Eigenfunction Concentration Results

MICHAEL TAYLOR

Abstract. This note has three vignettes dealing with spectral behavior of Laplacians and sub-Laplacians. In §1 we show that spherical harmonics $\varphi_{k\ell}$ with angular momentum ℓ satisfying $|\ell| \leq (1 - \beta^2)^{1/2}k$ concentrate on a strip of latitude-width 2β about the equator, as $k \to \infty$. In §2 we have a generalization on concentration of the square integrals of joint eigenfunctions of Δ and a commuting vector field.

In §3 we show that if L is a positive, self-adjoint, second-order differential operator on a compact, *n*-dimensional manifold M, hypoelliptic with loss of < 2derivatives, with principal symbol L_2 , satisfying

$$\int_{S^*M} L_2(x,\omega)^{-n/2} \, dS(x,\omega) = \infty,$$

then the orthonormal eigenfunctions $\{\varphi_k\}$ of L concentrate microlocally on the characteristic set $\Sigma \subset T^*M \setminus 0$, given by

$$\Sigma = \{ (x,\xi) \in T^*M \setminus 0 : L_2(x,\xi) = 0 \},\$$

(except for a sparse subset), as $k \to \infty$.

These results are studies for other works. Results of $\S\S1-2$ have been folded into [T3], where stronger results appear. This note appears on this website because $\S3$ has not yet found a home, and I have grown weary of having to dig it up.

Contents

- 1. Concentration of eigenfunctions on S^n
- 2. More general concentration results for manifolds with a continuous symmetry group
- 3. Microlocal concentration of eigenfunctions of subelliptic operators

1. Concentration of eigenfunctions on S^n

Here we work on S^n , the unit sphere in \mathbb{R}^{n+1} , with its standard metric. Then the geodesic flow $\{\mathcal{G}_t\}$ is periodic of period 2π . It is convenient to take

(1.1)
$$\Lambda = \sqrt{-\Delta + \left(\frac{n-1}{2}\right)^2} - \frac{n-1}{2},$$

so $e^{it\Lambda}$ is also periodic of period 2π (cf. (1.8) below). Then, given $A \in \mathcal{L}(L^2(S^n))$,

(1.2)
$$\Pi(A) = \frac{1}{2\pi} \int_0^{2\pi} e^{-it\Lambda} A e^{it\Lambda} dt$$

In case $a \in C^{\infty}(S^*S^n)$, we have

(1.3)
$$Pa(x,\xi) = \frac{1}{2\pi} \int_0^{2\pi} a(\mathcal{G}_t(x,\xi)) \, dt,$$

and it is a straightforward consequence of Egorov's theorem that, if $A = op_F(a)$,

(1.4)
$$\Pi(A) - \operatorname{op}_F(Pa) \in OPS^{-1}(S^n).$$

We now specialize to the case where A is a multiplication operator,

(1.5)
$$Au(x) = a(x)u(x), \quad a \in C^{\infty}(S^n),$$

and, to keep things simple, assume that

(1.6)
$$n = 2$$
, and $a(x)$ is invariant under $R(t)$,

where R(t) is the group of rotations about the x_3 -axis. Then A commutes with the associated unitary group R(t) on $L^2(S^2)$, which we write as

(1.7)
$$R(t) = e^{itX}$$

where iX = Y is the real vector field on S^2 generating the rotation. This group is also periodic, of period 2π . We note that

(1.8)
$$\operatorname{Spec} \Lambda = \{k \in \mathbb{Z} : k \ge 0\},\$$

and if V_k denotes the k-eigenspace of Λ , then

$$\dim V_k = 2k+1,$$

and

(1.10)
$$\operatorname{Spec} X\Big|_{V_k} = \{\ell \in \mathbb{Z} : -k \le \ell \le k\}.$$

Let us note that Λ and X commute, and that the pair $\{\Lambda, X\}$ has simple spectrum. Also, under the hypothesis (1.5)–(1.6), $\Pi(A)$ commutes with X as well as with Λ . Hence $\Pi(A)$ is a function of (Λ, X) ,

(1.11)
$$\Pi(A) = F(\Lambda, X).$$

Also, given $a \in C^{\infty}(S^*S^2)$, we have

(1.12)
$$\Pi(A) \in OPS^0(S^2),$$

with principal symbol given by (1.3).

