Eigenfunction Concentration Results

Michael Taylor

Abstract

This note has three vignettes dealing with spectral behavior of Laplacians and sub-Laplacians. In $\S 1$ we show that spherical harmonics $\varphi_{k \ell}$ with angular momentum ℓ satisfying $|\ell| \leq\left(1-\beta^{2}\right)^{1 / 2} k$ concentrate on a strip of latitude-width 2β about the equator, as $k \rightarrow \infty$. In $\S 2$ we have a generalization on concentration of the square integrals of joint eigenfunctions of Δ and a commuting vector field.

In $\S 3$ we show that if L is a positive, self-adjoint, second-order differential operator on a compact, n-dimensional manifold M, hypoelliptic with loss of <2 derivatives, with principal symbol L_{2}, satisfying

$$
\int_{S^{*} M} L_{2}(x, \omega)^{-n / 2} d S(x, \omega)=\infty
$$

then the orthonormal eigenfunctions $\left\{\varphi_{k}\right\}$ of L concentrate microlocally on the characteristic set $\Sigma \subset T^{*} M \backslash 0$, given by

$$
\Sigma=\left\{(x, \xi) \in T^{*} M \backslash 0: L_{2}(x, \xi)=0\right\}
$$

(except for a sparse subset), as $k \rightarrow \infty$.
These results are studies for other works. Results of $\S \S 1-2$ have been folded into [T3], where stronger results appear. This note appears on this website because $\S 3$ has not yet found a home, and I have grown weary of having to dig it up.

Contents

1. Concentration of eigenfunctions on S^{n}
2. More general concentration results for manifolds with a continuous symmetry group
3. Microlocal concentration of eigenfunctions of subelliptic operators

1. Concentration of eigenfunctions on S^{n}

Here we work on S^{n}, the unit sphere in \mathbb{R}^{n+1}, with its standard metric. Then the geodesic flow $\left\{\mathcal{G}_{t}\right\}$ is periodic of period 2π. It is convenient to take

$$
\begin{equation*}
\Lambda=\sqrt{-\Delta+\left(\frac{n-1}{2}\right)^{2}}-\frac{n-1}{2} \tag{1.1}
\end{equation*}
$$

so $e^{i t \Lambda}$ is also periodic of period 2π (cf. (1.8) below). Then, given $A \in \mathcal{L}\left(L^{2}\left(S^{n}\right)\right)$,

$$
\begin{equation*}
\Pi(A)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i t \Lambda} A e^{i t \Lambda} d t \tag{1.2}
\end{equation*}
$$

In case $a \in C^{\infty}\left(S^{*} S^{n}\right)$, we have

$$
\begin{equation*}
P a(x, \xi)=\frac{1}{2 \pi} \int_{0}^{2 \pi} a\left(\mathcal{G}_{t}(x, \xi)\right) d t \tag{1.3}
\end{equation*}
$$

and it is a straightforward consequence of Egorov's theorem that, if $A=\mathrm{op}_{F}(a)$,

$$
\begin{equation*}
\Pi(A)-\mathrm{op}_{F}(P a) \in O P S^{-1}\left(S^{n}\right) \tag{1.4}
\end{equation*}
$$

We now specialize to the case where A is a multiplication operator,

$$
\begin{equation*}
A u(x)=a(x) u(x), \quad a \in C^{\infty}\left(S^{n}\right) \tag{1.5}
\end{equation*}
$$

and, to keep things simple, assume that

$$
\begin{equation*}
n=2, \text { and } a(x) \text { is invariant under } R(t), \tag{1.6}
\end{equation*}
$$

where $R(t)$ is the group of rotations about the x_{3}-axis. Then A commutes with the associated unitary group $R(t)$ on $L^{2}\left(S^{2}\right)$, which we write as

$$
\begin{equation*}
R(t)=e^{i t X} \tag{1.7}
\end{equation*}
$$

where $i X=Y$ is the real vector field on S^{2} generating the rotation. This group is also periodic, of period 2π. We note that

