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1. Basics

Let µ be a positive Borel measure on [0,∞). Assume e−sλ ∈ L1(R+, µ) for each
s > 0, and assume

(1.1)

∫ ∞

0

e−sλ dµ(λ) ∼ Aφ(s), as s↘ 0,

where φ(s) ↗ +∞ as s↘ 0, and we say

(1.2) Φ(s) ∼ Aφ(s) ⇐⇒ Φ(s) = Aφ(s) + o(φ(s)), as s↘ 0.

Regarding φ(s), we will assume that

(1.3) φ(s) = Lψ(s) =
∫ ∞

0

e−sλψ(λ) dλ, ψ > 0.

The classical examples are

(1.4) ψ(λ) = λα−1, φ(s) = Γ(α)s−α, α > 0.

Slightly more exotic examples are

(1.5) ψ(λ) = λα−1 log λ, φ(s) = (Γ′(α)− Γ(α) log s)s−α,

again for α > 0. Actually, in this case ψ(λ) < 0 for λ ∈ (0, 1), so we would want to
cut this off, obtaining

(1.6) ψ(λ) = λα−1(log λ)+, φ(s) = Γ(α)
(
log

1

s

)
s−α +O(s−α),

as s↘ 0. See §2 for another example, in which φ(s) ∼ log 1/s.
Our goal is to establish (under some natural hypotheses on φ and ψ) that

(1.7) µ([0, R]) = A

∫ R

0

ψ(λ) dλ+ o(φ(R−1)), as R↗ +∞.

In case φ and ψ are given by (1.4), this yields the implication

(1.8)

∫ ∞

0

e−sλ dµ(λ) ∼ As−α, as s↘ 0 =⇒

µ([0, R]) ∼ A

Γ(α+ 1)
Rα, as R↗ +∞,
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which is the most basic version of the Karamata Tauberian theorem.
We tackle the problem of establishing (1.7) in stages, examining when we can

show that

(1.9)

∫ ∞

0

f(sλ) dµ(λ) = A

∫ ∞

0

f(sλ)ψ(λ) dλ+ o(φ(s)),

for various classes of functions f(λ), untimately including

(1.10)
χI(λ) = 1 for 0 ≤ λ ≤ 1,

0 for λ > 1.

We start with the function space

(1.11) E =
{ M∑
k=1

γke
−kλ : γk ∈ R, M ∈ N

}
.

Note that this is an algebra of functions that separates the points of [0,∞), hence,
by the Stone-Weierstrass theorem, it is dense in

(1.12) C0([0,∞)) = {f ∈ C([0,∞]) : f(∞) = 0}.

Now, if f ∈ E , say

(1.13) f(λ) =
M∑
k=1

γke
−kλ,

then the hypothesis (1.1) implies

(1.14)

∫ ∞

0

f(sλ) dµ(λ) =
M∑
k=1

γk

∫ ∞

0

e−skλ dµ(λ)

= A
M∑
k=1

γkφ(ks) + o
( M∑
k=1

φ(ks)
)

= A

∫ ∞

0

f(sλ)ψ(λ) dλ+ o(φ(s)),

since

(1.15) φ(ks) ≤ φ(s), for k ≥ 1.

Hence (1.9) holds for all f ∈ E . The following is the next key result.
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Lemma 1.1. Given (1.1), the result (1.9) holds for all

(1.16) f ∈ C0([0,∞)) such that eλf ∈ C0([0,∞)).

Proof. Given such f , and given ε > 0, take h ∈ E such that sup |h(λ)−eλf(λ)| ≤ ε,
and set g = e−λh, so

(1.17) g ∈ E , |f(λ)− g(λ)| ≤ εe−λ.

This implies

(1.18)

∫ ∞

0

|f(sλ)− g(sλ)| dµ(λ) ≤ ε

∫ ∞

0

e−sλ dµ(λ)

and

(1.19)

∫ ∞

0

|f(sλ)− g(sλ)|ψ(λ) dλ ≤ ε

∫ ∞

0

e−sλψ(λ) dλ.

The fact that the right sides of (1.18) and (1.19) are both ≤ Cεφ(s), for s ∈ (0, 1],
follows from (1.1) and (1.3), respectively. But we know that (1.9) holds with g in
place of f . Hence

(1.20)
∣∣∣∫ ∞

0

f(sλ) dµ(λ)−A

∫ ∞

0

f(sλ)ψ(λ) dλ
∣∣∣ ≤ 2Cεφ(s) + o(φ(s)),

for each ε > 0. Taking ε↘ 0 yields the lemma.

We now tackle (1.9) for f = χI , given by (1.10). For each δ ∈ (0, 1/2], take
fδ, gδ ∈ C0([0,∞)) such that

(1.21) 0 ≤ fδ ≤ χI ≤ gδ ≤ 1,

with

(1.22)
fδ(λ) = 1 for 0 ≤ λ ≤ 1− δ,

0 for λ ≥ 1,

and

(1.23)
gδ(λ) = 1 for 0 ≤ λ ≤ 1,

0 for λ ≥ 1 + δ.

Note that Lemma 1.1 is applicable to each fδ and gδ. Hence

(1.24)

∫ ∞

0

χI(sλ) dµ(λ) ≤
∫ ∞

0

gδ(sλ) dµ(λ)

= A

∫ ∞

0

gδ(sλ)ψ(λ) dλ+ o(φ(s)),
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and

(1.25)

∫ ∞

0

χI(sλ) dµ(λ) ≥
∫ ∞

0

fδ(sλ) dµ(λ)

= A

∫ ∞

0

fδ(sλ)ψ(λ) dλ+ o(φ(s)).