Given these facts, we can use results of Chapter 12 of [T1] to analyze F in (1.11). These results yield

(1.13)
$$F \in S^0(\mathbb{R}^2) \Longrightarrow F(\Lambda, X) = B \in OPS^0(S^2),$$

with principal symbol

(1.14)
$$b(x,\xi) = F(|\xi|, \langle Y, \xi \rangle).$$

Recall that Y = iX is a real vector field. Note that it suffices to specify F on $\{(\lambda_1, \lambda_2) : \lambda_1 \ge 0, |\lambda_2| \le \lambda_1\}$, in light of (1.8)–(1.10), and also taking into account that $|Y| \le 1$ on S^2 . We want the principal part of (1.14) to match up with (1.3) on S^*S^2 .

Thus, we want to define $F_0(\lambda_1, \lambda_2)$, homogeneous of degree 0 in (λ_1, λ_2) , so that

(1.15)
$$F_0(1, \langle Y, \xi \rangle) = Pa(x, \xi), \quad \text{for } (x, \xi) \in S^* S^2.$$

Now $F_0(1, \lambda_2)$ is a function of $\lambda_2 \in [-1, 1]$, while Pa is a function on S^*S^2 , which has dimension 3. However, Pa is invariant under the flows \mathcal{G}_t and R(t), and in fact it is uniquely specified by its behavior on $S^*_{x_0}S^2$, where x_0 is an arbitrarily chosen point on the equator of S^2 . At x_0 , Y is a unit vector parallel to the equator, and (1.15) becomes

(1.16)
$$F_0(1,\lambda_2) = Pa(x_0,(\lambda_2,\sqrt{1-\lambda_2^2})).$$

At first glance, this looks non-smooth at $\lambda_2 = \pm 1$, but in fact we have

(1.17)
$$Pa(x_0, (\xi_1, \xi_2)) = Pa(x_0, (\xi_1, -\xi_2)).$$

Such an identity is clear if a(x) is even under $x_3 \mapsto -x_3$. On the other hand, if a(x) is odd under this transformation its invariance under R(t) guarantees that (1.3) vanishes, so we have (1.17) for general R(t)-invariant $a \in C^{\infty}(S^2)$. From (1.17) we have that (1.16) defines a smooth function of $\lambda_2 \in [-1, 1]$. Then

(1.18)
$$F_0(\Lambda, X) \in OPS^0(S^2), \text{ and} \\ \Pi(A) - F_0(\Lambda, X) \in OPS^{-1}(S^2).$$

Note that

(1.19)
$$F_0(\Lambda, X) = g(\Lambda^{-1}X),$$

where $g(\lambda) = F_0(1, \lambda)$, i.e.,

(1.20)
$$g(\lambda) = Pa(x_0, (\lambda, \sqrt{1-\lambda^2})).$$

Results just described have implications for concentration of spherical harmonics. In fact, we can take an orthonormal basis

(1.21)
$$\{\varphi_{k\ell} : k, \ell \in \mathbb{Z}, \ k \ge 0, \ |\ell| \le k\}$$

of $L^2(S^2)$, satisfying

(1.21A)
$$\Lambda \varphi_{k\ell} = k \varphi_{k\ell}, \quad X \varphi_{k\ell} = \ell \varphi_{k\ell}.$$

Then

(1.22)
$$\int_{S^2} a(x) |\varphi_{k\ell}(x)|^2 dS(x) = (A\varphi_{k\ell}, \varphi_{k\ell})_{L^2}$$
$$= (\Pi(A)\varphi_{k\ell}, \varphi_{k\ell})_{L^2}$$
$$= (F_0(\Lambda, X)\varphi_{k\ell}, \varphi_{k\ell})_{L^2} + R_{k\ell},$$

where

(1.25)
$$R_{k\ell} \longrightarrow 0, \text{ as } k \to \infty.$$

Hence

(1.24)
$$\int_{S^2} a(x) |\varphi_{k\ell}(x)|^2 \, dS(x) = g\left(\frac{\ell}{k}\right) + R_{k\ell},$$

with $g(\lambda)$ given by (1.20).