$$
\begin{equation*}
\operatorname{Spec} \Lambda=\{k \in \mathbb{Z}: k \geq 0\}, \tag{1.8}
\end{equation*}
$$

and if V_{k} denotes the k-eigenspace of Λ, then

$$
\begin{equation*}
\operatorname{dim} V_{k}=2 k+1, \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\operatorname{Spec} X\right|_{V_{k}}=\{\ell \in \mathbb{Z}:-k \leq \ell \leq k\} . \tag{1.10}
\end{equation*}
$$

Let us note that Λ and X commute, and that the pair $\{\Lambda, X\}$ has simple spectrum. Also, under the hypothesis (1.5)-(1.6), $\Pi(A)$ commutes with X as well as with Λ. Hence $\Pi(A)$ is a function of (Λ, X),

$$
\begin{equation*}
\Pi(A)=F(\Lambda, X) \tag{1.11}
\end{equation*}
$$

Also, given $a \in C^{\infty}\left(S^{*} S^{2}\right)$, we have

$$
\begin{equation*}
\Pi(A) \in O P S^{0}\left(S^{2}\right) \tag{1.12}
\end{equation*}
$$

with principal symbol given by (1.3).
Given these facts, we can use results of Chapter 12 of [T1] to analyze F in (1.11). These results yield

$$
\begin{equation*}
F \in S^{0}\left(\mathbb{R}^{2}\right) \Longrightarrow F(\Lambda, X)=B \in O P S^{0}\left(S^{2}\right) \tag{1.13}
\end{equation*}
$$

with principal symbol

$$
\begin{equation*}
b(x, \xi)=F(|\xi|,\langle Y, \xi\rangle) \tag{1.14}
\end{equation*}
$$

Recall that $Y=i X$ is a real vector field. Note that it suffices to specify F on $\left\{\left(\lambda_{1}, \lambda_{2}\right): \lambda_{1} \geq 0,\left|\lambda_{2}\right| \leq \lambda_{1}\right\}$, in light of (1.8)-(1.10), and also taking into account that $|Y| \leq 1$ on S^{2}. We want the principal part of (1.14) to match up with (1.3) on $S^{*} S^{2}$.

Thus, we want to define $F_{0}\left(\lambda_{1}, \lambda_{2}\right)$, homogeneous of degree 0 in $\left(\lambda_{1}, \lambda_{2}\right)$, so that

$$
\begin{equation*}
F_{0}(1,\langle Y, \xi\rangle)=P a(x, \xi), \quad \text { for } \quad(x, \xi) \in S^{*} S^{2} \tag{1.15}
\end{equation*}
$$

Now $F_{0}\left(1, \lambda_{2}\right)$ is a function of $\lambda_{2} \in[-1,1]$, while $P a$ is a function on $S^{*} S^{2}$, which has dimension 3. However, $P a$ is invariant under the flows \mathcal{G}_{t} and $R(t)$, and in fact it is uniquely specified by its behavior on $S_{x_{0}}^{*} S^{2}$, where x_{0} is an arbitrarily chosen point on the equator of S^{2}. At x_{0}, Y is a unit vector parallel to the equator, and (1.15) becomes

$$
\begin{equation*}
F_{0}\left(1, \lambda_{2}\right)=P a\left(x_{0},\left(\lambda_{2}, \sqrt{1-\lambda_{2}^{2}}\right)\right) \tag{1.16}
\end{equation*}
$$

At first glance, this looks non-smooth at $\lambda_{2}= \pm 1$, but in fact we have

$$
\begin{equation*}
P a\left(x_{0},\left(\xi_{1}, \xi_{2}\right)\right)=P a\left(x_{0},\left(\xi_{1},-\xi_{2}\right)\right) . \tag{1.17}
\end{equation*}
$$

