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Abstract

We study the joint spectra and joint eigenfunctions of a family
of commuting self-adjoint operators (Λ, X1, . . . , Xℓ) on a compact, n-
dimensional Riemannian manifold M . Here Λ =

√
−∆ (or a conve-

nient perturbation), where ∆ is the Laplace operator on M , and Xj

are first-order, self-adjoint, differential operators, or more generally
pseudodifferential operators, on M . We concentrate on cases where M
has a group G of isometries, especially when G = SO(n), where we say
M has rotational symmetry.

Two basic cases are the flat 2D torus T2 and the 2D sphere S2,
each with a natural SO(2) action, yielding two commuting self-adjoint
operators (Λ, X). Classical analyses of their joint spectra and eigen-
functions, with emphasis on their differences, are reviewed in §1, and
these results provide a springboard for more general studies pursued
in subsequent sections, bringing in techniques from microlocal analysis
to elucidate various spectral clustering and eigenfunction concentra-
tion effects that first appear in these two paradigm cases. Contact is
made with earlier work, particularly [2], [5], and [9].
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1 Introduction

Let M be a compact, connected, n-dimensional Riemannian manifold. As-
sume a compact Lie group G acts effectively on M , as a group of isometries.
Denote the action by (g, x) 7→ gx, g ∈ G, x ∈M .

A case of particular interest will be G = SO(n), under the assumption
that there exists q ∈ M whose G-orbit Oq = {gq : g ∈ G} is a smooth
submanifold of M , diffeomorphic to the standard sphere Sn−1 ⊂ Rn, via

φq : Oq −→ Sn−1, (1.1)

in such a way that φq intertwines the SO(n) action on Oq with the standard
action of SO(n) on Sn−1. Then we say M has rotational symmetry.

Let ∆ denote the Laplace-Beltrami operator on M . Then L2(M) has an
orthonormal basis consisting of eigenfunctions of ∆, belonging to eigenspaces

Vλ = {u ∈ C∞(M) : ∆u = −λ2u}, λ2 ∈ Spec(−∆). (1.2)

The operator ∆ commutes with the SO(n) action on functions, given by

L(g)u(x) = u(g−1x). (1.3)

Hence L(g) leaves each eigenspace Vλ invariant. We get a unitary represen-
tation πλ of G on Vλ.

Typically the space Vλ is not one-dimensional. We aim to bring in self-
adjoint differential (or pseudodifferential) operators that commute with ∆
(and with each other), arising from the G-action, and look at the joint
spectrum of such a family of commuting self-adjoint operators, and also
look at the behavior of the joint eigenfunctions of these operators.

To frame the study, we start with a look at two paradigm cases, when
n = 2, namely

M = S2, M = T2, (1.4)

where S2 ⊂ R3 is the standard unit sphere and T2 = R2/2πZ2 is a flat
torus. In these cases, G = SO(2) ≈ T1. The group SO(2) acts on S2

rotation about the x3-axis, and SO(2) ≈ T1 acts on T2 via

φ · (θ1, θ2) = (θ1 + φ, θ2), (1.5)

with addition in R/2πZ. We will describe results on eigenfunctions of ∆
here, referring to Chapters 3 and 8 of [11] or Chapter 7 of [12] for details.
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We start with M = T2, and take the L2-inner product

(u, v)L2 = (2π)−2

∫
T2

u(θ)v(θ) dθ. (1.6)

Here an orthonormal basis is given by

ek(θ) = eik·θ, k = (k1, k2) ∈ Z2, (1.7)

and we have
∆ek = −|k|2ek, |k|2 = k21 + k22. (1.8)

We have differential operators

∂j : C
∞(T2) −→ C∞(T2), j = 1, 2, (1.9)

and

Xj =
1

i
∂j =⇒ Xjek = kjek, k ∈ Z2. (1.10)

The operator X1 is derived from the SO(2) action on T2 given by (1.5). The
fact that X2 commutes with both ∆ and X1 is in some sense serendipitous.
We have −∆ = X2

1 + X2
2 . For our considerations of joint spectra, we first

have
Spec(X1, X2) = {(k1, k2) : kj ∈ Z} = Z2. (1.11)

In place of considering the joint spectrum of −∆ and X1, it is convenient to
set

Λ = (−∆)1/2, (1.12)

so
Λek = |k|ek, (1.13)

and

Spec(Λ, X1) = {(
√
k21 + k22, k1) : (k1, k2) ∈ Z2}. (1.14)

In addition, we have

Spec(Λ, X1, X2) = {(
√
k21 + k22, k1, k2) : (k1, k2) ∈ Z2}. (1.15)

The joint spectrum of X1 and X2, specified in (1.11), is the very regular
integer lattice in R2. The triple joint spectrum specified in (1.15) is the lift
of this lattice to a cone in R3. The set Spec(Λ, X1), specified in (1.14), is an
edge-on view of this spotted cone, depicted in Figure 1.1.
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Figure 1.1: Spec(Λ, X1) on T2
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Figure 1.2: Spherical coordinates on S2
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We now look at S2. We use spherical coordinates (θ, ψ), defined by

x(θ, ψ) = (sin θ cosψ, sin θ sinψ, cos θ),

0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π,
(1.16)

illustrated in Figure 1.2.
In this case (cf. [12], (7.4.30)),

Spec(−∆) = {k2 + k : k ∈ Z+}. (1.17)

It is convenient to set

Λ =
(
−∆+

1

4

)1/2
− 1

2
, (1.18)

so
Spec Λ = {k : k ∈ Z+}, (1.19)

and denote −λ2-eigenspace of ∆ by Vk, for λ = λk =
√
k2 + k:

Vk = {u ∈ C∞(S2) : Λu = ku}. (1.20)

Each eigenspace Vk is seen to contain a 1-dimensional space of zonal har-
monics,

Zk = {u ∈ Vk : X1u = 0}, (1.21)

where X1 is a first order differential operator with the property that Y1 =
iX1 is a real vector field generating the SO(2) action on S2, i.e., rotation
about the x3-axis (of period 2π). The fact that dimZk = 1 is established in
Proposition 7.4.18 of [12]. (A different argument will be presented later on
here, in §2.) Further calculations presented in [12] yield

Zk = Span(Zk), (1.22)

where
Zk(ω) = Pk(cos θ), (1.23)

for ω = x(θ, ψ) ∈ S2, and Pk(t) are Legendre polynomials, given by the
generating function

(1− 2tr + r2)−1/2 =
∞∑
k=0

Pk(t)r
k. (1.24)

To normalize this eigenfunction to have unit L2-norm, one takes

Y 0
k (ω) =

(2k + 1

4π

)1/2
Pk(cos θ). (1.25)
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Figure 1.3: Spec(Λ, X1) on S
2

Then (cf. [12], Proposition 7.4.35), an orthonormal basis of Vk is given by

Y ℓ
k (ω) = αkℓe

iℓψ sin|ℓ| θ P
(|ℓ|)
k (cos θ), |ℓ| ≤ k, (1.26)

where αkℓ are normalizing constants. An alternative formula for this basis
is

Y ±ℓ
k (ω) = αkℓ(ω1 ± iω2)

ℓP
(ℓ)
k (ω3), 0 ≤ ℓ ≤ k. (1.27)

We have
X1Y

ℓ
k = ℓY ℓ

k , for |ℓ| ≤ k, (1.28)

and the joint spectrum of Λ and X1 is

Spec(Λ, X1) = {(k, ℓ) ∈ Z+ × Z : |ℓ| ≤ k}. (1.29)

We display this joint spectrum in Figure 1.3. Note similarities and dif-
ferences in comparison with the display of Spec(Λ, X1) on T2, depicted in
Figure 1.1.
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Both figures display Spec(Λ, X1) for pairs (λ, k) satisfying 0 ≤ λ ≤ 10.
The first figure has more spectral points, in large part because the area of
T2 (4π2) exceeds the area of S2 (4π). Somewhat mitigating the ratio of
the number of spectral points is the fact that all the joint spectra for S2

are simple, as one can deduce from (1.26)–(1.28), while most joint spectral
points for T2 are double. In fact, the joint spectra in (1.11) are simple, but
the points (k1, k2) and (k1,−k2) ∈ Z2 from (1.11) have the same image in
Spec(Λ, X1) in (1.14). Hence all the points (λ, k1) ∈ Spec(Λ, X1) in (1.14)
have multiplicity 2 except for those for which k1 = λ. We will investigate
the geometrical roots of this difference between having simple spectra and
double spectra later on.

Another noticeable distinction between the two sets of joint spectra is
their degree of regularity. For S2, Spec(Λ, X1) is simply that part of the
lattice Z2 lying within the quadrant {(x, y) : x ≥ 0, |y| ≤ x}. For T2,
Spec(Λ, X1) lies in the same quadrant, but its points form a somewhat more
elaborate pattern. One can make out families of points lying on branches of
hyperbolas, but the spacing of the points is not even. For example, there is
substantial clustering near the edges y = ±x.

The more elaborate behavior of Spec(Λ, X1) on T2 is related to the no-
torious difficulty of the “lattice point problem,” i.e., to the difficulty of
precisely specifying the spectral counting function of −∆ on T2. In this
connection, we observe that one has a similarly intricate spectral counting
function for

Λ2 +X2
1 on S2. (1.30)

Note that Λ2 +X2
1 is equal to

−∆+X2
1 , (1.31)

modulo an element of OPS1(S2). One might check out the spectral counting
function of this operator.

We turn to the differences in the behavior of the joint eigenfunctions in
these two cases. For T2, the eigenfunctions ek, k ∈ Z2, all have absolute
value 1 everywhere. As mentioned above, each joint eigenspace of (Λ, X1)
has dimension 1 or 2. In case k2 ̸= 0, the (

√
k21 + k22, k1) eigenspace is

Span(ek1,k2 , ek1,−k2) = {eik1θ1(c1eik2θ2 + c2e
−ik2θ2) : cj ∈ C}, (1.32)

which does not display concentration or spiking effects. As for the eigenspaces
Vλ of Λ, it is the case that they can have arbitrarily large dimension (this is
largely why the lattice counting problem is so hard), so a bit of spiking can
occur. But such spiking does not occur for joint eigenfunctions of (Λ, X1).
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Figure 1.4: Graphs of yk(cos θ) = Y 0
k (ω), −π/2 ≤ θ ≤ π/2

We now look at joint eigenspaces of (Λ, X1) for S
2. As noted above, in

this case each joint eigenspace has dimension 1, and the (k, ℓ)-eigenspace is
spanned by the unit-norm eigenfunction Y ℓ

k . We start with the zonal har-
monics Y 0

k , given by (1.25). One can produce graphs of these functions from
computations of the Legendre polynomials Pk(t). In turn, these polynomials
satisfy the recursion relation

k + 1

2k + 1
Pk+1(t) = tPk(t)−

k

2k + 1
Pk−1(t), (1.33)

cf. (7.4.292) of [12]. This is convenient for such a computation. Figure 1.4
illustrates the graphs of Y 0

k (ω) for ω3 = cos θ, in cases k = 10, 20, and 30.
Referring to Figure 1.2, we see that the graphs in Figure 1.4 yield graphs

of Y 0
k on the “northern hemisphere” of S2. Now the polynomials Pk(t) are

even in t for k even and odd in t for k odd, so the zonal harmonics Y 0
k (ω)

have the corresponding parity with respect to the inversion ω3 7→ −ω3 about
the “equator” of S2.
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Figure 1.5: y30(t) and the upper envelope y = (1/π)(1− t2)−1/4

The graphs in Figure 1.4 illustrate the fact that the zonal harmonics Y 0
k

spike at the north and south poles of S2. On the other hand, they do not
concentrate at the poles; that is, their amplitudes do not tend to zero on
any strip in S2. In fact, in the limit as k → ∞. the sequence of functions
yk(t) has the upper envalope

y =
1

π
(1− t2)−1/4. (1.34)

See [7], §4.8 for a derivation of the large k asymptotics of Pk(t) that yield
this. This phenomenon is illustrated in Figure 1.5.

