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Abstract. This note has three vignettes dealing with spectral behavior of Lapla-
cians and sub-Laplacians. In §1 we show that spherical harmonics φkℓ with angular
momentum ℓ satisfying |ℓ| ≤ (1 − β2)1/2k concentrate on a strip of latitude-width
2β about the equator, as k → ∞. In §2 we have a generalization on concentration
of the square integrals of joint eigenfunctions of ∆ and a commuting vector field.

In §3 we show that if L is a positive, self-adjoint, second-order differential op-
erator on a compact, n-dimensional manifold M , hypoelliptic with loss of < 2
derivatives, with principal symbol L2, satisfying∫

S∗M

L2(x, ω)
−n/2 dS(x, ω) = ∞,

then the orthonormal eigenfunctions {φk} of L concentrate microlocally on the
characteristic set Σ ⊂ T ∗M \ 0, given by

Σ = {(x, ξ) ∈ T ∗M \ 0 : L2(x, ξ) = 0},

(except for a sparse subset), as k → ∞.
These results are studies for other works. Results of §§1–2 have been folded into

[T3], where stronger results appear. This note appears on this website because §3
has not yet found a home, and I have grown weary of having to dig it up.
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1. Concentration of eigenfunctions on Sn

Here we work on Sn, the unit sphere in Rn+1, with its standard metric. Then
the geodesic flow {Gt} is periodic of period 2π. It is convenient to take

(1.1) Λ =

√
−∆+

(n− 1

2

)2

− n− 1

2
,

so eitΛ is also periodic of period 2π (cf. (1.8) below). Then, given A ∈ L(L2(Sn)),

(1.2) Π(A) =
1

2π

∫ 2π

0

e−itΛAeitΛ dt.

In case a ∈ C∞(S∗Sn), we have

(1.3) Pa(x, ξ) =
1

2π

∫ 2π

0

a(Gt(x, ξ)) dt,

and it is a straightforward consequence of Egorov’s theorem that, if A = opF (a),

(1.4) Π(A)− opF (Pa) ∈ OPS−1(Sn).

We now specialize to the case where A is a multiplication operator,

(1.5) Au(x) = a(x)u(x), a ∈ C∞(Sn),

and, to keep things simple, assume that

(1.6) n = 2, and a(x) is invariant under R(t),

where R(t) is the group of rotations about the x3-axis. Then A commutes with the
associated unitary group R(t) on L2(S2), which we write as

(1.7) R(t) = eitX ,

where iX = Y is the real vector field on S2 generating the rotation. This group is
also periodic, of period 2π. We note that

(1.8) SpecΛ = {k ∈ Z : k ≥ 0},

and if Vk denotes the k-eigenspace of Λ, then

(1.9) dimVk = 2k + 1,
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and

(1.10) SpecX
∣∣
Vk

= {ℓ ∈ Z : −k ≤ ℓ ≤ k}.

Let us note that Λ and X commute, and that the pair {Λ, X} has simple spectrum.
Also, under the hypothesis (1.5)–(1.6), Π(A) commutes with X as well as with Λ.
Hence Π(A) is a function of (Λ, X),

(1.11) Π(A) = F (Λ, X).

Also, given a ∈ C∞(S∗S2), we have

(1.12) Π(A) ∈ OPS0(S2),

with principal symbol given by (1.3).
Given these facts, we can use results of Chapter 12 of [T1] to analyze F in (1.11).

These results yield

(1.13) F ∈ S0(R2) =⇒ F (Λ, X) = B ∈ OPS0(S2),

with principal symbol

(1.14) b(x, ξ) = F (|ξ|, ⟨Y, ξ⟩).

Recall that Y = iX is a real vector field. Note that it suffices to specify F on
{(λ1, λ2) : λ1 ≥ 0, |λ2| ≤ λ1}, in light of (1.8)–(1.10), and also taking into account
that |Y | ≤ 1 on S2. We want the principal part of (1.14) to match up with (1.3)
on S∗S2.

Thus, we want to define F0(λ1, λ2), homogeneous of degree 0 in (λ1, λ2), so that

(1.15) F0(1, ⟨Y, ξ⟩) = Pa(x, ξ), for (x, ξ) ∈ S∗S2.

Now F0(1, λ2) is a function of λ2 ∈ [−1, 1], while Pa is a function on S∗S2, which
has dimension 3. However, Pa is invariant under the flows Gt and R(t), and in fact
it is uniquely specified by its behavior on S∗

x0
S2, where x0 is an arbitrarily chosen

point on the equator of S2. At x0, Y is a unit vector parallel to the equator, and
(1.15) becomes

(1.16) F0(1, λ2) = Pa
(
x0, (λ2,

√
1− λ22)

)
.

