) >
¢, divide I into two equal intervals Iy and Iy,, meeting at the midpoint ap =
(xk + yi)/2. Select Iyy1 = Ixe if flag) > ¢, Ixy1 = I if fag) < c. Again,
Tit1 = [Tpg1, Y] with fzpgn) <cand f(yes1) 2 c
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(d) Show that there exists x € (a,b) such that
T / T, Yk \l €T, and f(.’L') =c

This method of approximating a solution to f(x) = cis called the bisection method.
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zZ+w

Figure A.4.1. Addition in the complex plane

A.4. Complex numbers

A complex number is a number of the form

(A.4.1) z=x+1iy, z,y€R,

where the new object ¢ has the property

(A.4.2) i2 = —1.

We denote the set of complex numbers by C. We have R — C, identifying x € R
with z + 140 € C.

We define addition and multiplication in C as follows. Suppose w = a + b,
a,b e R. We set
z+w=(x+a)+i(y+0b),
(A.4.3) ( )+l i )
zw = (za — yb) + i(xb + ya).
See Figures A.4.1 and A.4.2 for illustrations of these operations.

It is routine to verify various commutative, associative, and distributive laws
of arithmetic. If z # 0, i.e., either x # 0 or y # 0, we can set

1 T y
A44 1= —i
( ) z 2ty Z$2+y2’

and verify that zz=! = 1.
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%3

Figure A.4.2. Multiplication by i in C

For some more notation, for z € C of the form (A.4.1), we set
(A.4.5) Zz=x—1y, Rez=uz, Imz=y.

We say Z is the complex conjugate of z, Re z is the real part of z, and Im z is the
imaginary part of z.

We next discuss the concept of the magnitude (or absolute value) of an element
z € C. If z has the form (A.4.1), we take a cue from the Pythagorean theorem,
giving the Euclidean distance from z to 0, and set

(A.4.6) 2] = Va2 + 2.
Note that
(A.4.7) |2 = 2Z.

With this notation, (A.4.4) takes the compact (and clear) form

A48 -1 2

‘We have
(A.4.9) jzw] = 2] - Jul,
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for z,w € C, as a consequence of the identity (readily verified from the definition

(A.4.5))
(A.4.10) Zw=7Z% 0.

In fact, |zw|? = (2w)(Zw) = zwzZw = zzZww = |z|*|w|?>. This extends the first
part of (A.2.23) from R to C. The extension of the second part also holds, but it
requires a little more work. The following is the triangle inequality in C.

Proposition A.4.1. Given z,w € C,
(A.4.11) |z +w| < |z| + |w].

Proof. We compare the squares of each side of (A.4.11). First,
|z +w|* = (z + w)(Z + W)
(A.4.12) = |z]* + |w]* + wZ + 2w
= |2)? + |w|* + 2Re 2.

Now, for any ¢ € C, Re( < [¢], so Rezw < |zw| = |z| - |w], so (A.4.12) is
(A.4.13) < o + wl? + 22| - Jwl| = (J2] + [w])?,
and we have (A.4.11). O

We now discuss matters related to convergence in C. Parallel to the real case,

we say a sequence (z;) in C converges to a limit z € C (and write z; — z) if and
only if for each € > 0 there exists N such that

(A4.14) J>N=|z; —z| <e.
Equivalently,
(A.4.15) zj =&z |zj —z| = 0.

It is easily seen that

(A.4.16) zj +z<=Rezj > Rez and Imz; —» Imz.

The set C also has the completeness property, given as follows. A sequence (z;)
in C is said to be a Cauchy sequence if and only if

(A.4.17) |zj — 25| = 0, as j,k — oo.

It is easy to see (using the triangle inequality) that if z; — z for some z € C, then
(A.4.17) holds. Here is the converse:

Proposition A.4.2. If (z;) is a Cauchy sequence in C, then it has o limit.

Proof. If (z;) is Cauchy in C, then (Rez;) and (Imz;) are Cauchy in R, so, by
Theorem A.2.9, they have limits. O

We turn to infinite series Y- ax, with aj, € C. We say this converges if and
only if the sequence of partial sums

(A.4.18) Sn=) a
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converges:

oo
(A.4.19) Zak:A<:>Sn—>A as n — oo.

k=0
The following is a useful condition guaranteeing convergence. Compare Proposition
A.2.13.

Proposition A.4.3. The infinite series Yo, ar converges provided

(A.4.20) > ax| < oo,
k=0

i.e., there exists B < oo such that > _,|ax| < B for all n.

Proof. The triangle inequality gives, for £ > 1,
n-+L
|Sn+€ - Sn| = ‘ Z ak’
k=n-+1
n+¢
< Z |ak|u
k=n+1
which tends to 0 as n — oo, uniformly in ¢ > 1, provided (A.4.20) holds (cf. (A.2.45)—
(A.2.46)). Hence (A.4.20) = (S,,) is Cauchy. Convergence then follows, by Propo-
sition A.4.2. O

(A.4.21)

As in the real case, if (A.4.20) holds, we say the infinite series >~ ax is
absolutely convergent.

An example to which Proposition A.4.3 applies is the following power series,
giving the exponential function e?:

(A.4.22) =" zecC

Compare Exercise 13 of §A.2. The exponential function is explored in depth in §3.2
of Chapter 3.

We turn to a discussion of polar coordinates on C. Given a nonzero z € C, we

can write

(A.4.23) z=rw, T=]|z], w :

Then w has unit distance from 0. If the ray from 0 to w makes an angle 6 with the
positive real axis, we have

(A.4.24) Rew =cosf, Imw =sind,

by definition of the trigonometric functions cos and sin. Hence
(A.4.25) z=rcisf,

where

(A.4.26) cisf = cos +isin 6.
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If also

(A.4.27) w=pcisp, p=|w,
then

(A.4.28) zw = rp cis(0 + ),

as a consequence of the identity

(A.4.29) cis(8 + ¢) = (cis0)(cis p),

which in turn is equivalent to the pair of trigonometric identities
cos(0 + ¢) = cosf cos ¢ — sinf sin @,

A.4.30
( ) sin(f + ) = cos @ sin ¢ + sin 0 cos p.

There is another way to write (A.4.25), using the classical Euler identity

(A.4.31) ¢ = cosf +isiné.
Then (A.4.25) becomes

(A.4.32) z=re’.

The identity (A.4.29) is equivalent to

(A.4.33) e0F¢) = (i,

We give a self-contained derivation of (A.4.31) (and also of (A.4.30) and (A.4.33))
in Chapter 3, §§3.1-3.2. The analysis there includes a precise description of what
“angle 6”7 means.

We next define closed and open subsets of C, and discuss the notion of com-
pactness. A set S C C is said to be closed if and only if
(A.4.34) 2; €8, zj 2= 2€8.

The complement C \ S of a closed set S is open. Alternatively,  C C is open if
and only if, given ¢ € Q, there exists € > 0 such that B.(q) C 2, where

(A.4.35) B.(q) ={z€C:|z—¢q| <e},

so ¢ cannot be a limit of a sequence of points in C\ 2. We define the closure S of
a set S C C to consist of all points p € C such that B.(p) NS # @ for all € > 0.
Equivalently, p € S if and only if there exists an infinite sequence (p;) of points in
S such that p; — p.

Parallel to (A.3.7), we say a nonempty set K C C is compact if and only if the
following property holds.
Each infinite sequence (p;) in K has a subsequence

A.4.36
( ) that converges to a point in K.

As in §A.3, if K C C is compact, it must be closed and bounded. Parallel to
Theorem A.3.2, we have the converse.

Proposition A.4.4. If a nonempty K C C is closed and bounded, then it is com-
pact.
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Proof. Let (z;) be a sequence in K. Then (Rez;) and (Imz;) are bounded, so
Theorem A.2.10 implies the existence of a subsequence such that Re z;, and Im z;,
converge. Hence the subsequence (z;,) converges in C. Since K is closed, the limit
must belong to K. (Il

If S C C, a function

(A.4.37) f:95—C
is said to be continuous at p € S provided
(A.4.38) pj €S, pj = p= f(p;) = f(p)

If f is continuous at each p € S, we say f is continuous on S. The following result
has the same proof as Proposition A.3.5.

Proposition A.4.5. If K C C is compact and f : K — C is continuous, then
f(K) is compact.
Then the following variant of Proposition A.3.6 is straightforward.