We have distinguished between “spiking” and “concentration” and noted
that the zonal harmonics Y 0

k exhibit spiking but not concentration. Other
eigenfunctions do exhibit concentration, as we will now illustrate with the
eigenfunctions of highest “angular momentum”

Y k
k (ω) = αk(ω1 + iω2)

k, (1.35)
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Figure 1.6: Graphs of wk(cos θ) = |Y k
k (ω)|, ω3 = cos θ, 0 ≤ θ ≤ π

satisfying
|Y k
k (ω)|2 = |αk|2(1− ω2

3)
k, (1.36)

or equivalently

|Y k
k (ω)| = wk(cos θ), wk(t) = |αk|(1− t2)k/2. (1.37)

These eigenfunctions concentrate at the equator, θ = π/2, for k large, as
illustrated in Figure 1.6.

Extending this result, we will show that, for each β ∈ (0, 1), the set of
eigenfunctions {

Y ℓ
k (ω) :

|ℓ|
k

≥
√
1− β2

}
concentrates on the strip |ω3| ≤ β

as k −→ ∞.

(1.38)

Our approach to this will involve, not a study of the special functions arising
in the formula (1.26), but rather general considerations, applicable to other
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Figure 1.7: Surfaces of revolution, with and without poles

classes of n-dimensional manifolds with SO(n)-symmetry, bringing in tools
from microlocal analysis. One such result, applicable specifically to the
spherical harmonics on S2, is given in Proposition 3.2 and the accompanying
formulas (3.29)–(3.37). Concentration results for joint eigenfunctions in a
much more general setting are given in Propositions 4.1–4.3.

The following observation illustrates a limitation on what sorts of sets
spherical harmonics can concentrate on. Let S± denote the hemispheres
{ω ∈ S2 : ±ω3 ≥ 0}. Then, as we will show in §2,

u ∈ Vk =⇒
∫
S±

|u|2 dS =
1

2
∥u∥2L2 . (1.39)

In fact, thanks to the SO(3)-invariance of each eigenspace Vk, such an iden-
tity holds for all hemispheres S± of S2. We will establish several generaliza-
tions of (1.39), both for higher dimensional spheres Sn and for other classes
of manifolds with SO(n)-symmetry. See Propositions 2.3–2.4.
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We point out a couple of phenomena that drive the differences between
the spectral behaviors of T2 and S2. One is that the real vector fields
Y1 = iX1 have constant length on T2 but variable length on S2. In fact, Y1
vanishes at two points of S2, the “north and south poles.” This observation
motivates a concept that will play a role in investigating conditions that
yield simple joint spectra. Namely, let M be a compact, connected, n-
dimensional Riemannian manifold with SO(n)-symmetry, as introduced at
the beginning of this introduction. We say M has a pole at p ∈M provided

gp = p, ∀ g ∈ SO(n), (1.40)

and the derived action

D(g) : TpM −→ TpM (1.41)

on the n-dimensional inner-product space TpM is equivalent to the standard
action of SO(n) on Rn. In Figure 1.7 we display two surfaces of revolution
in R3, one with a pair of poles, the other without poles.

The rest of this paper is organized as follows. In §2 we decompose
L2(M) into mutually orthogonal pieces on which G acts like copies of πα,
where {πα : α ∈ A} is a complete set of irreducible unitary representations
of G. These pieces are the images of orthogonal projections Qα. We use
these projections to decompose the eigenspaces Vλ of ∆,

Vλ =
⊕
α

Vλα, (1.42)

noting that Qα : Vλ → Vλ. We observe that, for u ∈ L2(M),∫
M

f |u|2 dV =
∑
β

∫
M

f |Qβu|2 dV, (1.43)

whenever f ∈ L∞(M) is invariant under the G-action. This leads to an ex-
tension of (1.39), fromM = S2 (indeed, fromM = Sn), to the setting where
M has an isometric involution ι, commuting with the G-action, yielding

M =M+ ∪M−, ι :M± −→M∓, (1.44)

with M± invariant under the G-action. Then (1.39) extends to

u ∈ Vλ =⇒
∫
M±

|u|2 dV =
1

2

∫
M

|u|2 dV, (1.45)
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provided one has that

G = SO(n) acts irreducibly on each space Vλα. (1.46)

This is Proposition 2.3. We show in Proposition 2.4 that

if M has a pole, then (1.46) holds. (1.47)

In Proposition 2.8 we show that, if M does not have a pole, but there is a
G-orbit Oq as in (1.1), then, for each nonzero Vλα,

the action of SO(n) on Vλα contains

at most two irreducible components.
(1.48)

In §3, we focus our attention back on M = S2, and examine the asymp-
totic behavior of∫

S2

f |u|2 dS, u ∈ Vk, f ∈ C∞(S2), zonal. (1.49)

In Proposition 3.2 we show that, if

u =
∑
|ℓ|≤k

aℓY
ℓ
k , (1.50)

then ∫
S2

f |u|2 dS =
∑
|ℓ|≤k

|aℓ|2g
( ℓ
k

)
+Rk(u), (1.51)

where

|Rk(u)| ≤
C

k
∥u∥2L2 , C = C(f), (1.52)

and

g(λ) =
1

π

∫ 1

−1
f0
(
s
√
1− λ2

) ds√
1− s2

, f(ω) = f0(ω3). (1.53)

We show that g ∈ C∞([−1, 1]) (perhaps despite appearances). For the
special cases u = Y 0

k and u = Y k
k , one has, respectively,∫

S2

f |Y 0
k |2 dS =

1

π

∫ 1

−1
f0(s)

ds√
1− s2

+O(k−1), (1.54)
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and ∫
S2

f |Y k
k |2 dS = f0(0) +O(k−1), (1.55)

which can be compared, respectively, with the statement (1.34) about the
upper envelope of Pk(t) and the concentration analysis (1.37). Going further,
we establish a version of (1.38), namely, for β ∈ (0, 1), δ > 0,

|ℓ|
k

≥
√

1− β2 =⇒
∫

|ω3|≥β+δ

|Y ℓ
k |2 dS ≤ C(δ)

k
. (1.56)

We obtain sharper estimates, in more general settings, in §4.
To get the results (1.51)–(1.56), we do not delve into the analysis of

Y ℓ
k as special functions (as in (1.25)–(1.27)). Rather, we use methods of

microlocal analysis. We start by writing (1.49) as

(Π(A)u, u)L2 , Au = fu, (1.57)

where

Π(A) =
1

2π

∫ 2π

0
e−itΛAeitΛ dt. (1.58)

Egorov’s theorem allows us to write Π(A) as a pseudodifferential operator,
in OPS0(S2), and to specify its principal symbol. The operator Π(A) com-
mutes with both Λ and the operator X1 arising in (1.21). Using a functional
calculus presented in [9], and developed further in Chapter 12 of [10] (see
also [8], [2], for related developments), we show in Proposition 3.1 that

Π(A) = F0(Λ, X1) +R, R ∈ OPS−1(S2), (1.59)

with
F0(Λ, X1) = g(Λ−1X1), (1.60)

and g(λ) as in (1.53). This gives rise to the results (1.51)–(1.56).
The two-pronged goal of §4 is to extend and sharpen the estimate (1.56).

In the expanded setting, M is a compact, connected, n-dimensional Rie-
mannian manifold, on which there is a vector field Y , which generates a
1-parameter group of isometries of M , so X = iY is self adjoint and com-
mutes with Λ =

√
−∆. Then Vλ splits into joint eigenspaces

Vλ =
⊕
µ

Vλµ, Vλµ = {u ∈ Vλ : Xu = µu}. (1.61)
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As for the vector field Y , we assume

A0 = min
x∈M

|Y (x)| < max
x∈M

|Y (x)| = A1. (1.62)

The role of the set {ω ∈ S2 : |ω3| ≥ β + δ} in (1.56) is expanded to

ΩA = {x ∈M : |Y (x)| ≤ A}, given A ∈ (A0, A1). (1.63)

The role played by the condition on (k, ℓ) in (1.56) will be expanded by
choosing

g ∈ C∞([−A1, A1]), g(µ) = 0 for |µ| ≤ A′, given A′ > A. (1.64)

The extension and sharpening of (1.56) is then given by the following result,
Proposition 4.3:

if f ∈ C∞(M), supp f ⊂ ΩA, then

u ∈ Vλµ ⇒ g
(µ
λ

)
∥fu∥Cm(M) ≤

Cm
λm

∥u∥L2 ,
(1.65)

for each m ∈ N. The key to this estimate again resides in the use of the
functional calculus for commuting self-adjoint pseudodifferential operators.
It is shown in Proposition 4.2 that, under the hypotheses above,

Mfg(Λ
−1X) ∈ OPS−∞(M), (1.66)

and this leads to (1.65).
The result (1.65) can be interpreted as implying that, for u ∈ Vλµ, with

|µ/λ| > A′, u concentrates on the set M \ΩA, as λ→ ∞. Alternatively, we
say ΩA is a shadow region for such a family of eigenfunctions.

In §5 we retain the setting of §4, involving M,Λ, X, and examine Weyl
asymptotics. In its basic form, this involves the counting function for the
eigenvalues of Λ, repeatd according to multiplicity. This can be expressed
in the form Trφν(Λ), for a sequence of functions φν : R+ → R, such as
characteristic functions of [0, ν]. It is convenient to take smoother func-
tions, and deduce information on the counting functions via a Tauberian
theorem. For example, one might start with heat asymptotics, Tr et∆, using
φt(Λ) = e−tΛ

2
, t↘ 0. More precise results arise via the use of wave equation

techniques. One takes

φ ∈ S(R), φ ≥ 0, supp φ̂ ⊂ (−r, r), r < InjM, (1.67)
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where InjM is the injectivity radius, and considers

Nφ(R) = Trφ(Λ−R). (1.68)

One studies the asymptotic behavior of this as R → +∞. More generally,
there are microlocal Weyl asymptotics, involving the behavior of

TrBφ(Λ−R), B ∈ OPS0(M). (1.69)

As in the classical work [6], this is analyzed by writing

Bφ(Λ−R) =

∫ ∞

−∞
Beit(Λ−R)φ̂(t) dt, (1.70)

and using a parametrix for the wave evolution operator eitΛ, for |t| < r. In
particular, results of [6] give

Nφ(R) ∼ C(φ,M)Rn−1, R→ ∞. (1.71)

Going further, we take

B =Mfh(Λ
−1X), f ∈ C∞(M), h ∈ C∞([−A1, A1]), (1.72)

and obtain the following, in Proposition 5.2:

lim
R→∞

1

Nφ(R)

∑
λ

φ(λ−R)
∑
µ,j

h
(µ
λ

)∫
M

f |uλµj |2 dV

=

∫
S∗M

f(x)h
(
⟨Y (x), ξ⟩

)
dS(x, ξ),

(1.73)

where, for (λ, µ) ∈ Spec(Λ, X),

{uλµj : 1 ≤ j ≤ dimVλµ} is an orthonormal basis of Vλµ. (1.74)

Specializing (1.74) to f ≡ 1 gives

lim
R→∞

1

Nφ(R)

∑
λ

φ(λ−R)
∑
µ

h
(µ
λ

)
dimVλµ

=

∫
S∗M

h
(
⟨Y (x), ξ⟩

)
dS(x, ξ).

(1.75)
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We show in Lemma 5.4 that the last integral is equal to∫
I

h(y)Ψ(y) dy, I = [−A1, A1], (1.76)

with Ψ satisfying

Ψ = ΨM,X ∈ L1(I, dy), Ψ ≥ 0,

∫
I

Ψ(y) dy = 1. (1.77)

Having that the left side of (1.75) is given by (1.76), for h ∈ C∞(I), we
next have two tasks. First, we want to extend the validity of this identity
to a larger class of functions h on I, including functions that are piecewise
continuous with a finite number of jumps. In fact, the extension goes further,
to the situation where h : I → R is a bounded function satisfying

h ∈ R(I, γ), γ = Ψ(y) dy, (1.78)

that is to say, h is Riemann integrable on the measured metric space (I, γ).
We expound on this concept in Appendix A.

We call the function Ψ that arises in (1.76) the joint spectral clustering
factor, and the second task we face after obtaining (1.75)–(1.77) is to analyze
the behavior of this factor, and see how it depends on M and X. In §5 we
work through the examples M = T2 and M = S2, obtaining

Ψ(y) =
1

π

1√
1− y2

, y = [−1, 1], M = T2, (1.79)

and

Ψ(y) =
1

2
, y ∈ [−1, 1], M = S2. (1.80)

This is a quantitative expression of what is behind the difference in appear-
ance of the joint spectra of (Λ, X), pictured in Figures 1.1 and 1.3, in these
two cases.