Let us pick $\beta \in (0,1)$ and take $a \in C^{\infty}(S^2)$, invariant under R(t), and satisfying

(1.25)
$$a(x) = 0, \text{ for } |x_3| \le \beta.$$

It follows from (1.20) and (1.3) that

(1.26)
$$g(\lambda) = 0, \text{ for } \sqrt{1 - \lambda^2} \le \beta,$$

i.e., for $|\lambda| \ge \sqrt{1-\beta^2}$. Hence

(1.27)
$$\int_{S^2} a(x) |\varphi_{k\ell}(x)|^2 \, dS(x) = R_{k\ell} \to 0, \quad \text{as} \quad k \to 0,$$

for $|\ell|/k \ge \sqrt{1-\beta^2}.$

Conclusion. The orthonormal eigenfunctions $\varphi_{k\ell}$ concentrate on the strip $|x_3| \leq \beta$ as $k \to \infty$, for $|\ell|/k \geq \sqrt{1-\beta^2}$.

2. More general concentration results for manifolds with a continuous symmetry group

Let M be a compact, connected Riemannian manifold, and assume M has a nonzero Killing field Y, generating a 1-parameter family of isometries of M. We will also make the hypothesis that

(2.1)
$$A_0 = \min_{x \in M} |Y(x)| < \max_{x \in M} |Y(x)| = A_1.$$

The operator X = iY is self adjoint on $L^2(M)$ and commutes with $\Lambda = \sqrt{-\Delta}$. Thus there is an orthonormal basis $\{\varphi_k\}$ of $L^2(M)$ consisting of joint eigenfunctions,

(2.2)
$$\Lambda \varphi_k = \lambda_k \varphi_k, \quad X \varphi_k = \mu_k \varphi_k,$$

with $\lambda_k \nearrow +\infty$. Note that

(2.3)
$$\mu_k^2 = \|X\varphi_k\|_{L^2}^2 \le A_1^2 \|\nabla\varphi_k\|_{L^2}^2 = A_1^2(-\Delta\varphi_k,\varphi_k)$$
$$= A_1^2 \|\Lambda\varphi_k\|_{L^2}^2 = A_1^2\lambda_k^2,$$

i.e.,

$$(2.4) |\mu_k| \le A_1 \lambda_k$$

We can define a function $F(\Lambda, X)$ by

(2.5)
$$F(\Lambda, X)\varphi_k = F(\lambda_k, \mu_k)\varphi_k.$$

Then, as shown in Chapter 12 of [T1],

(2.6)
$$F \in S^{0}(\mathbb{R}^{2}) \Longrightarrow F(\Lambda, X) \in OPS^{0}(M), \text{ and} \\ \sigma_{F(\Lambda, X)}(x, \xi) = F(|\xi|, \langle Y, \xi \rangle).$$

From here on, we assume $F \in C^{\infty}(\mathbb{R}^2 \setminus 0)$ is homogeneous of degree 0, and note that only its behavior on the wedge $\{(\lambda, \mu) : |\mu| \leq A_1\lambda\}$ is significant for the behavior of $F(\Lambda, X)$. We set

(2.7)
$$\varphi(\mu) = F(1,\mu), \text{ so } F(\Lambda,X) = \varphi(\Lambda^{-1}X).$$

Note that only the behavior of φ on $\mu \in [-A_1, A_1]$ is significant. The Weyl law **(Recall?)** yields

(2.8)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \|F(\Lambda, X)\varphi_k\|_{L^2}^2 = \int_{S^*M} |\varphi(\langle Y, \xi \rangle)|^2 \, dS,$$

where dS is the Liouville measure on S^*M , normalized so that $\int_{S^*M} dS = 1$. This gives information on the joint spectrum of the pair (Λ, X) , in connection with the classical result

(2.9)
$$\lambda_k \sim (Ck)^{1/n}, \quad \text{as} \ k \to \infty,$$

where $n = \dim M$ and $C = \Gamma(n/2 + 1)(4\pi)^{n/2}/\text{Vol }M$. Another application of the Weyl formula is that, for $a \in C^{\infty}(M)$,

(2.10)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \int_{M} a(x) |F(\Lambda, X)\varphi_{k}|^{2} dV$$
$$= \int_{S^{*}M} a(x) |\varphi(\langle Y, \xi \rangle)|^{2} dS.$$

We are ready to obtain some general concentration results, parallel to those of §1, but valid in much greater generality. The key to this result is the observation that, if $A_0 < B < A_1$,

$$\begin{array}{ll} (2.11) \\ \varphi(\mu) = 0 \quad \text{for} \quad |\mu| \le B \\ \implies \varphi(\langle Y, \xi \rangle) = 0, \quad \forall (x, \xi) \in S^*M \text{ such that } x \in M_B = \{x \in M : |Y(x)| \le B\}. \end{array}$$

Hence we have the following conclusion.