Such an identity is clear if $a(x)$ is even under $x_{3} \mapsto-x_{3}$. On the other hand, if $a(x)$ is odd under this transformation its invariance under $R(t)$ guarantees that (1.3) vanishes, so we have (1.17) for general $R(t)$-invariant $a \in C^{\infty}\left(S^{2}\right)$. From (1.17) we have that (1.16) defines a smooth function of $\lambda_{2} \in[-1,1]$. Then

$$
\begin{align*}
& F_{0}(\Lambda, X) \in O P S^{0}\left(S^{2}\right), \text { and } \\
& \Pi(A)-F_{0}(\Lambda, X) \in O P S^{-1}\left(S^{2}\right) \tag{1.18}
\end{align*}
$$

Note that

$$
\begin{equation*}
F_{0}(\Lambda, X)=g\left(\Lambda^{-1} X\right) \tag{1.19}
\end{equation*}
$$

where $g(\lambda)=F_{0}(1, \lambda)$, i.e.,

$$
\begin{equation*}
g(\lambda)=P a\left(x_{0},\left(\lambda, \sqrt{1-\lambda^{2}}\right)\right) \tag{1.20}
\end{equation*}
$$

Results just described have implications for concentration of spherical harmonics. In fact, we can take an orthonormal basis

$$
\begin{equation*}
\left\{\varphi_{k \ell}: k, \ell \in \mathbb{Z}, k \geq 0,|\ell| \leq k\right\} \tag{1.21}
\end{equation*}
$$

of $L^{2}\left(S^{2}\right)$, satisfying

$$
\begin{equation*}
\Lambda \varphi_{k \ell}=k \varphi_{k \ell}, \quad X \varphi_{k \ell}=\ell \varphi_{k \ell} \tag{1.21~A}
\end{equation*}
$$

Then

$$
\begin{align*}
\int_{S^{2}} a(x)\left|\varphi_{k \ell}(x)\right|^{2} d S(x) & =\left(A \varphi_{k \ell}, \varphi_{k \ell}\right)_{L^{2}} \tag{1.22}\\
& =\left(\Pi(A) \varphi_{k \ell}, \varphi_{k \ell}\right)_{L^{2}} \\
& =\left(F_{0}(\Lambda, X) \varphi_{k \ell}, \varphi_{k \ell}\right)_{L^{2}}+R_{k \ell}
\end{align*}
$$

where

$$
\begin{equation*}
R_{k \ell} \longrightarrow 0, \quad \text { as } \quad k \rightarrow \infty \tag{1.25}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\int_{S^{2}} a(x)\left|\varphi_{k \ell}(x)\right|^{2} d S(x)=g\left(\frac{\ell}{k}\right)+R_{k \ell} \tag{1.24}
\end{equation*}
$$

with $g(\lambda)$ given by (1.20).

Let us pick $\beta \in(0,1)$ and take $a \in C^{\infty}\left(S^{2}\right)$, invariant under $R(t)$, and satisfying

$$
\begin{equation*}
a(x)=0, \quad \text { for } \quad\left|x_{3}\right| \leq \beta \tag{1.25}
\end{equation*}
$$

It follows from (1.20) and (1.3) that

$$
\begin{equation*}
g(\lambda)=0, \quad \text { for } \quad \sqrt{1-\lambda^{2}} \leq \beta \tag{1.26}
\end{equation*}
$$

i.e., for $|\lambda| \geq \sqrt{1-\beta^{2}}$. Hence

$$
\begin{array}{r}
\int_{S^{2}} a(x)\left|\varphi_{k \ell}(x)\right|^{2} d S(x)=R_{k \ell} \rightarrow 0, \text { as } k \rightarrow 0 \tag{1.27}\\
\text { for }|\ell| / k \geq \sqrt{1-\beta^{2}}
\end{array}
$$

Conclusion. The orthonormal eigenfunctions $\varphi_{k \ell}$ concentrate on the strip $\left|x_{3}\right| \leq \beta$ as $k \rightarrow \infty$, for $|\ell| / k \geq \sqrt{1-\beta^{2}}$.