In §6 we apply the results of (1.73)–(1.77), and also the shadowing results
of §4, to additional examples of 2D surfaces of revolution:

3. More general convex surfaces of revolution.
4. Symmetric dumbbell.
5. Top-heavy dumbbell.
6. Surface with inflective invariant geodesic.
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7. Inner tube.
8. Surface with flattened equator.
9. Capped cylinder.

Illustrations of curves in R2 that produce such surfaces upon rotation about
the x3-axis are given in Figures 6.1–6.4. The first two of these figures also
sketch the graphs of the factor Ψ arising in Examples 4 and 5.

For surfaces in Example 3, the behavior of Ψ is close to that of S2; one has
Ψ ∈ C∞(I), though it is typically not constant. In the other examples, Ψ has
singularities, though in Examples 4–7 the singularities occur on the interior
of I, rather than at the endpoints. In Examples 4–8, such singularities as
occur are weaker than we see for M = T2 in (1.79). We have logarithmic
singularities in Example 4, both log singularities and jumps in Example 5,
power singularities with exponent −1/6 in Example 6, log singularities for
the inner tube in Example 7, and power singularities with exponent −1/4
in Example 8. For the capped cylinder in Example 9, Ψ has singularities of
the same strength as (1.79).

Regarding the application of results on concentration and shadowing to
these examples, we mention that, in Example 4 (the symmetric dumbbell),
we show in Proposition 6.1 that there are eigenfunctions in Vλµ that con-
centrate on small neighborhoods of the union of the two equators about
the fattest parts of these dumbbells. However, thanks to results of §2, they
cannot concentrate on a small neighborhood of just one of these equators,
since each such eigenfunction is either even or odd under the associated in-
volution ι on M that arises here. We also have a result, Proposition 6.2, on
the existence of pairs of elements of Spec(Λ, X) that are very close together,
one associated to a joint eigenfunction that is even under the action of ι,
and one associated to an odd eigenfunction.

There are different conclusions to be reached about concentration and
shadowing of joint eigenfunctions in Example 5, which the reader can check
out.

This paper has two appendices. As already mentioned, Appendix A
treats the notion of Riemann integrable functions on a compact, measured
metric space, of relevance to extending (1.75)–(1.76) from h ∈ C∞(I) to
cases allowing h to be discontinuous. Appendix B discusses the action of
a finite symmetry group on eigenspaces. Results given here are relevant to
Proposition 6.2, mentioned above.
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2 Decomposition of the eigenspaces of ∆

Let M be a compact, connected, n-dimensional Riemannian manifold, with
an SO(n)-action by isometries, as described in the opening paragraph of §1.
Denote the eigenspaces of the Laplace operator on M by

Vλ = {u ∈ C∞(M) : ∆u = −λ2u}, λ2 ∈ Spec(−∆). (2.1)

If πα is an irreducible unitary representation of SO(n), set

Qαu(x) = dα

∫
SO(n)

u(g−1x)χα(g) dg, (2.2)

where
χα(g) = Trπα(g), dα = χα(I), (2.3)

I denoting the identity element of SO(n). The operator Qα is the orthogonal
projection of L2(M) onto the subspace of L2(M) on which L(g) acts like
copies of πα, where

L(g)u(x) = u(g−1x), g ∈ SO(n). (2.4)

Since L(g) commutes with ∆, so does Qα, so

Qα : Vλ −→ Vλ. (2.5)

We set
Vλα = Qα(Vλ), (2.6)

so we have an orthogonal decomposition

Vλ =
⊕
α∈Aλ

Vλα, (2.7)

where Aλ = {α : Vλα ̸= 0}.
As one use of such a decomposition, we derive a simple but useful iden-

tity. Suppose f ∈ L∞(M) is invariant under the SO(n)-action, so

MfL(g) = L(g)Mf , ∀ g ∈ G = SO(n), (2.8)

where Mfu = fu. Hence
MfQα = QαMf . (2.9)
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Proposition 2.1 If f ∈ L∞(M) is SO(n)-invariant and u ∈ L2(M), then∫
M

f |u|2 dV =
∑
β

∫
M

f |Qβu|2 dV. (2.10)

Proof. The left side of (2.10) is equal to

(fu, u) =
∑
α,β

(fQαu,Qβu)

=
∑
α,β

(QβMfQαu,Qβu)

=
∑
α,β

(MfQβQαu,Qβu)

=
∑
β

(MfQβu,Qβu),

(2.11)

where we have used Qβ = Q2
β = Q∗

βQβ and QαQβ = 0 for α ̸= β. The last
quantity in (2.11) is equal to the right side of (2.10). �

Corollary 2.2 In the setting of Proposition 2.1,

u ∈ Vλ ⇒
∫
M

f |u|2 dV =
∑
β∈Aλ

∫
M

f |Qβu|2 dV. (2.12)

One can deduce the identity (1.39) from (2.12). Here is a natural gener-
alization.

Proposition 2.3 Take M as above, and assume there is an isometric in-
volution

ι :M −→M, commuting with the action of G = SO(n), (2.13)

such that
M =M+ ∪M−, ι :M± −→M∓, (2.14)

with
M± invariant under the G-action. (2.15)

In addition, assume

G = SO(n) acts irreducibly on Vλα, for each α ∈ Aλ. (2.16)
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Then

u ∈ Vλ ⇒
∫
M±

|u|2 dV =
1

2

∫
M

|u|2 dV. (2.17)

Proof. By (2.13), ι∗ : Vλα → Vλα, and, if (2.16) holds,

ι∗ = ±1 on each space Vλα. (2.18)

Now we can apply (2.12) with f = χM± , to get, for u ∈ Vλ,∫
M±

|u|2 dV =
∑
α∈Aλ

∫
M±

|Qαu|2 dV. (2.19)

But (2.18) implies∫
M±

|Qαu|2 dV =
1

2

∫
M

|Qαu|2 dV, ∀α ∈ Aλ, (2.20)

whenever u ∈ Vλ, so (2.19) is equal to

1

2

∑
α∈Aλ

∫
M

|Qαu|2 dV =
1

2

∫
M

|u|2 dV, (2.21)

again by (2.12), with f ≡ 1. This gives the asserted conclusion (2.17). �

The applicability of Proposition 2.3 to the identity (1.39) follows from the
fact that each joint eigenspace of (Λ, X1) on S

2 is one-dimensional, spanned
by Y ℓ

k , given by (1.26)–(1.27), so clearly the SO(2) action on such a space
is irreducible. Here is a more general irreducibility result, applicable to n-
dimensional SO(n)-symmetric manifolds with a pole (including, of course,
M = Sn).

Proposition 2.4 Let M be a compact, connected, n-dimensional Rieman-
nian manifold (n ≥ 2) with an SO(n)-action by isometries. Assume M has
a pole at p. Then

G = SO(n) acts irreducibly on Vλα, for each α ∈ Aλ. (2.22)

We get started with the following special case.
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Lemma 2.5 Take M as in Proposition 2.4, and, for λ2 ∈ Spec(−∆), con-
sider

Vλ0 = {u ∈ Vλ : L(g)u = u, ∀ g ∈ SO(n)}. (2.23)

Then
dimVλ0 ≤ 1. (2.24)

Our approach to the proof of this makes use of the following.

Lemma 2.6 Take M,λ as in Lemma 2.5. Then there exists r1 = r1(λ) > 0
such that

u ∈ Vλ, r ∈ (0, r1], u
∣∣
∂Br(p)

= 0 =⇒ u ≡ 0. (2.25)

Proof. If µ = µ(r) denotes the smallest eigenvalue of −∆ on the ball Br(p),
with the Dirichlet boundary condition on its boundary ∂Br(p), we have the
variational characterization

µ(r) = inf
{ ∫
Br(p)

|∇v|2 dV : v ∈ C∞
0 (Br(p)), ∥v∥L2 = 1

}
, (2.26)

and, as is classical,
µ(r) ↗ +∞, as r ↘ 0. (2.27)

As soon as µ(r1) > λ2, we have that the hypotheses of (2.25) imply

u = 0 on Br(p), (2.28)

and then unique continuation for solutions to (∆ + λ2)u = 0 implies u ≡ 0
on M . �

Proof of Lemma 2.5. Assume Vλ0 ̸= 0. Pick u, v ∈ Vλ0, both ̸= 0. Take
r1 = r1(λ) as in Lemma 2.6. Both u and v are constant on ∂Br1(p), so there
exist nonzero constants aj ∈ C such that

a1u+ a2v = 0 on ∂Br1(p). (2.29)

By Lemma 2.6, this implies a1u+ a2v ≡ 0 on M , hence dimVλ0 = 1. �

Before proceeding to Proposition 2.4, we note that Lemma 2.5 leads to
the following classical result.

Corollary 2.7 Take M = Sn, and assume n ≥ 2. Then the isometry group
SO(n+ 1) acts irreducibly on each eigenspace Vλ of ∆.

23



Proof. Note that the SO(n + 1) action commutes with ∆, so SO(n + 1)
acts on each eigenspace Vλ. Suppose W ⊂ Vλ is a linear subspace that is
invariant under this action, and we take a nonzero w ∈ W . There exists
q ∈ Sn such that w(q) ̸= 0, and there exists g ∈ SO(n+1) such that gq = p,
the “north pole” of Sn. Hence L(g)w = w1 ∈W and w1(p) ̸= 0. Now form

w2 =

∫
SO(n)

L(g)w1 dg, (2.30)

so
w2 ∈W ∩ Vλ0, w2(p) = w1(p) ̸= 0. (2.31)

Now, if W ̸= Vλ, let W
⊥ ⊂ Vλ denote its orthogonal complement, and take

a nonzero v ∈W⊥. The same argument as above yields

v2 ∈W⊥ ∩ Vλ0, v2 ̸= 0. (2.32)

Then Lemma 2.5 implies v2 is a scalar multiple of w2, contradicting the fact
that v2 ⊥ w2. This contradiction implies W = Vλ, and we have the asserted
irreducibility. �

We now tackle Proposition 2.4. We divide the proof into two parts.

Proof of Proposition 2.4 when n = 2. In this case, the action of G =
SO(2) is given by the flow F t

Y1
, generated by a real vector field Y1, periodic

of period 2π. The self adjoint operator X1 = (1/i)Y1 commutes with Λ =
(−∆)1/2. The spaces Vλα become

Vλk = {u ∈ Vλ : X1u = ku}, k ∈ Aλ ⊂ Z. (2.33)

We are asserting that dimVλk = 1 for each k ∈ Aλ. The proof is similar to
that of Lemma 2.5. Pick u, v ∈ Vλk, both ̸= 0. Take r1 = r1(λ) as in Lemma
2.6. If we fix q ∈ ∂Br1(p), both u and v, restricted to ∂Br1(p), are constant
multiples of the function φk defined by

φk(F t
Y1q) = eikt. (2.34)

Thus there exist constants aj ∈ C such that a1u+ a2v = 0 on ∂Br1(p). By
Lemma 2.6, this implies a1u+ a2v ≡ 0 on M , so dimVλk = 1. �

Proof of Proposition 2.4 when n ≥ 3. Note that the representation πα
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of SO(n) must be contained in the standard action of SO(n) on L2(Sn−1).
Assume W ⊂ Vλα is a linear subspace, invariant under the SO(n)-action,
and take a nonzero u ∈ W . Take r1 = r1(λ) as in Lemma 2.6, and set
Sr = ∂Br(p). We see that for each r ∈ (0, r1], u|Sr is not ≡ 0. Fix q ∈ Sr1 .
There exists g ∈ SO(n) such that u1 = L(g)u is nonvanishing at q. Also, of
course, u1 ∈ W . Identifying SO(n − 1) with the subgroup of SO(n) fixing
q, set

u2 =

∫
SO(n−1)

L(g)u1 dg, (2.35)

so
u2 ∈W, u2(q) = u1(q) ̸= 0. (2.36)

Now φ2 = u2|Sr1
is an element of C∞(Sr1) ≈ C∞(Sn−1) in the subspace on

which
{L(g) : g ∈ SO(n)} acts like πα, (2.37)

and SO(n − 1) acts trivially on φ2. The argument used in the proof of
Corollary 2.7 implies the space (2.37) has just a 1-dimensional subspace on
which SO(n − 1) acts trivially (space of “zonal harmonics”), so φ2 must
span this space.

