Karamata’s Tauberian Theorem

MICHAEL TAYLOR

1. Basics

Let 11 be a positive Borel measure on [0,00). Assume e~** € L}(R™, 1) for each
s > 0, and assume

(1.1) / e M du(N\) ~ Ap(s), as s\,0,
0
where p(s) / +oo as s\, 0, and we say
(1.2) D(s) ~ Ap(s) <= P(s) = Ap(s) + o(p(s)), as s\, 0.

Regarding ¢(s), we will assume that

(13) P = Lo = [ e w0
0
The classical examples are
(1.4) PN =27 p(s) =T(a)s™™, a>0.
Slightly more exotic examples are
(1.5) (N = A" og A, ¢(s) = (I'(e) = T(a)log s)s™,

again for o > 0. Actually, in this case ¥(\) < 0 for A € (0, 1), so we would want to
cut this off, obtaining

(16) v =X (logA)s, ls) = () (log - )5~ +O(s™),

as s \, 0. See §2 for another example, in which ¢(s) ~ log1/s.
Our goal is to establish (under some natural hypotheses on ¢ and 1) that

R
(1.7) u([O,R]):A/O BN dA+ o(p(R™Y)), as R 7 +oo.

In case ¢ and v are given by (1.4), this yields the implication

/ e N dpu(\) ~ As™, as s\, 0 —>
0

A
MNa+1)

(1.8)
RY, as R~ +oo,

1

#([0, R]) ~



2
which is the most basic version of the Karamata Tauberian theorem.

We tackle the problem of establishing (1.7) in stages, examining when we can
show that

(1.9) Awf@»dmaw=Aémf@m¢uwu+ow@»

for various classes of functions f()), untimately including

xt(A)=1 for 0 <A<,

1.10
( ) 0 for A>1.
We start with the function space
M
(1.11) £={> me™ :m eR MeN}.
k=1

Note that this is an algebra of functions that separates the points of [0, c0), hence,
by the Stone-Weierstrass theorem, it is dense in

(1.12) Co([0,00)) = {f € C([0,00]) : f(o0) = 0}.

Now, if f € &, say

(1.13) FO) =D e,
k=1

then the hypothesis (1.1) implies
o0 M o0
[ sy =Y [ e iy
0 - Jo
M M
(1.14) =AY plks) + oD plks))
k=1 k=1

=4 [ H0 ) A+ o)
0
(1.15) o(ks) < ¢(s), for k>1.

Hence (1.9) holds for all f € £. The following is the next key result.



Lemma 1.1. Given (1.1), the result (1.9) holds for all

(1.16) f € Co([0,00)) such that e*f € Cy(]0,0)).

Proof. Given such f, and given £ > 0, take h € £ such that sup |h(\) —e*f(N)] < e,
and set g = e Mh, so

(1.17) ge& |f(N) —gN)| <ee™™

This implies

(118) |10 =~ alsmldny < < [T e duty
and
(1.19) /OOO F(s2) — g(sN)[() dA < g/ooo e~ Mp(N) .

The fact that the right sides of (1.18) and (1.19) are both < Cegp(s), for s € (0,1],
follows from (1.1) and (1.3), respectively. But we know that (1.9) holds with ¢ in
place of f. Hence

120) [ [N~ A [T FeN00) 4] £ 205605 + ool

for each € > 0. Taking ¢ N\, 0 yields the lemma.

We now tackle (1.9) for f = x, given by (1.10). For each § € (0,1/2], take
f5,95 € Co([0,00)) such that

(1.21) 0< fs<xr<gs<lI,

with

(1.22) fs(0) =1 for 0<A<1—3,
0 for A>1,

and

(1.23) gs(\) =1 for 0 <A<,

0 for A>1+6.

