Eigenfunction Concentration Results

MICHAEL TAYLOR

Abstract. This note has three vignettes dealing with spectral behavior of Lapla-
cians and sub-Laplacians. In §1 we show that spherical harmonics ¢y, with angular
momentum ¢ satisfying |[¢| < (1 — 32)'/2k concentrate on a strip of latitude-width
23 about the equator, as k — oo. In §2 we have a generalization on concentration
of the square integrals of joint eigenfunctions of A and a commuting vector field.

In §3 we show that if L is a positive, self-adjoint, second-order differential op-
erator on a compact, n-dimensional manifold M, hypoelliptic with loss of < 2
derivatives, with principal symbol Lo, satisfying

/ Lo(z,w) ™2 dS(z,w) = oo,

S*M

then the orthonormal eigenfunctions {¢x} of L concentrate microlocally on the
characteristic set ¥ C T*M \ 0, given by

Y =A(z,§) e T*"M \ 0: La(z,§) = 0},

(except for a sparse subset), as k — oc.

These results are studies for other works. Results of §§1-2 have been folded into
[T3], where stronger results appear. This note appears on this website because §3
has not yet found a home, and I have grown weary of having to dig it up.

Contents
1. Concentration of eigenfunctions on S™
2. More general concentration results for manifolds with a continuous symme-

try group
3. Microlocal concentration of eigenfunctions of subelliptic operators



1. Concentration of eigenfunctions on 5"

Here we work on S™, the unit sphere in R**!, with its standard metric. Then
the geodesic flow {G;} is periodic of period 2. It is convenient to take

(1.1) A:\/—A+(n;1)2—”;1,

so e is also periodic of period 27 (cf. (1.8) below). Then, given A € L(L?(S"™)),

27
(1.2) TI(A) = - / e~ itA Acith gy
2 Jo
In case a € C°(5*S™), we have
1 27
(1.3) Pa(zx,§&) = 2—/ a(G(x,§)) dt,
T Jo

and it is a straightforward consequence of Egorov’s theorem that, if A = opp(a),
(1.4) II(A) — opp(Pa) € OPS™(S™).
We now specialize to the case where A is a multiplication operator,
(1.5) Au(z) = a(z)u(z), a€ C>(S™),
and, to keep things simple, assume that
(1.6) n = 2, and a(x) is invariant under R(t),

where R(t) is the group of rotations about the zs-axis. Then A commutes with the
associated unitary group R(t) on L?(S?), which we write as

(1.7) R(t) = ¥,

where i.X =Y is the real vector field on S? generating the rotation. This group is
also periodic, of period 2w. We note that

(1.8) SpecA ={ke€Z:k >0},
and if Vi denotes the k-eigenspace of A, then

(1.9) dim Vj, = 2k + 1,



and
(1.10) Spec X[, ={leZ:—k <<k}

Let us note that A and X commute, and that the pair {A, X'} has simple spectrum.
Also, under the hypothesis (1.5)—(1.6), II(A) commutes with X as well as with A.
Hence II(A) is a function of (A, X),

(1.11) II(A) = F(A, X).
Also, given a € C*°(S*S?), we have

(1.12) I1(A) € OPS°(S?),
with principal symbol given by (1.3).

Given these facts, we can use results of Chapter 12 of [T1] to analyze F' in (1.11).
These results yield

(1.13) F e S°R?*) = F(A, X) =B ec OPS°(5?%),
with principal symbol

(1.14) b(z,&) = F([¢], (Y, €)).

Recall that Y = X is a real vector field. Note that it suffices to specify F' on
{(A1,A2) : A1 >0, |A2] < A1}, in light of (1.8)—(1.10), and also taking into account
that |Y| < 1 on S2. We want the principal part of (1.14) to match up with (1.3)
on S*S2.

Thus, we want to define Fy(\1, A2), homogeneous of degree 0 in (A1, A2), so that

(1.15) Fo(1,(Y,¢)) = Pa(x,€), for (z,€) € S*S2.

Now Fy(1,)\2) is a function of Ay € [—1,1], while Pa is a function on S*S?, which
has dimension 3. However, Pa is invariant under the flows G; and R(t), and in fact
it is uniquely specified by its behavior on S;/ 52, where x( is an arbitrarily chosen

point on the equator of S2. At zg, Y is a unit vector parallel to the equator, and
(1.15) becomes

(1.16) Fo(1,X2) = Pa(zo, (A2, /1 — A3)).

At first glance, this looks non-smooth at Ay = +1, but in fact we have

(1.17) Pa(xo, (£1,82)) = Pa(zo, (§1, —&2)).
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Such an identity is clear if a(z) is even under x3 — —x3. On the other hand, if a(x)
is odd under this transformation its invariance under R(t) guarantees that (1.3)
vanishes, so we have (1.17) for general R(t)-invariant a € C°°(S?). From (1.17) we
have that (1.16) defines a smooth function of Ag € [—1,1]. Then

Fo(A, X) € OPS°(S?), and

(1.18) —1/¢2
TI(A) — Fo(A, X) € OPS~L(S?).