2. More general concentration results for manifolds with a continuous symmetry group

Let M be a compact, connected Riemannian manifold, and assume M has a nonzero Killing field Y, generating a 1-parameter family of isometries of M. We will also make the hypothesis that

$$
\begin{equation*}
A_{0}=\min _{x \in M}|Y(x)|<\max _{x \in M}|Y(x)|=A_{1} . \tag{2.1}
\end{equation*}
$$

The operator $X=i Y$ is self adjoint on $L^{2}(M)$ and commutes with $\Lambda=\sqrt{-\Delta}$. Thus there is an orthonormal basis $\left\{\varphi_{k}\right\}$ of $L^{2}(M)$ consisting of joint eigenfunctions,

$$
\begin{equation*}
\Lambda \varphi_{k}=\lambda_{k} \varphi_{k}, \quad X \varphi_{k}=\mu_{k} \varphi_{k} \tag{2.2}
\end{equation*}
$$

with $\lambda_{k} \nearrow+\infty$. Note that

$$
\begin{align*}
\mu_{k}^{2} & =\left\|X \varphi_{k}\right\|_{L^{2}}^{2} \leq A_{1}^{2}\left\|\nabla \varphi_{k}\right\|_{L^{2}}^{2}=A_{1}^{2}\left(-\Delta \varphi_{k}, \varphi_{k}\right) \\
& =A_{1}^{2}\left\|\Lambda \varphi_{k}\right\|_{L^{2}}^{2}=A_{1}^{2} \lambda_{k}^{2}, \tag{2.3}
\end{align*}
$$

i.e.,

$$
\begin{equation*}
\left|\mu_{k}\right| \leq A_{1} \lambda_{k} . \tag{2.4}
\end{equation*}
$$

We can define a function $F(\Lambda, X)$ by

$$
\begin{equation*}
F(\Lambda, X) \varphi_{k}=F\left(\lambda_{k}, \mu_{k}\right) \varphi_{k} . \tag{2.5}
\end{equation*}
$$

Then, as shown in Chapter 12 of [T1],

$$
\begin{align*}
F \in S^{0}\left(\mathbb{R}^{2}\right) \Longrightarrow & F(\Lambda, X) \in O P S^{0}(M), \text { and } \tag{2.6}\\
& \sigma_{F(\Lambda, X)}(x, \xi)=F(|\xi|,\langle Y, \xi\rangle) .
\end{align*}
$$

From here on, we assume $F \in C^{\infty}\left(\mathbb{R}^{2} \backslash 0\right)$ is homogeneous of degree 0 , and note that only its behavior on the wedge $\left\{(\lambda, \mu):|\mu| \leq A_{1} \lambda\right\}$ is significant for the behavior of $F(\Lambda, X)$. We set

$$
\begin{equation*}
\varphi(\mu)=F(1, \mu), \quad \text { so } F(\Lambda, X)=\varphi\left(\Lambda^{-1} X\right) . \tag{2.7}
\end{equation*}
$$

Note that only the behavior of φ on $\mu \in\left[-A_{1}, A_{1}\right]$ is significant. The Weyl law (Recall?) yields

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N}\left\|F(\Lambda, X) \varphi_{k}\right\|_{L^{2}}^{2}=\int_{S^{*} M}|\varphi(\langle Y, \xi\rangle)|^{2} d S \tag{2.8}
\end{equation*}
$$

where $d S$ is the Liouville measure on $S^{*} M$, normalized so that $\int_{S^{*} M} d S=1$. This gives information on the joint spectrum of the pair (Λ, X), in connection with the classical result

$$
\begin{equation*}
\lambda_{k} \sim(C k)^{1 / n}, \quad \text { as } \quad k \rightarrow \infty \tag{2.9}
\end{equation*}
$$

where $n=\operatorname{dim} M$ and $C=\Gamma(n / 2+1)(4 \pi)^{n / 2} / \operatorname{Vol} M$. Another application of the Weyl formula is that, for $a \in C^{\infty}(M)$,

$$
\begin{align*}
\lim _{N \rightarrow \infty} & \frac{1}{N} \sum_{k=1}^{N} \int_{M} a(x)\left|F(\Lambda, X) \varphi_{k}\right|^{2} d V \tag{2.10}\\
& =\int_{S^{*} M} a(x)|\varphi(\langle Y, \xi\rangle)|^{2} d S
\end{align*}
$$