Now, if W ̸= Vλα, then its orthogonal complement W⊥ ⊂ Vλα contains
a nonzero element, and by the argument above we have

v2 ∈W⊥, v2 ̸= 0, v2 invariant under the SO(n− 1)-action. (2.38)

Since the restrictions of both w2 and v2 to Sr1 are both zonal functions in
the same irreducible component of the SO(n) action on L2(Sr1), we have
aj ∈ C such that

a1u2 + a2v2 = 0 on Sr1 = ∂Br1(p). (2.39)

It follows from Lemma 2.6 that

a1u2 + a2v2 ≡ 0 on M. (2.40)

This contradicts the fact that u2 ⊥ v2, soW = Vλα, and we have the asserted
irreducibility. �

In cases where there is not a pole, we have the following variant of
Proposition 2.4.
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Proposition 2.8 Let M be a compact, connected, n-dimensional Rieman-
nian manifold, with an SO(n)-action by isometries. Assume there is a point
q ∈M whose orbit

Oq = {gq : g ∈ SO(n)} (2.41)

is a smooth submanifold of M , diffeomorphic to Sn−1, as in (1.1), in such
a way that φq intertwines the SO(n) action on Oq with the standard action
of SO(n) on Sn−1. Then, for λ2 ∈ Spec(−∆), α ∈ Aλ,

the action of SO(n) on Vλα contains

at most two irreducible components.
(2.42)

In preparation for proving this, we bring in a variant of Lemma 2.6. For
r > 0, let

Ωr = {x ∈M : dist(x,Oq) < r}. (2.43)

Then there exists r0 > 0 such that, for r ∈ (0, r0], ∂Ωr consists of two SO(n)
orbits, each diffeomorphic to Sn−1, like Oq in (2.41). The following variant
of Lemma 2.6 has a similar proof.

Lemma 2.9 Take M,λ as in Proposition 2.8, and construct Ωr as above.
Then there exists r1 = r1(λ) ∈ (0, r0] such that

u ∈ Vλ, r ∈ (0, r1], u
∣∣
∂Ωr

= 0 =⇒ u ≡ 0. (2.44)

Proof of Proposition 2.8. We concentrate on the case n ≥ 3. Suppose

Vλα =W1 ⊕W2 ⊕W3 (2.45)

is an orthogonal decomposition, with each Wj invariant under the SO(n)
action, and suppose uj ∈Wj , uj ̸= 0. Hence, for each j, uj |∂Ωr1

is not ≡ 0.
Denote by SO(n − 1) the subgroup of SO(n) fixing q. This subgroup

also fixes the points on the geodesic γ through q that is orthogonal to Oq,
and it hence fixes the nearby points q± on the two components ∂± of ∂Ωr1
where γ intersects the boundary of Ωr1 . One can take gj ∈ SO(n) such that,
for each j, vj = L(gj)uj does not vanish identically on {q±}, so

wj =

∫
SO(n−1)

L(g)vj dg (2.46)

satisfies
wj ∈Wj , wj

∣∣
∂Ωr1

̸= 0, (2.47)
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and each wj is invariant under the SO(n− 1) action.
Now we have the trace map

τ : C∞(M) −→ C∞(∂+)⊕ C∞(∂−), (2.48)

and the image under τ of Span(w1, w2, w3) is contained in a two-dimensional
subspace of C∞(∂+)⊕C∞(∂−), consisting of zonal harmonics. Hence there
exist aj ∈ C, not all zero, such that

τ(a1w1 + a2w2 + a3w3) = 0. (2.49)

It follows from Lemma 2.9 that

a1w1 + a2w2 + a3w3 = 0 on M, (2.50)

contradicting the mutual orthogonality of the spaces Wj . This gives the
desired conclusion (2.42), for n ≥ 3. The proof for n = 2 is a variant,
somewhat like the proof for n = 2 in Proposition 2.4. �
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3 Amplitude distribution asymptotics for spheri-
cal harmonics on S2

As discussed in §1, L2(S2) has an orthonormal basis consisting of the spher-
ical harmonics

Y ℓ
k , k ∈ Z+, ℓ ∈ Z, |ℓ| ≤ k, (3.1)

given by (1.26)–(1.27), joint eigenfunctions for the operators Λ, given by
(1.18), and X1, described below (1.21):

ΛY ℓ
k = kY ℓ

k , X1Y
ℓ
k = ℓY ℓ

k . (3.2)

We see from (1.26) that

|Y ℓ
k (ω)|2 = |αkℓ|2(1− ω2

3)
|ℓ|P

(|ℓ|)
k (ω3)

2, (3.3)

and this is a zonal function. Here we examine the asymptotic behavior of∫
S2

f(ω)|Y ℓ
k (ω)|2 dS(ω) = (MfY

ℓ
k , Y

ℓ
k )L2 , (3.4)

when f is a zonal function on S2. We use methods of microlocal analysis,
rather than an analysis of the special functions Pk.

To begin, given A : L2(S2) → L2(S2), we form

Π(A) =
1

2π

∫ 2π

0
e−itΛAeitΛ dt. (3.5)

Note that {eitΛ : t ∈ R} is periodic in t of period 2π, and Π(A) commutes
with eitΛ for all t. If

A ∈ OPS0(S2) (3.6)

has principal symbol a ∈ C∞(S∗S2), then Egorov’s theorem gives

Π(A)− op(Pa) ∈ OPS−1(S2), (3.7)

where Pa ∈ C∞(S∗S2) is given by

Pa(x, ξ) =
1

2π

∫ 2π

0
a(Gt(x, ξ)) dt, (3.8)

{Gt : t ∈ R} denoting the Hamilton flow on S∗S2 corresponding to the
geodesic flow, which is also periodic of period 2π, and

op : C∞(S∗S2) −→ OPS0(S2) (3.9)
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is given by an appropriate quantization procedure.
Now we specialize to

Au = fu, f ∈ C∞(S2), zonal. (3.10)

Then Π(A) also commutes with R(t) = eitX1 , for all t. Consequently, for A
of the form (3.10),

Π(A) commutes with both Λ and X1. (3.11)

Given that Spec(Λ, X1) is simple, it follows that Π(A) has the form

Π(A) = F (Λ, X1). (3.12)

Since we also know that Π(A) is a pseudodifferential operator and we
have a formula for its principal symbol, we can deduce information about the
function F , using results on functional calculus for commuting self-adjoint
pseudodifferential operators given in [9] and in Chapter 12 of [10] (see also
[8] and [2], for related developments). These results yield

F ∈ S0(R2) =⇒ F (Λ, X1) = B ∈ OPS0(S2), (3.13)

with principal symbol
b(x, ξ) = F (|ξ|, ⟨Y, ξ⟩), (3.14)

where Y = iX1 is the real vector field generating rotation about the x3-axis
(of period 2π). Note that it suffices to specify F on

{(λ1, λ2) : λ1 ≥ 0, |λ2| ≤ λ1},

in light of the identification of Spec(Λ, X1), and taking into account that
|Y | ≤ 1 on S2. We want the principal part of (3.14) to match up with (3.8)
on S∗S2.

In light of this, we are motivated to define F0(λ1, λ2), homogeneous of
degree 0 in (λ1, λ2), so that

F0

(
1, ⟨Y, ξ⟩

)
= Pa(x, ξ) for (x, ξ) ∈ S∗S2. (3.15)

Now F0(1, λ2) is a function of λ2 ∈ [−1, 1], while Pa is a function on S∗S2,
which has dimension 3. However, Pa is invariant under the flows Gt and F t

Y

(the flow generated by Y ), and in fact it is uniquely specified by its behavior
on S∗

x0S
2, where x0 is an arbitrarily chosen point on the equator of S2. At

x0, Y is a unit vector tangent to the equator, and (3.15) becomes

F0(1, λ2) = Pa
(
x0, (λ2,

√
1− λ22)

)
. (3.16)
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At first glance, this looks non-smooth at λ2 = ±1, but in fact we have

Pa(x0, (ξ1, ξ2)) = Pa(x0, (ξ1,−ξ2)). (3.17)

Such an identity is clear if f(x) is even under x3 7→ −x3. On the other hand,
if f(x) is odd under this transformation its invariance under R(t) guarantees
that (3.8) vanishes, so we have (3.17) for general R(t)-invariant f ∈ C∞(S2).
From (3.17) we have that (3.16) defines a smooth function of λ2 ∈ [−1, 1].
We have the following conclusion.

Proposition 3.1 Let f ∈ C∞(S2) be a zonal function and let A = Mf , as
in (3.10). Define Pa as in (3.8), with a(x, ξ) = f(x). Then there exists
F0 ∈ S0(R2) so that (3.15)–(3.16) hold, for |λ2| ≤ 1, and we have

F0(Λ, X1) ∈ OPS0(S2), and

Π(A)− F0(Λ, X1) = R ∈ OPS−1(S2).
(3.18)

Note that we have
F0(Λ, X1) = g(Λ−1X1), (3.19)

where g(λ) = F0(1, λ), for |λ| ≤ 1, i.e.,

g(λ) = Pa
(
x0, (λ,

√
1− λ2)

)
. (3.20)

We return to (3.4) and write∫
S2

f(ω)|Y ℓ
k (ω)|2 dS(ω) = (AY ℓ

k , Y
ℓ
k )

= (Π(A)Y ℓ
k , Y

ℓ
k )

= (F0(Λ, X1)Y
ℓ
k , Y

ℓ
k ) + (RY ℓ

k , Y
ℓ
k ),

(3.21)

hence ∫
S2

f(ω)|Y ℓ
k (ω)|2 dS(ω) = g

( ℓ
k

)
+Rkℓ, (3.22)

with g(λ) given by (3.20), and

Rkℓ = (RY ℓ
k , Y

ℓ
k ) =

1

k
(RΛY ℓ

k , Y
ℓ
k ), (3.23)

hence

|Rkℓ| ≤
1

k
∥RΛ∥L(L2), RΛ ∈ OPS0(S2). (3.24)

We can combine (3.22)–(3.24) with Corollary 2.2 to obtain the following.
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Proposition 3.2 Assume u ∈ Vk, i.e., Λu = ku, so

u =
∑
|ℓ|≤k

aℓY
ℓ
k . (3.25)

Let f ∈ C∞(S2) be a zonal function, as in Proposition 3.1. Then∫
S2

f(ω)|u(ω)|2 dS(ω) =
∑
|ℓ|≤k

|aℓ|2g
( ℓ
k

)
+Rk(u), (3.26)

with g as described in Proposition 3.1, and

|Rk(u)| ≤
C

k
∥u∥2L2 , C = ∥RΛ∥L(L2). (3.27)

We give a geometrical perspective on how the function g ∈ C∞([−1, 1])
depends on the zonal function f ∈ C∞(S2). Pick a point on the equator
of S2, say x0 = (1, 0, 0) ∈ S2 ⊂ R3. We have natural identifications of
Tx0S

2, T ∗
x0S

2, the (x1, x3)-plane, and R2. Given

λ ∈ [−1, 1], take v = (λ,
√

1− λ2) ∈ S1 ⊂ R2. (3.28)

Let γ be the unit speed geodesic through x0, with initial velocity v. This is
a “great circle,” of circumference 2π, starting and ending at x0. Then

g(λ) = mean value of f
∣∣
γ
. (3.29)

Under these circumstances, we see that

γ(t) = (cos t, λ sin t,
√

1− λ2 sin t). (3.30)

If we (pedantically) set f(ω) = f0(ω3), then

g(λ) =
1

π

∫ π/2

−π/2
f0(

√
1− λ2 sin t) dt. (3.31)

Recovering a smoothness argument made above, we see that, if

f0(s) = f1(s
2) + sf2(s

2), s ∈ [−1, 1], (3.32)

then

g(λ) =
1

π

∫ π/2

−π/2
f1((1− λ2) sin2 t) dt. (3.33)
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Returning to (3.31), we make a change of variable and write

g(λ) =
1

π

∫ 1

−1
f0(

√
1− λ2 s)

ds√
1− s2

. (3.34)

The extreme cases are

g(0) =
1

π

∫ 1

−1
f0(s)

ds√
1− s2

, g(±1) = f0(0). (3.35)

In these cases, (3.22) yields, for smooth zonal functions f , first∫
S2

f(ω)|Y 0
k (ω)|2 dS(ω)

=
1

π

∫ 1

−1
f0(s)

ds√
1− s2

+O(k−1)

=
1

2π2

∫
S2

f(ω)√
1− ω2

3

dS(ω) +O(k−1),

(3.36)

which one can compare with the statement (1.34) about the upper envelope
of Pk(t). Second,∫

S2

f(ω)|Y k
k (ω)|2 dS(ω) = f0(0) +O(k−1), (3.37)

which one can compare with the concentration analysis (1.37).
Going further, we can establish a version of (1.38). In fact, from (3.34),

we see that, if f is a smooth zonal function,

f(ω) = 0 for |ω3| ≤ β

=⇒ g(λ) = 0 for
√

1− λ2 ≤ β

=⇒
∫
S2

f(ω)|Y ℓ
k (ω)|2 dS(ω) = O(k−1), for

|ℓ|
k

≥
√

1− β2,

(3.38)

the latter implication by (3.22). A convenient choice of f yields the following.