Note that

(1.19) Fo(A, X) = g(A™'X),

where g(\) = Fy(1, N), i.e.,

(1.20) g(\) = Pa(xzg, (N, V1 —)\2)).

Results just described have implications for concentration of spherical harmonics.
In fact, we can take an orthonormal basis

(1.21) {SOM 2k, leZ, k>0, |£| < k}
of L?(S?), satisfying
(1.21A) Apre = kore,  Xore = lpge.

Then

[ e@lons(a)? ds(@) = (Apus, pus)ro

(1.22) 5
= (II(A)pre, re) L2
= (FO(A? X)ka SOICK)LZ + Rkéa
where
(1.25) Ryy — 0, as k — oo.
Hence
9 14
(1.24) a(z) | pre(2)? dS(z) = g<E> + Ry,

SQ

with g(\) given by (1.20).
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Let us pick 8 € (0,1) and take a € C°°(S?), invariant under R(t), and satisfying
(1.25) a(z) =0, for |z3| <p.
It follows from (1.20) and (1.3) that
(1.26) g(N) =0, for VI-XN<p,

i.e., for |A\| > /1 — 2. Hence
/a(x)]gokg(x)|2 dS(x) = Rke — 0, as k — 0,

(1.27) 2
for |¢|/k > +/1— B2

Conclusion. The orthonormal eigenfunctions ¢y, concentrate on the strip |x3| < 3

as k — oo, for [¢|/k > /1 — (2.



2. More general concentration results for manifolds with a continuous
symmetry group

Let M be a compact, connected Riemannian manifold, and assume M has a
nonzero Killing field Y, generating a 1-parameter family of isometries of M. We
will also make the hypothesis that

(2.1) Ao = min Y (z)] < max [Y(z)| = A1

The operator X = iY is self adjoint on L?(M) and commutes with A = /=A. Thus
there is an orthonormal basis {¢} of L?(M) consisting of joint eigenfunctions,

(2.2) Ao = Aok, Xk = pier,
with A\ 7 +00. Note that

i = 1Xoullz> < ATlIVerlz> = AT(—Apr, o)

(2.3)

= AT Aprlz> = ATXL,
ie.,
(2.4) || < Ar g

We can define a function F(A, X) by
(2.5) F(A, X)er = F(Ak, ) pr-
Then, as shown in Chapter 12 of [T1],

F e S°(R?*) = F(A,X) € OPS°(M), and

(2.6) O'F(A7x)(x7§) = F([¢],(Y.¢€)).

From here on, we assume F € C°(R? \ 0) is homogeneous of degree 0, and
note that only its behavior on the wedge {(\, ) : |u| < A1 A} is significant for the
behavior of F'(A, X). We set

(2.7) p(p) = F(L,p), so F(AX)=pATX).

Note that only the behavior of ¢ on u € [—A;, A;] is significant. The Weyl law
(Recall?) yields

: 1 al 2 2
(2.9 iy S IFAOal = [ e enras

N—oo
S*M



7

where dS is the Liouville measure on S*M, normalized so that f Sx M dS = 1. This
gives information on the joint spectrum of the pair (A, X), in connection with the
classical result

(2.9) A ~ (CE)Y™ as k — oo,

where n = dim M and C = I'(n/2 + 1)(47)™/? /Vol M. Another application of the
Weyl formula is that, for a € C*>°(M),

lm ~3° / a(@)|F(A, X)gx|2 dV
(2.10) ~tm
— [ a@leur.o)Pas

S* M

We are ready to obtain some general concentration results, parallel to those of
§1, but valid in much greater generality. The key to this result is the observation
that, if Ag < B < Ay,

(2.11)
@(p) =0 for |u[<B

— p((V,€)) =0, VY(x,§) € S*M such that x € Mp ={x € M : |Y(z)| < B}.

Hence we have the following conclusion.

Proposition 2.1. With a € C*(M), set Au(x) = a(z)u(x). Then

o) =0 for |u| < B, suppa C Mp

(2.12) — F(A, X)*AF(A, X) € OPS™'(M).

Hence, when these hypotheses hold,

klim a(x)|F(A, X)pp|? dV
(2.13) R
= lim (F(A, X)"AF (A, X)pk, or)rz = 0.

k—o00

Equivalently,

(2.14) lim [0 )P [ a(olon(@) dV () = o
M



3. Microlocal concentration of eigenfunctions of subelliptic operators

Let M be a compact, n-dimensional Riemannian manifold, and let L € OPS?*(M)
be a positive, self-adjoint operator. We assume L is not elliptic, but that it is subel-
liptic, in the sense that there exists o > 0 (necessarily o < 2) such that

(3.1) (L+1)"':HS (M) — H"7(M), VscR.
Let {¢,} be an orthonormal basis of L?(M) consisting of eigenfunctions of L:
(3.2) Lo = Ao, 0< A <A <--- M Ho0.
We aim to prove the following.
Theorem 3.1. Take L as above, and denote its principal symbol by Lo. Assume
(3.3) / Lo(z,w) ™2 dS(z,w) = .

S*M

Then, except perhaps for a “sparse” subsequence, the sequence {pr} concentrates
microlocally on the characteristic set 3 C T*M \ 0, given by

(3.4) Y={(x,§) e T*M\0: La(z,£) = 0}.