Proposition A.4.6. If K C C is compact and f : K — C is continuous, then
there exists p € K such that

(4.4.39) 70)] = max |(2)]
and there exists ¢ € K such that
(A.4.40) |f(¢)] = min |f(2)].

There are also straightforward extensions to K C C of Propositions A.3.8—
A.3.11. We omit the details.

.|
Exercises

We define 7 as the smallest positive number such that
cism = —1.

See Chapter 4, §§3.1-3.2 for more on this matter.

1. Show that
s n
w=cis — = w" =1.
n
For this, use (A.4.29). In conjunction with (A.4.25)-(A.4.28) and the existence of
nth roots of positive real numbers, use this to prove the following:
Given a € C, a # 0, n € N, there exist z1,...,2, € C

such that Z;L =a.

2. Compute
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and verify that

(A.4.41) cos T_ —, sin T_

3. Find zq,..., 2, such that

(A.4.42) zi =1,

explicitly in the form a + ib (not simply as cis(27j/n)), in case

(A.4.43) n=3,4,6,8.

Hint. Use (A.4.41), and also the fact that the equation u5 = 4 has solutions
(A.4.44) Uy = L + L Ug = —U7.

V2 V2

4. Take the following path to finding the 5 solutions to
(A.4.45) 2 =1

One solution is z; = 1. Since 2° —1 = (2 —1)(2* + 2% + 22+ 2 + 1), we need to find
4 solutions to z* + 23 + 22 + 2z + 1 = 0. Write this as

1 1
(A.4.46) Z4z+1+-4 =0,
z oz
which, for
1
(A.4.47) w=z+ -,
z
becomes
(A.4.48) w? +w—1=0.

Use the quadratic formula to find 2 solutions to (A.4.48). Then solve (A.4.47), i.e.,

22 —wz+1 =0, for z. Use these calculations to show that

2r  V/5-—1
COS — = .

5 4
The roots z; of (A.4.45) form the vertices of a regular pentagon. See Figure A.4.3.

5. Take the following path to explicitly finding the real and imaginary parts of a
solution to

2% = a +ib.
Namely, with x = Re z, y = Im z, we have

22—y’ =a, 2zy=0b,

and also
x2+y2=p=\/m7
hence
_ Jpta b
TV e YTy

as long as a + ib # —|al.
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<

Figure A.4.3. Regular pentagon, a = (v/5 — 1) /4.

6. Taking a cue from Exercise 4 of §A.2, show that

1 oo
(A.4.49) = 2k for 2€C, |2 < 1.
T k=0
7. Show that
1 oo
2= E 22k for 2€C, |2 < 1.
—z
k=0

8. Produce a power series series expansion in z, valid for |z| < 1, for

1
14227

9. Consider the unit circle S' = {z € C : |z| = 1}. Show that
T+1

xr—1

p(z) =

defines
¢:R— S'\ {1}, one-one and onto,
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with inverse ¢, given by

1/;(w):w_1i, we S\ {1
10. Set ) ‘
Q] ={z+iy:z,y € Q},
Se=5"NQlil ={z+iy:2,y€Q, 2*+y*=1}.
Show that

p:Q— Sé \ {1}, one-one and onto,
with inverse 1, as in Exercise 9.

11. A triple (4, k, £) of positive integers is called a Pythagorean triple if
G2k =12
Show that for each such triple, there is a unique m/n € Q such that

H(3) -4k

Use this to produce a formula that yields all Pythagorean triples.
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Appendix B

Sequences and series of
continuous functions

Here we consider sequences of functions
(B.0.1) fi: X —R",

where X is a subset of R*, and produce results on convergence of such sequences,
and on series

(B.0.2) i -

k=0
We pay particular attention to sequences and series of continuous functions. These
results are useful in the development of calculus, for example in results on the
Riemann integral and on power series.

Section B.1 gives basic information on continuous functions f : X — R". Some
of this extends material from §A.3, which took n =1 and X C R. In addition, we
define the notion of uniform continuity, and show that each continuous function f
is uniformly continuous when X is compact.

In §B.2 we discuss convergence f; — f of functions on X, with emphasis on the
notion of uniform convergence. We show that if each f; is continuous and f; — f
uniformly, then f is continuous.

In §B.3 we consider infinite series (B.0.2), and establish a sufficient condition
for uniform convergence known as the Weierstrass M-test. It follows from §B.2
that, if this condition is satisfied and each f; is continuous, so is the sum.

309
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B.1. Continuous functions

Here we discuss continuity, extending the treatment in in §A.3. Let X Cc RF. A
function

(B.1.1) fiX —R"

is said to be continuous at p € X provided

(B.1.2) pj € X, pj = p= f(p;) = f(p).

An equivalent condition is the following: given ¢ > 0, there exists § = d(p) > 0
such that

(B.1.3) zeX, lx—pl<d=|f(z)— f(p)| <e.

If f is continuous at each point p € X, we say f is continuous on X, and write
feC(X,R").

There are some important connections between continuity and compactness.
The following two results extend Propositions A.3.5-A.3.6.

Proposition B.1.1. If X C R* is compact and f : X — R™ is continuous, then
f(X) is compact.

Proposition B.1.2. If X C R* is compact and f : X — R™ is continuous, then
there exists p € X such that

(B.1.4) ()] = ma | £(@)]
and there exists ¢ € X such that
(B.1.5) (@)l = min | ()]

The proofs are similar to their analogues in §A.3.

Going further, we say f : X — R" is uniformly continuous provided that, given
€ > 0, there exists 6 > 0 (independent of p) such that

(B.1.6) z,peX, v —pl<d=|f(z) - flp)] <e.

Uniform continuity is a very important concept, useful for example in the study of
the Riemann integral. An example of a bounded continuous function that is not
uniformly continuous is

1 1

(B.1.7) f: (0, 1} — R, f(z)=sin—.
T

See Figure B.1.1. In light of this, it is useful to have the following.
Proposition B.1.3. If X C R* is compact and f : X — R™ is continuous, then f
is uniformly continuous.
Proof. If f is not uniformly continuous, then there exists €9 > 0 such that, for
each ¢ € N, there are

zg,ye € X such that |z, — y| < 27%, but

(B.1.8)
|f(xze) — f(ye)| > eo.
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y=sinl/z

1/4

Figure B.1.1. Graph of y =sinl/z

Since X is compact, (z¢) and (y,) have convergent subsequences. We hence have

(B.1.9) xy, = T, Yo, — Yy, and x=y.
The continuity of f then implies

(B.1.10) flxe,) = f(), flye,) = f(y),
and then (B.1.8) gives

(B.1.11) [f (@) = f(y)] = <o,

contradicting the fact that x = y. O
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B.2. Sequences of functions: uniform convergence

Let X C R* and suppose fi, [+ X = R" Wesay f; — f pointwise on X provided
fi(x) = f(z) as j — oo for each € X. A stronger type of convergence is uniform
convergence. We say f; — f uniformly on X provided

(B.2.1) sup |fj(z) — f(x)] — 0, as j— oo.
rzeX

An equivalent characterization is that, for each ¢ > 0, there exists K € N such that
(B.2.2) j>K=|fj(z) - f(x)|<e, VzelX.

A significant property of uniform convergence is that passing to the limit pre-
serves continuity.

Proposition B.2.1. If f; : X — R" is continuous for each j and f; — f uni-
formly, then f: X — R"™ is continuous.

Proof. Fix p € X and take € > 0. Pick K € N such that (B.2.2) holds. Then pick
6 > 0 such that

(B.2.3) [z —p| <0 = [fx(z) - fx(p)| <&,

which can be done since fx : X — R"™ is continuous. Together, (B.2.2) and (B.2.3)
imply
[z —pl <= [f(z) = F(p)l

(B.2.4) <|f(@) = fr (@) + [k (@) = fr ()] + |fx(p) — f(P)]
< 3e.
Thus f is continuous at p, for each p € X. |

We next consider Cauchy sequences of functions f; : X — R™. To say (f;) is
Cauchy at z is simply to say that (f;(z)) is a Cauchy sequence in R™. We say (f;)
is uniformly Cauchy provided

(B.2.5) sup |fj(z) — fr(z)] — 0, as j,k— occ.
zeX

An equivalent characterization is that, for each £ > 0, there exists K € N such that
(B.2.6) 3 k> K = |fj(z) — fu(z)] <e, VzelX.

Since, as seen in Chapter 2, R™ is complete, each Cauchy sequence (f;) will have a
limit f: X — R™. We have the following.