We are ready to obtain some general concentration results, parallel to those of $\S 1$, but valid in much greater generality. The key to this result is the observation that, if $A_{0}<B<A_{1}$,

$$
\begin{align*}
& \varphi(\mu)=0 \text { for }|\mu| \leq B \tag{2.11}\\
& \Longrightarrow \varphi(\langle Y, \xi\rangle)=0, \quad \forall(x, \xi) \in S^{*} M \text { such that } x \in M_{B}=\{x \in M:|Y(x)| \leq B\} .
\end{align*}
$$

Hence we have the following conclusion.
Proposition 2.1. With $a \in C^{\infty}(M)$, set $A u(x)=a(x) u(x)$. Then

$$
\begin{align*}
\varphi(\mu)=0 & \text { for }|\mu| \leq B, \text { supp } a \subset M_{B} \\
& \Longrightarrow F(\Lambda, X)^{*} A F(\Lambda, X) \in O P S^{-1}(M) . \tag{2.12}
\end{align*}
$$

Hence, when these hypotheses hold,

$$
\begin{align*}
\lim _{k \rightarrow \infty} & \int_{M} a(x)\left|F(\Lambda, X) \varphi_{k}\right|^{2} d V \tag{2.13}\\
& =\lim _{k \rightarrow \infty}\left(F(\Lambda, X)^{*} A F(\Lambda, X) \varphi_{k}, \varphi_{k}\right)_{L^{2}}=0 .
\end{align*}
$$

Equivalently,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left|\varphi\left(\lambda_{k}^{-1} \mu_{k}\right)\right|^{2} \int_{M} a(x)\left|\varphi_{k}(x)\right|^{2} d V(x)=0 \tag{2.14}
\end{equation*}
$$

3. Microlocal concentration of eigenfunctions of subelliptic operators

Let M be a compact, n-dimensional Riemannian manifold, and let $L \in O P S^{2}(M)$ be a positive, self-adjoint operator. We assume L is not elliptic, but that it is subelliptic, in the sense that there exists $\sigma>0$ (necessarily $\sigma<2$) such that

$$
\begin{equation*}
(L+1)^{-1}: H^{s}(M) \longrightarrow H^{s+\sigma}(M), \quad \forall s \in \mathbb{R} . \tag{3.1}
\end{equation*}
$$

Let $\left\{\varphi_{k}\right\}$ be an orthonormal basis of $L^{2}(M)$ consisting of eigenfunctions of L :

$$
\begin{equation*}
L \varphi_{k}=\lambda_{k} \varphi_{k}, \quad 0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots \nearrow+\infty . \tag{3.2}
\end{equation*}
$$

We aim to prove the following.
Theorem 3.1. Take L as above, and denote its principal symbol by L_{2}. Assume

$$
\begin{equation*}
\int_{S^{*} M} L_{2}(x, \omega)^{-n / 2} d S(x, \omega)=\infty . \tag{3.3}
\end{equation*}
$$

Then, except perhaps for a "sparse" subsequence, the sequence $\left\{\varphi_{k}\right\}$ concentrates microlocally on the characteristic set $\Sigma \subset T^{*} M \backslash 0$, given by

$$
\begin{equation*}
\Sigma=\left\{(x, \xi) \in T^{*} M \backslash 0: L_{2}(x, \xi)=0\right\} \tag{3.4}
\end{equation*}
$$