Proposition 3.3 Take β ∈ (0, 1), δ > 0. Then

|ℓ|
k

≥
√

1− β2 =⇒
∫

|ω3|≥β+δ

|Y ℓ
k (ω|2 dS(ω) ≤

C(δ)

k
. (3.39)

We will obtain sharper estimates, in more general settings, in §4.
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4 Shadow regions for families of eigenfunctions

In this section we let M be a compact, connected, n-dimensional Rieman-
nian manifold, and assume M has a nonzero Killing field, generating a 1-
parameter group of isometries of M . We will also make the hypothesis that

A0 = min
x∈M

|Y (x)| < max
x∈M

|Y (x)| = A1. (4.1)

Possibly A0 = 0. The operator X = iY is self adjoint and commutes with
Λ =

√
−∆. If λ ∈ SpecΛ, then the λ-eigenspace

Vλ = {u ∈ C∞(M) : Λu = λu} (4.2)

splits into joint eigenspaces

Vλ =
⊕
µ∈Aλ

Vλµ, Vλµ = {u ∈ Vλ : Xu = µu}, (4.3)

where Aλ = {µ : Vλµ ̸= 0}. We have

Spec(Λ, X) = {(λ, µ) : λ ∈ SpecΛ, µ ∈ Aλ}. (4.4)

Note that, if u ∈ Vλµ and ∥u∥L2 = 1, then

µ2 = ∥Xu∥2L2 ≤ A2
1∥∇u∥2L2 = A2

1(−∆u, u)

= A2
1∥Λu∥2L2 = A2

1λ
2,

(4.5)

i.e.,
µ ∈ Aλ =⇒ |µ| ≤ A1λ. (4.6)

Now, given a bounded function F : Spec(Λ, X) → R, we can define
F (Λ, X) on L2(M) by

F (Λ, X)u = F (λ, µ)u, for u ∈ Vλµ. (4.7)

As shown in Chapter 12 of [10],

F ∈ S0(R2) =⇒ F (Λ, X) ∈ OPS0(M), (4.8)

and its principal symbol is

σF (Λ,X)(x, ξ) = F (|ξ|, ⟨Y, ξ⟩). (4.9)
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We will concentrate on F of the following form: F ∈ C∞(R2 \ 0), homoge-
neous 0. Note that only its behavior on the wedge {(λ, µ) : |µ| ≤ A1λ} is
significant for the behavior of F (Λ, X). We set

g(µ) = F (1, µ), so F (Λ, X) = g(Λ−1X). (4.10)

Note that only the behavior of g on µ ∈ [−A1, A1] is significant.
Using this analysis of F (Λ, X), we will study certain “shadow regions”

Ω ⊂M , and families of unit-norm eigenvectors in Vλµ whose restrictions to
Ω decay rapidly as λ→ ∞. The shadow regions will have the form

ΩA = {x ∈M : |Y (x)| ≤ A}, (4.11)

where we take A ∈ (A0, A1). To start, take

f ∈ C∞(M), supp f ⊂ ΩA, A′ > A. (4.12)

From (4.8)–(4.9) we obtain the following:

g ∈ C∞([−A1, A1]), g(µ) = 0 for |µ| ≤ A′

=⇒ σF (Λ,X)(x, ξ) = 0, ∀x ∈ ΩA, ξ ∈ T ∗
xM

=⇒Mfg(Λ
−1X) ∈ OPS−1(M).

(4.13)

Under these circumstances, we have∫
M

f |g(Λ−1X)u|2 dV = (Mfg(Λ
−1X)u, g(Λ−1X)u)

≤ ∥Mfg(Λ
−1X)u∥L2∥g(Λ−1X)u∥L2 .

(4.14)

Since, for u ∈ Vλµ, we have

Mfg(Λ
−1X)u = λ−1Mfg(Λ

−1X)Λu, (4.15)

and Mfg(Λ
−1X)Λ ∈ OPS0(M), we have the following conclusion:

Proposition 4.1 Under the hypotheses on f and g given in (4.12)–(4.13),

u ∈ Vλµ ⇒ g
(µ
λ

)∫
M

f |u|2 dV ≤ C

λ
∥u∥2L2 . (4.16)

As it stands, this result generalizes Proposition 3.3. However, as ad-
vertised there, our real goal in this section is to produce a much sharper
estimate. The foundation for this is the following improvement on the con-
clusion in (4.13).
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Proposition 4.2 Under the hypotheses on f and g given in (4.12)–(4.13),

Mfg(Λ
−1X) ∈ OPS−∞(M). (4.17)

Having this result, we can replace (4.15) by

Mfg(Λ
−1X)u = λ−mMfg(Λ

−1X)Λmu (4.18)

(provided u ∈ Vλµ), with

Mfg(Λ
−1X)Λm ∈ OPS−∞(M), (4.19)

to conclude that, for each m ∈ N,

∥Mfg(Λ
−1X)u∥Cm(M) ≤ Cmλ

−m∥u∥L2 , (4.20)

yielding the following improvement of Proposition 4.1.

Proposition 4.3 Under the hypotheses on f and g given in (4.12)–(4.13),
we have

u ∈ Vλµ ⇒ g
(µ
λ

)
∥fu∥Cm(M) ≤

Cm
λm

∥u∥L2 , (4.21)

for each m ∈ N.

The content of Proposition 4.2 is that, under the stated hypotheses on
f and g, the total symbol of F (Λ, X) = g(Λ−1X) vanishes on T ∗ΩA \ 0,
not just the principal symbol. One approach would be to analyze the total
symbol of F (Λ, X) on T ∗M \ 0, but we will pursue an alternative approach,
making use of local elliptic regularity.

To proceed, pick h ∈ C∞([−A1, A1]) such that

h(µ) = 1 for |µ| ≤ A,

0 for |µ| ≥ A′.
(4.22)

Now σh(Λ−1X)(x, ξ) = h(⟨Y (x), ξ/|ξ|⟩), so

h(Λ−1X) ∈ OPS0(M) is elliptic on ΩA. (4.23)

Thus there exists P ∈ OPS0(M) such that Ph(Λ−1X) is microlocally I on
a conic neighborhood of T ∗ΩA \ 0, so

Mf −MfPh(Λ
−1X) = R ∈ OPS−∞(M), (4.24)

so (since gh ≡ 0)

Mfg(Λ
−1X) =MfPh(Λ

−1X)g(Λ−1X) +Rg(Λ−1X)

= Rg(Λ−1X),
(4.25)

which belongs to OPS−∞(M). This proves Proposition 4.2.
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5 Weyl asymptotics for joint eigenfunctions

Take M,Λ, X as in §4. For each (λ, µ) ∈ Spec(Λ, X), take an orthonormal
basis

uλµj ∈ Vλµ, 1 ≤ j ≤ dλµ = dimVλµ. (5.1)

Given B ∈ OPS0(M), there is the Weyl formula

lim
R→∞

1

N(R)

∑
λ≤R

∑
µ∈Aλ

∑
j≤dλµ

(Buλµj , uλµj) =

∫
S∗M

σB(x, ξ) dS(x, ξ), (5.2)

where dS(x, ξ) denotes the Liouville measure on S∗M , normalized to have
total mass 1, and

N(R) = dim
⊕
λ≤R

Vλ =
∑
λ≤R

∑
µ∈Aλ

dλµ. (5.3)

There is also the Weyl asymptotic formula

N(R) ∼ C(M)Rn +O(Rn−1), C(M) =
Vn

(2π)n
Vol(M), (5.4)

where Vn = πn/2/Γ(n/2 + 1) is the volume of the unit ball in Rn.
To obtain a variant of Proposition 3.2, we take

h ∈ C∞([−A1, A1]), f ∈ C∞(M), (5.5)

and set
B =Mfh(Λ

−1X) ∈ OPS0(M), (5.6)

with principal symbol

σB(x, ξ) = f(x)h
(
⟨Y (x), ξ/|ξ|⟩

)
, (5.7)

to obtain the following.

Proposition 5.1 For M,Λ, X as in §4, h, f as in (5.5), we have

lim
R→∞

1

N(R)

∑
{(λ,µ,j):λ≤R}

h
(µ
λ

)∫
M

f(x)|uλµj(x)|2 dV (x)

=

∫
S∗M

f(x)h
(
⟨Y (x), ξ⟩

)
dS(x, ξ).

(5.8)
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The result (5.2) is typically established using heat equation asymptotics,
which yield

TrBet∆ ∼ C1(M)
( ∫
S∗M

σB dS
)
t−n/2, as t↘ 0, (5.9)

together with a Tauberian theorem. Sharper results are obtained via a wave
equation approach, presented in [6], which generated a large body of work.
This yields an analysis of

TrBeitΛ ∈ D′(R), (5.10)

as a distribution having an isolated singularity at t = 0 (and typically other
singularities, which for current purposes one arranges to ignore). One ob-
tains the following result. Take

φ ∈ S(R), φ ≥ 0, supp φ̂ ⊂ (−r, r), r < InjM, (5.11)

where Inj M denotes the injectivity radius of M . Then, making use of

Bφ(Λ−R) =

∫ ∞

−∞
Beit(Λ−R)φ̂(t) dt,

one analyzes
TrBφ(Λ−R).

One obtains, in place of (5.2),

lim
R→∞

1

Nφ(R)

∑
λ,µ,j

φ(λ−R)(Buλµj , uλµj) =

∫
S∗M

σB(x, ξ) dS(x, ξ), (5.12)

where
Nφ(R) = Trφ(Λ−R) =

∑
λ

φ(λ−R) dimVλ, (5.13)

which satisfies
Nφ(R) ∼ C(φ,M)Rn−1. (5.14)

Taking B as in (5.6), we have the following.

Proposition 5.2 For M,Λ, X as in §4, h, f as in (5.5), and φ as in (5.11),
we have

lim
R→∞

1

Nφ(R)

∑
λ

φ(λ−R)
∑
µ,j

h
(µ
λ

)∫
M

f(x)|uλµj(x)|2 dV (x)

=

∫
S∗M

f(x)h
(
⟨Y (x), ξ⟩

)
dS(x, ξ).

(5.15)
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Let us take a look at the following case, of 2D surfaces of revolution,
with a pole.

Corollary 5.3 In the setting of Proposition 5.2, assume in addition that

dimM = 2, M has a pole, F t
Y has period 2π, (5.16)

so
(λ, µ) ∈ Spec(Λ, X) ⇒ µ = ℓ ∈ Z, dλℓ ≡ 1. (5.17)

Then

lim
R→∞

1

Nφ(R)

∑
λ

φ(λ−R)
∑
ℓ

h
( ℓ
λ

)∫
M

f(x)|uλℓ(x)|2 dS(x)

=

∫
S∗M

f(x)h
(
⟨Y (x), ξ⟩

)
dS(x, ξ).