Proposition B.2.2. Assume f; : X — R". If (f;) is uniformly Cauchy, then (f;)

converges uniformly to a limit f : X — R"™.

Proof. We have already seen that there exists f : X — R™ such that f;(z) — f(z)
for each € X. To finish the proof, take ¢ > 0 and pick K € N such that (B.2.6)
holds. Then taking k — oo yields

(B.2.7) jzK=|fj(x) - f(z)| <&, VzeX,

yielding the uniform convergence. O
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If, in addition, each f; : X — R™ is continuous, we can put Propositions B.2.1
and B.2.2 together. We leave this to the reader.
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B.3. Series of functions: the Weierstrass M-test

We move from sequences to series. Again we assume X C RF and
(B.3.1) fi: X —R",

for some n € N. We look at the infinite series
(B.3.2) > fu(@),
k=0

and seek conditions for convergence, which is the same as convergence of the se-
quence of partial sums

(B.3.3) Sj(@) = fr(x).

k=0
We have convergence at x € X provided
(B.3.4) > ()] < oo,
k=0

i.e., provided there exists B, < oo such that

J
(B.3.5) > lfu(@) < Bs, VjeN
k=0

In such a case, we say the series (B.3.2) converges absolutely at x. We say (B.3.2)
converges uniformly on X if and only if (S;) converges uniformly on X. The
following sufficient condition for uniform convergence is called the Weierstrass M-
test.

Proposition B.3.1. Assume there exist My, such that |fr(z)| < My, for allz € X,
and

oo
(B.3.6) > My < oo
k=0

Then the series (B.3.2) converges uniformly on X, to a limit S : X — R™.

Proof. This proof is similar to that of Proposition A.2.13, but we review it. We
have
m+£
Smse(@) = Sm@)| < | D fula)]
k=m+1
m—+£
> k@)
k=m+1
m-£

< > M.

k=m+1

(B.3.7)

IN

Now (B.3.6) implies o, = > -, M} is uniformly bounded, so (by Proposition
A.2.11), 0, /' B for some 8 € RT. Hence

(B.3.8) [Smae(x) — Spn(z)| < Omae — o < B — 0 — 0, as m — o0,
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independent of £ € Nand « € X. Thus (5;) is uniformly Cauchy on X, and uniform
convergence follows by Proposition B.2.2. O

Bringing in Proposition B.2.1, we have the following.

Corollary B.3.2. In the setting of Proposition B.3.1, if also each fr : X — R" is
continuous, so is the limit S.
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Appendix C

Supplementary material on
linear algebra

Chapter 2 introduced some topics in linear algebra needed for the subsequent devel-
opment of multivariable calculus, starting with Euclidean space R™ and proceeding
to more general vector spaces, and then to linear transformations and determinants.
Here we provide some complementary material that is also of occasional use in the
text.

Section C.1 deals with inner product spaces, of which R™ equipped with the dot
product is a standard example. We consider both real and complex inner product
spaces. Contact with Euclidean space is made through the existence of orthonormal
bases (via the Gramm-Schmidt construction). We define the adjoint of a linear map
between inner product spaces, T': V — W, and use this to define self-adjoint and
unitary transformations, and investigate some of their properties. These results
will play a role in §C.2.

Section C.2 deals with eigenvalues and eigenvectors of a linear transformation
T :V — V. It includes results on the existence of an orthonormal basis of eigenvec-
tors when T is self adjoint or unitary, or more generally normal. These results have
a number of uses in the text, including the discussion of various types of critical
points (local max., local min., saddles) of real-valued smooth functions.

Section C.3 deals with matrix norms, filling out material introduced on §2.4.
We define an inner product

(A,B) =Tr AB",
for A,B € M(n,F),F = R or C, where if B = (bj;), then B* = (by;). More
generally, this inner product is defined for A, B € L(V,W), where V and W are

finite-dimensional inner product spaces. The associated norm on A, denoted || A||gs,
is the Hilbert-Schmidt norm. There is also an operator norm,

[A]l = sup{[[T0]| : o]l <1},

and we discuss significant interplays between these two norms.

317
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Section C.4 deals with the matrix exponential,
et =3 A% Ae M@nC),
= k!
which generalizes the exponential of complex numbers from §3.2. This arises in the
treatment of curvature equations, in §§3.3-3.4, and has further roles in subsequent

chapters. Results on matrix norms from §C.3 allow us to establish convergence of

the defining series for e*4.
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C.1. Inner product spaces

Here we look at norms and inner products on vector spaces other than R™. Gen-
erally, as discussed in §2.2, a complex vector space V is a set on which there are
operations of vector addition:

(C.1.1) frgeV=f+geV

and multiplication by an element of C (called scalar multiplication):

(C.1.2) aeC, feV=afeV,

satisfying the following properties. For vector addition, we have

(C13) f+yg=g+f (F+9)+h=Ff+(g+h), f+0=F f+(=f)=0.

For multiplication by scalars, we have

(C.1.4) a(bf) = (ab)f, 1-f=F.
Furthermore, we have two distributive laws:
(C.1.5) a(f+9)=af +ag, (a+0b)f=af+bf.

These properties are readily verified for the function spaces mentioned above.
An inner product on a complex vector space V' assigns to elements f, g € V the
quantity (f,g) € C, in a fashion that obeys the following three rules:

(alfl + a2f239) = al(flag) + a2(f239)a

(C.1.6) (f,9) = (9, 1),
(f,f) >0 wunless f=0.

A vector space equipped with an inner product is called an inner product space.
For example,

(©17) (F.9) = 5- [ 1050100
S1

defines an inner product on C(S'), and also on R(S!), where we identify two
functions that differ only on a set of upper content zero. Similarly,

(C.L8) (ro= [ " @)@ de

defines an inner product on R(R) (where, again, we identify two functions that
differ only on a set of upper content zero).

As another example, in we define £? to consist of sequences (ay)rez such that

oo

(C.1.9) > ak]? < oo

k=—o0

An inner product on £2 is given by

oo

(C.1.10) ((ak),(ka = Z abs.

k=—o0
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Given an inner product on V', one says the object ||| defined by
(C.1.11) 1= (f: 1)

is the norm on V associated with the inner product. Generally, a norm on V is a
function f — || f|| satisfying

(C.1.12) lafll = lal-lfll, a€C, feV,
(C.1.13) IfIlL > 0 wunless f=0,
(C.1.14) If+gl < N+ llgll

The property (C.1.14) is called the triangle inequality. A vector space equipped
with a norm is called a normed vector space. We can define a distance function on
such a space by

(C.1.15) a(f.9) =1If -4l

If || f]] is given by (C.1.11), from an inner product satisfying (C.1.6), it is clear
that (C.1.12)—(C.1.13) hold, but (C.1.14) requires a demonstration. Note that

If+al*=(f+9,f+9)
(C.1.16) = IFI?+ (f,9) + (9, /) + lglI®
= [IfII* + 2Re(f, 9) + llgll*,

while

(C.1.17) LA+ gD = 1A + 2071 gl + llgll™.

Thus to establish (C.1.17) it suffices to prove the following, known as Cauchy’s
inequality.

Proposition C.1.1. For any inner product on a vector space V, with || f|| defined
by (C.1.11),

(C.1.18) (Ll <A -Ngll, VigeV.

Proof. We start with

(C.1.19) 0<[If =gl = If1* = 2Re(f.9) + llgl,
which implies

(C.1.20) 2Re(f,9) < IFI* + llgll*, VfgeV.

Replacing f by af for arbitrary a € C of absolute velue 1 yields 2Rea(f,g) <
Il£1I2 + |lg||?, for all such a, hence

20(£, DI < FI2 + Nlgl?, Y fgeV.
Replacing f by tf and g by t~1g for arbitrary ¢ € (0, 00), we have
(C.1.21) 21(£,9)l < IFIIP+t2lgll? YV fgeV, te(0,00).

If we take t2 = ||g||/||f||, we obtain the desired inequality (C.1.18). This assumes
f and g are both nonzero, but (C.1.18) is trivial if f or g is 0. O
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An inner product space V is called a Hilbert space if it is a complete metric
space, i.e., if every Cauchy sequence (f,) in V has a limit in V. The space ¢? has
this completeness property, but C(S!), with inner product (C.1.7), does not, nor
does R(S!). Appendix A.2 describes a process of constructing the completion of
the space Q. When applied to an incomplete inner product space, it produces a
Hilbert space. When this process is applied to C(S!), the completion is the space
L?(S1). An alternative construction of L?(S*) uses the Lebesgue integral. For this
approach, one can consult Chapter 4 of [16].