At first glance, this looks non-smooth at λ2 = ±1, but in fact we have

(1.17) Pa(x0, (ξ1, ξ2)) = Pa(x0, (ξ1,−ξ2)).
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Such an identity is clear if a(x) is even under x3 7→ −x3. On the other hand, if a(x)
is odd under this transformation its invariance under R(t) guarantees that (1.3)
vanishes, so we have (1.17) for general R(t)-invariant a ∈ C∞(S2). From (1.17) we
have that (1.16) defines a smooth function of λ2 ∈ [−1, 1]. Then

(1.18)
F0(Λ, X) ∈ OPS0(S2), and

Π(A)− F0(Λ, X) ∈ OPS−1(S2).

Note that

(1.19) F0(Λ, X) = g(Λ−1X),

where g(λ) = F0(1, λ), i.e.,

(1.20) g(λ) = Pa(x0, (λ,
√

1− λ2)).

Results just described have implications for concentration of spherical harmonics.
In fact, we can take an orthonormal basis

(1.21) {φkℓ : k, ℓ ∈ Z, k ≥ 0, |ℓ| ≤ k}

of L2(S2), satisfying

(1.21A) Λφkℓ = kφkℓ, Xφkℓ = ℓφkℓ.

Then

(1.22)

∫
S2

a(x)|φkℓ(x)|2 dS(x) = (Aφkℓ, φkℓ)L2

= (Π(A)φkℓ, φkℓ)L2

= (F0(Λ, X)φkℓ, φkℓ)L2 +Rkℓ,

where

(1.25) Rkℓ −→ 0, as k → ∞.

Hence

(1.24)

∫
S2

a(x)|φkℓ(x)|2 dS(x) = g
( ℓ
k

)
+Rkℓ,

with g(λ) given by (1.20).
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Let us pick β ∈ (0, 1) and take a ∈ C∞(S2), invariant under R(t), and satisfying

(1.25) a(x) = 0, for |x3| ≤ β.

It follows from (1.20) and (1.3) that

(1.26) g(λ) = 0, for
√

1− λ2 ≤ β,

i.e., for |λ| ≥
√
1− β2. Hence

(1.27)

∫
S2

a(x)|φkℓ(x)|2 dS(x) = Rkℓ → 0, as k → 0,

for |ℓ|/k ≥
√

1− β2.

Conclusion. The orthonormal eigenfunctions φkℓ concentrate on the strip |x3| ≤ β

as k → ∞, for |ℓ|/k ≥
√
1− β2.
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2. More general concentration results for manifolds with a continuous
symmetry group

Let M be a compact, connected Riemannian manifold, and assume M has a
nonzero Killing field Y , generating a 1-parameter family of isometries of M . We
will also make the hypothesis that

(2.1) A0 = min
x∈M

|Y (x)| < max
x∈M

|Y (x)| = A1.

The operatorX = iY is self adjoint on L2(M) and commutes with Λ =
√
−∆. Thus

there is an orthonormal basis {φk} of L2(M) consisting of joint eigenfunctions,

(2.2) Λφk = λkφk, Xφk = µkφk,

with λk ↗ +∞. Note that

(2.3)
µ2
k = ∥Xφk∥2L2 ≤ A2

1∥∇φk∥2L2 = A2
1(−∆φk, φk)

= A2
1∥Λφk∥2L2 = A2

1λ
2
k,

i.e.,

(2.4) |µk| ≤ A1λk.

We can define a function F (Λ, X) by

(2.5) F (Λ, X)φk = F (λk, µk)φk.

Then, as shown in Chapter 12 of [T1],

(2.6)
F ∈ S0(R2) =⇒ F (Λ, X) ∈ OPS0(M), and

σF (Λ,X)(x, ξ) = F (|ξ|, ⟨Y, ξ⟩).

From here on, we assume F ∈ C∞(R2 \ 0) is homogeneous of degree 0, and
note that only its behavior on the wedge {(λ, µ) : |µ| ≤ A1λ} is significant for the
behavior of F (Λ, X). We set

(2.7) φ(µ) = F (1, µ), so F (Λ, X) = φ(Λ−1X).