The proof will involve a study of the semigroup $\left\{e^{-t L}: t \geq 0\right\}$, and of products $A e^{-t L}$, with $A \in O P S^{0}(M)$. The hypothesis (3.1) implies

$$
\begin{equation*}
e^{-t L}: \mathcal{D}^{\prime}(M) \longrightarrow C^{\infty}(M) \tag{3.5}
\end{equation*}
$$

for each $t>0$. In particular, $\operatorname{Tr} e^{-t L}<\infty$ for each $t>0$. We will show that, under the hypotheses of Theorem 3.1,

$$
\begin{equation*}
t^{n / 2} \operatorname{Tr} e^{-t L} \longrightarrow+\infty, \quad \text { as } t \searrow 0 \tag{3.6}
\end{equation*}
$$

Furthermore, if

> The full symbol of A vanishes on a conic neighborhood of Σ in $T^{*} M \backslash 0$,
we obtain

$$
\begin{equation*}
\operatorname{Tr} A e^{-t L} \sim C\left(A_{0}\right) t^{-n / 2}, \quad \text { as } t \searrow 0, \tag{3.8}
\end{equation*}
$$

where A_{0} is the principal symbol of A. From (3.8) we obtain

$$
\begin{equation*}
\sum_{k \geq 0} e^{-t \lambda_{k}}\left(A \varphi_{k}, \varphi_{k}\right) \sim C\left(A_{0}\right) t^{-n / 2}, \quad t \searrow 0 \tag{3.9}
\end{equation*}
$$

when (3.7) holds. Applying this observation to $A^{*} A$ yields

$$
\begin{equation*}
\lim _{t \rightarrow 0} t^{n / 2} \sum_{k \geq 0} e^{-t \lambda_{k}}\left\|A \varphi_{k}\right\|_{L^{2}}^{2}=C\left(\left|A_{0}\right|^{2}\right) . \tag{3.10}
\end{equation*}
$$

Meanwhile, (3.6) implies

$$
\begin{equation*}
\lim _{t \rightarrow 0} t^{n / 2} \sum_{k \geq 0} e^{-t \lambda_{k}}=+\infty \tag{3.11}
\end{equation*}
$$

In preparation for proving (3.6), we will find it useful to recall some properties of $e^{-t M}$ when $M \in O P S^{2}(M)$ is an elliptic, positive, self-adjoint operator, with principal symbol M_{2}. In such a case, parametrix constructions yield

$$
\begin{equation*}
e^{-t M} u(x)=\int_{M} H(t, x, y) u(y) d V(y) \tag{3.12}
\end{equation*}
$$

with

$$
\begin{equation*}
H(t, x, y)=C_{n} \int_{T_{x}^{*} M} e^{-t M_{2}(x, \xi)} e^{i(x-y) \cdot \xi} d \xi+\cdots \tag{3.12A}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
H(t, x, x)=C_{n} \int_{T_{x}^{*} M} e^{-t M_{2}(x, \xi)} d \xi+o\left(t^{-n / 2}\right) \tag{3.13}
\end{equation*}
$$

as $t \searrow 0$. Now

$$
\begin{equation*}
\int_{T_{x}^{*} M} e^{-t M_{2}(x, \xi)} d \xi=C_{n}^{\prime} t^{-n / 2} \int_{S_{x}^{* M}} M_{2}(x, \omega)^{-n / 2} d S_{x}(\omega), \tag{3.14}
\end{equation*}
$$

hence

$$
\begin{equation*}
\operatorname{Tr} e^{-t M}=(4 \pi t)^{-n / 2} \frac{1}{A_{n-1}} \int_{S^{*} M} M_{2}(x, \omega)^{-n / 2} d S(x, \omega)+o\left(t^{-n / 2}\right) \tag{3.15}
\end{equation*}
$$

where A_{n-1} is the area of the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$, so

$$
\begin{equation*}
\frac{1}{A_{n-1}} \int_{S^{*} M} d S(x, \omega)=\operatorname{Vol} M \tag{3.16}
\end{equation*}
$$