For the rest of this appendix, we confine attention to finite-dimensional inner
product spaces.

If V is a finite-dimensional inner product space, a basis {uj,...,u,} of V is
called an orthonormal basis of V' provided

(C.1.22) (uj,ug) =6k, 1< 5,k <mn,
ie.,

(C.1.23) lujll =1, j#k= (uj,u) =0.
In such a case we see that

v=aju; + -+ apln, w=>biuy + -+ bpu,
(C.1.24) _ _
= (v,w) = a1by + -+ + apby.
It is often useful to construct orthonormal bases. The construction we now describe
is called the Gramm-Schmidt construction.

Proposition C.1.2. Let {vy,...,v,} be a basis of V', an inner product space. Then
there is an orthonormal basis {uy,...,un} of V such that

(C.1.25) Span{u; : j < ¢} =Span{v; : j < ¢}, 1<{L<n.

Proof. To begin, take
1
(0126) Uy = 57— 01.
[[o]l

Now define the linear transformation P, : V- — V by Pyv = (v, u1)u; and set
Vg = V2 — P1vg = v2 — (v, u1)us.

We see that (O9,u1) = (ve,u1) — (v2,u1) = 0. Also 0y # 0 since uy and vy are
linearly independent. Hence we set

1
(0127) Ug = ~762.
12|
Inductively, suppose we have an orthonormal set {uj,...,u,} with m < n and
(C.1.25) holding for 1 < ¢ < m. Then define P, : V — V by
(C.1.28) Pov = (v,ur)uy + -+ 4 (0, U ) U,
and set

) +1 = Um+1 — P +1
(C.1.29) " " e
= Upmt1 — V1, U1)U1L — -+ — (Umnp 1, U ) Unn,.
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We see that
(0130) i<m= (ﬁm+1,uj) = (Um_H,Uj) — (Um+1,Uj) =0.
Also, since vy, 41 ¢ Span{vy, ..., v, } = Span{uq, ..., uy }, it follows that 0,41 # 0.
Hence we set
1

(0131) Um4+1 = 7= 7 Um+1-

[Tt
This completes the construction. ([

EXAMPLE. Take V = Py, with basis {1, 2, 2%}, and inner product given by

1
(C.1.32) (P ) = / p(2)q(@) de.

—1

The Gramm-Schmidt construction gives first

(C.1.33) up(x) = 7

Then
Oo(z) = =z,

since by symmetry (z,u;) = 0. Now fil 2?2 dx = 2/3, so we take

(C.1.34) uz(x) =1/ zx.

Next
1
3(x) = 2% — (:102,u1)u1 =22 - 3

since by symmetry (22, us) = 0. Now fil(xQ —1/3)% dx = 8/45, so we take

(C.1.35) us(x) = 5 (x2 - 1)

Let V be an n-dimensional inner product space, W C V an m-dimensional
linear subspace. By Proposition C.1.2, W has an orthonormal basis

{wi, ..., wn}.
We know from §2.2 that V' has a basis of the form
(C.1.36) {wy,...,wp,v1,...,00}, L+m=n.
Applying Proposition C.1.2 again gives the following.

Proposition C.1.3. IfV is an n-dimensional inner product space and W C V an
m-dimensional linear subspace, with orthonormal basis {w1,...,wn}, then V has
an orthonormal basis of the form

(C.1.37) {wy, ..o, Wy ug, ..y uet, L4+ m=n.
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We see that, if we define the orthogonal complement of W in V as

(C.1.38) Wt={veV:(v,w)=0, YVwe W},
then

(C.1.39) Wt = Span{us,...,us}.

In particular,

(C.1.40) dim W + dim W+ = dim V.

In the setting of Proposition C.1.3, we can define Py € L(V) by
(C.1.41) Pyv = Z(v,wj)wj, for vevV,
j=1
and see that Py is uniquely defined by the properties
(C.1.42) Pyw=w, YweW, Pyu=0, YueW.

We call Py the orthogonal projection of V' onto W. Note the appearance of such
orthogonal projections in the proof of Proposition C.1.2, namely in (C.1.28).

Another object that arises in the setting of inner product spaces is the adjoint,
defined as follows. If V and W are finite-dimensional inner product spaces and
T € L(V,W), we define the adjoint

(C.1.43) T e LW,V), (v,T*w) = (Tv,w).

If V and W are real vector spaces, we also use the notation 7% for the adjoint, and
call it the transpose. In case V =W and T € L(V), we say

(C.1.44) T is self-adjoint <= T* =T,

and

T is unitary (if F = C), or orthogonal (if F = R)
(C.1.45) i .
=T =T"".

The following gives a significant connection between adjoints and orthogonal
complements.

Proposition C.1.4. Let V' be an n-dimensional inner product space, W C V a
linear subspace. Take T € L(V). Then

(C.1.46) T-W—-sW=T":Wt->wt.

Proof. Note that

(C.1.47) (w, T*u) = (Tw,u) =0, YwecW, uc W™,

if T: W — W. This shows that T*u L W for allu € W+, and we have (C.1.46). O

In particular,
(C.1.48) T=T""T:W—-W=T:W+ - W
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C.2. Eigenvalues and eigenvectors

Let T : V — V be linear. If there is a nonzero v € V such that
(C.2.1) Tv = Ajv,

for some A\; € IF, we say \; is an eigenvalue of T, and v is an eigenvector. Let
E(T, \j) denote the set of vectors v € V such that (C.2.1) holds. It is clear that
E(T, A;) (the \j-eigenspace of T') is a linear subspace of V' and

(C.2.2) T:E(T,\;) — E(T,\)).

The set of \; € F such that £(T, ;) # 0 is denoted Spec(T'). Clearly \; € Spec(T')
if and only if 7' — A;I is not injective, so, if V' is finite dimensional,

(C.2.3) Aj € Spec(T) <= det(N\;I —T) = 0.

We call K7(A) =det(AI —T) the characteristic polynomial of T

If F = C, we can use the fundamental theorem of algebra, which says every
non-constant polynomial with complex coefficients has at least one complex root.
(See Appendix E for a proof of this result.) This proves the following.

Proposition C.2.1. If V is a finite-dimensional complex vector space and T €
L(V), then T has at least one eigenvector in V.

REMARK. If V is real and K7()) does have a real root \;, then there is a real
Aj-eigenvector.

Sometimes a linear transformation has only one eigenvector, up to a scalar

multiple. Consider the transformation A : C3 — C? given by
210

(C.2.4) A=10 2 1
0 0 2
We see that det(A\ — A) = (A — 2)3, so A = 2 is a triple root. It is clear that
(C.2.5) E(A,2) = Span{e; },
where e; = (1,0,0)? is the first standard basis vector of C3.

If one is given T' € L(V), it is of interest to know whether V has a basis of
eigenvectors of T'. The following result is useful.

Proposition C.2.2. Assume that the characteristic polynomial of T € L(V) has
k distinct roots, Ai,..., A\, with eigenvectors v; € E(T,\j), 1 < j < k. Then

{v1,...,vi} is linearly independent. In particular, if k = dim V', these vectors form
a basis of V.
Proof. We argue by contradiction. If {vq,...,vr} is linearly dependent, take a

minimal subset that is linearly dependent and (reordering if necessary) say this set
is {v1,...,vm}, with Tv; = A\jv;, and

(026) v + -+ ey = 0,
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with ¢; # 0 for each j € {1,...,m}. Applying T'— A, I to (C.2.6) gives

(C.2.7) (M = Am)vi + - F emo1(Mm—1 — M) Um—1 =0,
a linear dependence relation on the smaller set {v1,...,v;,—1}. This contradiction
proves the proposition. ([l

Here is another important class of transformations that have a full complement
of eigenvectors.

Proposition C.2.3. Let V be an n-dimensional inner product space, T € L(V).
Assume T is self-adjoint, i.e., T =T*. The V has an orthonormal basis of eigen-
vectors of T .

Proof. First, assume V is a complex vector space (F = C). Proposition C.2.1 im-
plies that there exists an eigenvector v, of T. Let W = Span{v; }. Then Proposition
C.1.4 gives

(C.2.8) T:-Wt —wt,

and dim W+ = n — 1. The proposition then follows by induction on n. O

If V is a real vector space (F = R), then the characteristic polynomial det(AI —
T) has a complex root, say Ay € C. Denote by V' the complexification of V.
The transformation T extends to T € L(V), as a self-adjoint transformation on

this complex inner product space. Hence there exists nonzero v; € V such that
Tvy = Av;. We now take note of the following.