Note that only the behavior of φ on µ ∈ [−A1, A1] is significant. The Weyl law
(Recall?) yields

(2.8) lim
N→∞

1

N

N∑
k=1

∥F (Λ, X)φk∥2L2 =

∫
S∗M

|φ(⟨Y, ξ⟩)|2 dS,
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where dS is the Liouville measure on S∗M , normalized so that
∫
S∗M

dS = 1. This
gives information on the joint spectrum of the pair (Λ, X), in connection with the
classical result

(2.9) λk ∼ (Ck)1/n, as k → ∞,

where n = dimM and C = Γ(n/2 + 1)(4π)n/2/VolM . Another application of the
Weyl formula is that, for a ∈ C∞(M),

(2.10)

lim
N→∞

1

N

N∑
k=1

∫
M

a(x)|F (Λ, X)φk|2 dV

=

∫
S∗M

a(x)|φ(⟨Y, ξ⟩)|2 dS.

We are ready to obtain some general concentration results, parallel to those of
§1, but valid in much greater generality. The key to this result is the observation
that, if A0 < B < A1,
(2.11)
φ(µ) = 0 for |µ| ≤ B

=⇒ φ(⟨Y, ξ⟩) = 0, ∀(x, ξ) ∈ S∗M such that x ∈MB = {x ∈M : |Y (x)| ≤ B}.

Hence we have the following conclusion.

Proposition 2.1. With a ∈ C∞(M), set Au(x) = a(x)u(x). Then

(2.12)
φ(µ) = 0 for |µ| ≤ B, supp a ⊂MB

=⇒ F (Λ, X)∗AF (Λ, X) ∈ OPS−1(M).

Hence, when these hypotheses hold,

(2.13)

lim
k→∞

∫
M

a(x)|F (Λ, X)φk|2 dV

= lim
k→∞

(F (Λ, X)∗AF (Λ, X)φk, φk)L2 = 0.

Equivalently,

(2.14) lim
k→∞

|φ(λ−1
k µk)|2

∫
M

a(x)|φk(x)|2 dV (x) = 0.
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3. Microlocal concentration of eigenfunctions of subelliptic operators

LetM be a compact, n-dimensional Riemannian manifold, and let L ∈ OPS2(M)
be a positive, self-adjoint operator. We assume L is not elliptic, but that it is subel-
liptic, in the sense that there exists σ > 0 (necessarily σ < 2) such that

(3.1) (L+ 1)−1 : Hs(M) −→ Hs+σ(M), ∀ s ∈ R.

Let {φk} be an orthonormal basis of L2(M) consisting of eigenfunctions of L:

(3.2) Lφk = λkφk, 0 ≤ λ1 ≤ λ2 ≤ · · · ↗ +∞.

We aim to prove the following.

Theorem 3.1. Take L as above, and denote its principal symbol by L2. Assume

(3.3)

∫
S∗M

L2(x, ω)
−n/2 dS(x, ω) = ∞.

Then, except perhaps for a “sparse” subsequence, the sequence {φk} concentrates
microlocally on the characteristic set Σ ⊂ T ∗M \ 0, given by

(3.4) Σ = {(x, ξ) ∈ T ∗M \ 0 : L2(x, ξ) = 0}.

The proof will involve a study of the semigroup {e−tL : t ≥ 0}, and of products
Ae−tL, with A ∈ OPS0(M). The hypothesis (3.1) implies

(3.5) e−tL : D′(M) −→ C∞(M),

for each t > 0. In particular, Tr e−tL <∞ for each t > 0. We will show that, under
the hypotheses of Theorem 3.1,

(3.6) tn/2 Tr e−tL −→ +∞, as t↘ 0.

Furthermore, if

(3.7)
The full symbol of A vanishes on a

conic neighborhood of Σ in T ∗M \ 0,

we obtain

(3.8) TrAe−tL ∼ C(A0)t
−n/2, as t↘ 0,

where A0 is the principal symbol of A. From (3.8) we obtain

(3.9)
∑
k≥0

e−tλk(Aφk, φk) ∼ C(A0)t
−n/2, t↘ 0,
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when (3.7) holds. Applying this observation to A∗A yields

(3.10) lim
t→0

tn/2
∑
k≥0

e−tλk∥Aφk∥2L2 = C(|A0|2).

Meanwhile, (3.6) implies

(3.11) lim
t→0

tn/2
∑
k≥0

e−tλk = +∞.

In preparation for proving (3.6), we will find it useful to recall some properties
of e−tM when M ∈ OPS2(M) is an elliptic, positive, self-adjoint operator, with
principal symbol M2. In such a case, parametrix constructions yield

(3.12) e−tMu(x) =

∫
M

H(t, x, y)u(y) dV (y),

with

(3.12A) H(t, x, y) = Cn

∫
T∗
xM

e−tM2(x,ξ)ei(x−y)·ξ dξ + · · · .