In particular, if $M=-\Delta$, where Δ is the Laplace operator on M, we have

$$
\begin{equation*}
\operatorname{Tr} e^{t \Delta}=(4 \pi t)^{-n / 2} \operatorname{Vol} M+o\left(t^{-n / 2}\right) \tag{3.17}
\end{equation*}
$$

Behind (3.12)-(3.13) is a parametrix construction of $e^{-t M}$ as a family of pseudodifferential operators. Then pseudodifferential operator calculus yields, for $A \in$ $O P S^{0}(M)$, with principal symbol A_{0},

$$
\begin{equation*}
\operatorname{Tr} A e^{-t M}=(4 \pi t)^{-n / 2} \frac{1}{A_{n-1}} \int_{S^{*} M} A_{0}(x, \omega) M_{2}(x, \omega)^{-n / 2} d S(x, \omega)+o\left(t^{-n / 2}\right) \tag{3.18}
\end{equation*}
$$

To establish (3.6), we argue as follows. Take $\varepsilon>0$ and set $M=L-\varepsilon \Delta$. We apply (3.15) to such M. The relevance of such an application arises as follows. Say $\left\{\psi_{k}\right\}$ is an orthonormal basis of $L^{2}(M)$ consisting of eigenfunctions of M :

$$
\begin{equation*}
L \psi_{k}=\mu_{k} \psi_{k}, \quad 0 \leq \mu_{1} \leq \mu_{2} \leq \cdots \nearrow+\infty . \tag{3.19}
\end{equation*}
$$

Lemma 3.2. Let L, M be positive, self-adjoint operators with compact resolvents. Assume

$$
\begin{equation*}
\mathcal{D}(M) \subset \mathcal{D}(L), \quad L \leq M \tag{3.20}
\end{equation*}
$$

Let the eigenvalues be $\left\{\lambda_{k}\right\},\left\{\mu_{k}\right\}$, as in (3.2) and (3.19). Then, for each k,

$$
\begin{equation*}
\lambda_{k} \leq \mu_{k} \tag{3.21}
\end{equation*}
$$

Proof. Pick $\mu \in(0, \infty)$, and let $V_{\nu} \subset L^{2}(M)$ be the span of $\left\{\psi_{k}: \mu_{k}<\mu\right\}$, so $((M-\mu I) v, v)<0$ for all nonzero $v \in V_{\mu}$, but not for all v in a linear space of larger dimension. The hypotheses above yield $((L-\mu I) v, v)<0$, for all nonzero $v \in V_{\mu}$, so

$$
\#\left\{\lambda_{j}: \lambda_{j}<\mu\right\} \geq \#\left\{\mu_{j}: \mu_{j}<\mu\right\} .
$$

From the lemma, we deduce that

$$
\begin{equation*}
\operatorname{Tr} e^{-t L} \geq \operatorname{Tr} e^{-t(L-\varepsilon \Delta)} \tag{3.22}
\end{equation*}
$$

for each $\varepsilon>0, t>0$. Applying (3.15) to $M=L-\varepsilon \Delta$, we have

$$
\begin{equation*}
\lim _{t \rightarrow 0}(4 \pi t)^{n / 2} \operatorname{Tr} e^{-(L-\varepsilon \Delta)}=\frac{1}{A_{n-1}} \int_{S^{*} M}\left(L_{2}(x, \omega)+\varepsilon\right)^{-n / 2} d S(x, \omega) \tag{3.23}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\liminf _{t \rightarrow 0}(4 \pi t)^{n / 2} \operatorname{Tr} e^{-t L} \geq \frac{1}{A_{n-1}} \int_{S_{*} M}\left(L_{2}(x, \omega)+\varepsilon\right)^{-n / 2} d S(x, \omega) \tag{3.24}
\end{equation*}
$$

for each $\varepsilon>0$. Hence

$$
\begin{equation*}
\liminf _{t \rightarrow 0}(4 \pi t)^{n / 2} \operatorname{Tr} e^{-t L} \geq \frac{1}{A_{n-1}} \int_{S^{*} M} L_{2}(x, \omega)^{-n / 2} d S(x, \omega) \tag{3.25}
\end{equation*}
$$