(5.18)

We can interpret (5.18) as saying that, in an “averaged” sense, as λ→ ∞,∑
ℓ∈Aλ

h
( ℓ
λ

)∫
M

f |uλℓ|2 dS ∼ dimVλ

∫
S∗M

f(x)h
(
⟨Y (x), ξ⟩

)
dS(x, ξ). (5.19)

For comparison, in caseM = S2, (3.22) implies, for λ = k ∈ SpecΛ, k → ∞,
and f zonal,

k∑
ℓ=−k

h
( ℓ
k

)∫
S2

f |Y ℓ
k |2 dS ∼

k∑
ℓ=−k

h
( ℓ
k

)
g
( ℓ
k

)

∼ dimVk

∫ 1

−1
h(s)g(s) ds,

(5.20)

with g given by (3.20). We mention this here simply as a “heuristic,” rather
than something we will take further. But heuristics sometimes do lead to
further interesting results.

We return to the general setting of Proposition 5.2 and take f ≡ 1, to
obtain further information on the joint spectrum Spec(Λ, X). We deduce
from (5.15) that

lim
R→∞

1

Nφ(R)

∑
λ

φ(λ−R)
∑
µ∈Aλ

h
(µ
λ

)
dλµ

=

∫
S∗M

h
(
⟨Y (x), ξ⟩

)
dS(x, ξ).

(5.21)
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To proceed, we write∫
S∗M

h
(
⟨Y (x), ξ⟩

)
dS(x, ξ) =

∫
I

h(y) dγ(y), I = [−A1, A1], (5.22)

where γ is the push-forward of Liouville measure on S∗M under the map

σ = σX : S∗M −→ I, σX(x, ξ) = ⟨Y (x), ξ⟩. (5.23)

The following is a useful observation.

Lemma 5.4 The measure γ is absolutely continuous with respect to Lebesgue
measure on I, so∫

S∗M

h
(
⟨Y (x), ξ⟩

)
dS(x, ξ) =

∫
I

h(y)Ψ(y) dy, (5.24)

with Ψ (called the joint spectral clustering factor) satisfying

Ψ = ΨM,X ∈ L1(I, dy), Ψ ≥ 0,

∫
I

Ψ(y) dy = 1. (5.25)

Proof. What is to be shown is that if K ⊂ I is a Borel set,

γ(K) = 0 =⇒
∫

σ−1(K)

dS(x, ξ) = 0. (5.26)

Indeed, for each x ∈M , we have σx : S∗
xM → R given by σx(ξ) = ⟨Y (x), ξ⟩,

and (if γ(K) = 0) σ−1
x (K) has measure 0 in the (n−1)-sphere S∗

xM for each
x for which Y (x) ̸= 0, which is all but at most 2 values of x. The implication
(5.26) then follows via Fubini’s theorem. �

From (5.21)–(5.24) we have

lim
R→∞

1

Nφ(R)

∑
λ

φ(λ−R)
∑
µ∈Aλ

h
(µ
λ

)
dλµ

=

∫
I

h(y) dγ(y) =

∫
I

h(y)Ψ(y) dy,
(5.27)

for h ∈ C∞(I). We want to extend this to a broader class of functions h.
The extension to h ∈ C(I) is easy enough, but we want to go further. To
do this, suppose h : I → R is bounded and that

h− ≤ h ≤ h+, (5.28)
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where h± belong to a class C(I) of bounded, Borel functions on I for which
(5.27) is known to hold (with h replaced by h+, h−). We deduce that

lim sup
R→∞

1

Nφ(R)

∑
λ

φ(λ−R)
∑
µ∈Aλ

h
(µ
λ

)
dλµ ≤

∫
I

h+ dγ,

lim inf
R→∞

1

Nφ(R)

∑
λ

φ(λ−R)
∑
µ∈Aλ

h
(µ
λ

)
dλµ ≥

∫
I

h− dγ.

(5.29)

This in turn yields the following.

Lemma 5.5 Let h : I → R be a bounded function. Assume that, for each
ε > 0, there exist h± ∈ C(I) such that (5.28) holds and∫

I

(h+ − h−) dγ < ε. (5.30)

then (5.27) holds for h.

If h : I → R is bounded and, for each ε > 0, there exist h± ∈ C(I) such
that (5.30) holds (in which case there exist h± ∈ C∞(I) such that (5.30)
holds), we say h is Riemann integrable on the measured metric space (I, γ),
and write

h ∈ R(I, γ). (5.31)

The content of Lemma 5.5 is that

(5.27) holds for h ∈ R(I, γ).

See Appendix A for a brief treatment of Riemann integrable functions on a
compact measured metric space. The standard example, of course, is R(I),
the space of Riemann integrable functions on a compact interval I ⊂ R, in
case γ is Lebesgue measure. Our next goal is to establish:

Proposition 5.6 For M,Λ, X as in Proposition 5.2, f ∈ C∞(M), and φ
as in (5.11), we have (5.27) for all h ∈ R(I).

Proof. It remains only to prove that

R(I) ⊂ R(I, γ), (5.32)

when γ is absolutely continuous with respect to Lebesgue measure. To do
this, we use the fact that, for any finite Borel measure γ on I, a bounded
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function h : I → R belongs to R(I, γ) if and only if the set of points in I at
which h is discontinuous has γ-measure 0. See Proposition A.1. Since this
characterization applies both to R(I, γ) and to R(I) (where it is classical),
we have (5.32). �

We next compute the functions Ψ that arise in (5.24) and (5.27), in the
two basic cases emphasized in the introduction.

Example 1. M = T2.
In this case, one has S∗

xM canonically equivalent to the unit circle S1 ⊂ R2,
for each x ∈ T2, and the push-forward of arc length on S∗

xM under σx is
2/
√

1− y2 dy. Hence, normalizing, we obtain

Ψ(y) =
1

π

1√
1− y2

, y ∈ [−1, 1]. (5.33)

Example 2. M = S2.
In this case we have S∗M = {(x, ξ) ∈ S2 × S2 : ξ ⊥ x}. This is naturally
diffeomorphic to

SO(3) = {X = (x, ξ, η) ∈M(3,R) : (x, ξ) ∈ S∗M, η = x× ξ}. (5.34)

The action of SO(2) in S∗M is given by

(g,X) 7→ gX, X ∈ SO(3), g =

cos θ − sin θ
sin θ cos θ

1

 ∈ SO(2). (5.35)

We have a smooth map
Ξ : S∗M −→ S2, (5.36)

or equivalently

Ξ : SO(3) −→ S2, given by Ξ(X) = Xte3, (5.37)

where e3 is the third standard basis vector of R3. Note that

g ∈ SO(2) =⇒ Ξ(gX) = Xtgte3 = Ξ(X), (5.38)

so Ξ induces a diffeomorphism

SO(2) \ SO(3) −→ S2. (5.39)
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The explicit formula for Ξ in (5.36) is

Ξ(x, ξ) =

xtξt
ηt

 e3 =

x · e3
ξ · e3
η · e3

 , (5.40)

where, recall, η = x× ξ.
We seek a formula for σX : S∗M → R, given by σX(x, ξ) = ⟨Y (x), ξ⟩,

that factors through (5.40). Note that, in this case, M = S2, we have

Y (x) = e3 × x, (5.41)

hence
σX(x, ξ) = (e3 × x) · ξ = (x× ξ) · e3 = η · e3, (5.42)

so
σX(x, ξ) = Ξ(x, ξ) · e3. (5.43)

Now Ξ in (5.37) is measure-preserving, up to scaling. Furthermore, a clas-
sical area computation implies that the map

p3 : S
2 −→ R, p3(x) = x · e3 (5.44)

pushes the standard area measure on S2 onto Lebesgur measure on [−1, 1],
up to scaling. We deduce that

Ψ(y) =
1

2
, y ∈ [−1, 1]. (5.45)

Remark. To make contact with formulas below, we find it convenient to
permute variables in (5.40), and define

Ξ̃ : S∗M −→ S2, Ξ̃(x, ξ) =

η · e3ξ · e3
x · e3

 , (5.46)

so
σX(x, ξ) = Ξ̃(x, ξ) · e1. (5.47)

Having derived the formulas for the factor Ψ(y) in Examples 1 and 2, we
consider their significance in the formula (5.27) for joint spectral asymptotics
of (Λ, X) in these two cases. To begin, the formulas (5.33) and (5.45) are
strikingly different. The first is singular at the endpoints of [−1, 1], while
the second is simply constant along this whole interval. The singularities of
Ψ(y) in (5.33) provide a quantitative description of the clustering of points
of Spec(Λ, X) at the edges µ = ±λ, in case M = T2, depicted in Figure
1.1. On the other hand, the flat graph of Ψ(y) in (5.45) reflects the even
distribution within {(λ, µ) : |µ| ≤ λ} of points of Spec(Λ, X) for M = S2,
depicted in Figure 1.3.
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6 Further examples, illustrating spectral cluster-
ing, concentration, and shadowing

In §5 we illustrated the spectral asymptotic result given in Proposition 5.6
by two examples, M = T2 and M = S2. We turn to some further examples
of types of surfaces of revolution in R3, giving rise to joint spectral cluster-
ing factors Ψ(y) that exhibit various behaviors, ranging from smoothness on
the entire interval I = [−A1, A1] to cases with jumps and blowups, particu-
larly log blowups, which are less severe than the blowup in (5.27). We will
also make some comments on shadow regions and concentration regions for
certain classes of joint eigenfunctions.

Example 3. More general convex surfaces of revolution.
Let C be a simple, closed, smooth curve in the (x1, x3)-plane, symmetric
about the x3-axis and with positive curvature everywhere. Let M be the
surface of revolution in R3 obtained by rotating C about the x3-axis. See
the left side of Figure 1.7 for an illustration. The surface M has two poles.
Translating and scaling, we will assume that they are at e3 and −e3. Under
these hypotheses, there is a diffeomorphism ψ :M → S2, taking level curves
of x3|M to level curves of x3|S2 , commuting with the SO(2) action of rotation
about the x3-axis. This gives rise to a diffeomorphism ψ : TM → TS2,
linear on each fiber, hence (via the Riemannian metrics on M and S2) to
a diffeomorphism ψ : T ∗M → T ∗S2, yielding in turn a diffeomorphism
ψ : S∗M → S∗S2, commuting with the SO(2)-action (but in general not
preserving Liouville measure). We can follow this with the diffeomorphism
SO(2) \ S∗S2 → S2, discussed in Example 2, with the goal of analyzing
σX : S∗M → R.

Actually, for this, it is more direct to proceed via the following observa-
tion. Let CL denote the left side of C (where x1 < 0). Pick a = (a1, 0, a3)

t ∈
CL, and consider ξ ∈ S∗

aM . (Use the inner product on TaM to identify SaM
and S∗

aM .) We map the circle S∗
aM onto the circle {x ∈ M : x3 = a3} so

that Y (a)/|Y (a)| ∈ SaM ≈ S∗
aM maps to |Y (a)|e1 + a3e3, and so that the

map intertwines counterclockwise rotation in T ∗
aM with the SO(2)-action

of rotation about the x3 axis specified in (5.35). Call this map

Ξ̃ : S∗M
∣∣
CL

−→M. (6.1)

Using the diffeomorphism ψ described above and the analysis in Example
2, we have a smooth extension to

Ξ̃ : S∗M −→M, (6.2)
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invariant under the SO(2) action on S∗M , yielding a diffeomorphism SO(2)\
S∗M →M , and, extending (5.47),

σX(x, ξ) = Ξ̃(x, ξ) · e1. (6.3)

In the special case M = S2, Ξ̃ pushes Liouville measure on S∗M onto area
measure on M (up to scaling). Generally, this might not hold, but the
pushforward will be a smooth, positive multiple of area measure on M . We
are hence in a position to use (6.3) to describe the behavior of the factor
Ψ(y). Indeed, the function Ξ0 : M → R given by Ξ0(x) = x · e1 is a
Morse function, having two critical points, a nondegenerate minumum and
a nondegenerate maximum, with critical values −r1 and r1, where

r1 = max x1
∣∣
C
. (6.4)

We deduce that
Ψ ∈ C∞([−r1, r1]), Ψ > 0. (6.5)

This is a mild variation of the behavior in (5.45), and it leads to somewhat
regular density of Spec(Λ, X) in {(λ, µ) : |µ| ≤ r1λ}, without the sort of
clustering arising for T2, as in Figure 1.1.