Note that Lemma 1.1 is applicable to each fs5 and gs. Hence

/ C N du() < / " gs(s\) du(N)
(1.24) 0 0

—A /OOO g5(sN)Y(N) dX + o(p(s)),



and
/ T (N du() = / " fa(s\) du()
(1.25) 0 O
— 4 / S5\ () dA + o((s)).
Next,
/0 " la5(53) = F5(sA () dA
(1.26) < / oy
(1-9)/s

We now make the hypothesis that, for some ¢ >0, b >0, B < oo,
1 5
(1.27) max{h[)()\)\ : ‘)\ — g‘ < E} < Bsp(s), for 0<s<b.

Note that such a condition holds in cases (1.4) and (1.6). When such an estimate
holds, (1.26) yields

(1.28) /0 Tlos(5X) — F5(s\]w(N) dA < 2B3 o(s), for 6 <e, s <b

It then follows from (1.24)—(1.26) that

lim ()| [ a0 du) =4 [ (e dx
(1.29) SN0 0 0
< inf 2B§ = 0.
6<e
We have the following conclusion.

Proposition 1.2. Let p be a positive measure on [0,00), and assume (1.1)-(1.3)
hold, with ¢ ¢ L*(RT), and that (1.27) holds. Then p satisfies (1.7).

The special case (1.8) has already been mentioned. We turn to the case (1.6),
for which (1.1) leads to (1.7) with

R R
/@b()\)d)\z/ A*"L(log ) d\
0 1

(1.30) _ é/%%v)(mg) dA

1
=~ R(log R) + O(R").

This leads to the following.



Corollary 1.3. Let pu be a positive measure on [0,00). Assume

o 1
(1.31) / e Ndu(\) ~ A(log —>s_°‘, s\ 0,
0 S
with o > 0. then
A (e}

We mention some other results of Karamata. To state them, let us set

(1.33) way:/Rw@ﬁm.

Here is Karamata’s Abelian theorem.

Proposition 1.4. Let ¢ > 0. Assume that V¥, given by (1.33), has the form

(1.34) V(R) = R*F(R), with a>0,
where F' s slowly varying at oo, in the sense that

F(tR) _
(1.35) RS F(R) L

uniformly in t in compact subsets of (0,00). Then

L)(s) ~T(a+1)s *F(s~!
(1.36) (s) ~ I( ) _1( )
=T(a+1)¥(s),
as s \( 0.

Note that (1.4) and (1.6) provide special cases of the functions v, considered
here, with F/(R) = 1 and F(R) = (log R), respectively.
The following result is Karamata’s Tauberian theorem.

Proposition 1.5. Take 1(\) and Y(R) as in Proposition 1.4. In particular, as-
sume that (1.34)—(1.85) hold. Let p be a positive measure on [0,00), and assume

(1.37) | e dutn ~ agto)

as s\, 0, with

(1.38) ¢@):r@w+n?§—5_l
—T(a+1)s F(s™Y)

Then

(1.39) w([0, R]) ~ A¥(R), as R / +oc.



2. Another special case

We want to extend the treatment of (1.4) to a = 0. Since (\) = A™! is not
integrable on (0, 1], we instead take

Yp(A) = A7 for A>1,

(2.1)
0, for 0<A<I.
Then
(e ] _SA o B dy
pe(s)= [ e pAN)dr= [ eV —
0 s Yy
1 e’}
:/ 6*9@ _|_/ 6*9@
(22) s Yy 1 Yy
1 ! Y
:log——/ (1—e¥)—+
s Y
1
~ log_7
S
as s N\, 0.

Let u be a positive measure on [0, 00), and assume (1.1) holds, with ¢(s) given
by (2.1)—(2.2). We want to check that Proposition 1.2 holds. Certainly ¢ ¢ L'(R).
It remains to check (1.27). We look at

max{%:‘)\—é‘<i}:max{§:)\2 1_6}

S S
(2.3) s
C1-¢’
while, for some b > 0,
1
(2.4) sp(s) > glog -, for 0<s<b.
s

Hence (1.27) holds, and we deduce from Proposition 1.2 the following.

Corollary 2.1. Let pu be a positive measure on [0,00). Assume

> 1
(2.5) / e Ndu(\) ~ Alog =, s \0.
0 s

Then

R
(2.6) u([0, R)) ~ A/l LA =AlgR, R oo