Proposition 2.1. With $a \in C^{\infty}(M)$, set Au(x) = a(x)u(x). Then

(2.12)
$$\begin{aligned} \varphi(\mu) &= 0 \quad for \quad |\mu| \leq B, \ supp \, a \subset M_B \\ \Longrightarrow F(\Lambda, X)^* AF(\Lambda, X) \in OPS^{-1}(M). \end{aligned}$$

Hence, when these hypotheses hold,

(2.13)
$$\lim_{k \to \infty} \int_{M} a(x) |F(\Lambda, X)\varphi_{k}|^{2} dV \\ = \lim_{k \to \infty} (F(\Lambda, X)^{*} AF(\Lambda, X)\varphi_{k}, \varphi_{k})_{L^{2}} = 0.$$

Equivalently,

(2.14)
$$\lim_{k \to \infty} |\varphi(\lambda_k^{-1}\mu_k)|^2 \int_M a(x) |\varphi_k(x)|^2 dV(x) = 0.$$

3. Microlocal concentration of eigenfunctions of subelliptic operators

Let M be a compact, n-dimensional Riemannian manifold, and let $L \in OPS^2(M)$ be a positive, self-adjoint operator. We assume L is not elliptic, but that it is subelliptic, in the sense that there exists $\sigma > 0$ (necessarily $\sigma < 2$) such that

(3.1)
$$(L+1)^{-1}: H^s(M) \longrightarrow H^{s+\sigma}(M), \quad \forall s \in \mathbb{R}.$$

Let $\{\varphi_k\}$ be an orthonormal basis of $L^2(M)$ consisting of eigenfunctions of L:

(3.2)
$$L\varphi_k = \lambda_k \varphi_k, \quad 0 \le \lambda_1 \le \lambda_2 \le \cdots \nearrow +\infty.$$

We aim to prove the following.

Theorem 3.1. Take L as above, and denote its principal symbol by L_2 . Assume

(3.3)
$$\int_{S^*M} L_2(x,\omega)^{-n/2} dS(x,\omega) = \infty.$$

Then, except perhaps for a "sparse" subsequence, the sequence $\{\varphi_k\}$ concentrates microlocally on the characteristic set $\Sigma \subset T^*M \setminus 0$, given by

(3.4)
$$\Sigma = \{ (x,\xi) \in T^*M \setminus 0 : L_2(x,\xi) = 0 \}.$$

The proof will involve a study of the semigroup $\{e^{-tL} : t \ge 0\}$, and of products Ae^{-tL} , with $A \in OPS^0(M)$. The hypothesis (3.1) implies

(3.5)
$$e^{-tL}: \mathcal{D}'(M) \longrightarrow C^{\infty}(M),$$

for each t > 0. In particular, $\operatorname{Tr} e^{-tL} < \infty$ for each t > 0. We will show that, under the hypotheses of Theorem 3.1,

(3.6)
$$t^{n/2} \operatorname{Tr} e^{-tL} \longrightarrow +\infty, \text{ as } t \searrow 0.$$

Furthermore, if

(3.7) The full symbol of A vanishes on a conic neighborhood of
$$\Sigma$$
 in $T^*M \setminus 0$.

we obtain

(3.8)
$$\operatorname{Tr} A e^{-tL} \sim C(A_0) t^{-n/2}, \quad \text{as} \ t \searrow 0,$$

where A_0 is the principal symbol of A. From (3.8) we obtain

(3.9)
$$\sum_{k\geq 0} e^{-t\lambda_k} (A\varphi_k, \varphi_k) \sim C(A_0) t^{-n/2}, \quad t \searrow 0,$$

when (3.7) holds. Applying this observation to A^*A yields

(3.10)
$$\lim_{t \to 0} t^{n/2} \sum_{k \ge 0} e^{-t\lambda_k} \|A\varphi_k\|_{L^2}^2 = C(|A_0|^2)$$