Proposition C.2.4. If T =T, every eigenvalue of T is real.

Proof. Say Tvy = \jv1, v1 # 0. Then
(C.2.9) Afor]? = (A1, v1) = (Twr,v1) - 2
= (v1,Tvy) = (v1, Avg) = A|joe )%

Hence A1 = A1, so Ay is real. O

Returning to the proof of Proposition C.2.3 when V is a real inner product
space, we see that the (complex) root Ay of det(AI —T') must in fact be real. Hence
MI—T :V — V is not injective, so there exists a \;-eigenvector v; € V. Induction
on n, as in the argument above, finishes the proof.

Here is a useful general result on orthogonality of eigenvectors.

Proposition C.2.5. Let V be an inner product space, T € L(V). If

(C.2.10) Tu=Mu, Trv=T7v, M#u,
then
(C.2.11) ul v

Proof. We have
(C.2.12) AMu,v) = (Tu,v) = (u, T"v) = p(u,v).
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As a corollary, it T'=T™*, then
Tu=Mu, Tv=pv, X#Fpu=u L.
Our next goal is to extend Proposition C.2.3 to a broader class of transforma-

tions. Given T' € L(V'), where V is an n-dimensional complex inner product space,
we say T is normal if T and T commute, i.e., TT* = T*T. Equivalently, taking

(C.2.13) T—A+iB, A=A B=B",
we have

(C.2.14) T normal < AB = BA.
Generally, for A, B € L(V), we see that

(C.2.15) BA=AB = B: E(A,\,) — E(A\).

Thus, in the setting of (C.2.13), we can find an orthonormal basis of each space
E(A,N\), X € Spec A, consisting of eigenvectors of B, to get an orthonormal basis
of V' consisting of vectors that are simultaneously eigenvectors of A and B, hence
eigenvectors of T'. This establishes the following.

Proposition C.2.6. Let V be an n-dimensional complex inner product space, T' €
L(V) a normal transformation. Then V has an orthonormal basis of eigenvectore
of T.
Note that if 7" has the form (C.2.13)—(C.2.14) and A\ = a + b, a,b € R, then
E(T,\)=E(Aa)NE(B,D)
(C.2.16) N
=E(T",\).

We deduce from Proposition C.2.5 the following.

Proposition C.2.7. In the setting of Proposition C.2.6, with T normal,
(C.2.17) AAE = E(T,\) LE(T,p).

An important class of normal operators is the class of unitary operators, defined
in §C.1. We recall that if V' is an inner product space and T' € £L(V'), then

(C.2.18) T is unitary <= T* =T
We write T' € U(V), if V' is a complex inner product space. We see from (C.2.16)
(or directly) that

TcUWV), ANe€SpecT = A=\""!

C.2.19
( ) = |\ =1

We deduce that if T € U(V'), then V has an orthonormal basis of eigenvectors of
T, each eigenvalue being a complex number of absolute value 1.

If V' is a real n-dimensional inner product space and (C.2.18) holds, we say T'
is an orthogonal transformation, and write T € O(V'). In such a case, V typically
does not have an orthonormal basis of eigenvectors of T. However, V' does have an
orthonormal basis with respect to which such an orthogonal transformation has a
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special structure, as we proceed to show. To get it, we construct the complexification
of V,

(C.2.20) Ve={v+iv:uveV}

which has a natural structure of a complex n-dimensional vector space, with a Her-
mitian inner product. A transformation T' € O(V') has a unique C-linear extension
to a transformation on Vg, which we continue to denote by 7', and this extended
transformation is unitary on V¢. Hence V¢ has an orthonormal basis of eigenvectors
of T. Say u + iv € V¢ is such an eigenvector,

(C.2.21) T(u+iv) = e P(u+iv), ?¢{1,-1}.
Writing ¢ = ¢ 4 is, ¢, s € R, we have

Tu+ iTv = (c—1s)(u + 1v)

C.2.22

( ) =cu+ sv+i(—su+ cw),
hence

(C.2.23) Tu = cu + sv,

Tv = —su+cv.
In such a case, applying complex conjugation to (C.2.21) yields
T(u—iv) = e (u — iv),
and e # 7 if ¢ ¢ {1, -1}, so Proposition C.2.7 yields
(C.2.24) u—+iv L u— v,
hence
0= (u—+iv,u—iv)
(C.2.25) = (u,u) = (v,v) +i(v,u) + i(u,v)
= Jul? = Jof? + 2i(u,0),
or equivalently
(C.2.26) lu| =|v| and w L .

Now

Span{u,v} C V
has an (n — 2)-dimensional orthogonal complement, on which T acts, and an induc-
tive argument gives the following.

Proposition C.2.8. Let V' be a n-dimensional real inner product space, T : V —V
an orthogonal transformation. Then V has an orthonormal basis in which the
matriz representation of T consists of blocks

(C.2.27) <Cj_ Sj), A +st=1,

plus perhaps an identity matriz block if 1 € SpecT, and a block that is —I if
—1 € SpecT.

This result has the following consequence, advertised in Exercise 14 of §6.1.
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Corollary C.2.9. For each integer n > 2,
(C.2.28) Exp : Skew(n) — SO(n) is onto.

As in §6.1 we leave the proof as an exercise for the reader. The key is to use the
Euler-type identity

(0 -1 9g _ [cosf —sinf
com) oo (0 ) o (om0 )
In cases when T’ is a linear transform on an n-dimensional complex vector space

V', and V does not have a basis of eigenvectors of T, it is useful to have the concept
of a generalized eigenspace, defined as

(C.2.30) GE(T,\j) = {v €V : (t—\;I)*v = 0 for some k}.

If )\ is an eigenvalue of T', nonzero elements of GE(T', \;) are called generalized
eigenvectors. Clearly £(T,\;) C GE(T, ;). Also T : GE(T,\;) — GE(T, ;).
Furthermore, one has the following.

Proposition C.2.10. If u # A;, then
(C.2.31) T — ul : GE(T, \j) == GE(T, \;).
It is useful to know the following.

Proposition C.2.11. If W is an n-dimensional complex vector space, and T €
L(V), then W has a basis of generalized eigenvectors of T .

We will not give a proof of this result here. A proof can be found in Chapter
2, §7 of [19], and also in [20].
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C.3. Matrix norms

Let V and W be inner product spaces, of dimension n and m, respectively. They
can be real or complex. If T € L(V, W), we define

(C.3.1) 1Tl = sup{[|T0[| : Jlo]] < 1}.
Equivalently, ||T'|| is the smallest quantity K such that
(C.3.2) |Tv]| < K|, VvelV.

To see the equivalence, note that (C.3.2) holds if and only if ||Tv|| < K for all v
such that ||v]| = 1. We call ||T'|| the operator norm of T. The fact that the unit ball
in V is compact guarantees that |T|| is well defined. We will make some explicit
estimates below.

If also S : W — X, another inner product space, then

(C.3.3) STl < STV < [ISIT[ lo]l, Vv eV,
and hence
(C.34) ST < ISIIT-

In particular, we have by induction that
(C.3.5) TecLV)=|T*| <|T|*, VYkeN.

This will be useful when we discuss the matrix exponential, in §C.4.

We turn to the notion of the trace of a transformation T' € L(V). We start
with A = (aj,) € M(n,F), and as in §2.4 we set

(036) TI‘A = Zajj.

Jj=1

Note that is also B = (b;i) € M(n,F), then

AB =C = (¢ji), cjx= Zajebek,
¢

(C.3.7)
BA =D= (djk), djk = Z bjga,gk,
¢
and hence
(C.3.8) TrAB = ajiby; = Tr BA.
3,0
Hence, if B is invertible,
(C.3.9) TrB™'AB=Tr ABB~ ' = Tr A.

Now, if T € L(V), we can choose a basis S = {v1,...,v,} of V, and set up an
isomorphism Jg : F* — V, and define

(C.3.10) TTT=Tr A, A=Jg'TJs.
It follows from (C.3.9) that this is independent of the choice of basis of V.
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Next we recall from §C.1 the notion of the adjoint of T' € L(V, W), the map
T* € L(W,V) satistying

(C.3.11) (Tv,w) = (v, T*w), YveV, weW

If {v1,...,v,} is an orthonormal basis of V and {wy, ..., w.,} an orthonormal basis
of W, then

(C.3.12) A= (Clij), A5 = (ij,wi)

is the matrix representation of T', and the matrix representation of T is
(C.3.13) A" = ().