In particular,

(3.13) H(t, x, x) = Cn

∫
T∗
xM

e−tM2(x,ξ) dξ + o(t−n/2),

as t↘ 0. Now

(3.14)

∫
T∗
xM

e−tM2(x,ξ) dξ = C ′
nt

−n/2

∫
S∗
xM

M2(x, ω)
−n/2 dSx(ω),

hence

(3.15) Tr e−tM = (4πt)−n/2 1

An−1

∫
S∗M

M2(x, ω)
−n/2 dS(x, ω) + o(t−n/2),

where An−1 is the area of the unit sphere Sn−1 ⊂ Rn, so

(3.16)
1

An−1

∫
S∗M

dS(x, ω) = VolM.
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In particular, if M = −∆, where ∆ is the Laplace operator on M , we have

(3.17) Tr et∆ = (4πt)−n/2 VolM + o(t−n/2).

Behind (3.12)–(3.13) is a parametrix construction of e−tM as a family of pseudo-
differential operators. Then pseudodifferential operator calculus yields, for A ∈
OPS0(M), with principal symbol A0,

(3.18) TrAe−tM = (4πt)−n/2 1

An−1

∫
S∗M

A0(x, ω)M2(x, ω)
−n/2 dS(x, ω)+o(t−n/2).

To establish (3.6), we argue as follows. Take ε > 0 and set M = L − ε∆. We
apply (3.15) to such M . The relevance of such an application arises as follows. Say
{ψk} is an orthonormal basis of L2(M) consisting of eigenfunctions of M :

(3.19) Lψk = µkψk, 0 ≤ µ1 ≤ µ2 ≤ · · · ↗ +∞.

Lemma 3.2. Let L,M be positive, self-adjoint operators with compact resolvents.
Assume

(3.20) D(M) ⊂ D(L), L ≤M.

Let the eigenvalues be {λk}, {µk}, as in (3.2) and (3.19). Then, for each k,

(3.21) λk ≤ µk.

Proof. Pick µ ∈ (0,∞), and let Vν ⊂ L2(M) be the span of {ψk : µk < µ}, so
((M − µI)v, v) < 0 for all nonzero v ∈ Vµ, but not for all v in a linear space of
larger dimension. The hypotheses above yield ((L − µI)v, v) < 0, for all nonzero
v ∈ Vµ, so

#{λj : λj < µ} ≥ #{µj : µj < µ}.

From the lemma, we deduce that

(3.22) Tr e−tL ≥ Tr e−t(L−ε∆),

for each ε > 0, t > 0. Applying (3.15) to M = L− ε∆, we have

(3.23) lim
t→0

(4πt)n/2 Tr e−(L−ε∆) =
1

An−1

∫
S∗M

(L2(x, ω) + ε)−n/2 dS(x, ω).

Hence

(3.24) lim inf
t→0

(4πt)n/2 Tr e−tL ≥ 1

An−1

∫
S∗M

(L2(x, ω) + ε)−n/2 dS(x, ω),
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for each ε > 0. Hence

(3.25) lim inf
t→0

(4πt)n/2 Tr e−tL ≥ 1

An−1

∫
S∗M

L2(x, ω)
−n/2 dS(x, ω).

Thus, given the hypothesis (3.3), we have (3.6).
Next, we bring in the fact that, if A ∈ OPS0(M) satisfies (3.7), then the con-

struction of a parametrix for e−tLA is microlocal, and yields, parallel to (3.18),

(3.26) Tr e−tLA = (4πt)−n/2 1

An−1

∫
S∗M

A0(x, ω)L2(x, ω)
−n/2 dS(x, ω) + o(t−n/2),

and, of course,

(3.27) TrAe−tL = Tr e−tLA,

so we have (3.8).

Examples. Let M = S2 ⊂ R3 be the unit sphere, and let Xj be vector fields
generating 2π-periodic rotation about the xj-axis, for 1 ≤ j ≤ 3. Then ∆ =
X2

1 +X2
2 +X2

3 . Now
L = −(X2

1 +X2
2 )

satisfies (3.1), with σ = 1, and we also have (3.3). On the other hand,

L = −(X2
1 +X2

2 +X3M
2
x1
X3)

also satisfies (3.1), with σ = 1, but (3.3) does not hold. In this case, the integral∫
S∗M

L2(x, ω)
−1 dS is finite.
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