Meanwhile, (3.6) implies

(3.11)
$$\lim_{t \to 0} t^{n/2} \sum_{k \ge 0} e^{-t\lambda_k} = +\infty.$$

In preparation for proving (3.6), we will find it useful to recall some properties of e^{-tM} when $M \in OPS^2(M)$ is an *elliptic*, positive, self-adjoint operator, with principal symbol M_2 . In such a case, parametrix constructions yield

(3.12)
$$e^{-tM}u(x) = \int_{M} H(t, x, y)u(y) \, dV(y),$$

with

(3.12A)
$$H(t, x, y) = C_n \int_{T_x^*M} e^{-tM_2(x,\xi)} e^{i(x-y)\cdot\xi} d\xi + \cdots$$

In particular,

(3.13)
$$H(t, x, x) = C_n \int_{T_x^*M} e^{-tM_2(x,\xi)} d\xi + o(t^{-n/2}),$$

as $t \searrow 0$. Now

(3.14)
$$\int_{T_x^*M} e^{-tM_2(x,\xi)} d\xi = C'_n t^{-n/2} \int_{S_x^*M} M_2(x,\omega)^{-n/2} dS_x(\omega),$$

hence

(3.15)
$$\operatorname{Tr} e^{-tM} = (4\pi t)^{-n/2} \frac{1}{A_{n-1}} \int_{S^*M} M_2(x,\omega)^{-n/2} \, dS(x,\omega) + o(t^{-n/2}),$$

where A_{n-1} is the area of the unit sphere $S^{n-1} \subset \mathbb{R}^n$, so

(3.16)
$$\frac{1}{A_{n-1}} \int_{S^*M} dS(x,\omega) = \operatorname{Vol} M.$$

In particular, if $M = -\Delta$, where Δ is the Laplace operator on M, we have

(3.17)
$$\operatorname{Tr} e^{t\Delta} = (4\pi t)^{-n/2} \operatorname{Vol} M + o(t^{-n/2}).$$

Behind (3.12)–(3.13) is a parametrix construction of e^{-tM} as a family of pseudodifferential operators. Then pseudodifferential operator calculus yields, for $A \in OPS^0(M)$, with principal symbol A_0 ,

(3.18) Tr
$$Ae^{-tM} = (4\pi t)^{-n/2} \frac{1}{A_{n-1}} \int_{S^*M} A_0(x,\omega) M_2(x,\omega)^{-n/2} dS(x,\omega) + o(t^{-n/2}).$$

To establish (3.6), we argue as follows. Take $\varepsilon > 0$ and set $M = L - \varepsilon \Delta$. We apply (3.15) to such M. The relevance of such an application arises as follows. Say $\{\psi_k\}$ is an orthonormal basis of $L^2(M)$ consisting of eigenfunctions of M:

(3.19)
$$L\psi_k = \mu_k \psi_k, \quad 0 \le \mu_1 \le \mu_2 \le \cdots \nearrow +\infty.$$

Lemma 3.2. Let L, M be positive, self-adjoint operators with compact resolvents. Assume

$$(3.20) \qquad \qquad \mathcal{D}(M) \subset \mathcal{D}(L), \quad L \leq M.$$

Let the eigenvalues be $\{\lambda_k\}$, $\{\mu_k\}$, as in (3.2) and (3.19). Then, for each k,

$$(3.21) \qquad \qquad \lambda_k \le \mu_k$$

Proof. Pick $\mu \in (0, \infty)$, and let $V_{\nu} \subset L^2(M)$ be the span of $\{\psi_k : \mu_k < \mu\}$, so $((M - \mu I)v, v) < 0$ for all nonzero $v \in V_{\mu}$, but not for all v in a linear space of larger dimension. The hypotheses above yield $((L - \mu I)v, v) < 0$, for all nonzero $v \in V_{\mu}$, so

$$\#\{\lambda_j : \lambda_j < \mu\} \ge \#\{\mu_j : \mu_j < \mu\}.$$

From the lemma, we deduce that

(3.22)
$$\operatorname{Tr} e^{-tL} \ge \operatorname{Tr} e^{-t(L-\varepsilon\Delta)},$$

for each $\varepsilon > 0$, t > 0. Applying (3.15) to $M = L - \varepsilon \Delta$, we have