Now we define the Hilbert-Schmidt norm of T € L(V,W) when V and W are
finite-dimensional inner product spaces. Namely, we set

(C.3.14) T} = TeT*T = Tr TT*.
In terms of the matrix representation (C.3.12) of T', we have
(0.3.15) T = (bjk), bjk = Zagjagk,
¢

hence
(C.3.16) ITNfs =D bjg = Y lajul®

J Jik
Equivalently, using an arbitrary orthonormal basis {vy,...,v,} of V, we have
(C.3.17) ITIls = D 170511

j=1

If also {wy,...,wy,} is an orthonormal basis of W, then

IT7s =D 1(Toj,wi)]> = |(v, T wy) |
Jsk Jik
~ YTl
k

This gives ||T||us = ||T*||us- Also the right side of (C.3.18) is clearly independent
of the choice of orthonormal basis {v1,...,v,} of V. Of course, we already know
that the right side of (C.3.14) is independent of such a choice of basis.

Using (C.3.17), we can show that the operator norm of ||T|| is dominated by
the Hilbert-Schmidt norm:

(C.3.18)

(C.3.19) 1T < 1T s
In fact, pick a unit v; € V such that ||Tv1 | is maximized over {v : ||v]| < 1}, extend
this to an orthonormal basis {v1,...,v,}, and use
(C.3.20) IV = |1 Toall® < D I1Tw0s)1% = I Tl
j=1

Also we can dominate each term on the right side of (C.3.17) by ||T']|2, so
(C.321) ITllus < VAT, n=dimV.
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Another consequence of (C.3.17)—(C.3.19) is

(C.3.22) ST las < [[SIHT s < |1S1asl|T [|us,
for S as in (C.3.3). In particular, parallel to (C.3.5), we have
(C.3.23) TeL(V)= |T"us < |Tlfs, VEkeN

.|
Exercises

Here V and W are finite-dimensional inner product spaces.

1. Let S,T € £(V,W). Show that
IS+ T <ISI+ 1Tl 1S+ Tllus < [15]las + [T ]|us-

2. Show that, it T € £(V), k € N,
IT*lus < 15117 |us-

3. Suppose A € L(V) and ||A]] < 1. Show that
(IT-—A) P =T4+A+ A+ A ..

a convergent series.

4. Show that, for any real 0, the matrix
cosf —sinf
A= (sin0 cosf )
has operator norm 1. Compute its Hilbert-Schmidt norm.

5. Show that, for T' € L(V),
1T = sup{|(T'w, v)] : [Jul], lv]| < 1}.

Show that
IT*|| = IT|| and |T*T|| = [T}
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C.4. The matrix exponential

Given A € M(n,R) or M(n,C), the matrix exponential Exp(tA) = e is con-
structed to solve the differential equation

ietA = Aett, =T
dt

Trying a power series representation and arguing as in §3.2 yields a solution which

(C.A.1)

we take to define e*4:
(C.4.2) eth = EA’“.
k=0 "
Note that we then also have
d
(C.4.3) %em =4
We claim that this solution is unique, i.e., if X : R — M(n,C) solves
(C.4.4) X'(t)=AX(t), X(0)=1,
then X (t) = e!. To see this, note that
d
ae_tAX(t) =e X/ (t) — e AX(t)
(045) _ e—tAAX(t> _ e_tAAX(t)
fr— 0’
so e A X (t) is independent of ¢t. Taking ¢t = 0 gives
(C.4.6) e X (t)=1, VteR.
This holds for each solution to (C.4.4), in particular for e*4, so
(C.4.7) e et =1, VteR.

Hence we can multiply each side of (C.4.6) on the left by €', to get the desired
result.

Continuing along this line, we can compute

d
(C.4.8) %e(”t)Ae—m =0,
to get e(* T Ae—tA = 54 hence
(C.4.9) eBTA — gs4etd vt eR, Ac M(n,C).
A related identity is

(C.4.10) el A+B) — (tAgtB provided AB = BA,
given A, B € M(n,C). To see this, we compute that

d
(C.4.11) aet("H'B)e_tBe_tA =0,

provided
(C.4.12) eTBA=Ae™'B
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which holds provided AB = BA. The desired identity (C.4.10) then follows from
(C.4.11).

The matrix exponential plays an important role in the study of n x n linear
systems of differential equations. For more on this, see Chapter 3 of [19].

If A(t) is a smooth function of ¢ with values in M (n,C), one does not always
have an explicit formula for solutions to
d

(C.4.13) ZX() = AWX (D), X(0)=1,

though there is a body of results on this sort of system of ODE, which can be found
n [19]. On the other hand, one does have a neat formula in the special case that

(C.4.14) A(t)A(L) = A(t2)A(tr), Vi

We can get this by observing that if B(t) is a smooth function of ¢ with values in
M(n,C), and if

(C.4.15) B(t1)B(ts) = B(t2)B(t1), Vt
then, thanks to (C.4.10), we have

7

(C.4.16) %eB(t) = B'(t)eBP®,

Hence a solution to (C.4.13) is given by
t
(C.4.17) X(t)=eP®  B(t)= / A(r) dr,
0

provided (C.4.14) holds.

.|
Exercises

1. Use results of §C.3 to show that, for A € M(n,F),
S R
|2 = X G

Use the ratio test and the Weierstrass M-test to show that the infinite series (C.4.2)
converges for all ¢t € R, uniformly on |¢| < R, for each R < oc.

2. Show that (C.4.15) implies (C.4.16).
Hint. Start with

)

eB(t+h) _ B(t) _ [BB(thh)fB(t) _I]eB®

and plug in the power series for

e, Y =B(t+h)— B(t)=hB'(t) + o(h).
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3. Show that, for A € M(n,C), X\ € C,
A

Av = \v = et = o,

4. Show that
(A=) =0 = e =€ [I +t(A - )\I)}v.
Extend this calculation to the setting where
(A= ADrv=0.
Hint. Start by showing that e!4 = ! HA=AD)y, — tAHA=A) " vig (C.4.10).
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Appendix D

Green’s theorem and complex
differentiable functions

Let f be a complex valued C! function on a region Q C R2. We identify R? and C,
via z = x + iy, and write f(z) = f(z,y). We say f is holomorphic on § provided
it is complex differentiable, in the sense that

(D.0.1) %1;% %[f(z +h) — f(z)] exists,

for each z € Q. When this limit exists, we denote it f'(x), or df /dz. An equivalent
condition (given f € C1) is that f satisfies the Cauchy-Riemann equation

of 10f
(D.0.2) 9z iy
In such a case,

0 10
(D.0.3) f'(z) = 37{(2) == 8*5(2)-

Note that f(z) = z has this property, but f(z) = Z does not. The following is a
convenient tool for producing more holomorphic functions.

Lemma D.0.1. If f and g are holomorphic on 2, so is fg.

Proof. We have

0 sy 0L L 09 0 Of 0
so if f and g satisfy the Cauchy-Riemann equation, so does fg. O
Note that
d
(D.0.5) 5, 9) = ['(2)9(2) + f(2)d'(2)-

335
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Using this lemma, we can inductively show that if & € N, then z* is holomorphic
on C, and

d
(D.0.6) dsz = kzFL,
We can also treat 1/z:
d 1 1 1 1 1 —h 1
D.0.7 o=lm (- ) =lm =
( ) dzz hoo h\z+h = hlg%)hz(z—&—h) 22

Then we can verify (D.0.6) for all k € Z (z € C\ 01if k < 0).

Here is another important example.

Lemma D.0.2. The exponential function e* is holomorphic on C, and

d
(D.0.8) iez = e~
Proof. Write e* = e*T% = e%e®. Then
(D.0.9) %ewew = e%e', ieg”e”” = je%e",
so the Cauchy-Riemann equation holds and we have (D.0.8). g

Our goal in this appendix is to show how Green’s theorem can be used to
establish results about holomorphic functions on domains in C. The first result is
the Cauchy integral theorem, established in §D.1. This is followed in §D.2 by the
Cauchy integral formula, and in §D.3 by Liouville’s theorem, which will be applied
in Appendix E.