Example 4. Symmetric dumbbell.
Here we examine an example of a nonconvex surface of revolution, in which
there is clustering of Spec(Λ, X). As in Example 3, we start with a simple,
closed smooth curve C in the (x1, x3)-plane, symmetric about the x3-axis,
and rotate it about the x3-axis in R3 to produce a surface of revolution M .
The difference here is that C will not have curvature that is everywhere
positive. We take C as illustrated in Figure 6.1. We assume

the curvature of C is nonzero

at x1 = ±r1 and at x1 = ±r2.

We assume the left side CL of C is the graph of x1 = β(x3), x3 ∈ [−1, 1].
In the example we consider here, β(x3) = β(−x3), so M has not only SO(2)
symmetry, but also the symmetry ι :M →M given by

ι(x1, x2, x3) = (x1, x2,−x3). (6.6)

Arguments from Example 3 extend, to produce a smooth map Ξ̃, as in
(6.2), invariant under the SO(2) action on S∗M , yielding a diffeomorphism
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Figure 6.1: Dumbbell figure with singular factor Ψ(y) (Example 4)
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SO(2) \ S∗M →M , for which (6.3) holds. Again the qualitative features of
the factor Ψ(y) can be read off from how

Ξ0 :M −→ R, Ξ0(x) = x · e1 (6.7)

pushes forward the area element on M to a measure on [−r1, r1], with r1
as in (6.4). The difference in this case is that Ξ0 has more critical values.
As before, we have ±r1 as maxima and minima of Ξ0. This time, there
are a pair of points in M at which Ξ0 = r1 and a pair of points at which
Ξ0 = −r1. These four points are nondegenerate critical points for Ξ0. In
addition, there are two points in M at which Ξ0 has a saddle, with critical
values ±r2, as illustrated in Figure 6.1. One sees that the inverse images
under Ξ0 of (±r2,±r2 + ε) and (±r2 − ε,±r2) have area ∼ Cε log ε, so

Ψ(y) ∼ C log
1

|y ∓ r2|
(6.8)

for y near ±r2. See the right side of Figure 6.1 for a depiction of the graph
of Ψ(y) in such a case. As a consequence

There is clustering of Spec(Λ, X) along the rays

µ = ±r2λ, as λ→ ∞,
(6.9)

though the clustering along these rays is less dense than it is along the rays
µ = ±λ for M = T2, as illustrated in Figure 1.1.
Remark. The result (6.8) assumes the curvature of C is nonzero at x1 =
±r2. If the curvature vanished at these points, Ψ(y) would be have a stronger
singularity at y = ±r2. Similarly, if the curvature of C vanished at x1 = ±r1,
Ψ(y) would have a singularity at y = ±r1.

Continuing with Example 4, we now look at the part

Σ(A) =
{
(λ, µ) ∈ Spec(Λ, X) :

∣∣∣µ
λ

∣∣∣ ≥ A
}

(6.10)

of the joint spectrum, for a given A ∈ (r2, r1), and see that there is a bit
of “spectral pairing” in this region of Spec(Λ, X). This is related to the
eigenfunction concentration result of Proposition 4.3. To recall it, let us set

ΩA = {x ∈M : |Y (x)| ≤ A}
= {x ∈M : r(x) ≤ A},

(6.11)

where r(x) = (x21 + x22)
1/2, and take

f ∈ C∞(M), supp f ⊂ ΩA. (6.12)

Proposition 4.3 implies the following result.
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Proposition 6.1 In the current setting (Example 4), if f satisfies (6.12),
with A ∈ (r2, r1), then

u ∈ Vλµ, (λ, µ) ∈ Σ(A′), A′ > A

=⇒ ∥fu∥Cm(M) ≤
C

λm
∥u∥L2 , C = Cm(A,A

′).
(6.13)

Let us now take f satisfying (6.12) and also

Y f = 0, ι∗f = f, f ≡ 1 on ΩB, for some B ∈ (r2, A). (6.14)

We take u as in (6.13), and set

v = (1− f)u, (6.15)

so v = 0 on a neighborhood of the “neck,” {x ∈ M : r(x) = r2}. It follows
that

(−∆− λ2)v = w, ∥w∥L2 ≤ cm
λm

∥u∥L2 , (6.16)

while
Xv = µv. (6.17)

We can rewrite (6.16) as

(Λ− λ)v = w0 = (Λ + λ)−1w, ∥w0∥L2 ≤ cm
λm+1

∥u∥L2 . (6.18)

The function v decouples into two pieces with disjoint support:

v = v+ + v−, supp v± ⊂ {x ∈M : ±x3 > 0}, (6.19)

and v+ and v− separately satisfy conditions of the form (6.16)–(6.18). Since
M has a pole, we have from Proposition 2.4 that

(λ, µ) ∈ Spec(Λ, X) =⇒ dimVλµ = 1, (6.20)

so
u ∈ Vλµ =⇒ ι∗u = u or ι∗u = −u. (6.21)

Whatever parity u has under ι∗, v in (6.15) has the same parity, so

u# = v+ − v− (6.22)

has the opposite parity. This also satisfies conditions like (6.16)–(6.18), i.e.,

Xu# = µu#, (Λ− λ)u# = w#
0 , ∥w#

0 ∥L2 ≤ cm
λm+1

∥u#∥L2 . (6.23)
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A function that satisfies (6.18) is called a λ-quasimode of Λ. If it also
satisfies (6.17), we say it is a joint (λ, µ)-quasimode of (Λ, X). What is
established above is that if u ∈ Vλµ, then the functions v+, v−, and u#

produced in (6.19) and (6.22) are all joint (λ, µ)-quasimodes of (Λ, X). As
noted above, every joint eigenfunction is either even or odd with respect to
ι∗, so it is clear that neither of the quasimodes v+ or v− is close to an actual
joint eigenfunction.

To proceed, it is convenient to set up some notation. Set

L2
α(M) = {u ∈ L2(M) : ι∗u = αu}, α ∈ {1,−1},

Specα(Λ, X) = {(λ, µ) ∈ Spec(Λ, X) : Vλµ ⊂ L2
α(M)},

Σα(M) = Σ(A) ∩ Specα(Λ, X).

(6.24)

Note that Σα(A) ∩ Σ−α(A) = ∅. We will establish the following.

Proposition 6.2 In the current setting (Example 4), given A ∈ (r2, r1),
m ∈ N, there exist L,C such that

for (λ, µ) ∈ Σα(X), λ ≥ L, α ∈ {1,−1},

dist
(
(λ, µ),Spec−α(Λ, X)

)
≤ C

λm
.

(6.25)

Proof. Let us denote by Λα the restriction of Λ to H1(M) ∩ L2
α(M), an

unbounded self-adjoint operator on the Hilbert space L2
α(M), as is X. Their

joint spectrum is Specα(Λ, X). Given that u ∈ Vλµ ⊂ L2
α(M), the construc-

tion above produces u# ∈ D(Λ−α) such that (6.23) holds. Hence

∥(Λ−α − λ)−1∥ ≥ 1

cm
λm+1. (6.26)

Now the spectral theorem implies

dist(λ,SpecΛ−α) = ∥(Λ−α − λ)−1∥−1, (6.27)

so we have (6.25). �

Example 5. Top-heavy dumbbell.
This example is similar to Example 4, except that now the surface does not
have the symmetry (6.6). One starts with a curve C in the (x1, x3)-plane,
symmetric about the x3-axis, as before, and assumes the left half CL is the
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Figure 6.2: Top-heavy dumbbell figure and its factor Ψ(y) (Example 5)

graph of x1 = β(x3), for x3 ∈ [−1, 1], but we do not have β(x3) = β(−x3).
Rather, this time, the appearance is as illustrated in Figure 6.2. We assume

the curvature of C is nonzero

at x1 = ±r1, ±r2 and ±r3.

Arguments used in Example 4 show that the qualitative features of the factor
Ψ(y) can be read off from how

Ξ0 :M −→ R, Ξ0(x) = x · e1 (6.28)

pushes forward the area element of M to a measure on [−r1, r1]. Again,
Ξ0 has ±r1 as maxima and minima. This time, ±r2 are local maxima and
minima, and there are two points in M at which Ξ0 has a saddle, with
critical values ±r3. All 6 critical points are nondegenerate. The local max
and min yield jumps in Ψ(y) at y = ±r2, and the saddles yield log blowups
of Ψ(y) at y = ±r3, as illustrated in Figure 6.2.
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We next examine concentration of eigenfunctions, using the sets

Σ(A) ⊂ Spec(Λ, X), ΩA ⊂M,

defined in (6.10)–(6.11). Arguing as in Example 4, we have again the con-
clusion of Proposition 6.1, which we restate:

Proposition 6.3 In the current setting (Example 5), given A ∈ (r2, r1), we
have

u ∈ Vλµ, (λ, µ) ∈ Σ(A′), A′ > A

=⇒ ∥u∥Cm(ΩA) ≤
C

λm
∥u∥L2 , C = Cm(A,A

′).
(6.29)

.
Note that, for A close to r1, the concentration set M \ ΩA is a small strip
about the curve

{x ∈M : r(x) = r1}, (6.30)

which is a closed, elliptic geodesic. By contrast, in Example 4 the concen-
tration set (6.30) consisted of a pair of closed, elliptic geodesics. We saw
in that case that eigenfunctions could not concentrate on just one of these
geodesics. Now, in Example 5, there is a family of eigenfunctions concen-
trating on the one closed geodesic given by (6.30). On the other hand, in
Example 5, the set

{x ∈M : r(x) = r2} (6.31)

is also a closed, eliptic geodesic. It follows that there is a sequence of quasi-
modes that concentrate on this set (cf. [1]). Actually, in this case, one can
cut and paste quasimodes that arise in Example 4. In light of other results
holding for Example 4, we speculate that there is not a sequence of actual
joint eigenfunctions that concentrate on the set (6.31). This might motivate
further study.

In Example 4, the set described by (6.31) was a hyperbolic closed geodesic.
Here in Example 5, the set

{x ∈M : r(x) = r3} (6.32)

is our hyperbolic closed geodesic.

Example 6. Surface with inflective invariant geodesic.
Here one starts with a smooth curve C in the (x1, x3)-plane, symmetric
about the x3-axis, whose curvature vanishes simply, at two points, say
(±r2, z0), such that ±r2 are critical values of the x1-coordinate on C. See
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the left half of Figure 6.3. As in the previous examples, the singularities in
the factor Ψ(y) can be read off from how the function Ξ0 : M → R given
by Ξ0(x) = x · e1 pushes forward the area measure of M to a measure on
[−r1, r1], where r1 is the maximum value of Ξ0, again a nondegenerate crit-
ical value. Again Ψ(y) has a graph that looks somewhat like the graph on
the right half of Figure 6.1, but this time the singularities of Ψ at y = ±r2
are stronger. In fact, the area of the inverse image Ξ−1

0 ([r2, r2 + ε)) behaves
essentially like A+(ε), where

A±(ε) = ±
∫ 1

0

{
(x2 ± ε)1/3 − x2/3

}
dx. (6.33)

One has

A′
+(ε) =

1

3

∫ 1

0
(x2 + ε)−2/3 dx ∼ Cε−1/6, (6.34)

and similarly for A′
−(ε), and hence

Ψ(y) ∼ C|y ∓ r2|−1/6, (6.35)

for y near ±r2. Again we have a conclusion similar to (6.9), namely cluster-
ing of Spec(Λ, X) along the rays µ = ±r2λ, as λ → ∞. This clustering is
stronger than in Example 4, but not as pronounced as that along the rays
µ = ±λ in Example 1 (where M = T2).

Example 7. Inner tube.
The previous examples in this section all arose by taking a smooth closed
curve C in the (x1, x3)-plane that was symmetric about the x3-axis, and
rotating it about this axis in R3. By contrast, this example takes C to be a
smooth closed curve contained in the half-plane {x1 > 0}, namely C = Cab,
the circle

Cab = {(x1, x3) : (x1 − a)2 + x23 = b2}, 0 < b < a. (6.36)

Rotating this about the x3-axis in R3 produces an “inner tube,” somewhat
like that pictured in the right half of Figure 1.7. We take

r1 = a+ b, r2 = a− b.