Thus, given the hypothesis (3.3), we have (3.6).
Next, we bring in the fact that, if $A \in O P S^{0}(M)$ satisfies (3.7), then the construction of a parametrix for $e^{-t L} A$ is microlocal, and yields, parallel to (3.18),

$$
\begin{equation*}
\operatorname{Tr} e^{-t L} A=(4 \pi t)^{-n / 2} \frac{1}{A_{n-1}} \int_{S^{*} M} A_{0}(x, \omega) L_{2}(x, \omega)^{-n / 2} d S(x, \omega)+o\left(t^{-n / 2}\right) \tag{3.26}
\end{equation*}
$$

and, of course,

$$
\begin{equation*}
\operatorname{Tr} A e^{-t L}=\operatorname{Tr} e^{-t L} A \tag{3.27}
\end{equation*}
$$

so we have (3.8).
Examples. Let $M=S^{2} \subset \mathbb{R}^{3}$ be the unit sphere, and let X_{j} be vector fields generating 2π-periodic rotation about the x_{j}-axis, for $1 \leq j \leq 3$. Then $\Delta=$ $X_{1}^{2}+X_{2}^{2}+X_{3}^{2}$. Now

$$
L=-\left(X_{1}^{2}+X_{2}^{2}\right)
$$

satisfies (3.1), with $\sigma=1$, and we also have (3.3). On the other hand,

$$
L=-\left(X_{1}^{2}+X_{2}^{2}+X_{3} M_{x_{1}}^{2} X_{3}\right)
$$

also satisfies (3.1), with $\sigma=1$, but (3.3) does not hold. In this case, the integral $\int_{S^{*} M} L_{2}(x, \omega)^{-1} d S$ is finite.

References

[CV] Y. Colin de Verdière, Ergodicité et fonctions propre du laplacian, Comm. Math. Phys. 102 (1985), 497-502.
[Don] V. Donnay, Geodesic flow on the two-sphere, I, positive measure entropy, Ergod. Theory Dynam. Systems 8 (1988), 531-553.
[Gal] J. Galkowski, Quantum ergodicity for a class of mixed systems, J. of Spectral Theory 4 (2014), 65-85.
[Riv] G. Riviere, Remarks on quantum ergodicity, J. Mod. Dyn. 7 (2013), 119133.
[ST] R. Schrader and M. Taylor, Semiclassical asymptotics, gauge fields, and quantum chaos, J. Funct. Anal. 83 (1989), 258-316.
[Shn] A. Shnirelman, Ergodic properties of eigenfunctions, Usp. Mat. Nauk. 29 (1974), 181-182.
[Su] T. Sunada, Quantum ergodicity, pp. 175-196 in Progress in Inverse Spectral Geometry, Trends in Math., Birkhäuser, Basel, 1997.
[T1] M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, Princeton, NJ, 1981.
[T2] M. Taylor, Variations on quantum ergodic theorems, Potential Anal. 43 (2015), 625-651.
[T3] M. Taylor, Joint spectra of Riemannian manifolds with rotational symmetry, Preprint, available on this website.
[Ze] A. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), 919-941.
[Z1] S. Zelditch, Quantum ergodicity of C^{*} dynamical systems, Commun. Math. Phys. 177 (1996), 507-528.
[Z2] S. Zelditch, Quantum mixing, Jour. Funct. Anal. 140 (1996), 68-86.
[ZZ] S. Zelditch and M. Zworski, Ergodicity of eigenfunctions for ergodic billiards, Comm. Math. Phys. 175 (1996), 673-682.