Next,

(1.26)

∫ ∞

0

[gδ(sλ)− fδ(sλ)]ψ(λ) dλ

≤
∫ (1+δ)/s

(1−δ)/s

ψ(λ) dλ

≤ 2δ

s
max

{
|ψ(λ)| :

∣∣∣λ− 1

s

∣∣∣ ≤ δ

s

}
.

We now make the hypothesis that, for some ε > 0, b > 0, B <∞,

(1.27) max
{
|ψ(λ)| :

∣∣∣λ− 1

s

∣∣∣ ≤ ε

s

}
≤ Bsφ(s), for 0 < s ≤ b.

Note that such a condition holds in cases (1.4) and (1.6). When such an estimate
holds, (1.26) yields

(1.28)

∫ ∞

0

[gδ(sλ)− fδ(sλ)]ψ(λ) dλ ≤ 2Bδ φ(s), for δ ≤ ε, s ≤ b.

It then follows from (1.24)–(1.26) that

(1.29)
lim
s↘0

φ(s)−1
∣∣∣∫ ∞

0

χI(sλ) dµ(λ)−A

∫ ∞

0

χI(sλ)ψ(λ) dλ
∣∣∣

≤ inf
δ≤ε

2Bδ = 0.

We have the following conclusion.

Proposition 1.2. Let µ be a positive measure on [0,∞), and assume (1.1)–(1.3)
hold, with ψ /∈ L1(R+), and that (1.27) holds. Then µ satisfies (1.7).

The special case (1.8) has already been mentioned. We turn to the case (1.6),
for which (1.1) leads to (1.7) with

(1.30)

∫ R

0

ψ(λ) dλ =

∫ R

1

λα−1(log λ) dλ

=
1

α

∫ R

1

( d

dλ
λα

)
(log λ) dλ

=
1

α
Rα(logR) +O(Rα).

This leads to the following.
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Corollary 1.3. Let µ be a positive measure on [0,∞). Assume

(1.31)

∫ ∞

0

e−sλ dµ(λ) ∼ A
(
log

1

s

)
s−α, s↘ 0,

with α > 0. then

(1.32) µ([0, R]) ∼ A

Γ(α+ 1)
Rα(logR), R↗ +∞.

We mention some other results of Karamata. To state them, let us set

(1.33) Ψ(R) =

∫ R

0

ψ(λ) dλ.

Here is Karamata’s Abelian theorem.

Proposition 1.4. Let ψ > 0. Assume that Ψ, given by (1.33), has the form

(1.34) Ψ(R) = RαF (R), with α > 0,

where F is slowly varying at ∞, in the sense that

(1.35) lim
R→∞

F (tR)

F (R)
= 1,

uniformly in t in compact subsets of (0,∞). Then

(1.36)
Lψ(s) ∼ Γ(α+ 1)s−αF (s−1)

= Γ(α+ 1)Ψ(s−1),

as s↘ 0.

Note that (1.4) and (1.6) provide special cases of the functions ψ, considered
here, with F (R) = 1 and F (R) = (logR)+, respectively.

The following result is Karamata’s Tauberian theorem.

Proposition 1.5. Take ψ(λ) and Ψ(R) as in Proposition 1.4. In particular, as-
sume that (1.34)–(1.35) hold. Let µ be a positive measure on [0,∞), and assume

(1.37)

∫ ∞

0

e−sλ dµ(λ) ∼ Aφ(s),

as s↘ 0, with

(1.38)
φ(s) = Γ(α+ 1)Ψ(s−1)

= Γ(α+ 1)s−αF (s−1).

Then

(1.39) µ([0, R]) ∼ AΨ(R), as R↗ +∞.
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2. Another special case

We want to extend the treatment of (1.4) to α = 0. Since ψ(λ) = λ−1 is not
integrable on (0, 1], we instead take

(2.1)
ψ(λ) = λ−1, for λ ≥ 1,

0, for 0 < λ < 1.

Then

(2.2)

φ(s) =

∫ ∞

0

e−sλψ(λ) dλ =

∫ ∞

s

e−y dy

y

=

∫ 1

s

e−y dy

y
+

∫ ∞

1

e−y dy

y

= log
1

s
−

∫ 1

s

(1− e−y)
dy

y
+ c

∼ log
1

s
,

as s↘ 0.
Let µ be a positive measure on [0,∞), and assume (1.1) holds, with φ(s) given

by (2.1)–(2.2). We want to check that Proposition 1.2 holds. Certainly ψ /∈ L1(R).
It remains to check (1.27). We look at

(2.3)
max

{ 1

λ
:
∣∣∣λ− 1

s

∣∣∣ ≤ ε

s

}
= max

{ 1

λ
: λ ≥ 1− ε

s

}
=

s

1− ε
,

while, for some b > 0,

(2.4) sφ(s) ≥ s

2
log

1

s
, for 0 < s ≤ b.

Hence (1.27) holds, and we deduce from Proposition 1.2 the following.

Corollary 2.1. Let µ be a positive measure on [0,∞). Assume

(2.5)

∫ ∞

0

e−sλ dµ(λ) ∼ A log
1

s
, s↘ 0.

Then

(2.6) µ([0, R]) ∼ A

∫ R

1

1

λ
dλ = A logR, R↗ +∞.