Again, looking at Ξ0 :M → R defined as above, we see that Ψ ∈ L1([−r1, r1])
is smooth except for logarithmic singularities at y = ±r2, as in (6.8). Thus
we see how clustering of Spec(Λ, X) in this case occurs, but differs from that
for the flat torus M = T2 described in Example 1.
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Figure 6.3: Generating curves for the surfaces in Examples 6 and 7
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Figure 6.4: Generating curves for the surfaces in Examples 8 and 9
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Example 8. Surface with flattened equator.
Here the curve C in the (x1, x3)-plane that we rotate about the x3-axis is
given by

x41 +
x23
2

= 1. (6.37)

See the left half of Figure 6.4. The Gauss curvature of this surface is > 0
everywhere except at the equator (x3 = 0), where it vanishes to second order.
A calculation similar to that done for Example 6 yields Ψ ∈ C∞((−1, 1)),
blowing up at the endpoints,

Ψ(y) ∼ C(1− y2)−1/4, y ∈ (−1, 1). (6.38)

This blow-up is less severe than that arising for flat T2 in Example 1
(cf. (5.33)), but stronger than the blow-up at y = ±r2 in Example 6 (cf. (6.35)).

For (λ, µ) ∈ Spec(Λ, X), the joint eigenspace Vλµ is one-dimensional,
since M has a pole. Also, in this case M is invariant under the involution
x3 7→ −x3, so a joint eigenfunction in Vλµ is either even or odd with respect
to this involution.

We have the shadow phenomenon for elements of Vλµ, given |µ/λ| ≥
A, A ∈ (0, 1), as described in Proposition 4.3. As A ↗ 1, the joint eigen-
functions concentrate on the equator.

Example 9. Capped cylinder.
Here the curve C, illustrated in the right half of Figure 6.4, contains the line
segments

x1 = ±1, x3 ∈ [−1, 1]. (6.39)

The resulting surface of revolutionM consists of a circular cylinder with two
caps. The Gauss curvature of M is positive on the caps, and zero on the
cylinder. In this case we have Ψ ∈ C∞((−1, 1)), blowing up at the endpoints
at the same rate as in Example 1,

Ψ(y) ∼ C(1− y2)−1/2, y ∈ (−1, 1). (6.40)

Then Spec(Λ, X) exhibits clustering near µ = ±λ in a fashion similar to that
illustrated in Figure 1.1, though of course, unlike in that case, it cannot be
expected to be arranged along hyperbolic arcs.

As in Example 7, if (λ, µ) ∈ Spec(Λ, X), then Vλµ is one dimensional.
Again we arrange that M be invariant under the involution x3 7→ −x3, so
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eigenfunctions in such Vλµ are either even or odd under this involution. Let
us write

M =M+ ∪M0 ∪M−, (6.41)

where M± are the top and bottom caps, and

M0, isometric to [−1, 1]× R/2πZ, (6.42)

is the cylindrical part of M . Note that

on M0, ∆ = X2 + ∂2x3 , (6.43)

so, given (λ, µ) ∈ Spec(Λ, X),

u ∈ Vλµ ⇒ (X2 + ∂2x3)u = −λ2u
⇒ ∂2x3u = −(λ2 − µ2)u, on M0.

(6.44)

Hence
u ∈ Vλµ =⇒ u = eiµψv(x3), on M0, (6.45)

where ψ is the angular coordinate on M0, and

v′′(x3) = −(λ2 − µ2)v(x3), |x3| ≤ 1. (6.46)

As we have seen, v is either even or odd, so, for some α ∈ C,

v(x3) = α cos
√
λ2 − µ2x3, or

v(x3) = α sin
√
λ2 − µ2x3,

(6.47)

for x3 ∈ [−1, 1].
Again we have the shadow phenomenon for elements of Vλµ, given |µ/λ| ≥

A, A ∈ (0, 1), as described in Proposition 4.3. If O is a fixed neighborhood
if the cylinder M0, then there exists A < 1 with the property that such
eigenfunctions vanish rapidly on M \ O, as λ→ ∞.
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A Riemann integrable functions on a compact mea-
sured metric space

Let X be a compact metric space, equipped with a finite Borel measure µ.
Let f : X → R be bounded. We define

I(f) = inf
{∫
X

v dµ : v ≥ f, v ∈ C(X)
}
,

I(f) = sup
{∫
X

u dµ : u ≤ f, u ∈ C(X)
}
,

(A.1)

where C(X) denotes the space of continuous, real-valued functions on X.
Clearly I(f) ≤ I(f). We say

f ∈ R(X,µ) ⇐⇒ I(f) = I(f). (A.2)

In case X is a product of n closed, bounded intervals in Rn and µ is Lebesgue
measure, it is easy to show that (A.2) is equivalent to the standard definition
of Riemann integrability, involving taking partitions; cf. [12], Proposition
3.1.11. The following is a generalization of Lebesgue’s theorem characteriz-
ing Riemann integrability.

Proposition A.1 Given f : X → R bounded, set

Df = {x ∈ X : f not continuous at x}. (A.3)

Then Df is a Borel subset of X, and

f ∈ R(X,µ) ⇐⇒ µ(Df ) = 0. (A.4)

To start the proof, we note that C(X) is a separable Banach space, and
let E ⊂ C(X) be a countable dense subset. Set

C+
f = {v ∈ C(X) : v ≥ f}, E+

f = {v ∈ E : v ≥ f},
C−
f = {u ∈ C(X) : u ≤ f}, E−

f = {u ∈ E : u ≤ f}.
(A.5)

Note that E+
f is dense in C+

f and E−
f is dense in C−

f . Then set

ψ = inf{v : v ∈ C+
f } = inf{v : v ∈ E+

f },
φ = sup{u : u ∈ C−

f } = sup{u : u ∈ E−
f }.

(A.6)
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Note that φ ≤ f ≤ ψ. Using countability, write

E+
f = {vj : j ∈ N}, E−

f = {uj : j ∈ N}. (A.7)

Let
ψj = min

k≤j
vk, φj = max

k≤j
uk. (A.8)

Then
ψj ∈ C+

f , φj ∈ C−
f , (A.9)

and these are bounded monotone sequences, so they converge at each point
of X,

ψj ↘ ψ, φj ↗ φ, (A.10)

with ψ and φ as in (A.6). Thus ψ and φ are Borel functions, and the
monotone convergence theorem implies∫

X

ψj dµ↘
∫
X

ψ dµ,

∫
X

φj dµ↗
∫
X

φdµ. (A.11)

We see that if v ∈ E+
f then ψj ≤ v for j sufficiently large, and if u ∈ E−

f

then φj ≥ u for j sufficiently large. Also

I(f) = inf
{∫
X

v dµ : v ∈ C+
f

}
= inf

{∫
X

v dµ : v ∈ E+
f

}
,

I(f) = sup
{∫
X

u dµ : u ∈ C−
f

}
= sup

{∫
X

u dµ : u ∈ E−
f

}
.

(A.12)

Thus, by (A.11),

I(f) =

∫
X

ψ dµ, I(f) =

∫
X

φdµ. (A.13)

It follows that

I(f)− I(f) =

∫
X

(ψ − φ) dµ. (A.14)

The next lemma brings in Df .

Lemma A.2 Given x ∈ X, the function f is continuous at x if and only if
φ(x) = ψ(x).
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Proof. It is equivalent to say f is continuous at x if and only if

for each ε > 0, ∃ continuous uε ≤ f and continuous vε ≥ f

such that vε(x)− uε(x) < ε.
(A.15)

Indeed if (A.15) holds, then xj → x implies

lim sup
j→∞

f(xj) ≤ vε(x), lim inf
j→∞

f(xj) ≥ uε(x), (A.16)

so these differ by at most ε, for each ε > 0, hence f is continuous at x.
For the converse, if |f | ≤M on X, and f is continuous at x, then, given

ε > 0, there exists a ball Bδ(x) such that

y ∈ Bδ(x) =⇒ |f(x)− f(y)| < ε

4
. (A.17)

Then, assuming ε < M , we can define vε ∈ C(X) by

vε(y) = f(x) +
ε

3
+

4M

δ
d(y, x), y ∈ Bδ(x),

f(x) +
ε

3
+ 4M, y ∈ X \Bδ(x),

(A.18)

and similarly define uε ∈ C(X) so that (A.15) holds. �

Having Lemma A.2, we see that

Df = {x ∈ X : φ(x) < ψ(x)}. (A.19)

This guarantees that Df is a Borel subset of X, and (A.14) yields

I(f)− I(f) =

∫
Df

(ψ − φ) dµ. (A.20)

This proves Proposition A.1.
Furthermore, we see that if f ∈ R(X,µ), then f is equal to each of the

Borel functions φ and ψ, on the complement of a set of µ-measure 0. Hence
f is µ-measurable, where µ is the completion of µ. We deduce that

f ∈ R(X,µ) =⇒ f ∈ L1(X,µ) and

∫
X

f dµ = I(f) = I(f). (A.21)
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B Finite symmetry group actions on eigenspaces

Let M be a compact, connected, n-dimensional Riemannian manifold, with
Laplace operator ∆, Λ =

√
−∆. Suppose B ∈ OPS0(M) is self adjoint and

commutes with Λ. We also assume K is a finite group of isometries of M .
Let K̂ denote a complete set of irreducible unitary representations of K,
and, for ρ ∈ K̂, consider Pρ ∈ L(L2(M)), given by

Pρu(x) =
dρ

#(K)

∑
g∈K

χρ(g)u(g
−1x), (B.1)

where χρ(g) = Tr ρ(g), dρ = χρ(I), and #(K) is the number of elements of
K. Then Pρ is the orthogonal projection of L2(M) onto the subspace of K
on which K acts like copies of ρ.

We are interested in the behavior of

PρBφ(Λ−R), (B.2)

and its trace, as R→ ∞. As in §5, we assume

φ ∈ S(R), φ ≥ 0, supp φ̂ ⊂ (−τ, τ), τ < InjM. (B.3)

To tackle (B.2), we define the integral kernel ΦB,R(x, y) of Bφ(Λ−R):

Bφ(Λ−R)u(x) =

∫
M

ΦB,R(x, y)u(y) dV (y). (B.4)

Then

PρBφ(Λ−R)u(x) =
dρ

#(K)

∑
g∈K

χρ(g)

∫
M

ΦB,R(g
−1x, y)u(y) dV (y). (B.5)

Consequently,

TrPρBφ(Λ−R) =
d2ρ

#(K)
TrBφ(Λ−R)

+
dρ

#(K)

∑
g ̸=I

χρ(g)

∫
M

ΦB,R(g
−1x, x) dV (x).

(B.6)

In §5 we recalled that analysis in [6] of

Bφ(Λ−R) =

∫ ∞

−∞
BeitΛe−itRφ̂(t) dt (B.7)
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yields
Trφ(Λ−R) = Nφ(R) ∼ C(φ,M)Rn−1, R→ ∞, (B.8)

and

lim
R→∞

1

Nφ(R)
TrBφ(Λ−R) =

∫
S∗M

σB(x, ξ) dS(x, ξ), (B.9)

where dS(x, ξ) is Liouville measure on S∗M , normalized to have total mass
1. Furthermore, an analysis of the Schwartz kernel Wt(x, y) of eitΛ, for
|t| < InjM , gives, for g ̸= I,∫

M

ΦB,R(g
−1x, x) dV (x) = o(Rn−1), R→ ∞. (B.10)

We have the following conclusion.

Proposition B.1 In the setting described above,

lim
R→∞

1

Nφ(R)
TrPρBφ(Λ−R) =

d2ρ
#(K)

∫
S∗M

σB(x, ξ) dS(x, ξ). (B.11)

In connection with this result, we mention the classical result that∑
ρ∈K̂

d2ρ = #(K), (B.12)

and d2ρ/#(K) is the fraction of the finite dimensional Hilbert space ℓ2(K)
on which the regular representation of K acts like copies of ρ.

60



References

[1] Y. Colin de Verdière, Quasi-modes sur les variétés Riemanniennes,
Invent. Math. 83 (1977), 15–52.

[2] Y. Colin de Verdière, Spectre conjoint d’opérateurs pseudo-
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