(3.23)
$$\lim_{t \to 0} (4\pi t)^{n/2} \operatorname{Tr} e^{-(L-\varepsilon\Delta)} = \frac{1}{A_{n-1}} \int_{S^*M} (L_2(x,\omega) + \varepsilon)^{-n/2} \, dS(x,\omega).$$

Hence

(3.24)
$$\liminf_{t \to 0} (4\pi t)^{n/2} \operatorname{Tr} e^{-tL} \ge \frac{1}{A_{n-1}} \int_{S^*M} (L_2(x,\omega) + \varepsilon)^{-n/2} \, dS(x,\omega),$$

for each $\varepsilon > 0$. Hence

(3.25)
$$\liminf_{t \to 0} (4\pi t)^{n/2} \operatorname{Tr} e^{-tL} \ge \frac{1}{A_{n-1}} \int_{S^*M} L_2(x,\omega)^{-n/2} \, dS(x,\omega).$$

Thus, given the hypothesis (3.3), we have (3.6).

Next, we bring in the fact that, if $A \in OPS^0(M)$ satisfies (3.7), then the construction of a parametrix for $e^{-tL}A$ is microlocal, and yields, parallel to (3.18),

(3.26) Tr
$$e^{-tL}A = (4\pi t)^{-n/2} \frac{1}{A_{n-1}} \int_{S^*M} A_0(x,\omega) L_2(x,\omega)^{-n/2} dS(x,\omega) + o(t^{-n/2}),$$

and, of course,

(3.27)
$$\operatorname{Tr} A e^{-tL} = \operatorname{Tr} e^{-tL} A,$$

so we have (3.8).

EXAMPLES. Let $M = S^2 \subset \mathbb{R}^3$ be the unit sphere, and let X_j be vector fields generating 2π -periodic rotation about the x_j -axis, for $1 \leq j \leq 3$. Then $\Delta = X_1^2 + X_2^2 + X_3^2$. Now

$$L = -(X_1^2 + X_2^2)$$

satisfies (3.1), with $\sigma = 1$, and we also have (3.3). On the other hand,

$$L = -(X_1^2 + X_2^2 + X_3 M_{x_1}^2 X_3)$$

also satisfies (3.1), with $\sigma = 1$, but (3.3) does not hold. In this case, the integral $\int_{S^*M} L_2(x,\omega)^{-1} dS$ is finite.

References

- [CV] Y. Colin de Verdière, Ergodicité et fonctions propre du laplacian, Comm. Math. Phys. 102 (1985), 497–502.
- [Don] V. Donnay, Geodesic flow on the two-sphere, I, positive measure entropy, Ergod. Theory Dynam. Systems 8 (1988), 531–553.
- [Gal] J. Galkowski, Quantum ergodicity for a class of mixed systems, J. of Spectral Theory 4 (2014), 65–85.
- [Riv] G. Riviere, Remarks on quantum ergodicity, J. Mod. Dyn. 7 (2013), 119–133.
- [ST] R. Schrader and M. Taylor, Semiclassical asymptotics, gauge fields, and quantum chaos, J. Funct. Anal. 83 (1989), 258–316.
- [Shn] A. Shnirelman, Ergodic properties of eigenfunctions, Usp. Mat. Nauk. 29 (1974), 181–182.
- [Su] T. Sunada, Quantum ergodicity, pp. 175–196 in Progress in Inverse Spectral Geometry, Trends in Math., Birkhäuser, Basel, 1997.
- [T1] M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, Princeton, NJ, 1981.
- [T2] M. Taylor, Variations on quantum ergodic theorems, Potential Anal. 43 (2015), 625–651.
- [T3] M. Taylor, Joint spectra of Riemannian manifolds with rotational symmetry, Preprint, available on this website.
- [Ze] A. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), 919–941.
- [Z1] S. Zelditch, Quantum ergodicity of C^* dynamical systems, Commun. Math. Phys. 177 (1996), 507–528.
- [Z2] S. Zelditch, Quantum mixing, Jour. Funct. Anal. 140 (1996), 68–86.
- [ZZ] S. Zelditch and M. Zworski, Ergodicity of eigenfunctions for ergodic billiards, Comm. Math. Phys. 175 (1996), 673–682.