The proof will involve a study of the semigroup {e=** : ¢+ > 0}, and of products
Ae~tl with A € OPS°(M). The hypothesis (3.1) implies

(3.5) et D(M) — C®(M),

for each ¢t > 0. In particular, Tre~*" < oo for each ¢ > 0. We will show that, under
the hypotheses of Theorem 3.1,

(3.6) t"? Tre ' — 400, as t\,0.
Furthermore, if

The full symbol of A vanishes on a

(3.7) conic neighborhood of 3 in T*M \ 0,
we obtain
(3.8) Tr Ae 7t ~ C(A)t™™2, as t\,0,

where Ay is the principal symbol of A. From (3.8) we obtain

(3.9) D e (Apy, o) ~ C(AET™2, N0,
k>0



when (3.7) holds. Applying this observation to A*A yields

(3.10) lim /2 3 e~ Ay 132 = (14 ).
k>0

Meanwhile, (3.6) implies

. n/2 —tA\r
(3.11) lim ¢ ];)e k= 4o0.

In preparation for proving (3.6), we will find it useful to recall some properties
of e ™ when M € OPS?(M) is an elliptic, positive, self-adjoint operator, with
principal symbol Ms. In such a case, parametrix constructions yield

(3.12) e Mu(e) = [ Hit.,p)uly) aV (o),
M
with
(3.124) H(t,x,y) = Cy / e Male ) eile=u) L ge 4
TxM

In particular,

(3.13) H(t,z,x)=C, / e~ tM2(z,€) de + O(t—n/2)7
T:M

ast (0. Now

(319 / e dg = Cl? / My (z,w) "% dS,(w),

T:M SxM

hence
1

(3.15) Tre ™™ = (4rt)~"/? / My(z,w) ™™/ dS(z,w) + o(t™"/?),
n—1

S*M

where A,,_; is the area of the unit sphere S"~! C R, so

(3.16) / dS(z, w) = Vol M.

S*M



10

In particular, if M = —A, where A is the Laplace operator on M, we have

(3.17) Tret® = (4nt) "2 Vol M + o(t~"/?).

Behind (3.12)—(3.13) is a parametrix construction of e '™ as a family of pseudo-
differential operators. Then pseudodifferential operator calculus yields, for A €
OPS°(M), with principal symbol Ay,

1
(3.18) TrAe ™™ = (4mt) /2 ———

n—1

/ Ag(z,w)Ms(z,w) ™2 dS(z, w)+o(t™™?).
S*M

To establish (3.6), we argue as follows. Take ¢ > 0 and set M = L —ecA. We
apply (3.15) to such M. The relevance of such an application arises as follows. Say
{a)1,} is an orthonormal basis of L?(M) consisting of eigenfunctions of M:

(3.19) Lp, = petb, 0 <y <pg <--- o0,

Lemma 3.2. Let L, M be positive, self-adjoint operators with compact resolvents.
Assume

(3.20) D(M)c D(L), L<M.
Let the eigenvalues be {\i}, {ux}, as in (3.2) and (3.19). Then, for each k,

Proof. Pick p € (0,00), and let V,, € L?(M) be the span of {1y : ux < u}, so
(M — pl)v,v) < 0 for all nonzero v € V,,, but not for all v in a linear space of
larger dimension. The hypotheses above yield ((L — pl)v,v) < 0, for all nonzero
veV,, so

N A < b =9y < p
From the lemma, we deduce that
(3.22) Tre tF > Tre t(E—eA8)

for each e > 0, t > 0. Applying (3.15) to M = L — e/, we have

1
(3.23) lim (47t)"/2 Tre~(L=58) = / (Lo(z,w) + €)% dS(x,w).
t—0 An—l
S*M
Hence
1
(3.24) lim inf (4mt)"/ 2 Tre~tt > i / (La(z,w) + €)% dS(x,w),

S*M
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for each € > 0. Hence

1
(3.25) lim inf (47t)"/2 Tre t > —— / Lo(x,w) ™2 dS(x,w).
t—0 An—l
S* M

Thus, given the hypothesis (3.3), we have (3.6).
Next, we bring in the fact that, if A € OPS?(M) satisfies (3.7), then the con-
struction of a parametrix for e ** A is microlocal, and yields, parallel to (3.18),

(3.26) Tre " A = (4“)_”/2% / Ao(z,w)La(z,w) "2 dS(z,w) + o(t™"/?),
n—1
S*M

and, of course,
(3.27) Tr Ae ' = Tre 'l A,
so we have (3.8).

EXAMPLES. Let M = S? C R? be the unit sphere, and let X; be vector fields
generating 2m-periodic rotation about the xj;-axis, for 1 < j < 3. Then A =
X7+ X3+ X3. Now

L =—(X7 +X3)

satisfies (3.1), with ¢ = 1, and we also have (3.3). On the other hand,
L= —(X7 + X35 + X3M7 X3)

also satisfies (3.1), with ¢ = 1, but (3.3) does not hold. In this case, the integral
S ps Lo(x,w) ™" dS is finite.
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