Material here gives a taste of results in the important area of complex function
theory. For more on this, the reader can look at [17].
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D.1. The Cauchy integral theorem

Let Q C C be a smoothly bounded open set, with closure . The Cauchy integral
theorem says the following.

Theorem D.1.1. Assume f:Q — C is C', and holomorphic on Q. Then

(D.1.1) /f(z) dz = 0.
o0
Proof. Here dz = dx + idy, so
(D.1.2) /f(z) dz:/fderifdy.
o0 o0
Recall that Green’s theorem gives
_ [(99 of
(D.1.3) /fd:v%—gdyf/(%—a—y) dx dy.
20 Q

We apply this with g = if. We see that (D.1.2) is equal to the left side of (D.1.3),
with g = ¢f. In this case, the right side of (D.1.3) is equal to

0 0
(D.1.4) /(—f - —f) dxdy =0,

Zax dy
Q

by the Cauchy-Riemann equation for f. O
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D.2. The Cauchy integral formula

Asin §D.1, let Q C C be a smoothly bounded open set, with closure 2. The Cauchy
integral formula is the following.

Theorem D.2.1. Assume f:Q — C is C', and holomorphic on Q. Then
1 z
(D2.1) Py = — [ L)

21 Z— 2
o0

dz,

for each zy € Q.

Proof. Pick g9 > 0 so small that D, (z9) C Q. For e € (0,¢), let Q. = Q\ D.(20).
Then

(D.2.2) o(z) = L&)

zZ— 20

is holomorphic on 2,

and C' on €., so Theorem D.1.1 implies

(D.2.3) g(z)dz =0,
d
hence
f(z) f(z)
(D.2.4) P dz = P dz.
84 0 aDio) 0

Parametrizing 0D, (z0) by () = 20 + €€’’, so 7/(t) = ice™, we see that the right
side of (D.2.4) is equal to

27 it 27
(D.2.5) M jeetdt =i | f(zo +ee) dt,
0 ee’ 0
and taking the limit ¢ — 0 gives (D.2.1). O

It is useful to change labels, and write (D.2.1) as

(D.2.6) 27”/ f(e d(, z €.

Now it is natural to regard z as a varlable and take the z-derivative. Parallel to
(D.0.7), we have

d 1 1
(D.2.7) vl et
and (D.2.6) yields
(D.2.8) f(z)= %m/ ((f—(CZ))Q ¢, zeq.
o0

We see from (D.2.8) that f’ is holomorphic on Q. We can keep this up, obtaining
inductively that

(D.2.9) ™ (z) = b / _SO ¢, ze€Q.

2mi ) (¢ —z)ntl
o9
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D.3. Liouville’s theorem

The following consequence of the Cauchy integral formula is known as Liouville’s
theorem.

Theorem D.3.1. Let f: C — C be holomorphic. If f is bounded, i.e.,

(D.3.1) lf(2)| < M < o0, VzeC,

then f is constant.

Proof. We will show that the hypothesis (D.3.1) implies that f’ is identically zero,

which implies that f is constant. To see this, apply (D.2.8) with Q = Dg(z).
Parametrizing Dg(z) by v(t) = z + Re'’, we have

Pe = [ L

2mi (¢ —2)?
(D.3.2) ODR(2)
1 27 4
:ﬁ o f(Z+R8 )dt,
hence
M
D.3.3 "(2)] < —=.
(D.33) SOIEE=

Taking R — oo yields
(D.3.4) If'(z)]=0, VzeC,

and we are done. O
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Appendix E

Polynomials and the
fundamental theorem of
algebra

The polynomial

(E.0.1) p(x) =2>+1, zeR,

clearly has no real root. The complex number ¢ = v/—1 was introduced to provide
such a root. Then there is a factorization

(E.0.2) 24+1=(z+i)(z—i), ze€C.

It was then established that one need go no further to produce roots of polynomials.
The fundamental theorem of algebra asserts that every nonconstant polynomial
(E.0.3) p(2) = ap2" +ap_12" "t + -+ ag,

with a; € C, n > 1, a, # 0, vanishes for some z € C. Furthermore, such a
polynomial has a factorization into linear factors. This result is of use in Appendix
C, to produce eigenvalues of matrices, which in turn is useful for the study of
Hessian matrices in Chapter 3.

We give two proofs of the fundamental theorem of algebra, one in §E.1 that
is elementary, in the sense that it does not use Green’s theorem, and a second in
§F.2, which uses Liouville’s theorem, established in §D.3 as a consequence of the
Cauchy integral theorem.
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E.1. Elementary proof of the fundamental theorem of algebra

The following result is the fundamental theorem of algebra.

Theorem E.1.1. If P(z) is a nonconstant polynomial (with complex coefficients),
then p(z) must have a complex Toot.

Proof. We have, for some n > 1, a, # 0,
p(z) =anz" 4+ -+ a1z +ag
(E.1.1) 1
=0, (14 0T |2 oo,
which implies

(E.1.2) lim |p(z)| = 0.

|z| =00
Picking R € (0, 00) such that

(E.1.3) Jnf, ) > p(0)],

we deduce that

E.14 inf = inf .
(E.1.4) nf |p(:)| = inf [p()

Since Dr = {z : |z| < R} is compact and p is continuous, there exists z9 € Dg
such that

(E.1.5) [p(20)] = inf [p(2)]-
The theorem hence follows from the following result. O

Lemma E.1.2. Ifp(z) is a nonconstant polynomial and (E.1.5) holds, then p(zy) =
0.

Proof. Suppose to the contrary that

(E.1.6) p(z0) = a # 0.
We can write
(E.1.7) p(z0 +¢) = a+q(Q),

where ¢(() is a (nonconstant) polynomial in (, satisfying ¢(0) = 0. Hence, for some
k> 1 and b # 0, we have q(¢) = b¥ + -+ + b, ie.,

(E.1.8) a(Q) ="+ O(C*), (=0,
so, uniformly on S* = {w € C: |w =1},
(E.1.9) p(20 + ew) = a + bwhe® + O, e\, 0.
Pick w € St such that
b a
E.1.10 —wF=——
(110 B Tl

which is possible since a # 0 and b # 0. In more detail, since —(a/|al)(|b],b) € S,
Euler’s identity implies
a bl _ i

a b~
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for some 0 € R, so we can take

w = ek,
Given (E.1.10),
b
(E.1.11) Pz +2w) = a1 - Hs’“) O,
which contradicts (E.1.5) for € > 0 small enough. Thus (E.1.6) is impossible. This
proves Lemma E.1.2, hence Theorem E.1.1. O

Now that we have shown that p(z) in (E.1.1) must have one root, we can show
that it has n roots (counting multiplicity).

Proposition E.1.3. For a polynomial p(z) of degree n as in (E.1.1), there exist
r1,...,mn € C such that

(E.1.12) p(z)=an(z—711) (2 —1p).

Proof. We have shown that p(z) has one root, call it r;. Dividing p(z) by z — ry,
we have

(E.1.13) p(z) = (2 = m1)p(2) + ¢,

where p(z) = az" 1 +--- 4+ and q is a polynomial of degree < 1, i.e., a constant.
Setting z = ry in (E.1.13) yields ¢ = 0, so

(E.1.14) p(z) = (2 — 11)p(2)-
Since p(z) is apolynomial of degree n — 1, the result (E.1.12) follows by induction
on n. |:|

The numbers r;, 1 < j < nin (E.1.12) are called the roots of p(z). If k of them
coincide (say with r;) we say ¢ is a root of multiplicity k. If r, is distinct from r;
for all j # £, we say ry is a simple root.
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E.2. Proof via Liouville’s theorem

Here we use Liouville’s theorem to give a second proof of the fundamental theorem
of algebra. So take a polynomial

(E.2.1) p(z) =apz" 4+ +a1z+ap, an,#0, n>1
We will continue to make use of (E.1.2), i.e.,
(E.2.2) lim [p(z)| = cc.

|z| =00

Now suppose

(E.2.3) p(z) #0, VzeC.
Set
1
Then f(z) is holomorphic on C; one checks that
(5) = 7p'(z)

However, (E.2.2) implies |f(z)] — 0 as |z] — oo, hence f is bounded. Then
Liouville’s theorem implies f is constant. This is clearly not possible, so we have a
contradiction to (E.2.3). This completes the second proof of Theorem E.1.1.
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absolute value, 278, 301
absolutely convergent series, 290, 303
acceleration, 117

addition, 284, 300

adjoint, 323, 330

algebra of sets, 173
alternating series, 290

angle, 304

antipodal points, 267

arc length, 85, 89, 228
Archimedean property, 286
arclength, 117

arctangent, 107

area, 172, 230

area under a curve, 178
average, 201

averaging over rotations, 232
averaging rotations, 254

basis, 61

binomial coefficients, 37

binomial formula, 37

binormal, 117

bisection method, 299

Bolzano-Weierstrass theorem, 53, 288,
295

boundary, 172

bounded sequence, 279

calculus, 1

Cantor set, 26, 297

Cauchy integral formula, 338
Cauchy integral theorem, 337
Cauchy remainder formula, 32, 39

Cauchy sequence, 52, 279, 284, 287, 294

Cauchy’s inequality, 51, 320

Cauchy-Riemann equation, 335

Cauchy-Riemann equations, 132, 162

cell, 169

center of mass, 201

chain rule, 3, 24, 129, 227

change of variable formula, 24, 85, 185,
186, 194, 214, 228

characteristic function, 15, 172

characteristic polynomial, 324

circle, 85

cis, 102, 303

closed set, 52, 294, 304

closure, 172, 294

cofactor matrix, 73, 133

column vector, 50, 60

compact, 53

compact set, 294, 304

completeness property, 52, 288, 294

complex analytic, 132

complex conjugate, 301

complex differentiable, 335

complex number, 300

complexification, 327

connected, 273

content, 15, 172

continuous, 126, 171, 310

continuous function, 13, 295

continuum hypothesis, 298

contraction mapping theorem, 152

convergence, 52

convergent power series, 144
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convergent sequence, 278, 287
convergent series, 289
convex, 8, 98

coordinate chart, 224

cos, 86, 101, 242, 303

cosh, 104, 106

Cramer’s formula, 73, 133
critical point, 138, 149, 251
cross product, 77, 117, 228
curl, 262

curvature, 113, 117
curvature vector, 112
curve, 83, 117, 228

Darboux theorem, 14, 18, 171, 248
definition vs. formula, 71
derivative, 2, 29, 126, 233

det, 68

determinant, 68, 132
diffeomorphism, 151, 226, 269
differentiability of power series, 145
differentiable, 2, 126, 233
differential equation, 97

dimension, 61

distance, 51

div, 259

divergence, 259

divergence theorem, 259
dominated convergence theorem, 27, 47
dot product, 50

eigenspace, 324

eigenvalue, 272, 324

eigenvector, 272, 324

ellipse, 88

ellipsoid, 196

embedding, 269

equivalence class, 284

Fuclidean metric tensor, 229
Euclidean space, 50, 128

Euler identity, 102, 107, 114, 304
Fuler’s formula, 242, 328, 342
Exp, 156, 231, 243, 327

exp, 98

expansion by minors, 73
exponential function, 97, 303, 336
exponential map, 231

extremal problem, 138

fixed point, 152
flat torus, 268
Frenet frame, 117

Frenet-Serret equations, 119

Fubini’s theorem, 175, 184, 194, 198

fundamental theorem of algebra, 324,
342

fundamental theorem of calculus, 17,
24,29, 127

fundamental theorem of linear algebra,
63, 235

Gl4+(n,R), 272, 273

Gamma function, 219, 230

Gauss formula, 259

Gaussian integral, 195

generalized eigenspace, 328
generalized mean value theorem, 9, 39
geometric series, 292

Gl(n,R), 128

global diffeomorphism, 154
Gramm-Schmidt construction, 321
Green formulas, 264

Green’s theorem, 261

Haar measure, 232
harmonic, 265

Heine-Borel theorem, 54, 297
Hessian, 138

Hilbert space, 321
Hilbert-Schmidt norm, 75
holomorphic, 132, 162, 335

imaginary part, 301

implicit function theorem, 157, 234

improper integral, 41

infimum, 291

infinite decimal expansion, 291

infinite series, 289

injective, 61

inner product, 227, 319

inner tube, 243

integral, 11

integral remainder formula, 32

integral test, 26

integration by parts, 24, 231

interior, 172

intermediate value theorem, 296

interval, 11, 294

inverse, 61

inverse function theorem, 5, 10, 151,
225, 231, 233

invertible, 65, 72

isometric embedding, 270

isomorphism, 61
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iterated integral, 175

Lagrange multiplier, 252

Lagrange remainder formula, 32, 39,
142

Lagrange’s identity, 78

Laplace operator, 264

law of cosines, 96

least upper bound, 289

Lebesgue integral, 44

Lebesgue measure, 16

Leibniz identity, 40, 148

length, 85

limit, 278

line integral, 260

linear transformation, 59, 126

linearly dependent, 61

linearly independent, 61

Liouville’s theorem, 339

Lipschitz, 174

Lipschitz continuous, 17

local diffeomorphism, 154

local maximum, 8, 38, 139, 149

local minimum, 7, 38, 139, 149

log, 99

logarithm, 99

lower content, 172

M(n,F), 66, 68

M(n,R), 231

manifold, 267

matrix, 59

matrix exponential, 114, 156, 242, 332
matrix multiplication, 60

max, 295

maximum, 3

maxsize, 11, 169

mean value, 201

mean value theorem, 4, 18, 27, 134
metric space, 51

metric tensor, 227, 268

min, 295

minimum, 3

minsize, 13

monotone convergence theorem, 216
monotone function, 21

monotone sequence, 279
multi-index notation, 135
multi-linear notation, 143
multi-linear Taylor formula, 144
multiplication, 284, 300
multiplicativity, 72

negative definite, 139
Newton method miracle, 161
Newton’s method, 155, 161
nil set, 173

norm, 50, 126, 320

normal, 117

normal derivative, 264
normal transformation, 326
null space, 61

O(n), 66

open set, 52, 126, 294, 304
operator norm, 329

order relation, 286

orthogonal, 54, 79

orthogonal complement, 323
orthogonal projection, 323
orthogonal transformation, 326
orthonormal, 54

orthonormal basis, 66, 227, 272, 321
outer measure, 16, 221

Pappus’s theorem, 208

parabola, 87

parametrization by arc length, 85
partial derivative, 7, 126
partition, 11, 169

partition of unity, 274

path integral, 260

perfect set, 298

permutation, 70

pi, 86, 103, 104, 199, 305
piecewise constant function, 22
PK, 182

polar coordinates, 88, 155, 190, 206
polar decomposition, 272
polynomial, 59

positive definite, 139

power series, 28, 97

power series remainder formula, 31
product rule, 2

projection, 247

projective space, 267
Pythagorean theorem, 51
Pythagorean triple, 308

quotient surface, 267

R-average, 255

radius of convergence, 28
range, 61

ratio test, 37, 97, 283, 293
real analytic, 162
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Index

real number, 284

real part, 301

regular pentagon, 306
reparametrization, 83
representation, 247

Riemann integrability criterion, 221
Riemann integrable, 13, 171, 238
Riemann integral, 11, 169
Riemann sum, 15, 83, 171
rotation group, 232

row operation, 185, 200

row reduction, 185

row vector, 50

saddle point, 140, 149

sec, 103, 106

second derivative, 7

self-adjoint, 323

sequence, 278

sin, 86, 101, 242, 303

sinh, 104, 106, 245

Skew(n), 231, 243, 327

SO(n), 74, 231, 243, 327

SO(3), 77

solid of rotation, 179

span, 61

Spec, 324

speed, 83, 117

sphere, 229, 230

sphere bundle, 236

spherical coordinates, 270

spherical polar coordinates, 191, 196,
206, 229

stereographic projection, 249

Stokes formula, 263

submersion, 234

submersion mapping theorem, 234

subsequence, 279

supremum, 289

supremum property, 289

surface, 224

surface integral, 228

surface of revolution, 246

surjective, 61

Sym(n), 237, 255, 272

tan, 92, 103, 106

tangent bundle, 235

tangent space, 227

tangent vector, 112, 117

Taylor formula with remainder, 136
Taylor’s formula with remainder, 24

torsion, 117

totally disconnected, 298

Tr, 75

trace, 75

transpose, 66

triangle inequality, 51, 278, 302, 320
trig table, 109

trigonometric function, 97
trigonometric identities, 304

unbounded integrable function, 41, 211
uniform convergence, 312

uniformly continuous, 310

unit normal, 112

unitary, 323

upper content, 172

vector space, 58, 128, 319
velocity, 83, 117

volume, 169, 172, 229
volume of a ball, 196, 239

Weierstrass M-test, 28, 314



